
Product lines of dataflows
Extended Abstract

Michael Lienhardt
michael.lienhardt@onera.fr

ONERA
France

Maurice H. ter Beek
maurice.terbeek@isti.cnr.it

CNR–ISTI, Pisa
Italy

Ferruccio Damiani
ferruccio.damiani@unito.it
University of Turin, Turin

Italy

ABSTRACT
This one-page document summarizes a paper published in JSS [1].

CCS CONCEPTS
• Software and its engineering → Formal methods; Software
product lines.

KEYWORDS
Software Product Lines, Delta-Oriented Programming, Dataflows
ACM Reference Format:
Michael Lienhardt, Maurice H. ter Beek, and Ferruccio Damiani. 2024. Prod-
uct lines of dataflows: Extended Abstract. In Proceedings of 28th ACM In-
ternational Systems and Software Product Lines Conference (SPLC’24). ACM,
New York, NY, USA, 1 page. https://doi.org/XXXXXXX.XXXXXXX

Data-centric parallel programming models like dataflows are well
established to implement complex concurrent software. However, in
case of a configurable software, the dataflow used in its computation
might vary w.r.t. the selected options. One industrial tool exhibiting
such a variable dataflow is elsA. This tool simulates the flow of
fluids in a given mesh and outputs information of interest to the
user (e.g., the pressure that a material pushed by the fluid must be
able to sustain, or some modification of its shape that would make
the fluid flow more efficiently): the core dataflow of this tool has
an infinite configuration space structured in three parts.

The first part of the configuration space consists of about 2000
options that configure which fluid flow computation to perform.
Indeed, fluid flow is given by Navier-Stokes equations that have no
analytic solution, so hundreds of approximations of these equations
have been defined, with various precision and stability characteris-
tics: it is up to the user to decide which approximation to use.

The second part is the output information provided to the user:
virtually any data could be of interest since it depends on which
phenomena is studied. So the user must provide a data list to elsA,
which in turn must compute them by extending its dataflow.

The last part of the configuration space is the shape of the input
mesh itself. Meshes are structured in zones (modelling the domain in
which the fluids flow) and boundaries (modelling walls of different
materials, fluid injection or extraction, or even infinite domains):
fluid flow simulation must be performed on every zone of the mesh
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC’24, September 2-6, 2024, Luxembourg
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

DSL: Variable Task Specification

Product Line Flattening Product

Task Specification

Rewriting rules Generation

Rewriting Rules

Rewriting Values to Compute

Dataflow

Figure 1: Dataflow generation pipeline

and specific computations must be performed on each boundary
depending on its type (e.g., the effect of a wall on a flow is different
from that of a fluid injection).

In this paper, we propose an approach to automatically generate
dataflows given a configuration space close to that of elsA: instead
of considering an arbitrary input mesh, we assume its variability
space can be expressed with features. Our approach is structured in
two main parts: first, it uses Software Product Line (SPL) techniques
to express the variability of tasks w.r.t. the configuration space, and
configures them given the options selected by the user; then, it uses
term rewriting to assemble these configured tasks into a dataflow
that computes the data requested by the user.

Figure 1 illustrates our approach. We use a Domain Specific Lan-
guage (DSL) duly extended with concepts from Delta-Oriented Pro-
gramming (DOP) to model the variability of the dataflow’s tasks.
This DSL allows us to specify which tasks, with which inputs and
which outputs, are available to construct a dataflow. Then, given
an input Product specifying the values of the different options, the
Product Line Flattening process automatically generates the Task
Specification corresponding to that specific product. This specifica-
tion is then automatically translated into term Rewriting Rules by
the Rewriting rules Generation process. Finally, given a list of Values
to Compute, we simply apply the generated Rewriting rules on this
data to obtain a correct Dataflow computing these values by using
the tasks available in the specification.

In this paper, we moreover describe several analyses that check
the consistency of the variable task specifications expressed in the
DSL and ensure termination of the dataflow generation process
(the Rewriting step in particular). Finally, we present an empirical
evaluation of a prototype implementation designed together with
the elsA development team. For this evaluation, we randomly chose
597 products, then generated the corresponding dataflows, and
discuss the size of the generated dataflows and the execution time.

REFERENCES
[1] Michael Lienhardt, Maurice H. ter Beek, and Ferruccio Damiani. 2024. Product

lines of dataflows. Journal of Systems and Software 210 (2024), 111928. https:
//doi.org/10.1016/j.jss.2023.111928

https://orcid.org/0009-0009-9635-5757
https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0001-8109-1706
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/10.1016/j.jss.2023.111928
https://doi.org/10.1016/j.jss.2023.111928

	Abstract
	References

