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Abstract: The relationship between serum 25-hydroxyvitamin D (25(OH)D) levels, genomic response
to vitamin D (Vit.D), and positivity to SARS-CoV-2 remains understudied. In this pilot study, during
the follow-up of patients with Inflammatory Bowel Disease (IBD) and COVID-19, we investigated
this issue by analyzing the molecular contents of serum extracellular vesicles (EVs) from six groups
of IBD patients (n = 32), classified according to anti-SARS-CoV-2 status, 25(OH)D level, and Vit.D
supplementation, by small RNA-seq. This analysis revealed differentially expressed miRNAs, PIWI-
RNA, transfer RNA, small nucleolar RNAs, and protein-coding RNAs in the EVs obtained from
these cohorts of IBD patients. Experimental validation evidenced a statistically significant increase in
miR30d-5p, miR150-5p, Let-7f-5p, and Let-7a-5p in the anti-SARS-CoV-2-positive and low 25(OH)D
and Vit.D supplemented groups with respect to the non-Vit.D supplemented group, indicating
their responsiveness to Vit.D treatment. Bioinformatics analysis highlighted the regulation of these
validated miRNAs by oxidative stress and inflammation, hallmarks of IBD and COVID-19. Our study
reports an unprecedented panel of circulating EV-enclosed inflammation- and oxidative stress-related
miRNAs, the potentiality of which, as biomarkers for Vit.D responsivity in IBD patients, needs to be
explored in future studies on larger cohorts in order to allow clinicians to optimize current treatment
strategies upon viral infection.
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1. Introduction

Vitamin D (Vit.D) is an essential nutrient and pre-hormone that regulates a broad spec-
trum of physiological activities. The biologically active form of Vit.D (1,25-dihydroxyvitamin
D [1,25(OH)2D]) can modulate the functional activities of both innate and adaptive immune
cells, which express the Vit.D receptor (VDR), hence influencing gene expression with
genome- and transcriptome-wide impacts and regulating immune response, inflammation,
oxidative stress, and gut microbiota profile [1–5]. Recent epidemiological data have re-
vealed that Vit.D deficiency is associated with higher morbidity rates in multiple infectious
diseases, autoimmune disorders, and various components of the metabolic syndrome, as
well as in cancer, pointing out the anti-tumorigenic effects of this vitamin [6,7]. A low serum
level of 25-hydroxyvitamin D (25(OH)D), which indicates the body’s Vit.D status, was
found to be correlated with the morbidity of several upper respiratory tract infections, such
as flu, and lately, Coronavirus disease 2019 (COVID-19) [8]. Regarding COVID-19, several
observational studies have reported an inverse correlation between serum Vit.D levels
and the incidence and severity of COVID-19 [9]. We have recently demonstrated that a
Vit.D level over 30 ng/mL was associated with SARS-CoV-2 infection devoid of symptoms
in patients with Inflammatory Bowel Disease (IBD) [10]. This uncertainty has also led
COVID-19 patients to undergo self-medication with Vit.D resulting in hypercalcemia [11].
Importantly, COVID-19 can promote oxidative stress through several pathways, including
TNFα and NFκB, which can worsen IBD symptoms [12–14]. IBD encompasses a range
of inflammatory conditions that affect the digestive system and are marked by chronic
episodes of relapse and remission. IBD comprises two main forms—Crohn’s disease (CD)
and ulcerative colitis (UC), the etiology of which remains elusive. A crosstalk among oxida-
tive stress, gut microbiota, and immune response has been recently proposed [15]. Typically,
the onset and progression of IBD coincide with enduring oxidative stress and an imbalance
in the generation of Reactive Oxygen Species (ROS), alongside inflammatory reactions trig-
gered by gut microbiota dysbiosis [15]. Fine-tuning the level of cellular ROS is important,
as physiological levels of ROS can serve as second messengers to modulate normal cell
functions such as immune defense, whereby intracellular hydrogen peroxide can trigger
the migration of leukocytes to the sites of injury in several ways, for example [16]. On
the other hand, overproduction of ROS can cause damage to cellular biomolecules (DNA,
proteins, and lipids), gradually leading to cellular senescence and death [17]. Importantly,
Vit.D deficiency is common in IBD patients, and Vit.D levels could predict disease activity
as well as response to biological therapy, which are higher in IBD patients [18]. A recent
meta-analysis revealed that Vit.D supplementation can dampen the risk of clinical relapse
in IBD patients, specifically in UC patients [19]. Thus, IBD patients should be monitored
for Vit.D levels and supplemented on a registered dietitian-prescribed diet as per recent
indications in order to establish the doses and supplementation modality [20,21]. However,
the relationship between serum 25(OH)D levels, the genomic response to Vitamin D (Vit.D),
and the positivity to SARS-CoV-2 in the context of IBD remains unclear.

Extracellular vesicles (EVs) have emerged as promising biomarker vehicles. EVs are a
heterogeneous group of nano-sized particles enclosing bioactive molecules, such as nucleic
acids, proteins, lipids, and metabolites, within a bilayer membrane [22]. EVs are released in
all body fluids, and RNA encapsulated within EVs has become a focal point in biomarker
research due to its “message in a bottle” type of active release into the bloodstream under
pathological conditions [22]. Importantly, EV-enclosed RNA molecules exhibit markedly
greater resistance to RNAse activity compared to their unbound, cell-free counterparts.
This enhanced stability has paved the way for the integration of various RNA types into
the development of a more refined and effective biomarker panel for diagnostic as well
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as therapeutic purposes. Several factors influence the release and content of EVs. In this
regard, oxidative stress and inflammation occurring in IBD are major contributors [17].
EVs have been shown to carry biomolecules indicative of the pathological condition, such
as in the case of cholestasis-induced liver fibrosis, or IBD, at the preclinical level [23,24].
Clinical studies have been limited to small cohorts of patients. For example, it was shown
that EV-closed membrane proteins and interleukin-6 could help in classifying COVID-
19 patients according to the severity (mild, moderate, and severe) of the disease [25].
Moreover, bronchoalveolar lavage fluid EVs from sarcoidosis patients were significantly
enriched in Vit.D–binding protein with respect to those of controls and could potentially
serve as a sarcoidosis diagnosis biomarker [26]. Vit.D-binding protein was also reduced
in plasma microglia-derived EVs from major depressive disorder patients compared to
those from matched healthy controls [27]. Thus, in the present study, we performed an
unprecedented “omics”-based analysis to investigate whether serum EV miRNA contents
could prove an important source of biomolecules for the evaluation of Vit.D responsiveness
in IBD patients differentially infected with SARS-CoV-2, as the IBD course is particularly
susceptible to Vit.D levels and patients are at high risk of developing Vit.D insufficiency
and deficiency [28]. To our knowledge, this is the first report on EV-miRNAs as potential
biomarkers for Vit.D responsiveness in IBD patients.

2. Materials and Methods
2.1. Patient Selection, Vit.D Supplementation, Blood Sampling, and Quantification of
25(OH)D Levels

The criteria for IBD patient enrollment, clinical parameters, and SARS-CoV-2 serologi-
cal data have been previously described [10]. Briefly, following blood sampling, plasma was
prepared for 25(OH)D dosage by ultra-ultra-high-performance liquid chromatography cou-
pled with tandem mass spectrometry (UHPLC-MS/MS) [10]. Patients with Vit.D deficiency
(serum 25(OH)D < 30 nmol/L) were treated with cholecalciferol at 25.000 UI once/month if
they were not under Vit.D therapy, or with 25.000 UI twice/month or 50.000 UI once/month
if they were already under treatment with cholecalciferol 25.000 UI once/month (DibaseTM,
ABIOGEN PHARMA, Pisa, Italy). This study was approved by the Ethics Committee
of Città della Salute e della Scienza Hospital, Turin, Italy (protocol number 0109499, 12
November 2020). Serum was prepared by centrifuging the clotted blood at 2000× g for
15 min at 4 ◦C. The supernatant was stored at −80 ◦C until further processing.

2.2. EV Enrichment and Characterization

Circulating EVs were prepared from serum, as previously described [23]. Briefly,
serum was thawed on ice and Exoquick™ (System Biosciences, LLC, Palo Alto, CA, USA)
added according to the manufacturer’s instructions. Pelleted EVs were resuspended in PBS
and visualized on a NanoSight LM10 instrument (Particle Characterization Laboratories,
Novato, CA, USA). The size profile and concentration of the particles in plasma samples
were evaluated with NTA 3.2 software.

Proteins from EVs were extracted using RIPA buffer (Sigma-Aldrich, Milano, Italy),
followed by quantification using the Bradford method (Bio-Rad, Milano, Italy), according
to the manufacturer’s instructions. Ten micrograms of protein were analyzed by Western
blotting for the determination of the presence of exosomal markers (anti-CD81 and anti-
HSP90 antibodies, System Biosciences, LLC, Palo Alto, CA, USA) in EVs as previously
described [23].

2.3. EV RNA Extraction and miRNA Sequencing

For the extraction of total RNA, EV pellets were reconstituted in 200 µL of PBS, and
1 mL of QIAzol Lysis Reagent (Qiagen, Milan, Italy) was added. RNA was isolated using
the miRNeasy Serum/Plasma Kit (Qiagen) with the QIAcube instrument (Qiagen, Milan,
Italy), ensuring consistent results by eliminating operator-dependent variability. The total
RNA concentration was measured using the Qubit RNA HS kit (Thermo Fisher Scientific,
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Milan, Italy), and samples were stored at −80 ◦C for future use. The RNA was quantified
using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Milan, Italy).

MiRNA sequencing was conducted by Area Science Park (Trieste, Italy) using Illumina
sequencing technology. MiRNA-Seq libraries were prepared with the QIAseq miRNA
Library Kit (QIAGEN, Hilden, Germany) and sequenced on the NovaSeq 6000 platform
(Illumina, San Diego, CA, USA) in 2 × 100 paired-end mode. MiRNA identification in the
samples was carried out using QIAseq miRNA-NGS data analysis software, utilizing Single
Read for read type and Read 1 Cycles 75 as read cycles [29]. The QIAseq miRNA sequencing
FASTQ files were processed in the following steps: (1) Calibrate miRBase entries. Manual
calibration was created for miRNA entries with identical or nearly identical sequences
in the miRBase mature database, resulting in the formation of a new combined miRNA
entry for each specific miRNA set. (2) Trim adapter and low-quality bases. The reads
were processed using Cutadapt (cutadapt.readthedocs.io/en/stable/guide.html, accessed
on 25 October 2022) to trim off the 3′ adapter and remove low-quality bases. (3) Identify
insert and unique molecular index (UMI) sequences. After trimming, the insert sequences
and UMI sequences were identified. Reads with fewer than 16 base pair (bp) insert
sequences (too_short_reads) or fewer than 10 bp UMI sequences (UMI_defective_reads)
were discarded. (4) Align insert sequences. A sequential alignment strategy was employed
to map to various databases (perfect match to miRBase mature, miRBase hairpin, noncoding
RNA, mRNA, and otherRNA, and finally a second mapping to miRBase mature with
up to two mismatches allowed) using Bowtie (bowtie-bio.sourceforge.net/index.shtml,
accessed on 25 October 2022). Only unmapped sequences advanced to the next step
at each stage. Read counts for each RNA category (miRBase mature, miRBase hairpin,
piRNA, tRNA, rRNA, mRNA, and otherRNA) were calculated based on the mapping
results (miRNA_Reads, hairpin_Reads, piRNA_Reads, etc.). MiRBase V21 was utilized for
miRNA, and piRNABank was used for piRNA.

2.4. Bioinformatics Analysis

Differential expression analysis of the different classes of transcripts (miRNA, PIWI-
interacting RNA, transfer RNA, small nucleolar RNAs, and protein-coding RNAs) was
conducted through the edgeR (release 4.2.0) library in the R environment (release 4.4.0) and
Rstudio (Build 524). Transcripts were filtered out by filterByExpr (with default parameters),
and their expression was normalized by the Trimmed Mean of M-values (TMM) method.
Differentially expressed transcripts were selected, imposing a cut-off of 0.58 in absolute
value for the logFC and a p-value < 0.01. Expression data for differential expression
analysis are based on counts (number of reads); for samples sequenced more than once, the
reference value used for transcripts is the average of counts among different sequencings
of the same sample.

TF-miRNA regulation relationships were investigated through TransmiR version
2.0 [30]. Evidence of possible interactions between experimental data and high-throughput
technologies is reported.

2.5. Real-Time PCR Analysis

For miRNA expression analysis, RNA was extracted from serum EVs (independent
serum samples) as described above and analyzed using miRCURY Locked Nucleic Acid
(LNA) miRNA PCR panels following the manufacturer’s instructions (Qiagen, Milano,
Italy). Internal housekeeping miRNAs were chosen from RNA-seq data (miR-486-5p, -
92a-3p, -122-5p, -23a-3p, and -22-3p) (Figure S1). As comparable results were obtained by
qRT-PCR using two chosen unmodulated miRNAs, miR22-3p and miR122-5p, all successive
normalizations were performed using miR122-5p.

2.6. Statistical Methods

Continuous variables were presented as medians with their interquartile ranges (IQR).
Categorical variables were described in terms of counts and percentages. For comparing

cutadapt.readthedocs.io/en/stable/guide.html
bowtie-bio.sourceforge.net/index.shtml
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continuous variables, the Mann-Whitney test was used for independent samples, while
the Wilcoxon test was applied to paired samples. All correlation-related statistical analyses
were conducted using MedCalc® version 20.104 (MedCalc Software Ltd., Ostend, Belgium),
with a p-value of ≤0.05 considered indicative of statistical significance.

For comparing multiple experimental groups, a one-way analysis of variance (ANOVA)
followed by Bonferroni’s post hoc test was performed using GraphPad Prism5.0 software.
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 were considered statistically signifi-
cant. A Student’s t-test was also used to compare groups C versus E or D versus F, with a
p-value < 0.05 or <0.01 considered statistically significant.

3. Results
3.1. IBD Patients and Clinical Data, Vit.D Concentration and Supplementation, and COVID-19

Thirty-two IBD patients were selected for this study, and the patients’ characteristics
are described in Table 1.

Table 1. Overall patients’ characteristics. CD: Crohn’s Disease; IBD-U: unclassified Inflammatory
Bowel Disease; UC: Ulcerative colitis.

Variable

Median age (range) (n = 31) 49.0 (34.0–55.0)

Sex (n = 31) 48.4% males; 51.6% females

Type of IBD (n = 31) 64.5% CD; 6.5% IBD-U; 29.0% UC

Pre-study Vitamin D supplementation (n = 31) 32.3% No; 67.7% Yes

SARS-CoV-2 positivity (n = 31) 54.8% No (n = 17); 45.2% Yes (n = 14)

Hospitalization (n = 14) 85.7% No; 14.3% Yes

Ventilation (n = 14) 100% No

Death (n = 14) 100% No

Pneumonia (n = 14) 92.9% No; 7.1% Yes

IBD Patients were further divided into 4 groups (groups A–D; Table 2), according to
their SARS-CoV-2 serological results and Vit.D status.

Table 2. IBD Patients’ characteristics per group (g). y.o.: years old; IQR: interquartile range.

Group A B C D E F

Gender [Male%-
Female%]; n [50%-50%]; 4 [50%-50%]; 8 [42.9%-57.1%];

7
[37.5%-62.5%];

8 [50%-50%]; 4 [40%-60%]; 5

Median age (y.o.;
IQR) 56.5 (38.0–64.0) 42.5 (39.0–50.0) 48.5 (33.0–56.0) 49.0 (28.5–54.5) 48.0 (30.0–59.0) 48.5 (25.5–57.5)

COVID-19
anamnesis
(yes/no)

yes no yes no yes no

Pre-study Vit.D
supplementation

(15,000–25,000
U/2 weeks or per

month); (n)

50% (n = 2) 87.5 (n = 7) 42.9% (n = 3) 87.5 (n = 7) 50% (n = 2) 80% (n = 4)

Vit.D
supplementation
during this study

(yes/no)

no no no no yes yes
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IBD patients in groups A and B had >30 ng/mL 25(OH)D levels with respect to those
of groups C and D (<30 ng/mL). Thus, patients with <30 ng/mL 25(OH)D (groups C and
D) underwent Vit.D supplementation for 1 month as described in the methods section, and
the level of plasma 25(OH)D was assessed thereafter. Plasma 25(OH)D basal levels and
SARS-CoV-2 positivity or negativity are reported in Figure 1 and Table 2, respectively. As
expected, following Vit.D supplementation, there was a statistically significant increase in
25(OH)D levels in these patients (groups E and F) (Figure 1A).
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3.2. IBD Patients’ Serum EV Enclose miRNAs Indicative of Oxidative Stress- and
Inflammation-Related Pathways

The cargoes of EVs extracted from plasma and serum have been considered poten-
tial biomarkers for numerous conditions, including liver injury induced by alcohol and
drugs [31,32]. EVs were enriched from IBD patients’ serum and characterized by Western
blotting (Figures 1B and S2) and Nanosight tracking analysis as previously described [23].
EV size and concentration in the samples from the different groups varied from 101.5 +/−
50.8 nm to 171.3 +/− 2.9 nm and from 4.19 × 1010 +/− 2.16 × 1010 particles/mL to 1.54 ×
1011 +/− 5.37 × 109 particles/mL, respectively (Figure 1C), but no statistically significant
differences were observed in the number or concentration of EVs among the groups (A–D).

Small RNA-seq of serum EVs derived from the 6 groups of IBD patients (A–F) revealed
the presence of different species of RNA (Figure S3). In particular, mRNA (Figure S3A
and Table S1), miRNA (Figure S3B and Table S2), piRNA (Figure S3C and Table S3), tRNA
(Figure S3D and Table S4), or other tRNA (Table S5) were particularly enriched in the EVs
derived from patients belonging to the different groups.

Interestingly, a further analysis of the serum EV-enclosed miRNAs revealed by
small RNA-seq showed several differentially expressed miRNAs (Figure 2). We chose
to validate several miRNAs (Table 3) by qRT-PCR according to the following criteria:
Reads > 1000; FC > 2 in at least two groups of patients; relevance to the Vit.D, inflamma-
tion, or IBD pathway.

Table 3. The differentially expressed EV-enclosed miRNAs chosen for further qRT-PCR validation—
logFC, p-value, and the compared conditions in which they were found statistically significant—are
reported. The complete analysis is shown in Table S7.

miRNA logFC p Value Comparison

hsa-let-7a-5p −1.05214423 0.007905004 A vs. C

hsa-let-7a-5p −1.78215526 0.006151082 E vs. C

hsa-let-7d-5p −1.22782698 0.003414526 A vs. C

hsa-let-7f-5p 1.262294456 0.009947947 C vs. D

hsa-let-7f-5p −1.84545328 0.004319857 E vs. C

hsa-miR-126-3p −1.76896854 0.007664076 E vs. C

hsa-miR-126-5p −1.71591194 0.007685279 E vs. C

hsa-miR-146a-5p 1.472326209 0.009641655 C vs. D

hsa-miR-150-5p 1.093716916 0.009059818 C vs. D

hsa-miR-150-5p −1.54629612 0.004547162 E vs. C

hsa-miR-191-5p −1.87556395 0.009207518 E vs. C

hsa-miR-21-5p −1.35376327 0.007451891 E vs. C

hsa-miR-223-3p −2.63160072 0.001610881 E vs. C

hsa-miR-30d-5p −1.81395948 0.008396924 E vs. C

hsa-miR-423-5p −1.94752558 0.005348262 E vs. C

hsa-miR-486-3p −2.42802251 0.009517606 E vs. C
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Using qRT-PCR, the following miRNAs were found to be statistically significantly
different at least between two groups of IBD patients under study: Let-7f-5p, Let-7a-5p,
miR150-5p, and miR30d-5p (Figure 3). In particular, Let-7f-5p and miR30d-5p showed a sta-
tistically significant increase in group E (SARS-CoV-2 IgG positive, Vit.D < 30 ng/mL, and
Vit.D supplemented) with respect to groups B (SARS-CoV-2 IgG negative, Vit.D > 30 ng/mL),
C (SARS-CoV-2 IgG positive, Vit.D < 30 ng/mL), and D (SARS-CoV-2 IgG negative,
Vit.D < 30 ng/mL). Let-7a-5p and miR150-5p levels also enhanced expression in group E
with respect to other groups of patients; however, statistical significance was reached only
between groups E and B. On the other hand, the trends in expression levels of the other
miRNAs evidenced by miRNome analysis could be confirmed by qRT-PCR analysis among
some groups, but these did not reach statistical significance (Figures 3 and S4).

In order to get insights into the mechanisms by which the four validated miRNAs
were regulated in the context of IBD and SARS-CoV-2 infection, we bioinformatically
interrogated the TransmiR v2.0 database to find potential transcription factor (TF) binding
sites on the promoter of these miRNAs [30]. As oxidative stress and inflammation are
hallmarks of IBD and SARS-CoV-2 infection, we specially searched for binding sites for TFs
related to these pathways. Interestingly, this analysis pointed out the presence of binding
sites for several oxidative stress and inflammation-related TFs on the validated miRNAs
(Table S8).
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3.3. Serum-Derived EV miRNA Expression Indicates Vitamin D Responsivity in IBD Patients
Positive for SARS-CoV-2 IgG

IBD patients who were positive for SARS-CoV-2 IgG responded significantly better to
Vit.D supplementation with respect to the negative ones (Figure 1A). Interestingly, the qRT-
PCR-validated miRNAs Let-7a-5p, Let-7f-5p, miR150-5p, and miR30d-5p were upregulated
in the circulating EVs of these IBD patients with respect to those who were not infected by
SARS-CoV-2 (Table 4).

Table 4. miRNA expression in EVs of patients with low Vit.D levels who underwent Vit.D supple-
mentation. Relative expression levels of miRNAs obtained by qRT-PCR on representative patients
classified according to SARS-CoV-2 IgG status are shown prior to and following Vit.D treatment. In
red: downregulation of expression with respect to starting level of expression. P1, P2, and P3 are
three patients who had low Vit.D levels and underwent Vit.D supplementation.

Low Vit.D Vit.D Supplemented
miRNA P1 (SARS-

CoV-2+)
P2 (SARS-
CoV-2+)

P3 (SARS-
CoV-2−)

P1 (SARS-
CoV-2+)

P2 (SARS-
CoV-2+)

P3 (SARS-
CoV-2−)

Let-7a-5p 1.65148345 0.967622724 0.511047209 2.627095884 2.846824659 0.837721773

Let-7f-5p 1.600454936 0.723943443 0.303769668 3.508573233 3.54355914 0.876204496

miR150-5p 1.645731544 1.614814116 1.11826679 2.655071171 3.350935823 1.013703793

miR30d-5p 1.405683671 1.186686379 0.5156357 3.506820284 5.054646657 1.130965628

3.4. miRNA Expression in IBD Patients’ Serum-Derived EVs and COVID-19 Severity

We analyzed EV-miRNA expression according to the presence of different specific
symptoms associated with COVID-19. Among validated EV-miRNAs, we did not observe
any difference between patients with asymptomatic COVID-19 as compared to those that
experienced at least one symptom. Furthermore, no differences were observed according
to the following symptoms: fever, cough, diarrhea, vomit, headache, and anosmia/ageusia.
Conversely, we observed a significant lower expression of miR126-3p, miR191-5p, miR23a-
3p, miR30d-5p, Let7a-5p, and Let7d-5p in patients who experienced dyspnea as compared
to those who did not (p < 0.05).
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4. Discussion

In the present study, we addressed the question of whether, in patients with IBD
and normal levels of Vit.D who have developed antibodies against SARS-CoV-2, a milder
COVID-19 symptomatology has occurred with respect to those with low levels of Vit.D.
Patients with IBD usually have low levels of Vit.D and often receive standardized supple-
mentation therapy. Vit.D supplementation, however, as a treatment for diseases remains
controversial, partly due to conflicting clinical study results. Moreover, it has become
evident that a “one-size-fits-all” approach is not appropriate as not all individuals, due
to genetic and epigenetic factors, respond uniformly to Vit.D. Single-nucleotide polymor-
phisms in Vit.D-related genes, for example, may affect the bioavailability of 25(OH)D,
highlighting the need to identify biomarkers that can indicate responsiveness to Vit.D
rather than solely relying on measuring the level of the major circulating form of Vit.D,
25(OH)D [33,34]. This necessity is underscored by the global prevalence of Vit.D deficiency
(serum 25(OH)D < 30 nmol/L) and insufficiency (serum 25(OH)D < 50 nmol/L) at 15.7%
and 47.9%, respectively [35].

A few studies have tackled the problem of identifying molecular responses to Vit.D
supplementation. Changes in expression of the primary Vit.D target genes are promising
biomarkers for the evaluation of the responsiveness of the Vit.D signaling system in order
to optimize current treatment strategies in a personalized way. In this regard, Carlberg
et al. reported the genes CD14 and THBD as promising biomarkers capable of reflecting
the transcriptomic response of human tissues to Vit.D supplementation [36]. As early as
24 h post-1,25(OH)2D stimulation, there was an induction in the expression of VDR target
genes in peripheral blood mononuclear cells (PBMCs), which represent a useful source
of biomarkers [37]. A panel of 12 differentially expressed VDR target genes was found
between Vit.D-supplemented and control PBMCs. Of these, only the expression of CD38
and TMEM37 correlated with serum 25(OH)D levels, hence allowing us to distinguish
between low and high responders. A follow-up of 5 months upon Vit.D supplementation
indicated that the vitamin most probably induces epigenetic changes in the selected VDR
target genes rather than transcriptomic ones [37]. Clinical studies have been carried out to
classify patients according to their responsiveness to Vit.D: NCT01479933 and NCT02063334
(ClinicalTrials.gov) [38]. The ligand-dependent binding of VDR to a multitude of genomic
sites, along with the epigenome-wide impact of Vit.D, has also been documented [2,38]
However, implementing this in clinical practice poses significant challenges.

A limited number of studies have been performed to investigate the serum levels of
Vit.D and circulating miRNA expression profiles. In Vit. D intervention trials, notable
differences were observed between the treatment groups and between baseline and follow-
up measurements [39]. For instance, Jorde et al. analyzed the plasma miRNA profile, at
baseline and at study end, of 159 obese male patients included in a 12-month intervention
study with Vit.D supplementation [40]. Out of the 136 miRNAs detected in 10 subjects in
2 pilot studies, 12 miRNAs showed significant differences between baseline and 12-month
plasma samples. These miRNAs were subsequently analyzed in a cohort of patients sup-
plemented with Vit.D for 12 months versus those who received placebo. While one miRNA,
miR221, showed a statistically significant difference between baseline and the 12-month’s
placebo group, only one miRNA, miR532-3p, showed a significantly positive correlation
with serum Vit.D levels at baseline. No changes in selected miRNA profiles were observed
after treatment with Vit.D for 12 months with respect to baseline, showing the difficulty in
demonstrating the effect of Vit.D on the miRNA plasma profile [40]. MiRNA expression
profiles also changed in IBD patients according to their Vit.D status. Atanassova et al.
recently reported, in an abstract presented at the 17th Congress of European Crohn’s and
Colitis Organization, that the levels of miRNA-28_1 and miRNA-1228-3p_1 are increased
in IBD patients who normalized their 25(OH)D levels, concluding that there is a correlation
between the serum expression of different miRNAs and the Vit.D levels in patients with
IBD (P079, https://www.ecco-ibd.eu/images/2_Congresses_Events/2022/4_Abstracts/
MASTER_ECCO22_Abstract_Book.pdf, last visited on the 8 March 2024). The following

ClinicalTrials.gov
https://www.ecco-ibd.eu/images/2_Congresses_Events/2022/4_Abstracts/MASTER_ECCO22_Abstract_Book.pdf
https://www.ecco-ibd.eu/images/2_Congresses_Events/2022/4_Abstracts/MASTER_ECCO22_Abstract_Book.pdf
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miRNAs exhibit alterations in expression during IBD: miRNA-21, miRNA-122a, miRNA-
155, and miRNA-150, all of which are associated with intestinal epithelial permeability;
moreover, miRNA-126, miRNA-146a, and miRNA-155 are connected to the regulation of
both innate and adaptive immune responses in intestinal inflammation [41].

To our knowledge, no studies have been performed on the EV-encapsulated miRNAs
in IBD patients in association with their Vit.D status or their response to viral infection.
Through small RNA-seq profiling of serum EV RNA, we identified an array of differentially
modulated miRNAs in IBD patients classified according to Vit.D status. None of these miR-
NAs, however, showed statistically significant changes according to SARS-CoV-2 positivity
or COVID-19 symptoms, except for dyspnea, probably due to the small cohort of patients
included in this pilot study. On the other hand, as a novelty, the characterization of EVs
from patients with IBD with normal or low levels of Vit.D, led to the identification of four
miRNAs capable of predicting the response of IBD patients following Vit.D administration.

As oxidative stress and inflammation are common hallmarks of IBD and COVID-19
pathogenesis, and considering the fact that low Vit.D levels in IBD patients may exacerbate
oxidative stress, we assessed whether the miRNAs differentially present in the EVs of the
study cohorts had oxidative stress- or inflammation-related transcription factor binding
sites on their promoters [15,42,43]. Interestingly, MYC, which can influence ROS home-
ostasis through different processes such as proliferation, hypoxia, and mTORC1-mediated
metabolism, could bind the promoter of all four validated miRNAs in this study [44]. Other
oxidative stress-related transcription factors, such as HIF1A, CREB1, SP-1, and FOXO1,
already reported to play a role in the oxidative stress pathway, have binding sites on the
promoters of some of these miRNAs, indicating that these biomolecules can be released
into circulating EVs following the oxidative stress inherent to IBD and COVID-19 [45]. In
fact, it has been demonstrated that oxidative stress can modulate EV shedding as well as
their molecular cargo, which can in turn affect redox status in recipient cells [46].

MiR150-5p and Let-7a-5p showed an increased expression trend in EVs in the Vit.D
supplemented groups compared to those of the non-supplemented ones, reaching statistical
significance only in the SARS-CoV-2 IgG-positive, Vit.D-treated cohort with respect to the
SARS-CoV-2 IgG-negative, non-Vit.D-treated cohort of IBD patients, indicating that the rise
in the levels of these two miRNAs was more likely to be caused by Vit.D supplementation
and independently of viral infection. Interestingly, miR-150 has already been shown to
be involved in IBD [47]. The ROS-responsive miR150-5p can be regulated by NFκB1 and
FOXO1, which are transcription factors involved in oxidative stress and inflammation.
Importantly, a link exists between miR150-5p and VDR. Li et al. demonstrated, using
fibroblasts from ankylosing spondylitis patients’ ligament tissue from joint capsules, that
overexpression of miR150-5p could inhibit osteogenic differentiation by decreasing VDR
expression through the targeting of its 3′UTR [48]. This aspect has yet to be explored in
the context of the chronic inflammation generated during the course of IBD. On the other
hand, it was shown that circulating Let-7a/b levels are positively correlated with Vit.D
intake depending on the VDR genotype (absence of BsmI restriction site) of elderly blood
donors [49]. Vit.D. treatment can also regulate the expression of a number of miRNAs,
including the let-7 family. For instance, VDR can bind the VDRE in the promoter of Let-7a-2
and promote its expression in lung cancer cells (A549) [50]. A previous study highlighted
that TNFα regulates the expression of Let-7 miRNAs [51]. Importantly, in IBD, TNFα
production is induced by ROS, and patients can be prescribed anti-TNFα therapies, which
lead to a reduction in oxidative stress in this pathology [52]. The Let-7a-5p promoter
contains binding sites for HIF1α, which regulates the expression of genes involved in key
cellular processes, including inflammation and oxidative stress [53].

The most interesting data were obtained with miR30d-5p and Let-7f-5p, which were
upregulated in the circulating EVs of IBD patients following Vit.D supplementation with
respect to non-treated groups, independent of anti-SARS-CoV-2 IgG status. Mir30d-5p is
an intestinal miRNA that is regulated in response to dietary lipids and can modulate the
gastrointestinal microbiota [54,55]. MiR30d-5p was also revealed as one of the differentially
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expressed miRNAs that could influence the progression of tuberculosis in patients. Impor-
tantly, miR30d-5p, together with miR27a-3p, could inhibit VDR involved in the progression
of tuberculosis [56]. MiR30d-5p was also found to be differentially expressed in the UC and
CD patients’ mucosa versus healthy controls [57]. This miRNA binds to the 3′UTR of VDR
mRNA to dampen its expression, thereby enhancing the production of proinflammatory
cytokine secretion and M1 macrophage differentiation [56]. The MiR30d-5p promoter has
binding sites for the inflammation- and oxidative stress-associated transcription factors
CREB, SP1, and HIF1α. In the context of IBD, these transcription factors may stimulate
the expression and/or loading of miR30d-5p onto EVs to stimulate intercellular commu-
nication and modulate inflammatory responses [58]. On the other hand, Let-7f-5p was
identified as one of the significantly upregulated miRNAs in active UC compared to con-
trols [57]. Importantly, it was found that the forkhead box P3 (Foxp3)-positive Treg cells
may play a role in halting diseases such as IBD by utilizing EV-enclosed miRNAs (exo-
somes) such as Let-7d-5p to inhibit pathogenic T helper 1 cells [59]. Moreover, Let-7d-5p
was part of the top 10 IBD-related miRNA-regulatory modules, as revealed by a bipartite
clustering approach [60]. The induction of the expression of Let-7d-5p, which targets high
mobility group AT-hook 2 (HMGA2), by lipoprotein exposure was shown to modulate
cholesterol influx in macrophages and hence regulate pathogenic processes such as those
leading to cancer [61]. The role of Let-7d-5p in Vit.D metabolism is not clear yet and
warrants further investigation. The expression of these EV-enclosed miRNAs upon Vit.D
supplementation in the IBD context points out an interplay among these players, and their
enrichment in EVs, especially in the context of SARS-CoV-2 IgG positivity, may signify
an enhanced anti-inflammatory and anti-oxidative stress action of the EV released upon
Vit.D supplementation.

Interestingly, IBD and COVID-19, in terms of immune activation pattern and cytokine
storm during the inflammatory response, can influence each other, but it was demonstrated
that SARS-CoV-2 infection alone could not reactivate IBD [62,63]. For instance, the cytokine
storms caused by SARS-CoV-2 infection can generate a huge quantity of IL-17, which is
also upregulated in IBD patients. Oxidative stress, resulting from an imbalance between
the heightened production of ROS and diminished antioxidant defenses following SARS-
CoV-2 infection, may also aggravate IBD and COVID-19 severity [15,64]. The ability to
modulate these pathways to prevent IBD aggravation upon COVID-19 using, for example,
Vit.D. is an attractive solution and warrants further larger prospective clinical studies.
Circulating EVs may represent powerful biomarker sources to monitor the response to
Vit.D supplementation.

The limitations of this pilot study mainly include the small cohort of IBD patients, the
unknown VDR genotype, and the lack of follow-up for patients who tested negative for
SARS-CoV-2 IgGs to determine if they were actually infected with the virus and to assess
the clinical outcomes following Vit.D supplementation. Not all miRNAs selected from
the small RNA-seq-generated miRNA profile could be validated experimentally, probably
because of the low amount of EV-enclosed miRNAs, which required a higher number of
qRT-PCR cycles to detect subtle changes in miRNA expression.

5. Conclusions

The data generated in the present study may contribute to the development of a
panel of biomarkers capable of predicting the responsivity of IBD patients to Vit.D supple-
mentation, especially in an era where low Vit.D levels have been found to be associated
with long COVID syndrome [65]. Using the biomolecular contents of EV to analyze Vit.D
responsiveness is a novelty of this study. The EV-enclosed miRNAs miR30d-5p, miR150-5p,
Let-7a-5p, and Let-7f-5p are increased in the Vit.D supplemented group versus the non-
supplemented one, indicating that incremented 25(OH)D levels induced an increase in
the validated miRNA levels in the circulating EVs of IBD patients with anti-SARS-CoV2
positivity and warrant further studies in a larger cohort of patients. This could lead to
personalized Vit.D supplementation and the possibility of specifically recommending Vit.
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D supplementation for IBD patients, which may contribute favorably to the prevention
and prognosis of infectious diseases, thus dampening the socioeconomic burden on the
health care system. In addition, the ability to assess response to Vit.D will assist clinicians
(by including Vit.D in protocols) in modulating the severity of COVID-19, thereby reducing
hospital stays. The Vit.D-responsive patient will be able to fight the SARS-CoV-2 infection
more effectively and rapidly.

Supplementary Materials: The following supporting information can be downloaded: https://www.
mdpi.com/article/10.3390/antiox13091047/s1, Figure S1: Box plots of miRNAs with unchanged ex-
pression across cohorts, considered housekeeping miRNAs. Figure S2: Uncropped images of Western
blots. Figure S3: Heatmaps of RNA species revealed, by small RNA-seq analysis, in the circulating
EVs of IBD patients belonging to the 6 groups under study. Table S6 shows mapping_Samples_ID.
Figure S4: Expression of other EV-enclosed miRNAs analyzed by qRT-PCR. Table S1: DE mRNA
overlap among the different groups. Table S2: DE miRNA overlap among the different groups.
Table S3: DE piRNA overlap among the different groups. Table S4: DE tRNA overlap among the
different groups. Table S5: DE and other RNA overlap among the different groups. Table S6 shows
mapping_Samples_ID. Table S7: The mean reads of differentially expressed EV-enclosed miRNAs per
group as assessed by miRNA sequencing. Table S8: Associations between miRNAs and specific TFs
as found in the TransmiR v2.0 database. Some information is provided: miRNA TSS, the binding site
position, and the action type (Regulation, Regulation (feedback), Activation, Repression, Repression
(feedback)) according to the experimental data or the literature. The source of this putative evidence
is either the NCBI SRA identifier or the PMID identifier, if experimental or from literature, respec-
tively. The evidence of the association is: literature, Level 1 (predicted) or Level 2 (supported by
high-throughput experimental data), and the Tissue related to this evidence.
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