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Abstract

In this paper, we compare two novel approaches for effectively determining the optimal value of the
shape parameter in Radial Basis Function (RBF) interpolation, a crucial factor for numerical method
accuracy. We analyze the results of applying the deterministic Leave-One-Out Cross Validation (LOOCV)
method in combination with Lipschitz Global Optimization with Pessimistic Improvement (GOPI) and
Optimistic Improvement (GOOI), contrasting them with the statistical Bayesian Optimization (BO). Both
techniques yield similar validation errors, underlining their effectiveness in shape parameter search.
However, the deciding factor in technique selection lies in computational time, which is contingent upon
the cardinality of the interpolation set.
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1 Introduction

Over the past few decades, Radial Basis Functions (RBFs) have emerged as vital tools in scientific computing. Their applications
span diverse areas, including interpolation and approximation, machine learning, and solution of partial differential equations
[28, 21]. RBF interpolation aims to reconstruct unknown functions based on available data, sometimes exhibiting exponential
convergence errors. In the context of RBFs, the identification of an appropriate shape (or scale) parameter has posed a significant
challenge over the years, since the shape parameter significantly influences the accuracy of corresponding numerical methods,
see e.g. [9, 11].

For the selection of scale parameter, conventional methods often rely on empirical trial and error to assign a specific value.
However, these approaches prove inadequate for certain applications. On the other hand, cross validation techniques are
fundamental in statistical analysis, with the Leave-One-Out Cross Validation (LOOCV) being a prominent method, particularly
when selecting the optimal shape parameter for RBF in scattered data interpolation, as suggested by Rippa [24].

In this article, we focus on the LOOCV method combined with Lipschitz Global Optimization with Pessimistic Improvement
(GOPI) and Global Optimization with Optimistic Improvement (GOOI) techniques, thus resulting in the so-called LOOCV-GOOI
and LOOCV-GOPI methods, introduced in [7] and later further extended in [4]. The LOOCV-GOOI method alternates between
local and global optimization steps, halting when a local descent fails to find a new promising minimizer and a local stopping
condition is met. The LOOCV-GOPI method instead first continues the local optimization until the desired accuracy is achieved,
and then shifts to the global phase incorporating the local trials [26]. These methods offer substantial benefits, including enhanced
generalization performance and improved predictive accuracy, making them in some specific situations superior choices for
our current analysis. The main goal of this work is nevertheless to provide a comparison between the improved LOOCV-based
optimization method and the Bayesian Optimization (BO) technique [19, 27]. BO is a global optimization method renowned
for its efficacy in determining the optimal shape parameter value for scattered data approximation based on RBFs [5, 6]. More
precisely, this technique is a strategy arising from machine learning to streamline the optimization of intricate functions that are
challenging to evaluate directly. It is particularly effective in hyperparameter tuning, where it bypasses the exhaustive computation
and assessment of suboptimal parameter sets. By leveraging statistical models, BO predicts and prioritizes the evaluation of
parameter combinations, focusing on those with the highest potential, thus enhancing the efficiency of the optimization process.
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This approach not only saves computational resources but also accelerates the convergence towards optimal solutions in complex
optimization landscapes.

The remaining paper is organized into several sections as follows. Section 2 delves into kernel-based interpolation, providing a
comprehensive analysis of its methodologies and results. Section 3 is dedicated to optimizers, briefly describing the deterministic
LOOCV technique (Subsection 3.1), the Lipschitz GOOI and GOPI strategies (Subsection 3.2), and the statistical BO model-based
approach for global optimization (Subsection 3.3). Following these, Section 4 presents several numerical results, showcasing the
experimental findings obtained from the comparison of LOOCV-GOOI and LOOCV-GOPI with BO methods. Finally, Section 5
concludes the paper by highlighting the potential of the different methods and the cases where they are recommended.

2 Kernel-based Interpolation

Kernel-based methods are powerful and effective tools for scattered data interpolation. In this section we introduce some basic
notations and results for radial kernel-based interpolation. For further details on basic theory, we refer the reader to [3, 10, 29].

Given a compact domain Ω ⊂ Rd , we assume that the N distinct data points (or nodes) are defined by the set X = {x i}Ni=1 ⊆ Ω.
The corresponding data values associated with x i , i = 1, . . . , N , are given by measurements yi ∈ R, or simply obtained by
sampling some (unknown) function f : Ω→ R at x i , i.e. yi = f (x i) ∈ R. In this framework, we want to solve a scattered data
interpolation problem finding a function sX : Ω→ R satisfying the following N interpolation conditions

sX (x i) = yi , i = 1, . . . , N . (1)

We express the interpolant sX as a linear combination of kernels κε : Ω×Ω→ R depending on the so-called shape parameter
ε > 0, i.e.

sX (x ) =
N
∑

j=1

c jκε(x , x j), x ∈ Ω. (2)

Assuming that the kernel κε is symmetric and strictly positive definite (SPD), the interpolation (or kernel) matrix Kε with
the entries (Kε)i j = κε(x i , x j), i, j = 1, . . . , N , is positive definite for any set X . Thus, the coefficients c j in (2) are uniquely
determined by enforcing the interpolation conditions (1) and can be obtained by solving the symmetric linear system

Kεc = y , (3)

where c = (c1, . . . , cN )T and y = (y1, . . . , yN )T .
Associated with the kernel κε in (2) we may define a SPD RBF φ : R+0 → R such that

κε(x , x j) = φε(||x − x j ||2) = φε(r) := φ(εr), ∀x , x j ∈ Ω,

where || · ||2 denotes the Euclidean norm on Rd . Moreover, we know that the choice of a “good” value of ε is generally a crucial
task for kernel-based interpolation, but at the same time also a big issue (see e.g. [7, 8, 12], or [10, Chapter 14]). Some examples
of popular SPD RBFs (or radial kernels) together with their smoothness degrees and abbreviations are listed as follows (see
[9, 29]):

φε(r) =







































exp(−ε2r2), Gaussian C∞, GA

(1+ ε2r2)−1/2, Inverse MultiQuadric C∞, IMQ

exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6, M6

max (1− εr, 0)6 (35ε2r2 + 18εr + 3), Wendland C4, W4

max (1− εr, 0)4 (4εr + 1), Wendland C2, W2

When we solve the linear system (3), the solution is often very sensitive to changes in the data. This sensitivity is additionally
influenced by the determination of ε. A way to evaluate the computational stability of a kernel-based interpolant consists in
numerically calculate the 2-norm condition number (cond2) of the kernel matrix Kε, i.e.,

cond2(Kε) = ||Kε||2||K−1
ε
||2 =

λmax

λmin
, (4)

λmax and λmin being the largest and smallest eigenvalues of the symmetric and positive definite matrix Kε.
Moreover, for the kernel κε there exists the so-called native space, which is a Hilbert space N κε

(Ω) with inner product
(·, ·)Nκε (Ω) in which the kernel κε is reproducing, i.e., for any f ∈ Nκε

(Ω) we have the identity f (x ) = ( f ,κε(·, x ))Nκε (Ω), with
x ∈ Ω. Then, if we introduce a pre-Hilbert space Hκε (Ω) = span{κε(·, x ), x ∈ Ω}, with reproducing kernel κε and equipped with

the bilinear form (·, ·)Hκε (Ω), the native space Nκε
(Ω) of κε is its completion w.r.t. the norm || · ||Hκε (Ω) =

q

(·, ·)Hκε (Ω). Specifically,
for all f ∈ Hκε (Ω) we have || f ||Nκε (Ω) = || f ||Hκε (Ω) (see [29]). Then, we can now provide an error bound in terms of the power
function Pκε ,X (see e.g. [9, Theorem 14.2]):
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Theorem 2.1. Let Ω ⊆ Rd , κε ∈ C(Ω×Ω) be strictly positive definite on Rd , and suppose that X = {x i}Ni=1 has distinct points. Then,
for all f ∈Nκε

(Ω), we have

| f (x )− sX (x )| ≤ Pκε ,X (x )|| f ||Nκε (Ω) , x ∈ Ω.

The generic error estimate of Theorem 2.1 can further be refined as in [9, Theorem 14.5]:

Theorem 2.2. Let Ω ⊆ Rd be bounded and satisfy an interior cone condition. Suppose that κε ∈ C2k(Ω×Ω) is symmetric and strictly
positive definite. Then, for all f ∈Nκε

(Ω), there exist constants h0, C > 0 (independent of x , f and κε) such that

| f (x )− sX (x )| ≤ Chk
X ,Ω

q

Cκε (x )‖ f ‖Nκε (Ω) ,

provided hX ,Ω ≤ h0. Here

Cκε (x ) = max
|β |=2k,

max
w ,z∈Ω∩B(x ,c2hX ,Ω)

�

�

�Dβ2 κε(w , z)
�

�

�

with B(x , c2hX ,Ω) denoting the ball of radius c2hX ,Ω centred at x , and hX ,Ω being the fill distance

hX ,Ω = sup
x∈Ω

min
x j∈X
||x − x j ||2.

Theorem 2.2 states that interpolation with a C2k smooth kernel κε has approximation order k. Thus, we deduce that: (i) for
C∞ SPD kernels, the approximation order k is arbitrarily high; (ii) for SPD kernels with limited smoothness, the approximation
order is limited by the smoothness of the kernel. For more refined error estimates, we refer the reader to the monograph [29].

3 Optimizers

The problem of selecting the best shape parameter attracted the attention of the community for its strong dependence on the
fit accuracy of the RBF interpolant. In this section we introduce some optimizers that can be used for the search of the shape
parameter in RBF interpolation. Specifically, we consider the deterministic LOOCV-based technique, suitably combined with
Lipschitz global optimizers, and the statistical BO-based method.

3.1 Leave-One-Out Cross Validation

A common method for estimating the RBF shape parameter ε in RBF interpolation is the LOOCV. It consists in splitting the dataset
into training and validation sets, used for the partial fit and the computation of the error. The training set consists of all the data
but one that composes the validation set. This subdivision is performed for each point in X and at the end we retrieve an error
estimate vector and we use a cost function to determine the best ε parameter, see [9].

For each ε and for each j ∈ {1, . . . , N}, the error

e j(ε) = f (x j)− sX\{x j}(x j)

is computed at the validation point x j that is not used to construct the partial RBF interpolant

sX\{x j}(x ) =
N
∑

k=1, k 6= j

ckκε(x , x k). (5)

The coefficients ck in (5) are determined by interpolating only the set X \ {x j}, i.e.,

sX\{x j}(x k) = f (x k), k = 1, . . . , j − 1, j + 1, . . . , N .

The optimal value of ε is found as

ε∗ = argminε||e(ε)||, e = (e1, . . . , eN )
T ,

where || · || is any norm used in the minimization problem, for instance, the∞-norm. To avoid solving N linear system for each ε
parameter, the Rippa rule [24] is used:

e j(ε) =
c j

(K−1
ε
) j j

,

where c j is the jth coefficient of the solution vector c = K−1
ε

y in (3), and (K−1
ε
) j j is the jth diagonal element of the inverse of the

full RBF matrix Kε.
It follows immediately that the optimal value ε∗ for the shape parameter is the one that minimizes the error function Er(ε)

defined as follows:

Er(ε) = max
j=1,...,N

�

�

�

�

c j

(K−1
ε
) j j

�

�

�

�

. (6)
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3.2 Lipschitz Global Optimization

The Lipschitz global optimization in LOOCV for RBF interpolation is a specialized technique which aims at determining the optimal
shape parameter leveraging between stability and accuracy of interpolation results. To enhance the reliability and efficiency of
the interpolation process, it is proposed to integrate global optimization with both pessimistic and optimistic modifications. This
integration, referred to as LOOCV-GOPI and LOOCV-GOOI, can lead to significant advancements in the interpolation methodology,
as shown in [7].

For a given search interval I = [0,εmax], εmax being sufficiently large, our aim is to determine the optimal shape parameter ε∗

and the corresponding value

Er∗ = Er(ε∗) =min Er(ε), ε ∈ I , (7)

where Er(ε) coming from (6) is the error function, which is supposed to be characterized by its non-differentiable nature, multiple
extreme values, and the complexity of its evaluation, even for an individual data point. Additionally, this function is expected to
adhere to Lipschitz continuity within the interval I , i.e.,

|Er(ε1)− Er(ε2)| ≤ L|ε1 − ε2|, ε1,ε2 ∈ I , (8)

L denoting the Lipschitz constant (bounded by 0< L <∞), which assesses the function smoothness.
This kind of problems are crucial due to their widespread real-world applications in various scientific and engineering

fields (see e.g. [14, 16, 20, 22, 25]). Researchers have indeed developed several methods to solve problems (7)-(8), including
deterministic nature-inspired and metaheuristic algorithms. In this study, we address the optimization problems presented
by equations (7)-(8) by employing the Lipschitz global optimization method developed in previous work [7]. This approach
combined with effective strategies of local improvement (i.e. GOOI and GOPI) has been rigorously validated in [7], standing out
for its accuracy and efficiency in determining the RBF shape parameter.

3.3 Bayesian Global Optimization

The BO, first introduced in the late ’70s by Mockus [19], is a widespread technique for optimizing hyperparameters in the machine
learning landscape. It is an iterative approach that at each iteration exploits the previously obtained results. Suppose to search for
a maximum of a function g on a given set, BO offers a valuable approach to conduct the search. The method involves constructing
a probabilistic model of g, known as a surrogate model, and leveraging it to select sampling points in X via an acquisition
function. This allows for the evaluation of the target function at these selected points. With each iteration, the surrogate model
is updated based on collected data and then utilized to inform the selection of the next sampling point. Although the process
involves computational overhead for selecting the next evaluation point, it proves beneficial in scenarios where evaluating g is
resource-intensive. By iteratively refining the sampling strategy, BO can efficiently converge to the maximum. In this section, we
provide a brief overview of BO. For a more comprehensive understanding, readers are encouraged to refer to [2].

Gaussian Processes (GP) are often favored as the surrogate model in BO due to their cost-effective evaluations and their
capacity to integrate prior beliefs regarding the objective function. They are constituted by a set of random variables, where any
subset of these variables follows a joint Gaussian distribution. These processes are entirely defined by a mean function m : X → R
and a positive definite covariance function k : X ×X → R, where X ⊆ R (see [23] for more detailed explainations). When we
model the target function with a Gaussian process as g(x)∼ GP

�

m(x), k(x , x ′)
�

, we are imposing the following conditions:

• E
�

g(x)
�

= m(x);

• E
��

g(x)−m(x)
��

g(x ′)−m(x ′)
��

= k(x , x ′).

An acquisition function a : X → R plays a crucial role in selecting the subsequent point for evaluation by the objective function.
The chosen point is the maximum of this acquisition function, and its assessment by the objective function serves to update
the surrogate model. In this study, we employ the "Expected Improvement" acquisition function [15], which considers both the
likelihood of improvement of the candidate point compared to the previous maximum and the extent of this improvement. In
particular, we use a closed form proposed in [18] that trades off exploration and exploitation:

EI(x) =

¨

(µ(x)− g( x̂)− ξ)Φ(Z) +σ(x)φ(Z), if σ(x)> 0,

0, if σ(x) = 0,
(9)

where Z = µ(x)−g( x̂)−ξ
σ(x) and ξ is the non-negative parameter that allows trading between exploration and exploitation.

4 Numerical Results

In this section we report the numerical results obtained by applying the BO, LOOCV-GOPI and LOOCV-GOOI to find the optimal
shape parameter using different kernels, interpolating the Franke’s and Valley test functions using various sets of data points. The
mathematical formulations of these two test functions [1, 17] are as follows:
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f1(x ) = 0.75exp

�

−
(9x1 − 2)2

4
−
(9x2 − 2)2

4

�

+ 0.75exp

�

−
(9x1 − 2)2

49
−

9x2 + 1
10

�

+

+0.5exp

�

−
(9x1 − 7)2

4
−
(9x2 − 3)2

4

�

− 0.2exp
�

−(9x1 − 4)2 − (9x2 − 7)2
�

,

f2(x ) =
1
2

x2

�

cos(4x2
1 + x2 − 1)

�4
.

We used some sets of Halton points, i.e. N = 80, 160, 320, 640, for the interpolation and a grid of M = 40 × 40 points in
Ω= [0, 1]2 for the evaluation. For all methods the search of ε has been carried out in the interval I = [0,εmax], with εmax = 20.
The ξ parameter for the BO was set to 0.01 because the analysis reported in [5] shows that for this kind of problem there are
no significant improvements in tweaking it. The metric used for the evaluation of the models is the Root Mean Squared Error
(RMSE) defined as follows:

RMSE=

√

√

√ 1
M

M
∑

i=1

�

sX (x i)− yi

�2

.

All the experiments were performed using MATLAB online with processor Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz.
Tables 1-10 show that the obtained precision specified by RMSE is comparable in almost every case, while the CPU Time

computed in seconds (s) is the discriminator for the methods. Notably, for smaller number of interpolation points the LOOCV-GOOI
and LOOCV-GOPI methods are preferable whereas, if we increase the size of interpolation dataset, BO seems to be a more suitable
choice.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 1.1289e-02 1.2296e-02 1.2296e-02 1.4421e+00 2.3807e-01 1.5142e-01

160 3.0200e-03 2.8216e-03 2.8216e-03 1.3317e+00 2.7791e-01 1.3040e-01
320 2.3085e-03 5.4031e-04 5.4031e-04 1.4199e+00 1.3305e+00 4.9235e-01
640 1.1535e-05 4.6602e-05 4.6602e-05 1.9452e+00 2.0486e+00 1.8549e+00

Table 1: Comparative analysis of RMSE and CPU Time using GA kernel on f1.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 5.4518e-03 5.3374e-03 5.3374e-03 1.2424e+00 3.9665e-02 3.5078e-02

160 8.0557e-04 7.3814e-04 7.3814e-04 1.3082e+00 1.1375e-01 1.0692e-01
320 7.0361e-04 8.6893e-05 8.6893e-05 1.0940e+00 2.4894e+00 1.5453e+00
640 6.9506e-05 3.0039e-06 4.7761e-06 1.6180e+00 1.6074e+01 1.1391e+01

Table 2: Comparative analysis of RMSE and CPU Time using IMQ kernel on f1.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 7.2507e-03 6.9058e-03 6.9058e-03 1.1259e+00 4.1105e-02 5.1959e-02

160 6.6278e-04 8.6947e-04 8.6947e-04 1.0314e+00 1.2380e+00 1.6924e-01
320 8.8553e-05 3.3847e-04 3.3847e-04 1.2129e+00 6.9026e+00 5.7679e-01
640 7.8870e-06 1.4182e-05 1.4182e-05 2.1707e+00 1.9895e+00 1.7967e+00

Table 3: Comparative analysis of RMSE and CPU Time using M6 kernel on f1.

Figure 1 summarizes the results of the previous tables, demonstrating that LOOCV-based methods combined with Lipschitz
global optimization tools are better for interpolation problems of small size, because computational cost strongly correlates with
the cardinality of the set on which optimization is performed. On the other hand, since the computational expense of BO is mainly
due to surrogate model fitting, it maintains a relatively constant level of computational cost thus turning out less influenced
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RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 7.4787e-03 7.0838e-03 7.0838e-03 1.1087e+00 1.7831e-01 5.4054e-02

160 1.5801e-02 2.3901e-03 2.3901e-03 1.2040e+00 8.0776e-01 1.4245e-01
320 1.6295e-03 1.7567e-03 1.7567e-03 1.3793e+00 3.0430e+00 5.2081e-01
640 4.5363e-04 4.3827e-04 4.3827e-04 1.6942e+00 1.2186e+01 2.1261e+00

Table 4: Comparative analysis of RMSE and CPU Time using W2 kernel on f1.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 8.4409e-03 8.6778e-03 8.6778e-03 8.9213e-01 1.7128e-01 4.5174e-02

160 3.7877e-03 1.1496e-03 1.1496e-03 1.1134e+00 7.7839e-01 1.3751e-01
320 1.0393e-02 3.9007e-04 3.9007e-04 1.2974e+00 2.9886e+00 7.1863e-01
640 1.6257e-04 3.7756e-05 3.7756e-05 1.7459e+00 1.1315e+01 1.8754e+00

Table 5: Comparative analysis of RMSE and CPU Time using W4 kernel on f1.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 1.8894e-02 3.2335e-02 3.2335e-02 9.3042e-01 1.2881e-01 1.3507e-01

160 4.4386e-03 6.8314e-03 6.8314e-03 9.3453e-01 1.2718e-01 1.5204e-01
320 4.5508e-04 4.8270e-04 4.8270e-04 8.9626e-01 5.4048e-01 4.9732e-01
640 4.1555e-05 5.4715e-05 5.4715e-05 1.3416e+00 1.7654e+00 1.5634e+00

Table 6: Comparative analysis of RMSE and CPU Time using GA kernel on f2

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 2.4888e-02 4.5869e-02 4.5869e-02 8.2484e-01 4.1061e-02 3.6245e-02

160 4.0723e-03 5.2407e-03 8.5460e-03 9.1687e-01 7.0580e-01 1.1351e-01
320 7.1197e-04 1.2350e-02 1.2350e-02 9.5668e-01 2.6689e+00 4.1033e-01
640 1.0726e-04 1.7244e-04 1.8652e-04 1.3264e+00 2.4916e+00 1.9077e+00

Table 7: Comparative analysis of RMSE and CPU Time using IMQ kernel on f2.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 2.6825e-02 3.8603e-02 4.3552e-02 1.0154e+00 3.9888e-01 9.0818e-02

160 4.4334e-03 5.3896e-03 5.3896e-03 9.6398e-01 1.8130e-01 2.9467e-01
320 2.2620e-03 2.2586e-03 2.2586e-03 1.1008e+00 4.3941e-01 5.8553e-01
640 7.2221e-04 1.4191e-03 1.4206e-03 1.8800e+00 4.5927e+00 2.8442e+00

Table 8: Comparative analysis of RMSE and CPU Time using M6 kernel on f2.

by the growth of N . In light of these findings, we can conclude that the compared methods are not competing, but they are
rather complementary. Indeed, the LOOCV-based approach is better when one interpolates a “small” number of points, while the
BO is more efficient for “large” datasets. The choice between them should be guided by the complexity of the problem and its
dimensionality.

5 Conclusions

The paper aimed to bring light on and compare two recently used methods for the search of the shape parameter in RBF
interpolation. As the numerical results showed in Section 4 there exists an inverse trend in computational cost between the
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RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 2.0007e-02 5.3561e-02 5.3561e-02 8.7842e-01 2.3875e-01 4.7427e-02

160 1.2276e-02 1.2358e-02 1.2358e-02 9.0036e-01 1.6587e+00 1.5310e-01
320 3.2437e-03 3.2455e-03 3.2517e-03 1.0256e+00 2.9376e+00 8.3872e-01
640 1.2760e-03 1.3674e-03 1.3674e-03 1.6090e+00 1.9748e+01 2.2449e+00

Table 9: Comparative analysis of RMSE and CPU Time using W2 kernel on f2.

RMSE CPU Time (s)
N BO LOOCV-GOPI LOOCV-GOOI BO LOOCV-GOPI LOOCV-GOOI
80 3.4742e-02 4.1797e-02 4.1797e-02 9.5569e-01 2.7706e-01 6.5227e-02

160 4.5122e-03 1.9048e-02 4.6621e-03 1.0826e+00 1.2377e+00 1.5665e-01
320 4.8468e-03 2.1142e-03 2.1142e-03 1.3506e+00 5.1854e+00 5.9573e-01
640 8.5735e-04 1.0629e-03 1.0629e-03 2.0742e+00 2.6742e+01 2.1460e+00

Table 10: Comparative analysis of RMSE and CPU Time using W4 kernel on f2.

deterministic (LOOCV-GOPI and LOOCV-GOOI) and the statistical (BO) optimization methods; in other words, here it is meant
that, even though both methods increase their cost when the number of points grows, the BO increases slightly with respect to
the LOOCV-based technique. Notably, from Figure 1 it can be seen that the GOOI method is less expensive than GOPI for each set
of data points, while optimizing on sets over roughly N = 400 points (leading to a linear system of dimension N) makes the
BO preferable as optimization method. In conclusion, from this analysis one can deduce that both methods are valid, and in
particular the choice of which one to use should be based on the cardinality of the set on which the RBF interpolant is to be
constructed.
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