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The domestic dog has inhabited the anthropogenic niche for at least 15 000
years, but despite their impact on human strategies, the lives of dogs and
their interactions with humans have only recently become a subject of
interest to archaeologists. In the Arctic, dogs rely exclusively on humans for
food during the winter, and while stable isotope analyses have revealed diet-
ary similarities at some sites, deciphering the details of provisioning strategies
have been challenging. In this study, we apply zooarchaeology by mass spec-
trometry (ZooMS) and liquid chromatography tandem mass spectrometry to
dog palaeofaeces to investigate protein preservation in this highly degradable
material and obtain information about the diet of domestic dogs at the Nunal-
leq site, Alaska. We identify a suite of digestive and metabolic proteins from
the host species, demonstrating the utility of this material as a novel and
viable substrate for the recovery of gastrointestinal proteomes. The recovered
proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon
species (coho, chum, chinook and sockeye) and that the consumed tissues
derived from muscle and bone tissues as well as roe and guts. Overall, the
study demonstrated the viability of permafrost-preserved palaeofaeces as a
unique source of host and dietary proteomes.
1. Introduction
The domestic dog (Canis lupus familiaris) originated in Eurasia [1,2] at least
15 000 years ago [3], but despite our extended collaborative history, the lives
of dogs and their management through time has largely been neglected by
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researchers [4]. However, attitudes towards the lived experi-
ences of dogs and their roles in past human societies are
beginning to shift [5], and in recent years, dietary studies
have provided novel insight into their lifeways and how
different cultures incorporated dogs into their subsistence
strategies. Dog and human diets can be so similar that they
can be analysed in lieu of humans as a proxy for reconstruct-
ing human diet [6] and have revealed a reliance on similar
resources [7] although comparative studies indicate that this
is not always the case [8]. Genetic analyses have further
shown that as human subsistence practices changed with
the spread of agriculture, the diet of non-arctic dogs was
impacted as well [9].

The earliest known dog remains inNorth America indicate
that this domesticated species was introduced at least 10 000
years ago and belonged to a now extinct lineage of arctic
dog [10,11]. In the North American Arctic, dogs do not
appear to have been present in large numbers until around
1000 BP [12]. The ancestors of Yup’ik, Inuit and other Indi-
genous Arctic groups relied on advanced transportation
technology including dog traction [13] and appear to have
been the first to introduce specialized sled dogs to North
America [14]. Arctic dogs rely exclusively on humans for
food during the long winters, but may have been fed differ-
ently or less frequently in summer, or let loose to fend for
themselves [15,16]. Working sled dogs are a particularly
expensive resource, requiring up to 3.2 kg of fish or meat
every day [17] and provisioning of dogs would therefore
have played a significant role in the food procurement strat-
egies of past arctic cultures. Stable isotope analyses from
coastal sites in Alaska [7,18,19] and Canada [20–22] have
shown that the majority of dog diet in ancient and historical
North American Arctic cultures consisted of marine mammals
and salmonids. These studies provide important insight into
the diet of dogs and humans, revealing similarities in resource
allocation, but do not provide information on seasonal vari-
ation unless incrementally developed tissues such as hair or
claw are targeted [7]. In addition, the practice of feeding
specific species, such as walrus [17] or chum salmon (also
known as ‘dog salmon’) [7], or animal parts, including hide,
that were considered unpalatable or unsuitable for human
consumption can be difficult to characterize in any detail
using stable isotope approaches.

Recent advances in the field of palaeoproteomics have
openedup newavenues for dietary studies of past populations,
complementing more traditional zooarchaeology, palaeobo-
tany and stable isotope approaches. Proteins are frequently
tissue specific, allowing distinct plant parts (e.g. seeds, leaves
and roots) and animal products (e.g. muscle, milk and blood)
to be distinguished [23]. In particular, ancient dental calculus
has emerged as a valuable substrate for preserving dietary bio-
molecules, revealing novel insights especially in ancient dairy
consumption [24,25]. Palaeoproteomics has also been used to
identify the ‘last meal’ of Ötzi, a human Copper Age
mummy [26] and to reveal evidence of breast milk feeding
from the rib bone of a neonatal dog [27], as well as food com-
position in a range of well-preserved archaeological materials
[28–30]. Staining techniques have previously demonstrated
the survival of proteins in palaeofaeces [31], a material which
has long been used for macro- and microscopic dietary ana-
lyses [32]. However, palaeoproteomic analyses have only
been applied to the substratewith limited success [33]. Ancient
DNA evidence has shown palaeofaeces to preserve dietary
information as well as evidence of the gut microbiome
[34,35], but the scope of these studies has been limited owing
to its complex and highly degradable nature [32]. Furthermore,
DNAstudies are limited bya lackof tissue specificity,which is a
major strength of palaeoproteomics. Here, in order to investi-
gate the preservation of ancient proteins in palaeofaeces, and
to reveal new insights into the subsistence of arctic dogs, we
use shotgun palaeoproteomics to identify a range of host and
dietary-derived proteins preserved in palaeofaeces and comp-
lement this analysis with zooarchaeology by mass
spectrometry (ZooMS) on bone fragments collected from
within this substrate.
2. Material and methods
(a) Samples
All samples were excavated from the Nunalleq site, southwest
Alaska (figure 1) during research excavations in 2013–2015. The
site, a pre-contact Yup’ik village close to the contemporary com-
munity at Quinhagak, Alaska, was occupied between ca 1300 CE
and 1750 CE. It has exceptional preservation of archaeological
artefacts and bioarchaeological remains [36], including dog
harnesses made of braided grass, dog bones, fur and even lice,
as well as palaeofaeces [16]. Detailed site and sample information
can be found in the electronic supplementary material, file S1.

(b) Palaeoproteomics
Five samples (figure 1; electronic supplementary material, table
S1) were selected for protein analysis. Palaeoproteomic extraction
was carried out following the protocol of Tsutaya et al. [37]
designed for extraction of modern faeces. Full methodological
details on protein extraction and data analysis can be found in
the electronic supplementary material, file S1. Samples were ana-
lysed using liquid chromatography tandem mass spectrometry
(LC-MS/MS) and spectral data were converted to MASCOT generic
format (.mgf). Semi-tryptic MS/MS ion database searching was
performed on MASCOT (Matrix ScienceTM, v. 2.6.1) against a data-
base composed of Swiss-Prot, and the Canis lupus familiaris and
Oncorhynchus mykiss proteomes. Only proteins with a minimum
of two non-identical peptides and those retained after an false dis-
covery rate (FDR) estimation of 1% of distinct peptide spectrum
matches were considered in further downstream interpretation.
Keratins are considered separately (electronic supplementary
material, table S3), while peptides identified in the extraction
negative were excluded from further analysis along with matches
to the reagents trypsin and lysyl peptidase (electronic supplemen-
tary material, table S4). Lowest common ancestor analysis was
performed using Unipept metaproteomics analysis [38]. The tax-
onomy of peptides unclassified by Unipept were explored using
protein–protein BLAST against all non-redundant protein
sequences. STRING v. 11.0 [39] was used to analyse protein–
protein interactions and proteome function using gene ontology
(GO) annotations (electronic supplementary material, table S5),
and expression profiles using human homologues was explored
using the GENECARDS suite [40].

(c) Zooarchaeology by mass spectrometry
The samplesNun-2 andNun-4 each contained five bone fragments,
which were analysed using ZooMS. Two pretreatment methods
involving either acid demineralization (method A) or an
ammonium bicarbonate buffer (method B) were used prior to col-
lagen extraction. Samples were processed according to previously
established protocols [41,42] and analysed on a MALDI-TOF
mass spectrometer. MALDI spectra were processed using the R
package MALDIquant [43] and visualized in mMass [44].
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Figure 1. Map showing the location of the Nunalleq site in Alaska and pictures of the palaeofaeces analysed in this study.
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Identifications (electronic supplementary material, table S6) were
made based on published markers for mammals [41,45–48]
(electronic supplementary material, table S7) and fishes including
Pacific salmonids [49] (electronic supplementary material, tables
S8 and S9). Full methodological details can be found in the
electronic supplementary material.
3. Results and discussion
(a) Metaproteomics
We applied shotgun proteomic analysis to five palaeofaeces,
revealing evidence of a digestive proteome aswell as indicators
of consumed food. After quality filtering, we detected a total of
83 proteins across all five samples, with 56 distinct individual
proteins represented by 282 unique peptide sequences (exclud-
ing keratins) (electronic supplementary material, table S2;
figure 2). Protein recovery varied between samples (figure 3),
with Nun-3 showing evidence of 38 identified proteins and
Nun-5 limited to two (electronic supplementary material,
tables S1 and S2). All samples, except Nun-5, displayed
proteins that could be classified as host-derived (table 1)
and dietary (electronic supplementary material, table S10). In
this study, the extraction method was selected to enhance the
detection of dietary proteins by pelleting bacteria and other
particulates present in the samples. As expected, we did not
detect abundant microbial proteins related to the gut or
faecal microbiome, although a few bacterial peptides were
identified despite this methodological approach.

Four samples, Nun-1, Nun-2, Nun-3 andNun-4, were exca-
vated fromhouse floor contexts and displayed superior protein
preservation compared to Nun-5, which was excavated from a
debris context (electronic supplementary material, table S1).
It is likely that the archaeological context influenced bio-
molecular preservation of the palaeofaeces, with house floors
offering protection that debris contexts did not. However,
given the absence of potential proteins in Nun-5 and consider-
ing that the sample did not contain hair or bone fragments, it is
possible that it was misidentified as palaeofaeces. As a result,
this sample is not considered in further analyses.
(b) Host proteins
(i) Host identification
First, we characterized the palaeofaecal proteome derived
from the putative host. In accordance with the initial morpho-
logical characterization, we identified proteins associated
with the gastrointestinal (GI) system, which were specific to
the taxonomic orders of Canis lupus familiaris in all four suc-
cessful samples. Further proteins were assigned to the clades
Canidae, Caniformia and Carnivora. As some proteins are
conserved across taxonomic units, proteins assigned to
these clades were considered to have originated from dogs
(table 1). Only a single protein assigned to Hominidae, neu-
trophil defensin 1, was identified in the dataset. Given the
abundance of proteins derived from Carnivora, especially
proteins associated with the digestive system, the combined
evidence points to palaeofaeces deposited by canids.
(ii) Digestive proteins
LC-MS/MS analysis revealed evidence of a suite of proteins
associated with the GI system (table 1), including digestion.
These included, but were not limited to, colipase and inactive
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Figure 2. A schematic diagram of a cladogram indicating taxonomic distribution of peptides extracted from palaeofaeces across the five samples analysed from
Nunalleq. The size of each bubble is proportional to the number of peptides assigned to each level. Taxonomic distribution was determined using Unipept meta-
proteome analysis and further interrogated using BLAST against all non-redundant sequences. Keratins and laboratory contaminants are excluded from this
schematic. The length of each branch does not represent evolutionary distance.
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Figure 3. Number of identified peptides from each sample, grouped by broad taxonomy. The category carnivore and lower include all peptides assigned to Car-
nivora, Caniformia, Caninae and Canis lupus familiaris. Other taxa include all detected taxa except for mammals, fishes and bacteria. Peptides belonging to keratins
and other intermediate filament (IF) proteins are classified separately, with contaminant keratins denoting those identified in the extraction blank. Post-translational
modifications are not included in the peptide counts. (Online version in colour.)
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pancreatic lipase-related protein 1 (involved in fat digestion),
trefoil factor 2 (found in GI mucus layers) and aminopepti-
dase N (involved in protein digestion). In addition, proteins
associated with the extracellular matrix, such as collagen
(alpha-2(I)), were also detected. We note that some proteins,
such as colipase, trefoil factor 2 and zymogen granule protein
16, were observed across all four samples, whereas others,
such as aminopeptidase N, and Alpha 2-HS glycoprotein
were only detected in individual samples (table 1). Serum
albumin, a protein expressed in multiple tissues, was
detected in Nun-3. Although bovine serum albumin is a
common reagent in molecular biology (and in our study
was detected in the negative control), the fact that the
Nun-3 peptides match specifically to Carnivora, suggests
that this is indeed an endogenous protein.
In order to examine the extent of biological interaction
between the identified host proteins, we analysed protein–
protein interactions (electronic supplementary material,
figure S1) and found that the majority were connected
within a network. Biological processes (electronic sup-
plementary material, table S5) with the highest confidence
included several relating to digestion and metabolism, such
as digestion (GO:0007586, FDR 8.45E-07), primary metabolic
process (GO:0044238, FDR 0.00023), organic substance meta-
bolic process (GO:0071704, FDR 3.20E-03) and response to
nutrient levels (GO:0031667, FDR 2.10E-03) (electronic sup-
plementary material, table S5). Identified proteins also
matched to protein (cfa04974, FDR 6.12e-07) and fat
(cfa04975, FDR 3.90E-03) digestion and absorption Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways



Table 1. Proteins assigned to the taxonomic level of carnivora or lower. (The taxonomic assignment of the protein accession is based on the peptide with the
most specific taxonomy detected within a sample. Gene names are those associated with the Uniprot accession. Expression data was obtained from human
homologues in GeneCards.)

sample identified host protein
Uniprot
accession gene name

most specific
taxonomy

MASCOT

score expression

Nun-1 aminopeptidase N A0A5F4CJ36a ANPEP Canidae 84 PJ, SI

colipase P19090a CLPS Caniformia 67 PJ

deleted in malignant brain

tumours 1

A0A5F4BZQ1 DMBT1 Canis lupus familiaris 76 SI, C, PJ

dipeptidyl peptidase 4 F1PP08a DPP4 Canidae 97 MT incl. SI

serpin family B member 6 E2RGP2 SERPINB6 Canis lupus familiaris 52 MT incl. PJ SI, C

trefoil factor 2 F1PPU3a TFF2 Canidae 90 PJ, S

zymogen granule protein 16 E2RS34 ZG16 Canidae 161 SI, C, R

Nun-2 anionic trypsin P06872a PRSS2 Canis lupus familiaris 98 PJ, SI

colipase P19090a CLPS Canis lupus familiaris 69 PJ

peptidase S1 domain-containing

protein

F1PCE8 LOC475521 Canidae 81 N/A

serpin family B member 6 E2RGP2 SERPINB6 Canis lupus familiaris 185 MT incl. PJ SI, C

syncollin F1PWB9 SYCN Canis lupus familiaris 71 PJ, P

trefoil factor 2 F1PPU3a TFF2 Canidae 64 PJ, S

zymogen granule protein 16 E2RS34 ZG16 Canidae 103 SI, C, R

Nun-3 alpha 2-HS glycoprotein E2QUV3 AHSG Canidae 108 MT incl. C, P, PJ, R

chymotrypsin like F1PA60 CTRL Canidae 53 PJ, P

colipase P19090a CLPS Canis lupus familiaris 345 PJ

collagen alpha-2(I) chain F1PHY1 COL1A2 Canidae 344 MT incl. SI, C, R

dipeptidyl peptidase 4 F1PP08a DPP4 Canidae 66 MT incl. SI

GLOBIN domain-containing

protein

E2RLH6 LOC609402 Caniformia 193 MT incl. PJ, C, R

J9JHF7 LOC100855540 Caninae 86 N/A

inactive pancreatic lipase-related

protein 1

A0A5F4CND7 PNLIP Canis lupus familiaris 109 PJ

peptidase S1 domain-containing

protein

A0A5F4CBC4 CTRB2 Canis lupus familiaris 34 PJ, P, R, gut

(fetal)

A0A5F4CGL2 KLK1 Canis lupus familiaris 80 PJ, C, R

A0A5F4DFJ6a PRSS2 Canis lupus familiaris 65 PJ

F1PCE8 LOC475521 Canidae 89 N/A

F6XMJ9 LOC478220 Canis lupus familiaris 91 N/A

serpin family B member 6 E2RGP2 SERPINB6 Canis lupus familiaris 117 MT incl. PJ SI, C

serpin family F member 1 A0A5F4CK29 SERPINF1 Canidae 86 MT incl. C, P, R, S

serum albumin P49064 ALB Carnivora 102 MT incl. PJ, C, R

trefoil factor 2 F1PPU3a TFF2 Canidae 70 PJ, S

zymogen granule protein 16 E2RS34 ZG16 Canidae 214 SI, C, R

Nun-4 colipase P19090a CLPS Canis lupus familiaris 49 PJ

trefoil factor 2 F1PPU3a TFF2 Canidae 51 PJ, S

zymogen granule protein 16 E2RS34 ZG16 Canidae 211 SI, C, R
aDenotes protein accessions involved in digestive and metabolic functions based on GO annotations. Expression abbreviations explained: B, blood; C, colon;
L, liver; MT, multiple tissues; P, pancreas; PJ, pancreatic juice; R, rectum; S, stomach; SI, small intestine.
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(electronic supplementary material, figure S1). Although tre-
foil factor 2 is among the GO terms assigned to digestion
(electronic supplementary material, table S5), the STRING
analysis (electronic supplementary material, figure S1) does
not identify interactions with other host proteins identified
here.
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Digestion is facilitated by the secretion of fluids from the
salivary glands, stomach, pancreas and small intestine [50].
Using data from UniProtKB and GeneCards, we also explored
the tissues from which the identified host proteins were
expressed using human protein homologues where expression
data is better characterized.With the exception of four proteins
for which no expression data was available, we found that all
detected host proteins are present in pancreatic juice, small
intestine, colon, rectum and stomach, with particularly high
numbers expressed in human pancreatic juice, and the colon
(table 1). Pancreatic juice neutralizes stomach acid as it passes
from the stomach into the small intestine, and contains
multiple digestive enzymes [51]. The detection of proteins
expressed in the stomach, pancreatic juice, and the small intes-
tine was therefore consistent with a digestive proteome, while
proteins expressed in the colon and rectum were expected in a
faecal proteome and supported a host origin. Together, these
results indicate the potential for GI proteomes to be preserved
within palaeofaeces. Future characterization of expression pro-
files of dog proteinswill improve on these findings. Differences
in protein expression between dogs and humans have been
observed including in saliva [52], while variation may also
exist between different dog lineages. For example, some non-
arctic dogs display increased copy numbers of the AMY2B
gene responsible for the production of amylase, the primary
enzyme involved in starch digestion [53].

(iii) Keratins
Keratins are ubiquitous contaminants in shotgun proteomic
studies, often derived from handling or the presence of wool-
len fibres in the sampling or laboratory environment [54],
which is exemplified in a previous study of palaeofaeces
which detected primarily human keratins [32]. As a result,
keratins are frequently excluded from further analysis. Never-
theless, our analysis revealed the presence of keratins and
other intermediate filament (IF) proteins which could be
attributed to Canis lupus familiaris in Nun-3, and to Canidae
in Nun-1 and Nun-2 (electronic supplementary material,
table S3). Peptides assigned to these proteins show evidence
of deamidation, while the presence of ‘pacman peptides’
(peptides with fragmentation at multiple non-tryptic sites)
may also indicate protein diagenesis consistent with ancient
proteins (but see [55]). Keratins are present in intestinal epi-
thelial cells [56] and are therefore likely to end up in faecal
samples as ingested material passes through the digestive
tract. In addition, hair was macroscopically observed in the
palaeofaeces during sampling and may have originated
either from the host or another dog, most likely ingested in
relation to grooming. Finally, we note that keratins and IF
proteins are potentially informative for dietary reconstruction
from dog palaeofaeces as dogs are commonly fed on scraps,
such as animal hide, not suitable for human consumption. At
present, however, we do not have a secure strategy for dis-
tinguishing putative contaminant keratins from potential
endogenous proteins that may be informative for diet.

(c) Dietary proteins
Shotgun proteomic data revealed the presence of numerous
proteins likely to originate from consumed food. Food-derived
proteins were dominated by fishes, and the majority of these
were conserved to the level of Salmoninae (electronic sup-
plementary material, table S10). The majority of detected fish
proteins derived from muscle tissue, including myosin motor
domain-containing proteins, which could be assigned to the
level of Salmoninae and Teleostei inNun-3 andNun-4, respect-
ively. Additional fish-derived proteins, which were
homologous to actin and titin, both involved inmuscle contrac-
tion [52], were also detected. Type I collagen (alpha-1(I) and/or
alpha-2(I) chains)—a major structural component of connec-
tive tissues including bone, tendons and skin—was identified
in Nun-1, Nun-2 and Nun-4, and in all cases could be assigned
to Salmoninae. Although type I collagen can be used to obtain
species-level information through ZooMS and/or LC-MS/MS
analysis of bone material, the coverage obtained in the palaeo-
faeces LC-MS/MS dataset was not sufficient to assign these to
a level below Salmoninae.

We identified fish vitellogenin, an egg storage protein
surprisingly common in ancient samples [53–56], in Nun-2,
Nun-3 and Nun-4. We also detected alpha-1-antiproteinase-
like protein from Salmoninae in Nun-2 and Nun-4, and
alpha-1,4 glucan phosphorylase from Teleostei in Nun-4.
These two proteins are digestive enzymes, which probably ori-
ginated from the consumption of fish guts. At arctic and
subarctic sites like Nunalleq, successful occupation depended
on the effective storage of resources that were seasonally avail-
able. While bone and muscle proteins may have derived from
stored fishes, the presence of proteins associated with fish
intestines suggests that some of the analysed palaeofaeces
were deposited during the seasonal salmon run. During this
time, caught salmon would have been gutted prior to being
prepared for human consumption or storage. This is consistent
with ethnographic accounts from northern Alaska, which have
documented that dogs commonly ate intestines and roe in the
summer [57].

These findings by LC-MS/MS analysis are complemented
by ZooMS analysis applied to small bone fragments found
within some of the palaeofaeces. Collagen spectra were
obtained from five bone fragments from Nun-2 and two frag-
ments from Nun-4 (electronic supplementary material, tables
S6–S9). Two fragments from Nun-4 dissolved during pre-
treatment, while another was found to be misidentified and
was probably a piece of wood. Two methods of pretreatment
using acid demineralisation (method A) and ammonium
bicarbonate buffer (AmBic, method B) were applied.
Method A generated clearer spectra than method B (elec-
tronic supplementary material, tables S6–S9) suggesting
that demineralization with acid to release a larger fraction
of preserved collagen is preferable in cases where the bones
have gone through a digestive tract prior to ZooMS and
thus may be more poorly preserved. The bone fragments
recovered from Nun-2 were identified as belonging to coho
(Oncorhynchus kisutch), chinook (Oncorhynchus tshawytscha)
and chum salmon (Oncorhynchus keta) (electronic supplemen-
tary material, table S6, tables S8 and S9). From Nun-4, one
bone fragment was identified as sockeye salmon (Oncor-
hynchus nerka), and the last assigned to Canidae (electronic
supplementary material, tables S6 and S7). These results
further demonstrate that ZooMS analyses can successfully
be applied to semi-digested bone fragments which are fre-
quently preserved in dog and human palaeofaeces [58] and
may provide complementary insight into diet [42]. While
ZooMS can provide species-level information for Pacific
salmonids, higher resolution analyses, such as LC-MS/MS
may be required for this level of taxonomic resolution for
mammal species [59].
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Previously, indirect dietary evidence from zooarchaeolo-
gical [7,16] and lipid residue analyses [60] as well as direct
dietary evidence obtained from stable isotope analyses from
humans [36,61,62] and dogs [7], have indicated a mixed econ-
omy at Nunalleq relying predominantly on salmonids, but
also marine mammals and terrestrial herbivores. Even with
a limited number of analysed samples, the ZooMS and
LC-MS/MS analyses corroborated the reliance on salmonids
as dog food. This consisted of a range of available salmon
species, which may have been fed to dogs without distinction
based on the multiple species identified in the Nun-2 sample
(electronic supplementary material, table S6). Our findings
therefore suggest that the reliance on chum salmon, the so-
called ‘dog salmon’, as dog food, as previously suggested
by local traditional knowledge [7], is a later adaptation,
potentially related to the commercial value of the species.
Interestingly, one bone fragment from Nun-4 was identified
as canid, indicating that Nunalleq dogs chewed the bones
of wolves, foxes or other dogs, supporting previous obser-
vations of dog gnaw marks on discarded dog bones [16].
As tissues from other canids (and especially canid bones)
may form part of the diet of domestic dogs, observations of
proteins assigned as ‘host’ may also result from dietary
sources. In particular, collagen type I and chondroadherin
are abundant in bone and cartilaginous tissues, respectively,
and thus, identified peptides from these proteins may also
derive from dietary sources, in addition to the host.

Ingested material normally passes through the digestive
tract in a matter of days, and as a result, it is highly unlikely
that every dietary source of the Nunalleq dogs has been
detected here, especially considering the highly seasonal
environment [16]. In the future, a more comprehensive
study involving additional archaeological contexts and sites
could provide important insight into the diversity of feeding
strategies across arctic contexts, and beyond.

(d) Challenges and future directions
This study demonstrates the use of palaeoproteomics in iden-
tifying the host species of palaeofaeces in cases where
morphology is ambiguous, and further showcases the suc-
cessful sequence identification of components of the host GI
proteome. We also confirm that palaeoproteomics and
ZooMS can provide high-resolution insight into short-term
dietary intake. Nevertheless, given the novelty of this
approach, there are several challenges and complexities to
be considered in this and future studies.

(i) Imprecise taxonomy and database biases
First, the highly conserved nature of some proteins makes it
impossible to assign them to precise taxonomic units (elec-
tronic supplementary material, table S2), and differentiating
between host proteins and elements of diet can be challenging.
Thus, proteins assigned to mammalia or a higher taxonomic
classification could derive from either the diet or the dog
host. For example, mammalian haemoglobin detected in
Nun-3 (electronic supplementary material, table S2) may
derive from the dog host, especially as haemoglobin assigned
to Carnivora was also identified in the sample. However, this
protein could also have originated from caribou or seal,
which has been reported from zooarchaeological evidence at
Nunalleq (electronic supplementary material, table S11) [63].
Likewise, keratins assigned to Pecora (electronic
supplementary material, table S3) may have originated from
caribou hide or intestines consumed by the dog that deposited
the Nun-3 sample, but can be difficult to authenticate.

A second major bias relates to the database-matching
approach, whereby the incompleteness of available databases
and the lack of suitable reference proteomes introduce severe
constraints on the ability to identify dietary sources as well as
the gut microbiome and potential parasites in complex sub-
strates such as palaeofaeces. If peptides cannot be accurately
assigned because particular classes of proteins and species are
under-represented in the databases, information may be lost
or results misleading. As such it is important to make informed
and careful decisions on the composition of databases compiled
or selected in data analysis strategies, in order to be aware of
potential taxonomic biases based on LC-MS/MS data.

The electronic supplementary material, table S11 presents
an overview of taxa identified in zooarchaeological assem-
blages at Nunalleq [63] and the number of protein accessions
available for each taxa in Swiss-Prot and UniProtKB (Swiss-
Prot and TReMBL combined). It is clear that variation in this
representation has potential downstream effects on interpret-
ation; for example we note that walrus, which has been
reported as dog food in northern Alaska [17], is represented
by greater than 29 500 proteins inUniProt, but only five are rep-
resented in Swiss-Prot. Caribou,which has been suggested as a
major resource at Nunalleq is not represented in either data-
base. Likewise, seals, another potential dietary source, are
also under-represented, like many marine mammals. In an
ideal world, a wide taxonomic diversity would be included
in the search strategy; however, databases of large sizes can
pose significant constraints [64]. These challenges are well
documented in modern metaproteomics [65], but in palaeo-
metaproteomics, they are compounded by the need to widen
the search space to account for non-tryptic peptides and post-
translational modifications resulting from degradation across
archaeological timescales.
(ii) Potential and future applications of faecal palaeoproteomics
Wealsonote a numberof topicswhichwill have tobe addressed
by future research. For instance, methodological investigations
are needed to understand the survival of proteins in palaeo-
faeces. Nunalleq is recognized for its exceptional biomolecular
preservation owing to permafrost conditions, but faeces is a
highlydegradablematerial, and it isuncertainhowproteinspre-
serve in samples that are older or from different archaeological
contexts [33].

Future studies exploring the palaeoproteomic profiles of
the GI tract may have the potential to reveal insights into GI
physiology and disease [66]. For example, proteomic profiles
in modern stool samples have shown to be distinct in dogs
[67] and humans [68] with acute and chronic GI diseases
such as inflammatory bowel disease. Faecal proteomics is
also used in diagnosing colorectal cancer [69], celiac disease
and cystic fibrosis [70], and quantitative methods may be
useful for investigating the expression of immune proteins in
palaeofaeces as a sign of infection. Such analyses can inform
about the health status of humans and animals, and may
help researchers track the emergence and prevalence of GI
diseases in the past.

Finally palaeoproteomic analyses of palaeofaeces may
offer new insight into community-level gut microbiome com-
position and function [71], which is complementary to
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ancient metagenomic approaches [35]. The gut microbiome is
otherwise only preserved in mummified remains, and infor-
mation from palaeofaeces is therefore a valuable
contribution to the understanding of microbiome evolution.
The gut microbiome is known to impact overall physiological
health through a wide range of functions including digestion,
defence against pathogens and immune system response [72].
It responds to changes in diet and shows marked differences
between wild and captive mammals [73]. Such analyses
could be complicated in dogs; however, as they are known
to sometimes engage in coprophagy, while ethnographic
accounts from northern Alaska indicate that dog diet may
consist of caribou and human faeces [17]. While here we
have applied a protein extraction which deliberately reduced
the bacterial content, future studies may adopt alternative
extractions where this microbiological component can be
uncovered, in order to reveal insights into the composition
and function of ancient gut microbiomes.
288:20210020
4. Conclusion
Through the analysis of dog coprolites from the site of Nunal-
leq, Alaska, we demonstrate that palaeofaeces is a viable
substrate for palaeoproteomic analysis. We recovered a
range of caniform proteins associated with pancreatic juice,
small intestine, colon, rectum and stomach and show that
the preserved proteome profile is reflective of a host digestive
proteome. We further demonstrate that palaeofaeces retains
direct dietary information that is accessible through metapro-
teomic analysis, which, complemented by ZooMS on
preserved bone fragments within the palaeofaeces, provides
novel insights into tissues and species consumed. Our results
demonstrate that dogs at Nunalleq, a pre-contact North
American Arctic site, consumed a broad selection of salmo-
nid species available in the local environment, including
coho, chinook, sockeye and chum, as well as bones from
other canids. Our study also highlights several current
challenges in the reconstruction of diet through palaeoproteo-
mic analysis of paleofeces and coprolites, including the need
for a better understanding of protein preservation in these
substrates, as well as the development of more comprehen-
sive reference databases to maximize protein identifications.
Optimized methods to characterize host, dietary and
microbial protein sources within coprolites and paleofeces
have the potential to provide novel insight into human and
non-human animal diet, GI physiology and disease and
microbiome composition and function.
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