
- 1 -  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
UNIVERSITA’ 
DEGLI STUDI DI 
TORINO 

 

PhD Program in Complex 
Systems for Life Sciences 
 
 
 
The effects of estrogens and 
Interferon-b on T helper 17 cells 
in Multiple Sclerosis: analysis of -
omics data as a tool for 
identifying molecular targets 
 
 
 
Alessandro Maglione 
 
 
 
A thesis submitted in the fulfillment of the 
requirement for the degree of Doctor of 
Philosophy, PhD school, University of Turin. 

 
 

 



 - 2 - 

Table of contents 
1. Table of abbreviations - 4 - 

2. Abstract - 9 - 

3. Introduction - 10 - 

3.1. Multiple Sclerosis - 10 - 

3.1.1. Etiopathogenesis of Multiple Sclerosis - 10 - 

3.1.2. MS course and treatment - 11 - 

3.2. Estrogens and MS - 12 - 

3.2.1. Pregnancy protects women with RRMS from relapses - 12 - 

3.2.2. Estrogens and MS pregnancy - 12 - 

3.2.3. Estrogen Receptors in the immune system - 13 - 

3.2.4. Effects of estrogens on the immune system of MS patients - 16 - 

3.2.4.1. Effects of estrogens on the innate immune system - 16 - 

3.2.4.2. Effects of estrogens on the adaptive immune system - 17 - 

3.2.5. Estrogens modulate the T Helper Epigenome in MS - 19 - 

3.2.6. Estrogens as a potential therapy for MS patients. - 21 - 

3.3. Interferon-b and MS - 22 - 

3.3.1. Interferon-b protects RRMS patients from relapses - 22 - 

3.3.2. Interferon-β and Interferon-β stimulated genes - 22 - 

3.4. Public data re-use and integration as a tool for the identification of 
molecular targets - 23 - 

4. Results - 25 - 

4.1. Estrogens inhibit Th17 polarization by chromatin remodeling at FOXP3, 
RORC, MAF and SATB1 loci - 25 - 

4.1.1. Super Enhancers and chromatin states define Active Regulatory 
Regions of Th17 and Treg cells - 27 - 

4.1.2. Reconstruction of Cell Type-Specific Regulatory Networks Identifies 
ERα-Regulated Genomic Regulatory Regions in Th17 and Treg Cells - 29 - 

4.1.3. ERα network validation - 32 - 

4.1.3.1. RORC - 33 - 

4.1.3.2. MAF - 33 - 

4.1.3.3. FOXP3 - 34 - 



 - 3 - 

4.1.3.4. SATB1 - 35 - 

4.2. Integrated transcriptional analysis highlights Interferon-beta regulated 
genes in pathogenic Th17 cell clones - 37 - 

4.2.1. Integrative transcriptional analysis of IFN-β treatment in MS depicts an 
ISGs expression signature related to the disease - 38 - 

4.2.2. IFN-β signature highlights XAF-1 and LGALS3BP as molecular targets 
in pathogenic Th17 cells in MS - 42 - 

4.2.3. Apoptosis pathway analysis suggests TNF-α induced apoptosis 
pathway downregulation and NFKB1 upregulation in Th17 cells in MS - 47 - 

5. Methods - 49 - 

5.1. Estrogens analysis - 49 - 

5.1.1. Super Enhancers Prediction - 49 - 

5.1.2. SNPs Analysis - 49 - 

5.1.3. Chromatin States Analysis - 49 - 

5.1.4. Histone Marks Enrichment Analysis - 50 - 

5.1.5. Gene Ontology Analysis - 50 - 

5.1.6. RNA-Seq Analysis (E-MTAB-2319) - 50 - 

5.1.7. Network Reconstruction - 51 - 

5.1.8. PBMCs, Treg, and Th17 Cells Isolation - 51 - 

5.1.9. In vitro Th17 Cells Polarization - 52 - 

5.1.10. Chromatin Immunoprecipitation Assay - 52 - 

5.1.11. Quantitative PCR - 53 - 

5.1.12. Total RNA Extraction - 54 - 

5.2. Interferon-b analysis - 54 - 

5.2.1. Transcriptome analysis of Interferon-beta treated MS patients 
(GSE73608, GSE16214 and GSE41850). - 54 - 

5.2.2. Transcriptome analysis of CCR6+ T cells from MS patients and HD - 55 - 

5.2.3. Gene Set Enrichment analysis - 55 - 

5.2.4. Data Mining - 55 - 

5.2.5. Apoptosis - 56 - 

5.2.6. Software - 56 - 

6. Discussion - 57 - 

7. References - 63 - 

8. Acknowledgements - 78 - 



- 4 -  

1. Table of abbreviations 
Abbreviation Full Name 

5hmC 5-Hydroxymethylcytosine 
5mC  5-Methylcytosine 
AF Activation Function Domain 
APC Antigen-Presenting Cell 
ARC Activator-Recruited Co-Factor 
ARR Active Regulatory Region 
BAD Bcl2 Associated Agonist Of Cell Death 
BCL2A1 Bcl2 Related Protein A1 
BET Bromodomain And Extra-Terminal Motif 
BMDM  Bone Marrow-Derived Macrophages 
Breg Regulatory B Cell 
CARM1 Coactivator-Associated Arginine Methyltransferase 1 
CBP/p300 Creb-Binding Protein/P300 
CCL2 Chemokine C-C Motif Ligand 2 
CD  Cluster Of Differentiation 
CFLAR Casp8 And Fadd Like Apoptosis Regulator 
ChIP-qPCR Chromatin Immunoprecipitation Followed By Quantitative 

Polymerase Chain Reaction 
ChIP-Seq Chromatin Immunoprecipitation Followed By Sequencing 
CI Confidence Interval 
CINC Cytokine-Induced Neutrophil Chemoatractant 
CIS Clinically Isolated Syndrome 
CNS Central Nervous System 
CNS0 Conserved Non-Coding Sequence 0 
CNS1 Conserved Non-Coding Sequence 1 
CNS2 Conserved Non-Coding Sequence 2 
CSF2RB Colony Stimulating Factor 2 Receptor Beta Common Subunit 
CSR Cell-Type Specific Regulatory Regions 
CTLA-4 Cytotoxic T Lymphocyte-Associated Protein 4 
CTSL Cathepsin L 
CTSS Cathepsin S 
CXCL10 C-X-C Motif Chemokine Ligand 10 
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DBD DNA Binding Domain 
DC Dendritic Cell 
DDX60 Dexd/H-Box Helicase 60 
DE  Differentially Expressed 
DICE  Database Of Immune Cell Expression, Expression Quantitative 

Trait Loci, And Epigenomics 
DMDs Disease Modifying Drugs 
DMTs Disease-Modifying Therapies 
DNA Deoxyribonucleic acid 
DNMT3A Dna Methyltransferase 3a 
DRIP Vitamin D Receptor Interacting Protein 
E1   Estrone 
E2 17β-Estradiol 
E3 Estriol 
EAE Experimental Autoimmune Encephalomyelitis 
EAN European Academy Of Neurology 
EBV  Epstein–Barr Virus 
ECTRIMS European Committee For Treatment And Research In Multiple 

Sclerosis 
EIF2AK2 Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 
EIF2AK3 Eukaryotic Translation Initiation Factor 2 Alpha Kinase 3 
eQTL Expression Quantitative Trait Loci 
ER  Estrogen Receptor 
ERE Estrogen Response Element 
ERα Estrogen Receptor Alpha 
ERα36 36 KDa Erα Variant 
ERα46 Af-1 Domain-Truncated 46 KDa Variant Of ERα 
ERα66 Full-Length 66 KDa ERα 
ERβ Estrogen Receptor Beta 
ESR1  Estrogen Receptor 1 human gene 
ESR2 Estrogen Receptor 2 human gene 
FASLG Fas Ligand 
FBS Fetal Bovine Serum 
FDR False Discovery Rate 
FDR False Discovery Rate 
FIMO Find Individual Motif Occurrences Software 
FN1 Fibronectin 1 
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FOXP3 Forkhead Box P3 
FPKM Fragments Per Kilobase Of Exons Per Million Fragments Mapped 
GC Germinal Center 
GCN5 Histone Acetyltransferase Gcn5 
GO  Gene Ontology 
GREAT Genomic Regions Enrichment Of Annotations Tool 
H3K27ac Histone 3 Acetylation Of Lysine 27 
H3K27ac  Histone H3 Acetylated Lysine 27 
H3K27me3 Histone 3 Trimethylation Of Lysine 27 
H3K4me3 Histone 3 Trimethylation Of Lysine 4 
HD  Healthy Donors 
HERC5 Hect And Rld Domain Containing E3 Ubiquitin Protein Ligase 5 
HERC6 Hect And Rld Domain Containing E3 Ubiquitin Protein Ligase 

Family Member 6 
HLA  Human Leukocyte Antigen 
hPSCs Hematopoietic Pluripotent Stem Cells 
HSF4  Heat Shock Transcription Factor 4 
IAP  Inhibitors Of Apoptosis Protein 
IFI27 Interferon Alpha Inducible Protein 27 
IFI44L Interferon Induced Protein 44 Like 
IFI6 Interferon Alpha Inducible Protein 6 
IFIT1 Interferon Induced Protein With Tetratricopeptide Repeats 1 
IFIT2 Interferon Induced Protein With Tetratricopeptide Repeats 2 
IFIT3 Interferon Induced Protein With Tetratricopeptide Repeats 3 
IKZF2 Ikaros Family Zinc Finger 2 
IKZF4  Ikaros Family Zinc Finger 4 
IL Interleukin 
INF-β Interferon-Beta 
iNOS  Inducible Nitric Oxide Synthase 
IRF1  Interferon Regulatory Factor 1 
IRF8 Interferon Regulatory Factor 8 
ISG Interferon-Stimulated Gene 
ISG15 Isg15 Ubiquitin Like Modifier 
JIA  Juvenile Idiopathic Arthritis 
JUN Jun Proto-Oncogene, Ap-1 Transcription Factor Subunit 
KAT5/TIP60 Histone Acetyltransferase Kat5/Tip60 
LBD Ligand Binding Domain 
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LGALS3BP Galectin 3 Binding Protein 
Limma Linear Models for Microarray Analysis  
lincRNA Long Intergenic Non-Coding Rna 
mAbs Monoclonal Antibodies 
MAF Maf Bzip Transcription Factor 
MD Mean Difference 
MMP Matrix Metalloprotease 
MRI Magnetic Resonance Imaging 
MS  Multiple Sclerosis 
MX1 Mx Dynamin Like GTPase 1 
MxA  Myxovirus-Resistance Protein A 
Nabs Neutralizing Anti-Interferon-Beta Antibodies 
NCoR Nuclear Receptor Co-Repressor 
NF-κB Nuclear Factor Kappa-Light-Chain-Enhancer Of Activated B Cells 
NFKB1 Nuclear Factor Kappa B Subunit 1 
NGS Next-Generation Sequencing 
NK  Natural Killer 
NOTCH1 Notch Homolog 1, Translocation-Associated 
Nrf2 Nuclear Factor Erythroid-Derived-2-Like 2 
NURD Nucleosome Remodeling Deacetylase 
OAS3 2'-5'-Oligoadenylate Synthetase 3 
OASL  2'-5'-Oligoadenylate Synthetase Like 
p160/SRC P160/Steroid Receptor Coactivator 
PBMCs Peripheral Blood Mononuclear Cells 
PD-1  Programmed Cell Death Protein 1 
PD-L1 Programmed Death-Ligand 1 
PIK3R1 Phosphoinositide-3-Kinase Regulatory Subunit 1 
PPMS  Primary-Progressive Multiple Sclerosis 
PRDM1 Pr/Set Domain 1 
PRIMS Pregnancy In Multiple Sclerosis study 
PWMs  Positional Weight Matrices 
qPCR Quantitative Polymerase Chain Reaction 
REA Repressor Of Estrogen Receptor Activity 
RELA Rela Proto-Oncogene, NF-Kb Subunit 
RNA Ribonucleic acid 
RORC Rar-Related Orphan Receptor C 
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ROSE Rank Ordering Of Super Enhancers 
RR Relative Risk 
RRMS  Relapsing-Remitting Multiple Sclerosis 
RSAD2 Radical S-Adenosyl Methionine Domain Containing 2 
SIGLEC1  Sialic Acid Binding Ig Like Lectin 1 
SMRT Silencing Mediator For Retinoid Or Thyroid-Hormone Receptors 
SNP Single Nucleotide Polymorphism 
SOX2 Sry-Box Transcription Factor 2 
SPMS  Secondary Progressive Multiple Sclerosis 
SRA Steroid Receptor RNA Activator 
SWI/SNF SWItch/Sucrose Non-Fermentable 
T-bet T-Box Transcription Factor Tbx21 
TET Ten-Eleven Translocation 
TF  Transcription Factor 
TFH Follicular Helper T Cell 
TGF-β Transforming Growth Factor Beta 
Th T Helper Cell 
TLL  T-Lymphoblastic Leukemia 
TNC  Tenascin C 
TNF Tumor Necrosis Factor 
TNFRSF10B Tnf Receptor Superfamily Member 10b 
TPM Transcripts Per Million 
TRAF1 Tnf Receptor Associated Factor 1 
TRAIL Tnf-Related Apoptosis-Inducing Ligand 
TRAP Coactivator Complex And The Thyroid Hormone Receptor-

Associated Proteins 
Treg Regulatory T Cell 
TSS Transcription Start Site 
USP18  Ubiquitin Specific Peptidase 18 
VCAM1 Vascular Cell Adhesion Molecule 1 
Weka Wakaito Environment For Knowledge Analysis 
WT  Wild-Type 
XAF1 Xiap Associated Factor 1 
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2. Abstract 
Neuroinflammation in Multiple Sclerosis (MS) is mediated by the infiltration of 
myelin reactive T cells into the central nervous system (CNS). In particular, T 
helper (Th) 17 cells promote neurodegeneration while regulatory T cells (Treg) are 
protective. Transcriptomic and epigenomic data allow to observe global changes in 
response to a hormone or a drug in immune system cells. Moreover, data 
integration is a powerful tool to explore complex patterns of regulation.  
In this PhD project we analyzed genome-wide dynamics behind two phenomena 
related to MS: estrogen and interferon-β induced transcriptional activity in Th17 
cells.  
The first part aimed to elucidate the molecular mechanisms behind the anti-
inflammatory role of estrogens in MS patients, originating from the correlation 
between high levels of circulating estrogens during pregnancy and the reduction 
in relapse rates. We used Chromatin Immunoprecipitation followed by sequencing 
(ChIP-Seq) data of Histone H3 acetylated lysine 27 (H3K27ac) to identify a set of 
specific genomic regulatory regions in Th17 and Treg cells. We compared the 
transcriptome of these T helper subtypes to identify key transcription factors of 
their specification. We used an enrichment analysis of the estrogen response 
elements (ERE) within selected regulatory regions to identify genomic targets of 
estrogen receptor alpha (ERα). Best candidate regions were validated with ChIP 
followed by quantitative PCR (ChIP-qPCR) in in-vitro polarized Th17 cells treated 
with 17β-estradiol at pregnancy levels. These data indicated that ERα is involved 
in chromatin remodeling at specific regulatory regions in Th17 cells and their 
dysfunctional activation may reflect disease progression.  
The second part aimed to identify a gene signature of interferon-β (INF-β), the most 
widely used first-line drug for the treatment of MS. IFN-β reduces the annual rate 
of relapse in patients with MS, but the classification of non-responders and the 
identification of therapy biomarkers are still under discussion. We exploited and 
integrated data sets of IFN-β transcriptome modulation in large cohorts of MS 
patients. We obtained a transcriptional signature of IFN-β therapy in diverse state 
of MS progression. Then, we used this signature to highlight the molecular targets 
of IFN-β in CCR6+ myelin reactive Th17 cells. These results can be useful to explain 
the mechanisms related to Th17 cells that support the success or failure of IFN-β 
therapy.  
To conclude, omics data integration, common thread of this PhD thesis, constitute 
an approach to understand the pathogenesis, course and progression of MS that 
expands the analysis perspective of the mechanisms related to treatment and to 
particular life situations including pregnancy. 
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3. Introduction 
3.1. Multiple Sclerosis 

3.1.1. Etiopathogenesis of Multiple Sclerosis 

MS is a chronic inflammatory demyelinating disease of the CNS that lead to axonal 
damage and is characterized by the infiltration of T cells, B cells, macrophages, and 
natural killer (NK) cells [1]. The experimental evidence based on Experimental 
Autoimmune Encephalomyelitis (EAE), the murine model of MS, and samples 
from MS patients, give us the current definition of the immunological process in 
the pathogenesis of MS. First, autoreactive T cells and B cells are activated in 
peripheral lymph nodes and differentiate into effector cells. Among the effector 
CD4+ T cells, Th1 and especially Th17 cells have important roles in the 
pathogenesis of this disease. MS patients have shown an increased number of Th17 
in the peripheral blood [2], and in cerebrospinal fluid and perivascular space in the 
CNS [3–6]. Activated T and B cells cross the blood–brain barrier, that is disrupted 
in the early stages of MS, and arrive in the CNS, where antigen-presenting cells 
(APC) re-activate them. In the CNS, activated immune system react against myelin 
components and sustain the inflammation recruiting other autoreactive cells from 
peripheral blood by producing cytokines and chemokines. Activated B cells mature 
to antibody-producing plasma cells that induce, maintain, and reactivate CD4+ T 
cells and produce proinflammatory cytokines. The overall process increases 
inflammation and cause demyelination and axonal damage. In the later stages of 
the disease, the inflammatory response is sustained by microglial activation and 
lead to chronic neurodegeneration [7]. 
To date, the causes that influence the development and course of MS are still not 
clear. MS is a multifactorial disease of unknown etiology. Its onset, course and 
progression depend on both genetic and environmental factors. MS is not 
inheritable, although first-degree relatives of patients show susceptibility for MS 
[8,9]. Human leukocyte antigens (HLA) in the class II region, especially the HLA-
DRB1*1501 and DQB1*0602 alleles, have been shown to be significantly associated 
with MS and are currently recognized as predisposing genetic factors [10], whereas 
the HLA class I region HLA-A*02:01 is recognized as protective [11]. Among 
environmental factors, the Epstein–Barr virus (EBV) infection [12,13], smoking 
habitude [14] and vitamin D deficiency [15] exert epigenetic changes and have been 
linked to the risk of developing MS disease. The more recent evidence has 
highlighted also intestinal microbiota [16] and oral contraceptive therapy [17] as 
risk factors for MS. Epidemiology shown a sex difference in the prevalence and 
progression of MS disease. The relapsing form of MS is more frequent in young 
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women [18] while in men show more incidence at an older age and a more severe 
progressive course [19]. 
 
3.1.2. MS course and treatment 

Relapsing-remitting MS (RRMS) is the most common course of MS since 85%–90% 
of patients are initially diagnosed with RRMS [20]. RRMS is characterized by the 
alternation of relapse and remission phases. After RRMS, most patients transition 
to secondary progressive MS (SPMS) characterized by a progressive accumulation 
of disability. A primary-progressive MS (PPMS) form is instead the initial form of 
disease in ~ 10%–15% of patients [20].  
MS has no curative treatment available. MS therapeutic strategy is to reduce the 
risk of relapses avoiding accumulation of disability. Indeed, the early intervention 
with disease modifying drugs (DMDs) has been shown to reduce long-term 
disability [21]. MS therapy is a result of balancing considerations on efficacy, side 
effects and potential damage [20]. The European Committee for treatment and 
research in multiple sclerosis (ECTRIMS) and the European Academy of 
Neurology (EAN) provided recommendations for the treatment of MS patients 
[20]. Currently, 11 disease-modifying therapies (DMTs) have been approved by the 
European Agency for Medicine [20].  
Beta interferons and glatiramer acetate mechanisms of action have been not fully 
elucidated. However, they inhibit antigen presentation; they induce a shift from 
proinflammatory phenotype of T cells to a regulatory phenotype of T cells that 
suppress the inflammatory response; they reduce the entry of T cells into the CNS. 
Given to a resemblance in the peptide composition of Glatiramer acetate to myelin 
basic protein, this drug seems to act as a decoy, diverting the autoimmune response 
against myelin. Dimethyl Fumarate instead, act on the activation of the nuclear 
factor erythroid-derived-2-like 2 (Nrf2) in the antioxidant response pathway 
promoting neuroprotection. Other DMDs act blocking the entry of lymphocytes 
into the CNS (Natalizumab, Laquinimod) or preventing lymphocyte egression 
from secondary lymphoid tissues (Fingolimod). Another class of DMDs is 
composed of monoclonal antibodies against cluster of differentiation (CD) 25 
(Daclizumab) that selectively inhibits activated T cells, or against CD20 
(Ocrelizumab) that targets B lymphocytes, or CD52 that cause the depletion of 
mature lymphocytes and monocytes (Alemtuzumab). Finally, other DMDs act as 
antineoplastic (Mitoxantrone) and immunosuppressors inhibiting the de novo 
pyrimidine synthesis (Teriflunomide) or acting as purine analog that targets 
lymphocytes and selectively suppresses the immune system (Cladribrine) [22].  
Moreover, guidelines also define the starting, the switching, and the interruption 
of DMTs [22]. It is suggested to continue a DMTs in stable patients, while consider 
switching DMTs in patients when relapses or side effects appear. Moreover, it is 
indicated the stopping of DMTs before conception and during pregnancy, with 
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exception for Interferon-b and Glatiramer acetate that recently, have been indicated 
as safe to continue during pregnancy and breastfeeding [21].  

 

3.2. Estrogens and MS 

3.2.1. Pregnancy protects women with RRMS from relapses 

Pregnancy is protective for MS patients. A pattern of remissions at the end of 
pregnancy and exacerbations during postpartum has been obtained by both 
retrospective [23] and later prospective studies [24–27]. In 1998, The Pregnancy in 
Multiple Sclerosis (PRIMS) study prospectively assessed 254 MS patients during 
pregnancy and reported a 70% reduction in the annualized relapse rate of the third 
trimester of pregnancy compared with the annualized relapse rate of the year 
before pregnancy [24,25]. Later, a meta-analysis [26] that included 1221 women 
with MS confirmed a significant decrease in the relapse rate during pregnancy. 
Moreover, a larger multicenter retrospective study supported these results [27]. 
According to the evidence it became clear that the relapse rate decreases during 
late pregnancy as hormonal secretions increase [24]. Interestingly, the immune 
response in MS patients is regulated by estradiol that is capable to modulate the 
expression and release of inflammatory and anti-inflammatory cytokines in CD4+ 
T helper cells, orchestrating a regulatory immune response [28]. These data suggest 
a potential application of estrogens in MS therapy, although mechanisms that 
underlie this process are under investigation and few clinical trials have been 
completed so far [29–32].  
 
3.2.2. Estrogens and MS pregnancy 

Estrogens are sex steroid hormones. They are present in both men and women, 
but they circulate at significantly higher levels in women during fertility age. 
The level of circulating estrogens varies during all stages of a woman’s life, starting 
from childhood until menopause [33]. Endogenous estrogens include estrone (E1), 
17β-estradiol (E2), and estriol (E3). E2 is the predominant form of premenopausal 
period, while E3 is mainly produced during pregnancy, together with high levels 
of E2 [33,34]. Estrogens primarily promote the development of female secondary 
sexual characteristics and regulate the menstrual cycle. In addition to sexual 
development, estradiol influences the functionality of various organs and tissues, 
including the skin, muscles, adipose tissue, the brain, the cardiovascular system, 
and bones, and it actively protects against osteoporosis and various cardiovascular 
diseases [35].  
Immune system behavior is affected by the levels of circulating estrogens, 
especially during pregnancy, when it adapts to establish fetal tolerance [36]. 
In physiological pregnancy, maternal Treg cells expand in both the peripheral 
blood and in the placenta in which they suppress the aggressive allogeneic 
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response directed against the fetus [37,38]. A lack of Treg cells leads to pregnancy 
failure due to an immunological rejection of the fetus [39,40]. In autoimmune 
diseases, including MS, Treg cells suppress the autoimmune response. The 
protective effect of estrogens, observed during pregnancy in MS, is believed to 
partially result from estrogen-mediated anti-inflammatory cytokine production 
and Treg cell expansion [37,40].  
 
3.2.3. Estrogen Receptors in the immune system 

Estrogens have direct and indirect way of acting that depends on the 
involvement of their receptors, called estrogen receptors (ERs) [41]. ERs are nuclear 
steroid receptors that are able to dimerize upon activation and translocate to the 
nucleus, where they regulate gene expression. Activated ERs can bind directly to 
specific DNA sequences called estrogen response elements (EREs) and act as 
transcription factors (TFs) by regulating a broad range of estrogen-responsive 
genes. Alternatively, ERs can indirectly bind DNA through protein–protein 
interactions with other transcription factors [42,43]. However, also in hormonal 
deprived environment, ERs have been shown to bind extensively to the genome of 
luminal breast cancer cells and regulate the expression of hundreds of genes with 
developmental functions [44]. ERs exist in two main forms, ER alpha (ERα) and ER 
beta (ERβ), which are encoded by the human genes Estrogen Receptor 1 (ESR1) and 
Estrogen Receptor 2 (ESR2). ERα and ERβ share high homology, particularly in the 
DNA binding domain [45]. The general structure of ERα consists of an N-terminal 
activation function (AF) -1 domain, which is followed by a DNA binding domain 
(DBD), a dimerization domain, and the ligand binding/AF-2 domain (LBD). The 
AF domains are responsible for the recruitment of coregulators; cofactor 
recruitment by AF-1 is ligand-independent, whereas cofactor recruitment by AF-2 
is ligand-dependent [46]. Three main different isoforms of ERα, derived from 
alternative splicing events, have been described: the full-length 66 kDa ERα 
(ERα66), the AF-1 domain-truncated 46 kDa variant of ERα (ERα46), and a 36 kDa 
ERα variant (ERα36) that lacks both AF-1 and AF-2 domains [47–49]. Similarly, 
ERβ is transcribed from at least two additional upstream promoters and undergoes 
alternative splicing, leading to at least five protein isoforms (ERβ1–5) [45].  
The ovary, uterus, and breasts express ERs in abundance and, therefore, represent 
the main target tissues of estrogens. However, estrogens affect many other tissues, 
including the immune system, in which ER signaling contributes to the regulation 
of the immune response. ER expression in peripheral blood mononuclear cells 
(PBMCs) has been explored by using different techniques: quantitative PCR 
(qPCR), flow cytometry, and Western blotting have indicated that ERs are 
differentially expressed in PBMC subsets [50,51]. Gene expression analysis by 
qPCR has shown that ERα and ERβ are endogenously expressed in Th lymphocytes 
[50], and their expression levels in B lymphocytes seem to be higher than those 
expressed in CD4+ T cells and CD8+ T cells; this is especially the case for ERβ. 
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Comparisons between CD4+ T cells and CD8+ T cells suggest that CD4+ T 
lymphocytes express higher levels of ERα. The immunostaining approach has been 
used to confirm and better characterize the expression of a specific receptor in the 
same cell type. This approach has shown that CD4+ and CD8+ T lymphocytes, B 
lymphocytes, and NK cells contain intracellular ERα and ERβ, and data suggest 
that ERβ is expressed at a lower level with respect to ERα [51]. Interestingly, the 
short isoform ERα46 is the most represented isoform in T cells compared with 
ERα66 [51]. The ERα46 protein is also predominantly expressed by human 
macrophages in addition to the full-length ERα66 [52]. ERα46 is formed by 
skipping exon 1, which encodes the AF-1 domain that is responsible for ligand-
independent transactivation. ERα46 and ERα66 share a ligand-binding site and a 
DNA binding site, but they differ in the AF-1 domain. As a result of this difference, 
the mechanisms of coregulator recruitment differ between cells with high levels of 
the short isoform and target tissues in which the long isoform predominates and is 
constitutionally expressed at very high levels. Specific tissue mechanisms depend 
on expression, the heterodimerization of receptor isoforms, competition for DNA 
binding sites, or a combination of these processes [47]. Moreover, ERα66 and 
ERα46 have similar estrogen binding affinity, but they bind differentially to some 
estrogen receptor agonists and antagonists. In particular, a classical estrogen 
receptor antagonist, ICI 182,780 (Fulvestrant), was found to have a higher affinity 
for ERα66 than ERα46 [53]. In the age of NGS, gene expression databases are a 
popularly used tool to explore cell-type-specific gene expression levels [54]. 
Interestingly, gene expression of ERα and ERβ is higher in B and T lymphocyte 
subtypes and NK cells in their non-activated state compared with in vitro activated 
lymphocytes and circulating monocytes (Figure 1). 
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Figure 1. ERα and ERβ expression in the immune system. The bar plots represent gene expression data of the 
human genes ESR1 and ESR2, which encode for ERα and ERβ, respectively. Data were retrieved from the 
Database of Immune Cell expression, expression quantitative trait loci (eQTL), and epigenomics (DICE) [54]. 
RNA-Seq data are normalized between samples and expressed in transcripts per million (TPM). Data were 
generated from 13 immune cell types from 91 healthy subjects. The cell types include: three innate immune 
cell types (CD14high CD16− classical monocytes, CD14− CD16+ non-classical monocytes, and CD56dim 
CD16+ NK cells); four adaptive immune cell types that have not encountered their cognate antigen in the 
periphery (naive B cells, naive CD4+ T cells, naive CD8+ T cells, and naive Treg cells); six differentiated T 
cell subsets (Th1, Th1/17, Th17, Th2, follicular helper T cells (TFH), and memory Treg cells); and two ex 
vivo activated cell types (naive CD4+ and CD8+ T cells). 

 
Along with gene expression, a fundamental aspect of ER function in the cell is the 
recruitment of coregulating proteins that are necessary for mediating the 
transcriptional activity of ERs. The resulting complexes contribute to epigenetic 
modifications and chromatin remodeling that transform the response to hormones 
or pharmacological ligands involved in regulatory activity [55]. Epigenetic 
modifications are hereditary modifications that do not alter the DNA sequence but 
regulate gene expression. At the DNA level, the most frequent epigenetic 
modification is the methylation of cytosine in CpG islands. Usually, 
hypomethylated CpG islands are associated with active genes, while CpG 
hypermethylation tends to silence gene expression. At the chromatin level, on the 
other hand, histone acetylation and methylation model chromatin and form active 
regulatory regions as enhancers and promoters or repressed heterochromatic 
regions (e.g., histone H3 lysine 27 acetylation in active regulatory regions increases 
the accessibility of chromatin to TFs). DNA methylation and demethylation often 
contribute to the inheritable organization of chromatin, while histone 
modifications are able to confer cellular identity but remain sufficiently malleable 
to regulate response to stimuli. Once activated, ERs recruit chromatin remodeling 
complexes in a timed and sequential manner. These mechanisms have been 
described in detail in the model MCF-7 breast cancer cell line [55,56]. The described 
ERα-associated transcriptional coactivator complexes include histone arginine 
methyltransferases (e.g. p160/SRC, CARM1), histone acetyltransferases (e.g. 
CBP/p300, KAT5/TIP60, GCN5), RNA-processing factors (e.g. SRA), and 
polymerase II mediator complexes (e.g. TRAP/DRIP/ARC). Conversely, 
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corepressors include chromatin remodeling complexes (e.g. SWI/SNF, NURD) and 
basal corepressors with histone deacetylase activity (e.g. NCoR, SMRT). The Next-
generation sequencing (NGS) technologies have broadened the understanding of 
these processes by showing estrogen binding to ERs in distal regulatory regions to 
modulate the expression of several hundreds of target genes [57,58]. In recent 
years, the recruitment of coregulators has been shown to lead to the remodeling of 
chromatin’s 3D organization [59]. This 3D rearrangement results in the formation 
of functional chromatin loops between ERα binding sites at the enhancers and 
promoters of target genes that are activated [60–62]. The formation of loops 
mediated by ERα is also involved in the mechanisms of gene repression. Estrogen-
mediated DNA looping represses diverse chromosomal regions through DNA 
methylation and repressive chromatin modifications that inhibit gene expression 
[63]. Furthermore, ERα activity is influenced by the tissue-specific presence of 
coactivators and transcriptional corepressors and their differential interaction with 
ERα in the presence of estrogens or anti-estrogens [64,65]. 
 
3.2.4.  Effects of estrogens on the immune system of MS patients 

Increasing evidence highlight the action of estrogens on the immune system. 
These aspects have been described in both physiological (e.g., pregnancy) and 
pathological conditions of the immune system (e.g., autoimmunity and the tumor 
microenvironment) [66,67]. The role of ERs in the regulation of innate immune 
system cells has been described in recent reviews [68–70], which have suggested 
estrogens’ potential contribution to sex differences in the innate immune response 
by affecting both progenitor and mature cells. Moreover, changes in circulating 
estrogen levels can affect progenitor and mature cells of both the innate and 
adaptive immune systems. ERα is present in most cells from the early stages of 
hematopoietic development to lymphocyte development in the thymus [66,68,71]. 
In the early stages, E2 enhances the expansion of hematopoietic pluripotent stem 
cells (hPSCs) [71] the differentiation of monocytes to macrophages [52], thymus 
trophism, and the maturation of double positive cells (CD4+ CD8+) [72,73] through 
ERα-dependent pathways. 
 
3.2.4.1. Effects of estrogens on the innate immune system 

The role of ERs in the regulation of the development and functions of innate 
immune cells has been discussed in details [18,66,67]. Main findings are reported 
in a recent review by our group [33]. Estrogens affect the innate immune system by 
regulating the number of cells and their specific biological functions: in 
neutrophils, they regulate chemotaxis, infiltration, and the induction of cytokine-
induced neutrophil chemo attractants (e.g., CINC-1, CINC-2β, CINC-3) and 
cytokines (e.g., TNF-α, IL-6, IL-1β); in macrophages, they regulate chemotaxis, 
phagocytic activity, and the production of cytokines (e.g., IL-6, TNF-α); in NK cells, 
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they decrease cytotoxicity; in dendritic cells (DCs), they promote differentiation 
and regulate chemokine (e.g., IL-8 and CCL2) and cytokine (e.g., IL-6, IL-10) 
expression [33]. In the context of MS, ERα activation delays the onset of EAE, while 
ERβ activation sustains later neuroprotection. Indeed, both ERα and ERβ signaling 
reduce demyelination, axonal loss, and neuronal pathology in EAE, but only ERβ 
activation induces the recovery of motor performance [74]. The anti-inflammatory 
action of ERα is connected to the modulation of microglia, which survey the CNS 
for infections and have functions that are similar to macrophages in the periphery 
[75]. ERα regulates the inflammatory pathway in microglia, likely by reducing the 
time of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
transcriptional activity and thus regulating inflammatory signaling [76,77]. The 
later neuroprotection mediated by ERβ activation is connected to the observed 
effects on macrophages in the CNS. ERβ activation induces CD11c+ DCs and 
macrophages to express less inducible NOS (iNOS) and T-box transcription factor 
TBX21 (T-bet) and more IL-10, and these effects favor immunotolerance in EAE 
mice. Furthermore, ERβ activation induces the maturation of oligodendrocytes and 
enhances remyelination [78]. The innate and adaptive immune systems are closely 
connected, and it has become evident that estrogens can regulate the interactions 
among immune cell types. Indeed, ERs sustain neuroprotection in EAE by 
regulating the interactions between innate immune cells and both T [79] and B cells 
[80].  
 
3.2.4.2. Effects of estrogens on the adaptive immune system 

Estrogens act on the adaptive immune system by modulating the production of 
cytokines and interleukins (IL) and influencing the differentiation of lymphocytes 
and the inflammatory environment [33]. Estrogens have profound effects on B cell 
differentiation, activity, and survival [81–83]. Estrogens increase the numbers of 
plasma cells and autoantibody-producing cells [84]. Estrogens promote IL-10 
secretion in regulatory B cells (Breg), a specific subset of B cells that can negatively 
regulate T cell immune responses, thereby controlling the follicular T cell response 
in germinal centers [85]. Together with Treg cells, the frequency of Breg cells 
increases during pregnancy [86]. B cells contribute to the pathogenesis of MS by 
producing anti-myelin antibodies, acting as antigen-presenting cells, and 
producing cytokines [87,88]. Interestingly, recent evidence showed that B cells are 
required for E2-mediated protection against EAE. The effects of E2 on Breg cells 
are mediated through ERα and the programmed cell death protein 1 (PD-1) 
pathway. Treatment with E2 upregulates programmed death-ligand 1 (PD-L1) in 
B cells and increases the percentage of Breg cells that produce IL-10. These results 
suggest that the anti-inflammatory effects of estrogens are also mediated by Breg 
cells, which suppress neuroinflammation during EAE and reduce the number of 
proinflammatory cells that infiltrate the CNS [89–91].  
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E2 modulates cytokine secretion by CD4+ T cells from healthy subjects and self-
reactive CD4+ T cell clones isolated from MS patients. Low concentrations of E2 
(i.e., levels during the pre-ovulatory phase of the menstrual cycle) induce IFN-γ 
production in T cells in mice [92,93], humans [94], and MS Th clones [95]. IFN-γ is 
the principal cytokine secreted by activated T cells as well as other cell types, such 
as NK, B, and APCs, in order to promote cell-mediated immunity. IFN-γ 
stimulation by estrogens is mediated by ERα regulation of the IFN-γ gene [92], the 
Th1-specific transcription factor T-bet [96], or both. On the other hand, high doses 
of E2 (i.e., levels during pregnancy) in these immune cells induce the expression of 
the transforming growth factor beta (TGF-β) and anti-inflammatory IL-10 [95,97]. 
Although E2 is able to stimulate both IFN-γ and IL-10 at the same time, the results 
of these two events do not seem to conflict. An increase in the concentration of 
estradiol favors immunotolerance by significantly decreasing the IFN-γ/IL-10 ratio 
[98]. Moreover, in human CD4+ T cells, the production and secretion of Tumor 
Necrosis Factor-α (TNF-α) were seen to increase at low E2 concentrations and be 
inhibited at high E2 concentrations [95]. Estrogens have a less marked effect on IL-
4 production in CD4+ T cells [95,97,98]. IL-4 antagonizes the effects of IFN-γ and 
thus inhibits T cell-mediated immunity. During the menstrual cycle, a positive 
correlation exists between estrogen levels and IL-4 [84]. The hormone progesterone 
induces IL-4 production in Th cells [99] but does not affect IL-12, IFN-γ, IL-10, and 
TNF-α [98]. During pregnancy, the modulation of IL-4 is attributed to 
progesterone, and the immune-tolerance environment can be realized and 
maintained by the combined action of progesterone and estrogen, which affect the 
synthesis of various anti-inflammatory cytokines [100].  

Estrogens at pregnancy levels enhance the expression of the transcription factor 
forkhead box P3 (FOXP3), which is specific for Treg, in mice [101]. We recently 
demonstrated that FOXP3 expression is promoted in human PBMCs upon 
stimulation with pregnancy levels of estradiol from Th17 cells undergoing 
polarization in vitro [102]. Moreover, estradiol potentiates the suppressive function 
of Treg cells by promoting their proliferation [103]. Estrogens also regulate immune 
checkpoints. Immune checkpoints involve protein-protein interactions that 
modulate the signaling pathways responsible for immunological tolerance. PD-1 
and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are immune checkpoint 
proteins, and their expression is regulated by ERα-mediated signaling [104,105].  

The anti-inflammatory effect of estrogens also involves Th17 cells. Th17 cells, 
which are characterized by the production of the proinflammatory cytokine IL-17, 
have been associated with the pathogenesis and outcome of several autoimmune 
diseases, including MS [2,106]. The importance of estrogens in the modulation of 
the adaptive immune system during MS is supported by data from the EAE murine 
model of MS. In mice with EAE, pregnancy limits cell infiltration and reduces CNS 
demyelination. Induced immunization during pregnancy leads to a reduction in 
the incidence of EAE and a decrease in clinical severity, while immunization during 
the postpartum period increases the severity of the disease [107]. In addition, the 
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effects of pregnancy are evident even when the pregnancy occurs after the onset of 
EAE [108]. The protective effect is mediated by a reduction in TNF-α- [109] and IL-
17-secreting cells and an increase in IL-10-secreting cells. E2 promotes immune 
tolerance by enhancing the Treg cell compartment and FOXP3 expression [101]. E2 
treatment in mice strengthens the expression of PD-1 in Treg cells in a dose-
dependent manner and correlates with the efficiency of EAE protection. E2 at 
pregnancy levels, but not at lower concentrations, increases the frequency of Treg 
cells and drastically reduces the production of IL-17 in the peripheral blood of 
immunized EAE mice. Treatment with E2 does not protect against EAE in mice 
with PD-1 deficiency [110]. Moreover, Esr1 -/- immunized mice are not protected 
against EAE in the presence of E2. The splenocytes of Esr1 -/- mice produce more 
TNF-α, IFN-γ, and IL-6, even in the presence of E2. In contrast, in wild-type (WT) 
mice and Esr2 -/- mice, E2 treatment produces clinical signs of EAE suppression 
and eliminates inflammatory lesions in the CNS [111]. These results show that the 
reduction in EAE severity involves the genomic action of E2 via ERα [74] and that 
the anti-inflammatory effect is mediated by ERα but not ERβ [74,111]. Moreover, 
experiments using ERα-deficient mice have demonstrated that T lymphocytes (but 
not macrophages or dendritic cells) require ERα for the E2-mediated inhibition of 
Th1/Th17 cell differentiation and protection from EAE [112]. The results of these 
studies emphasize the role of Th17 and Treg cells in ERα-mediated E2 modulation 
in EAE. 
 
3.2.5. Estrogens modulate the T Helper Epigenome in MS 

The genomic regulatory landscape of cells controls gene expression and defines 
cell identity. The phenotypes of Th cells are determined by their cytokine secretion, 
gene expression, and surface molecules, which guide their action in the adaptive 
immune system. Th cells react to environmental stimuli by repolarizing to different 
cell subtypes in a phenomenon defined as plasticity [113]. Epigenetic 
reprogramming is a series of events that underlie plasticity, and this process 
determines the difference between a pro-inflammatory and an anti-inflammatory 
environment [114]. In this context, chromatin states described by epigenetic 
modifications play a role in the regulation of the immune response. Histone 
modifications regulate transitory responses to stimuli. Histone modifications are 
able to maintain a stable cellular state while remaining sufficiently malleable to 
allow the plasticity in Th cells. In fact, the histone modifications that determine the 
accessibility of chromatin to TFs change in response to different contexts and 
stimuli [115]. Pioneering studies on this subject described changes in histone 
modification at the promoter of lineage-determining TFs in T cells as a molecular 
mechanism that occurs during cell plasticity [116]. Epigenome dynamics in T cells 
have been described and discussed, starting from their development in the thymus 
to their peripheral plasticity [117]. The balance between Th17 and Treg is widely 
considered to reflect inflammation in MS and is strongly connected to disease 
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outcomes [118]. Th17 and Treg have a high degree of plasticity, which allows for 
their functional adaptation to the phases of the immune response. However, Th17-
Treg plasticity could also be a critical factor in MS [119]. The integration of 
epigenomics and transcriptomics data have been used to unravel the intricate gene 
regulatory circuits underlying these processes in Treg [102,120] and Th17 cells 
[102,121,122].  
Some epigenetic regulation mechanisms and targets have been associated with 
EAE and the Th17–Treg axis. In encephalitogenic T cells of EAE mice, signaling 
through CD44 causes increased methylation of Ifng/Il17a and demethylation 
of Il4/Foxp3 [123]. Since CD44 expression is chronically elevated in MS 
demyelinating lesions, this mechanism has been proposed to sustain inflammation 
at the sites of CNS lesions [123]. Conversely, the CD27 and CD70 costimulatory 
pathway results in the epigenetic silencing of the IL17a gene, thus inhibiting Th17 
differentiation [124]. In particular, FOXP3, given its role as a key transcription 
factor in Treg cells, has long been studied in the context of epigenetic regulation 
and autoimmunity. The demethylation of the conserved non-coding sequence 0 
(CNS0) in the FOXP3 locus helps to stabilize the identity of Treg cells [125]. In 
addition to CNS0, at least two other known CNSs are responsible 
for FOXP3 regulation (i.e., CNS1 and CNS2) [126]. Recent studies on CNS1—
a FOXP3 intronic enhancer that is essential for the development of peripheral Treg 
cells—have reported that the adaptation of the immune system during pregnancy 
enabled maternal–fetal tolerance [125]. Moreover, the deletion of CNS2—
a FOXP3 enhancer—led to reduced stability and the loss of FOXP3 expression in 
proliferating Treg cells [125,127,128]. However, FOXP3 alone does not control all 
aspects of Treg biology and is not the initiating factor in Treg development. DNA 
demethylation of Treg signature genes is required for the stable maintenance of the 
Treg phenotype and function [129,130]. The establishment of the Treg-specific 
epigenome starts before FOXP3 expression. Indeed, FOXP3 exploits a pre-existing 
enhancer landscape and a TF network of Treg cells [131–133]. Ten-eleven 
translocation (TET) proteins regulate DNA methylation and gene expression by 
converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Treg cells 
in mice with specific Tet2/Tet3 deficiency begin to express IL-17. This phenotypic 
shift occurs not only at the level of known CNSs but also in new regions identified 
as FOXP3’s upstream enhancer, which could contribute to stable FOXP3 expression 
[134]. DNA methyltransferase 3A (DNMT3A), responsible for “de novo” 
methylation, prevents methylation of the FOXP3 locus [135], thus supporting Treg 
cell identity at sites of inflammation by keeping CNS2 in a demethylated state and 
allowing for the maintenance of its suppressive function. Interestingly, the 
epigenetic reprogramming of peripheral Treg cells is possible to achieve in vitro 
through the demethylation of the RAR-related orphan receptor C (RORC) locus 
and the development of Th17-like cells [136]. The role of estrogens and ER in the 
complexity of epigenetic regulation mechanisms in T cells has been poorly studied, 
but some evidence has emerged from recent studies. As previously described, 
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estrogens promote the activation of ERα and its transcriptional activity through 
interactions with ERE. ERα binding at the RORC and FOXP3 regulatory regions 
has been recently demonstrated. In both in vitro experiments and pregnant MS 
patients, E2 at pregnancy levels inhibited Th17 polarization, thereby 
reducing RORC expression and enhancing FOXP3 transcription as a result of ERα 
binding to their promoters and enhancers [102]. The molecular mechanisms of this 
process remain elusive. However, the suppressive action of ERα in Th17 cells could 
be mediated by the recruitment of the repressor of estrogen receptor activity (REA). 
The ERα/REA complex recruits histone deacetylases to the RORC promoter to 
suppress its expression [137]. In the orchestration of chromatin architecture, ERα 
may mediate epigenetic modifications at chromatin hubs in CD4+ T cells to affect 
their differentiation and plasticity. In this respect, ERα may act as a cooperative TF 
in the T cell epigenome dynamic. Understanding the steps that lead to this 
mechanism may open doors to new therapeutic approaches that exploit this 
property of T cells. Moreover, estrogens have been combined with DMDs, 
including IFN-β, in clinical trials with clinical safety and promising results [32]. 
Molecular investigations will elucidate mechanisms behind hormonal therapy in 
combination with DMDs. 
 
3.2.6. Estrogens as a potential therapy for MS patients. 

The protective effects of estrogens have been explored in a first clinical trial in 
2002, using estriol, the form of estrogens that is mainly produced during pregnancy 
[29]. Estriol was administered in 10 female MS patients decreasing the volume of 
MRI lesions in all patients. This beneficial effect was lost 3 months after treatment 
was stopped  [29]. Estriol was well tolerated, no serious side effects were observed; 
there were neither significant alterations in any laboratory measures including 
sexual hormone levels [29]. In parallel, estriol treatment showed reduced IFN-γ 
levels and the production of TNF-α, an increase of two anti-inflammatory 
interleukins. IL-5 production increased in CD4+ T cells and IL-10 production 
increased in macrophages, leading to an immune tolerant environment [29].  

These promising results leaded to a larger phase 2 trial where estriol have been 
used in combination with DMDs. This trial enrolled 164 MS patients and estriol 
was used as an add-on therapy compared with glatiramer acetate alone [30]. Estriol 
in combination with glatiramer acetate reduced the annualized relapse rate (0.25 
relapses per year versus 0.37 relapses per year in the control group). Estriol 
concentration in sera were inversely correlated with the number of relapses and 
the number of active lesions on brain Magnetic Resonance Imaging (MRI) [30]. No 
differences were observed in the number of cerebral lesions (enhancing or T2 
lesions), however post-hoc volumetric study, showed less cortical grey matter 
atrophy in the estriol group than in the control group [30]. Moreover, safety 
analysis indicated safety of the hormonal treatment [30]. In 2009, a double-blind 
placebo-controlled phase 3 study enrolled 300 pregnant MS women with the aim 
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to prevent postpartum MS relapses by treatment with Nomegestrol Acetate 
(LUTENYL® 10 mg/day) combined with transdermal estradiol (DERMESTRIL 
SEPTEM® 75 µg, once a week) for a period of 24 weeks after delivery. The results 
did not show clear beneficial effects [31]. 

 More recently, a new phase 2 clinical trial was conducted to evaluate the effects 
of estradiol in combination with DMDs [32]. In this trial MS patients received high-
dose ethinylestradiol and desogestrel in addition to IFN-β. The group treated with 
estradiol showed a significant decrease in new gadolinium-enhancing lesions 
compared with IFN-β group over a 96-week period and clinical safety was assessed 
[32]. These results enhance the role of estrogens and make the prospect of a 
hormonal combination with DMDs in the therapeutic field a more concrete step. 
 

3.3. Interferon-b and MS 

3.3.1. Interferon-b protects RRMS patients from relapses 

IFN-β therapy was the first proposed and approved DMD for the MS treatment 
and, to date, it still remains one of the most used first line DMD for the treatment 
of MS [138,139].  
IFN-β therapy is most effective in early RRMS with little benefit on progression in 
the later stages of MS [140]. Because of the benefits of early intervention and their 
safety profile, beta interferons are offered to patients since they manifest a clinical 
isolated syndrome and an abnormal MRI with lesions suggestive of MS but who 
do not fulfil criteria for MS diagnosis [20,141–143].  
The therapeutic efficacy of IFN-β in RRMS has been confirmed by several clinical 
trials. Interferon resulted in a lower annualized relapse rate at 48 weeks’ follow-up 
(RR=1.15, 95% CI: 1.08–1.23) [144] and at 104weeks’ follow-up (n=960; RR=1.73, 95% 
CI: 1.35–2.21) [138,145,146]. Interferon reduced disability worsening confirmed at 
3 months over 48weeks’ follow-up (RR = 0.61, 95% CI: 0.39–0.93; n = 1012) [144] and 
on disability worsening confirmed at 6 months over 2 years’ follow-up (RR=0.71, 
95% CI: 0.51–0.98; k=2; n=1069) [146,147]. Interferon reduced new or newly 
enlarging T2 lesions (MD = −7.30, 95% CI: −8.85 to −5.75) [144]. Lower annualized 
relapse rate and fewer new or newly enlarging T2 lesions have been observed also 
at 2 and 4 years’ follow-up [148,149].  
Regarding SPMS, a significant reduction in disability worsening has been 
confirmed at 3months (RR = 0.78, 95% CI: 0.66–0.92) [150] and a smaller effect on 
disability has been confirmed at 6 months (RR = 0.92, 95% CI: 0.80–1.06) 
[140,150,151]. 
 
3.3.2. Interferon-β and Interferon-β stimulated genes 

Most of MS patients have low levels of serum interferon (IFN) [152]. Moreover, 
recent high-throughput genetic screening in MS patients highlighted the 
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occurrence of many genetic risk variants in the proximity of immunologically 
relevant genes interferon-stimulated genes (ISG), suggesting a genetic dysfunction 
of the interferon pathway in MS [153]. IFN-β mechanisms of action in MS are 
partially known. Its beneficial effects are imputed to the combined effect of 
different mechanisms including the down-regulation of class II major 
histocompatibility complex molecules on antigen presenting cells (dendritic cells 
and B lymphocytes) [154], the induction of IL-10 in T cells [154–156], the inhibition 
of T cell migration as a result of blockade of metalloproteases and adhesion 
molecules [154,157,158], the induction of Th17 cells and B cells apoptosis [2,159]. 
Unfortunately, not all patients respond to IFN-β therapy and some MS patients 
experience disease progression and the needing of another more effective therapy 
[160,161]. The early identification of IFN-β responders and non-responders MS 
patients would help to select patients needing a rapid transition to another therapy 
and ultimately to avoid the accumulation of permanent disability over time. 
Indeed, a clear and shared clinical definition of IFN-β responders is not established 
yet and the use of blood biomarkers is still debated [162,163]. The prediction of 
IFN-β response remains one of the big challenges to manage the therapy of MS 
patients and studies indicate to enlarge cohorts or focus on the mechanisms related 
to IFN-β in a specific cell type connected with MS [160–163]. 
 

3.4. Public data re-use and integration as a tool for the 
identification of molecular targets 

In past decades, hypothesis-based approaches have predominated in the search 
for the etiology of MS, although with limited success and poor understanding of 
the key molecules and processes involved in MS progression. The NGS techniques 
in research have had relatively rapid development and diffusion, revolutionizing 
the way we approach basic genomic research for a personalized precision medical 
diagnosis that allows the selection of molecular drugs target for individual 
treatment. The implementation of integrative approaches of large amounts of data, 
produced by NGS techniques, for the understanding of complex disorders has led 
to the increase of new hypotheses to explain diseases and therapeutic mechanisms 
[164]. The analysis and integration of large amounts of data determine the 
identification of networks significantly preserved deregulated in a given disorder 
(hypothesis) and can be further validated through traditional procedures. In this 
consists the systems biology, where several significant molecules of numerous 
studies are integrated and analyzed simultaneously (epigenetics, transcriptomics, 
proteomics) [165]. This work implements different systems biology approaches to 
produce visions of Th17 molecular mechanisms involved in two different processes 
related to MS pathology, applying statistical filters, different bioinformatics 
pipelines and visualization tools. In the first example we retrieved and reused 
publicly available NGS data. In particular we retrieved the epigenetic and 
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transcriptomic profile of different T helper lymphocyte subtypes from healthy 
donors and developed an integration pipeline aimed to identify specific targets for 
the epigenetic action of estrogens in the Th17 / Treg balance. In the second example 
we performed an integrative analysis of studies on the gene expression profile from 
PBMC of a large number of MS patients treated with interferon-beta and identified 
a set of interferon-modulated genes that identify treatment in MS. We then 
speculated on the action of the drug on the pathological Th17 transcriptome, 
exploiting a second public data set of autoreactive T cell clones in MS. 
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4. Results 
In the first part of the results we will show that ERα is involved in chromatin 
remodeling at specific regulatory regions in Th17 cells. These regions have been 
selected by data integration analysis and validated by ChIP-qPCR in in-vitro 
polarized Th17 cells treated with 17β-estradiol at pregnancy levels. In the second 
part of the results we will show how the transcriptional signature of IFN-β therapy 
in MS was obtained and how we used this signature to highlight the molecular 
targets of IFN-β in myelin reactive Th17 cells. 
 

4.1. Estrogens inhibit Th17 polarization by chromatin 
remodeling at FOXP3, RORC, MAF and SATB1 loci 

Genomic regulatory regions are integrative hubs for cellular pathways 
activated upon environmental stimuli. These are the site on the genome in which 
TFs are recruited to form the transcriptional complexes that regulate gene 
expression. Each cell activates a specific pattern of genomic regulatory regions to 
exert its biological functions. In order to identify genomic targets of estrogens 
signaling in Th17 and Treg cells, we designed a computational approach composed 
of four consecutive NGS data integration steps: (i) SEs prediction in CD4+ T cell 
subtypes, (ii) chromatin states analysis for identification of active regulatory 
regions, (iii) overlap between these regions and SEs detected in Th17 and Treg cells, 
(iv) reconstruction of a core TFs regulatory network of Th17 and Treg cells and 
identification of putative ERα targets (Figure 2) [102]. 
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NGS data integration 
 

 
 
Figure 2. Workflow representation of our approach for data integration.  
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4.1.1. Super Enhancers and chromatin states define Active Regulatory 
Regions of Th17 and Treg cells 

 
We predicted SEs using public H3K27ac ChIP-Seq data of human CD4+CD25–
CD45RA+ cells (Naive T), CD4+CD25– T cells (Th), CD4+CD25–IL17+ T cells 
(Th17), and CD4+CD25+CD45RA+ T cells (Treg) from the Roadmap Epigenomics 
Project (30), identifying 658, 676, 999, and 851 SEs in Naive T, Th, Th17, and Treg 
cells, respectively (Figure 3, Table S1A). 
 

 
 
Figure 3. Prediction of SEs in Th17, Treg, Naive T, and Th cells by Rank Ordering of Super Enhancers 
(ROSE) algorithm. Line plot reports the cumulative number of enhancers identified in Th17 and Treg cells 
as function of the number of H3K27ac ChIP-Seq reads over the input dataset. Vertical lines represent the 
threshold over which H3K27ac signal intensity defines SEs. 
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Interestingly, Gene Ontology (GO) analysis of genes mapped in proximity of SEs 
showed an association with “immune response” and “regulation of immune 
system” processes (Table S1B). We evaluated the enrichment of Single Nucleotide 
Polymorphisms (SNP) associated to a set of 41 diseases, within Th17 and Treg SEs. 
SNPs associated with autoimmune diseases, overlapped more often with Th17 and 
Treg SEs than with a random set of regions of the same length. This enrichment is 
stronger for autoimmune-disease-associated SNPs in respect to the control group 
of other-disease-associated SNPs, meaning that these chromatin hubs affect 
immune system behavior and can be related to disease development (Figure 4). 
 

 
 
Figure 4. Results of SNPs analysis performed on predicted SEs in Th17 and Treg cells. Heatmap shows results 
of the single-trait-associated SNPs enrichment analysis. Table shows results of the enrichment analysis 
considering the two groups of diseases as a single trait. 
 
To identify Active Regulatory Regions (ARRs) with a more precise spatial 
resolution we analyzed chromatin states data predicted by ChromHMM [166] in 
the aforementioned CD4+ T cell subtypes. This model consists of 25-chromatin 
states model based on imputed data for 12 epigenetic marks defined for 127 cell 
types and provides a 200 bp human genome segmentation with the corresponding 
predicted functional annotation. Using this data, we selected a subset of 65,581 
genomic regions characterized by high enrichment of histone marks that define 
active promoters and enhancers. To distinguish these regions according to their 
level of regulatory activity among CD4+ T cells, we compared their epigenetic state 
and found 4,610 (7.03%), 7,508 (11.45%), 4,720 (7.20%), and 5,608 (8.55%) ARRs 
exclusive to naive T, Th, Th17, and Treg cells, respectively (Table S1C).  
Then, to further isolate ARRs characterized by the highest predicted regulatory 
activity, we overlapped ARRs with predicted SEs in these cell subtypes. The 2.27, 
2.73, 14.60, and 8.10% of naive-, Th-, Th17-, and Treg-ARRs, respectively, 
overlapped with SE regions (Table S1D). As expected, SE-overlapped ARRs (SE-
ARRs) showed significantly higher levels of H3K27ac compared with ARRs 
(Figure 5).  
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Figure 5. Box plot shows the log2 normalized H3K27ac, H3K4me1, H3K27me3, and H3K9me3 ChIP-Seq 
signal measured in Th17- and Treg- SE-ARRs in comparison with ARRs. The P-values are calculated by 
Wilcoxon Rank-sum test. 

 
Moreover, the comparison of Th17 and Treg SE-ARRs underlines that H3K27ac in 
SE-ARRs has a cell-type specific enrichment (Figure 6). 
 

 
 
Figure 6. Box plot shows the log2 normalized H3K27ac, H3K4me1, H3K27me3, and H3K9me3 ChIP-Seq 
signal measured in Th17- and Treg- SE-ARRs. The P-values are calculated by Wilcoxon Rank-sum test. 
 
GO analysis for genes mapped in proximity of Th17 SE-ARRs showed an 
association with immune system and inflammatory processes, whereas Treg SE-
ARRs are associated with chromatin remodeling and metabolism (Tables S1E-F). 
 
4.1.2. Reconstruction of Cell Type-Specific Regulatory Networks Identifies 

ERα-Regulated Genomic Regulatory Regions in Th17 and Treg Cells 

In order to obtain an overview of gene expression profiles associated to SE-ARRs 
in Th17 and Treg cells, we re-analyzed raw data from a paired-end tag poly (A+) 
RNA-Seq datasets performed on purified CD4+ T cells, including Th17 and Treg 
cells, from five human healthy donors (35). We found 1,291 significantly 
Differentially Expressed (DE) genes between Th17 and Treg cells (DESeq2 adjusted 
p-value < 0.001), 147 of which associated to SE-ARRs mapped within a distance of 
100 kbp (Table S2A). Comparison of the expression specificity among CD4+ T cells 
highlighted that upregulated genes in Treg cells were more specific of this CD4+ 
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subtype, while upregulated genes in Th17 cells were similarly expressed in Th1 
and Th2 subtypes (Figure 7).  
 

 
 
Figure 7. The first heatmap (left) represents SE-ARRs associated DE genes between Th17 and Treg cells. 
Genes are sorted by decreasing Th17/Treg log2FC. The second Heat map (right) represents the computed Z-
score between CD4+ subpopulation. 
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Interestingly, among most upregulated genes in Th17 cells (log2FC Th17/Treg cells 
> 1.5 and DESeq2 FDR adjusted P-value < 0.001), the top DE TF-coding genes 
associated with Th17 SE-ARRs were the RAR Related Orphan Receptor C (RORC), 
the Heat Shock Transcription Factor 4 (HSF4) and the MAF BZIP Transcription 
Factor (MAF) (Table S2A). Among most upregulated genes in Treg cells (log2FC 
Th17/Treg cells < -1.5 and DESeq2 FDR adjusted P-value < 0.001), the top DE TF-
coding genes associated with Treg SE-ARRs were the IKAROS Family Zinc Finger 
2 (IKZF2), the Forkhead Box Protein 3 (FOXP3), the IKAROS Family Zinc Finger 4 
(IKZF4) and the PR/SET Domain 1 (PRDM1) also known as BLIMP-1 (Table S2A).  
To identify putative regulatory interactions between SE-ARRs associated TFs, we 
explored the sequence of SE-ARRs for the binding motif of a list of human TFs. 
Results of this analysis were used to reconstruct a core TF regulatory network in 
which the indegree of nodes, representing TF-coding genes, is given by the number 
of significant TF binding motifs enriched at gene-associated SE- ARRs. Conversely, 
the outdegree of nodes is the sum of predicted TF bindings to another gene-
associated SE-ARRs (Figure 7).  
 

 
 
Figure 7. Methodology for network reconstruction.  

 
We extracted information on key candidate TFs involved in Th17 or Treg lineage 
determination by computing the differential gene expression between Th17/Naive 
and Treg/Naive CD4+cells. We identified 4 and 10 SE-ARR-associated DE TFs (FDR 
adjusted P-value < 10−7) in Th17/Naive and Treg/Naive comparison respectively 
(Tables S2B–E). We used these TFs to create subnetworks of the total regulatory 
networks (Figure 8). We enriched these subnetworks with activation and inhibition 
regulators inferred by a correlation analysis of gene expression (Figure 8 and Table 
S2F). Our network reconstruction highlighted RORC and MAF as nodes with 
highest indegree in the Th17 network, and FOXP3, IKZF2, IKZF4 and SATB1 as 
nodes with highest indegree in the Treg network, highlighting the importance of 
these regions as regulatory hubs in the definition of the phenotype of Th17 and 
Treg cells (Figure 8). We called the regions associated to these TFs Cell-type Specific 
Regulatory regions (CSR). Finally, since our main interest was to identify targets 
for genomic pathway of estrogens, we computed the enrichment of EREs within 
Th17 and Treg CSRs (Figure 8). Collectively this analysis revealed the major 
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candidates of ERα-mediated regulation in Th17 and Treg cell specification (Figure 
8). 
 
 

 
 
Figure 8. Th17 and Treg core regulatory networks. Node size is scaled to indegree values. Node color 
represents log2 fold change expression of Th17/Naive CD4+ cells and Treg/Naive CD4+ cells, respectively. 
Edge thickness is scaled to the sum of predicted TF binding sites at target-associated CSRs. Edge color 
represents positive (green) or negative (red) regulation inferred by Pearson correlation analysis between 
regulator and target gene expression (Table S2F). Positive and negative correlations are used to represent 
activatory and inhibitory network edges, respectively. Since PWMs are not available for all TFs, some 
interactions could not be predicted. Networks show also predicted ERα binding at CSRs associated TFs in 
Th17 and Treg cells (pink circles). 

 
4.1.3. ERα network validation 

We purified PBMCs from female donor blood (25-48 years of age) and subjected 
the cells to Th17 polarizing conditions for three days. At day zero, the polarizing 
cytokines were added, in conjunction with antibodies necessary for the activation 
of T lymphocytes. Concurrently, in one of the two plates, for each biological 
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replicate, E2 was added in quantities equal to those observed during the third 
trimester of pregnancy. We designed specific primers for CSRs interested by ERE 
occurrence, including both promoters (0-2Kb upstream TSS) and active enhancers. 
Then, we immunoprecipitated the chromatin fragments bound by ERa to validate 
the network edges using ChIP-PCR. We used polyclonal antibody against human 
ERa protein and evaluated the binding proportion between treated and untreated 
conditions. Moreover, we evaluated epigenetic marks and gene expression 
associated with E2-regulated genomic regulatory regions : for enhancers, we used 
histone 3 acetylation of lysine 27 (H3K27ac); for promoters, we used the histone 3 
trimethylation of lysine 4 (H3K4me3), the active histone mark and the histone 3 
trimethylation of lysine 27 (H3K27me3), the repressive  histone mark. We showed 
the ratio between H3K4me3 and H3K27me3 marks because both marks can be 
present on the same promoter to indicate different states of activation. Moreover, 
we evaluated the effect of E2 on gene expression by qPCR  
 
4.1.3.1. RORC 

We observed that E2 at pregnancy level reduces promoter (0-2Kbp upstream TSS) 
activation of RORC gene. This effect can be mediated by the effect of ERa binding 
in the same region that is increased, accordingly. The epigenetic state of the 
genomic regulatory region associated with RORC is reflected in a reduction in 
RORC expression (Figure 9). 
 

   
 
Figure 9. RORC relative gene expression measured by qPCR at 3 days of Th17 polarization. Relative gene 
expression is normalized over 18s gene expression and compared between E2 treated condition (E2) and 
Vehicle (Veh). ERa binding at the promoter is measured by ChIP-qPCR and normalized over IgG H3K4me3 
(activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-qPCR, 
normalized over IgG. H3K4me3/H3K27me enrichment is represented. (p-value t-test, n = 4) 
 
4.1.3.2. MAF 

We observed that E2 at pregnancy level reduces promoter (0-2Kbp upstream TSS) 
(Figure 10) and enhancer activation (Figure 11) of MAF gene. ERa binding is 
enriched in both regions suggesting a role of ERa in the chromatin remodeling of 
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these regions. The epigenetic state of the genomic regulatory regions associated 
with MAF is reflected in a reduction in MAF expression (Figure 10). 
 

   
 
Figure 10. MAF relative gene expression measured by qPCR at 3 days of Th17 polarization. Relative gene 
expression is normalized over 18s gene expression and compared between E2 treated condition (E2) and 
Vehicle (Veh). ERa binding at the promoter is measured by ChIP-qPCR and normalized over IgG H3K4me3 
(activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-qPCR, 
normalized over IgG. H3K4me3/H3K27me enrichment is represented. (p-value t-test, n = 4) 
 

  
 
Figure 11. ERa binding at MAF enhancer is measured by ChIP-qPCR and normalized over IgG H3K27ac 
(enhancer activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-
qPCR, normalized over IgG. H327ac/H3K27me enrichment is represented. (p-value t-test, n = 4) 
 
4.1.3.3. FOXP3 

We observed that E2 at pregnancy level induce promoter (0-2Kbp upstream TSS) 
activation of FOXP3 gene. This effect can be mediated by the effect of ERa binding 
in the same region that is increased, accordingly. The epigenetic state of the 
genomic regulatory region associated with FOXP3 is reflected in increased FOXP3 
expression (Figure 12). 
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Figure 12. FOXP3 relative gene expression measured by qPCR at 3 days of Th17 polarization. Relative gene 
expression is normalized over 18s gene expression and compared between E2 treated condition (E2) and 
Vehicle (Veh). ERa binding at the promoter is measured by ChIP-qPCR and normalized over IgG H3K4me3 
(activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-qPCR, 
normalized over IgG. H3K4me3/H3K27me enrichment is represented. (p-value t-test, n = 4) 
 
4.1.3.4. SATB1 

We observed that E2 at pregnancy level reduce promoter (0-2Kbp upstream TSS) 
(Figure 13) and enhancer activation (Figure 14) of SATB1 gene. ERa binding is 
enriched in both regions suggesting a role of ERa in the chromatin remodeling of 
these regions. The epigenetic state of the genomic regulatory regions associated 
with SATB1 is reflected in a reduction in SATB1 expression (Figure 13). 
 

   
 
Figure 13. SATB1 relative gene expression measured by qPCR at 3 days of Th17 polarization. Relative gene 
expression is normalized over 18s gene expression and compared between E2 treated condition (E2) and 
Vehicle (Veh). ERa binding at the promoter is measured by ChIP-qPCR and normalized over IgG H3K4me3 
(activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-qPCR, 
normalized over IgG. H3K4me3/H3K27me enrichment is represented. (p-value t-test, n = 4) 
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Figure 14. ERa binding at SATB1 enhancer is measured by ChIP-qPCR and normalized over IgG H3K27ac 
(enhancer activator histone mark) and H3K27me3 (inhibitor histone mark) enrichment is measured by ChIP-
qPCR, normalized over IgG. H327ac/H3K27me enrichment is represented. (p-value t-test, n = 4) 
 
All together these results show the epigenetic and transcriptional effect of E2 on 
Th17 polarization. Increased ERa binding at CSRs suggests a wider epigenetic 
rearrangement of regulatory landscape of T helper cells favoring the T regulatory 
phenotype and against Th17 phenotype. These results are supported by 
cytofluorimetry measurements performed by our group that show an expansion in 
Treg subpopulation during Th17 polarization upon E2 stimulation at pregnancy 
level [102]. Moreover, the epigenetic status of the CSRs associated with FOXP3 and 
RORC has been evaluated in MS patients during pregnancy and postpartum 
showing that RORC is inhibited during pregnancy and reactivated during 
postpartum and conversely that FOXP3 is activated during pregnancy and 
inhibited during postpartum [102].    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P = 0.01 P = 0.03 
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4.2. Integrated transcriptional analysis highlights 
Interferon-beta regulated genes in pathogenic Th17 cell 
clones 

Previous studies from the group of Prof. Clerico indicated that Th17 myelin basic 
protein specific cells increased in active MS [2]. IFNAR1 expression, IFN-beta-
induced STAT1 activation, and apoptosis were significantly greater in Th17 rather 
than Th1 cells after IFN-β treatment [2]. Many ISGs have been identified during 
years [167–169], although IFN-β signature has been described in peripheral blood 
without showing enough power to predict the response of MS patients to this drug. 
In the second part of my PhD, we investigated the IFN-β modulation of CD4+ T 
cells, focusing on the potential role of ISGs in Th17 cells in MS patients. We 
confirmed previously IFN-β targets and defined a signature of ISGs related to the 
IFN-β therapy in MS patients.  
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4.2.1. Integrative transcriptional analysis of IFN-β treatment in MS depicts 
an ISGs expression signature related to the disease 

To identify a signature of ISGs related to the IFN-β treatment in MS, we collected 
and integrated public gene expression dataset from three genome-wide studies of 
IFN-β treated MS patients (GSE16214, GSE41850, and GSE73608) (Table 1).  
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d) 
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015 - PMID: 
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[30] 

 
Table 1. Table illustrate the composition of the cohorts included in the studies considered for the analysis of 
ISG in MS patients. 
 
The GSE41850 data set consists of whole blood gene expression data of a cohort of 
195 MS patients treated with IFN-β. Patients of this cohort were in different stages 
of the disease (CIS-RRMS-SPMS) [169]. Instead, the GSE16214 dataset reports gene 
expression data of a cohort of 176 RRMS patients treated with IFN-β for 3 months 
[168]. Then, in order to consider IFN-β transcriptional modulation in the 
progressive form of MS, we included the dataset GSE73608 consisting of 50 SPMS 
patients who have been on therapy for 2 years [170]. 
For all the datasets, we compared the transcriptome of IFN-β treated and untreated 
patients. We obtained 92 ISGs for the MS group, 104 ISGs for the RRMS group, and 
36 ISGs for the SPMS group (adj. p-value < 0.05; -0.5 < log2FC > 0.5) (Table S3A-C). 
23 genes were detected as ISGs in all the comparisons, 24 genes were detected as 
ISGs in the MS and RRMS but not in the SPMS group, 6 genes were detected as 
ISGs in the RRMS and SPMS groups but not in the MS group. Finally, 6, 45, and 51 
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genes were detected specifically in the SPMS, MS, and RRMS groups, respectively 
(Figure 15, Table S3D). 
 

 
Figure 15. The upset plot shows the overlap between the lists of ISGs for each dataset considered. Datasets are 
ordered by increasing number of ISGs detected in each dataset (set size) and by the number of genes present 
in each intersection (intersection size). 
 
Then, we considered the union of 138 ISGs identified in these studies to evaluate 
the general transcriptional activity of IFN-β in PBMCs from MS patients (Table 
S3E). As expected, gene set enrichment analysis on these 138 ISGs resulted in a 
significant enrichment (FDR adjusted p-value < 0.05) in terms related to Type I IFN 
signaling like “Interferon alpha/beta signaling_Homo sapiens_R-HSA-909733” 
(adj. p-value = 5.56E-29) and “type I interferon signaling pathway” (GO:0060337) 
(adj. p-value = 3.16E-27)  and in immune system like “Immune System_Homo 
sapiens_R-HSA-168256” (adj. p-value = 1.01E-14) and “Immune_system” (Jensen 
Tissues) (adj. p-value = 1.99E-07) (Supplementary Table 1G). Furthermore, several 
pathways related to the IFN response were enriched including “Antiviral 
mechanism by IFN-stimulated genes_Homo sapiens_R-HSA-1169410” (adj. p-
value = 1.21E-06), “ISG15 antiviral mechanism_Homo sapiens_R-HSA-1169408” 
(adj. p-value = 1.45E-06) beside more general immune-response related terms 
like  “Cytokine Signaling in Immune system_Homo sapiens_R-HSA-1280215” (adj. 
p-value = 7.93E-17).  
The enrichment analysis was also performed to predict candidate transcriptional 
regulators of the 138 ISGs. The enrichment with the gene sets from ChIP-Seq 
experiments resulted in the enrichment of the Interferon regulatory factor 1 (IRF1) 
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and Interferon regulatory factor 8 (IRF8), although data refers to ChIP-seq 
experiments performed in monocytes, bone marrow-derived macrophages 
(BMDM) and Germinal Center (GC)-B cells. Moreover, the RELA Proto-Oncogene, 
NF-KB Subunit (RELA) and the SRY-Box Transcription Factor 2 (SOX2) resulted as 
transcriptional regulators although according to experiments performed in 
fibrosarcoma and the human colorectal cancer cell line SW620, respectively (Table 
S3F).  
Then, we considered the 23 ISGs (Figure 15) resulted to be significantly modulated 
in all the cohorts (Figure 1). Gene set enrichment  analysis of these genes resulted 
in a significant enrichment (FDR adjusted p-value < 0.05) for different terms related 
to Interferon alpha/beta signaling and antiviral response including, “Interferon 
alpha/beta signaling_Homo sapiens_R-HSA-909733” (adj. p-value = 4.08E-24), 
“Antiviral mechanism by IFN-stimulated genes_Homo sapiens_R-HSA-1169410” 
(adj. p-value = 3.47E-10), “ISG15 antiviral mechanism_Homo sapiens_R-HSA-
1169408” (adj.p-value = 4.16E-10) including Hepatitis C (adj. p-value = 5.48E-06), 
Influenza A (adj. p-value = 1.97E-04) and Epstein-Barr-virus (adj. p-value = 7.75E-
03) (Supplementary Table 1H). The prediction of candidate transcriptional 
regulators of these ISGs highlighted a candidate direct regulation of IRF1 (ChIP-
Seq_MONOCYTES_Human, adj. p-value = 1.28E-03) and IRF8 (ChIP-ChIP_GC-
B_Human, adj. p-value = 2.53E-02) (Table S3G).  
Among the 23 genes HERC5, IFI44L, IFIT1, MX1, RSAD2, SIGLEC1 [167,168], 
EIF2AK2, HERC6, IFI6, IFIT3, LGALS3BP, OASL [168] and IFI27, USP18 [167] have 
been indicated as ISGs in previous studies of transcriptional response to IFN-β in 
MS patients. Moreover, some of our genes have not been detected by these studies 
but their use as blood biomarkers for IFN-β therapy in MS is currently under 
investigation (CXCL10, IFIT2, ISG15, OAS3, XAF1) [162,171,172]. Then, we tried to 
identify the minimal set of genes in classifying IFN-β treated patients and 
untreated ones. We used data mining approach on GSE16214 and GSE41850 
datasets. First of all, we compared 9 different machine learning algorithms for the 
evaluation of genes as classifier attributes. The set of 23 genes was able to classify 
with the same accuracy of the two respective lists of DEGs in the two datasets 
(Table S4A) and the random forest classifier resulted the best performer compared 
to the other 8 algorithms in achieving this task (adj. p-value <0.05, Table S4B). We 
trained the random forest algorithm with a 10-fold cross validation, to avoid 
overfitting, and tried to evaluate the performance of the model trained on one data 
set, in the other. We observed that the model based on the expression of our 23 
genes trained in the GSE16214 dataset classified with 85.23% of accuracy within the 
same dataset in 10-fold cross-validation and with 70.43% of accuracy using the 
GSE41850 dataset as test set (Table S4C). Being the patients of GSE16214 all females, 
sampled at ~ three months of treatment we decided to filter the GSE41850 dataset 
removing males and dividing patients sampled at the end of the 1st year of 
treatment (1st year follow-up) and at the end of the 2nd year of treatment (2nd year 
follow-up) to evaluate the performance of the model in a sex-matched cohort over 
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time. We observed that the model correctly classified patients with 70.61% of 
accuracy in 1st year follow-up patients and with 71.38% of accuracy in 2nd year 
follow-up patients (Table S4C). Moreover, we ranked the importance of each one 
of the 23 genes in the classification task, reduced the number of attributes one by 
one, re-trained and re-tested the performance of the random forest classifier 
obtaining the best performance with only the first two genes in the ranking that are 
USP18 and IFI27 (Table S4D). The model trained in GSE16214 with 10-fold cross 
validation using USP18 and IFI27 as classifiers showed more accuracy than the set 
of 23 genes, since it performed with 80.00% (1st year follow-up) and 81.13% (2nd 
year follow-up) of accuracy over time (Table S4D). 
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4.2.2. IFN-β signature highlights XAF-1 and LGALS3BP as molecular 
targets in pathogenic Th17 cells in MS 

We exploited a dataset of the transcriptional profile analysis of myelin-responsive 
and not responsive single T cell clones generated from MS patients and healthy 
subjects (GSE66763) [173]. We used Recount2 to retrieve RNA-Seq data and 
performed a cross-study analysis of ISGs in Th17 myelin-reactive cells [174]. In this 
study single-cell clones of CCR6+ T cells myelin tetramer-positive (+) and negative 
(-) cells from HD or MS patients were produced. 
As a first step we computed the differential expression between MS- vs. HD-, HD+ 
vs. HD-, MS+ vs. MS- and MS+ vs. HD+ obtaining 114, 153, 402 and 716 DEGs 
respectively (Table S5A-D). The overlapping of DEG lists is reported in Table S5E 
and represented in Figure 16. 
 

 
 
Figure 16. The upset plot shows the overlap between the lists of ISGs for each dataset considered. Datasets are 
ordered by increasing number of ISGs detected in each dataset (set size) and by the number of genes present 
in each intersection (intersection size). 
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We unified DEG lists in a list of 943 genes (Table S5F) and computed z-score 
normalization among samples (Fig. 17).  
 

 
 
Figure 17. The heatmap shows gene expression variability of DEGs in Th17 cells from MS patients and 
healthy subjects.  
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Unsupervised hierarchical clustering based on Euclidean distance between values 
of gene expression among samples highlighted three clusters of genes: cluster 1 
(red), cluster 2 (blue) and cluster 3 (green). Cluster 1 is composed of genes that are 
progressively downregulated in pathogenic Th17 cells (Table S5F, Fig. 17). gene set 
enrichment analysis on this cluster of genes resulted in no significant enrichment 
(FDR adjusted p-value < 0.05) for any GO terms (Table S5G). Cluster 2 is composed 
of genes that are progressively upregulated in pathogenic Th17 cells (Table S5F, 
Fig. 3). Gene set enrichment analysis on this cluster resulted in a significant 
enrichment (FDR adjusted p-value < 0.05) in a term related to the apoptotic process 
like “Regulation of BAD phosphorylation_Homo sapiens_h_badPathway” (adj. p-
value = 2.50E-05) and a term related to cytokine regulation like “Cytokine-cytokine 
receptor interaction” (adj. p-value = 3.89E-02). The enrichment analysis predicted 
Notch homolog 1, translocation-associated (NOTCH1) as a candidate in the direct 
regulation of this cluster of genes, although according to a ChIP-Seq experiment 
performed in T-lymphoblastic leukemia (TLL) cells (adj. p-value = 5.52E-03) (Table 
S5H). Finally, cluster 3 is characterized by the presence of gene expressed at higher 
levels in MS+ Th17 cells compared to the other groups (Table S5F, Fig. 17). Gene set 
enrichment analysis on this cluster of genes resulted in a significant enrichment 
(FDR adjusted p-value < 0.05) in different terms related to Th17 cell differentiation 
and inflammatory response like “Th17 differentiation” (adj. p-value = 1.55E-06), 
“JAK-STAT signaling pathway” (adj. p-value = 3.66E-08) and “NF-
kappaB_complex” (adj. p-value = 1.05E-17) (Table S5I). Moreover, this enrichment 
analysis highlighted some specific terms related to Th17 cell expansion under IL-2, 
IL-27 and IL-23 signaling like “IL2-mediated signaling events_Homo 
sapiens_a2a1883c-6193-11e5-8ac5-06603eb7f303”(adj. p-value = 2.33E-05), 
“interleukin-27_complex” (adj. p-value = 3.74E-04), “IL23-mediated signaling 
events_Homo sapiens_b71d0ffd-6193-11e5-8ac5-06603eb7f303” (adj. p-value = 
“1.01E-03”) and activation of T cells by APCs like “CD40/CD40L signaling_Homo 
sapiens_1971792f-6190-11e5-8ac5-06603eb7f303” (adj. p-value = 5.05E-04) (Table 
S5I). Interestingly, also terms that are related to survival and apoptotic processes 
have been found significantly enriched for this cluster like “BCL-2_complex” (adj. 
p-value = 2.13E-13) and “BAX_complex” (adj. p-value = 7.99E-10). Moreover, the 
same analysis highlighted a correlation of this cluster of genes with autoimmune 
diseases by GWAS association studies like “Rheumatoid arthritis” (adj. p-value = 
2.04E-05) and “Inflammatory bowel disease” (adj. p-value = 3.35E-05). 
Collectively, this analysis revealed a pattern of gene expression of pathogenic 
myelin reactive Th17 cells. This pattern of gene expression reflects the differences 
found between the MS+ group and the others. This is visible also by Principal 
Component Analysis and k-means clustering (Figure 18). 
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Figure 18. Principal component analysis revealed more similarity between MS-, HD+, HD- groups respect 
to the MS+ group. 
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Finally, we visualized the gene expression variability of our IFN-β signature of 23 
genes in pathological and healthy Th17 cells (Figure 19).  

 

 
 
Figure 19.  Left heatmap shows gene expression variability of IFN-β signature genes in MS+, MS-, HD+ and 
HD- groups. Right heatmap represent the log2 fold change expression between treated/untreated MS subjects 
in each dataset considered in our previous analysis. 
 
We observed that LGALS3BP gene, encoding for the Galectin-3-binding protein is 
downregulated in Th17 cells from MS+ group respect to MS- (log2FC -6.778868833, 
adjusted p-value 0.000487098) and HD+ (log2FC -8.313005039, adjusted p-value 
7.02E-05) groups. The same for XAF1 gene, encoding for XIAP-associated factor 1, 
that resulted to be downregulated in MS+ group respect to HD+ group (log2FC -
6.300465486, adjusted p-value 2.05E-05). Interestingly both LGALS3BP and XAF1 
gene expression can be restored by IFN-β treatment since they are both 
upregulated by IFN-β therapy in MS patients. Moreover, XAF1 is a pro-apoptotic 
factor, suggesting an impairment of pathogenic Th17 cells apoptosis that could be 
restored by IFN-β treatment. 
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4.2.3. Apoptosis pathway analysis suggests TNF-α induced apoptosis 
pathway downregulation and NFKB1 upregulation in Th17 cells in 
MS  

To investigate the potential action of the pro-apoptotic factor XAF1 in pathological 
Th17 cells we retrieved the list of genes involved in human apoptosis from KEGG 
2019 database. 13 out of 136 genes resulted to be DEG in Th17 cells between MS+ 
and HD+ groups (Table S5J, Table 2). 

 
Gene description function log2FC adjusted p-

value 

CSF2RB colony stimulating factor 2 receptor 
beta common subunit [KO:K04738] 

survival 20.6 3.20E-05 

BAD BCL2 associated agonist of cell death 
[KO:K02158] 

apoptotic 20.5 2.68E-09 

FASLG Fas ligand [KO:K04389] apoptotic 10.1 3.64E-29 

CTSL cathepsin L [KO:K01365] 
[EC:3.4.22.15] 

apoptotic 8.6 0.00012426 

EIF2AK3 eukaryotic translation initiation 
factor 2 alpha kinase 3 [KO:K08860] 
[EC:2.7.11.1] 

apoptotic 8.0 1.07E-06 

BCL2A1 BCL2 related protein A1 
[KO:K02162] 

survival 4.8 1.22E-07 

TNFRSF10B TNF receptor superfamily member 
10b [KO:K04722] 

apoptotic 4.5 1.11E-06 

TRAF1 TNF receptor associated factor 1 
[KO:K03172] 

survival 3.3 5.38E-05 

PIK3R1 phosphoinositide-3-kinase 
regulatory subunit 1 [KO:K02649] 

survival 3.3 9.57E-06 

NFKB1 nuclear factor kappa B subunit 1 
[KO:K02580] 

survival 2.5 4.49E-05 

CFLAR CASP8 and FADD like apoptosis 
regulator [KO:K04724] 

survival 1.6 1.35E-05 

JUN Jun proto-oncogene, AP-1 
transcription factor subunit 
[KO:K04448] 

apoptotic -2.5 2.60E-05 

CTSS cathepsin S [KO:K01368] 
[EC:3.4.22.27] 

apoptotic -3.5 2.58E-05 

 
Table 2. Listed genes correspond to DEGs in Th17 cells between MS+ and HD+ groups (DESeq2 adjusted p-
value <0.05) that are included in the KEGG 2019 pathway hsa04210 - Apoptosis - Homo sapiens. 
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Some pro-apoptotic genes show clear upregulation in pathogenic Th17 (i.g. FASL, 
TNFRSF10B, BAD, CTSL). Conversely, JUN, CTSS are downregulated in the same 
cells. Regarding genes that instead promote cell survival BCL2A1, PI3KR1, TRAF1 
and NFKB1 are upregulated in pathogenic Th17 cells (Table 2). However, no one 
of these genes overlap with the previously identified IFN-β signature. Anyway, the 
modulation of XAF1 could participate in the process of Th17 cell apoptosis by its 
most known function of inhibitor of the inhibitors of apoptosis protein (IAP) family 
[175]. XAF1 is frequently inactivated in multiple human cancers and a recent 
function of XAF1 has been described in tumor suppressor gene activity [176]. XAF1 
interacts and stabilize IRF1 increasing stress-induced apoptosis in cancer [176]. The 
mechanism beyond XAF1 modulation and activity in pathogenic Th17 cells could 
provide interesting insights in the context of MS therapy that are worth to be 
further investigated. 
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5. Methods 
5.1. Estrogens analysis 

5.1.1. Super Enhancers Prediction 

H3K27ac ChIP-Seq data of CD4+CD25–CD45RA+ T cells (GSM773004), 
CD4+CD25– T cells (GSM997239), CD4+CD25–IL17+ T cells (GSM772987), and 
CD4+CD25+CD45RA+ T cells (GSM1056941) were retrieved from GEO. Significant 
H3K27ac ChIP-Seq peaks were defined using MACS2 algorithm version 2.1.0 [177] 
applied in default settings. Input ChIP-Seq datasets were used as background 
models for enhancer calling. The list of significant ChIP-Seq peaks was used as 
input for ROSE algorithm. SEs were identified using Rank Ordering of Super 
Enhancers (ROSE) algorithm [178] in default settings using data of input as 
background model.  
 
5.1.2. SNPs Analysis 

SNPs associated with 41 different diseases were retrieved from GWAS database v2 
[179] and overlapped with SEs from earlier analysis. Enrichment scores were 
computed generating 1,000,000 random regions of the same length and calculated 
as: 
 

𝑝 − value = 1 + n°	of	times	Npermi	 ≥ Nobs1 + n°	of	permutations	p − value
= 1 + n°	of	times	Npermi	 ≥ Nobs1 + n°	of	permutations 

 
with: 
 
Nobs = Number of trait-associated SNPs overlapping SEs datasets 
Npermi = Number of trait-associated SNPs overlapping the randomly generated 
datasets (n = 1,000,000). 
 
5.1.3. Chromatin States Analysis 

Genome segmentation data from Roadmap Epigenomics Project [180] were 
retrieved from the project website (http://egg2.wustl.edu/roadmap/web_portal) 
considering the 25-chromatin states model defined on imputed epigenomic data 
from 127 different cell types. The model was predicted using ChromHMM and 12 
epigenetic marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1, 
H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z, and DNase accessibility) 
as input data [181]. The output of the model reported a 200 bp genomic 
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segmentation for each cell type with the predicted chromatin state. Segmentation 
data related to “E039—Primary CD25– CDRA45+ Naive T cells,” “E043—Primary 
CD25– Th cells,” “E042—Primary IL17+ PMA-I stimulated Th cells,” “E044—
Primary CD25+ regulatory T cells” (CD4+ T cells segmentation data) were extracted 
from the initial dataset and subjected to further analyses. Regulatory regions were 
identified by considering the chromatin states with an emission parameter of 
H3K27ac and H3K4me1 ≥75 (2_PromU, 9_TxReg, 10_TxEnh5′, 13_EnhA1, 
14_EnhA2, 15_EnhAF). The set of regulatory regions for each CD4+ T cells subtype 
was obtained by extracting from the CD4+ T cells segmentation data the genome 
segments classified in these states using an in-house Python script and, if 
consecutive, merging them. To distinguish regulatory regions according to their 
level of activity among CD4+ T cells subtypes, the chromatin state predicted in each 
200 bp fragment composing regulatory regions was compared among CD4+ T cell 
subtypes. If more than half of the fragments within a merged region were classified 
as active regulatory regions in a specific CD4+ T cell subtype only, the entire region 
was classified as ARRs in that specific CD4+ T cell subtype. SE-ARRs were obtained 
overlapping ARRs and SEs using the intersect function of Bedtools suite [182]. 
 
5.1.4. Histone Marks Enrichment Analysis 

Histone marks enrichment within ARRs and SE-ARRs was computed overlapping 
the regions with ChIP-Seq data in Table S1G using the intersect function of Bedtools 
suite [182] and computed as the mean of replicates over the mean of input datasets 
in each cell subtype.  
 
5.1.5. Gene Ontology Analysis 

Gene Ontology term enrichment of genes mapped in proximity of SEs and SE-
ARRs was performed using the Genomic Regions Enrichment of Annotations Tool 
(GREAT) in default mode [183]. 
 
5.1.6. RNA-Seq Analysis (E-MTAB-2319) 

PolyA+ RNA-Seq data of each the five biological replicates for CD4+ Naïve cells 
(CD4+CCR7+CD45RA+CD45RO–), CD4+ Th1 cells (CD4+CXCR3+), CD4+ Th2 cells 
(CD4+CRTH2+CXCR3–), CD4+ Th17 (CD4+CCR6+CD161+CXCR3–), and CD4+ 
Treg cells (CD4+CD127–CD25+) isolated from healthy donors were retrieved from 
ArrayExpress (E-MTAB-2319) [184]. Reads were mapped using TopHat v2 [185] 
using the hg19 human genome assembly as a reference genome and Gencode v19 
as a reference set for gene annotation. FeatureCounts algorithm was used to 
compute read count and DESeq2 package was used to normalize count tables 
[186,187]. Normalized read counts were converted to fragments per kilobase of 
exons per million fragments mapped (FPKM) considering the length of the longest 



 - 51 - 

isoform of each gene. A threshold of FPKM > 1 in all five biological replicates of 
each CD4+ T cell subtype was applied for further analyses. SEs were annotated to 
genes whose TSS was mapped within a distance of 100 Kbp from the center of the 
nearest SE. Differential expression analysis was performed using DESeq2 package 
[187]. A threshold of FDR adjusted p < 0.001 was used to detect significant 
differentially expressed genes between two CD4+ subtypes. Z-score transformation 
was performed computing the average expression across the five RNA-Seq 
replicates of each CD4+ subtype and then the mean and the standard deviation 
across the five CD4+ subtypes. 

 
5.1.7. Network Reconstruction 

For each CD4+ T cell subtype, network nodes represent expressed SE-ARR 
associated genes. A gene was classified as TF using a list of experimentally 
validated TFs from the Animal Transcription Factor Database v2 [188]. Network 
edges represent regulatory interactions predicted by motif finding analysis 
performed on SE-ARR sequences using Find Individual Motif Occurrences 
software (FIMO) of the MEME suite [189]. A non-redundant list of human 
Positional Weight Matrices (PWMs) was obtained from the integration of the four 
public PWM databases HOCOMOCO v10, jolma 2013, CISBP v1.02 and Jaspar 
vertebrates 2016 [190–193]. PWM were selected based on species and quality 
attributes. Human- or mouse-derived PWMs were selected favoring human-TF 
related matrices coming from experimental evidence respect to mouse-derived 
matrices or matrices obtained by computational inference. A significance threshold 
of 0.001 on the p-value score has been applied for this analysis. Node inward links 
connect a node/target gene with its TF regulators whose binding is predicted at 
node/target gene SE-ARRs. Conversely, outward links represent regulatory 
interaction of a node/TF with its target genes by SE-ARRs binding. We called CSRs 
the subset of SE-ARRs associated with highly differentially expressed TFs between 
Th17/Treg cells and Naive T cells (DESeq2 FDR adjusted p < 1.0 × 10−7). Thus, we 
filtered networks for CSRs, obtaining core regulatory subnetworks. Pairwise gene 
expression correlation analysis was performed using the 25 FPKM values from 
CD4+ RNA-Seq analysis (E-MTAB-2319) [184]. Pearson linear correlation on each 
pair of genes was computed. An absolute Pearson coefficient > 0.3961 was 
considered statistically significant for positive or negative correlations (two-
tailed t-test, p < 0.05). Positive and negative correlations were used to represent 
activatory and inhibitory network links, respectively. For network visualization, 
Cytoscape version 3.4.0 was used [194]. Network analyzer was applied to compute 
network statistics [195]. 
 
5.1.8. PBMCs, Treg, and Th17 Cells Isolation 
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PBMCs were isolated from whole blood samples by a Ficoll-Paque TM PLUS (GE 
Healthcare, Milan, IT) density-gradient centrifugation.  
 
5.1.9. In vitro Th17 Cells Polarization 

Isolated PBMCs from female healthy donors (HD) (18–45 years old) were cultured 
in RPMI 1640 medium containing 10% estrogen deprived Fetal Bovine Serum 
(FBS), 2% HEPES, 1% Glutamax, and 1% Gentamicin. They were activated with 
plate-coated anti-CD3 (10 µg/ml) and soluble anti-CD28 monoclonal antibodies 
(mAbs) (1µg/ml; BD Biosciences, San Diego, CA) for 3 days in the presence of IL-
23 (50 ng/ml; R&D Systems) plus anti–IFNγ (100 ng/µl; Biolegend, San Diego, CA) 
as previously described (3). At day 0, cells were treated with 17β-estradiol (E2) 35 
ng/mL or vehicle (ethanol) in concomitance with Th17 polarizing cytokines. 
 
5.1.10. Chromatin Immunoprecipitation Assay 

PBMCs were incubated with 1% formaldehyde (Formaldehyde solution, Sigma-
Aldrich 252549) in 1ml of RPMI 1640 medium containing 10% estrogen deprived 
Fetal Bovine Serum (FBS), 2% HEPES, 1% Glutamax, and 1% Gentamicin for 10 min 
at 37°C. Cross-linking was stopped by addition of glycine solution to a final 
concentration of 0.125 M for 5 min on a shaker at room temperature. Cell pellets 
were subjected to lysis on ice for 10 min with Lysis Buffer 1 (5 mM Pipes pH 8, 85 
mM KCl, 0.5 % NP40) supplemented with complete protease inhibitors cocktail. 
Subsequently, nuclei pellets, obtained by a 5 min spin cycle at 4 ◦C (4000 rpm) were 
exposed once again to 10 min lysis in Lysis Buffer 2 (1% SDS, 5 mM EDTA, 50 mM 
Tris-HCl pH 8.1) supplemented with complete protease inhibitors cocktail. A small 
fraction of chromatin was decrosslinked with 50 µg of Proteinase K (Thermo Fisher 
Scientific) and DNA was purified with phenol chloroform (Ambion, Applied 
Biosystems), followed by ethanol precipitation. Chromatin fragmentation was 
checked by electrophoretic separation of DNA on a 1.2% agarose gel. Total 
extracted chromatin was sonicated to an average size of 250–500 bp by using an 
immersion sonicator device. The desired fragments size was checked on 1.2% 
agarose-gel and quantified by Nanodrop spectrophotometer at 280 nm, in order to 
use 50 µg of chromatin per IP. 10 µL (1%) of chromatin extracts was recovered as 
input normalization-control for each experimental condition. 10 µg (for histone 
modifications) or 30 µg (for ERα) of chromatin extracts were diluted with IP-buffer 
(1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl of pH 8.1, 150 mM NaCl, 
supplemented with complete protease inhibitors) and incubated overnight with 
specific antibody or IgG at 4◦ C on a rotating platform. Protein A and G sepharose-
beads (GE Healthcare Life Sciences; Little Chalfont, UK; 17-5280-01 and 17-0618-01 
respectively) were pre-coated with IP buffer supplemented with 5% BSA, in order 
to reduce nonspecific antibody binding. Upon 2 h of Protein A or G sepharose-
beads incubation (depending on antibody source, i.e., rabbit or mouse 
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respectively), samples were washed sequentially for 5 min, on a rotating platform 
with 1 mL of three different Washing Buffer (Washing buffer 1: 0.1% SDS, 1% 
Triton X-100, 2 mM EDTA, 20 mM Tris HCl pH 8, 150 mM NaCl; Washing buffer 2 
: 0.1 SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris HCl pH 8, 500 mM NaCl; 
Washing buffer 3: 0.25 M LiCl, 1% NP40, 1% Na DOC, 1 mM EDTA, 10 mM Tris 
HCl pH8) and twice with TE buffer (10 mM Tris HCl pH8, 1 mM EDTA). After 
complexes elution at RT with elution buffer (1% SDS, 0.1 M NaHCO3), DNA 
fragments were de-crosslinked at 65 ◦C overnight with NaCl 5 M and by 1 h of 
proteinase K treatment. DNA purification was achieved with 
Phenol:Chloroform:IAA (25:24:1 UltraPure™ formulation, Ambion AM9730) 
according to the manufacturer’s instructions. Quantitative Real-time PCR was 
carried out on ChIP-enriched DNA using SYBR Green Master Mix. ChIP 
enrichment was normalized on input samples (1% of total chromatin used per IP) 
and expressed as fold-enrichment of specific binding over the control nonspecific 
IgG binding. Antibodies against human ERα (Santa Cruz Biotechnology, Dallas, 
TX, USA; sc543X, sc7207X), human H3K4me3 (Diagenode), human H3K27me3 
(Active Motif), H3K27ac (Active Motif) and normal rabbit and mouse IgG (Merk-
Millipore, Burlington, MA, USA; 12-370 and 12-371 respectively) were used in this 
assay. Custom ChIP primer pairs are reported in Table 1. 

 
5.1.11. Quantitative PCR 

Real Time PCR was performed using 7300 Real Time PCR System (Applied 
Biosystems) and the iTaq Universal SYBR Green Supermix (Biorad) in 96-wells 
multiwell plates (Applied Biosystems). Gene expression was determined using 
QuantiTect Primer Assays (QIAGEN, Hilden, Germany). Relative quantification of 
cDNA was normalized on 18s cDNA level. Primers for ChIP-qPCR analysis of 
promoter and enhancers were designed using Primer3Plus software (Table 3).  
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Primer name Nucleotidic sequence 
RORCprom_fw 5’ - CAAGAGCAGCAAGGGTTAGG - 3’ 
RORCprom_rv 5’ - TTGGGGGACTGTGTCTCTTC - 3’ 
MAFprom_fw 5’ - TTACACCAAACTTTGCGCCG - 3’ 
MAFprom_rv 5’ - TTCGGAGCTGTCAATCAGGG - 3’ 
MAFenh_fw 5’ - AGGACAGGCTCCTCGGTAGT - 3’ 
MAFenh_rv 5’ - GTCGAATGGCTGCTGAATGC - 3’ 
FOXP3 promoter fw 5’ - TAATGCATCCATCCTCACGA - 3’ 
FOXP3 promoter rv 5’ - ATGATGGCGGATATTTGGAA - 3’ 
SATB1prom_fw 5’ - TGCTTTATAGAGTCCCTGCTGT - 3’ 
SATB1prom_rv 5’ - AAAGGTCAGGTGACAGGCAC - 3’ 
SATB1enh_fw 5’ - ACACAGTGGTTGATTCGACTTT - 3’ 
SATB1enh_rv 5’ - TGGAATTGTGGTCTCGGCAT - 3’ 

 
Table 3. Primers designed for ChIP-qPCR experiments on RORC, MAF, FOXP3 and SATB1 CSRs. 

 
ChIP-qPCR signals were normalized on input samples (10% of total chromatin 
used per IP) and expressed as enrichment of specific binding over the control non-
specific IgG binding. 
 
5.1.12. Total RNA Extraction 

RNA was extracted using using Purezol™ reagent (Bio-Rad) according to the 
manufacturer protocol. All total isolated RNAs were subjected to DNase treatment 
to remove contaminating genomic DNA (ezDNase™ Enzyme, Invitrogen, 
Carlsbad, CA, USA; 11766051). cDNA synthesis from 500 ng of total RNA template 
was performed with SensiFAST cDNA Synthesis Kit (Bioline, London, UK; BIO-
65054) followed by SYBR-green qRT-PCR amplification (iTaq UniverSYBR Green, 
Bio-Rad 1725124). Real-time PCR primers for human 18S, RORC, MAF, SATB1, 
FOXP3 were purchased from Qiagen (Hilden, Germany; QuantiTect™ Primer 
Assay). 
 

5.2. Interferon-b analysis 

5.2.1. Transcriptome analysis of Interferon-beta treated MS patients 
(GSE73608, GSE16214 and GSE41850). 

 Differential gene expression was computed using GEO2R tool. GEO2R performs 
comparisons on original submitter-supplied processed data tables using the 
GEOquery [196] and limma R package [197] from the Bioconductor project [198]. 
Bioconductor is an open source software project based on the R programming 
language that provides tools for the analysis of high-throughput genomic data. The 
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GEOquery R package parses GEO data into R data structures that can be used by 
other R packages. The Limma (Linear Models for Microarray Analysis) R package 
performs statistical tests for identifying differentially expressed genes [197]. It 
handles a wide range of experimental designs and data types and applies multiple-
testing corrections on P-values to help correct for the occurrence of false positives 
[199]. DEGs were detected applying a threshold of 0.05 for the corrected p-value 
for multiple testing (Benjamin-Hotchberg) and -0.5/0.5 for the fold change (log2) of 
expression between compared conditions. 
 
5.2.2. Transcriptome analysis of CCR6+ T cells from MS patients and HD 

RNA-seq count tables at the gene level for the study SRP056049 were extracted in 
the format of RangedSummarizedExperiment object using recount R package 
[174,200]. Recount2 is an analysis-ready RNA-Seq database that provide pre-
computed count matrices at gene level useful to researchers to avoid the 
computationally process of reads processing in cross-study analyses [174].  
SRP056049 study contains four conditions of purified Th17 cells with between 3 
and 5 replicates per condition. Precisely, CCR6+ T cells myelin tetramer-positive 
and negative cells from HD or MS patients. Counts and data referring to MS 
patients were extracted from the dataset and used for further analysis. Read counts 
were scaled for a target library size of 40 million reads with 
the recount function scale_counts and submitted to further analysis. Ensembl ID to 
gene symbol conversion has been performed using the org.Hs.eg.db R package 
[201]. 
Differentially gene expression analysis between conditions was performed using 
DESeq2 R package [187]. A threshold of count > 1 in all samples was used to define 
expressed genes. The variance between samples has been computed using the 
variance stabilizing transformation function of DESeq2 R package. Variance 
stabilizing transformation function transformed counts (normalized by division by 
the size factors or normalization factors), yielding a matrix of values which are 
approximately homoscedastic (having constant variance along the range of mean 
values). Obtained values were subtracted to the mean of values of each row 
obtaining the z-score. Data has been plotted using the R package complex heatmap 
[202]. 
 
5.2.3. Gene Set Enrichment analysis 

 
Gene Set Enrichment analysis have been performed using EnrichR software 
[203,204].  
 
5.2.4. Data Mining 
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Data mining was performed using the machine learning workbench Wakaito 
Environment for Knowledge Analysis (Weka) version 3.9.3 amazon’s corrected for 
MacOSX [205]. GSE16214 and GSE41850 expression matrices were retrieved from 
GEO and formatted to be used as input for Weka. The expression of genes was used 
as numeric attributes, patients were used as instances and IFN-β treatment 
constituted the nominal class to test classifiers. The “Weka Explorer” was used to 
read input files and to engineer data. The expression matrices were normalized for 
inter-experiment cross-validation using the “Normalize” function within the 
section of "unsupervised attribute filtering" of the “Weka Explorer”. Algorithm 
comparisons were performed using the Weka Experimenter. Input matrices were 
filtered using the lists of DEGs in GSE16214 and GSE41850 and the list of 23 ISGs 
listed in Table S3A-B, D. In this step the performance of 9 different algorithms 
("rules.ZeroR", "rules.OneR", "trees.J48", "bayes.NaiveBayes", "functions.SMO", 
"meta.Bagging", "meta.AdaBoostM1", "lazy.IBk", "trees.RandomForest") were 
tested in 10-fold cross validation with 20 iterations to minimize overfitting. The 
performance of the test was expressed in percentage of correctly classified 
instances and statistically significant differences among algorithms was computed 
with the "Analyze" section (corrected paired T-test <0.05). Algorithms were ranked 
according to the results of this test. In the last part of the analysis GSE41850 dataset 
was engineered removing males and splitting “1-year follow-up” data and “2-year 
follow up” data. The importance of attributes in the performance of 
"trees.RandomForest" classifier was tested using the “Ranker search method” and 
the “InfoGainAttributeEvaluator”. Finally, the same classifier was used for inter-
experiment cross-validation removing one by one the attributes ranked in Table 
S4D and to identify the minimal set of attributes that best performed in inter-
experiment classification. “PairedCorrectedTTester” function was applied to 
compute statistics. 
 
5.2.5. Apoptosis 

KEGG 2019 pathway hsa04210 - Apoptosis - Homo sapiens (human) gene list was 
retrieved and expression data integrated and visualized on the corresponding 
apoptosis pathway map using the Pathview Bioconductor package [206]. 
 
5.2.6. Software 

All the analyses have been performed in R version 3.6.0 (2019-04-26) and R 
packages were retrieved with the Bioconductor version 3.9 (2019-05-03) [198]. 
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6. Discussion 
Multiple Sclerosis progression and therapy are strictly connected  

in a continuous balance between monitoring of demyelinating lesions, symptoms, 
side effects and response to DMTs [20]. In RRMS, DMTs aim to reduce the rate of 
relapses and preventing or at least delaying disease progression. One of the main 
issues connected with MS is the progressive accumulation of neurological damage, 
due to therapy inefficacy. DMT switch is due in case of lack of benefit, intolerable 
adverse effects, or availability of more effective therapy. Years of clinical 
experience demonstrated the efficacy of early intervention in MS to delay disease 
progression [21]. However, to date, the evaluation of the efficacy of therapy is 
possible only by the evaluation of clinical parameters (CNS lesions, new relapses) 
since the molecular bases underneath disease progression are still unknown [20]. 
The diffusion of NGS techniques opened the way to genome-wide based research. 
Integrative approaches of the large amounts of data, produced by NGS techniques, 
represent useful tools in the understanding of complex disorders as MS, leading to 
the identification of new hypotheses to explain disease and therapeutic 
mechanisms connected to it and more beyond, towards personalized stratification 
[164].  
This thesis followed the common thread of systems biology approach as a tool to 
produce a vision of the molecular mechanisms involved in two different processes 
related to Th17 cells in MS pathology: estrogen and interferon-β induced 
transcriptional activity in Th17 cells.  
 

In the first example, we retrieved the epigenetic and the transcriptome profile 
of different T helper subtypes and developed an integration pipeline aimed to 
identify specific targets for the epigenetic action of estrogens on Th17 cells. 
Pregnancy protection from relapses has been demonstrated by several clinical 
studies [24–27]. The high level of circulating estrogens (estradiol and estriol) during 
pregnancy contribute to immunotolerance, inducing Treg cells proliferation 
[37,38,103]. On the contrary, the postpartum phase is characterized by a strong 
drop in estrogens levels [37]. Thus, pregnancy and postpartum represent a unique 
opportunity for comparison, as pregnancy maximizes the differences in immune 
cell subtypes. As occurs in the postpartum period the female body is characterized 
by an estrogen drop during menopause [207]. The decline of estrogens’ 
concentration during menopause correlates with a reduced number of B and T cells 
and an increased secretion of pro-inflammatory cytokines [208]. Moreover, 
estrogen deficiency in postmenopausal women is associated with increased IL-17A 
levels [209]. A retrospective questionnaire-based study on menopausal and 
premenopausal women with MS [210] showed that 82% of menopausal women 
reported that the severity of their symptoms worsened during the premenstrual 
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period. Among postmenopausal women, 54% reported worsening symptoms after 
menopause, and 75% of postmenopausal women who tried hormone replacement 
therapy reported disease improvement [210]. Clinical observations associated 
estrogen signaling and the progression of MS disease, such that estrogens entered 
in use as MS therapy in clinical trials [29–32]. In this context, evidence showed also 
how this protective effect is mediated and bases on the activity of estrogen 
receptors. Studies in Experimental Autoimmune Encephalomyelitis (EAE), the 
murine model of MS, showed that ERα expression and signaling in 
encephalitogenic CD4+ T cells is required for sustained pregnancy protection [112] 
and estrogen signaling results in an inhibition of encephalitogenic Th17 cells 
expansion [211], in an induction of tolerogenic dendritic cells and regulatory B cells    
[89] and regulatory T cells [40]. Similar to the EAE model and previous MS studies 
[40,212], we showed that in the third trimester of pregnancy, when circulating 
estrogens reach the highest level, Th17 population is reduced while Treg cells 
expanded [102].  

We investigated the epigenetic effects of estradiol at pregnancy levels on the 
Th17 / Treg balance, since it is considered a mirror of MS disease [118] and the 
protection from relapses during pregnancy has been associated with an expansion 
in the Treg population [40]. Estrogens act on T helper cells by modulating the 
production of cytokines and interleukins and influencing the inflammatory 
environment [33]. The chromatin landscape is important in the context of cellular 
plasticity as the chromatin state influences TF binding and transcriptional 
regulation of target genes [113]. Th17 and Treg cells are strictly connected and 
plasticity has been observed between these two antagonistic cell types. Th17-like 
Treg cells and FoxP3+ Treg cells that express IL-17 have been reported [213,214]. 
Moreover, Th17-Treg plasticity shown a dependence on epigenetic modifications 
produced by histone deacetylase activity [215]. 
The mechanism of the recruitment of chromatin remodeling complexes by ERα 
have been largely studied in breast cancer [55–57,59,216]. The formation of 
functional chromatin loops between ERα binding sites at the enhancers and 
promoters of target genes that are activated [59–62] or repressed [63]. However, 
ERα activity is influenced by the tissue-specific presence of coactivators and 
transcriptional corepressors and their differential interaction with ERα in the 
presence of estrogens or anti-estrogens [64,65]. In this way, ERα could act on T 
helper epigenome as a cooperative transcription factor and orchestrate T helper 
gene expression toward immunotolerance [117].  
On these bases, we reconstructed a regulatory network of human Th17 and Treg 
cells, highlighting CSR-associated TFs that cooperate in cell identity specification. 
Network reconstruction has been used as a tool to visualize data coming from 
combining -omics data integration pipelines, or innovative perturbation tools and 
reveal the molecular bases of the cell identity of Th17 cells of mice [121,122]. Our 
network exploited PWMs as predictive information of TF binding, including ERα, 
and chromatin states as a filter for the transcriptional regulation by TFs. The 
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combination of these two information was useful in the absence of genome-wide 
data on the gene modulation by estrogens and ERα binding profile in T helper cells. 
The occurrence of EREs in genomic regions with high transcriptional activity in the 
specification of cellular identity served to identify the candidates for a validation 
of the epigenetic action of ERα on polarizing T helper 17 cells.  
RORC, MAF, and HSF4 stood out as candidates of estrogen-mediated regulation 
in Th17 cells. It has been shown yet that estradiol activated ERα was capable to 
recruit the repressor of estrogen receptor activity (REA) and form the ERα/REA 
complex on the RORC promoter, thus inhibiting RORC expression and Th17 
differentiation. This effect could have been pursued by regulating the recruitment 
of histone deacetylases [137]. MAF has been proposed as one of the early regulators 
of T cell- associated diseases [217]. It resulted to be in the top three TFs belonging 
to the Th1/Th2 gene regulatory network and enriched in autoimmunity-associated 
polymorphisms. The targets of MAF were also shown to be differentially expressed 
during MS relapses [217]. Moreover, another study showed that the MAF-
associated long intergenic non-coding RNA (linc)-MAF-
4 regulated MAF transcription by exploiting a chromosome loop with the 
promoter of MAF gene and its expression shifted Th cells differentiation 
alternately toward Th1 or Th2 subtype [184]. Another study proposed c-Maf as 
important for the establishment of memory Th1 and Th17 cells [218]. Finally, the 
less studied HSF4 could represent a novel molecular target in the field of MS 
disease and stress-response in T helper cells. 
Regarding Treg cells, FOXP3, IKZF2, IKZF4, SATB1, PRDM1 and MZF1 stood out 
as candidates of estrogen-mediated regulation in Treg cells. It is known that Foxp3 
is the lineage-determining transcription factor of Treg cells, but is not necessary nor 
sufficient to determine the characteristic Treg cell signature [219]. In particular 
IKZF2, IKZF4 SATB1 act in synergy with Foxp3 to activate expression of the Treg 
cell signature and enhance the Foxp3 occupancy at its genomic targets [219]. In 
particular Satb1 importance have been demonstrated in Treg Super Enhancers 
activation and its perturbation is causative of autoimmune and other 
immunological diseases [132].  
PRDM1, also known as Blimp1, role have been recently investigated in the 
epigenetic regulation of Foxp3. The methylation of Foxp3 conserved non-coding 
sequence 2 (CNS2) was shown to be heavily methylated when Blimp1 was ablated, 
leading to a loss of Foxp3 expression and severe disease [135]. Interestingly, the 
FOXP3-CSR that arised from our analyses overlap the conserved non-coding 
sequences known from EAE studies. Foxp3-CNS are three intronic enhancers 
identified at Foxp3 gene locus. The epigenetic status of these regulatory regions 
have been associated with different Treg functions [126]. Finally, MZF1 has been 
recently counted in key TFs that mediating transcriptional changes between Th1 
and Treg cells [220]. 
Supported by the evidence we selected RORC, MAF, FOXP3 and SATB1-CSRs to 
be validated for ERα mediated regulation during Th17 polarization in presence of 
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E2. The epigenetic changes observed and the experimental validation of an 
increased ERα binding at the regulatory regions of these genes suggested a switch 
toward immune tolerance upon E2 treatment. The transcriptional effect could be 
ascribed to the recruitment of a regulatory complexes that involve ERα. However, 
a direct validation of how this machinery works in T helper cells is still lacking. Of 
particular interest was the observation that epigenetic modifications occur at their 
Super Enhancers. This is an important aspect since the non-coding genome, 
including SEs worth to be deeply investigated as might be used as “epigenetic 
drugs” for MS. Evidence showed that SEs are vulnerable to various inhibitors of 
transcriptional activation [221–224]. CD4+ T cells treated with JAK inhibitor 
tofacitinib selectively targeted rheumatoid arthritis risk genes controlled by SEs 
[223]. The exposure of CD4+ T cells from Juvenile idiopathic arthritis (JIA) patients 
to the Bromodomain and Extra-Terminal motif (BET) protein inhibitor JQ1 
preferentially inhibited JIA-specific super-enhancer driven gene expression [224]. 
Other important limitations of this study include the lack of NGS data of epigenetic 
and transcriptional modulation by E2 in T helper cells. A genome-wide approach 
could reveal all the changes connected to the effects of estrogens in T helper cells 
and MS disease. 
 

In the second example, we addressed another issue connected with MS disease. 
Given the nature of RRMS, the risk of adverse effects and considerable costs for 
therapy, there is a need to predict success before the start of IFN-β therapy or to 
monitor its efficacy before any adverse event comes (e.g. relapse, new CNS lesion) 
and avoid accumulation of disability over time. Many ISGs have been identified 
during years that could help in the monitoring of response to treatment [27 - 30]. 
Among them, the myxovirus-resistance protein A (MxA) started entering in the 
clinical practice and some other promising molecules are under investigation [34-
35-36]. The baseline expression level of these genes in whole blood had not the 
predictive capability of a biomarker for IFNβ response, thus it has been indicated 
to enlarge cohorts or focus on the mechanisms related to IFN-β in a specific cell 
type connected with MS [23 - 26].  
On these bases, we performed an integrative analysis of the gene expression profile 
of PBMC in MS patients treated with beta interferons identifying a set of interferon-
modulated genes. Then, we speculated on the action of the drug on the 
transcriptome of pathogenic T helper cells exploiting a public RNA-Seq dataset of 
autoreactive T cell clones from MS patients. We identified 23 ISGs with a consistent 
overlap with literature [162,167,168,171,172]. HERC5, IFI44L, IFIT1, MX1, RSAD2, 
SIGLEC1 [167,168], EIF2AK2, HERC6, IFI6, IFIT3, LGALS3BP, OASL [168] and 
IFI27, USP18 [167] have been indicated as ISGs in previous studies of 
transcriptional response to IFN-β in MS patients. Moreover, some of our genes 
have not been detected by these studies but their use as blood biomarkers for IFN-
β therapy in MS is currently under investigation (CXCL10, IFIT2, ISG15, OAS3, 
XAF1) [162,171,172]. EIF2AK2 has been recently detected as one of the deregulated 
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molecules in MS using a system biology approach [165]. Its physically interaction 
with STAT1 and ISG15 downstream IRF regulation has been demonstrated. ISG15 
and IFIT2:IFIT3 complex have been indicated in the same study. Recent 
quantitative proteomic studies detected DDX60 together with other proteins 
related to antiviral pathways (e.g. MX1, OAS, OAS3, and OASL) as upregulated in 
Th17 differentiation suggesting the role of IFN signaling in Th17 polarization [225].  
In the second part of the analysis we identified two downregulated genes in myelin 
reactive T helper cells. These two genes are ISGs and this feature could represent 
important molecular targets for MS therapy. LGALS3BP has been recently 
indicated as a deregulated gene in MS using a system biology approach [165]. The 
immunoinhibitory function of LGALS3BP is currently under investigation in the 
immune evasion of tumor cells during cancer progression [226,227]. 
XAF1 was downregulated in pathological Th17 cells in MS and its expression could 
be restored by IFN-β treatment. XAF1 induces apoptosis by inhibiting XIAP, which 
is one of the most important members of the IAP family. XAF1 acts as a 
proapoptotic tumor suppressor that is frequently inactivated in multiple human 
cancers, however the molecular basis for the XAF1-mediated growth inhibition 
remains largely undefined. Recently, a positive feedback loop of XAF1 with 
interferon regulatory factor-1 (IRF-1) has been reported. XAF1 can function as a 
transcriptional coactivator of IRF-1  and suppress tumorigenesis [176].  
Moreover, XAF1-IRF1 complex inhibit gene expression of matrix metalloproteases 
9 and 2 (MMP9-2), Fibronectin1 (FN1), Vascular cell adhesion molecule 1 
(VCAM1), Tenascin C (TNC) regulating growth, migration and invasion. Recently 
it has been shown that Selective inhibition of MMP9 in CD4+ T-cells reduced 
clinical severity in the murine model of Multiple Sclerosis (Onwuha-Ekpete 2017) 
[228]. XAF-1 mRNA has been recently tested together with MxA and TNF-related 
apoptosis-inducing ligand (TRAIL) in MS to assess IFN-β treatment efficacy [162]. 
The apoptotic process have been demonstrated to be significantly and selectively 
greater in Th17 cells rather than Th1 cells upon IFN-β treatment [2]. Further 
experiments could validate the involvement of XAF1 in the process of apoptosis in 
myelin reactive Th17 cells and clarify the role IFN-β modulation in this process. 
XAF1 interacts with IRF1 in tumor suppressor gene activity suggesting a potential 
mechanism for immune regulation in MS upon IFN-β treatment. The inhibition of 
MMP9 and MMP2, FN1, VCAM1 and TNC gene expression by XAF1-IRF1 could 
also regulate the processes behind Th17 invasion in the CNS. 
A caveat of this work is the partial or complete unavailability of genetic data about 
patients. Indeed, some of these genes have already been associated with MS 
susceptibility or tested for IFN-β modulation in MS [153]. Moreover, the 
unavailability of data about the production of neutralizing anti-IFN-beta 
antibodies (Nabs) with affinity for IFNAR was a limitation for our analysis. One of 
the main reasons for the reduction of IFN-β efficacy is Nabs production. Nabs block 
the downstream IFN-β signalling leading to alteration of ISGs transcription which 
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reduce the clinical effect of IFN-β [162]. Nabs could be an interesting parameter to 
stratify patient’s gene expression. 
In conclusion, this thesis followed the common thread of the use of NGS data in 
the field of systems biology to reveal interesting molecular features of Th17 cells 
and address the therapeutic aspects connected to their involvement in the 
progression of RRMS disease.  
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