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Abstract 

Over the past decade, small non-coding RNAs (sncRNAs), including microRNAs (miRNAs) have 

been recognized as important modulators of various cellular processes. Numerous studies showed 

the potentiality of miRNAs as powerful biomarkers in different human conditions, including 

gastrointestinal (GI) diseases. The human gut microbiome, referring to the microbial communities 

populating our intestinal tract, is also emerging as a relevant factor in human diseases. A fascinating 

aspect is the interplay of host fecal miRNAs with the gut microbiome which has been highlighted 

and that could be the starting point for novel suitable biomarkers for GI diseases detection, 

monitoring or innovative therapeutic approaches development.  

In the present study, a comprehensive experimental and computational analysis was proposed to 

explore small RNA and metagenomic sequencing data obtained from surrogate tissue of patients 

with different GI disorders. 

We investigated fecal sncRNA profiles and gut microbiome composition on samples from Celiac 

Disease (CD) (Study 1) and from Colorectal Cancer (CRC), colorectal polyps and Inflammatory 

Bowel Diseases (IBD) individuals (Study 2) and compared to those of healthy subjects, performing 

small RNA-sequencing and shotgun metagenomics sequencing, respectively. 

The cohort of Study 1 was composed of 51 CD treated patients with low levels (CD-ltTG) and 11 

CD treated patients with high levels of transglutaminase 2 (TG2) antibodies levels on a gluten-free 

diet (GFD), 3 CD untreated patients (recruited before and after GFD adherence), 2 non-celiac gluten 

sensitivity individuals (NCGS), and 65 healthy controls. Several miRNAs and other sncRNAs were 

differentially expressed (DE) in CD-ltTG and CD-htTG compared to controls. The majority of the 

observed sncRNAs were specific for each group while a small set was common. For a group of 

DEmiRNAs, a significant correlation with GFD duration was noticed. 

The metagenomic analysis highlighted significant differences in bacterial abundances among the 

CD categories compared to controls. Interestingly, the abundance of some of the microbial species 

significantly correlated with the expression levels of several DEmiRNAs. 

The cohort of Study 2 included subjects recruited in a gastroenterological department of a hospital 

in Vercelli: 58 patients with CRC, 43 with polyps, 41 with gut inflammations, and 79 controls with 

negative colonoscopy. For this cohort, stool and primary tissue samples were also collected. 

Additional stool samples were collected in an independent cohort from the Czech Republic, 

including 67 CRC, 27 polyps, 32 gut inflammations, and 36 controls with negative colonoscopy. 
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In stool of both CRC cohorts, several DEmiRNAs and DEsncRNAs were found in cancer and 

precancerous lesions compared to controls. A set of 19 miRNAs were differentially expressed in 

CRC patients of both cohorts and their pattern of expression mirrored those of tumor/polyp tissues. 

A predictive model including 11 miRNAs accurately classified CRC from healthy subjects, clearly 

distinguishing also CRC from adenomas and both CRC and adenomas from controls. 

Microbiome composition analysis on a subset of 80 individuals (29 CRC, 27 Polyp, and 24 healthy 

controls subjects) of Cohort-IT was explored highlighting differences in fecal microbiome 

composition among healthy, polyp, and CRC patients. A combined predictive signature composed 

of 32 features from human and microbial small RNAs and DNA-based microbiome accurately 

classified CRC samples separately from healthy and adenoma samples. 

Overall, the results presented in this thesis demonstrated the associations between the expression of 

specific sncRNAs and microbiome profiles measured in stool samples and different GI disorders, 

suggesting that their profiling in surrogate tissue could become a powerful tool for the diagnosis 

and monitoring of these pathologies.  
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1 INTRODUCTION 

Gastrointestinal (GI) diseases refer to any condition or disorder occurring in the tract including the 

oesophagus, stomach, small intestine, large intestine and rectum, and the accessory organs of 

digestion, liver, gallbladder, and pancreas.  

Many factors are involved in the development of GI diseases, including genetic, epigenetic, and 

environmental factors. Obesity, inactive lifestyle, diabetes, meat intake, fat-rich and fiber deficient 

diet, smoking habit, and alcohol consumption are among the principal risk factors characterizing the 

“Westernized lifestyle”, which many studies have related to an increased incidence of GI diseases 

over the years [1]. 

Several conditions or disorders can affect the GI tract, leading to disability and poor quality of life 

for the patients and high healthcare costs [2].  

Among the most frequent GI diseases, there are inflammatory bowel diseases (IBDs, which mainly 

include Chron’s disease and ulcerative colitis), celiac disease (CD), colorectal polyps and colorectal 

cancer (CRC) (https://www.drugs.com/article/gastrointestinal-disorders.html). One of the main 

common features of these disorders is the presence of a chronic inflammatory condition leading to a 

cascade of events causing the alteration of the intestinal barrier and, as a consequence, an increased 

permeability [3]. Although all the molecules and mechanisms regulating the chronic inflammation 

processes are not fully understood, a number of evidence indicate a putative role of non-coding 

RNAs, especially microRNAs (miRNAs), in the stability and maintenance of gene expression 

patterns that characterize such inflammatory pathways [4] 

Also “dysbiosis”, defined as the alteration of the gut microbiome composition, has been observed in 

GI diseases [5] compromising the gut microbiome contribution to the maintenance of intestinal 

barrier function [6]. More recently, the interplay between miRNAs and gut microbiota has been 

reported highlighting miRNAs potentiality to regulate bacterial gene transcripts [7]. Unrevealing 

their relationship could bring new insights into the mechanisms at the bases of GI disorders and, 

hopefully, provide new potential biomarkers for the diagnosis and prognosis of these disorders 

https://www.drugs.com/article/gastrointestinal-disorders.html
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(currently based on invasive, expensive and sometimes not effective procedures). Indeed, thanks to 

the recent advancements of Next Generation Sequencing (NGS) technologies, to date, the analysis 

of miRNome and microbiota are more affordable, accessible, and doable in different biospecimen 

types, including blood, saliva, urine, and stool [8, 9]. The latter, in particular, is the optimal 

biospecimen for investigations concerning GI disorders, considering that besides its minimal 

invasiveness, miRNAs from exfoliated fecal colonocytes are directly and continuously released into 

the intestinal lumen where also hundreds of bacterial species live in symbiosis with the host [10].  
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1.1 Celiac Disease 

 

Celiac disease (CD) is a complex autoimmune disorder characterized by different forms and 

symptoms. The immune reaction is triggered by gluten ingestion which induces a succession of 

events leading to duodenal damage characterized by villous atrophy, intraepithelial lymphocytosis, 

infiltration of inflammatory cells in the lamina propria and crypt hyperplasia. Despite remaining 

asymptomatic in many cases, CD patients can exhibit intestinal and extraintestinal manifestations 

related to the GI tract and malabsorption. Classic symptoms include weight loss, chronic or 

recurrent diarrhea, abdominal pain and anorexia [11, 12]. Moreover, extraintestinal symptoms, such 

as arthritis, aphthous stomatitis, dental enamel defects, iron-deficiency anemia, osteoporosis, 

neurological and psychological problems may be present [13, 14] 

To date, the only treatment for this pathology is the adherence to a lifelong GFD, strictly avoiding 

cereals containing gluten such as wheat, barley, and rye. This diet enables the disappearance of 

symptoms in symptomatic patients within few weeks from the beginning of GFD while serological 

and histological normalization may require from few months to one year [15]. 

1.1.1 Epidemiology  

 

About three decades ago, CD was considered a disease mainly affecting children of Western 

Europe. Over the time, with the improvement of diagnostics including the application of CD 

specific serological tests transglutaminase 2 antibodies (TG2-Abs) and endomysial antibodies 

(EmAs), coupled with histological tests, a more reliable evaluation of its prevalence in the general 

population has become feasible [16]. However, epidemiological data on CD prevalence based on 

serological data are in general more reliable than the histological ones, considering that the small 

intestinal mucosal biopsy is not performed in all the seropositive patients [17]. 

It is estimated that CD affects about 1% of people worldwide (Figure 2) [18]. People of all ages can 

be affected, with a slight predisposition for women, with a ratio between 2:1 and 4:1 according to 

the countries [19].   

In Europe, the overall prevalence of CD is 1%, on average, varying among different countries. The 
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group of European countries with a high CD prevalence includes Germany (0.3%), Northern Ireland 

(0.9%) Italy (1.2%), Finland (2.0%) and Sweden (2,4%), whereas in Switzerland, Estonia, and 

Poland the disease is less common [11]. In the US population, rates similar to the European 

countries have been reported (0.7%)[20], as well as for other developed countries populated by 

individuals of European origin, like Australia [21] and New Zealand (0.4-1.3%) [22]. The presence 

of CD has been established also in many South American countries that are mostly populated by 

individuals of European origin with a mean prevalence of 0,6-1% [23]. Data about African 

prevalence are less abundant. However, the Sharawi, a black-haired African population originally 

living in Western Sahara, has been described as the population with the highest CD prevalence in 

the world (5.6%)[24]. The reasons for this high frequency are unclear but probably explainable with 

the highest frequencies of HLA-DQ2 and-DQ8 genotypes and the high gluten consumption of this 

population [25]. CD frequency is also relevant in the middle East with a prevalence of 0.8%, 1.5% 

and 0.8% in Iran, Turkey, and Israel, respectively [26-28].  In India, CD prevalence is estimated to 

range between 0.6% and 2.2% based on data coming from serological test on healthy blood donors 

[29]. In particular, the prevalence is higher in people of the Northern part of India which is in line 

with the wheat-rice consumption shift from the north to the south [30]. In China, both HLA 

predisposing genotypes and gluten consumption are largely diffused. However, very few data on 

Chinese CD prevalence are available to date. CD prevalence in Japan, Korea, Philippines, and other 

Pacific islands is very low probably due to low gluten consumption and low HLA genotypes 

diffusion (Figure 2).  

Based on serological data, CD prevalence worldwide is increasing over time even if the disorder 

still remains largely unrecognized [31, 32]. Indeed, it is estimated that for each clinically diagnosed 

CD patient, an average of five to ten seropositive individuals remain undiagnosed, usually because 

of atypical, minimal or often absent symptoms [33, 34].  
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Figure 2. A. Worldwide CD seroprevalence rates (for only countries reporting data). The lowest and highest 

percentiles include countries with pooled national prevalence ranging from 0.2% to 0.8% and 2.1% to 8.5%, 

respectively [17]). B. Worldwide CD prevalence rates (based on biopsy) for the countries reporting data. 

Prevalence values were stratified into 4 groups of percentiles representing the 0 to 25th percentile (light blue) 

to the 76th to 100th percentile (dark blue). The lowest and highest percentiles include countries with a 

pooled national prevalence ranging from 0.2% to 0.4% and 0.9% to 2.4%, respectively [17]. 
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1.1.2 Risk factors 

 

The rise in the prevalence of CD is only partially explainable with the improvement of diagnostic 

criteria. This suggests that other factors might be involved behind these increasing rates [35].  

Genetic factors are certainly among the most influential. Indeed, more than 90 % of CD patients 

carry one or two copies of the HLADQ2.5 which is encoded by the DQA1∗05 (alpha chain) and the 

DQB1∗02 (beta chain) genes. Interestingly, DQ2-negative CD patients are almost invariably HLA-

DQ8 positive (DQA1∗0301/DQB1∗0302). The association of CD with HLA class II genes is 

explained by DQ molecule binding a peptide fragment of an antigen involved in the pathogenesis of 

CD to present it to T cells. Also, the major histocompatibility complex (MHC) class I region is 

associated with CD risk. Different studies mapping MHC association signal highlighted several new 

loci associations as risk factors independent of the HLA-DQ accounting for an additional 18% of 

CD heritability [36]. It is estimated that only 87% of the total CD heritability can be explained [37]. 

The MHC-HLA region accounts only for 41% of this percentage, while the remaining is shared by 

other non-HLA genes whose contribution is estimated to be about 6% globally, meaning that there 

is still a 40% of “missing heritability” [38]. This is also supported by data on monozygotic twins 

studies. A study by Nisticò et al. [37] showed that monozygotic twins of CD subjects have the 70% 

of probability to develop CD within 5 years from the diagnosis of the first twin; in dizygotic twins, 

this probability is reduced to 7%, indicating that other genes, in addition to HLA, increase the 

susceptibility to CD. 

The CD prevalence also varies in populations with a similar genetic background [35]. Such variance 

may be explained by environmental factors rather than genetics. For instance, while infant feeding 

pattern association has been almost entirely denied, viral infections seem linked to CD. In 

particular, exposure to Adenovirus and Rotavirus gastrointestinal infections during early life and 

adulthood are linked to CD development even if the results still need to be cautiously considered 

[39, 40].  
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Other CD risk factors are organ-specific autoimmune disorders, even if the causal relationship still 

needs to be clarified[41]. Type 1 diabetes mellitus (T1DM) is the most severe form of 

autoimmunity associated with CD, with ∼5% of patients with CD having T1DM and vice versa 

[42]. Autoimmune thyroid disorders, including Hashimoto thyroiditis and Graves disease, are also 

very frequent autoimmune diseases associated with CD [43, 44]. 

1.1.3 Pathogenesis  

 

The pathogenesis of CD is the consequence of gluten ingestion which can trigger an adaptive and/or 

innate immune response (Figure 3)[45]. Gluten is a protein mixture of gliadins and glutenins 

mainly contained in cereal grains wheat, rye, and barley. After its ingestion, gliadins and glutamins 

are partially hydrolysed by proteases of the gastrointestinal tract. The resulting fragments pass 

through the epithelial barrier of the small intestines entering the lamina propria where they are 

deamidated by tissue transglutaminase 2 (TG2)[46]. This modification increases the avidity of CD-

associated gluten peptides to specific HLA variants expressed on antigen-presenting cells (APCs). 

Consequently, CD4+ gluten-specific T helper (Th) cells recognize the deamidated gluten-derived 

peptides presented by HLA-DQ2 or HLA-DQ8 and respond by expressing high levels of cytokines 

interleukin 21 (IL21) and interferon ɣ (IFN ɣ) [47]. These cytokines affect the epithelial cells and 

activate intraepithelial lymphocytes (IELs), licensing them to ‘kill’ the epithelial cells, ultimately 

leading to villous atrophy. Moreover, IL21 is critical for Th-cell-driven antibody responses and thus 

provides a link to B cells, a cell type that is now attracting more attention as an important player in 

CD.  

Innate immunity plays a critical role in CD initiation. Cytokines such as interleukin 15 (IL15) and 

interferon α can prime the innate immune response by polarizing dendritic cells and intraepithelial 

lymphocyte function [48, 49]. These events occurring in the mucosa, together with the inhibition of 

the epithelial barrier function mediated by the gliadin-mediated zonulin release [50], enable the 

passage of undigested peptides from the gut lumen to the lamina propria. Once gliadin peptides 

cross the epithelial barrier, neutrophil recruitment through IL8 production [51] or a direct neutrophil 
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chemoattractant effect leads to gluten intolerance in genetically susceptible individuals.  

 

          

Figure 3. Immune response in CD: Innate immune response (left) and Adaptive immune response 

(right) triggered by gluten presence in the lamina propria [52]. 
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1.1.4 CD diagnosis and classification 

 

The diagnosis of CD, apart from typical clinical symptoms, relies on serological tests and 

subsequent confirmation by characteristic biopsy findings. The most reliable and used serological 

test include transglutaminase 2 (TG2) antibodies which have an excellent sensitivity (90–100%) and 

almost 100% specificity for CD [53]. For those subjects resulting positive to serological tests, the 

final diagnosis is generally based on the observation of small bowel mucosal villous atrophy, 

intraepithelial lymphocytosis and crypt hyperplasia through biopsy samples obtained upon 

gastroscopy [54](Figure 4). 

               

Figure 4: A representation of normal and CD intestinal villi. 

Adapted from: https://www.dreamstime.com/stoc 
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CD is a disease with typical gastrointestinal symptoms and several, highly variable, non-

gastrointestinal symptoms representing different types of CD [55](Table 1). Classical Celiac 

Disease is characterized by malabsorption symptoms such as diarrhea, failure to thrive, and weight 

loss and may occur both in adults and children. Non-classical Celiac Disease type has no important 

gastrointestinal symptoms or malabsorption but reflux, abdominal pain, bloating, vomiting, 

constipation, and dyspepsia can be present in some cases. It occurs in late childhood or adulthood 

and it is more common than the classic CD. About 70% of the subjects are diagnosed on the basis of 

extraintestinal symptoms associated with CD. About the 1-1,5% of CD patients can present a 

refractory celiac disease (RCD) [56]. This CD form is characterized by persistent or recurrent 

malabsorptive symptoms and villous atrophy despite strict GFD adherence. RCD is distinguished 

according to the normal (type I RCD) or abnormal (type II RCD) phenotypes of intraepithelial 

lymphocytes (IELs) and it is associated with serious complications, such as ulcerative jejunitis and 

enteropathy-associated T-cell lymphoma (EATL) [57]. Strict GFD is indispensable in RCD together 

with complementary treatments. In both types of RCD and RCD, the standard option consists of 

administration of open-capsule Budesonide which allows clinical remission and villous recovery in 

around 90% of both types of RCD [58]. Another type of CD is the Potential or latent celiac disease 

which occurs when an individual with a positive CD serology presents a normal small-bowel 

biopsy, with no characteristic villous atrophy [59]. Other non-celiac gluten-related disorders are 

Wheat Allergy, with an adverse immunologic reaction to wheat proteins and anti-wheat IgE 

antibodies production and Non-celiac gluten or wheat sensitivity (NCGS), typical of individuals 

with symptoms that respond to a gluten-free diet but without any CD histologic findings (e.g., 

characteristic findings on intestinal biopsy) or specific antibodies (e.g., tTG or EMA IgA;Table 1). 

Once CD diagnosis has been confirmed, the patient is usually followed up until its serological tests 

turn negative, which generally occurs within six to 12 months from the GFD starting. In parallel, a 

periodic examination of growth, nutritional status and the termination of disease manifestations 

should be evaluated. Moreover, since some subjects can heal gradually even if on a strict GFD, a 
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follow-up biopsy to assess the intestinal villi healing can also be taken into consideration 

 

Table 1: Different forms of gluten-related disorders. 

Disorder Characteristics 

Classical Celiac Disease Malabsorption symptoms such as diarrhoea, failure to 

thrive, and weight loss may occur both in adults and 

children. 

Non-classical Celiac Disease Absent or not important gastrointestinal symptoms, 

occurring in late childhood or adulthood.  

It is more common than the classic CD. 70% of 

diagnoses are made on the basis of extraintestinal 

symptoms. 

Refractory Celiac Disease Persistent or recurrent malabsorptive symptoms and 

villous atrophy despite a strict GFD adherence. The 

first-line drug treatment is typically a form of steroid 

medication with steroids. 

Potential or latent Celiac Disease Positive CD serology but normal small-bowel biopsy 

not presenting the characteristic villous atrophy 

Non-celiac gluten or wheat sensitivity Symptoms that respond to a GFD.  

No CD histologic findings or specific antibodies 

Wheat Allergy Immunologic reaction to wheat proteins and anti-wheat 

IgE antibodies production 

 

1.1.5 Weaknesses and limitations in CD diagnosis and monitoring 

 

Although in the last years the improvement in the CD diagnostic criteria has enabled an easier and 

more reliable detection of this disease, still nowadays there are some weaknesses and limitations in 

both CD diagnosis and management. First of all, about 10% of the affected patient presents a 

seronegative CD (SNCD) form. This happens because the antibodies remain in the intestinal 

mucosa forming immune-complexes unable to cross the lamina propria and enter the blood vessels  

[60]. A fraction of SNCD patients (about 2%) has a selective IgA deficiency/partial deficiency, 

which from a diagnostic point of view can be overcome with the IgG serological test [61]. 

Unfortunately, IgG test is not always reliable because of its lower sensitivity and specificity with 

respect to the IgA one, highlighting the need for a villous atrophy investigation by gastroscopy [62]. 
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However, villous atrophy can also be the consequence of a medical treatment to cure viral or 

bacterial infections or a result of other non-celiac autoimmune enteropathies [63]. In addition, 

villous atrophy could appear as the final step of intestinal villi damage and thus take years to 

develop while other symptoms could turn up before the development of small intestinal lesion [64]. 

Another limitation, which still is a matter of discussion among the gastroenterologists, is the fact 

that the mucosal histology interpretation needs to be done on correctly cut, well oriented, and high 

quality samples in order to avoid erroneous diagnosis and misclassification [65].  

CD patients monitoring after the diagnosis also needs to be improved. Indeed, excluding the 

symptoms disappearance and the serological tests normalization, to date, there is no definite 

indicator(s) for intestinal villi healing (which can improve gradually even if the patient is on a strict 

GFD), thus requiring a follow-up biopsy [66]. In this respect, molecular markers based on newly 

discovered sncRNA species, including microRNAs, or the gut microbiome composition, both 

detectable in surrogate tissues, may represent an interesting field of research. 

1.2 Colorectal Cancer 

 

Colorectal cancer (CRC) is an adenocarcinoma occurring in the colon or rectum, both of which are 

parts of the large intestine [67]. CRC usually develops from the epithelial cells of the large 

intestine: the accumulation of genetic mutations and epigenetic modifications in these cells arise 

into benign neoplasms (adenomas) and subsequently into invasive carcinomas. The result is a type 

of cancer not representing a single pathological entity, but rather a heterogeneous group of tumors 

arising through various molecular pathways [68]. Indeed, caecum or ascending colon cancers 

occurring in the right colon are biologically different from that in the left colon (from the splenic 

flexure down), both in terms of molecular characteristics and response to treatment. 

CRC formation can be sporadic, being linked to predisposing lifestyle factors and ageing, or due to 

familial syndrome or even because of the  presence of inflammatory bowel disease (IBD) including 

Crohn's disease and ulcerative colitis [69].  
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1.2.1 Epidemiology 

 

The incidence and mortality of CRC consistently vary around the world. Globally, in males it is the 

third most commonly diagnosed cancer following lung and prostate tumors while the second in 

females behind breast cancer. According to the World Health Organization GLOBOCAN data of 

2018, CRC encloses 11% of all cancer diagnoses with 1.8 million of new cases and almost 861,000 

deaths, with rates substantially higher in males than in females and between the age of 50 and 65 

[70].  

CRC incidence varies a lot also by region, with up to eight-fold variations between countries. In 

countries undergoing a major developmental transition, incidence rates tend to rise uniformly with 

the increase of the Human Development Index (HDI), suggesting a causal relationship. Indeed, the 

highest incidence rates are recorded in countries with a recent economic development such as the 

Czech Republic and Slovakia, while remains high in Australia, New Zealand, Europe, and North 

America. The lowest rates are found in Africa and South-Central Asia (Figure 5).  

 

 

Figure 5 Colorectal cancer incidence rates worldwide in 2018. It includes all age and gender  

(age-standardised rates per 100 000; GLOBOCAN 2018). 
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These geographic differences could be mostly attributable to dietary and environmental exposure 

differences imposed upon a background of genetically determined susceptibility. Also, CRC 

mortality varies with the developmental condition of the nation, even if with a lesser degree than 

incidence, with a 2–3-fold difference between low and high HDI. In males, the age-standardised 

mortality is 12.8/100000 in high HDI nations and 5.7/100,000 in those with a low HDI, on the other 

hand for females the same rates are 8.5/100,000 and 3.8/100,000, respectively. However, in many 

Western countries, CRC mortality in the last years has progressively declined [71, 72]. This 

amelioration is partially explainable with an improvement of the screening strategies, enabling the 

detection of the tumor at an earlier stage and the preventive removal of colonic polyps, but also to a 

more effective primary and adjuvant treatments.  

In Italy, CRC has a higher occurrence in the population, with nearly 52,000 new diagnoses in 2016 

(13% of all new cancers) (http://www.registri-tumori.it). It is still the second most diagnosed cancer 

following the mammalian and the second deadliest cancer (19,407 total deaths in 2017, 10.8% of 

the totality of cancer deaths) after lung cancer. However, in the last decade, it has been observed a 

reduction in CRC Italian incidence (-4.1% and -3.0% annual mean for man and women, 

respectively). Notably, incidence and mortality estimates are heterogeneous across the country. In 

males, the incidence has slowly tended to stabilize, after a period of growth in the Centre-North 

while it continues to rise in the South. On the contrary, in the female population, CRC incidence is 

more stable across the regions with the lowest levels in the South. 

1.2.2 Risk Factors 

 

CRC is a complex disease with several well-established risk factors. Among those consistently 

increasing CRC risk, there are certain hereditary forms (including Familial adenomatous polyposis 

(FAP) and Lynch syndrome, which together account for the 4-5% of CRC cases), a personal or 

family history of sporadic CRC, inflammatory bowel disease, and a history of abdominal irradiation 

[73]. Other renowned factors are advanced age, male sex and those typical habits of “Westernized 

lifestyle” which includes smoking, excessive alcohol drinking, high consumption of red and 

http://www.registri-tumori.it/
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processed meat (also including certain methods of cooking meat [74], overweight, and lack of 

physical activity [75]. On the other hand, some protective factors have also been identified. Decades 

of research on dietary factors suggested a protective effect against CRC onset of diets rich in fruits, 

vegetables, fish, fibers and whole grains, calcium and dairy products[76](Table 2). Epidemiological 

studies have also highlighted an association between circulating vitamin D concentrations and CRC 

risk [77]. Similarly, a link between high rates of coffee consumption and a reduced risk of this 

disease has been largely observed [78, 79]. Other important preventing factors are menopausal 

hormone therapy [80] and, interestingly, the use of aspirin and other nonsteroidal anti-inflammatory 

drugs (NSAIDs). Indeed, many observational and intervention trials evidence confirmed that 

regular assumption of aspirin and other NSAIDs reduced CRC risk of 20 to 40 % in average risk 

individuals [81, 82]. Since the elevated use of these drugs worldwide, their assumption may 

characterize a preventive strategy for this cancer. For this reason, several trials are examining the 

effect of aspirin administration on CRC development both in average-risk subjects and individuals 

with hereditary colorectal cancer (e.g. Lynch syndrome) and such a strategy could be extended to 

individuals at higher risk because of other risk factors. All the discussed risk and protective factors 

for CRC are reported in Table 2. 
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Table 2: Overview of risk factors of CRC [83]. 

Risk factors 

Sociodemographic factors 

Older age 

Male sex        

+++ 

++ 

Medical factors 

Family history 

Inflammatory bowel disease 

Diabetes 

Helycobacter pylori infection 

Other infections 

Large bowel endoscopy 

Hormone replacement therapy 

Aspirin 

Statin 

++ 

++ 

+ 

(+) 

(+) 

-- 

- 

- 

(-) 

Lifestyle factors 

Smoking 

Excessive alcohol consumption 

Obesity 

Physical activity 

+ 

+ 

+ 

- 

Diet factors 

High consumption red and processed meat 

Fruit and vegetables 

Cereal fiber and whole grains 

Fish 

Dairy products 

+ 

(-) 

(-) 

(-) 

(-) 

+++= very strong risk increase, ++=strong increase risk, 

+=moderate risk increase, --=strong decrease risk, -

=moderate risk decreased. Parentheses show probable 

established but not fully association 

 

1.2.3 Pathogenesis 

 

Several genomic alterations are linked to the development of CRC, mostly attributable to three 

different genetic pathways, namely 1) the chromosomal instability (CIN) pathway; 2) the 

microsatellite instability (MSI); and 3) the CpG island methylation phenotype (CIMP) pathway 

[84], all simplified in Figure 6. The CIN pathway includes mutation of APC and/or loss of 
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chromosome 5q (i.e., a region including the APC gene, linked to the formation of the dysplastic 

aberrant crypt focus), mutation of the KRAS oncogene, loss of chromosome 18q and deletion of 

chromosome 17p, which contains the critical tumor suppressor gene TP53 [85]. The MSI pathway 

is another type of genomic instability accounting for about 10–15% of sporadic CRC. 

Microsatellites refer to sequences of repeated nucleotides scattered throughout the genome and MSI 

stands for the alteration in the number of nucleotide repeats found within these microsatellite 

regions in tumor versus germline DNA. MSI event leads to a dramatic increase in genetic errors and 

many microsatellites are present in genes implicated in colorectal carcinogenesis, such as MSH3, 

TGFBR2, BAX, CASP5, MSH6, CTNNB1, APC, IGF2, KRAS and E2F4. The CIMP pathway is the 

second most common pathway related to sporadic CRC. It provides the epigenetic instability 

necessary in sporadic cancers to methylate the promoter regions of key tumor suppressor genes such 

as MLH1, and thus epigenetically inactivate their expression. CIMP-positive CRCs are currently 

defined by a panel of CpG island methylation markers, which are classified as having or not DNA 

methylation within certain thresholds [86]. 

In CRC development, all these alterations can occur either separately or in combination, leading to 

the formation of tumors biologically different and enabling patients classification by function on 

their prognosis and management [87]. More recently, transcriptomic analyses have enabled a CRC 

classification into four consensus molecular subtypes (CMS) with distinct features: CMS1, 

accounting for 14% of CRC, shows hypermutated status, MSI and strong immune activation; CMS2 

(37%), shows marked Wnt and MYC signaling activation; CMS3 (13%) is characterized by 

substantial metabolic dysregulation; and CMS4 (23%) is a mesenchymal subtype that exhibits 

prominent transforming growth factor-b activation, stromal invasion and angiogenesis [88].  
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                                                  Created with BioRender.com 

Figure 6: Three genetic pathways involved in CRC pathogenesis: the chromosomal instability 

(CIN), the microsatellite instability (MSI) and the CpG island methylation phenotype (CIMP) 

pathways. The sequential genetic and epigenetic changes occurring in each pathway are simplified. 

 

1.2.4 CRC classification 

 

CRC is mainly classified in three different forms related to its origin and expression profiles. 

Sporadic CRC is the most common form represented by 60 to 80 % of patients that do not carry any 

germline mutation known to be associated with this cancer [89]. From a histological point of view, 

these are adenocarcinomas that, as a rule, develop from a benign adenomatous polyp, which can be 

tubular, villous or tubulovillous in architecture. Only a limited proportion (estimated at 10%) of 

benign adenomas progresses to carcinoma; large adenomas with villous architecture have a high 

risk of progression [84]. More recently, a different multistep mechanism of carcinogenesis, namely 

the “serrated pathway”, has been described [90]. This pathway is responsible for about 10% of all 

CRCs and is characterized by serrated polyps replacing the traditional adenomas as the precursor 
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lesion to CRC. Serrated polyps refer to a group of colorectal lesions that includes hyperplastic 

polyps, sessile serrated adenoma, traditional serrated adenoma and mixed polyps. From a genetic 

point of view, serrated polyps also exhibit a peculiar pattern, with KRAS and BRAF mutation having 

an important contribution to their development. MSI and the CIMP pathways, previously described, 

are also implicated in the serrated pathway [91]. 

Familial forms of CRC constitute 20–40% of the cases and occur in individuals where family 

members of primary consanguinity have suffered from sporadic colon cancer. So far, no genes have 

been associated to this form but probably a combination of environmental and inherited genetic 

factors plays a role in CRC development in these families. Colorectal adenoma (>10 mm) is the 

precursor lesions of CRC and it is present with high-grade dysplasia and/or a villous component, 

termed as advanced adenoma (ADA). A high prevalence of ADA has been described among young 

first-degree relatives aged 40-45 years as well as in older subjects. Additional risk factors are male 

sex and family history which increase the risk of developing CRC or ADA by 1.5-3.0-fold 

compared to the normal population [92, 93].  

The third form of CRC is the hereditary one which can be distinguished in FAP and Lynch forms. 

FAP is the most common polyposis syndrome, accounting for approximately 1% of all CRC cases. 

It is classically characterized by the development of hundreds to thousands of adenomatous polyps 

(polyposis i.e. a malignant tumor with a high risk for developing non-digestive cancer) in both 

rectum and colon that, in general, begin to develop during the second decade of life, and nearly 

100% of untreated patients will have malignancy by the age of 40-50 years.  

Lynch syndrome, arising from a germline mutation in either the hMSH2 or hMLH1 mismatch repair 

gene, accounts for at least 3% of all the CRC cases [94]. This syndrome equally affects men and 

women in the same family, with a genetic alteration transmitted from parents without skipping any 

generation. The cancers associated with Lynch syndrome most likely affect the cecum or the right 

colon initially appearing as large and flat polyps or adenomas, with a high degree of dysplasia, and 

can or cannot be fluffy [95].  



26 

1.2.5 Limitations in CRC screening 

 

In the last decade, as previously mentioned, a decline in CRC incidence and mortality has been 

observed, thanks to the adoption of effective screening programs. The methods traditionally adopted 

for screening include a spectrum of invasive and non-invasive tests [96]. Among invasive tests there 

are the endoscopic methods which have the advantage of being able to detect cancers (including 

non-bleeding lesions) and confirming the diagnosis histologically. These tests include flexible 

sigmoidoscopy, capsule endoscopy, and colonoscopy, the most reliable, which allows direct 

mucosal inspection of the entire colon and same-session biopsy sampling or definitive treatment by 

polypectomy in case of precancerous polyps or early-stage cancers. Non-invasive tests include 

guaiac-based fecal occult blood testing (FOBT) and fecal immunochemical occult blood test (FIT), 

both checking for hidden occult blood in fecal samples. However, both invasive and non-invasive 

tests present some limitations. Indeed, the endoscopic investigations are invasive and require a 

bowel preparation in the days before the inspection which is unpleasant for patients; moreover, they 

are costly for the national health system to be performed on a large scale [97]. In this respect, there 

is a large discussion about the proper age for starting the CRC screening: in the US healthcare 

system, this has been lowered from 50 to 45 years [98]. As a consequence, the management of this 

cancer will imply a further huge economic burden but a consistent change on the CRC rates and 

survival [99]. Also, FIT and FOBT tests, even if associated with a reduction of CRC incidence 

thanks to the effectiveness in detecting asymptomatic patients, are both not ideal for CRC detection 

since they are less sensitive to detect proximal compared to advanced distal neoplasia over multiple 

rounds of screening [100, 101].  

For all these reasons, new biomarkers are constantly looked for with particular attention given to 

potential markers detectable in body fluids (including plasma, stool, and urine) by non-invasive (or 

minimally invasive) approaches. Among these, there are proteins, metabolites, and nucleic acids-

based markers such as microRNAs and other sncRNAs or gut microbiome composition, which may 

all represent potential candidates for this research field. 
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1.3 Inflammatory Bowel Diseases 

 

IBD refers to a group of chronic GI disorders, occurring in the colon and small intestine mainly 

including Crohn’s Disease (CrD) and Ulcerative Colitis (UC)[102]. Both these disorders are 

characterized by a chronic relapsing intestinal inflammation. Specifically, CrD induce a transmural 

inflammation affecting any part of the gastrointestinal tract (most commonly, the terminal ileum or 

the perianal region), while UC is characterized by a mucosal inflammation localized in the colon. 

Similar to CD and CRC, IBD arises as a result of the mixture of environmental and genetic factors 

leading to immunological responses and inflammation [102]. Indeed, the industrialized 

environment, the genetic make-up, the gut microbiota dysbiosis and the dysregulated immune 

response that cause chronic inflammation, are recurrent elements characterizing IBD [103]. 

1.3.1 Epidemiology.  

 

IBD affects over 2 million individuals in North America, 3.2 million in Europe, and its incidence is 

increasing worldwide (Figure 7)[104]. This lifelong disorder occurs early in life, at 15-25 years old 

for CrD and 23-35 for UC, in both males and females. Historically, these diseases most commonly 

affected white people, particularly those of Ashkenazi Jewish heritage. However, over the last 

decade, an improved incidence was also observed in both Asian and Hispanic populations. In 

general, IBD incidence and prevalence markedly increased over the second half of the 20th century 

in industrialized countries. Therefore, IBD are considered the most prevalent GI diseases with 

accelerated incidence in newly industrialized countries [105]. Among various components of 

modern lifestyle, several of them have emerged as modifiers of systemic and intestinal immunity, 

such as antibiotics, diet, smoking and vitamin D intake. In addition, alterations of gut microbiota, 

derived from antibiotics exposure in children, gastroenteritis or lower level of lipopolysaccharide 

are associated with IBD onset [105]. 
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Figure 7. The latest reported worldwide IBD incidence according to population-based studies from 

2010 to 2019. Adapted from Mak et al. [104]. 

 

1.3.2 Risk factors and pathogenesis.  

 

IBD pathogenesis involves a complex interaction between distinct elements, such as genetic 

component, environmental factors, alteration of the intestinal microbiota and dysregulation of the 

innate and adaptive immune response at the intestinal mucosal level. The high risk of developing 

IBD in first-degree relatives of patients and data from twin studies have clearly demonstrated the 

role of the genetic component [105]: more than 201 polymorphisms have been implicated in the 

development of IBD, which is likely a polygenic process. Among them, 41 CrD-specific and 30 

UC-specific genetic polymorphisms were identified, and 137 loci were associated with both CrD 

and UC. From 80% to 90% of the identified loci associated with IBD encodes for ncRNAs, such as 

miRNAs, revealing their involvement in the development of these diseases [106]. The contributions 

of IL23R, NOD2 and HLA are very well-established but different genetic variants may have 

divergent effects: NOD2 and PTPN22, for example, are risk factors for CrD but protective for UC. 

However, all these variants have low penetrance underlining the important role of environmental 

factors in IBD occurrence [106].  

A dysbiotic gut microbiome has been extensively characterized in IBD. Some microbial populations 
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have been found completely altered with an effect on the epithelial barrier permeability and immune 

response [105]. An altered immune response is a hallmark of IBD. The first indicator of intestinal 

inflammation is the infiltration of neutrophils in the gut mucosa and epithelium: this event affects 

epithelial barrier function and it leads to tissue damage and the perpetuation of inflammation 

through the release of multiple inflammatory mediators [107]. The adaptive immune response is 

also altered in UC and in CrD; various alterations in immunoglobulin subclasses and T cell 

populations are reported in both these pathologies. Moreover, also other factors are involved in IBD 

pathogenesis including damage-associated molecular patterns, regulatory RNAs, as well as 

epithelial, endothelial and mesenchymal cells [103]. Concerning intestinal barrier dysfunction, the 

increased intestinal permeability in patients with CrD is well-recognized and has also been 

associated with symptomatic status [108]. Conversely, patients with UC generally do not always 

have notable permeability defects [109].  

Chronic inflammation in the colon is a key hallmark for CRC development: indeed, it is associated 

with an increased level of pro-inflammatory cytokines, damage of epithelial barriers, cell death, 

mutations in epithelial cells that, in turn, can initiate neoplastic growth. Patients with extensive IBD 

or diagnosed with IBD in childhood have a shorter life expectancy that may be related to an 

increased risk of CRC [110]. The risk of CRC in CrD is less known than in UC, where a direct 

relationship between UC inflammation and CRC occurrence was defined through the involvement 

of TP53 mutations, altered miRNA expression and dysbiotic conditions [111]. 

1.3.3 IBD Diagnosis  

 

Endoscopy remains the primary diagnostic method in IBD. However, more recently, other potential 

biomarkers have been assessed. An example is the C-reactive protein, resulting one of the most 

sensitive blood markers for inflammation although it is not highly specific. Indeed, its expression 

increases in presence of different tissue alterations, smoking, obesity, and drug therapies[112]. Also 

fecal calprotectin, an indicator of neutrophils migration to the intestinal mucosa, has been reported 

as reliable marker of intestinal mucosal inflammation [113]. In addition, the levels of this protein 
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can also increase in the setting of diverticulitis, infectious colitis, intestinal neoplasms, cirrhosis, 

and in association with the use of nonsteroidal anti-inflammatory and proton pump inhibitors [105]. 

Other proposed biomarkers for IBD includes some serum antibodies, including perinuclear anti-

neutrophil cytoplasmic antibodies (pANCA), which are antibodies that react with lysosomal 

enzymes in the cytoplasm of neutrophils and monocytes, anti-Saccharomyces cerevisiae antibodies 

(ASCA), antibodies of the mannan protein of S. cerevisiae, anti-granulocyte macrophage colony-

stimulating factor (anti-GM-CSF) antibodies and other anti-microbial antibodies. However, all these 

mentioned antibodies have shown a low sensitivity, proving to be still far from representing ideal 

IBD biomarkers [114]. 

In the last years, numerous studies have evaluated the expression of miRNAs in both primary 

tissues and body fluid specimens from patients with IBD to define unique miRNA expression 

patterns that may distinguish IBD subtypes [115]. These molecules, together with other sncRNAs 

and gut microbiome profiles detectable in fecal samples, could constitute potential non-invasive 

biomarkers to improve the IBD diagnosis, monitoring as well as be a possible target for the 

treatment of this group of disorders. 
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1.4 SncRNAs and Microbiota as potential biomarkers of GI diseases 

1.4.1 SncRNAs  

 

Until a couple of decades ago, about 98.5% of the genome was thought to be inactive and 

considered by scientists as “junk” because of its non-coding nature. Thanks to the development and 

advancement of sequencing techniques, this “belief” has been overcome and we have realized that 

many areas of the genome had a biological functionality too. Among these genomic areas, there are 

non-coding genes which include introns, pseudogenes, repeated sequences, and cis/trans-regulatory 

elements that are transcribed in RNA without translation. It is estimated that 99% of the total RNA 

is constituted by ncRNA, with the number of validated ncRNAs increasing every year [116]. 

ncRNAs are currently classified by length in “long ncRNAs”, if longer than 200 nucleotides, and 

“small ncRNAs” ranging between 18 and 200 nucleotides. SncRNAs include various species: 

miRNAs (the most famous and extensively investigated), P‐element‐induced wimpy testis (PIWI) 

interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and 

transfer RNAs (tRNAs) (Figure 8).  

These molecules have many roles involving gene regulation through RNA interference, RNA 

modification or spliceosomal involvement [117]. Their expression is altered in correspondence of 

physiological events such as aging but also during progression of diseases such as cancer, 

cardiovascular, neurodegenerative and gastrointestinal diseases [118]. This aspect, together with the 

fact that they are easily detectable and remain stable in several body fluids, are the reasons why in 

the last years, these molecules gained a lot of interest for their potential application in diagnosis, 

prognosis, and therapeutics. 



32 

 

Figure 8. The main studied classes of sncRNAs. For each category, biogenesis and examples of the 

main function (s) are illustrated. A (i) MicroRNAs are single stranded ∼22 bp sequences formed 

from double stranded precursors (ii) that prevent target mRNA translation. B (i) Small nuclear 

RNAs biogenesis is made up of two classes Sm class snRNA and Lsm-class snRNA (Not shown), 

(ii) which form the major and minor spliceosome. C (i) Small nucleolar RNAs have two different 

classes formed using different machinery; Box C/D RNA and Box H/ACA RNA, (ii) which cause 

methylation and pseudouridylation respectively. D (i) Piwi interacting RNAs are formed by either 

primary alone or by both primary and secondary biogenesis (ii) that prevent transposon translation 

through methylation. E (i) Transfer RNA cleavage forms transfer RNA derived fragments to be 

formed, (ii) which can prevent translation or cause gene repression (from [119]). 
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1.4.2 miRNA potentialities as biomarkers of human diseases 

 

miRNAs are 22-nt-long sncRNAs whose interest is exploded since their discovery, as testified by 

the 119,416 and still growing PUBMED entries for these molecules. Their presence has been 

assessed in plant, animals and virus with the main role of RNA silencing and post transcriptional 

regulation of gene expression. This function is explicated with the binding of the “miRNA seed”, 5’ 

end of miRNA spanning from nucleotide position 2 to 7, and the 3’untranslated region (UTR) of the 

mRNA target. This binding leads to one of these consequences: i) the cleavage of the mRNA strand 

in two strands, ii) the destabilization of the mRNA through shortening of its poly (A) tail, and iii) a 

less efficient translation of the mRNA into proteins by ribosomes [120, 121].  

In addition to this classical paradigm of miRNA functioning, other unconventional roles have also 

been described further improving the interest and potentiality in miRNA-based research field: 

Among the main promising there are pri-miRNA (the hairpin containing the primary transcripts) 

coding for proteins, miRNAs activating Toll-like Receptors, miRNA targeting nuclear ncRNAs 

etc.[122]. 

However, one of the main interests of miRNA research field is their potential role as human disease 

biomarkers. In particular, miRNAs raised to the attention in the field of molecular biomarkers 

because their dysregulation is associated to the initiation and progression of human tumors. The 

first evidence of this type came from the finding that miR-15 and miR-16 are down-regulated or 

deleted in most patients with chronic lymphocytic leukemia [123]. Starting from this discovery, in 

the past few years, a myriad of candidate or genome-wide miRNA expression profiling analyses 

have shown a general dysregulation of miRNAs in all tumors [124, 125], as well as in many other 

human diseases, including neurodegenerative and cardiovascular ones, viral infections, diabetes etc 

[126]. In addition, researchers have established peculiar characteristics of miRNAs (resistance to 

degradation by RNaseA, stability at high temperature, extreme pH, and freeze-and-thaw cycles) 

which make them suitable for their use both as diagnostic and as prognostic biomarkers of diseases 

[127, 128]. 
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1.4.3 miRNAs in relation to CD 

 

Despite research on miRNA alterations has been done already for more than a decade, only few 

studies explored their role in relation to CD (Table 3). The first studies on this topic mainly focused 

on miRNA analyses on duodenal tissue while subsequently also miRNA circulating levels were 

investigated [129, 130]. One of the first work on this field has been performed by Capuano and 

colleagues which compared miRNA profiles extracted from bioptic tissues of CD and healthy 

control children. The expression of about 20% of the tested miRNAs resulted different between the 

two groups of patients investigated. Authors found that high miR-449a levels reduced both 

NOTCH1 and KLF4 in HEK-293 cells. NOTCH1 and KLF4 levels and the number of goblet cells 

were lower in small intestine of children with untreated CD but also in those on a GFD compared to 

controls, whereas more nuclear beta-catenin staining, as a sign of the WNT pathway activation, and 

more Ki67 staining, as sign of proliferation, were present in crypts from CD patients than in 

controls [131]. A similar study measured miRNA expression levels isolated from duodenal mucosa 

from adult CD patients and controls. Also in this case, several miRNAs resulted dysregulated, 

including miR-31-5p, miR-192-3p, miR-194-5p, miR-551a, miR-551b-5p, miR-638 and miR-1290 

[129]. In addition, authors noticed that miR-192-3p levels were subjected to a specific modulation 

by gliadin peptides and that the miRNA cluster miR-192/194 was involved in matrix remodelling, 

possibly leading to cell apoptosis which, in turn, promotes the proliferative state of intestinal crypts.  

Similar results were achieved by Magni et al in another study performed in the duodenum of adult 

CD patients and controls. Four miRNAs were validated as significantly down-regulated in CD and 

in-silico analysis revealed possible gene targets involved in innate and adaptive immunity [132]. 

Moreover, as already shown also by Vaira and colleagues, miR-192-5p and miR-31-5p expression 

were triggered by gliadin exposure in CD patients [129].  

After the initial works performed on duodenal tissues, also the potentiality of circulating miRNAs 

has been evaluated [133, 134]. As an example, Buoli Comani et al. reported a lower expression for 

miR-192-5p and miR-31-5p in plasma samples of untreated CD individuals when compared with 



35 

healthy controls. miR-192-5p was also decreased in treated CD patients compared to controls, 

whereas miR-31-5p and miR-21-5p returned to normal levels after at least one year of GFD [135]. 

Similar results were obtained by Amr et al. demonstrating an overexpression of miR-21 and a 

down-regulation of miR-31 in serum of untreated paediatric CD patients in comparison with healthy 

controls, without any significant difference between treated paediatric CD patients and controls 

[134]. Bascunan et al., besides duodenal biopsies, also measured miRNA levels in plasma, 

monocytes, and peripheral blood mononuclear cells (PBMCs). They found miR-146a, miR-155, and 

miR-21 in PBMCs, miR-155 in monocytes, and miR-155, miR-21, and miR-125b in plasma up-

regulated in both untreated and treated CD subjects, while their expression in the intestinal mucosa 

did not change among all groups [133].  

Altogether, these summarized findings represent a solid starting point for future investigations in 

the field. However, these results need to be weighed with caution until confirmatory studies are 

conducted. Moreover, studies analysing miRNA expression in stool samples and by more advanced 

technics based on NGS are still missing and this could represent the next step to achieve in the near 

future to assess miRNA potential usage as biomarkers of CD. 
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Table 3: Studies investigating miRNA expression levels in relation to CD  
References Year Country N. of patients 

and 

specimens 

N. of healthy 

controls 

and 

specimens 

Technique n. of miRNAs 

analysed 

Main outcomes Other findings Sensitivity/ 

Specificity 

       Up-regulated 

miRNAs 

Down-

regulated 

miRNAs 

  

Bascunan 

K.A., et al. 

2019 Chile 10 untreated and 20 

treated 

CD patients PBMCs, 

monocytes, intestinal 

mucosa, and plasma 

10  
PBMCs, 

monocytes, intestinal 

mucosa, and plasma 

qRT_PCR 4 miR-146a, miR-

155, and miR-21 

in PBMCs 

 

miR-155 in 

monocytes 

 

miR-155, miR-21, 

and miR-125b in 

plasma of both 

CD groups vs 

control subjects 

 Treatment with 

gliadin peptides, 

increased 

miR-146a and 

miR-155 

expression in 

PBMCs and 

monocytes 

 

miR-146a 

(AUC=0.91, 95% 

CI 0.83‒0.99) 

 miR-155 

(AUC=0.92, 95% 

CI 0.86‒0.99 ) 

Amr K.S., et 

al. 

2019 Egypt 25 untreated and 25 

treated 

CD patients (on a 

GFD) serum 

20  

serum 

qRT_PCR 2 miR-21 in 

untreated vs 

treated CD and 

control subjects 

miR-31 in 

untreated vs 

treated CD 

and control 

subjects 

miR-21 

expression level 

positively 

correlates with 

the tTG IgA auto-

antibodies 

miR-21 

(AUC=0.85, 95% 

CI 0.70 - 0.99) 

miR-31 

(AUC=0.801, 95% 

CI 0.65 - 0.94) 

Comincini S., 

et al. 

2017 Italy 23 

untreated CD patients 

blood 

 

25 untreated CD 

patients duodenal 

biopsies 

33  

blood 

 

 

 

24 

duodenal biopsies 

qRT_PCR 2  miR-17 and 

miR-30a in 

blood and 

duodenal 

biopsies of 

untreated CD 

vs controls 

subjects 

ROC analyses 

did not identified 

any miRNAs as 

able to distinguish 

among CD 

patients and 

controls 

 

Comani G.B., 

et al. 

2015 Italy 17 untreated and 7 

treated CD patients 

plasma 

 

 

20 untreated CD 

patients duodenal 

12  

plasma 

 

 

 

 

8  

qRT_PCR 6 miR-21-5p in 

plasma of 

untreated CD vs 

control subjects 

 

 

miR-21-5p, miR-

miR-192-5p in 

plasma of 

treated CD vs 

controls 

subjects 

 

miR-192-5p 

plasma miR-31-

5p and miR-21-5p 

returned to 

normal levels 

after at least 1 

year of a GFD. 
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biopsies duodenal biopsies 

 

21-3p, miR-486-

5p in duodenal 

biopsies of 

untreated CD vs 

control subjects 

and miR-31-

5p in duodenal 

biopsies of 

untreated CD 

vs control 

subjects 

 

Vaira V., et 

al. 

2014 Italy 15 CD patients (5 

untreated with anemia 

(CA), 5 untreated with 

classical symptoms 

(CC) and 5 treated) 

duodenal biopsies 

 

22 untreated CD 

patients (10 CA and 12 

CC) duodenal biopsies 

(validation) 

5 duodenal biopsies 

 

 

 

 

 

 

12 duodenal biopsies 

Array 

(discovery) 

 

 

 

 

 

qRT_PCR 

(validation) 

377 
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miR-638 in CA vs 

CC and control 

subjects; 

miR-551b-5p in 

CC vs CA and 

control subjects 

 

miR-1290 in CC 

and CA vs control 

subjects 

miR-194-5p in 

CA vs CC and 

control 

subjects 

 

 

 

miR-31-5p, 

miR-551a and 

192-3p in CD 

vs control 

subjects 

miR-192-3p 

levels were 

subjected to a 

specific 

modulation by 

gliadin peptides 

 

Magni S., et 

al. 

2014 Italy 6 untreated CD patients 

duodenal biopsies 

 

21 untreated CD 

patients duodenal 

biopsies 

5 duodenal biopsies 

 

 

10 duodenal biopsies 

Array 

(discovery) 

 

qRT_PCR 

(validation) 

377 

 

 

7 

 miR-192-5p, 

miR-31-5p, 

miR-338-3p, 

and miR-197 

in CD vs 

control 

subjects 

  

Capuano M., 

et al. 

2011 Italy 20 untreated and 9 

treated CD patients 

duodenal biopsies 

 

11 duodenal biopsies Array 

(discovery) 

 

qRT_PCR 

(technical 

validation) 

365 

 

 

3 

miR-449a in 

untreated and 

treated CD vs 

control subjects 

   

CD “treated” refers to those CD subjects on a GFD at least from one year 

In studies with both discovery and validation phases only validated results were reported 
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1.4.4 miRNAs in relation to IBD and CRC  

 

A role in pathogenesis and as diagnostic and prognostic biomarkers has been attributed to miRNAs 

in IBD [136]. Most of the studies on this field measured levels of miRNAs in blood, stool and tissue 

by microarray profiling, RT-qPCR, and NGS. In detail, miR-21, miR-155, and miR-31 have been 

repeatedly related to IBD. miR-21, become over the years one of the most studied, was reported in 

many studies, including those analysing mouse models, demonstrating its involvement in the loss of 

tight junctions in intestinal epithelial cells [137]. Some studies showed that miR-31 is a regulator of 

the inflammatory response while miR-155 contributes to the pathogenesis of IBD directly binding 

to SHIP-1 mRNA, which regulates cell membrane trafficking [138]. Altered miRNA levels 

associated with IBD were also found in fecal samples, such as up-regulation of miR-223, miR-155, 

miR-21 and miR-1246 [139, 140]. 

A larger number of evidence are available on miRNA expression in the context of CRC. Indeed, in 

the last decade, several studies illustrated the role of miRNAs in CRC onset, progression treatment 

and diagnosis/prognosis. These investigations were conducted on primary tissues as well as 

surrogate biospecimens including whole blood, plasma, serum, extracellular vescicles (EVs) and 

stool [8, 9]. 

A consistent number of studies performed miRNA analysis in primary tissue showing miRNAs 

dysregulation in CRC compared to adjacent non-malignant tissue [141]. Among these, the up-

regulation of miR-21 together with that of miR-31, miR-92a, miR-135b, and miR-200 family has 

been extensively reported [142]. Similarly, miR-34a, miR-145, miR-143, miR-195 and miR-378 are 

among those repeatedly observed down-regulated in CRC vs adjacent non-malignant tissue [143]. 

Some of these miRNAs were also reported dysregulated in colorectal adenomas, particularly 

advanced colorectal adenomas (colorectal polyps greater than 1 cm in diameter and/or with villous 

component and/or severe dysplasia), which are recognized as critical premalignant lesions for CRC 

development and are the primary target lesions for CRC screening. Indeed, miR-21 is recognized as 

oncogenic miRNA in CRC, and it is frequently overexpressed also in colorectal adenoma tissues 
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compared with normal colonic mucosa [144].  

 In addition to studies focusing on primary tissues, several other researchers have demonstrated that 

colorectal adenoma and carcinoma have unique expression profiles of various classes of RNAs in 

serum, plasma and EVs suggesting that their determination as circulating markers could provide a 

novel and promising early diagnostic option for CRC screening [142, 145]. In particular, miR-92a-

3p, miR-17-5p, miR-29a and miR-196b-5p showed the best performances in this context and, 

together with miR-21, were repeatedly observed dysregulated in CRC [8].  

Also, fecal miRNA analyses in the context of CRC have been extensively explored [9]. This could 

be due to the strong rationale for determination of sncRNA expression levels in stool which 

includes the following observations: i) colonocytes are continuously shed into the fecal stream, with 

a periodicity of replacement roughly every 3–4 days, and neoplastic cells exfoliate at even a higher 

rate; ii) tumor secreted non-coding RNAs (mainly miRNAs) are directly and continuously released 

from the tumors into intestinal lumen; iii) alterations in the expression of oncogenic or tumor 

suppressive non-coding RNAs are very specific for pre-cancer or cancer; iv) sncRNAs are 

extremely stable, enabling accurate and reproducible detection in the stool without need of special 

stabilization or logistical requirements [146]. 

The first study reporting stool miRNAs as potential biomarkers in CRC was conducted by Ahmed 

et al in 2009 [147]: miRNA expression was determined in colonocytes extracted from stool 

specimens of CRC and ulcerative colitis patients as well as healthy controls. Authors identified 

seven up-regulated miRNAs (miR-20a, miR-21, miR-92, miR-96, miR-106a, miR-203, and miR-

326), and seven down-regulated (miR-16, miR-125b, miR-126, miR-143, miR-145, miR-320, and 

miR-484-5p) in CRC vs controls individuals. In another study, Link et al. have compared stool 

samples of patients suffering from CRC and adenoma with healthy individuals and have found a 

higher expression of fecal miR-21 and miR-106 in CRC patients [148]. Wu et al., examined the 

fecal expression of miR-21 and miR-92a not only in CRC patients but also in individuals with 

adenomatous polyps. Both miR-21 and miR-92a were overexpressed in tumors. Regarding the 
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localization of CRC, they found that miR-92a showed a higher sensitivity in distal tumors. This 

phenomenon can be explained by the denser consistency of the stool in the distal parts of the large 

bowel, so a greater amount of tumor cells shed into the feces. The fecal expression of miR-21and 

miR-92a was found to be lower postoperatively or after the endoscopic removal of the adenomatous 

polyps [149]. 

Two miRNAs, miR-221 and miR-18a, known to be up-regulated in CRC tumor tissue, showed an 

increasing expression levels also in stool samples of stages I-IV CRC patients, independently on the 

location of the tumor, or previous antibiotic intake [150]. 

Recently, the expression of five fecal miRNAs (miR-19-b-3p, miR-20a-5p, miR-21- 3p, miR-92a-

3p, miR-141) was found to be significantly higher in CRC patients compared to healthy subjects, 

and their expression significantly decreased after curative surgery [151]. 

In a recent study, Chang PY et al. evaluated miR-223 and miR-92a expression levels in stool and 

blood plasma in CRC. This combined approach yielded the highest sensitivity of 96.8% and 

specificity of 75% for CRC (AUC = 0.907). These results established a two-miRNA signature in 

two types of CRC clinical specimens with a high sensitivity for CRC detection [152]. 

The detection of miRNAs in stool may be another non-invasive screening method for CRC [153]. 

However, there are some limitations due to the complexity and density of the stool but also to the 

higher intrinsic variability to daily changes compared to blood serum/plasma. For this reason, 

further investigations and validation using standardized protocols on large cohorts are necessary 

before such markers can be seriously considered for adaptation in the clinic for non-invasive CRC 

screening [142].  

1.4.5 Evidence on other sncRNAs  

 

miRNAs are the best known and promising sncRNAs for their potential role as biomarkers. 

However, other sncRNA species such as piRNAs, snoRNAs, and tRNAs are also gaining attention 

as key component of cellular regulation and thus might be potentially assessed as biomarker of 

diseases [80, 142]. These molecules, together with miRNAs, are also among the most numerous 
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sncRNAs human biotypes, accounting for 32,007 piRNAs, 231 snoRNAs and 2,723 tRNAs 

according to the last updated version of RNACentral (https://rnacentral.org/) and DASHR 

(https://dashr2.lisanwanglab.org/) databases. 

piRNAs are sncRNAs of 24–31 nucleotides in length mainly involved in the epigenetic and post-

transcriptional silencing of transposable elements and other genetic elements in germ line cells 

[154]. These molecules, similarly to miRNA precursors, are characterized by the absence of specific 

sequence motifs or secondary structures. Despite their large diversity, most piRNAs can be mapped 

to a relatively small number of genomic regions called piRNA clusters. In contrast to miRNAs, 

these are Dicer-independent and interact with the PIWI subfamily of Argonaute proteins involved in 

the regulation of genome stability. PIWI proteins are involved in gene regulation through RNA 

degradation and have been linked to DNA methylation [155]. snoRNAs are non-coding RNAs with 

a length of 60-nt conserved from archaebacteria to mammals [156]. They are present in the 

nucleolus in associations with proteins to form small nucleolar ribonucleoproteins (snoRNPs) and 

are responsible for sequence-specific 2′-O-Methylation of ribosomal RNA (rRNA). In addition to 

this main role, recent reports highlighted tumor-suppressive or oncogenic functions in various 

cancer types including inactivation of growth suppressors and cell death, activation of invasion and 

metastasis, and sustained proliferative signalling [157]. Therefore, in this context, snoRNAs could 

have potential applications in cancer diagnosis and therapy.  

tRNAs originate when nucleases (such as Dicer and ANG) cut the tRNA ring in a given cell/tissue 

and under specific conditions such as cell stress [158]. tRNAs are divided into two main types 

based on the cleavage sites: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced 

RNAs (tiRNAs, also known as tRNA halves). tRFs originate precisely from the extreme 5' (tRF-5) 

or 3' ends (tRF-3) of mature tRNAs or from the 3' trailer sequence of precursor tRNA transcripts 

(tRF-1); tiRNAs are produced by specific cleavage at the mature tRNA anticodon loop of over 31 nt 

(including 5'- and 3'- fragments, named 5'-tiRNAs and 3'-tiRNAs, respectively) induced by 

situations of stress or starvation [159]. Despite their role is still poorly understood, tiRNAs are 
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commonly known to regulate gene expression and epigenetic inheritance [158]. This is in line with 

their altered expression levels observed in several diseases which poses these molecules as 

candidates for biomarker research. 

Even if the studies on other sncRNAs than miRNAs are only at an initial stage, it seems really 

interesting to investigate their role as molecular biomarkers. Indeed, piRNAs, snoRNAs and 

tRNAs, measured in different biospecimens, have all been proposed as potential biomarkers in 

several human diseases [160]. In a study conducted by Cheng and colleagues [161], it has been 

reported that piR-651 expression in gastric, colon, lung, and breast cancer tissues was higher than 

that in paired non-cancerous tissues. This finding was also confirmed in different cancer cell lines 

including gastric, lung, mesothelium, breast, liver, and cervical ones observing that the growth of 

gastric cancer cells was inhibited by a piR-651 inhibitor and arrested at the G2/M phase. Thus, piR-

651 might be involved in the development of gastric and other cancers and for this reason usable as 

potential biomarker. The up-regulation of a group of piRNAs was also seen by Herrera et al. in 

relation to CRC. Specifically, authors found a panel of 50 ncRNAs dysregulated in cancer-

associated fibroblasts (CAFs) and non-malignant mucosa derived fibroblasts (NFs). Among the 

observed signals, besides lncRNAs, snRNAs and miRNAs, also 7 piRNAs were up-regulated in 

CAFs vs NFs cells [162]. On the other hand, one of the first implications of snoRNAs in 

carcinogenesis comes from the study conducted by Mei YP and colleagues [163] on the putative 

oncogene snoRNA42 (SNORA42) associated with carcinogenesis. snoRNA42 is located on 

chromosome 1q22, a genomic region frequently subjected to amplification in lung carcinomas and 

the over-expression of snoRNA42 is observed in non-small-cell-lung carcinoma (NSCLC). 

Repression of SNORA42 in NSCLC cells caused a marked decrease in lung cancer growth in vitro 

and in vivo; enforced SNORA42 expression in bronchial epithelium increased cell growth and 

colony formation. Thus, this study on SNORA42 provided evidence for the functional importance 

of snoRNAs in cancer showing its involvement in tumor development.  

A number of evidence is also available on tiRNAs and tRFs in relation to various disorders, 



43 

including CRC. Indeed, Xiong et al. found 16 tRFs and 5 key miRNAs significantly altered in CRC 

compared to matched non-malignant tissues [164]. Target mRNAs of the 16 tRFs and 5 miRNAs 

were primarily involved in vitamin metabolic pathways and the cyclic guanine monophosphate-

protein kinase G signaling pathway, indicating their potential roles in CRC development. Similarly, 

Li et al. showed that 5'-tiRNA-Val was up-regulated in CRC patients vs controls and in highly 

metastatic cells being involved in angiogenin (ANG)-mediated tumor metastasis [165]. 

Taken together, all these results suggest a promising role for other sncRNAs in addition to well-

known miRNAs as potential target in several disease diagnosis, monitoring and prognosis. Even if 

their functions and mechanisms need to be clarified, their regulation in physiological and 

pathological processes seems to be similar to that of miRNAs, increasing researchers’ expectations 

for their clinical usage. However, the knowledge of sncRNAs related to GI diseases and their 

expression and detectability in different biospecimens is very limited. Besides miRNAs, very few 

studies investigated sncRNAs expression in stool and plasma samples in relation to CRC, while no 

studies at all are available on CD, which is one of the main issue of the present work. 

1.4.6 Microbiome analysis: a complex research field with promising applications 

 

Human microbiota refers to the variety of species inhabiting our body. These are microbes, bacteria, 

archaea, fungi and viruses present in a larger number of our own cells in the surfaces and specific 

niches of our organism such as gut, skin, mouth, etc. [13].  Decades ago, a limited knowledge was 

available about the human microbiota and this was mostly based on culture methods (it has been 

estimated that 20%–60% of human microbes is uncultivable). More recently, with the development 

of culture-independent methods to study microbiome composition such as NGS methodologies 

[166] and the parallel implementation of powerful computational tools for “omics” technologies, 

microbes and their genes have been efficiently catalogued, and the impact of the host-microbe 

interaction on human metabolism has started to be widely investigated and elucidated [167, 168]. 

The two most commonly used methodologies for microbial identification and genotyping are based 

on gene amplicon/marker genes (e.g. 16S rRNA) and shotgun metagenomic sequencing [169]. The 
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most widely used is the 16S rRNA (or 16S rDNA) sequencing, the gold standard in microbial 

typing. However, in recent years, it has been overcome by metagenomics approaches. Unlike 16S 

sequencing, which only targets 16S rRNA genes, shotgun metagenomic sequencing technique 

sequences all given genomic DNA from a sample hence providing a better taxonomic resolution 

and genomic information [170]. 

To date, several functions have been attributed to the gut microbiome testifying its importance. 

These include the fermentation of indigestible food components into absorbable metabolites, the 

synthesis of essential vitamins, the removal of toxic compounds, the strengthening of the intestinal 

barrier, and the stimulation and regulation of the immune system. Indeed, the gut microbiota has 

systemic effects via secretion of anti-inflammatory chemokines, metabolites, antimicrobial and 

neuropeptides and the induction of immune activation (activity on dendritic cell and macrophage 

subsets, T cell priming and polarization in the mesenteric lymph nodes) [171, 172]. The relevance 

of human microbiome has also been testified by evidence reporting a dysbiosis associated with a 

variety of diseases such as cancer, metabolic and neurodegenerative disorders, chronic fatigue 

syndrome and GI diseases [173-176]. In particular, the analysis of human gut microbiome 

composition in relation to GI have been the focus of several studies highlighting gut dysbiosis in 

IBD, CD and CRC opening a new field of research with potential implications in the context of GI 

diagnosis, monitoring and therapeutics. 
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1.4.7 Microbiome in CD 

 

Many studies have been performed to explore microbiome composition in both adult and pediatric 

forms of CD. These studies include experimentation performed on different biospecimens including 

duodenal biopsies, saliva, and feces, mainly conducted by 16S rRNA gene sequencing. In general, 

changes in the number of bacterial species, their diversity, and proportions have been described in 

CD as well as in and other GI. A reduced number of bacteria with anti-inflammatory capacity and 

increased bacteria with inflammatory capacity were reported in patients with CD diseases compared 

to healthy individuals [177]. The most consistent changes observed are a reduction in the diversity 

of gut microbiota and changes in the abundance of Firmicutes/Bacteroidetes. One of the first studies 

on this field noticed an increased association of rod-shaped bacteria in small bowel biopsies of both 

treated and untreated CD patients with respect to controls [178]. Subsequent studies performed in 

both feces and duodenal biopsies reported an increased abundance of gram-negative bacteria such 

as Bacteroides, Clostridium, E.Coli in CD patients compared to healthy adults [179, 180]. Since 

these initial findings, other studies on fecal samples and duodenal mucosa have reported similar 

results [177, 181, 182]. Oral microbiota in CD was also investigated analyzing saliva and 

oropharyngeal swabs [183, 184]. As a result, in contrast with the findings reported for stool and 

duodenal biopsy biospecimens, a reduction of Bacteroidetes and Fusobacteria and an increase of 

Actinobacteria was reported in CD patients compared to controls. A summary of the available 

studies is reported in Table 4.  

Overall, the analyses of different biospecimens from CD patients compared to healthy subjects have 

shown dysbiosis in relation to the disease. Although not being always concordant, a large part of 

them has revealed an increased number of gram-negative bacteria, Firmicutes, E. Coli, 

Enterobacteriaceae, Staphylococcus, and a decrease in Bifidobacterium, Streptococcus, Provetella 

and Lactobacillus spp. However, there are also contradictory findings among the studies, mainly 

about the microbiome composition in treated CD patients compared to controls, where the GFD 

seems to be not always able to restore a normal microbiota in CD patients [185]. In addition, as for 
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other diseases, from the available studies it is difficult to determine whether an altered gut 

microbiota is the cause or the consequence of CD, considering that diet can also modulate the gut 

microbiota over time.  

Table 4. Gut dysbiotic features observed in CD. Table adapted from [185]. 

Biological sample CD associated dysbiosis References 
Feces ↑ Gram (−)/Gram (+) bacteria ratio 

 

↓ Firmicutes (Lactobacillus spp., 

Fecalibacterium prausnitzii, 

Clostridium spp.) 

 

↓ Actinobacteria (Bifidobacterium 

spp.) 

 

↑ Bacteroidetes (Bacteroides spp.) 

 

↑ Proteobacteria (E. coli) 

 

↑ Firmicutes (Staphylococcus spp.) 

Sanz et al.  

 

Di Cagno et al. 

 

Collado et al.  

 

De Palma et al. 

 

Quagliariello et al. 

 

Olivares et al. 

 

Duodenal Mucosa ↑ Gram (−) bacteria 

 

↓ Firmicutes (Lactobacillus spp., 

Streptococcus spp.) 

 

↓ Bacteroidetes (Prevotella spp.) 

 

↑ Proteobacteria (Neisseria spp., E. 

coli) 

Collado et al.  

 

Schippa et al.  

 

Di Cagno et al.  

 

Nistal et al.  

 

Wacklin et al. 

 

Sánchez et al. 

 

D’Argenio et al. 

 

Iaffaldano et al.  

Saliva ↓ Bacteroidetes 

 

↓ Fusobacteria 

 

↑ Actinobacteria   

↓ Bacteroidetes 

Tian et al. 

Oropharingeal swab ↓ Bacteroidetes 

↓ Fusobacteria 

 

↑ Actinobacteria (Actimomyces spp.) 

 

↑ Proteobacteria (Nf) 

Iaffaldano et al.  
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1.4.8 Microbiome in IBD and CRC 

 

Evidence on gut microbiome composition in relation to IBD are less abundant compared to those of 

CD [186]. In general, metagenomic exploration in this regard demonstrated an increase of 

Proteobacteria (mainly E. coli species), Pasteurellaceae, Veillonellaceae, Fusobacterium species, 

and Ruminococcus gnavus in IBD patients compared to controls. On the contrary, a decrease in 

abundance and overall diversity of anti-inflammatory taxa was associated with IBD, among which 

Bacteroides Bifidobacterium, Clostridium, Roseburia and Surella species together with 

Fecalibacterium prausnitzii were among those mainly reported [187]. However, it remains difficult 

to understand whether these microbiota changes in IBD patients are causative or consequence of the 

inflammatory process, treatment, or both. 

A much larger number of studies has focused on microbiome analysis in relation to CRC, mainly 

analyzing intestinal mucosa and fecal samples. A number of evidence proposed a link between 

intestinal dysbiosis and CRC also reporting specific microbiome signatures for different subtypes of 

CRC as well as the enrichment of some oncogenic microbes in CRC cases in comparison with 

healthy controls [188, 189]. 

So far, several bacterial species have been linked to CRC. Among these, Streptococcus bovis (S. 

bovis), a gram-positive cocci, has been proposed as a CRC risk factor [190, 191]; Enterococcus 

fecalis (E. fecalis) was observed enriched in CRC vs healthy controls individuals [192, 193] and its 

infection induces superoxide production, thus damaging DNA in epithelial cells [194, 195]. 

Similarly, Yu et al. found an higher amount of Peptostreptococcus anaerobius (P. anaerobius) in 

fecal and mucosal microbiota from patients with CRC compared to those of controls [196, 197]. In 

addition to the aforementioned bacterial species, Fusobacterium nucleatum has been repeatedly 

associated to CRC. This bacteria was found enriched in human colorectal adenomas and 

carcinomas, probably contributing to disease progression from adenoma to cancer [174, 198, 199]. 

Recent evidence have also hypothesized F. nucleatum’s effects on the host miRNome as one 

potential major contributor of CRC onset. In this respect, a study by Yang, Y. et al. showed the 
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ability of F. nucleatum to up-regulate miR-21, activating the TLR4–MyD88 signaling cascade and 

thus leading to an increase of CRC cell proliferation and tumor growth in mice [200]. Accordingly, 

CRC patients with high levels in tissue of both F. nucleatum DNA and miR-21 showed an increased 

risk for poor outcomes. Interestingly, in addition to the miR-21 up-regulation, F. nucleatum 

infection led also to miR-18a and miR-4802 down-regulation, thus promoting the TLR4–MyD88 

signaling pathway activation [201]. Consequently, the key components of the autophagy pathway 

ULK1 and ATG7 resulted up-regulated, being targeted by miR-18a and miR-4802, respectively, 

thus preventing CRC cells enriched in F. nucleatum from the apoptosis induced by chemotherapy. 

Also, E. coli although being a gut commensal bacterium, has been observed at higher levels of 

colonization in colonic mucosa of human CRC xenograft mice vs non infected controls [202]. In 

addition, also for some strains of this bacteria it has been reported possible roles in CRC in a 

miRNA-dependent manner. Indeed, the majority of E. coli isolated from CRC cases produced 

colibactin, a genotoxic compound inducing c-Myc expression. High c-Myc expression led to miR-

20a-5p up-regulation thus targeting SENP1, a key negative regulator of p53 small ubiquitin-like 

modification (SUMOylation). As a consequence, p53 SUMOylation, drove a senescence-associated 

secretory phenotype (SASP) and the release of carcinogenic growth factors promoting colon tumor 

growth [203]. 

1.4.9 miRNAs may shape Gut Microbiota  

 

The studies previously discussed show an effective impact of the gut microbiome on miRNAs and 

their target gene expression. Conversely, host-derived miRNAs can also influence gut microbiota 

(Figure 9) [204]. One of the first evidence on this mechanism came from Liu et al. demonstrating 

how host-fecal miRNAs can shape gut microbiota composition by modifying the relative bacteria 

abundance. Indeed, mice with specific miRNAs devoid in intestinal epithelial cell (IEC) showed an 

increased diversity of bacterial genera compared to wild-type mice. In addition, using knock-out 

mouse model, they observed a marked exacerbation of dextran sulfate sodium (DSS)-induced colitis 

in IEC-specific miRNA-deficient mice compared to wild type that was ameliorated by transplanting 
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wild type fecal miRNAs [7].  

As another example, it has been reported that CRC cells harbouring mutant p53 selectively shed 

exosomes enriched with miR-1246. Uptake of exosomes enriched in this miRNA triggers 

macrophages reprogramming into an anti-inflammatory state supporting tumor survival [205].  

More recently, also the role of diet on miRNA and microbiome interactions has gained a growing 

interest. Indeed, dietary habits have been shown to influence host-derived miRNAs expression but 

also many food-derived exogenous miRNAs can have an active role in gut homeostasis regulation. 

For example, high-fat diets trigger the release of hepatic bile acids which is metabolized by the gut 

microbiota into genotoxic secondary bile acids, such as deoxycholic acid (DCA) [206]. DCA was 

shown to promote CRC through down-regulation of miR-199a-5p expression. The up-regulation of 

this miRNA in CRC cells causes the suppression of tumor cell growth and the restoration of the 

tumor cell drug sensitivity, likely through inhibiting the expression of CAC1, a direct miR-199a-5p 

target and a driver of the cell cycle usually found to be highly expressed in CRC [207]. For 

example, it has been established that miRNAs derived from edible plants can affect microbiome 

composition and host-gut barrier function [208]. Specifically, miR-7267-3p contained in ginger 

exosome-like nanoparticles (GELN) was shown to modulate the expression of Lactobacillus 

rhamnosus (LGG) monooxygenase ycnE. This event leads to increased production of indole-3-

carboxaldehyde (I3A) which is an aryl hydrocarbon receptor (AhR) ligand. Thus, GELN-derived 

miRNAs enhanced the IL-22 production ameliorating mouse colitis through improving barrier 

function [208]. 

All the discussed evidence suggest miRNAs as an important link in host–microbiota-diet 

interactions in regulating gut health and GI disease. However, the causal relationships remain to be 

established, and whether the mechanisms identified in the previous investigation could have a 

significant impact on human GI diseases development require further examination. 
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Figure 9 Reciprocal regulation/interaction of host miRNAs and microbiota [204]. A. 

Microbioma influencing host miRNA expression. B. Release of miRNAs from host cells via 

extracellular vesicles to control intestinal homeostasis and gut microbiota. C. Diet-induced 

microbial metabolites, such as secondary bile acids, can affect miRNA expression in host cells and 

promote or inhibit tumor. D. Dietary miRNAs, such as miR-7267-3p from ginger exosome-like 

nanoparticles (GELNs) can regulate gut microbiota and intestinal homeostasis. 

 

1.4.10 Fecal miRNAs and gut microbiome interactions as a source of potential biomarkers of 

CD 

 

To the best of our knowledge, there are no studies available both on miRNAs deregulated by 

microbiota and, vice versa, about miRNAs targeting bacteria in CD patients. Thus, the miRNA-

mediated crosstalk between the host and the microbiota is a totally unexplored research field in the 

context of CD. To date, the only available investigation to fill this gap is the study of Mohan et al. 

that combined the microbiota dysbiosis with the expression levels of selected miRNAs [209]. 
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Firstly, authors showed that in a model of gluten-sensitive (GS) macaques under gluten-containing 

diet (GD) the diversity of gut microbiota was significantly reduced compared to that of the healthy 

age-matched peers. A phenotype comparable with that of healthy controls was restored by the GFD 

indicating a direct relationship between microbiota composition and tissue damages mediated by 

inflammatory response to gluten [209]. miRNA expression analyses showed a group of up-

regulated miRNAs, such as miR-203, miR-204, miR-23b, and miR-29b, in macaques under GD. 

Interestingly, the analysis of putative miRNA targets highlighted their complementarity on 16S 

ribosomal RNA of bacterial species such as Lactobacillus reuteri, Prevotella stercorea and 

Streptococcus luteciae that were found more abundant in fecal samples of GS macaques under GD. 

This finding is the first one highlighting the role of miRNAs potentially targeting bacteria and then 

contributing to dysbiosis in CD. Further investigation on this field could help in clarifying the 

dynamics of miRNA-microbiome relationship and provide new potential biomarkers for the 

diagnosis and monitoring of CD. 

In this context, fecal miRNAs represent ideal candidates to study intestinal diseases and gut 

microbiota shaping. However, as already mentioned, very few data are available so far on fecal 

miRNAs of CD patients, revealing a hole in the CD scientific literature. Fecal samples are highly 

informative for intestinal-related diseases and extremely easy to collect without any invasive 

procedures. Together with those previously discussed, these characteristics make fecal miRNAs and 

gut microbiome ideal biomarkers for several gastrointestinal disorders and, therefore, should be 

further investigated. 
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2 AIMS OF THE STUDY 

The present PhD Thesis reflects the growing interest in the analysis of sncRNA spectra as potential 

source of non-invasive biomarkers for GI disorders. In this respect, the main objectives of the study 

were: i) to evaluate miRNA and other sncRNA profiles in stool samples to identify potential 

biomarkers for CD and CRC; ii) to perform a comparison among the results obtained from CD and 

CRC to highlight similar and/or different features in terms of sncRNA expression; and iii) to 

explore gut microbiota and its relation with miRNA expression levels in stool.  

Specifically, the work has been focused in: 

Study 1: We aimed at assessing whether the different dietary regimes and the CD condition 

may induce differences in sncRNA expression and gut microbiome composition. To achieve 

this, sncRNA expression profiles in stool specimens were obtained by small RNA-seq and 

gut microbiome composition by shotgun metagenomic sequencing in relation to CD. 

sncRNA expression levels and gut microbiome composition were assessed analysing 

different types of CD patients (individuals with high or normal levels of TG2-Abs) vs 

healthy controls.  

Study 2: We aimed at identifying sncRNA and microbial signatures in surrogate tissue able 

to accurately discriminate CRC cases at diagnosis from healthy controls, “precancerous 

lesions” or gut inflammatory disease (such as adenomas and IBDs), the latters being at 

higher risk of developing CRC. In parallel, we aimed at establishing if there is a reflection of 

the found fecal profiles on primary tumor tissue. This was achieved by investigating 

sncRNA expression profiles and shotgun metagenomics in stool in relation to CRC, 

precancerous lesions (polyps) and IBD in two independent cohorts. In one cohort, sncRNA 

profiles were also investigated in tumor/polyp and adjacent normal mucosa by the same 

approach (small RNA-seq). 
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3 MATERIALS AND METHODS 

3.1. Study populations 

3.1.1 Study 1 

 

A total of 130 subjects were enrolled in this study by the Molecular Epidemiology and Exposomics 

Unit at the Italian Institute for Genomic Medicine (IIGM) of Turin (n=88), the Gastroenterology 

Unit of Ospedale Mauriziano Umberto I (n=11) and the Gastroenterology outpatient clinic of San 

Giovanni Antica Sede (SGAS, n=31). The cohort included 60 treated CD, 3 untreated CD, 2 non-

celiac gluten sensitivity (NCGS) patients and 65 healthy volunteers. For CD patients inclusion 

criteria were: Caucasian ethnicity, ages> 15 and <80 years, negative medical history of concomitant 

or previous gastrointestinal diseases (including tumors) and CD diagnosis histologically approved. 

Exclusion criteria included: self-diagnosis, use of antibiotics and other drugs at sampling, age <15 

and other concomitant diseases. CD treated group of patients was further stratified in subjects with 

normal value of TG2-Ab serum levels (levels of TG2-Ab <3.0 UA are considered normal) (CD-

ltTG, n=51) and those with a value above the 3.0 UA threshold (CD-htTG, n=11). This latter 

category also included a follow-up collection of 2 CD untreated individuals recruited after three 

months from the GDF diet adherence. Healthy volunteers were enrolled among the general 

population and were age and sex-matched to recruited CD. They followed an omnivore diet without 

any dietary restrictions, food intolerance or allergies. 

All participants received a kit containing detailed information about the study, two questionnaires 

from the European Prospective Investigation into Cancer and Nutrition (EPIC) study (one about the 

dietary habits and another sex-specific one regarding lifestyle habits) [210], an additional short 

questionnaire about changes in their dietary habits, medical history, additional questions not present 

in the EPIC questionnaires, and finally a disposable 30mL polystyrene screw cap container with 

spoon for stool collection. All volunteers signed a written informed consent form to participate in 

the study. The study was conducted according to the guidelines in the Declaration of Helsinki. The 
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protocol of the study was approved by the Azienda Ospedaliera-Universitaria, Città della Salute e 

della Scienza di Torino (Protocol n 0030717, 23th March, 2018). 

3.1.2 Study 2 

 

Biological specimens, clinical and demographic data were collected from patients recruited in a 

hospital-based study at the Clinica S. Rita in Vercelli, Italy and two hospitals in Prague and one in 

Plzen, Czech Republic. On the basis of colonoscopy results, participants were classified into four 

categories: (i) healthy subjects (individuals with colonoscopy results negative for tumor, polyps, 

and other GI; (ii) subjects with gut inflammatory pathologies such as IBD and diverticular disease; 

(iii) polyps patients (individuals with any type of colorectal polyps); and (iv) colorectal cancer 

patients (individuals with newly diagnosed CRC). 

Stool and blood were collected for a total of 221 subjects (80 Healthy, 41 Inflammation, 43 Polyps, 

57 CRC) in the Cohort-IT. When available, for CRC and polyps cases tumor/malignant tissue and 

adjacent normal mucosa were collected and stored in RNA later. 

Stool and plasma samples were also collected from an independent cohort of 162 subjects (36 

Healthy, 32 Inflammation, 28 Polyps, 66 CRC) recruited in the Czech Republic (Cohort-CZ).  

All CRC patients were recruited at the first CRC diagnosis and had not received any treatment 

before the fecal sample collection. 

The study was approved by the local ethics committee (Ethics Committee of Azienda Ospedaliera 

SS.Antonio e Biagio e C. Arrigo of Alessandria, Italy; protocol N. Colorectal miRNA CEC2014 

and Institute of experimental medicine CE, Prague, Czech Republic), and informed consent was 

obtained from all participants. 
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3.2. Sample collection 

3.2.1 Study 1 

 

Naturally evacuated stool samples were collected at home in stool nucleic acid collection and 

transport tubes with RNA stabilizing solution (Norgen Biotek Corp.). The participants brought them 

to the IIGM laboratory or at the gastroenterology units of the two relative Hospitals. The fecal 

samples were aliquoted in 200 µl into Eppendorf LoBind tubes prepared for the next step and stored 

at -80°C. 

Plasma and serum samples were collected according to standard phlebotomy procedures at the 

moment when volunteers brought the stool samples to the laboratory or, in case of those patients 

hospitally recruited, the day of their gastroenterological visit. Five ml of blood was collected into 

both Ethylenediaminetetraacetic acid (EDTA) tubes for plasma isolation and in BD Vacutainer SST 

II Advance tubes for the serum, and immediately placed on ice. Tubes were centrifuged at 1000 and 

4000 rpm for 10 minutes at room temperature for plasma and serum isolation, respectively, and then 

aliquoted in 250µl in Eppendorf LoBind tubes and stored at -80ºC. The time from sample 

procurement to storage at -80°C was less than 3 hours. 

3.2.2 Study 2 

 

Stool samples were collected at home in the same tubes described in Study1, before any bowel 

preparation for colonoscopy and returned at the time of performing a colonoscopy in the endoscopy 

unit or at the time of blood sampling. Aliquots (200 μl) of the stool samples were stored at –80°C 

until RNA/DNA extraction.  

Plasma samples were collected and processed as in Study 1.  

For CRC and Polyp patients fresh colorectal tissue samples were prospectively collected at the 

Clinica S. Rita in Vercelli, Italy CRC. Paired primary tumor/polyp tissues and adjacent normal 

mucosa were obtained from the CRC patients of the Italian cohorts undergoing surgery. All tissues 

samples were immediately preserved in RNA later and stored at –80°C until use. 
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Sampling for all biospecimens was performed in the same time period (years 2016-2021) for both 

cohorts. 

3.3 Nucleic acid isolations  

3.3.1 Extraction of total RNA and DNA from stool  

 

In both studies, a 200 µl fecal aliquot was used for RNA extraction with stool total RNA 

purification kit (Norgen Biotek Corp.) using the protocol recommended by the manufacturer. The 

RNA quality and quantity were verified according to the MIQE guidelines (http://miqe.gene-

quantification.info/). The RNA concentration was quantified by Qubit with a Qubit microRNA 

assay kit (Invitrogen). In study 1, DNA extraction was performed using the DNeasy PowerSoil Pro 

Kit (Qiagen Cat No./ID: 47014, Cat No./ID: 47016). A smaller volume of the final elution buffer to 

increase DNA concentration was adopted as a unique modification of the kit protocol.. In Study 2, 

DNA extraction was performed using the Qiamp DNA stool kit (Qiagen) following the 

manufacturer’s instructions. The DNA quantification was performed in both studies with a Qubit 

DNA high-sensitivity (HS) assay kit (Invitrogen). 

3.3.2 Extraction of total RNA from plasma 

 

For Study 1, 200 µl of plasma volume was used for RNA extraction. Total RNA was extracted with 

the Qiagen miRNeasy Serum/Plasma Kit using the protocol recommended by the manufacturer. The 

RNA concentration was quantified by Qubit using the Qubit microRNA assay kit (Invitrogen). For 

Study 2, plasma exosomes/EVs were isolated from 200μl of plasma using the ExoQuick exosome 

precipitation solution (System Biosciences, Mountain View, CA, USA) according to the 

manufacturer’s instructions. Briefly, the plasma was mixed with 50.4μl of ExoQuick solution and 

refrigerated at 4°C overnight (at least 12 h). The mixture was then further centrifuged at 1500 g for 

30 min. The EVs pellet was dissolved in 200 μl of nuclease-free water and RNA was extracted 

immediately from the solution with the same kit of Study 1 but using the QiaCube extractor 

(Qiagen) as described in [211] and RNA concentration quantified as in Study 1.  
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3.3.3 Extraction of total RNA from tissues 

 

In Study 2, total RNA from tissues samples was extracted using Trizol reagent (Thermofisher) 

according to the manufacturer’s instructions.  

The RNA quality and quantity were verified according to the MIQE guidelines (http://miqe.gene-

quantification.info). The RNA concentration was quantified by Qubit with a Qubit microRNA assay 

kit (Invitrogen).  

3.4 Library preparation for small RNA sequencing 

 

Small RNA transcripts were converted into barcoded cDNA libraries. Library preparation was 

performed with a NEBNext multiplex small RNA library prep set for Illumina (protocol E7330; 

New England BioLabs Inc., USA). For each sample, 250 ng of RNA were used as the starting 

material to prepare libraries. Each library was prepared with a unique indexed primer so that the 

libraries could all be pooled into one sequencing lane. Multiplex adapter ligations, reverse 

transcription primer hybridization, reverse transcription reactions, and the PCR amplification were 

performed as described in the protocol provided by the manufacturer. After PCR preamplification, 

the cDNA constructs were purified with a QIAQuick PCR purification kit (Qiagen, Germany) 

following the modifications suggested in the NEBNext multiplex small RNA library prep protocol. 

Further quality control checks and size selections were performed following the NEBNext 

multiplex small RNA library prep protocol (protocol E7330; New England BioLabs Inc., USA). 

Size selection of the amplified cDNA constructs was performed using Novex Tris-borate-EDTA 

(TBE) gels (Invitrogen) (6%) and following the procedure of gel electrophoresis running and 

purification of the construct described in the Illumina TruSeq small RNA library prep protocol. The 

140-nt and 150-nt bands correspond to adapter-ligated constructs derived from RNA fragments of 

21 to 30 nt. A concluding Bioanalyzer 2100 run performed with a high-sensitivity DNA kit (Agilent 

Technologies, Germany) permitted checking final size, purity, and concentration for the sequences 

in the DNA libraries. The obtained libraries (24 samples were multiplexed) were subjected to the 

Illumina sequencing pipeline, passing through clonal cluster generation on a single-read flow cell 
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(Illumina Inc., USA) by bridge amplification on a cBot (TruSeq SR cluster kit, v3-cBOT-HS; 

Illumina Inc., USA) and 50 cycles of sequencing by synthesis using a HiSeq 2000 (Illumina Inc., 

USA) at the Gene Core Facility of the European Molecular Biology Laboratory (EMBL), 

Heidelberg (Germany). 

3.5 Analysis of sncRNAs from small RNA-seq data  

 

Small RNA-Seq pipeline analyses were performed using a previously published Docker-embedded 

software to guarantee the computational reproducibility of the analysis [212]. Briefly, trimmed 

reads were mapped against an in-house reference of human small RNA sequences. The alignment 

was performed using BWA algorithm v0.7.12 [213]. Human miRNAs were annotated and 

quantified using two methods called the “knowledge-based” and “position-based” methods as 

described in [212]. miRNAs whose assigned arms were derived from the “position-based” 

methodology were indicated in italics. The sequences of the mature miRNAs were aligned between 

each other, and in case of mature miRNAs characterized by identical sequences, the associated read 

counts were summed. A detected miRNA was considered as expressed if supported by at least 15 

(Study 1) and 20 (Study 2) normalized reads.  

3.6 miRNA targets functional enrichment analysis 

 

Functional enrichment analysis was performed using RBiomirGS v0.2.12 [214] considering 

validated targets of DEmiRNAs among the categories. The log2FC and adjusted p-value computed 

between the categories were used as inputs for the tool. The gene sets characterized by an adjusted 

p-value lower than 0.001 were considered as significantly enriched. 

3.7 Model-based learning for disease classes classification 

 

The predictive model to distinguish among all disease classes involved in the study 2 was defined 

through a supervised strategy based on three steps. Step1 consisted of the selection of differentially 

expressed sncRNAs between two disease classes, independently in Cohort-IT and Cohort-CZ. In 

Step2, for each comparison considered (i.e., CRC versus healthy, and adenoma versus healthy) the 
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disease feature model was defined based on differentially expressed sncRNAs associated with the 

highest AUC value. In Step3, merging the disease feature models previously selected, the sncRNAs 

predictive model able to distinguish among all disease classes was identified.  

The classification capability of the predictive model of sncRNAs was assessed through a stratified 

ten-fold cross-validation to address the imbalance in the number of patients belonging to the sample 

groups. In the cross-validation, a training set from the pooled samples from both Cohort-IT and 

Cohort-CZ was defined using the remaining samples for testing the model. The evaluation of the 

model was performed using three classification algorithms (i.e., random forest, logistic regression, 

and gradient boosting) and repeated 100 times. Each final accuracy value was therefore derived by 

an average value of over 1,000 validation folds. 

3.8 Library preparation for shotgun metagenomic sequencing and bioinformatics analyses 

 

The same experimental procedure was adopted for both studies. Library preparation of Study 2 was 

performed in collaboration with the Computational Metagenomics Laboratory (UNITN). Nextera 

DNA Flex Library Prep kit was adopted for the Illumina NovaSeq metagenomic sequencing of 

DNA from stool samples. The experimental procedure follows the Illumina reference guide. Two 

adjustments were performed: 

▪ at the “clean up library step” stage, 0.6x AMPure XP beads were used 

▪ re-suspension of the library pool occurred with ¼ of the initial pool volume 

These modifications allow the achievement of a higher quality of resulting reads and a lower 

content of adapters. Sequencing was performed on the NovaSeq 6000 Sequencing System (average 

of 6.5GB/sample). 

Pre-processing steps of metagenomics data analysis, including read quality control, trimming and 

adapter removal, and removal of reads aligned on phiX or human genome were performed in 

collaboration with the computer Science Department of the University of Torino, using the 

procedure implemented in collaboration with CIBIO (Trento, as provided in 

https://github.com/SegataLab/preprocessing). Taxonomic profiling was carried out by using 
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MetaPhlAn3 in default settings and using mpa_v30_CHOCOPhlAn_201901 as microbial markers 

database. Alpha and beta diversity metrics were computed using the vegan R package Functional 

profiles were obtained by HUMAnN 3.0 [215]. Difference in microbial relative abundances among 

the sample groups was evaluated using SIAMCAT v1.11.1 package in default settings [216]. 

Species with abundance lower than 0.001 were filtered using the filter.features function while 

association testing was performed using the check.associations function.  

3.9. Data integration and feature selection 

 

The R package mixOmics was used for the integration of the three datasets (taxonomic profiles, 

miRNA expression profiles, and dietary information), using the Data Integration Analysis for 

Biomarker discovery using Latent cOmponents (DIABLO) [217]. Datasets were integrated after 

normalization (scale R function) and removing of near-zero variables (nearZeroVar function of R 

package caret). The function block.splsda was used to compute the DIABLO model while the 

function plotLoadings was used to extract the 25 microbial species, miRNAs, and nutrients 

associated with the highest loading on the first and the second variate of the model. These attributes 

were further used as input for a classification and a feature selection analysis using Weka v.3.8.5 

[218]. The classification analysis was performed using the Random Forest classifier with default 

settings and a 10-Fold cross-validation control to evaluate the predictive model. Feature selection 

analysis was performed using seven methods (ClassifierAttributeEval, CorrelationAttributeEval, 

GainRatioAttributeEval, InfoGainAttributeEval, OneRAttributeEval, ReliefFAttributeEval, 

SymmetricalUncertAttributeEval) providing a ranking statistic to score the contribution of each 

attribute to the classification. 
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3.10 Statistical Analysis 

 

Differential expression analysis was performed with DESeq2 R package v1.22.2 using the 

likelihood ratio test (LRT) function. This function was selected in order to correct the analysis 

including age, gender, and BMI covariates [219].  

Correlation analysis calculated using the Spearman’s rank correlation coefficient (SCC) using age, 

gender, and BMI covariates to correct the analysis.  

Multiple testing correction was performed using the BH method and correlations associated with an 

adjusted p-value <0.05 were considered as statistically significant. For microbiome composition 

analysis the differential abundances both at phylum and species levels were considered significant if 

associated with a Wilcoxon adjusted p-value lower than 0.05. 
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4 RESULTS 

4.1 Study 1 

4.1.1 Population Characteristics 

 

A total of 130 participants were recruited for the present study categorised as: i) untreated CD, 

recruited at diagnosis before starting the GFD (n=3), ii) CD treated, already on a GFD (n=60), iii) 

NCGS individuals (n=2), and iv) healthy sex-/age-matched controls, not following any specific diet 

(n=65). CD treated group were further grouped according to serological levels of tTG2-Ab in those 

under (CD-ltTG, n=51) and over (CD-htTG, n=11) the <3.0 UA threshold (see Material & Methods 

section). The mean age of the healthy subjects was 40.8±14.3 years. Treated CD subjects had a 

similar mean age of 42±14.5 years while for CD untreated and NCGS categories was 46.5±13.9 and 

32±0.3 years, respectively (Table 5). CD treated group included 75% of females and 25% males 

while 77% of females and 23% of males characterized the healthy group. No significant differences 

were observed considering other variables, except for the Vitamin D3 levels (p<0.0001.) 

consistently higher in treated CD individuals (average of 92.6±134.1 ng/ul) compared to healthy 

controls (average of 32.5±2.8). This is probably due to the use of vitamin supplements usage in the 

former group.  
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Table 5: Demographic and clinical characteristics of the CD cohort analysed in the study 

Covariates  CD Untreated 

(n=3) 

CD Treated 

(n=60) 

CD ltTG 

(n=51) 

CD htTG 

(n=11) 

NCGS 

(n=2) 

Healthy controls 

(n=65) 

P-value 

(CD treated vs Healthy) 

Age 

(years) 

Average±SD 

Range 

46.5±13.9 

31-58 

42±14.5 

19-75.6 

43±15.1 

19-74 

44.4±14.7 

24-76 

32.0±0.3 40.8±14.3 

20.6-77.5 

0.775 

Sex Female 

Male 

3 

 

45 

15 

38 

13 

9 

2 

2 50 

15 

0.801 

BMI (Kg/m2) Average±SD NA 22.3±3.4 21.9±3.9 22.3±3.1 18.4±1.9 22.5±3.1 0.206 

Length of Gluten free diet 

(years) 

Average±SD 

Range 

_ 8.9±7.9 

0.04-29.8 

10.2±7.9 

0.2-29.9 

9.0±6.2 

0.1-16.4 

1.2 

(partially) 

_  

Smoking status current 

former 

never 

NA 

1 

1 

1 

- 

8 

14 

37 

1 

7 

12 

31 

1 

1 

3 

6 

1 

1 

- 

1 

- 

8 

15 

40 

- 

0.989 

Marsh grade 

(at CD diagnosis) 

l 

ll 

llla 

lllb 

lllc 

NA 

- 

- 

1 

2 

- 

- 

5 

2 

14 

11 

16 

12 

4 

2 

13 

9 

13 

10 

1 

0 

2 

3 

3 

2 

   

*s-Ab anti transglutaminase lgA 

(AU/ml) 

≤3.0 

>3.0 

NA 

0 

3 

37 

9 

14 

37 

- 

14 

0 

11 

- 

2 

0 

50 

0 

15 

 

**s-FERRITIN 

(ng/ml) 

 

Average±SD 

Range 

<11 

≥11 

NA 

6±2 

4-8 

3 

0 

54.4±54.6 

8-246 

2 

44 

14 

60.0±59.9 

11-46 

- 

37 

14 

22.1±29 

4-105 

3 

7 

1 

34.0±21.2 

19-49 

0 

2 

73.0±80.6 

3-429 

4 

46 

0.46 

***s-VITAMIN B12  

(pg/ml) 

 

Average±SD 

Range 

<180 

≥180 

NA 

369 

369 

0 

1 

2 

286.9±122.2 

111-708 

7 

39 

14 

295.6±123.4 

111-708 

4 

33 

14 

271.5±101.4 

135-440 

3 

7 

1 

177.5±87.0 

116-239 

1 

1 

270.1 

101-1152 

11 

39 

0.395 

****s-VITAMIN D3 

(ng/ml) 

 

 

Average±SD 

Range 

<30 

≥30 

NA 

17.8 

17.8 

1 

0 

2 

92.6±134.1 

10-428 

24 

22 

14 

91±133.3 

10.6-428 

19 

 

82.7±127.2 

10.5-394 

4 

6 

1 

32.5±2.8 

30.6-34.5 

0 

2 

22.6±12.9 

3.8-92.7 

44 

6 

1.14E-04 
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* Ab anti transglutaminase lgA serum test is negative when ≤3 AU/ml, dubious when between 3 AU/ml - 12.0 and 

positive if >12 AU/ml. 

** FERRITIN serum level is low when <11 ng/ml, normal when ranging from 11 to 307 ng/ml and 

high if >307 ng/ml. 

***VITAMINB12 serum level is low when <180 ng/ml, normal when ranging from 180 to 914 

ng/ml and high if >914 ng/ml. 

****VITAMIN D3 serum level is low when <30 ng/ml, normal when ranging from 30 to 100 ng/ml 

and high if >100 ng/ml. 

4.1.2 miRNA profiles from small-RNA sequencing data 

 

Small-RNA sequencing of fecal samples was performed for all the 130 individuals recruited in this 

study. On average, 12.2 million single-end reads per sample were obtained from sequencing output, 

with a median of 101,671 reads (1.07%) assigned to human miRNA annotations (Figure 10 A). The 

distribution of miRNAs detected in all groups is reported in Figure 10 B. In total, 2,830 miRNAs 

were detected in at least one sample. Considering miRNAs with a median of reads > 15 at least in 

one of the investigate groups, an average of 757 detected miRNAs was observed. miR-3125 was 

characterized by the highest median expression levels in all groups. 
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Figure 10. Read assignments for stool samples of each subject (left) and for each of the 

investigated categories (right) (A); Stool miRNAs (B) and other sncRNAs (C) detected in the four 

groups. 

 

Overall, one hundred DEmiRNAs were identified by the differential expression analysis by 

comparing the CD categories with the healthy controls (Figure 11 A). Forty-nine DEmiRNAs were 

detected comparing CD-ltTG with healthy individuals, among which 22 were up-regulated and 27 

down-regulated. In the CD-htTG vs controls comparison, 54 miRNAs showed an altered 

expression, with 16 of them down-regulated and 38 up-regulated in the CD group. Interestingly, six 

DEmiRNAs overlapped between the comparisons of CD-ltTG and CD-htTG vs healthy controls 

(Figure 11 B). All of them shared the same trend of expression in both comparisons, with slightly 

higher FCs in the CD-htTG group. A comparison between these two groups highlighted 20 

DEmiRNAs, 18 up-regulated and two down-regulated (namely, miR-3137-3p and miR-4259). 

Interestingly, for some of the DEmiRNAs found among the comparisons we noticed a trend of 

expression going from CD untreated to CD-htTG, CD-ltTG and healthy individuals. An example 

for three dysregulated miRNAs is reported in Figure 11 C. Due to the limited number of 

individuals (n=3), CD untreated group was not individually considered for DE analysis. 

To study the relationship between fecal DEmiRNA expression profiles and the duration of the GFD 

a correlation analysis was run. The average GFD duration in the whole group of CD patients was 

8.9±7.9 years, ranging from a couple of weeks to 29.8 years.  

By analysing the whole group of CD treated patients (i.e., CD-htTG and CD-ltTG), a significant 

correlation with GFD duration was observed for six DEmiRNAs. miR-3652-3p and miR-6505-3p 

resulted negatively correlated (SCC = -0.29, p=0.02 and SCC = -0.25, p=0.04 respectively) while 

miR-4771-5p, miR-4684-3p, miR-662-5p and miR-320d resulted positively correlated (SCC ranging 

from 0.24 to 0.26, p<0.05). The same analysis focusing only on the CD-ltTG group highlighted 

miR-6505-3p, miR-4771-5p, miR-3652-3p, miR-3619-3p and miR-4684-3p significantly correlated 

with GFD duration (p<0.05). The first three miRNAs, already found in the previous analysis based 



66 

on the whole CD group, showed the same correlation trend with stronger correlation for miR-6505-

3p and miR-4771-5p (SCC= -0.34, p=0.01 and SCC= 0.33, p=0.02 respectively). None of the 

DEmiRNAs correlated to the duration of the GFD was also correlated to subjects’ age
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Figure 11. Results of miRNA differential expression analysis among the investigated categories. A. Heatmap representing FCs of the 100 

significant DEmiRNAs among the previously mentioned comparisons. B. Upset plot representing specific and common DEmiRNAs among the 

investigated categories. C. Violin plots reporting expression levels of selected DEmiRNAs showing a trend of expression (down-regulation for miR-

1260a-3p and miR-6515-5p and up-regulation for miR-4672) going from CD untreated to CD-htTG, CD-ltTG and the healthy controls categories. 

B 

C 

A 
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4.1.3 DEmiRNAs enrichment analysis 

 

A functional analysis was performed for the 3 groups of identified DEmiRNAs (i.e., CD-htTG or 

CD-ltTG specific miRNAs and the 6 DEmiRNAs overlapping among the two comparisons). A total 

of 104 significant enriched terms were observed (p<0.001): the most relevant are reported in Table 

6. DEmiRNAs characterizing CD-htTG resulted mainly associated with the inflammatory (Nlrp3 

Inflammasome, Inflammasomes) and metabolic pathways (Intestinal Lipid Absorption, Cellular 

Carbohydrate Biosynthetic Process, etc.). Similarly, enrichment analysis on CD-ltTG specific 

DEmiRNAs highlighted a role in the immunity response (Positive Regulation Of Macrophage 

Migration, and T Cell Migration) and metabolic process (Cellular Modified Amino Acid Catabolic 

Process) related terms. The enrichment analysis performed considering the 6 DEmiRNAs common 

among both CD groups showed apoptosis as the main process in which the DEmiRNAs target genes 

are involved (Execution Phase Of Apoptosis, Regulation Of Execution Phase Of Apoptosis). 
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Table 6: Enriched terms for the CD-htTG and CD-ltTG specific DEmiRNAs and those of the 6 shared DEmiRNAs. Three libraries were considered 

for the functional analysis, KEGG, Reactome and GO-Biological Process. Only terms enriched with a p-adj<0.05 were reported. 

 

Enriched terms Class Targets 

REACTOME_THE_NLRP3_INFLAMMASOME CD-htTG HSP90AB1, PYCARD, 

SUGT1, RELA, TXNIP 

REACTOME_INFLAMMASOMES CD-htTG HSP90AB1, PYCARD, 

SUGT1, BCL2L1, BCL2, 

RELA, TXNIP 

GO_NEGATIVE_REGULATION_OF_ANION_TRANSMEMBRANE_TRANSPORT CD-htTG MTOR, THBS1 

GO_INTESTINAL_LIPID_ABSORPTION CD-htTG LDLR, ABCG8 

GO_CELLULAR_CARBOHYDRATE_BIOSYNTHETIC_PROCESS CD-htTG B4GALT1, PPP1CB 

GO_CELLULAR_MODIFIED_AMINO_ACID_CATABOLIC_PROCESS CD-ltTG ABHD12, ALDH4A1 

GO_REGULATION_OF_MACROPHAGE_CHEMOTAXIS CD-ltTG MDK, THBS1 

GO_REGULATION_OF_GRANULOCYTE_CHEMOTAXIS CD-ltTG MDK, THBS1 

GO_POSITIVE_REGULATION_OF_MACROPHAGE_CHEMOTAXIS CD-ltTG MDK, THBS1 

GO_REGULATION_OF_MACROPHAGE_MIGRATION CD-ltTG MDK, THBS1 

GO_POSITIVE_REGULATION_OF_MACROPHAGE_MIGRATION CD-ltTG MDK, THBS1 

GO_POSITIVE_REGULATION_OF_INSULIN_SECRETION CD-ltTG GLUL, HIF1A, TCF7L2 

GO_T_CELL_MIGRATION CD-ltTG CRK, RHOA, MSN 

GO_EXECUTION_PHASE_OF_APOPTOSIS Both MTRNR2L7, MTRNR2L3, 

MTRNR2L10, MTRNR2L11, 

TAOK1 

GO_REGULATION_OF_EXECUTION_PHASE_OF_APOPTOSIS Both MTRNR2L7, MTRNR2L3, 

MTRNR2L10, MTRNR2L11, 

TP53 

GO_NEGATIVE_REGULATION_OF_EXECUTION_PHASE_OF_APOPTOSIS Both MTRNR2L7, MTRNR2L3, 

MTRNR2L10, MTRNR2L11 

GO_NEGATIVE_REGULATION_OF_SIGNALING_RECEPTOR_ACTIVITY Both MTRNR2L7, MTRNR2L3, 

MTRNR2L10, MTRNR2L11 
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4.1.4 Other sncRNA profiles from small RNA sequencing data 

 

A median of 417,889 reads (4%) was assigned to other sncRNAs than miRNA annotations (Figure 

10 A). The distribution of sncRNAs detected in all groups is reported in Figure 10 C. In total 

25,849 sncRNAs were detected in each sample with an average of 2345 sncRNAs expressed in each 

sample. The differential analysis of other sncRNAs than miRNAs provided a total of 56 

differentially expressed sncRNAs (DEsncRNAs) observed in at least one of the performed 

comparisons among the groups of interest of CD and healthy controls (Figure 12 A). Among the 

DEsncRNAs, 35 were piRNAs, 15 tRNAs, 3 snRNAs, 1 other snRNAs, 1 tRNA-derived fragments 

(tRFs) and 1 from the miscellaneous RNAs (miscRNA). No significant results were obtained 

comparing CD-ltTG vs healthy controls, while 42 DEsncRNAs (35 up and 7 down-regulated) were 

observed comparing CD-htTG vs healthy controls, Figure 12 B. The comparison between CD-htTG 

and CD-ltTG groups highlighted 22 DEsncRNAs, 14 up and 8 down-regulated in CD-htTG. Eight 

DEsncRNAs overlapped with consistent trends between CD-htTG vs CD-ltTG and CD-htTG vs 

healthy controls.  
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Figure 12. Results of sncRNA differential expression analysis among the investigated categories. 

A. Heatmap representing FCs of the 56 significant DEsncRNAs among the comparison previously 

mentioned. B. Upset plot representing specific and common DEmiRNAs among the investigated 

categories.  

 

4.1.5 Gut microbiome composition 

  

Metagenomic sequencing of DNA from fecal samples was performed for all the 130 individuals 

recruited in this study. On average, 44.382.527 raw reads were assigned to each sample of which on 

average 44.343.411 (99,91%) passed the trimming phase and were used for the following analysis. 

Initially, gut microbiome composition at phylum level was explored among the categories, (Figure 

13).  

 

 

Figure 13. Relative abundances for each phylum in each sample of the investigated categories 

 

Comparing CD-ltTG vs healthy controls a significant reduction of Actinoabacteria (p=0.00004) and 

Verrucomicrobia (p=0.004) abundance as well as an increase in Bacteroidetes (p=0.02) was 

noticed. CD-htTG group showed a reduction of Euryarchaeota (p=0.02) and Fusobacteria (p=0.04) 

abundance in comparison with the healthy controls while no significant differences were obtained 

comparing the CD groups. Subsequently, gut microbiome was explored at the species level. 

Considering the microbial richness, an average of 119, 104, 103 and 104 species were detected in 

CD untreated, CD-htTG, CD-ltTG, and healthy controls, respectively. Even if with a similar 
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richness, a significantly different evenness was observed between CD-htTG and healthy controls 

(p<0.05). Comparing CD-ltTG vs healthy subjects five microbial species showed a significantly 

different abundance (p<0.05) in CD-ltTG. Specifically, Bifidobacterium longum, Roseburia sp CAG 

309, Ruminococcus bicirculans, Ruminococcus callidus and Eubacterium sp CAG 274 were less 

abundant while Roseburia inulinivorans more abundant in CD-ltTG (Figure 14 A). When CD-htTG 

patients were compared to healthy controls, 7 microbial species resulted more abundant while 

Ruminococcus bicirculans was reduced in the CD group (p<0.05) (Figure 14 B). There were no 

significant differences in the microbial abundances of the two largest CD groups. 

A correlation analysis was run between gut microbiome profiles and the duration of the GFD. By 

analysing the whole group of CD treated patients (i.e., CD-htTG and CD-ltTG), a significant 

negative correlation with GFD duration was observed for Aggregatibacter aphrophilus (SCC=-

0.28, p=0.02), Haemophilus parainfluenzae (SCC=-0.30, p=0.01) and Streptococcus sanguinis 

(SCC=-0.25, p=0.04) (Supplementary Table 1A). It is worth to notice that while Streptococcus 

sanguinis was also negatively correlated with age of investigated subjects (SCC=-0.26, p=0.03), no 

concomitant significant correlation was observed for Aggregatibacter aphrophilus and 

Haemophilus parainfluenzae. The same analysis focusing only on the CD-ltTG group confirmed the 

negative correlation for Aggregatibacter aphrophilus (SCC=-0.32, p=0.009) and Haemophilus 

parainfluenzae (SCC=-0.28, p=0.02) with GFD duration.  
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Figure 14. Relative abundances comparisons between CD-ltTG vs healthy (A) and CD-htTG vs 

healthy (B). For significantly associated microbial features (p<0.05), the plot shows: the 

abundances of the species across the two different classes (CD vs. controls), the significance of the 

enrichment calculated by a Wilcoxon test (after multiple hypothesis testing correction), the 

generalized fold change of each feature, the prevalence shift between the two classes, and - the Area 

Under the Receiver Operating Characteristics Curve (AU-ROC) as non-parametric effect size 

measure. 

A 

B 
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4.1.6 Gut microbiome functional profiles analysis 

 

A functional profiling of the gut metagenomes was performed using HUMAnN3. Different gut 

microbiome composition is reflected in differential potential activities. A total of 24 pathways were 

identified with a significant different abundance among the analysed groups (Figure 15). Overall, 

in comparison with controls, the microbiome of both the CD groups showed a lower abundance in 

pathways related to the starch biosynthesis and degradation, amino acids biosynthesis (L-arginine 

biosynthesis I, L-methionine biosynthesis III), glucose (glycogen degradation I and II, 

gluconeogenesis lll) and an higher abundance in L-rhamnose degradation I, nitrate reduction and 

aerobactine biosynthesis pathways. 

A correlation analysis was run between the pathways abundance and GFD duration. Considering the 

whole group of CD patients, PWY-5941: glycogen degradation II (eukaryotic) pathway resulted 

positive correlated (SCC=0.36, p=0.03) and DENITRIFICATION-PWY: nitrate reduction I (SCC= 

-0.26, p=0.03) negative correlated with GFD adherence (Supplementary Table 1A) while no 

significant results were observed considering only CD-ltTG group.  
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Figure 15: Heatmap representing log2FCs of the 24 pathways with a significant different 

enrichment among the comparisons performed. Correlation coefficient from spearman correlation 

analysis between the 24 pathways and GFD years duration and age are also reported. 

 

4.1.7 miRNA-microbiome correlation analysis 

 

To investigate the relationship between stool miRNA profiles and gut microbiome composition, the 

expression levels of all the observed DEmiRNAs were correlated to the abundances of the microbial 

species differently represented among the comparisons, Figure 16.  
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Figure 16: Heatmap representing SCCs computed between the 13 microbial species reporting a 

different abundance among the categories and the DEmiRNAs.  

 

We chose to focus on Ruminococcus bicirculans, Bifidobacterium longum, and Roseburia 

inulinivorans since these microbial species showed a higher difference in relative abundances 

among the groups (Supplementary Table 1B). Significant correlations were observed between 

Ruminococcus bicirculans and 25 DEmiRNAs (p<0.05). Nine DEmiRNAs resulted inversely 

related with the abundance of this microbial species while 16 were positively correlated. Similarly, 

24 DEmiRNAs significantly correlated with Bifidobacterium longum abundance (16 negatively 
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correlated and 8 positively) (p<0.05). The analysis between DEmiRNA expression levels and the 

abundance of Roseburia inulinivorans highlighted 6 DEmiRNAs negatively correlated and 5 

positively correlated (p<0.05). Noteworthy, miR-1229-5p and miR-3154-5p were associated with all 

the three bacterial species while 4 and 6 just with R.bicirculans and B.longum and with 

R.bicirculans and R.inulinivorans, respectively (Figure 17).  

                                           

Figure 17. Venn diagrams showing the number of DEmiRNAs overlapping among the three 

correlation analyses performed with microbial species. 

R. Bicirculans B. Longum 

R. Inulinivornas 
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4.1.8. Integration of miRNAs, microbiome and diet 

 

Data of the identified DEmiRNAs, microbial species abundance, and estimated daily nutrient intake 

from the dietary questionnaires were used to compute the DIABLO model. Results of the model are 

reported in Figure 18A. miRNAs and microbial species abundance showed a better efficiency 

compared to the nutrient intake for the discrimination of both CD categories from controls, with a 

major contribution of variate 1 compared to variate 2. Figure 18B-C shows the correlation analysis 

results among the three different types of data used for the DIABLO model for the variate 1 (Figure 

18B) and variate 2 (Figure 18C).  

 

 
 

 

Figure 18: Results of the DIABLO model. A. Contribution of miRNAs, microbial species, and 

nutrients in the discrimination of CD categories and controls. B-C Results from correlation analysis 

of the three different types of data used for the variate 1 (B) and variate 2 (C), respectively. 
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With the same input data used in the DIABLO model, a Weka model was also computed. Seven 

different feature selection methods were tested and the results ranked. A final median rank was 

calculated for each feature and the best 15 are reported in the heatmap of Figure 19. These 15 

features includes 7 microbial species, 6 miRNAs and 2 food intake nutrients with Vitamin E and B. 

longum being those with the best performance in the tested models. 

 

 
Figure 19: Results from the Weka model. Heatmap showing the best 15 features reporting the best 

rank among the feature selection methods tested.  
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4.2 Study 2 

4.2.1 Population Characteristics 

 

The study group consisted of two independent cohorts of individuals that after colonoscopy were 

diagnosed with the following status: i) subjects with CRC (70% colon and 30% rectum cancer), ii) 

subjects with precancerous lesions, iii) subjects with inflammatory diseases and iv) healthy subjects 

with negative colonoscopy. The Cohort-IT included 221 subjects (79 Healthy, 41 Inflammations, 43 

colorectal Polyps, and 58 CRCs). The mean age of the healthy subjects was 57.9 years (range 

spanning from 39 to 81 years), subjects with inflammation had a similar mean age (55.1) while 

polyp and CRC subjects were older than other groups (mean age of 64.1 and 71.2, respectively) 

(Table 7). The gender distribution was similar in the groups of healthy (39 males and 40 females) 

and inflammation (20 males and 21 females) subjects but different in polyp and CRC groups where 

the number of males individuals was higher compared to females (26 and 17, and 41 and 17, in 

polyp and CRC, respectively). No other significant differences were present for the other variables.  

The Cohort-CZ consisted of 162 individuals: 36 healthy subjects, 32 inflammations, 27 polyps and 

67 CRC. Those groups were significantly different for age, gender distribution, and smoking habits 

(all p<0.03). The mean age of the healthy subjects was 57.8 years (range spanning from 40 to 76 

years), subjects with inflammation had a similar mean age (58.7) while polyp and CRC subjects 

were older compared to the other groups (mean age of 63.1 and 68.0, respectively) (Table 7). The 

gender distribution was significantly different in the groups of healthy (14 males and 22 females) 

and CRC (46 males and 20 females) individuals compared to that of polyp and inflammation groups 

represented by an equal gender distribution. Cohort-CZ differs from Cohort-IT since in the first 

colorectal polyps consisted only of adenomas with low-grade dysplasia and hyperplastic polyps, 

and CRC patients presented mainly low-grade tumors (Table 7). 
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Table 7: Demographic and clinical characteristics of the Italian and Czech cohorts analysed in the study 

  Cohort-IT Cohort-CZ 

Covariate  Healthy 

(n=79) 

Inflammation 

(n=41) 

Polyp 

(n=43) 

CRC 

(n=58) 

p-value Healthy 

(n=36) 

Inflammation 

(n=32) 

Polyp 

(n=28) 

CRC 

(n=66) 

p-value 

Age Average 57.9 55.1 64.1 71.2 1.80E-10 57.8 58.7 63.1 68.0 8.34E-06 

 Range 39-81 30-82 42-92 54-87  40-76 41-75 48-82 40-88  

Sex Male 39 20 26 41 5.37E-02 14 16 14 46 1.74E-02 

 Female 40 21 17 17  22 16 14 20  

BMI Average 25.36±4.63 24.81±3.3 25.05±3.9 25.1±5.3 8.17E-01 28.2±6.1 28.8±7.0 29.0±3. 5 27.1±5.4 1.61E-01 

 Range 15.4-36.9 19.5-33.7 18.9-36.0 16.0-44.1  20.9-43.8 21.97-60.8 22.6-34.7 16.9-47.6  

Smoking status Non-smoker 29 17 19 20 5.68E-01 25 24 13 32 2.53E-02 

 Ex-smoker 33 11 11 23  3 0 8 12  

 Smoker 13 8 10 9  8 8 6 18  

 na 4 5 3 6  0 0 1 4  

Localization* Distal colon   10 26    16 16  

 Proximal 

colon 

  15 11    11 15  

 Rectum   18 19    6 34  

 na   3 2    0 1  

Polyp type Hyperplastic 

polyp 

  5     9   

 Tubular 

adenoma 

  25     16   

 TubuloVillo

us adenoma 

  7     2   

 Serrated 

adenoma 

  2     1   

 na   4     0   

Adenoma Grade Low   30     28   

 High   9     0   

 na   4     0   

Number of 

polyps 

Single   32     20   
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 Multiple   7     8   

 na   4     0   

pT (Combined) T1-T2    19     20  

 T3-T4    36     43  

 Tis    0     1  

 na    3     2  

pN 0    35     38  

 1    12     13  

 2    7     10  

 3    0     1  

 na    4     4  

Metastasis No    40     52  

 Yes    15     11  

 na    3     3  

Staging I    17     16  

 II    18     16  

 III    16     15  

 IV    4     14  

 na    3     5  

Grade G1-G2    25     44  

 G3    27     18  

 na    6     4  

Inflammation 

type 

IBD  16     15    

 Diverticular 

disease 

 21     17    

 Phlogosis  3     0    

 na  1     0    

*Localization of polyps exceeds the number of subjects with polyps, due to polyp detection in multiple sites. BMI= Body Mass Index; IBD= 

Inflammatory Bowel disease 
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4.2.2 Small-RNA sequencing of fecal samples 

 

Small-RNA sequencing was initially performed on stool samples of all the 221 subjects 

characterizing the Cohort-IT cohort. After sequencing, an average of 1.51% of the reads were 

aligned to miRNA sequences while 5.16% of the reads were aligned to other sncRNAs (Figure 20 

A). The distribution of miRNAs detected in all groups is reported in Figure 20 B. In total, 2,531 

miRNAs were detected, with an average of 230 miRNAs in each sample. Considering miRNAs 

with a median of reads greater than 20 within at least in one of the analysed group, a total of 152 

miRNAs were detected. Among these, 56 were in all four groups, while 34, 9, 3, and 1 were 

specifically detected in CRC, Healthy, Polyps, and Inflammation, respectively (Figure 20 C).  

Besides miRNAs, other classes of sncRNAs were detected, including piRNAs, tRNAs, and 

snoRNAs. In total, 317 sncRNAs were identified in all subjects whose distribution in each sample 

group is shown in Figure 20 D-E.  

From the sequencing of the 162 stool samples of the Cohort-CZ, an average of 1.06% and 3.46% of 

the reads were respectively aligned to miRNAs and other sncRNAs (Figure 20 F). The number of 

miRNAs and sncRNAs detected in stool samples of all subjects is reported in Figure 20 H and 

Figure 20 J, while the distribution of miRNAs and sncRNAs detected in all groups is reported in 

Figure 20 G-I. On average, 310 miRNAs and 891 other sncRNAs were detected in each sample. A 

total of 240 miRNAs and 637 sncRNAs were detected in at least one group while 129 miRNAs and 

420 sncRNAs were detected in all four subject classes. 
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Figure 20. A) Read assignments for of each sample of Cohort-IT (left) and for each investigated disease category (right). B) miRNAs detected in 

the four main groups of Cohort-IT. C) Upset plots representing detected miRNAs in common among different groups of subjects in Cohort-IT. D) 

sncRNAs with a minimum of 20 reads cut-off detected in each Cohort-IT subject from the four main groups; E) Upset plots representing detected 

sncRNAs in common between the different groups of subjects considered in the Cohort-IT, F) Read assignments for each samples of Cohort-CZ 

(left) and for each investigated disease category (right). G) miRNAs detected in the four main groups of Cohort-CZ. H) Upset plots representing 

detected miRNAs in common among the different groups of subjects in Cohort-CZ. I) sncRNAs with a minimum of 20 reads cut-off detected in 

each Cohort-CZ subject from the four main groups. J) Upset plots representing detected sncRNAs in common between the different groups of 

subjects considered in the Cohort-CZ. 

 

F G H I J 
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4.2.3 Differential expression analysis among the disease categories 

 

Differential expression analysis performed on the Cohort-IT showed that 110, 69, and 64 miRNAs 

were altered in CRC cases, polyp patients, and colorectal inflammation, respectively, when 

compared with healthy subjects (p<0.05). Comparing CRC and healthy subjects, 71 miRNAs were 

up-regulated and 39 down-regulated. The expression levels of the most significant dysregulated 

miRNAs between these groups are reported in Figure 21 A. Fifty-one DEmiRNAs, all up-

regulated, were in common among the comparisons performed against healthy individuals (Figure 

21 B-C). Conversely, 38, 7, and 3 DEmiRNAs were specifically altered in CRC, Polyp, and 

Inflammation, respectively. The CRC-specific DEmiRNAs were mostly down-regulated (Figure 21 

C). When compared with healthy subjects, all DEmiRNAs in CRC had consistent expression levels. 

This was also noted in the comparison between CRC and Polyps (p<0.0001), with 12 and 29 

miRNAs significantly up- and down-regulated in both CRC vs. healthy and CRC vs. Polyp 

comparisons (Figure 21 C).  

DEsncRNAs were 321, 89, and 155 in CRC, Polyps, or Inflammations vs. healthy subjects, 

respectively (for all p<0.05). In total, 78 DEsncRNAs were in common among all three 

comparisons but only 179 between CRC and healthy controls. All of the common DEsncRNAs 

were up-regulated while most of the DEsncRNAs altered only in CRC were down-regulated 

(n=137, 76.5%). The most frequent DEsncRNAs found in the comparison between CRC and 

healthy were piRNAs (n=147, 45.8%), followed by tRNAs (n=137, 42.7%), and misc_RNA (n=9, 

2.8%). 

In stool samples of the Cohort-CZ, 27 DEmiRNAs were identified between CRC and healthy 

controls and six between Polyp and healthy groups (Figure 21 D). No DEmiRNAs were detected in 

the comparison between Inflammations versus Healthy. Among the DEmiRNAs in CRC patients 

compared with healthy controls, 20 (74.1%) were up-regulated and seven down-regulated (25.1%) 

(Figure 21 E). Like the Cohort-IT, a subset of DEmiRNAs in CRC patients with respect to healthy 

subjects was also significantly differentially expressed in the comparison between CRC and Polyps 
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(n=8) or between CRC and Inflammations (n=12). In all comparisons between CRC and the other 

categories, four common miRNAs were always significantly differentially expressed. 

Among the other sncRNAs, 56 were differentially expressed in the comparison between CRC and 

healthy subjects, while only two between Polyps and healthy controls. Most of the stool 

DEsncRNAs between CRC and healthy were annotated as piRNAs (n=36, 64.3%), followed by 

tRNAs (n=9, 16.1%), and misc_RNAs (n=5, 8.9%) as already observed in the Cohort-IT. 
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Figure 21 A) Examples of expression levels of two dysregulated miRNAs between CRC and 

Healthy in Cohort-IT. B) Upset plot showing overlapping/specific DEmiRNAs in different 

comparisons in Cohort-IT. C) Fold-changes and significance levels of the stool DEmiRNAs in all 

comparisons with the Healthy group in Cohort-IT. miRNAs are ordered by fold-change from the 

comparison CRC vs. Healthy and grouped in common or specific for disease categories. D) Upset 

plot showing overlapping/specific DEmiRNAs between different comparisons in Cohort-CZ. E) 

Fold changes and significance levels of stool DEmiRNAs in Cohort-CZ in the comparisons between 

CRC and Healthy (left) or Polyp and Healthy (right). miRNAs are ordered by fold change from the 

comparison CRC vs. Healthy. 

 

4.2.4 Identification of common sncRNAs altered in both cohorts 

 

Among the 27 DEmiRNAs in the Cohort-CZ, 19 were also dysregulated in the Cohort-IT and with 

the same expression trend (16 up- and 3 down-regulated in CRC versus Healthy). Overall, the fold 

changes of all the DEmiRNAs between CRC and healthy subjects in Cohort-IT and those in the 

Cohort-CZ positively correlated (r=0.73, p<0.0001). This correlation resulted even stronger 

considering only the 19 DEmiRNAs in common between both cohorts (r=0.86, p<0.0001) (Figure 

22 A). All the 16 up-regulated overlapping DEmiRNAs were also significantly overexpressed in 

stool from the polyp and inflammation groups in comparison with healthy subjects (Figure 22 B). 

Conversely, the three miRNAs (namely, miR-607, miR-6777-5p, and miR-922) significantly down-

regulated were also significantly underexpressed in CRC when compared to Polyps and 

Inflammations. 

Clustering analysis based on the expression levels of the 19 DEmiRNAs defined two distinct groups 

of CRC patients (Figure 22 C). A further stratification according to clinical data showed that tumor 

grade was the major discriminant between these clusters (p<0.05). 

Target enrichment analysis for the 19 identified DEmiRNAs highlighted several enriched terms. 

The top twenty hits included REACTOME signaling by interleukin, KEGG Pathways in cancer, 

REACTOME transcriptional regulation by tp53 and others reported in Supplementary Table 1C.  

Thirty-seven out of the 56 DEsncRNAs in Cohort-CZ were also significantly dysregulated in the 

Cohort-IT with a coherent expression trend. 
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Figure 22 A. Scatterplots of stool miRNA log2FC in the Cohort-IT (x axis) and Cohort-CZ (y axis) 

resulting from the comparison between CRC and Healthy. Data are reported for all miRNAs (left 

panel), for DEmiRNAs in at least one cohort (middle) or in both (right). B. Log2FC and 

significance levels of 19 stool DEmiRNAs in both cohorts when comparing CRC and Healthy 

groups. miRNAs are ordered by decreasing log2FC computed in CRC vs. Healthy. C. Heat map 

reporting the normalized expression levels of stool DEmiRNAs in samples from CRC subjects of 

both cohorts together. The heatmap column annotations report the clinical data: tumor grade, 

presence of metastasis, lymph node invasion status (pN) and tumor size (pT) based on the TNM 

system. 

 

4.2.5 fecal miRNA predictive model discriminating CRC and adenoma 

 

After the application of the three-steps supervised strategy described in Materials and Methods, the 

CRCvsHealthy model was composed of three miRNAs: miR-607, miR-1246-3p, and miR-6777-5p. 

The overall classification performances of this model to distinguish CRC patients versus healthy 

subjects (given by the Area Under the Curve, AUC) were tested performing a 10-fold cross-

validation without any overlap between training and test sets in two settings. First, both Cohort-IT 

(AUC values 0.89 and 0.81 adjusting for gender and age or not, respectively) and Cohort-CZ (AUC 
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values 0.86 and 0.78 with or without adjustment for gender and age, respectively) were tested 

separately. Second, the two cohorts were pooled obtaining AUC values of 0.87 and 0.78 adjusting 

for gender and age or not, respectively (Figure 23 A). 

Considering CRC versus adenoma (i.e., excluding hyperplastic polyps) patients, the three-steps 

supervised strategy defined the CRCvsAdenoma model composed of nine miRNAs: miR-1246-3p, 

miR-3180-3p, miR-300, miR-2110, miR-182-5p, miR-12114-3p, miR-92a-3p, miR-3169 and miR-

6509-5p. The classification performances of CRC versus adenoma patients of the pooled cohort 

were AUC=0.73 and AUC=0.71 with or without adjustment for gender and age, respectively. 

Stratifying patients according to adenoma histology, the classification performances of CRC versus 

tubulovillous adenoma patients (AUC=0.68 and AUC=0.57, with or without adjustment for gender 

and age, respectively) and CRC versus tubular adenoma patients (AUC=0.73 and AUC=0.74 with 

or without adjustment for gender and age, respectively) were also tested (Figure 23 A). 

Analyzing the pooled cohort, CRC patients were classified from healthy subjects with a similar 

AUC of 0.87 as previously (Figure 23 B). Only minor differences considering high-grade 

(AUC=0.86) or low-grade tumors (AUC=0.89) versus healthy individuals were observed. The 

union of CRCvsHealthy model and CRCvsAdenoma model generated the CRCprogressive 

predictive model composed of 11 miRNAs. This former model also discriminated the presence of 

CRC+adenoma with respect to healthy subjects (AUC=0.80) (Figure 23 C). Stratifying for the 

adenoma histology, the CRCprogressive predictive model also discriminated tubular adenoma 

(AUC=0.77 and AUC=0.63) and tubulovillous adenoma (AUC=0.67 and AUC=0.66) from CRC 

and healthy subjects, respectively. 

Finally, the CRCprogressive predictive model was also challenged for its accuracy to discriminate 

the (pre)oncological conditions from subjects with inflammations. The AUC results (CRC versus 

inflammations: AUC=0.82 and CRC+Adenomas versus inflammations: AUC=0.75) together with 

the high sensitivity values in the identification of CRC subjects (CRC versus inflammations 

recall=0.88 and CRC+Adenomas versus inflammations recall=0.89) proved the classification 
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accuracy of our CRCprogressive predictive model. 

                       
Figure 23. A. Discriminative capacity of the fecal miRNA predictive model. Receiver operating 

characteristic (ROC) curves and relative area under the curve (AUC) as a metric to assess the 

performance of 11 miRNAs in distinguishing B. CRC from healthy subjects and C. CRC and 

adenoma patients from healthy subjects. 
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4.2.6 Small RNA sequencing of tissue samples 

 

Small RNA-seq was also performed on 24 CRC and 24 polyp tissue samples paired with their 

adjacent non-malignant colonic mucosa. An average of 71.6% and 8.9% of the reads were assigned 

to miRNAs and other sncRNAs, respectively, with an average of 543 miRNAs and 642 sncRNAs 

detected in each sample, Figure 24. 

 

Figure 24. Read assignments for each tissue sample (left) and according to tissue types (right) (A). 

Stool miRNAs (B) and sncRNAs (C) detected in tissue types. 

. 
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No significant difference was observed between the number of annotations detected in CRC tissues 

and adjacent mucosa (p=0.13 and p=0.33, for miRNAs and sncRNAs, respectively). Similarly, 

polyp and adjacent mucosa were also characterized by a non-significant difference in the total 

number of detected miRNAs (p=0.59) and other sncRNAs (p=0.93). 

A paired differential expression analysis revealed 222 and 339 DEmiRNAs in tumor tissue vs. 

adjacent mucosa and polyp tissue vs. adjacent mucosa, respectively (p<0.05). The expression of the 

19 stool DEmiRNAs in common between both cohorts was also investigated in tissue. All of the 

three down-regulated DEmiRNAs showed a low expression in tissue samples while 12 out of 16 up-

regulated DEmiRNAs were highly expressed in tissues and up-regulated in the comparison between 

tumor and adjacent mucosa. Four (miR-21-5p, miR-1290-5p, miR-148a-3p, miR-1246-3p) and two 

(miR-320a-3p, let-7a-3p) miRNAs were significantly up- and down-regulated, respectively, in the 

comparison between tumor and adjacent mucosa. Four miRNAs (miR-21-5p, miR-194-3p, miR-

148a-3p, and miR-200b-3p) were also significantly up-regulated in polyps with respect to adjacent 

mucosa while let-7i-5p was down-regulated, Figure 25. 

In total, 199 and 269 DEsncRNAs were identified in the comparison between, respectively, tumor 

and polyp tissues with respect to the matched adjacent non-malignant mucosa. In the same samples, 

the expression levels of the 37 stool DEsncRNAs between CRC and healthy subjects in both 

cohorts were also investigated. Eleven and 17 DEsncRNAs resulted dysregulated between CRC vs. 

adjacent mucosa and polyps vs. non-malignant mucosa, respectively. Two DEsncRNAs, piR-33382 

and the 28S rRNA were significantly down-regulated in both CRC and polyp tissues vs their 

matched adjacent mucosa. 

 



93 

 

Figure 25. Dot plot reporting the log2FC and significance of 19 DEmiRNAs resulting when 

comparing CRC and healthy groups in stool of both cohorts (middle) and their levels as observed in 

plasma EVs (left), and in the paired analysis between CRC or polyps and associated adjacent 

mucosa (right).  

 

4.2.7 Overview of DEmiRNA profiles among different investigated GI diseases  

 

Finally, a comparison of the DEmiRNAs found among the GI diseases analysed in the two studies 

was performed to explore any similar or peculiar expression trend. For this purpose, Cohort-IT and 

Cohort-CZ groups from Study 2 were merged. First, the expression levels of fecal miRNAs 

commonly dysregulated in CRC, Adenoma and other inflammatory GI disorders vs controls were 

compared with those in stool and primary tissue (for CRC and Adenoma) of other GI diseases. No 

strong similarities with other examined GI disorders both in stool and tissue were observed for these 

group of DEmiRNAs Figure 26 (left panel). 
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Figure 26. Heatmaps representing FCs fecal DEmiRNAs in common among CRC, Adenoma and other inflammatory GI disorders (left) and 

FCs of the fecal DEmiRNAs in CRC only (right), among the analysed GI diseases categories in stool. The additional columns represent 

expression of the same miRNA in investigated primary tissues (i.e., adenoma and tumor vs. normal mucosa). 
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A similar comparison among the categories was performed investigating the expression levels of 

those fecal miRNAs specifically dysregulated in CRC vs healthy controls (Figure 26, right panel). 

A group of DEmiRNAs in high grade Adenoma, Diverticulitis and Crohn’s disease showed the 

same trend of down-regulation observed in CRC vs controls while the majority of miRNAs had not 

a particularly marked trend of expression (including those of CRC and Adenoma tissues). 

Finally, the expression levels of fecal DEmiRNAs in CD-htTG vs controls were compared with 

those of other GI disease categories (Figure 27). In general, miRNAs up-regulated in CD-htTG had 

similar expression trend in high grade Adenoma and Diverticulitis (i.e. miR-148a-3p, miR-1290-5p,  

miR-622). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Heatmap representing FCs for the DEmiRNAs identified in CD-htTG vs controls across 

all the other GI disease categories investigated in stool and also in adenoma/tumor tissue pairs (last 

two columns on the right). 
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4.2.8 Microbial DNA and RNA detection in stool samples 

 

For a subset of 80 individuals (29 CRC, 27 Polyp, and 24 healthy controls subjects) from the 

Cohort-IT, bacterial DNA from metagenomics analyses (published in Thomas et al. [189] and 

bacterial RNA from small RNA-seq analysis (not aligned on human genome) were further 

investigated and published in  Tarallo et al. [212]. From metagenomic data resulted that the 

abundances of Proteobacteria and Verrucomicrobia in polyp patients were significantly different 

from those seen in the healthy group (p<0.05). In particular, Verrucomicrobia showed the lowest 

abundance, whereas Proteobacteria had intermediate abundance in the polyp group. Proteobacteria 

was the most significantly abundant phylum in the carcinoma group compared with both the healthy 

and polyp groups, while Firmicutes abundance significantly decreased from the healthy group to the 

carcinoma group.  

Bacterial small RNAs (bsRNAs) analysis was performed using all the reads from the small RNA-

seq previously not aligned to human miRNAs, human sncRNAs, human genome and miRNAs 

derived from animals or plants which can be commonly found in the Western diet. These surviving 

reads were mapped on bacteria annotations. Subsequently, data coming from this mapping step 

(18.9% of the non-mapped reads used as input) were integrated with the metagenomic data to 

improve the profiling of the bacteria (Figure 28 A). At taxonomic level, 50.2% of the annotations 

(n=130) detected from DNA and RNA were significantly correlated (p<0.05) and all of them were 

associated with a positive correlation (median r=0.64). The most correlated bacterial phyla were 

Spirochaetes (r = 0.902, p<0.0001), Proteobacteria (r = 0.786, p<0.0001), and Fusobacteria 

(r = 0.646, p<0.0001). At species level, Porphyromonas asaccharolytica was characterized by the 

highest correlation (r = 0.999; p<0.0001), while F. nucleatum (r = 0.990; p<0.0001) and E. coli 

(r = 0.632; p<0.0001) were among the 15 most highly correlated species. Differential expression 

analysis were performed based on the quantification of bsRNA annotations retrieved from RNA 

Central and Bacterial Small RNA Database tools. A total of 450 differentially expressed bsRNAs 

(p<0.05) were observed among the groups with the highest number (n=419) in CRC vs healthy 
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controls comparison. Most of them (n=176) were annotated on E. coli and showed an increasing 

expression going from healthy, to polyp, and CRC subjects. Since the different abundance of E. coli 

DNA and bsRNA among the groups, a possible functional relationship with the DEmiRNAs was 

investigated. Thirteen miRNAs significantly correlated with the E. coli abundances estimated using 

the metagenomic data, with a trend of increased expression moving from the healthy to the 

carcinoma condition (Figure 28 B). Functional enrichment analysis of the human genes targeted by 

these hsa-miRNAs reported “microRNA in cancer” and “Pathogenic Escherichia coli Infection” as 

the most highly represented KEGG terms (p<0.001). 

Finally, a combination of transcriptomic and genomic profiles to classify the recruited subjects 

according to disease status was tested. The Random Forest classification approach highlighted a 

signature providing the best accuracy in classifying CRC cases and controls when hsa-miRNAs, 

bsRNAs, and microbial DNA profiles were combined, with an AUC = 0.87 and AUC = 0.74 for 

CRC versus controls and CRC versus polyps, respectively. (Figure 28 C-D). The signature was 

composed of 57.7% human miRNAs and 42.4% microbial signals (Figure 28 E). 
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Figure 28. A. Stacked bar plots reporting bacterial phyla relative abundances by whole-metagenome sequencing (top) and small RNA-seq (bottom) 

data, respectively. B. Bar plot reporting hsa-miRNAs and hsa-sncRNAs correlated with the abundance of E. coli. C. Heat map reporting the area 

under the curve (AUC) computed by the Random Forest classifier using bacterial relative abundances provided by metagenomic data (bDNA), 

small RNA-Seq data (bsRNAs), and the combination of both bDNA and bsRNAs and combined with the expression levels of hsa-miRNAs (hsa-

miRNAs + bDNA + bsRNAs). D. Line plot reporting the AUC computed by the Random Forest classifier. E. Bar plot reporting the average 

classification contribution of each of the 32 features providing the best classification accuracy of cancer and healthy samples
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5 DISCUSSION  

In the last decades, the RNA field has been consistently revolutionized by the discovery of 

additional players in the complex process of gene expression regulation, including miRNAs and 

other numerous sncRNAs. This has introduced a new era in which the central dogma of molecular 

biology was left behind, giving way to deciphering the complex interactions among molecular 

factors cooperating in the regulation of protein translation [116]. Concomitantly, the huge progress 

of NGS technologies, together with the development of new bioinformatics approaches, has 

provided the opportune tools for studying transcriptomics from another point of view. In this 

respect, due to the miRNome implication in several cellular processes, the study of miRNA 

deregulation has gained a great attention for broad research in several diseases, including those of 

the GI tract [220]. The high stability and easy detection of miRNAs, coupled with their direct 

correlation with individuals' physiological status, makes them excellent biomarkers [139]. Over the 

years, blood circulating miRNAs have been extensively investigated in various pathologies 

highlighting alterations in miRNA expression patterns that could be a consequence of 

heterogeneous physiological alterations since circulating miRNAs reflect a systemic condition of 

the patients [8]. Also, the characterization of miRNA profiles in primary tissues has revealed 

specific features of the disease under study; however, this investigation usually requires invasive 

procedures that are uncomfortable for the patients and unfeasible for comprehensive screening 

population programs. When studying GI diseases, these limitations can be overcome through the 

investigation of stool samples. Due to its strict relation with the altered site, this surrogate tissue 

contains factors released by intestinal cells, including tumor-derived ones [9]. As a confirmation, 

fecal miRNA dysregulation in affected individuals has been associated with inflammation, 

epithelial barrier dysfunction and altered apoptosis [221].  

Fecal biospecimens also provide the possibility to study the human gut microbiome, since its 

essential functions related to metabolism, immune system education and regulation, and protection 
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against pathogen invasion, the gut microbiome plays an essential role for the health of its host 

[171]. Indeed, the dysbiosis, similarly to fecal miRNA deregulation, has been associated with the 

alteration of intestinal barrier function and the inflammatory condition characterizing GI disorders 

[6]. In this respect, an emerging fascinating aspect is the interplay of fecal miRNAs with the gut 

microbiome, which could be the starting point for novel suitable biomarkers for GI diseases 

detection, monitoring or innovative therapeutic strategies development [7]. In this particular 

attempt, the sequencing of sncRNAs and the microbiota in stool samples could provide a non-

invasive approach to detect common and conditions-specific molecular signatures of the different 

GI diseases. 

This PhD work includes emerging findings connected with the above described aspects and 

reported in two main studies coauthored by the candidate (listed at the end of this thesis). The study 

by Thomas et al. [189] results from the metagenome analyses performed on the CRC study group. 

In Tarallo et al. [212] is reported the first description of the interplay of fecal miRNAs with the gut 

microbiome in relation to CRC. Moreover, three reviews have been useful exercises for collecting 

the available evidence from both in vitro and human studies on miRNAs and other ncRNA profiles 

as biomarkers of various types of cancer  [9, 222] and more specifically as diagnostic, prognostic 

and predictive markers of CRC in EVs [8]. This last has been useful for enlarge the knowledge on 

this topic but also as a proper comparison of the results obtained from Study 2. All publications 

with co-authoships of the candidate and reporting findings from this PhD study, including those in 

preparation, are listed at the end of the Thesis. 

In the present work, the expression profiles of miRNAs and other sncRNAs, as well as gut 

microbiome composition, were investigated in stool samples of patients with various GI disorders: 

celiac disease, inflammatory bowel diseases, diverticular diseases, colorectal polyps and colorectal 

cancer. The attention for CD has recently risen due to its increasing incidence in the industrialized 

countries, in part due to enhanced awareness of the disease [17]. Even though the specificity and 

sensitivity of the serological tests have improved over the last years, a duodenal biopsy is still 
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required to confirm the diagnosis although its invasiveness. Moreover, patients ‘monitoring after the 

diagnosis remains a challenge. Indeed, excluding the disappearance of symptoms and the 

normalization of the serological test values, there is no strategy to evaluate healing of the intestinal 

villi without additional follow-up biopsies [66]. 

In this respect, the possibility to analyse stool miRNA profiles before and after CD diagnosis has 

never been explored and the present study, to the best of our knowledge, represents the first 

miRNome characterization in this biospecimen in relation to this pathology. For this purpose, 60 

adult CD patients were recruited and matched for sex and age with healthy individuals without any 

allergies/intolerances or dietary restrictions. The individuals recruited were also screened for serum 

anti-transglutaminase antibodies levels. From the clinical point of view, this parameter allows to 

monitor the GFD adherence since the gluten-specific immune response causes their rapid increased 

levels. Moreover, in the present study, this analysis has also enabled to exclude the presence of any 

potential asymptomatic CD patient among the recruited healthy controls. Based on the anti-

transglutaminase antibodies levels, the group of CD patients has been further stratified in those with 

low (CD-ltTG) and high (CD-htTG) anti-transglutaminase antibodies levels. The comparison of CD 

individuals with low and high TG levels with the healthy group revealed 44 and 49 DEmiRNAs, 

respectively. Interestingly, six DEmiRNAs (miR-4447-5p, miR-4254-5p, miR-622, miR-1229-5p, 

miR-3934-3p, and miR-4672) overlapped between these two comparisons with consistent trends 

(four up-regulated and two down-regulated). Finally, 20 DEmiRNAs were identified comparing the 

profiles of the two CD groups. 

DEmiRNAs associated with low levels of TG should mainly reflect the long-term effects of a GFD, 

as also supported by the observed correlation between expression levels of some of the DEmiRNAs 

(miR-6505-3p, miR-4771-5p, miR-4684-3p, miR-320d) and the GFD adherence duration, not 

related to the age of subjects. Conversely, miRNA signatures in patients with high TG could be 

explained by an inflammatory response triggered by gluten-ingestion. In this respect, in silico 

functional analysis on the validated target genes of such miRNAs revealed among significantly 
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enriched terms both inflammasome and NLRP3 inflammasome. In agreement with this, the 

triggering of NLRP3 inflammasome pathways by gliadin in CD was already reported by Gòmez 

Castro and collaborators [223]. Recently, stool miRNA profiling has allowed discriminating healthy 

subjects who adhere to different diets [224] and Tarallo et al., in preparation. In this respect, to 

better understand how GFD affects stool miRNA expression, a comparison between a group of 

healthy subjects that adhere to a low-gluten or gluten-free diet would allow discriminating specific 

CD signatures.  

The six DEmiRNAs overlapping between the two CD groups in comparison with healthy subjects 

may be related to peculiar molecular aspects associated with this pathology and not related to the 

GFD adherence. Interestingly, the enrichment analysis performed with their target genes revealed a 

link with apoptotic pathways, whose increased activity has been reported in small intestine of CD 

patients [225, 226]. 

By investigating the few available studies on dysregulated miRNAs in relation to CD, some of the 

fecal DEmiRNAs identified in the present study were already reported altered in biopsies. As an 

example, an investigation on primary tissue of untreated patients reported the up-regulation of miR-

638 and miR-1290-5p, in agreement with results from the present work (miR-638 up-regulated in 

CD-ltTG patients and miR-1290-5p up-regulated in CD-htTG vs healthy controls) [129]. Another 

example is a study finding miR-379 down-regulated in duodenal biopsies of both untreated and 

treated CD pediatric patients [131] even if this is in contrast with the present work where this 

miRNA resulted up-regulated in stool of CD-ltTG patients. Notably, miR-638 and miR-379 have 

among their targets also TG, which plays a crucial role in CD pathogenesis. Overall, this feature of 

a group of miRNAs whose expression in stool mirrors that of primary tissue support fecal 

biospecimens to be suitable for searching CD miRNA biomarkers.  

For a subgroup of 90 individuals from the recruited group of CD and control subjects, miRNA 

expression levels in plasma samples were also evaluated. No significant differences were noticed 

performing the same comparisons of interest as in stool; this most probably was due to the low 
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quality of sample collection and processing performed by the collaborating hospitals. However, 

removing the plasma samples recruited by the Hospitals and focusing only on those recruited at 

IIGM, Spearman correlation analysis of stool miRNA levels with their expression levels in plasma 

showed a significant correlation (p<0.05) for a huge group of miRNAs, six of which were among 

those observed differentially expressed in the performed comparisons (data not shown). This further 

supports stool samples as suitable biospecimens in the context of CD biomarkers.  

Besides miRNAs, many other sncRNA biotypes exist and carry the potential of being acceptable 

cancer biomarkers. The analysis of these molecules in this study highlighted a total of 56 

DEsncRNAs in the performed comparisons. Forty-two and 22 were the DEsncRNAs in subjects 

with high and low TG levels versus controls, respectively, with 8 DEsncRNAs overlapped between 

the two comparisons. No significantly altered sncRNAs were obtained comparing the two CD 

groups. This is an interesting finding, showing the potentiality also of other sncRNAs than miRNAs 

for CD biomarker purposes [227].  

Several evidence reported an impaired gut microbiome composition associated to CD [228]. In our 

cohort, metagenome analysis highlighted a reduction of Actinobacteria and Verrucomicrobia and an 

increase in Bacteroidetes abundance in CD patients with low TG levels vs controls, while in those 

patients with high TG levels Euryarcheota and Fusobacteria showed a reduced abundance 

compared to controls. These findings agree with those of other studies performing similar analysis 

in fecal samples reporting Actinobacteria, Bacteroidetes and Fusobacteria among those with an 

altered abundance in CD [185]. A further investigation at species levels evinced a different 

abundance of a group of bacteria in both the two CD groups compared to controls. Among these, a 

reduced abundance of Bifidobacterium longum that we noticed in both CD groups (even if not with 

significant results in CD-htTG vs controls) has been already reported in relation to the disease 

[229]. This bacterium has also been found to decrease the production of inflammatory cytokines, 

CD4+ T cells and peripheral CD3+ T lymphocytes [230] and its administration also ameliorates the 

enteropathy induced by gliadin ingestion [231]. Streptococcus sanguinis was also observed more 
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abundant in the saliva of CD patients compared to controls similarly to our results in stool samples 

[232]. Indeed, we found a higher abundance of this microbial species in CD-htTG and CD-ltTG 

(even if not significantly) compared to controls, and together with Aggregatibacter aphrophilus and 

Haemophilus parainfluenzae to be negative correlated with GFD years duration, suggesting the role 

of GFD to restore over the time a comparable Streptococcus sanguinis abundance comparable with 

that of controls. Correlation analysis between miRNAs and microbial species altered among the 

groups provided a consistent list of significant correlations. Interestingly, a single miRNA resulted 

correlated with more than one bacterial species.  

Finally, the integration of miRNome, microbiome and daily nutrient intake data showed the 

potential to discriminate the investigated CD categories from the healthy controls, with a major 

contribution of identified DEmiRNAs and differentially abundant microbial species. A subsequent 

features selection analysis performed with different methods, also attributed the best median rank to 

the same identified miRNA and microbial features, together with Vitamin E. 

Taken together, our findings show that CD condition has specific fecal sncRNAs and microbiome 

profiles which could be due to the influence of the GFD (as for CD-ltTG group) or the result of an 

inflammatory condition triggered by the gluten ingestion (as in CD-htTG one). This encourages the 

hypothesis of a potential application of fecal miRNAs and microbiome in the diagnostic and 

monitoring strategies for CD. 

The early detection of CRC is still the most efficient approach to enhance patient prognosis and 

survival. Although current existing screening programs have been proven efficient in the detection 

of early precancerous lesions and CRC in asymptomatic patients, a significant number of patients 

are still diagnosed in advanced stages of the disease [69]. The possibility to find reliable, non-

invasive stool biomarkers able to discriminate earlier and premalignant CRC phases could 

considerably improve both diagnosis, prompt treatment and then prognosis. To approach this issue, 

in the second study of this PhD work, a whole miRNome profiling was performed on stool samples 

from two cohorts of CRC patients and individuals with polyps or other GI disorders, according to 
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the diagnosis at colonoscopy. Besides different polyp types, which may evolve to CRC, we also 

included samples from several gastrointestinal chronic diseases, like different types of IBDs and 

diverticulitis. When comparing these categories of patients with healthy controls, several miRNAs 

and other sncRNAs showed a significant dysregulation. Some miRNAs were up- or down-regulated 

in all the analyzed gastrointestinal lesions and others only altered in specific categories. Notably, all 

miRNAs dysregulated in common among CRC, polyps and inflammations were up-regulated, while 

those only altered in CRC were mainly down-regulated. This is in line with recent studies where 

down-regulation of miRNAs seems to be a premature step in the development of several cancers 

[233, 234] and others showing altered miRNA profiles in fecal samples of patients with 

inflammations [235, 236]. 

A set of 19 miRNAs was differentially expressed between CRC and healthy subjects in both the 

Italian and the Czech cohorts. This is particularly relevant since the two cohorts were completely 

independent and analyzed using a hypothesis-free small RNA-sequencing approach. Among the 19 

DEmiRNAs, miR-194-3p, miR-21-5p, and miR-320a-3p (reviewed in [8, 9]) have been repeatedly 

reported dysregulated both in CRC tissues and biofluids. Other fecal miRNAs were reported altered 

for the first time in this work, supporting the use of a miRNome-wide approach for the discovery of 

new biomarkers. miRNA target enrichment analysis performed for this set of 19 miRNAs 

highlighted several significant and inherent terms such as Pathways in cancer, signaling by 

interleukin, transcriptional regulation by tp53, whose role in CRC has been largely described [237, 

238]. For the Italian cohort, the 19 DEmiRNAs were also tested in tumor and polyps tissues paired 

with non-malignant adjacent mucosa and in plasma EVs. In contrast with the mirroring observed 

between DEmiRNAs profiles in stool and primary tissue, only a subgroup of the fecal DEmiRNAs 

showed the same trend in plasma EVs where only let-7b-5p was significantly up-regulated in CRC 

patients compared to healthy subjects. Of note, in general, the observed expression differences in 

stool were stronger than those in EVs.  

So far, researchers mainly focused on the analyses of miRNAs as novel CRC biomarkers in plasma 



106 

and serum mainly selecting candidate miRNAs from the literature and focusing on free-circulating 

miRNAs in plasma and serum (and not on EVs) [142]. This last could be a limitation of the studies, 

especially for plasma in which the contribution of freely circulating miRNA population may also 

arise from blood cells [227]. The lack of correspondence between sncRNA profiles in plasma EVs 

and stool could be explainable to a general higher heterogeneity of feces and most probably on the 

fact that miRNA and other small RNA profiling in plasma EVs may not reflect the presence of CRC 

except than only in advanced/metastatic stages [239]. 

Subsequently, the fecal miRNA outcomes were implemented in a model-based learning approach 

that allowed us to design a predictive model composed of 11 fecal miRNAs (miR-1246-3p, miR-

607, miR-6777-5p, miR-3180-3p, miR-300, miR-2110, miR-182-5p, miR-12114-3p, miR-92a-3p, 

miR-3169, and miR-6509-5p) able to distinguish the different classes of patients. This model 

showed a high sensitivity in the detection of both CRC patients alone (average recall value 82%) 

and CRC or adenomas patients (average recall value 70%) from healthy subjects. In addition, it was 

also able to discriminate CRC versus the adenoma class (AUC=0.79), as well as versus tubular 

adenomas (AUC=0.75) and tubulovillous adenomas (AUC=0.77) patients. The high discrimination 

power of our predictive model was also confirmed when CRC (AUC=0.86) and CRC together with 

adenoma subjects (AUC=0.78) were classified with respect to healthy subjects and patients with 

inflammation. One of the major strengths of our predictive model is the high discrimination 

capacity among the pathological classes, also without performing gender and age adjustment. This 

supports the fact that the set of miRNAs identified is characterized by an elevated stratification 

power. All these aspects encourage the future use of a miRNA signature measured in stool as a 

valuable tool to implement already existing non-invasive screening tests. In search of biomarkers 

for non-invasive diagnosis of CRC and adenomas, a hypothesis-free approach such as sequencing in 

stool could be more informative than starting the research of biomarkers directly from the 

tumor/adenoma tissues as for example performed by Duran-Sanchon et al. [153]. Moreover, the 

possibility to complement already existing non-invasive CRC screening tests with additional 
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analyses relatively fast and inexpensive makes this approach particularly attractive. In the view to 

define a good non-invasive tumor biomarker signature, we attempted to reduce the number of 

miRNAs from 11 to three (miR-607, miR-1246-3p, and miR-6777-5p), reporting a fairly identical 

high performance in distinguishing the presence of CRC (AUC=0.87) and CRC + adenoma patients 

(AUC=0.8) from healthy subjects. 

Some of the miRNAs identified in the predictive model have been previously associated with CRC. 

As an example, miR-300 has a role in promoting proliferation and EMT-mediated CRC migration 

and invasion by targeting p53 [142]. Conversely, miR-182-5p, down-regulated in CRC tissues 

[240], targets the well-known oncogene c-Myc [88] and is an important modulator of Metadherin 

(MTDH), a promoter of cell proliferation, invasion, and migration ability. Also, miR-2110 has been 

found up-regulated in rectal but not in colon cancer [241] while miR-3180-3p was described as up-

regulated in sporadic CRC tissues, particularly in CRC-derived liver metastasis from the same 

patients [242]. Altered miR-1246 levels have been mainly found in circulating exosomes in relation 

to metastasis and prognosis of CRC [239]. Interestingly, two down-regulated miRNAs in CRC, 

miR-607 and miR-6777-5p, were also included in our predictive model. For these last miRNAs 

there is almost no evidence in the literature of a relationship with CRC. In The Cancer Genome 

Atlas both miRNAs are frequently deleted in CRC (data not shown), supporting their down-

regulation in stool and tumor tissues observed by us. 

Besides miRNAs expression analyses, in both the studies of the present thesis we attempted to 

investigate in stool, plasma and tissues also other sncRNAs that can be assessed by small RNA-seq 

[211]. Even though miRNAs are the most extensively investigated, other sncRNAs carry the 

potential of being acceptable biomarkers. Crucial issues for their analyses is that their 

number/nomenclature is currently not definitive and there is still limited evidence of their 

expression in different biospecimens [243]. Hereby, we proved that several sncRNAs could be 

detected in stool and their altered profiles could be associated with CD, CRC or other GI diseases. 

In particular, in the second study, the model-based learning approach was also applied to the union 
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of DEsncRNAs obtained from the Cohort-IT and Cohort-CZ. The sncRNA-based predictive model 

included piR-35467, piR-38736, piR-35468 and piR-35469, and it was able to classify CRC versus 

healthy subjects with an accuracy of 0.60 (data not shown). This is an interesting finding because 

until now the role of sncRNAs other than miRNAs have scarcely been investigated [227]. However, 

these results should also be taken with caution since three piRNAs of this signature (namely, piR-

35467, piR-35468 and piR-35469) have very similar sequences that partially overlap. More 

extensive analyses should be performed in this field. 

We also investigated the composition of microbiota and microbial small RNAs in fecal samples 

from healthy subjects and patients with polyp or carcinoma. Metagenome analysis revealed that the 

Firmicutes abundance in the carcinoma group was significantly different from those characterizing 

either the healthy or the polyp group. Interestingly, the Verrucomicrobia phylum, characterized by a 

significant peak of expression in the polyp samples, may represent a potential candidate biomarker 

for pre-cancer lesions. A significant increase in the abundance of the Fusobacteria phylum was also 

noticed in the carcinoma group compared to the healthy and polyp groups, as previously reported 

[189, 244, 245]. The abundance of F. nucleatum, a well-known CRC-related bacterium, increased 

from the healthy to the CRC group, albeit the variation was not statistically significant. Conversely, 

a significant increase in the abundance of E. coli was observed at both the DNA and bsRNA levels 

in our analysis, consistent with previous studies reporting an increase in the abundance of E. coli in 

the gut of CRC subjects [246]. Furthermore, in the multicohort analysis performed by Thomas et al. 

[189], E. coli was the second-ranked bacterial species not only in our cohort (named Cohort1 in the 

paper) but also in another cohort from the United States which included metagenomic data of stool 

samples from 52 CRC patients and 52 healthy controls [247].  

In addition, correlation analysis suggested an interaction between miRNAs and E.coli species via 

target genes involved in the bacterium adhesion and phagocytosis pathways. Indeed, target 

functional enrichment analysis highlighted among the enriched terms “Fc-gamma receptor 

signaling pathway involved in phagocytosis,” a pathway involving bacterial phagocytosis by 
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immune cells as well as enterocytes [248]. Furthermore, two Toll-like receptor-coding genes (TLR5 

and TLR4) were also targeted by the miRNAs identified in our study. TLR4 is involved in the 

innate immune response to bacterium recognition [249], but it is also necessary and sufficient for 

bacterium phagocytosis by IEC-6 intestinal epithelial cells [250]. 

From the clinical point of view, the results obtained by applying a machine learning approach 

provided a strong support for the idea of using a combination of fecal microbial and human RNA 

biomarkers to better distinguish subjects with colonic adenoma or carcinoma from healthy 

individuals. However, a validation on larger independent cohorts of patients and healthy controls is 

mandatory to assess the accuracy of these potential biomarkers. 

Overall, the work of this thesis has various strengths. These include, the adoption for all the study 

populations of the same protocol for the collection of stool, using the same tubes that contain a 

preservative buffer that maintains the stability of nucleic acids as well as the used miRNome-wide 

approach that has allowed to search all potentially altered sncRNAs. Similarly, the adoption of the 

shotgun metagenomic sequencing approach provides a better taxonomic resolution and genomic 

information than 16S sequencing, which is still the gold standard of microbiome typing research 

[169]. A remarkable strength of Study 1 was the possibility to screen the whole cohort for the serum 

levels of TG2-Ab, enabling the stratification of the CD patient groups and, importantly, to check for 

any asymptomatic CD patients in the control group (all of them presented normal levels of TG2-

Ab) which is a recurrent limitation presented by numerous previous studies on CD [251]. In 

addition, the healthy control group was composed by individuals that matched those of CD group 

for age and gender avoiding any biases linked to the influence of these anthropometric 

characteristics on miRNAs and microbiome profiles (Francavilla et al, in preparation). The study 

population also represents a strength in Study 2 with the inclusion of two different and independent 

cohorts from countries with different diet and lifestyle habits and CRC rates. Finally, it is worth 

putting in evidence the robust prediction model that discriminated not only cancer cases but also 

adenoma both using miRNAs only or combined with bsRNAs and bDNA.  
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However, there are also some limitations. In Study 1, a limited number of untreated CD and NCGS 

individuals was recruited, which is why both these categories were only partially included in the 

analyses. Future investigations of sncRNAs and microbiome profiles in CD untreated and NCGS 

groups could highlight new biomarkers for CD diagnosis and add knowledge to the tricky clinical 

interpretation of NCGS condition [133, 252]. 

Similarly, in Study 2 the two cohorts were heterogeneous for individual categories: despite a large 

number of samples, the variegated spectrum of CRC, adenomas and other precancerous lesions was 

not exhaustively represented and deserves further investigations. 

To conclude, the extensive sequencing adopted allowed to detect several miRNAs and other 

sncRNAs differentially expressed in stool as well as different microbial abundances across the GI 

diseases investigated. Interestingly, the hypothesis of host miRNA-microbiome interaction was 

supported by the integrative analysis showing numerous correlations between miRNA expression 

and microbial species abundances. Additionally, the machine learning approach identified a 

signature of miRNAs or miRNAs combined with bacterial RNA and DNA with a good 

discriminating power for the presence of a tumor or an adenoma. This is an excellent starting point 

supporting further research on this field which in the near future could hopefully improve diagnosis 

and prognosis of GI diseases. 
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