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Effect of UV‑A, UV‑B and UV‑C 
irradiation of glyphosate 
on photolysis and mitigation 
of aquatic toxicity
Dimitra Papagiannaki1, Claudio Medana2, Rita Binetti1, Paola Calza3 & Peter Roslev4*

The active herbicide ingredient glyphosate [N-(phosphonomethyl)glycine] is frequently detected as 
a contaminant in groundwater and surface waters. This study investigated effects of UV-A (365 nm), 
UV-B (302 nm) and UV-C (254 nm) irradiation of glyphosate in water on photolysis and toxicity to 
aquatic organisms from different trophic levels. A test battery with bacteria (Bacillus subtilis, Aliivibrio 
fischeri), a green microalga (Raphidocelis subcapitata), and a crustacean (Daphnia magna) was used 
to assess biological effect of glyphosate and bioactive transformation products before and after UV 
irradiation (4.7–70 J/cm2). UV-C irradiation at 20 J/cm2 resulted in a 2–23-fold decrease in toxicity 
of glyphosate to aquatic test organisms. UV-B irradiation at 70 J/cm2 caused a twofold decrease 
whereas UV-A did not affect glyphosate toxicity at doses ≤ 70 J/cm2. UV-C irradiation of glyphosate 
in drinking water and groundwater with naturally occurring organic and inorganic constituents 
showed comparable or greater reduction in toxicity compared to irradiation in deionized water. High-
resolution mass spectrometry analyses of samples after UV-C irradiation showed > 90% decreases in 
glyphosate concentrations and the presence of multiple transformation products. The study suggests 
that UV mediated indirect photolysis can decrease concentrations of glyphosate and generate less 
toxic products with decreased overall toxicity to aquatic organisms.

Active ingredients from pesticide formulations are among the most frequently detected organic micropollutants 
in aquatic environments. Glyphosate-based herbicides represent a major pesticide category that can contaminate 
groundwater and surface waters through multiple routes including spray drift, surface runoff and soil leaching1–4. 
N-(phosphonomethyl)glycine is the active ingredient in glyphosate-based herbicides and result in non-selective 
and broad-spectrum products for control of annual and per annual weeds. Glyphosate-based herbicides are 
popular in the domestic and agricultural sectors, and glyphosate is now considered the most frequently used 
agricultural chemical worldwide1,3. A global glyphosate application of about 700,000 tons per year has caused an 
ubiquitous environmental occurrence of this organophosphorus compound, and glyphosate has been character-
ized as a potential threat to humans and aquatic life because non-target organisms can be adversely affected1,3–8. 
The continued approval of glyphosate for domestic and agricultural use has therefore been debated1,3,8,9.

A particular concern in many countries is pesticide contamination of water resources for drinking water 
production. In Europe, the European Council Directive 98/83 (1998) concerning water quality for human con-
sumption states that the regulatory limit for individual pesticides as well as their metabolites and transforma-
tion products is 0.1 µg/L. Water treatment can remove or attenuate pesticide concentrations in drinking water 
by processes such as microbial degradation, coagulation, sorption (e.g., activated carbon), and oxidation (e.g., 
ozonation). Photochemical processes involving ultraviolet radiation (UV) can facilitate degradation of pesticides 
via direct or indirect photolysis but UV doses used for traditional drinking water treatment (e.g., disinfection) 
are relatively low and rarely able to facilitate removal of micropollutants such as pesticides. Different additives 
(oxidants or catalysts) may be added to enhance the degradation processes mainly through formation of reac-
tive oxidants. Examples of such water treatment processes are the advanced oxidation involving the addition 
of hydrogen peroxide (e.g., UV-C/H2O2) and photocatalysis involving the addition of different catalysts (e.g., 
UV-C/TiO2)10–13. In contrast, direct and indirect effects of elevated UV irradiation without added oxidants or 

OPEN

1Società Metropolitana Acque Torino S.p.A.—Centro Ricerche, Torino, Italy. 2Dipartimento di Biotechnologie 
Molecolari e Scienze della Salute, Università di Torino, Torino, Italy. 3Dipartimento di Chimica, Università di Torino, 
Torino, Italy. 4Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. *email: pr@
bio.aau.dk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-76241-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20247  | https://doi.org/10.1038/s41598-020-76241-9

www.nature.com/scientificreports/

catalysts for removal of pesticides from drinking water have received less attention. However, UV irradiation 
without additives could be attractive for drinking water treatment because the technique is non-invasive and 
free of added chemicals.

There are several potential mechanisms by which UV irradiation could mediate the transformation of pesti-
cides in water2: (1) UV irradiation can cause direct photochemical transformation of a pesticide by absorption 
of photons followed by different chemical reactions such as bond cleavage and/or oxidation–reduction, (2) UV 
irradiation can interact with H2O and O2 and form reactive oxygen species including hydroxyl radicals (·OH) 
and hydrogen peroxide (H2O2) that interact with the pesticide and cause degradation. The outcome of such 
processes may have many practical implications but depends on several factors including the water matrix and 
the UV exposure regime (e.g., UV dose and UV wavelength). UV irradiation is electromagnetic radiations with 
different wavelengths (e.g., 10–400 nm) and can be divided into different categories such as UV-A, UV-B, UV-C 
and Vacuum UV. Only very few studies have considered the impact of different UV categories on the removal 
of glyphosate and glyphosate-based herbicides from water although some studies have suggested a potential of 
UV-C14–16. Hence, little is currently known about the direct and indirect effects of different types of UV irradia-
tion of aqueous glyphosate on the removal of the parent compound and generation of bioactive transformation 
products. However, it appears highly relevant to assess if such UV transformation products are potentially more 
or less toxic than the parent compound and if there are differences among UV irradiation regimes.

In this study, we examined the effect of UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation of 
glyphosate in aqueous solutions on the occurrence of transformation products and the toxicity to aquatic test 
organisms. The major purpose was to determine if UV irradiation could decrease toxicity of glyphosate and 
to identify relevant UV exposure regimes (UV wavelength, UV dose). Changes in growth and activity of test 
organisms were compared before and after UV irradiation using a battery of non-target organisms that included 
Bacillus subtilis, Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna. Organisms from different 
trophic levels were used in the experiments to better assess the biological effects of all bioactive compounds in 
the samples after UV treatment including glyphosate transformation products. To the best of our knowledge, 
this is the first time the ecotoxicity of glyphosate to non-target organisms from different trophic levels has been 
compared before and after exposure to UV irradiation with different wavelengths (UV-A, UV-B, UV-C).

Results
Test organisms.  Initial experiments were conducted to identify test organisms responsive to glyphosate 
exposure (Fig. 1). The traditional screening organism A. fischeri was the least responsive organism with an appar-
ent median effective concentration (EC50) of 25.0 mg/L. In contrast, the crustacean D. magna, the bacterium 
B. subtilis and the green microalga R. subcapitata showed inhibition at much lower glyphosate exposure con-
centrations with EC50 values of 0.99 mg/L, 3.67 mg/L and 1.13 mg/L, respectively (Fig. 1). It was subsequently 
decided to focus on D. magna, B. subtilis and R. subcapitata for experiments examining changes in toxicity after 
UV irradiation of aqueous glyphosate. The selected test battery represented organisms from different trophic 
levels (bacteria, algae, zooplankton) to integrate the biological effect of known and unknown constituents in the 
samples after UV exposure including transformation products and oxygen radicals.

Effect of UV irradiation on glyphosate toxicity.  Toxicity of glyphosate before and after exposure to 
UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation was examined using B. subtilis and R. subcapi-
tata and D. magna as test organisms (Figs. 2 and 3). Exposure of glyphosate to UV-A (20 J/cm2) and UV-B (20 J/
cm2) did not have any noticeable effect on subsequent toxicity to the test organisms (Fig. 2A–D). In contrast, 
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Figure 1.   Toxicity of glyphosate to different aquatic test organisms measured as concentration–response curves. 
Data points represent means ± standard deviation.
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UV-C exposure (20 J/cm2) clearly decreased the toxicity of aqueous glyphosate to B. subtilis, R. subcapitata and 
D. magna (Fig. 3A–C).

Changes in growth of R. subcapitata before and after UV-C treatment of glyphosate were measured as changes 
in absorbance as described in international standards (ISO 8692, 2012)17. The results were confirmed by count-
ing and sizing individual algae cells using a Multisizer Coulter Counter (Fig. 4). Noticeable differences in cell 
numbers of R. subcapitata were observed after 72 h of growth in solutions with and without UV-C treatment of 
glyphosate (Fig. 4). For each of the four glyphosate concentrations, the difference between non-irradiated and 
UV-C irradiated solutions was significantly different as determined by the Mann–Whitney U test (p = 0.026, 
p < 0.001; p < 0.001; p < 0.001, respectively).

The median effective concentration of samples with glyphosate increased after UV-C irradiation (20 J/cm2) 
for all test organisms suggesting lower toxicity (Table 1). The UV-C irradiation caused a twofold, fivefold and 
23-fold decrease in toxicity of glyphosate to D. magna, R. subcapitata and B. subtilis as indicated by the increases 
in EC50. A limited effect of UV on glyphosate toxicity was observed for UV-A and UV-B irradiation at 20 J/cm2 
(Fig. 2A–D and Table 1). Increasing the UV-A dose to 70 J/cm2 did not change the toxicity of glyphosate to B. 
subtilis when estimated as relative effect potency (Fig. 3D). However, exposure of glyphosate to UV-B irradiation 
at 70 J/cm2 resulted in a significant decrease in toxicity relative to UV-B at 20 J/cm2 (Mann–Whitney; p = 0.028). 
Furthermore, increasing the UV-C dose from 20 J/cm2 to 70 J/cm2 also significantly decreased the toxicity of 
glyphosate (Mann–Whitney; p = 0.029). This suggests that UV-C and also UV-B exposure can decrease ecotoxicity 
of glyphosate if the UV dose is sufficiently high.

The presence of active oxygen species in the aqueous samples after UV irradiation was confirmed in experi-
ments using different oxygen radical probes. Superoxide radical (·O2

−), was confirmed as chemiluminescence 
after immediate injection of luminol into samples after UV treatment (posttreatment addition), whereas hydroxyl 
radical (·OH) formation was detected as increased fluorescence after the addition of coumarin, terephthalic acid 
and benzoic acid to aqueous samples before UV treatment (pretreatment addition).

Effect of UV‑C exposure regimes on glyphosate toxicity.  The toxicity of glyphosate to B. subtilis 
and R. subcapitata decreased exponentially with increasing glyphosate irradiation time and dose (Fig. 5). The 
relationship between UV-C dose and decrease in toxicity, calculated as log(1/EC50), suggests a loss of 90% of the 
initial glyphosate toxicity (D90) to B. subtilis and R. subcapitata after UV-C irradiation corresponding to 23.4 J/
cm2 and 23.7 J/cm2, respectively. Hence, toxicity was attenuated for both organisms in a UV-C dose-dependent 
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Figure 2.   Effect of UV-A irradiation (A,B) and UV-B irradiation (C,D) of aqueous glyphosate (20 J/cm2) on 
toxicity to B. subtilis (A,C) and R. subcapitata (B,D). Data points represent means ± standard deviation.
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relationship and with comparable rates suggesting that the test organisms were equally responsive to UV-C miti-
gation of glyphosate inhibition (Fig. 5).

Exposure of glyphosate to UV irradiation was mainly carried out using sealed quartz cuvettes with aque-
ous samples. It was subsequently examined if a different exposure method would result in comparable results. 
Experiments with different UV-C doses suggested that doses < 10 J/cm2 may affect toxicity (Fig. 5). Table 2 shows 
the results of an experiment where UV-C exposure in quartz cuvettes at 5.4 J/cm2 was compared with UV-C 
exposure in UV transparent plastic microplates at 5.4 J/cm2. The results did not indicate major differences in 
median effective concentration for the exposure regimes (quartz vs. transparent plastic), and the mitigation of 
glyphosate toxicity by UV-C appeared independent of the two exposure methods (Table 2).

All toxicity experiments in this study included control samples with UV exposure of aqueous samples with-
out glyphosate to assess any toxicity associated with active oxygen species generated during the UV irradiation 
process. No apparent inhibition of test organisms was observed due to such products (Mann–Whitney U test, 
p > 0.05).

Effect of UV irradiation on toxicity of glyphosate in drinking water.  The potential for decreas-
ing toxicity of aqueous glyphosate by UV irradiation was initially examined using a test matrix with deionized 
distilled water and artificial freshwater to minimize effects from unknown water constituents including organic 
and inorganic compounds. After some promising initial results with UV-C irradiation, experiments were sub-
sequently conducted with natural drinking water samples obtained from 6 locations in Denmark. The drinking 
water samples consisted of municipal groundwater-based drinking water with variable concentrations of organic 
and inorganic constituents (https​://eng.geus.dk/produ​cts-servi​ces-facil​ities​/data-and-maps/natio​nal-well-datab​
ase-jupit​er/). Glyphosate spiked drinking water samples showed clear differences in toxicity before and after 
irradiation with 20 J/cm2 of UV-C (Fig. 6). In some cases, the decrease in toxicity due to UV-C treatment of 
aqueous glyphosate was slightly larger for the natural drinking water samples compared to parallel experiments 
conducted in distilled water (Fig. 3 vs. Fig. 6). The UV effect was also greater for glyphosate added to drinking 
water compared to groundwater (raw water) (Fig. 6F). The raw water was slightly colored and contained elevated 
concentrations of natural elements such as iron, manganese and ammonia because the water was sampled before 
filtration at the Drinking Water Treatment Plant. For glyphosate irradiated in drinking water, the EC50 val-
ues before UV-C varied between 2.03 mg/L and 7.30 mg/L whereas the EC values after UV-C varied between 
17.57 mg/L and > 100 mg/L. The differences in EC50 before and after UV-C irradiation were significantly differ-
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Figure 3.   Effect of UV-C irradiation (A–C) of aqueous glyphosate (20 J/cm2) on toxicity to B. subtilis (A), R. 
subcapitata (B) and D. magna (C). Data points represent means ± standard deviation. Panel D shows the effect 
of an increased UV irradiation dose of 70 J/cm2 on the relative effect potency of glyphosate to B. subtililis. An 
asterisk (*) indicates a significant difference between 20 and 70 J/cm2 (Mann–Whitney, p < 0.05).

https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter/
https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter/
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ent (Mann–Whitney; p = 0.002). The Relative Effect Potency after UV-C treatment was 0.02–0.4 corresponding 
to a 3 to 44-fold reduction in toxicity to the test organism B. subtilis. Hence, the effect of UV-C on glyphosate was 
not inhibited by constituents in the drinking water samples and may even be more pronounced in some water 
matrices than in deionized water suggesting that natural drinking water may facilitate the process.

Identification of glyphosate phototransformation products.  Liquid chromatography  high-reso-
lution mass spectrometry analysis (LC-HRMS) of water samples with glyphosate was performed before and 
after UV-C irradiation to identify transformation products after UV doses of 20 J/cm2 and 70 J/cm2 (Table 3). 
The analysis was carried out as a semi-targeted analysis focusing on likely glyphosate transformation products 
using the METLIN database (https​://metli​n.scrip​ps.edu/)18,19. The LC-HRMS analysis confirmed that aque-
ous concentrations of glyphosate decreased by 96% after UV-C irradiation and that degradation had occurred. 
More than 20 glyphosate (C3H8NO5P) transformation products were observed after UV-C irradiation (Table 3) 
including main products such as sarcosine (C3H7NO2), glycine (C2H5NO2), glyoxylic acid (C2H2O3), amino-
methylphosphonic acid (CH6NO3P; AMPA), acetic acid (CH4O2) and phosphoric acid (H3PO4). CO2 was also a 
potential transformation product but was not targeted in the analysis due to a high background concentration 
of CO2/HCO3

− in the water samples. Increases in AMPA and glycine concentrations were observed after UV-C 
irradiation at 70 J/cm2, whereas sarcosine concentrations decreased. Phosphoric acid was detected at both high 
and low UV-C doses whereas glyoxylic and acetic acid were only observed after UV-C irradiation at 70 J/cm2. 
Glyphosate concentration decreased in samples irradiated with 20 J/cm2 and was no longer detectable in samples 
treated with 70 J/cm2.
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Figure 4.   Effect of UV-C irradiation (20 J/cm2) of aqueous glyphosate on toxicity to R. subcapitata measured 
as differences in cell numbers and cell sizes after 72 h of growth in the presence of non-irradiated and 
irradiated glyphosate. 

Table 1.   Median effective concentrations (EC50) for three aquatic test organisms before and after exposure of 
glyphosate to UV-A, UV-B or UV-C at comparable UV doses (20 J/cm2). ND: not determined. 

Test organism

EC50 values (mg/L)

Before UV After UV-A After UV-B After UV-C

B. subtilis 3.67 3.45 3.54 85.41

R. subcapitata 1.13 1.19 1.53 5.70

D. magna 0.99 ND ND 1.93

https://metlin.scripps.edu/
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Discussion
Targeted and non-targeted chemical analyses can provide valuable information about the presence and concen-
trations of pesticides and their tranformation products in aquatic systems. In vitro and In vivo bioassays can 
complement chemical analyses by providing information about the presence of bioactive compounds in a sample 
including bioactive transformation products20. This is relevant because traditional chemical analyses are often 
less suited for providing direct information about bioactivity and interactions among bioactive chemicals and 
transformation products. In the present study, we combined LC–HRMS analysis of glyphosate degradation in 
water with bioassays to assess removal and bioactivity before and after UV irradiation.

UV mediated photolysis of organic micropollutants can occur directly via photon absorption or indirectly 
in reactions mediated by active oxygen species2,21–23. The outcome of these processes depends on many factors 
including the structure and functional groups of the parent compound and the UV wavelength and dose. In some 
matrices, interactions between UV light and H2O and O2 can generate small amounts of photoproducts such as 
hydrogen peroxide (H2O2), hydroxyl radical (·OH) and superoxide anion (·O2

-), and these active oxygen species 
can subsequently interact with dissolved or dispersed organic matter21,24. In the present study, LC–HRMS analysis 
confirmed that aqueous concentrations of glyphosate decreased after UV-B and UV-C irradiation and that deg-
radation had occurred. Glyphosate degradation was non-linear with respect to irradiation time with relatively 
more glyphosate being removed initially. This is supported by a first-order decrease in toxicity with UV-C irra-
diation time, i.e., the greatest toxicity decrease occurred during the initial irradiation phase (Fig. 5A,B). A range 
of potentially bioactive transformation products were observed after UV-C irradiation of aqueous glyphosate 
such as sarcosine, glycine, glyoxylic acid, aminomethylphosphonic acid (AMPA), acetic acid and phosphoric 
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Figure 5.   Effect of UV-C irradiation time (h) and UV-C dose (J/cm2) on toxicity of glyphosate to B. subtilis 
(A,B) and R. subcapitata (C,D).

Table 2.   Median effective concentrations (EC50) for two aquatic test organisms before and after exposure 
of glyphosate to 5.4 J/cm2 UV-C. Two different UV exposure techniques were compared: UV-C exposure of 
glyphosate in quartz glass cuvettes and UV-C exposure in UV transparent plastic microplates.

Exposure technique

B. subtilis
EC50 values (mg/L)

R. subcapitata
EC50 values (mg/L)

Before UV-C After UV-C Before UV-C After UV-C

Quartz Glass 3.67 7.92 1.13 4.18

UV plate 2.34 7.12 1.47 3.65
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acid (Table 3). These transformation products are comparable to those reported in studies employing different 
Advanced Oxidation Technologies for glyphosate removal11–13,25,26. Such studies have proposed several possible 
degradation mechanisms, focusing mainly on the cleavage of the N–C and P–C bonds. The results obtained in 
our study corroborate these pathways. The potential pathways for the UV mediated photolysis of glyphosate are 
shown in the Supplementary material (Fig. S1). The first pathway (“N–C pathway”) involves the breakdown of 
the N–C bond directly by UV or by oxidizing radicals generated in the water samples, resulting in the forma-
tion of AMPA and acetic acid or formation of glyoxylic acid. The second pathway (“P–C pathway”) involves the 
formation of phosphoric acid and sarcosine which after treatment with elevated UV dose is transformed into 
glycine. Both pathways shown in Fig. S1 are in accordance with previous studies and will result in less toxic 
transformation products thereby supporting the results of the toxicity tests.

A very limited number of studies have addressed the transformation of glyphosate in water with only UV 
irradiation without added oxidizing agents or catalysts. A previous study reported that glyphosate solution 
in deionized water (1 mg/L) decreased by 50% after 4 days of UV-C exposure at 20 °C and an UV intensity of 
30 W/cm214. A study by Bourgeois et al.27 suggested that degradation of a 300 mg/L glyphosate solution was 
possible using a low-pressure UV lamp at 254 nm and that the degradation was more efficient than using a 
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Figure 6.   Effect of UV-C irradiation (20 J/cm2) of glyphosate in municipal drinking water on toxicity 
to B. subtilis. Drinking water produced from groundwater was collected at six locations in three Danish 
municipalities: Aalborg Municipality (A—Aalborg East; B—Aalborg Center; C—Aalborg West), Sønderborg 
Municipality (D), Aarhus Municipality (E), and Elsted drinking water treatment plant in Aarhus Municipality 
sampled before and after water treatment (F). Data points represent means ± standard deviation.
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medium-pressure lamp at 200-600 nm (UV dose not stated). Balah 28 stated that an aqueous solution of glypho-
sate at 30 μg/L decreased by 99% in concentration after 120 min exposure to UV irradiation at 254 nm–336 nm 
(UV dose not stated). Assalin et al.15 observed slow glyphosate degradation and formation of AMPA after UV-C 
irradiation of 42 mg/L glyphosate in water, and Sandy et al.16 observed generation of orthophosphate after UV 
mediated photooxidative degradation of glyphosate. Our results add to these findings and suggest that UV medi-
ated photolysis can decrease glyphosate concentrations by > 90% in aqueous solutions and generate different 
transformation products. Even if the UV mediated photodegradation of glyphosate is incomplete, it may sub-
sequently increase biodegradation in aquatic environments if the transformation products are less toxic and/or 
more biodegradable. The two main biodegradation pathways employed by glyphosate-degrading environmental 
microorganisms include cleavage of the C-N and the C-P bond converting glyphosate to AMPA and sarcosine29. 
Interestingly, AMPA and sarcosine were among the transformation products detected in the present study after 
UV-C irradiation of glyphosate. Although glyphosate is often considered less persistent in the environment 
compared to AMPA, this compound is nonetheless detected in many aquatic systems including groundwater 
and surface waters1,3,30. The results above suggest a potential for combining UV treatment with bioremediation 
to further increase remediation of glyphosate.

A measure of the effectiveness of UV irradiation as a mitigation method for glyphosate should include an 
assessment of the potential to alleviate toxicity to non-target organisms of the parent compound and the trans-
formation products. Glyphosate can affect a range of non-target organisms including freshwater invertebrates, 
fish and amphibians 1,31–38. The effects of different glyphosate-based herbicides (commercial formulations) on 
non-target plants and algae have also been reported38–44. In the present study, the EC50 for D. magna exposed to 
glyphosate was 0.99 mg/L which is comparable or slightly lower than those reported in previous studies35,36,45. 
The EC50 values for the green algae R. subcapitata and the bacterium B. subtilis were 1.13 and 3.67 mg/L which 
is also in range reported in previous studies1,38,40,41,43. Hence, the test organisms applied in this study to indicate 
glyphosate toxicity before and after UV irradiation expressed responses comparable to other studies and appeared 
suitable to indicate toxicity to non-target organisms. Our results suggest that UV-C and to some extend UV-B 
mediated indirect photolysis of glyphosate in water can decrease overall toxicity to several non-target organisms 
by generating less toxic transformation products (e.g., acetic acid, glycine, sarcosine, AMPA). To the best of 
our knowledge, our study is one of the few indicating that UV-C and high UV-B doses can facilitate photolysis 
of glyphosate without addition of chemicals or catalysts. In this context, it should be noted that the UV doses 
applied in the present study (4680–70,000 mJ/cm2) is above those typically applied for disinfection of drinking 
water and wastewater (40–100 mJ/cm2) but in the same range as reported previously for degradation of organic 
micropollutants (> 1000 mJ/cm2)7.

In the present study, identification of transformation products and analysis of toxicity after UV irradiation 
was carried out using diluted stocks of pure N-(phosphonomethyl)glycine without any additives. However, com-
mercial brands of glyphosate-based herbicides often contain various surfactants and formulating agents. Hence, 
we included a screening of selected commercial formulations for reduction of toxicity after UV-C exposure 
(Roundup ”Ready to Use” (Monsanto), Roundup Garden (Monsanto), Gallup Super 360 (Barclay), Glyfonova 
450 Plus (FMC). The screening of the commercial glyphosate formulations also suggested a potential of UV-C 
mediated mitigation of ecotoxicity (data not shown). Hence, more studies are needed to examine direct and 
indirect photolysis of such complex formulation including characterization of transformation products.

The majority of glyphosate concentrations used in the present study (mg/L) are clearly above the levels typi-
cally measured in surface waters and drinking water, which are often in the ng/L to µg/L range1,30. As mentioned 
above, previous studies have shown that direct and indirect photolysis can effectively degrade organics at different 
target concentrations, and we suggest that this may also be the case for trace level concentrations of glyphosate. 
Nonetheless, further studies should focus on UV effects at lower glyphosate concentrations and the applicability 
for different water types and under different hydraulic conditions. Such studies may also include UV techniques 
such as Vacuum UV that will likely increase oxidation potential and contaminant removal46,47. Because the sug-
gested UV based techniques are fundamentally non-invasive and free of added reactants, they may be attractive 
for various water treatment practices including drinking water treatment.

Table 3.   Identified transformation products by LC-HRMS analysis in negative ESI(-) and positive ESI(+) 
modes after UV-C irradiation of aqueous glyphosate. 

Compound m/z RT (min) ESI Compound m/z RT (min) ESI

H3O4P 96.968 25.94 − C5H9NO2 116.069 15.66 +

CH6NO3P 110.001 1.75 − C3H3NO2 84,009 27.82 −

C2H5NO2 74.020 1.86 − C3H4O4 103.003 1.69 −

C2H2O3 72.908 16.64 − C3H6O4 105.017 26.14 −

C3H7NO2 90.054 29.62 + C3H6O 58.080 11.8 +

C2H7NO2 77.084 1.77 − C3H9NO2 92.069 1.66 +

C2H5NO 59.070 35.32 − C4H10O2 91.074 28.37 +

C2H6N2O4 91.016 28.99 − C4H8O 73.028 4.43 +

C2H4O2 59.015 8.52 − C4H8O4 119.033 6.85 −

C3H8N2O 89.070 30.13 + C4H10O3 106.120 29.42 −

C6H11NO2 130.085 28.58 + C5H5N 80.048 32.84 +
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Conclusions
Glyphosate is frequently detected as contaminant in water resources and there are on-going scientific and public 
discussions in many countries about the safety and continued use of glyphosate-based herbicides. This study 
investigated effects of UV-A, UV-B and UV-C irradiation of glyphosate on photolysis and toxicity to aquatic 
organisms from different trophic levels. The results suggested that UV-C and to some extend UV-B mediated 
indirect photolysis of glyphosate in water could attenuate concentrations of this pesticide and decrease overall 
ecotoxicity. UV-C mediated generation of less bioactive glyphosate transformation products may subsequently 
facilitate environmental biodegradation. The study also emphasized that toxicity assays represent important 
supplements to chemical tools for water quality assessment because bioassays can integrate overall changes in 
water chemistry and bioactivity before and after water treatment. The results of our study can be relevant for 
further developments of UV mediated treatment processes for aquatic contaminants.

Methods
Chemicals.  Stock solutions of glyphosate were prepared in autoclaved distilled deionized water from a 40% 
wt/vol N-(phosphonomethyl)glycine, monoisopropylamine salt solution (CAS 38641-94-0, Sigma-Aldrich), and 
from N-(phosphonomethyl)glycine (CAS 1071-83-6, Sigma-Aldrich). Stock solutions of commercial brands of 
glyphosate-based herbicides were prepared in autoclaved distilled deionized water from Roundup Ready to 
Use containing 7.2% wt/vol glyphosate (Monsanto, USA), Roundup Garden containing 12% wt/vol glyphosate 
(Monsanto, USA), Gallup Super 360 containing 36% wt/vol glyphosate (Barclay, UK), and Glyfonova 450 Plus 
containing 45% wt/vol glyphosate (FMC, Denmark). According to the product datasheets, these formulations 
also contain water and various surfactants and formulating agents. All stock solutions of glyphosate and glypho-
sate-based herbicides were stored in the dark at 5 °C.

Drinking water samples.  Drinking water samples were collected at Aalborg, Aarhus, Skagen and Sønder-
borg municipalities (Denmark). Water samples were also collected at the influent (raw water) and effluent 
(treated water) of Elsted drinking water treatment plant (Denmark). All water samples originated from ground-
water but with regional differences in organic and inorganic constituents according to the national Danish well 
database on water quality (https​://eng.geus.dk/produ​cts-servi​ces-facil​ities​/data-and-maps/natio​nal-well-datab​
ase-jupit​er).

UV irradiation of glyphosate in aqueous samples.  Glyphosate and glyphosate-based herbicides 
dissolved in distilled deionized water or drinking water were exposed to different doses of UV-A, UV-B or 
UV-C irradiation. Stock solutions with 50 and 100 mg/L glyphosate were exposed to UV irradiation at 22 °C 
in 10 mm 3.5 mL quartz cuvettes (Science Outlet Optical Quartz QS10 and Hellma Precision Quartz Suprasil 
QS10). Dilute glyphosate concentrations were prepared in UV bottom—transparent 96 well microplates (Nunc 
96-well UV microplates, Thermo Scientific) to examine the effects of glyphosate concentrations between 0.18 
and 100 mg/L on the outcome of UV irradiation. The UV microplates with different glyphosate concentrations 
were exposed from the top or bottom using similar UV doses as the quartz cuvettes with uniform glyphosate 
concentrations. The 96-well UV microplates were placed on a cooling plate to avoid heating and maintain the 
temperature at around 22 °C to minimize evaporation from the small sample volumes used in these plates (100 
µL). In all UV experiments, parallel control samples without UV exposure were covered with aluminium foil and 
stored in the dark for later analysis together with UV exposed samples.

UV irradiation experiments were carried out using a 4 W UVP UVGL-25 lamp (Analytic Jena) equipped with 
separate UV-A (365 nm) and UV-C (254 nm) tubes, and an 8 W UVP 3UV lamp (Analytic Jena) equipped with 
separate tubes for UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm). The two UV lamps gave comparable 
results in toxicity experiments for comparable UV doses, and the 8 W lamp with greater intensity was selected to 
shorten exposure times. Irradiation intensity was measured using an Extech SDL470 Light meter equipped with 
UV-AB and UV-C sensors. The irradiation intensity at 15 cm distance from the UVP 3UV lamp was 970 μW/
cm2/s for UV-A, 1900 μW/cm2/s for UV-B, and 327 μW/cm2/s for UV-C. UV doses (J/cm2) were calculated from 
the measured UV irradiation intensity (μW/cm2/s) and the exposure time (s). No detectable UV-C irradiation 
was measured from the UV-A and UV-B lamps and vice versa. UV exposure doses (J/cm2) were controlled by 
changing exposure times and distances to the UV lamps. For example, an exposure UV dose of 20 J/cm2 was 
obtained using the same exposure time but different distances to the UV lamp (20 cm for UV-A, 35 cm for 
UV-B, and for 5 cm for UV-C). The presence of active oxygen species in aqueous samples after UV irradiation 
was confirmed by the addition of different oxygen radical probes. Superoxide radical (·O2

-), was detected by 
measuring chemiluminescence after posttreatment addition of 1 mM luminol. Hydroxyl radical (·OH) was 
detected by measuring fluorescence after pretreatment addition of 1 mM coumarin, terephthalic acid or benzoic 
acid. Chemiluminescence and fluorescence originating from the oxygen radical probes after reaction with active 
oxygen species were quantified using a Victor X2 Multilabel Plate Reader (Perkin Elmer).

Analysis of glyphosate phototransformation products.  Liquid chromatography-high resolution 
mass spectrometry analysis (LC-HRMS) of water samples with glyphosate was performed before and after UV 
exposure to identify transformation products. Analyses were carried out using an Ultimate 3000 High-Pressure 
Liquid Chromatography coupled through an ESI source to an LTQ-Orbitrap mass spectrometer (Thermo Sci-
entific). Chromatographic separation was achieved using a reversed-phase C18 column (Phenomenex Luna, 
150 × 2 mm, 3 µm, 110 Å; Phenomenex, Italy) by injecting a 10 µL sample volume at a mobile phase consisted 
of a mixture of 0.1 mM Formic Acid (eluent A) and Acetonitrile (eluent B). The gradient profile started with 
5% B, increased up to 100% B in 40 min and to 100% A in 10 min. Samples were ionized in both positive and 

https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter
https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter
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negative ionization modes. The LC effluent was delivered to the ESI ion source using Nitrogen as sheath and 
auxiliary gas with the following parameters: sheath gas 34 arbitrary unit (arb), auxiliary gas 15 arb, capillary 
voltage 4.48 kV, and capillary temperature of 270 °C. Full mass spectra were acquired in positive ion mode with 
a resolution of 30.000. Data analysis was performed using the MZmine 2.5348 for peak alignment, peak grouping, 
background noise and retention time correction, and the METLIN database was used to identify the transforma-
tion products18,19,48.

Toxicity test with the luminescent bacterium Aliivibrio fischeri.  Toxicity screening of glyphosate 
samples was examined in a standard inhibition tests with the luminescent bacterium Aliivibrio fischeri (ISO 
11348-1, 2009)49. A. fischeri DSM 7151 was incubated in white 96-well plates (CulturPlate, Perkin Elmer), and 
exposed to the following concentrations of glyphosate with or without prior UV irradiation: 0.098, 0.195, 0.39, 
0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 mg/L. Changes in bioluminescence were quantified after 30 min using a Victor 
X2 Multilabel Plate Reader (Perkin Elmer).

Toxicity test with the bacterium Bacillus subtilis.  The toxicity of glyphosate samples to Gram positive 
bacteria was examined in a newly developed inhibition test with Bacillus subtilis. The endpoint was inhibition of 
growth and hydrolase activity after 18 h. Bacillus subtilis DSM 10 from the German Collection of Microorgan-
isms and Cell Cultures (DSMZ) was grown at 30 °C in Davis Minimal Broth (Sigma-Aldrich) supplemented with 
the following trace elements: 25 µM FeSO4, 0.5 µM ZnCl2, 0.5 µM Na2MoO4, 0.5 μM MnCl2, 0.5 μM H3BO3, 
0.5 μM CoCl2, 0.5 μM NiCl2, 2.0 μM CuSO4. Serial dilutions of glyphosate were made in 96-well clear Nunclon 
microplates (Thermo Scientific) using 100 µL glyphosate stock solutions (100 mg/L) serially diluted in 100 µL 
autoclaved distilled water resulting in different glyphosate concentrations (twofold dilutions and 100 µL diluted 
sample in each well). After glyphosate dilution, 50 µL of 4 × strength Davis Minimal Broth was added to each 
well, followed by addition of 50 µL of diluted B. subtilis culture (1:1000 dilution in 0.9% NaCl). This resulted in a 
final liquid volume of 200 µL in each well and 10 different concentrations of glyphosate: 0.098, 0.195, 0.39, 0.78, 
1.56, 3.13, 6.25, 12.5, 25, 50 mg/L. Four replicates were included for blanks (medium only), controls (no glypho-
sate), and each glyphosate concentration. Sealed plates were incubated with shaking at 250 rpm for 18 h at 30 °C 
on a PST-60HL-4 Plate Shaker Thermostat (Biosan). The absorbance at 620 nm was then measured for each well 
using a Thermo Multiskan Plate Reader (Thermo Scientific). Finally, hydrolase activity in B. subtilis was meas-
ured by adding 20 µL fluorescein diacetate stock solution (5 mM) to each well to obtain a final concentration of 
5 µM. After 60 min incubation at 30 °C, fluorescence was quantified in each well using a Victor X2 Multilabel 
Plate Reader with a 485 nm excitation and 535 nm emission filter (Perkin Elmer).

Toxicity test with the green microalga Raphidocelis subcapitata.  The toxicity of glyphosate to 
phytoplankton was examined in inhibition tests with the unicellular green microalga Raphidocelis subcapitata 
(formerly Selenastrum capricornutum and Pseudokirchneriella subcapitata; ISO 8692, 2012)17. The endpoint was 
inhibition of growth measured after 72 h of incubation (ISO 8692, 2012)17. R. subcapitata (MicroBioTests Inc.) 
was cultivated in test medium at 23 ± 2 °C and continuous illumination at 6500 lx (ISO 8692, 2012)17. Diluted 
culture was exposed in 96-well clear Nunclon microplates (Thermo Scientific) to different concentrations of 
glyphosate with or without prior UV irradiation (0.098, 0.195, 0.39, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 mg/L). 
Eight replicates were included for blanks (medium), controls (no glyphosate), and each glyphosate concentra-
tion. Plates were incubated for 72 h at 23  °C on a shaker at 70 rpm with continuous illumination (6500  lx). 
Growth was measured after 0, 24 h, 48 h and 72 h as absorbance at 450 nm using a Thermo Multiskan Plate 
Reader (Thermo Scientific). Growth measurements for selected samples was verified by measuring cell sizes 
(µm) and cell abundance (cells/mL) using a Multisizer 4e Coulter Counter (Beckman Coulter).

Toxicity test with the crustacean Daphnia magna.  The toxicity of glyphosate to zooplankton was 
examined in inhibition tests with the crustacean D. magna (ISO 6341, 2012)50. The toxicological endpoint was 
inhibition of mobility determined by visual inspection of the animals (ISO 6341, 2012)50. D. magna STRAUS 
was cultivated from a laboratory clone originating from pure-culture ephippia36. Each treatment consisted of 20 
juvenile animals distributed among 4 glass vials with 5 animals and 10 mL freshwater medium in each vial. The 
mobility of each animal was determined after 24 h and 48 h (ISO 6341, 2012)50.

UV irradiation experiments.  The following UV irradiation experiments with glyphosate were conducted 
to examine photolysis and biotoxicity before and after exposure of samples to UV irradiation: a) effect of UV 
wavelength (UV-A, UV-B, UV-C); b) effect of UV dose (J/cm2); c) effect of glyphosate concentrations (mg/L); 
and d) importance of water matrix. UV dosing between 2.3 and 70  J/cm2 was examined and 20  J/cm2 was 
selected as the default value in comparative tests. The effect of glyphosate concentration on the outcome of UV 
irradiation was examined in parallel experiments with a) UV-C irradiation (20 J/cm2) of a single concentration 
of glyphosate (100 mg/L) followed by serial dilution of the sample into 10 glyphosate concentrations for toxic-
ity testing; b) UV-C irradiation (20 J/cm2) of 10 glyphosate concentrations between 0.18 mg/L and 100 mg/L 
followed by twofold dilution and toxicity testing. The effect of different water types on the outcome of UV 
irradiation experiments was examined by comparing UV-C irradiation of glyphosate in deionized water with 
glyphosate in drinking water samples from 4 Danish municipalities (Aalborg, Aarhus, Skagen, and Sønderborg).

Data analysis and statistics.  The toxic response measured for all endpoints were expressed as inhibition 
(I) relative to control samples: I = 1 − (Ri/Rc), where Ri and Rc are responses measured for inhibited and control 
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samples, respectively. Control samples included water samples with UV exposure but without glyphosate to 
assess any toxicity associated with active oxygen species generated during irradiation. Concentration–response 
curves were fitted to a log-logistic model using iterative non-linear regression20:

 where C is the toxicant concentration (mg/L), EC50 is the median effective concentration (mg/L), and Slope is 
a model parameter representing the slope of the curve. Iterative non-linear regressions and calculation of 95% 
confidence limits for EC50 values were performed using Prism 8.0.1 (Graphpad Software). Relative Effect Potency 
(REP)20 was used to estimate the toxicity of a sample before and after UV treatment:

where EC50(before) is the median effective concentration before treatment (mg/L) and EC50(after) is the median 
effective concentration after UV irradiation (mg/L).

Statistical analyses of results were carried out using the nonparametric Mann–Whitney U test (Wilcoxon 
rank sum test) for evaluating differences between treatments with a significance level of p < 0.05 (KaleidaGraph 
4.5.4; Synergy Software).
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