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Using recent results in four-derivative 5d N = 2 minimal gauged supergravity, we evaluate the
regularized on-shell action of the Euclidean solution in this theory that admits a Lorentzian con-
tinuation to an AdS5 black hole with one electric charge and two angular momenta. We focus on
the supersymmetric limit of this solution and employ holography to show that the result can be
expressed purely in terms of angular momentum fugacities and the ’t Hooft anomalies for the U(1)R
R-symmetry of the dual 4d N = 1 SCFT. This holographic calculation is in perfect agreement with
recent studies of the 4d N = 1 superconformal index “on the second sheet”. We illustrate the utility
of these results in two classes of 4d N = 1 holographic SCFTs that have ’t Hooft anomalies with
suitable large N behavior that leads to non-trivial corrections at first subleading order in the 1/N
expansion. We also explicitly calculate the Wald entropy of the black hole solution and delineate
the leading four-derivative corrections to the Bekenstein-Hawking entropy.

Introduction–Exploring the AdS/CFT correspondence
beyond the classical two-derivative supergravity approx-
imation is a challenging endeavor that is bound to lead
to important insights into quantum gravity. Supersym-
metry is an invaluable tool that allows for quantitative
access to physical observables on both sides of the dual-
ity. There have been recent important advances in this
context using supersymmetric localization for 3d N = 2
SCFTs and higher-derivative corrections in 4d supergrav-
ity. In particular, supersymmetric localization allows for
the systematic calculation of the path integral of the
SCFT on compact Euclidean manifolds order by order in
the 1/N expansion, see [1] for a review. For SCFTs aris-
ing from M2-branes, the leading and subleading terms at
large N can be reproduced using holography by studying
the four-derivative corrections to 4d gauged supergrav-
ity [2–5]. Our goal in this work is to extend this success
to 5d gauged supergravity and the dual 4dN = 1 SCFTs.

The QFT observable of interest here is the supercon-
formal index which can be defined for any 4d N = 1
SCFT as the path integral of the theory on S1×S3 with
appropriate supersymmetric periodicity conditions [6–8].
The large N limit of the superconformal index for holo-
graphic SCFTs is subtle and it was recently understood
that one needs to consider the analyticity properties of
the index on the complex fugacity plane in order to find
non-trivial large N scaling indicative of a weakly coupled
holographic bulk dual, see [9–12] and references thereof.
While the superconformal index contains detailed infor-
mation about the spectrum of BPS states in the 4dN = 1
SCFT, it simplifies drastically in the large N limit when
one takes the fugacities to be on the “second sheet” [13].
It was argued in [13, 14], that the superconformal index
on the second sheet, I, takes the following form

log I =
(ω1 + ω2 + 2πin0)3

48ω1ω2
TrR3 (1)

− (ω1 + ω2 + 2πin0)(ω2
1 + ω2

2 − 4π2)

48ω1ω2
TrR+ log |G| ,

where ω1,2 are the two angular momentum fugacities,
TrR3 and TrR are the cubic and linear ’t Hooft anoma-
lies for U(1)R, the supersymmetry constraint that fixes
the R-symmetry fugacity has already been implemented
with n0 = ±1, and |G| is the order of the Abelian one-
form symmetry in the theory (if any). This result is valid
up to terms of order e−`3/β in the small β limit, where β
is the circumference of S1 and `3 is the radius of the S3,
and includes the contribution from the supersymmetric
Casimir energy [15, 16]. Our main result in this paper is
a supergravity calculation that reproduces the first two
terms on the RHS of (1). This constitutes a non-trivial
precision test of holography and provides strong indepen-
dent evidence for the validity of the results in [13, 14].

For holographic SCFTs with a weakly coupled super-
gravity dual, TrR3 is the leading term in the large N
expansion and is proportional to the dimensionless ratio
L3/G5 between the scale L of AdS5 and the 5d Newton
constant. Indeed, it was shown in [10] how the first term
on the RHS of (1) can be obtained holographically by
calculating the regularized on-shell action of a class of su-
persymmetric Euclidean solutions of 5d minimal N = 2
gauged supergravity with an S1 × S3 boundary derived
in [17, 18]. In SCFTs with an appropriate large N scal-
ing the TrR term in (1) should be captured by includ-
ing four-derivative corrections to the supergravity theory.
Recently the full 5d minimal N = 2 gauged supergravity
action including the two possible four-derivative terms
was derived in [19], see also [20]. We show that evaluat-
ing the regularized four-derivative on-shell action for the
CCLP solution of [17, 18] in this four-derivative theory
yields precise agreement with the TrR3 and TrR terms
in (1). We then employ this result and the first law of
thermodynamics to calculate the Wald entropy of the
Lorentzian AdS5 black hole obtained by analytic contin-
uation of the CCLP solution and comment on its relation
to the superconformal index [21].

The Euclidean CCLP solution–It was shown in [17,
18] that the following background, which we will refer to
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as the CCLP solution, solves the equations of motion of
the two-derivative 5d minimal N = 2 gauged supergrav-
ity

ds2 =
∆η

[(
1 + r2

L2

)
ρ2 dτ + 2iqν

]
dτ

ΞaΞbρ2
+

2qνω

ρ2

+
f

ρ4

(
i∆η dτ

ΞaΞb
+ ω

)2

+
ρ2dr2

∆r
+
ρ2dη2

∆η

+
r2 + a2

Ξa
sin2 η dξ2

1 +
r2 + b2

Ξb
cos2 η dξ2

2 ,

A =−
√

3q

ρ2

(
i∆ηdτ

ΞaΞb
+ ω

)
− iαdτ,

(2)

where we have defined

ν = b sin2 η dξ1 + a cos2 η dξ2 ,

∆r =
(r2 + a2)(r2 + b2)

(
1 + r2

L2

)
+ q2 + 2abq − 2mr2

r2
,

ω =
a

Ξa
sin2 η dξ1 +

b

Ξb
cos2 η dξ2 , (3)

∆η = 1− a2

L2
cos2 η − b2

L2
sin2 η ,

ρ2 = r2 + a2 cos2 η + b2 sin2 η ,

f = 2mρ2 − q2 +
2abqρ2

L2
, Ξa = 1− a2

L2
, Ξb = 1− b2

L2
.

We present the solution in Euclidean signature and do
not assume any reality properties of the four parameters
(m, q, a, b). The solution in Lorentzian signature can be
obtained from the expressions above by the replacement
τ → it and describes a black hole in AdS5 with one elec-
tric charge and two independent angular momenta.

We are interested in studying the effects of the four-
derivative corrections to 5d N = 2 gauged supergrav-
ity on the on-shell action and thermodynamic properties
of this solution. These four-derivative corrections were
studied recently in [19] where it was shown that they
are controlled by two constant coefficients c1,2, see (18)
in the Appendix for the full bosonic Lagrangian of the
supergravity theory. As discussed in [22, 23], see also
[24, 25] for earlier observations to this effect, if one is in-
terested in corrections linear in c1,2 it is not necessary to
correct the two-derivative solution but it is sufficient to
consider only the effects due to the corrected action. It is
expected on very general grounds that c1,2 are paramet-
rically small corrections to the two-derivative action [26].
We will therefore use the results in [22, 23] as our start-
ing point and work with the two-derivative CCLP solu-
tion [27].

The Euclidean solution caps off at the location of the
outer black hole horizon obtained by solving ∆r(r+) = 0.
The length β of the Euclidean time circle is determined
by requiring regularity of the metric in the limit r → r+

and reads

β =
2πr+[(r2

+ + a2)(r2
+ + b2) + abq]

r4
+[1 + g2(2r2

+ + a2 + b2)]− (ab+ q)2
, (4)

where g = 1/L and the coordinate ranges of the Eu-
clidean solution are

τ ∈ [0, β) , r ∈ [r+,∞) , η ∈ [0, π2 ) , ξ1,2 ∈ [0, 2π) . (5)

The Euclidean CCLP solution is supersymmetric if one
constrains the parameters as

q =
m

1 + ag + bg
. (6)

It is important to stress that this supersymmetric Eu-
clidean solution does not in general admit a Lorentzian
continuation to a supersymmetric and causal black hole
solution, see [10] for a more detailed discussion. To ob-
tain the BPS Lorentzian black hole found in [17, 18, 28]
one has to impose the additional relation

mg

(a+ b)(1 + ag)(1 + bg)(1 + ag + bg)
= 1 , (7)

together with the inequality a+ b+ abg > 0.
To properly understand the four-derivative corrections

to the thermodynamic properties of this gravitational
solution one needs to carefully compute the conserved
charge, angular momentum, and entropy. We will discuss
some aspects of these calculations below. For the chemi-
cal potentials dual to these thermodynamic variables one
can simply employ the fact that we are working with an
uncorrected two-derivative solution and use the temper-
ature T = 1/β, with β in (4), as well as the following
angular and electric chemical potentials [10]

Ω1 =
a(r2

+ + b2)(1 + g2r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
,

Ω2 =
b(r2

+ + a2)(1 + g2r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
,

Φ =

√
3qr2

+

(r2
+ + a2)(r2

+ + b2) + abq
.

(8)

It is important to stress that imposing regularity of the
gauge field at r = r+, i.e. demanding that AµA

µ is finite,
fixes the pure gauge constant α in (2) as α = −Φ.

Studying thermodynamics for supersymmetric black
holes is subtle due to their finite entropy and vanishing
temperature. Here we will follow the approach of [10], see
also [29], and use the supersymmetric Euclidean solution
as a crutch to calculate finite gravitational observables
in the supersymmetric limit. This means that we will
study the two-parameter family of supersymmetric Eu-
clidean solutions obtained by imposing the constraint (6).
The supersymmetric temperature and chemical poten-
tials are then obtained from (4) and (8) by imposing
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the constraint (6) and will be denoted by a superscript
s, while the relevant quantities for the supersymmetric
Lorentzian black hole solution will be denoted by a ∗ su-
perscript and are obtained by additionally imposing (7).
To make a connection with the fugacities in the S1 × S3

supersymmetric partition function of the dual SCFT it
was shown in [10] that it is useful to define the following
angular and electric gravitational fugacities

ωs1 ≡ βs(Ωs1 − Ω∗1) =
π(ag − 1)(b− ir+)

Ξ
,

ωs2 ≡ βs(Ωs2 − Ω∗2) =
π(bg − 1)(a− ir+)

Ξ
,

ϕs ≡ βs(Φs − Φ∗) =

√
3π(a− ir+)(b− ir+)

Ξ
,

(9)

where Ξ ≡ r+(1 + ag + bg) + ig
2 (r2
∗ − 3r2

+) and r∗ is
the value of r+ when both constraints in (6) and (7) are
imposed. These new chemical potentials satisfy the linear
constraint

ωs1 + ωs2 −
√

3

L
ϕs = 2πi , (10)

which is the supergravity analog of the linear relation
between the SCFT fugacities that is already implemented
in (1). The fact that the supergravity fugacities add up
to an imaginary number reflects the analytic continuation
to the second sheet used in [13].

HD corrections and the on-shell action–According
to the standard holographic dictionary the supergravity
dual of the logarithm of the superconformal index in (1)
should be equal to the regularized on-shell action of the
CCLP solution. To compute this action we use the four-
derivative supergravity Lagrangian in (18) and regulate
the UV divergences by employing background subtrac-
tion. More specifically, we calculate the difference be-
tween the on-shell action of the CCLP solution for gen-
eral values of the parameters (using the coordinate ranges
in (5)) and the on-shell action of empty AdS5 in global
coordinates. We note that the same holographic regu-
larization scheme was used in the two-derivative on-shell
action analysis in [10, 30]. The on-shell action calcu-
lation is arduous and was performed with the help of
Mathematica [31]. The final result for the regularized
four-derivative on-shell action however is compact and
simple and reads

Ireg =
(ϕs)3

ωs1ω
s
2

[
π

12
√

3G5

− 2π2(c1 + 6c2)

L2

]
+
ϕs[(ωs1)2 + (ωs2)2 − 4π2]

ωs1ω
s
2

2π2c1.

(11)

To compare this calculation with the field theory result
in (1) we need to invoke the holographic map between
field theory and gravitational quantities. The relation
between the supergravity parameters and the ’t Hooft

anomaly coefficients in the dual SCFT was worked out
in [19] and reads [32]

TrR3 =
16(5a− 3c)

9
=

4πL3

9G5
− 32

√
3π2

3
L(c1 + 6c2) ,

TrR = 16(a− c) = −32
√

3π2Lc1 . (12)

As discussed in [10], the supersymmetric angular fugaci-
ties ωs1,2 in (9) should be identified with ω1,2 in (1). Using
all this, together with the relation between the supergrav-
ity fugacities in (10), we find a perfect agreement between
the four-derivative regularized on-shell action in (11) and
the first two terms on the RHS of (1) for n0 = −1 [33].
This agreement constitutes a precision test of holography
beyond the two-derivative supergravity approximation.

The field theory result in (1) applies to all 4d N = 1
SCFTs. Similarly, the four-derivative 5d supergravity on-
shell action in (11) is universal and should apply to all
holographic SCFTs with a weakly coupled bulk dual. It
is important however to keep in mind that not all holo-
graphic SCFTs have an appropriate large N scaling of
TrR which ensures that the four-derivative supergravity
couplings c1,2 do not vanish. For instance, as discussed
in [19], in N = 4 SYM one has TrR = 0, while in the
well-known Y (p,q) quiver gauge theories TrR ∼ N0 and
thus we find that c1,2 vanish in these models. As a result,
one probably needs to study loop effects in supergravity
to capture the TrR = 0 term in (1). Two notable exam-
ples where the 5d Lagrangian in (18) captures the effects
of TrR are the 4d N = 2 F-theory models discussed in
[34, 35] and the 4d N = 1 class S SCFTs that arise from
M5-branes wrapped on a Riemann surface [36–39]. In
both of these examples TrR scales as N and, as shown in
[19], c1,2 do not vanish.

To be concrete, the U(1)R ’t Hooft anomalies for the
4d N = 2 SCFTs arising from D3-branes at F-theory
singularities are [34, 35]

TrR3 =
8∆

9
N2 +

4(∆− 1)

9
N +

2

27
,

TrR = 4(1−∆)N +
2

3
,

(13)

where N is the number of D3-branes and the rational
number ∆ specifies the global flavor symmetry of the
SCFT and is related to the number of D7-branes, n7,
used in the construction. It is given by ∆ = 12

12−n7
with

n7 taking values in the set {2, 3, 4, 6, 8, 9, 10}.
For the theories arising from wrapped M5-branes on

a smooth compact Riemann surface Σg of genus g > 1
the ’t Hooft anomalies were computed in [38, 39] and the
result to leading and subleading order at large N reads

TrR3 =
2(g− 1)

27z2

[
9z2 − 1 + (3z2 + 1)

3
2

]
N3

− g− 1

9z2

[
(
√

3z2 + 1− 1)(2 + 3z2)− 3z2
]
N + . . . ,

TrR =
g− 1

3

[
4−

√
3z2 + 1

]
N + . . . . (14)
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Here N is the number of M5-branes and the rational
parameter z specifies the choice of partial topological
twist on Σg for the theory on the worldvolume of the
M5-branes. We can use the anomalies (13) and (14), to-
gether with the supergravity relation in (12), to find the
large N behavior of the superconformal index in these
two classes of models. We emphasize that for these mod-
els the large N behavior of the superconformal index has
not been studied by “standard methods” and the only
available large N results are the application of the uni-
versal QFT formula in (1) and the supergravity results
presented above.

Wald entropy–In a higher-derivative diffeomorphism
covariant theory of gravity the entropy of a black hole
solution can be computed using Wald’s formalism [40].
Given the Lagrangian density of the d-dimensional the-
ory, L, the Wald entropy can be found through the fol-
lowing integral

SW = −2π

∫
Σ

dd−2x
√
γ

δL
δRµνρσ

εµνερσ , (15)

where Σ is a bifurcate Killing horizon with induced met-
ric γµν , εµν is the binormal to Σ defined as κ εµν = ∇µVν
with V µ the null Killing vector generating the horizon
and κ the surface gravity. As emphasized in [41], the
Wald procedure has to be modified in the presence of
gravitational Chern-Simons terms. Applying the results
of [41] to the A ∧ R ∧ R term in the four-derivative La-
grangian (18) we find the following additional contribu-
tion to the Wald entropy

SCS
W = −2π

∫
Σ

d3x εµνρ εσλ Γλσµ Fνρ . (16)

Using (15) and (16) and the Lagrangian in (18) we find
that the Wald entropy of any black hole solution in the
four-derivative 5d N = 2 minimal supergravity can be
found by computing the integral in (19). The result of
this calculation for the two-derivative CCLP solution is
discussed in the Appendix. Unfortunately this result
is not compatible with the first law of thermodynam-
ics which strongly suggests that one should first correct
the CCLP solution using the four-derivative equations of
motion and then evaluate the Wald entropy.

In the absence of the explicit corrections to the CCLP
background, one can use the four-derivative gravitational
on-shell action and the first law of thermodynamics as
a shortcut to obtain the entropy of the corrected black
hole solution as follows. Choosing an ensemble where the
fugacities {β,Φ,Ω1,2} are kept fixed, varying the on-shell
action with respect to the quantities in (4) and (8) yields
the corrected angular momenta J1,2 = − 1

β
∂I

∂Ω1,2
, electric

charge Q = − 2L√
3β

∂I
∂Φ and energy E = ∂I

∂β +Ω1J1+Ω2J2+
√

3
2LΦQ [42]. The normalization of Q is chosen for later
convenience. In the BPS limit, these conserved quantities

obey the linear relation 2LE = 2(J1 + J2) + 3Q. Using
this and the first law of thermodynamics, the entropy of
the four-derivative BPS black hole reads:

SBPS
W = π

√
3Q2 − 8a(J1 + J2)− 16a(a− c)(J1 − J2)2

Q2 − 2a(J1 + J2)
.

(17)

We write this formula as a non-linear expression in terms
of the black hole charges and the conformal anomalies of
the dual SCFT. This is inspired by the two-derivative re-
sult in [43] but is somewhat misleading. All quantities
in (17) should be linearized in the HD parameters c1,2 to
obtain the four-derivative black hole entropy in terms of
the parameters of the CCLP solution. The explicit ex-
pressions for the charges and black hole entropy to linear
order in c1,2 are unwieldy and can be found in the online
repository [31]. We have also checked that the linearized
form of (17) follows from a Legendre transform of the
on-shell action in (11) with respect to {ϕs, ωs1,2} subject
to the constraint in (10), and then taking the BPS limit.

Discussion–In this work we established a precise agree-
ment between the leading and first subleading correc-
tion in the large N limit of the superconformal index
of a holographic 4d N = 1 SCFT and the on-shell ac-
tion of the dual CCLP supergravity solution evaluated
in the four-derivative 5d N = 2 minimal gauged super-
gravity. Importantly, for the subleading correction to
be non-vanishing in supergravity we need an appropriate
large N scaling of the linear and cubic ’t Hooft anomalies.
In particular, our results imply that in [23] no correction
to the black hole entropy was observed simply because
TrR = 0 in N = 4 SYM and thus c1,2 vanish.

Our results also point to a number of important open
questions. It is desirable to put on a more solid footing
the thermodynamic properties of the CCLP solution in
the four-derivative theory of interest here. As discussed
above, the chemical potentials remain the same as their
two-derivative values and we have calculated the four-
derivative corrections to the on-shell action. Calculat-
ing the corrections to the entropy, charge, mass, and an-
gular momentum is however non-trivial since it involves
finding the corrections to the CCLP solution due to the
four-derivative terms in the action as well as a proper
treatment of holographic renormalization in the presence
of higher-derivative terms. It will certainly be most in-
teresting to compute these quantities explicitly and in
particular check the validity of the quantum statistical
relation and the first law of black hole thermodynam-
ics [44, 45], which we have assumed to be valid when
computing the black hole entropy in (17). This is impor-
tant for properly deriving and understanding the black
hole entropy microscopically in string or M-theory. In
this context it is also desirable to understand how to use
supergravity or string theory to account for the higher
order terms in the 1/N expansion of the superconformal
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index as well as for the exponentially suppressed correc-
tions. We hope that our results here are a useful step in
that direction.
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Appendix–As shown in [19] the four-derivative bosonic Lagrangian of 5d minimal N = 2 gauged supergravity
takes the following form

e−1L4∂ = −
[ 1

κ2
+

(5 c1 + 24 c2)g2

2
√

3

]
R+

[ 1

4κ2
+

7(5 c1 − 12 c2)g2

24
√

3

]
F 2
ab −

[12g2

κ2
+

1√
3

(25 c1 + 156 c2) g4
]

− i

12
√

3

[ 1

κ2
− 3
√

3(c1 + 6 c2)

2
g2
]
e−1εµνρστAµFνρFστ −

ic1
16
e−1εµνρστAµRνρ

λεRστλε (18)

− (2 c1 − 3 c2)

24
√

3
RF 2

ab +
5c1

4
√

3
RabFacFb

c −
√

3c1
16

RabcdF
abF cd − (c1 + 6 c2)

8
√

3
R2 +

c1

2
√

3
R2
ab −

√
3c1
8

(Rabcd)
2

− 5
√

3

64
c1 F

abFa
cFb

dFcd +
(61 c1 − 6 c2)

1152
√

3
F 2
ab F

2
cd +

√
3c1
2

(∇aFbc)(∇[aF b]c) +

√
3c1
2

Fab∇b∇cF ac

− ic1
8
e−1εµνρστFµ

λFστ

(3

2
∇νFλρ −∇λFνρ

)
− 3ic1

32
e−1εµνρστFµνFρσ∇λFλτ +O(c2i ) .

We have written the Lagrangian in Euclidean signa-
ture, used e to denote the square root of the determi-
nant of the metric, and have defined the ε symbol as
ε01234 = ε01234 = 1. In addition to the metric, the only
bosonic field in the theory is the U(1) gauge field Aµ
with field strength Fµν and we use conventions where
κ2 = 16πG5 and the supergravity gauge coupling is re-
lated to the AdS5 scale L used in (2), (3) as g = 1/L.
We emphasize that (18) was derived by working to linear

order in the small parameters c1,2 determining the four-
derivative invariants. When the couplings c1,2 vanish,
the Lagrangian above reduces to the one for the two-
derivative 5d minimal N = 2 gauged supergravity.

Around (15) we explained how to implement the Wald
entropy calculation for our four-derivative supergravity
theory. The result of this lengthy analysis for the La-
grangian in (18) is given by the following expression

SW = −2π

∫
Σ

d3x
√
γ
[( 1

κ2
+

5c1 + 24c2

2
√

3
g2 +

2c1 − 3c2

24
√

3
F 2
ab +

c1 + 6c2

4
√

3
R
)
η[a[cηd]b] − c1

4
√

3

(
5F egF f g + 4Ref

)
η[a[cηd]

eη
b]
f

+

√
3 c1
16

(
F abF cd + 4Rabcd

)]
εab εcd −

c1π

2

∫
Σ

d3x εµνρ εσλ ΓλσµFνρ . (19)

The last term on the RHS of (19) is the contribution
from the A ∧ R ∧ R term in the supergravity action.
It is straightforward but quite tedious to evaluate the
Wald entropy for the general non-supersymmetric two-
derivative CCLP black hole solution in (2), (3). We per-
formed the calculation using Mathematica and found ex-
plicitly the Wald entropy for the uncorrected black hole

solution. Unfortunately this result for the Wald entropy
does not agree with the entropy computed using the first
law of thermodynamics and presented in (17). This im-
plies that in order to find the correct Wald entropy one
needs to find the correction to the CCLP solution due
to the presence of the four-derivative terms in the super-
gravity action.
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