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Abstract—People with blindness or severe low-vision access
mobile devices using screen readers. However, noisy environments
can impair screen reader intelligibility. During mobility, this
could disorient or even endanger the user. To address this issue,
we propose three screen reader speech compensation techniques
based on environmental noise: speech rate slowing, adaptive
volume increase, and adaptive equalization.

Through a study with twelve participants in three simulated
noise scenarios, we evaluate screen reader intelligibility and the
perceived distraction from the soundscape, with and without com-
pensations. Four of the proposed compensations, in particular
those that pair speech rate reduction with volume or equalization
adaptation, significantly improve screen reader’s speech intelligi-
bility in all considered scenarios, and the compensations do not
have a significant impact on the distraction from the soundscape.

Index Terms—Speech compensation, visual impairments.

I. INTRODUCTION

People with Blindness or Severe Low-Vision (BSLV) access
mobile devices through screen readers [1]. These accessibility
services augment touchscreen interactions with verbal descrip-
tions of the explored screen content, enabling non-visual ac-
cess to Graphical User Interface (GUI) elements [2]. However,
during mobility, the intelligibility of the screen reader feedback
can be made difficult by the presence of environmental sounds,
such as traffic noise or people’s voices [3].

Some users address this problem by manually increasing
the screen reader volume when needed [4]. This solution only
partially mitigates the problem because, in case of sudden
noise, the user may not have time to adapt the volume.
Also, changing the volume can distract the user from the
current activity. Keeping the screen reader at its maximum
volume is not a solution as well, because the screen reader
feedback could be perceived as intrusive, it may spotlight
the user’s disability [5], or it could cover important sound
cues from the environment, making mobility more difficult
or even endangering the user [3]. Another possible solution
is to reduce the screen reader speech rate to improve speech
understanding in presence of noise [6]. However, this approach
also reduces the information throughput of the screen reader
which might not be desired.

To address these issues, our proposal is to dynamically adapt
the screen reader output based on environmental noise. The
goal is to improve the screen reader intelligibility, without
increasing the distraction from the surrounding soundscape
and without permanently reducing the screen reader speech
rate.

To this end, we designed three compensation techniques:

• Rate – Applies a flat speech rate reduction in presence
of environmental noise;

• Vol – Adaptively increases or decreases speech volume
based on the intensity of environmental noise;

• Eq – Adaptively increases or decreases speech volume
only for frequencies impacted by environmental noise.

A preliminary evaluation, conducted with 4 participants with
BSLV, assessed the effect of the proposed techniques on the
screen reader speech intelligibility in presence of background
noise. The participants commented that making the speech
both louder and slower would make it easier to comprehend.
Thus, in a second preliminary evaluation, conducted with
other 6 representative participants, we also included condi-
tions obtained as combinations of speech slowing with the
other two compensations: Rate+Vol and Rate+Eq. A final
evaluation, conducted with 12 participants, also evaluated the
distraction caused by the screen reader speech with respect to
the background soundscape.

Specifically, in the main study, we evaluated the compensa-
tions in three typical noise scenarios [4]: Crowd, Traffic, and
Subway. The scenarios were realistically simulated in a silent
chamber with a quadraphonic audio setup, playing 4-channel
real-world recordings at a sound pressure level consistent with
the real situation. For the experiment, we used a corpus of text
sentences [7], read by the screen reader and conveyed through
bone conduction headphones, with and without compensation.
We measured speech intelligibility as the percentage of the
correctly understood words, and the distraction caused by the
screen reader speech with respect to the soundscape by asking
the participants to pinpoint the direction of a contextual sound
played concurrently with the speech feedback.

The results confirm that noisy environments severely im-
pact screen reader speech intelligibility but compensation
approaches can mitigate this effect significantly. In particular,
the combined compensations (Rate+Vol and Rate+Eq) pro-
vide consistent improvement in all soundscape scenarios. The
perceived distraction from the surrounding soundscape, caused
by the screen reader speech, does not significantly change
when compensations are used. This indicates that the proposed
compensations can improve speech intelligibility without im-
pacting the user’s ability to pay attention to the surrounding
environment. Therefore, our approach is a practical solution to
improve the understanding of screen reader speech feedback
in noisy environments and during mobility.
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II. RELATED WORK

Mobile devices are convenient for accessing information
ubiquitously, and, for this reason, they are frequently used
by many people with disabilities [8]. They can also be used
to provide assistive capabilities, including access to visual
cues detected with computer vision techniques [9], support
in social networking [10], and in particular mobility and
navigation assistance on-the-go [11], [12], [13]. Due to these
functionalities, almost the entirety of people with BSLV in
developed countries use mobile devices, and over 80% of them
use smartphones for mobility assistance [14].

A. Challenges in Mobility Screen Reader Use

People with BSLV commonly use mobile devices through
screen readers [2], which can be employed to access most
native functionalities [8] as well as assistive capabilities pro-
vided by third-party developers. However, screen reader usage
during mobility presents three main issues. First, many people
with BSLV feel that the speech feedback is intrusive to people
around them, or even perceived negatively by others [5].
This effect is even more apparent in people with invisible
disabilities, like mild low-vision [15].

Second, the environmental noise may mask screen reader
speech [16], preventing people from hearing it. This problem is
especially present in very loud scenarios, such as the subway,
crowded places, and while walking in the traffic [4]. Because
of this, people with BSLV frequently use headphones while
listening to screen reader during mobility [17].

Third, the soundscape may also be partially covered by
the screen reader speech, in particular when using head-
phones [18]. Thus, the speech could draw away the user’s
attention from the environmental sound cues which may be
useful for orientation (e.g., acoustic traffic signals) or for
avoiding dangerous situations (e.g., an approaching car). Most
users partially offset such issues by using a single headphone,
while only a minority adopt pass-through or bone conduction
headphones due to high prices, unfamiliarity with these solu-
tions, and concerns with their output sound quality level [17].

B. Audio Adaptation in Presence of Noise

In the context of accessibility and acoustic communication
for people with BSLV, prior works have noted the impact of
noise on screen reader speech intelligibility [6], in particular
in urban scenarios such as traffic, crowded environments, and
travel hubs such as subway stations [4]. In such cases, the
manual adaptations of speech rate [6] or volume [4] were
reported as possible coping mechanisms. However, as noted
above, the users may not have the time to manually change
the setting in case of sudden noise and the action can distract
them from their current activity.

Approaches for the automatic adaptation of sound based
on ambient noise, especially in mobile contexts, have been
proposed using several different techniques. These techniques
can be grouped into two broad clusters: active noise cancella-
tion and noise-based processing of the useful (i.e. information
carrying) audio signal. In the first cluster, headphones or

headsets based on active noise-cancellation use adaptive audio
processing for reducing the background noise [19]. However,
noise-canceling solutions are not suited for the purposes of
this work since important sound cues from the environment
may be rendered inaudible, making mobility more difficult or
even endangering the user [3].

The second cluster comprises methods that automatically
adjust volume, dynamic range, or other sound features based
on ambient noise, which is in turn monitored and analyzed
through built-in microphones on mobile devices. One example
is the adaptive control of the smartphone volume based on
user activity and ambient noise, with the purpose of improving
the perception and recognition of alert and notification sounds
in noisy environments [20]. Another example is the adaptive
control of the dynamic range (compression) of the audio being
played, depending on the level of the environmental noise
around the listener, which is measured using the microphone
on the mobile device [21]. None of the previous works address
the challenge of improving screen reader intelligibility. In-
stead, in this paper, we propose and evaluate audio adaptation
techniques specifically designed for this purpose.

III. COMPENSATION TECHNIQUES

We designed three base compensation techniques (Rate,
Vol and Eq) and two techniques combining Rate with the
remaining compensations (Rate+Vol and Rate+Eq). In the
following, for brevity, we indicate the absence of a com-
pensation technique with the term None (meaning that no
compensation technique is used).

The compensation techniques have been designed to be
deployable on mobile devices, without requiring proprietary
hardware: they only need an audio output device (e.g., head-
phones), a microphone (possibly the one integrated in the
headphones), and limited computational power.

A. Adaptive Volume

The key idea of dynamic volume compensation (Vol) is to
adjust the speech volume in an adaptive way, depending on
the environmental noise that surrounds the device. The goal is
to keep the Signal to Noise Ratio (SNR) between the speech
level and the soundscape level constant but, at the same time,
to limit the intervention to an acceptable range (in order to
avoid lowering the volume too much in quiet scenarios or
saturating the device in loud scenarios).

To achieve this, a gain factor k(t) is computed as the ratio
between the target SNR, which can be tuned based on user’s
hearing and preferences, and a running measure of the actual
SNR, denoted in Eq. (1) by SNRt and SNRr(t) respectively.

k(t) =
SNRt

SNRr(t)
=

SNRt

RMSsignal(t)
RMSnoise(t)

= SNRt ·
RMSnoise(t)

RMSsignal(t)
,

(1)
In Eq. (1) RMS stands for Root Mean Square, more specifi-
cally, the running RMS, i.e. the RMS evaluated on a moving
temporal window. The larger the window, the smoother the in-
tervention, at the cost of slower responsiveness. This process-
ing completely occurs in the time domain. Vol compensation
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Fig. 1. Adaptive sonification based on spectral equalization.

can be fine-tuned by setting two main parameters: SNRt, and
the running RMS window size. Moreover, in order to avoid
excessive volume compensation (low k values would render
the sound almost inaudible in quiet environments, while high
values would result in audible signal distortion and may cause
pain or even hearing damage), we added the possibility of
limiting k(t) to a range Rk = [kmin, kmax].

We chose the value SNRt = +1.2 as it was found to be
the preferred value for speech signals in a previous study
on acceptable noise levels and preferred SNRs for speech
and music [22]. Values for Rk = [−3,+20] dB were chosen
in order to avoid signal clipping as well as to minimize
attenuation. For the estimation of the running RMS, we used a
temporal window with duration 46ms and an overlap of 23ms
between successive windows, in order to minimize artifacts
(glitches) resulting from an exceedingly fast adaptation.

B. Adaptive Equalization

The goal of this technique is to use spectral modifications,
rather than volume adjustment, to reduce the masking of
the verbal message by the background noise. In fact, the
concept of masking does not merely depend on volume; rather,
it consists in the alteration of the perception of the single
frequency components of the message if the noise occupies
the same spectrum region with sufficiently high energy. Thus,
adaptive Equalization compensation (Eq) accounts for the
proper auditory masking effect by realizing a multi-band ver-
sion of Vol. First, the signal is split into a number of frequency
bands, then a different modulation factor is computed for each
band, so as to reduce masking effects only where needed.

Fig. 1 shows the process to compute the adapted signal. The
first step is to take the Short Time Fourier Transform (STFT),
to extract the spectra of both the signal and the noise. Then,
these spectra are processed through an ad-hoc filter bank to
divide them into a given number of bands. Ideally, the band
subdivision should approximate what in psychoacoustics is
called a critical band, that is the band of audio frequencies
within which a second tone will interfere with the perception
of the first tone by auditory masking, since they activate the
same area of the basilar membrane [23]. Equivalently, this
filter bank should serve the purpose of simulating the human
auditory system by modeling those band-pass filters (whose

width follows the ERB scale [24]). Nevertheless, when dealing
with speech signals, such a fine subdivision in frequency
bands followed by a per-band gain modulation may result in a
complete cancellation of vocal formants, which are the spectral
characteristics of vocal signal conveying information. To avoid
this loss of information, we opted for a reduced number of
bands. Finally, a different gain factor is calculated for each
band (whereas for Vol a single modulation factor is applied to
the whole signal). The per-band gain factors are computed with
the same approach summarized in Eq. (1), the only difference
being that values are now computed for each band.

To apply the computed gain changes, instead of multiplying
each band for the corresponding factor and summing the
bands together (which would introduce some phase issues), we
interpolate the factors so to obtain an equalization curve with
the same resolution of the STFT frames. In particular, we use a
Piecewise Cubic Hermite Interpolating Polynomial, which has
the property of preserving the maximum and minimum points
of the initial function, thus avoiding equalization overshooting
or undershooting. Once the desired equalization curve is
computed, multiplying it by the spectrum of the signal returns
the spectrum of the adaptive signal. The latter is brought back
into the time domain through the Inverse Short Time Fourier
Transform (ISTFT), thus obtaining the adaptive audio signal.

For all the parameters in common with the Vol compen-
sation, we chose the same values. In addition to those, Eq
compensation requires one additional parameter, which is the
number of bands. We used 5 bands, which resulted in good
preservation of the vocal formants, as discussed above.

C. Adaptive Speech Rate
People with BSLV have higher listening rates than sighted

people [6] and usually keep the screen reader at the highest
possible speed allowing them to understand the speech in
a quiet environment, as also confirmed by our participants.
However, it is yet unclear how noise impacts screen reader
intelligibility by people with BSLV [6]. Additionally, as re-
ported in prior works, expert screen reader users often change
their screen reader speech rate based on context [4], and this
approach is also considered a possible adaptation to improve
screen reader intelligibility in presence of noise [6].

Speech rate compensation (Rate) applies a flat reduction
of the screen reader speech rate when noise is detected. We
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implemented this as a 15% speed reduction with respect to
the base speech rate (i.e., participant’s preferred speech rate).
This parameter was empirically selected after interacting with
the preliminary study participants: when we asked for their
preferred speech rates, six out of ten answered with a range of
rates and in four cases the range size was 15% (in the other two
cases the range was 5%). To avoid the speech rate to change
within a sentence or a single word, the solution does not
adapt continuously based on the changes in the ambient noise.
Investigating the design space of the continuous screen reader
speech rate adaptation based on the changes in environmental
noise is a possible future extension of our work.

D. Combined Compensations

Based on the comments from the participants in the pre-
liminary studies, we have also explored the combinations
of the proposed compensation techniques. The three base
compensation techniques change the way speech is reproduced
(Vol, Eq), or the way it is generated (Rate). Combining Vol
and Eq is not meaningful, as it would merely reduce to an
Eq technique with a different SNR. Instead, we designed
two additional techniques that combine Rate with either Vol
or Eq, called Rate+Vol and Rate+Eq, respectively. In these
compensations, speech is generated at the speed defined by
Rate and reproduced after applying Vol or Eq.

IV. EVALUATION

We conducted a set of user studies with participants to
assess the effect of the proposed compensation techniques
on speech intelligibility in the presence of noise, and on the
distraction caused by the screen reader speech with respect
to the environment soundscape. The research was approved
by the Ethics Committee of our University (approval 49/22).
As part of the iterative design process, we first evaluated our
techniques with sighted participants [25], then we conducted
three studies with representative participants with BSLV. The
first two of these are preliminary studies, which are described
in Section IV-A. The last one is the main study, which is
described in detail in the rest of this section.

A. Preliminary Studies

Two preliminary studies were conducted with 4 and 6
participants with BSLV, respectively, as a part of our design
and parameter tuning process. In the first study, we assessed
the three base compensation techniques (Rate, Vol, Eq). For
this, we simulated a noisy soundscape and reproduced speech
feedback (possibly compensated) that the participants were
asked to listen and repeat (see Section IV-C). Motivated by the
participants’ comments, which highlighted that compensating
both sound intensity and speech rate could be useful, in the
second study we introduced the combined compensations:
Rate+Vol and Rate+Eq. We also corrected the compensa-
tion parameters, in particular, to avoid the crackling noise
that would appear with specific sound frequencies on bone
conduction headphones, as mentioned in Section IV-C.

Considering the evaluation methodology, we introduced two
main changes between the preliminary studies and the main

study. First, in the preliminary studies, we assessed distraction
as a subjective measure reported by the participants. Instead,
in the main study, we introduced an objective measure of the
distraction caused by the speech feedback, by assessing the
participants’ ability to pinpoint the direction of an environ-
mental sound, reproduced concurrently with the speech. The
second difference regards the speech rate. In the preliminary
studies, all participants used the same speech rates. Instead, in
the main study, we configured the screen reader speech rates
based on the preferred settings for each participant.

B. Audio Stimuli

In order to quantitatively assess both the speech intelligibil-
ity and distraction, we prepared a set of audio stimuli, each
combining a soundscape, a speech signal that the participants
are asked to listen and repeat despite the background sound-
scape, and a contextual sound, the direction of which the
participants are asked to pinpoint while the speech feedback
is played. Each audio stimulus is characterized by three
properties: the soundscape, the speech signal compensation
(if any), and the direction of the contextual sound. More
specifically, audio stimuli are audio tracks with six channels.
Four channels reproduce the soundscape with its contextual
sound from one of three directions (i.e., left, right, front) and
two channels reproduce the speech signal. The speech signal
is always reproduced at the same time offset with respect to
the soundscape in order to have consistent listening conditions.
Instead, each contextual sound is played in a random instant
while the speech signal is played.

To generate the speech signals, we followed the approach
proposed in [7]. Each sentence (in Italian) is constructed from
a word table with 5 columns and 10 rows, by randomly picking
one word from each column. The combination of the extracted
words forms a sentence that is grammatically correct but
semantically unpredictable. The resulting combinations have
the advantage of focusing the participant’s attention on the
actual comprehensibility of the sentences. The sentences were
reproduced using the VoiceOver1 screen reader (female voice).
The screen reader allows the user to specify a preferred speech
rate, indicated as a percentage of the maximum speed. Thus,
for each participant, we generated personalized speech signals
by specifying the speech rate that the participant is used to.

Four different soundscapes were selected, three with a high
and one with a low noise level. The soundscape with a low
noise level (Suburban) represents a baseline condition in
which the speech compensation is not needed. It consists of a
recording of the noise in a suburban residential area with low
traffic. The noisy soundscapes are a subway station during
train arrival (Subway), a crowded local market (Crowd), and
a trafficked city street (Traffic) as they were reported to
be particularly challenging scenarios [4]. Each soundscape is
trimmed in order to have a duration of 15 seconds.

For each soundscape, we also prepared a contextual sound:
the sound of a closing gate in Suburban, the sound of a cash
receipt being printed in Crowd, the sound of opening bus
doors in Traffic, and the intermittent signal of opened doors

1https://www.apple.com/accessibility/vision/
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of a subway in Subway. Each contextual sound exists in three
variations: one is played from the participants’ left, one from
the right, and one in front of the participant. The recordings of
the soundscapes and contextual sounds are available online2.

C. Apparatus

The experimental set-up mimics a real-world scenario in
which ambient noise reaches the listener’s ears through a
purely acoustical path, while the speech signal is deliv-
ered through headphones. Consequently, the audio stimuli
described in the previous section were reproduced through
two distinct audio streams: one for the soundscapes and the
contextual sound, the other for the speech signal.

Regarding the soundscapes and the contextual sound, it was
first necessary to recreate a realistic simulation, in order to
provide participants with the impression of being immersed
in an everyday acoustic environment. Such a goal was ad-
dressed through a quadraphonic reproduction system: four
audio channels were routed to the corresponding speakers
arranged into a square, with the listener in the center. The
speakers are positioned on the front-left, front-right, back-left,
and back-right with respect to the listener. With respect to
stereophony, quadraphony allows a better spatialization of the
sound and, consequently, the possibility for the listeners to
better locate the sound events presented to them. The speakers
were installed in a silent chamber (where the tests took place),
a soundproof room acoustically treated to dampen sound
reflections, thus enabling to simulate wide sound scenarios,
despite its limited size. Contextual sounds are played by two
speakers, depending on the direction. For example, when the
contextual sound is played on the left of the participant, the
two left speakers (i.e., front-left, back-left) are used.

Speech signals were conveyed to the participant using Z8
Docooler bone conduction headphones. This choice had a
twofold motivation: first, they ensure the maximum possible
transparency with respect to the external soundscape, as they
do not occlude the ear canal; second, they guarantee a good re-
sponse in the characteristic speech frequency range (i.e. 200Hz
to 4 kHz). Nevertheless, we experimentally verified that these
specific headphones introduce an unpleasant vibration around
230Hz, therefore we processed all the headphone signals with
a bell equalizer centered on the aforesaid frequency, with a
filter gain of −4.5 dB, and an overall gain of +2.4 dB in order
to linearize the device response. We calibrated the system
to produce an uncompensated speech signal with average
SNR = 0 with respect to a baseline outdoor soundscape with-
out strong sources of noise (i.e., Suburban). This means that
the uncompensated speech signal is tuned to be intelligible in
such a scenario, without being intrusive to others. Experiments
show that this is indeed the case (see Section V).

D. Evaluation Protocol

The evaluation was organized into five phases: initial ques-
tionnaire, instructions, calibration, listening tasks, and a final
open-ended questionnaire. For each participant, the experiment

2https://noise-soundscapes.netlify.app/

lasted for about one hour. The initial questionnaire collects the
participants’ information (see Section IV-F). In the instruction
phase, the participant is invited to seat on a chair in the
silent chamber and to wear the bone conduction headphones.
Then, the supervisor explains how the experiment works and
in particular that the participant has to repeat the sentence in
the speech signal as they understand it and indicate with their
finger the direction from which the contextual sound comes
(left, right, front). While explaining the test, the supervisor
reproduces each soundscape, an example of a speech signal,
and the contextual sounds.

During calibration, the base speech rate to be used during
the test is assessed. For this, the Suburban soundscape is
used, as it represents a situation with little environmental noise.
The supervisor plays an audio stimulus with the preferred
speech rate reported by the participant. If the participant can
correctly understand the sentence, this speech rate is selected.
Otherwise, the process iterates with a speech rate slower by
5%, until the participant can correctly understand the sentence.

The listening task phase consists of a set of 61 tasks. During
each task, the supervisor plays an audio stimulus and the
participant repeats the sentence and indicates the direction of
the contextual sound. The supervisor takes note of the answers
provided by the participant. Four initial tasks are used for
training, to ensure that the participant correctly understood
what to do. The results of these tasks are not recorded. The fol-
lowing 57 tasks include three audio stimuli with the Suburban
soundscape and 54 with the noisy soundscapes (i.e., Crowd,
Traffic, Subway). The three audio stimuli with the Suburban
soundscape serve as a baseline and use an uncompensated
speech signal. Each of them has a contextual sound played
from a different direction. For each noisy soundscape there
are 18 audio stimuli, 6 for each direction of the contextual
sound: one without compensated speech signal, others with
a different compensation each. The 57 tasks were organized
into 3 sessions, separated by a short break of about 2 minutes.
To minimize ordering effects, compensations and directions of
contextual sound were applied through a Latin-square design.

Finally, we asked a series of open-ended questions (see
Table II), investigating participants’ opinions on the presented
compensations and the experiment in general. Additionally,
we collected their comments and suggestion for improvements.
This part of the experiment was organized as a semi-structured
interview and, starting from the questions, the supervisor
invited the participant to discuss and report comments.

E. Metrics and Data Analysis

We define the soundscape and compensation technique (if
any) as independent variables. The dependent variables are:

• Speech Intelligibility, defined as the percentage of the
correctly understood words for each listening task;

• Perceived Direction, defined as the percentage of the
correctly identified contextual sound directions.

To account for the small number of participants, common
in accessibility research [26], a repeated measure design
is adopted [26], [27]. Score differences were analyzed for
statistical significance using Friedman Chi Square test [28],
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with Dunn post-hoc test for pairwise comparisons [29], cor-
rected for multiple testing using Benjamini-Hochberg FDR
method [30]. We also verified, for each scenario and compen-
sation condition, that there was no significant learning effect
across the tasks, using the Mann Kendall Trend Test [31], [32],
with Benjamini-Hochberg FDR correction [30].

During the evaluation, for each participant, there are exactly
three tasks with the same pair of soundscape and compensa-
tion. We compute the average for speech intelligibility and
perceived direction metrics among these three tasks. Each
average value is then used as a data point in the analysis.

F. Participants

We recruited 12 participants with BSLV (3 female) through
local associations, social networks, and word-of-mouth. The
recruiting criteria required that (a) the participant was not
involved in the preliminary studies, (b) the participant is
blind, according to the World Health Organization Classifi-
cation [33], and (c) the participant does not have a hearing
impairment. As reported in Table I, participants had an average
age of 47 (SD = 14.63) and they were all blind since birth
with the exception of P3, P4, and P11.

TABLE I
PARTICIPANTS’ DEMOGRAPHIC INFORMATION.

Expertise Screen reader Route frequency
ID Age Sex Onset music mobile speed voice Familiar Unfam.
P1 21 M birth 3 2 60 F daily rarely
P2 40 F birth 1 4 80 F daily daily
P3 59 M 18 1 2 66 F daily rarely
P4 64 M <18 3 4 55 F daily rarely
P5 23 M birth 3 5 90 F daily monthly
P6 45 M birth 3 5 67 F daily rarely
P7 40 F birth 5 4 75 F every 48h rarely
P8 35 M birth 5 4 60 F daily weekly
P9 60 M >18 4 4 60 F daily rarely

P10 54 M birth 4 4 80 M daily monthly
P11 61 M birth 1 5 55 F daily rarely
P12 62 F birth 3 2 60 F daily daily

We collected participants’ self-reported expertise with mo-
bile devices and music, as a Likert-like scale item ranging from
1 (no expertise) to 5 (high expertise). Average mobile device
expertise was 3.73 (SD = 1.14), while musical expertise
scores averaged 3 (SD = 1.41). All participants use VoiceOver
screen reader on iOS devices, except P1 who uses TalkBack
on an Android device. All participants except for P10 use the
screen reader with a female voice. Preferential screen reader
speech rates reported by the participants ranged between 55%
and 90% with an average of 66% (SD = 10.57%). Following
the calibration phase, seven participants (P1, P3, P4, P6,
P8, P9, P11) used their reported speech rate. Instead, five
participants (P2, P5, P7, P10, P12) used a speech rate that
was lower than what they initially reported (70%, 80%, 70%,
70%, 55%, respectively).

All participants travel known routes frequently but only two
participant travel unfamiliar routes daily (P2, P12). Others
traverse unknown routes only when needed (P6, P10, P11),
and possibly avoid them (P3). Except for P1, P3 and P10,
participants interact with their mobile device through screen

reader during mobility on daily basis. However, some (P1, P3,
P9, P10) avoid listening the screen reader while they need to
focus on the environmental sound (e.g., while walking), unless
the screen reader feedback is highly relevant (e.g., navigation
instructions in an unknown environment).

We also asked the participants how they usually listen to the
screen reader while not moving (e.g., home, office) and while
in mobility (e.g., walking, waiting for the train at the station).
In general, participants use different audio output devices in
different situations. While not in mobility, all participants
except for P5 and P11 listen to the screen reader through the
mobile device speaker but some (P5, P7, P9) alternate this
with the use of earphones, headphones, and mono earphone.
One participant reported using a Bluetooth speaker (P11).
During mobility, the preferred listening hardware also changes
depending on the situation. The mobile device speaker is used
by all participants except P2 and P8, but some (P5, P6) report
that it is sometimes necessary to approach the speaker to
the ear in noisy environments. P9 prefers the mobile device
speaker as it allows him to listen to the environmental sound.
Many participants (P2, P5, P7, P8, P11) reported using single
earphone (either wired or wireless) as it allows them to listen
to environmental sound. Many participants (P3, P6, P7, P9,
P11) reported using stereo earphones when they do not need to
focus on the environmental sound (e.g., while on a train). One
participant (P9) uses Apple AirPods as they allow to listen
to the environmental sound (we assume the participant uses
the “transparency mode” available for this device), and one
participant (P11) reported using bone conduction headphones.

Half of the participants (P1, P5, P6, P7, P10, P12) cope
with noisy environments by approaching the mobile device
to their ear to listen to the screen reader. Also, half of the
participants (P2, P3, P4, P6, P8, P10) reported that they
increase the screen reader volume, and one participant (P9)
adjusts the volume to balance between the volume of the
screen reader and the volume of the environmental sound.
Three participants (P4, P7, P5) use stereo earphones when
they do not need to concentrate on the environmental sound.
Three participants report slowing the VoiceOver speech rate in
noisy environments (P3, P4, P7). In particular P3 and P4 use a
VoiceOver option to read the text word-by-word or character-
by-character. Other coping mechanisms are to find a quieter
place to listen to the screen reader (P10) or to listen during
quieter moments (P11), for example during subway train stops.

Finally, we asked which assistive technologies participants
use in mobility. Most reported using general-purpose nav-
igation tools (e.g., Google maps) combined with assistive
technologies for people with BSLV. Only P9 did not use
any navigation application. Popular applications are those for
checking public transport timetables and for providing acces-
sible directions, like BlindSquare [34], Lazarillo [35], NearBy
Explorer [36], Ariadne GPS [37], ViaOpta Nav [38], TomTom
navigator [39], Microsoft Soundscape [40], and SeeingAI [41].

V. EXPERIMENTAL RESULTS

A. Quantitative Analysis
1) Speech Intelligibility: As expected, in the control condi-

tion (i.e., suburban soundscape) the participants were able
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Fig. 2. Speech Intelligibility and Perceived Direction results ( � mean; ? significant).

to recognize nearly all the words (M = 99.44%, SD =
1.84%). Instead, in presence of noise (see Fig. 2), without any
compensation, the percentage of correctly recognized words
drops to 11.11 ± 12.57%, 7.78 ± 2.48% and 7.22 ± 9.98%,
for Crowd, Traffic and Subway soundscapes, respectively.
This result confirms that, without any compensation, synthetic
speech intelligibility is severely impaired in presence of typical
environment noise.

All the proposed compensation techniques increase the
speech intelligibility average score in all soundscapes. The
only exception is the Rate compensation in the Subway
soundscape, for which the intelligibility is lower than without
compensation. Specifically, for all the soundscapes, the effect
of the sonification technique was found to be significant
(Crowd H(5) = 47.17, p < .001; Traffic H(5) = 52.98,
p < .001; Subway H(5) = 50.49, p < .001). Pairwise com-
parisons reveal that Vol, Eq, Rate+Vol and Rate+Eq signif-
icantly improve the speech intelligibility with respect to both
None and Rate, considering all soundscapes. In particular,
Rate+Eq achieves the highest intelligibility score for the Traf-
fic (97.78±4.16%) and Subway (96.11±4.27%) soundscapes.
Instead, in the Crowd soundscape, Vol (91.11± 10.30%) and
Eq (91.11 ± 7.37%) show the highest improvement over the
uncompensated speech.

2) Perceived Direction: In the Suburban scenario partic-
ipants can recognize the correct direction of the contextual
sound in almost all cases (M = 92%, SD = 14%). In
the other soundscapes, recognizing the correct direction of
the contextual sound is much harder. Indeed, the perceived
direction score falls to 75 ± 28% in the Crowd soundscape,
64± 32% for Traffic and 58± 31% for the Subway scenario
(see Fig. 2(f)). Contrary to our expectations, the screen reader
speech compensations do not seem to worsen the perceived

direction score over the uncompensated condition. Indeed, no
significant differences emerge among compensations. The only
significant group difference (H(5) = 15.27, p < .001) is de-
tected in the Subway soundscape, where pairwise comparisons
reveal that Rate is significantly better than Eq compensation.

B. Answers to the Final Open-Ended Questions

We summarize the participants’ answers to the final ques-
tions, which are reported in Table II. All participants agreed
that the soundscapes realistically reproduce real-world situa-
tions in which it could be hard to listen to the screen reader
(Q1). Only P5 stated that he would not have problems in
noisy scenarios, as he would set the volume to the maximum.
However, he also admitted that he would have problems in the
Subway, scenario, as it is particularly noisy.

Besides P3, who had more difficulties in distinguishing
sounds in the Traffic scenario, all other participants consid-
ered Subway as the soundscape in which it was harder to
understand the screen reader (Q2). They noted that this is the
noisiest soundscape, it masks the speech output and hence
it is more cognitively demanding. Nine participants (P1, P2,
P3, P5, P6, P7, P8, P10, P12) considered Suburban as the
simplest soundscape, as it is less noisy and the volume of the
screen reader is higher and separable from the soundscape.
Instead, two participants (P4, P11) considered Crowd as the
simplest soundscape. In particular, P4 noted that sounds and
voices are more distinct. Finally, P9 reported that Traffic is the
simplest soundscape because environmental noise and speech
were clearly distinguished in this soundscape.

Considering the contextual sounds (Q3), six participants
(P3, P5, P6, P8, P9, P10) regarded them as realistic. However,
P2 considered the Subway contextual sound too short and
P11 believed it was not loud enough. P7 reported that the
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TABLE II
FINAL OPEN-ENDED QUESTIONS

Q1 Do the soundscapes realistically reproduce situations in which it can be hard to listen to the screen reader?
Q2 In which soundscape was it harder to understand the screen reader? Which one was easiest?
Q3 Were contextual sounds [the term was introduced to the participant before] realistic? Which contextual sound was harder to perceive?
Q4 Some sentences were read aloud with a slower rate. Did you perceive this?
Q5 Some sentences were read aloud with a higher volume. Did you perceive this?
Q6 Some sentences were read aloud with a higher volume on some frequencies only. Did you perceive this?
Q7 Some sentences were read aloud with a combination of slower rate and higher volume. Did you perceive this?
Q8 What do you think of the bone-conduction headphones that you used during the experiments?

Suburban contextual sound was hard to hear and P12 stated
that it was different than expected. P2 perceived the sound of
cash receipt in Crowd as too loud, while P7 and P12 consid-
ered it unrealistic. Finally, the contextual sound in Traffic was
perceived to be different than expected by three participants
(P3, P5, P7) and hard to separate from the soundscape (P11).

All participants were able to perceive the Vol compensation
and noted that it improves intelligibility (Q5). Eight partic-
ipants (P1, P3, P4, P7, P9, P10, P11, P12) were able to
perceive the presence of the Rate compensation (Q4), and all
of them regarded it as useful. Only five participants (P3, P4,
P7, P9, P11) perceived Eq (Q6). Since Vol and Eq are similar,
we suspect that most participants were not able to distinguish
between the two. Similarly, only five participants (P4, P5, P7,
P9, P10) perceived the combined compensations (Q7).

Considering the use of the bone conduction headphones
(Q8), 9 participants (P3, P4, P6, P7, P8, P9, P10, P11, P12)
agreed that this is an acceptable solution, mainly because
they do not prevent the hearing of environmental sound.
However, some participants (P1, P3) reported that they are
uncomfortable and heavy. In particular, P2 noted that the
sound is “external” and hence hard to understand.

C. Participants’ Comments

Participants also provided spontaneous comments. We re-
port the key topics that emerged from their analysis.

1) Approach Usefulness: Participants found the proposed
approach useful for screen reader usage in noisy environments
(P1, P4, P7, P8). In particular, P7, who already used manual
adjustment of volume and speech rate, requested for it to be
implemented in the same way as the automated adaptation of
screen illumination to the ambient light on mobile devices3:

“It would be great if they [compensations] were
made similar to the automatic screen illumination.”

2) Combined Compensations: Participants considered the
combined compensations useful (P5, P7, P9, P12), confirming
the findings from the preliminary studies. P12 noted that Rate
alone does not improve intelligibility, but it can be useful when
paired with Vol, which is consistent with quantitative results.
Similarly, P7 noted that raising the volume and lowering the
speech rate helps in noisy contexts. In particular, P5 noted:

“I sometimes wondered how I was able to under-
stand sentences that I did not previously understand.
These [combined compensations] make life easier.”

3All quotes have been translated from Italian.

3) Trade-off between intelligibility and distraction: Partic-
ipants also commented on the inherent trade-off between the
ability to correctly understand the screen reader speech and to
pay attention to the environment (P1, P2, P3, P4, P6, P9, P10,
P11). While most of the comments related to the soundscape
and speech volume, some referred to the speech rate (P10,
P11). P11 in particular felt that slowing the speech rate lowers
the volume of some words, while P10 observed:

“It is not always useful because slowing too much
dilates the time needed [to listen].”

4) Modifications to the Approach: Participants also sug-
gested possible improvements. P10 mentioned that some
screen reader voices mask specific consonant sounds, which
makes them harder to understand, and therefore we should
consider also the screen reader voice used. P5 also suggests
another possible compensation, which is to delay the screen
reader speech when strong background noise is detected:

“I would’ve liked to hear the message when the
[subway] sound fades out. Instead, the message was
played when the sound was on the rise.”

VI. DISCUSSION

A. Main Results

The proposed compensation techniques were found to be
effective in improving synthetic speech intelligibility across
different noisy soundscapes. Specifically, four of the five
proposed compensation techniques significantly improved the
speech intelligibility in all three noisy soundscapes. The only
compensation that did not significantly improve intelligibility
is Rate. Indeed, some of the participants initially felt that
reducing speech rate would not improve intelligibility in pres-
ence of noise. For example, one participant in the instruction
phase of the preliminary evaluation argued:

“I don’t think that diminishing the speed would
impact the speech understanding.”

However, after the listening tasks, most participants con-
firmed that combining rate with the other compensations
was useful for louder soundscapes. For example, the same
participant retracted the prior opinion:

“Both raising volume and reducing speed are useful.
In general, I think lower speed is more important”

In agreement with this opinion, results show that in two
scenarios (Traffic and Subway), the combined compensations
improve on average over the other compensations. While
this difference is not significant, possibly due to the limited
sample size, it confirms the intuition of the participants to the
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preliminary study that combining the compensation techniques
can further improve speech intelligibility in noisy scenarios.

We initially hypothesized that compensations would distract
the participants from the environment soundscape. However,
no significant difference was observed in the Perceived Di-
rection score across different conditions. Such a result can
be explained by a comment provided during preliminary
experiments: when the speech is hard to understand (either
too quiet or too fast) it requires additional concentration, hence
distracting from the environmental sound. This means that in
some cases compensations might actually reduce distraction.

B. Experimental Design Limitations

In order to ensure both participants’ safety and experimental
repeatability, we conducted the evaluation in a controlled
environment. This has some implications, including the fact
that the soundscapes had to be simulated. To ensure highly
realistic simulations, in our experimental settings we used real-
world recordings of the target soundscape scenarios, replayed
in a silent chamber with a quadraphonic speaker setup and
settings replicating real-world listening conditions. Indeed, all
study participants agreed that the experimental setting was
realistic.

Another consequence is that the participants were in a safe
environment, rather than in the real-world, so they did not
actually need to focus on the soundscape to prevent dangers.
This may have impacted their level of attention with respect to
the background sounds. Additionally, distraction was measured
as the ability to pinpoint the direction of a single sound, while
in general continuous attention should be devoted to the ambi-
ent soundscape. To account for this, the contextual sound was
played at a random time, and therefore the participants were
stimulated to pay attention to the soundscape continuously.

In order to ensure uniformity among the tests we always
used the same three soundscapes, reproducing the speech
signal always at the same time. While this guarantees that
all sentences are read with consistent background noise, par-
ticipants reported that they got used to the soundscape and
were less distracted by it after a while. The experimental
design could be improved by using longer soundscapes and
by changing the starting point of the soundscape playback
across repetitions. However, this would require collecting a
larger set of data-points, to compensate for the differences in
the listening conditions.

One more consequence of placing sentences in the middle
of the soundscapes is that, after the sentence reading ends,
there are still a few seconds before the soundscape ends.
The participants would wait until the end of the soundscape
before repeating what they heard. This required an additional
memorization effort and in some cases resulted in participants
forgetting what they heard. For this reason, the participants
who reported this issue were asked to repeat the sentence
immediately, without waiting for the soundscape to end.

To measure speech intelligibility without an influence of
an external semantic context we used a random sentence
generation approach [7]. One limitation of this approach is
that, while the exact words are unpredictable, the phrase

structure is always the same (e.g., the first word is always
a name). Thus the participants could try to infer a word even
if it is not clearly heard. However, this is not unrealistic: in
many real-world applications, the screen reader often provides
structurally similar messages with a small set of possible
words (e.g., “Turn right/left” in a navigation system).

Finally, our experiments involved solely Italian-speaking
participants. While we expect the results to generalize to other
languages, such an assumption would need to be evaluated
with participants speaking different languages. Similarly, while
the technique should be applicable to different listening hard-
ware such as the speaker or in-ear headphones, we conducted
the experiments solely with bone-conduction headphones.
Thus, additional experiments would be needed to verify that
the approach generalizes to other listening hardware.

C. Technique Limitations

In designing the Rate compensation technique, we decided
to apply a flat speed reduction. A different solution could
consist in reducing the speech rate proportionally with the
noise level. However, for this, we would need to study the
correlation between speech intelligibility at different speech
rates and environmental noise. This would require a process
of parameter tuning that is out of the scope of this paper.

Correlating the environmental noise level with the amount
of compensation is also a problem for Vol and Eq. However,
for these compensations, it was possible to tune the settings
based on prior works studying the impact of the difference
between speech and noise volume on speech intelligibility
[42], [43]. Still, fine-tuning these parameters to the specific
application domain could help to achieve even better results.

While the speech signals were pre-recorded for convenience,
the proposed compensations can be computed in real-time.
Indeed, assuming that the compensation techniques are im-
plemented as a part of the speech synthesizer, they would
require monitoring the environmental noise and changing the
speech generation parameters. In order to rapidly adapt to the
environmental noise, the proposed technique employs temporal
windows of 46ms. Since changing the speech generation
parameters does not produce any additional delay, the overall
delay remains within 50ms, which can be considered real-
time. In order to compute the compensations in real-time,
the device microphone could be used to collect samples of
the environmental noise. If the microphone is expected to be
covered (e.g., if the device is in the user’s pocket), an external
microphone could be used (e.g., the headset microphone).

VII. CONCLUSIONS AND FUTURE WORK

Considering the importance of mobile devices for the orien-
tation and mobility of people with BSLV, hard-to-understand
instructions can result in potentially hazardous situations.
This paper proposes compensation techniques to mitigate
this problem and provides experimental evidence that they
can effectively improve screen reader intelligibility in noisy
environments, without negative impacts on the distraction from
the soundscape. Consequently, the proposed compensations
are a practical solution to this problem. They can also be
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easily implemented in existing mobile screen readers without
proprietary hardware requirements.

This work paves the way for various research directions.
First, it is possible to investigate other compensation tech-
niques, by altering different speech properties (e.g., pitch).
Second, we intend to explore how different environmental
noise characteristics affect the compensation techniques; an
important element of this research would be to find the
correlations between environmental noise characteristics and
speech intelligibility at different levels of compensation (e.g.,
speech rates). Additional factors should also be taken into
account, including the language and the listening hardware
(headphones, speakers). A third research direction is to inves-
tigate compensation techniques for sonification instructions,
which have been proposed for navigation assistance [44].
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