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1 Introduction

Four-dimensional gauge theories with extended supersymmetry are a typical playground
where to find and test techniques that can shed light on the strong-coupling regime. A lot
of progress in this direction has been made over the years in the maximally supersymmetric
theory, i.e. N = 4 Super Yang-Mills (SYM), especially in the planar limit of a large number
of colors. In this case a variety of methods, like for instance localization, integrability,
holography and others, have been successfully used to obtain information on the strong-
coupling phase of the theory.

When the supersymmetry is not maximal, things are more complicated. In the last few
years, however, significant developments have been realized in the context of N = 2 gauge
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theories with the use of localization techniques (for a review see for example [1]). Indeed, as
originally shown in [2], a generic N = 2 SYM theory in flat space can be mapped to a ma-
trix model defined on a 4-sphere and the functional path-integral can be reduced to a finite
dimensional integration over the elements of a matrix. Using this approach, many inter-
esting results have been obtained in particular when the N = 2 theory is superconformal,1

like for example the Wilson loop vacuum expectation value [4–11], the chiral/anti-chiral
correlators [12–28], the correlators of chiral operators and Wilson loops [29–33], the free
energy [34–36] and the Bremsstrahlung function [37–41]. In the weak-coupling regime it
is possible to check at the first perturbative orders that the results obtained with the
matrix model agree with those obtained with standard Feynman diagrams (see for exam-
ple [4, 19, 22, 42, 43]). However, while the diagrammatic methods soon become unpractical,
the matrix model approach allows one to obtain explicit results with little computational
effort even at high orders in perturbation theory. In this way one can efficiently generate
long series expansions that are very useful for numerical simulations.

These calculations become particularly simple in a special N = 2 SYM theory whose
matter hypermultiplets transform in the symmetric plus anti-symmetric representation.
This theory, which has a vanishing β-function, has been dubbed “E theory” in [22, 24]
and represents the N = 2 gauge theory which is closest to the N = 4 SYM, in the
sense that it shares with it many properties even though it has only half of the maximal
supersymmetry. The main reason behind this fact is that the hypermultiplets of the E
theory are altogether in a representation (symmetric plus anti-symmetric) which is not so
different from the adjoint representation to which the hypermultiplets of the N = 4 SYM
belong. This similarity becomes more evident in the planar limit where several observables,
like for instance the free energy and the vacuum expectation value of the circular Wilson
loop, coincide in the two theories and the differences show up only in the non-planar sector.
However, the N = 4 SYM and the E theory are not planar equivalent since there are other
observables, like for instance the correlators of gauge invariant operators of odd conformal
dimensions, which remain different even in the planar approximation and are therefore
very interesting to study. These features have a nice interpretation in the dual holographic
description. Indeed, the E theory is dual to Type II B string theory in AdS5×S5/Z2 (see for
example [44]) which is realized as a suitable Z2 orbifold/orientifold projection of AdS5×S5

that is the well-known holographic dual of the N = 4 SYM [45]. Therefore, all observables
of the E theory which in the holographic dictionary correspond to strings excitations of
the untwisted sector and are thus insensitive to the orbifold/orientifold, must coincide at
strong coupling with those of the maximally supersymmetric theory in the planar limit.
On the contrary, the observables of the E theory which correspond to string configurations
of the twisted sector crucially feel the presence of the orbifold/orientifold and at strong
coupling deviate from those of the N = 4 SYM even in the planar limit.

In this paper we continue the study of the E theory with group SU(N) which was
initiated in [24, 26], with the aim of making a further step towards a complete understanding
of its strong coupling regime. To do so we exploit the power of the matrix model which, as

1N = 2 superconformal gauge theories were originally investigated in [3].
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mentioned above, allows us to obtain explicit expressions for many observables at a small
computational cost. While the matrix model associated to the N = 4 SYM is free, the
one corresponding to the E theory is interacting but with an interaction action that is
remarkably simple despite the fact that it contains an infinite number of terms. Further
simplifications occur in the large-N limit where one is able to resum the (long) perturbative
expansions produced by the matrix model and infer from them formal expressions that are
valid for all values of the ’t Hooft coupling λ. In particular one can show [24, 26] that in
the planar limit the partition function Z of the matrix model acquires the form

Z = det−
1
2
(
1− X

)
(1.1)

where X is an infinite λ-dependent matrix whose elements are known in terms of an integral
convolution of Bessel functions with arguments proportional to

√
λ. Expanding these Bessel

functions in power series for small values of λ one recovers the perturbative results at weak
coupling, while if one uses the asymptotic limit of the Bessel functions for large values
of λ one can obtain the strong-coupling behavior. Using this method in [26] the 2-point
functions of the single-trace chiral/anti-chiral operators of the E theory have been studied
in detail both at week and at strong coupling in the planar limit. In particular, the 2-point
correlators of operators with even conformal dimensions, which in the string construction
belong to the untwisted sector, do not receive λ-dependent corrections in the planar limit
and coincide with the corresponding ones of the N = 4 SYM. On the contrary, the 2-
point functions of operators with odd conformal dimension, which correspond to string
configurations of the twisted sector, deviate from those of the N = 4 SYM even in the
planar approximation and at strong coupling are proportional to 1/λ. Similar results have
been obtained in [28] for quiver theories, from which the E theory descends with a suitable
projection.

Here we generalize this analysis to the 3-point functions of single-trace scalar opera-
tors.2 It is worth recalling that so far the 3-point functions in N = 2 SYM theories have
not been considered very much in the matrix-model literature. Indeed, one can find only
some results for the 3-point correlators of operators with even dimension in the SU(2)
N = 2 superconformal QCD in [12], or some perturbative results for such correlators at
large N in [15] and more recently in [27], where also a resummation of all terms linear in
the Riemann ζ-values has been proposed. In this paper we fill this gap and study in detail
the 3-point functions of single-trace scalar operators in the E theory both at weak and at
strong coupling. Exploiting the simplicity of the matrix model of this theory we are able to
analyze the 3-point functions in full generality and find that only the correlators involving
two operators with odd conformal dimension deviate from the N = 4 SYM expressions
and become proportional to 1/λ at strong coupling. To our knowledge this is the first
explicit result on the 3-point functions in a N = 2 SYM theory in which the perturbative
expansion has been fully resummed and extrapolated at strong coupling. Combining these

2While the matrix-model techniques are completely general and can be applied also to multi-trace oper-
ators, we focus on the single-trace operators since in the large-N limit they form a closed set of observables,
in the sense that their planar 3-point functions do not involve mixings with multi-trace operators [15].
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findings with those on the 2-point functions, we also compute the normalized 3-point coef-
ficients at strong coupling and find that they depend on the conformal dimensions of the
operators in a remarkably simple way that is similar, but of course not identical, to that of
the N = 4 SYM in the planar limit. In particular, we find that the normalized coefficient
in the correlation function of three untwisted operators at strong coupling in the planar
limit is

CU1U2U3 = 1
N

√
dU1 dU2 dU3 (1.2)

where the d’s are the conformal dimensions of the operators, and that the normalized
coefficient in the 3-point function of one untwisted and two twisted operators is

CU1T2T3 = 1
N

√
dU1 (dT2 − 1) (dT3 − 1) . (1.3)

These formulas are exact at large N and receive corrections at order O
(
1/N3). With

these normalized coefficients one can in principle obtain other correlation functions at
strong coupling using the standard conformal field theory methods. We thus believe that
our findings are a significant step towards a more complete understanding of the strong-
coupling regime in the case of conformal theories with N = 2 supersymmetry.

The paper is organized as follows: in section 2 we review the main features of the
extremal correlators in a generic N = 2 superconformal gauge theory with group SU(N)
and of their computation in the matrix model using localization. In section 3 we focus
on the E theory and exhibit the first perturbative terms of the 2- and 3-point correlators
of single-trace operators at large N , providing also a simple interpretation in terms of
Feynman diagrams. In section 4 we present a complete analysis of the simplest 3-point
function, showing in particular how to obtain its strong-coupling limit. We also perform
some numerical checks and compare our results with a Monte Carlo simulation. In section 5
we discuss the most general 3-point function of single-trace operators of the E theory at
large N and at strong coupling. Finally in section 6, after deriving the normalized 3-
point coefficients and their dependence on the conformal dimensions of the operators, we
draw our conclusions. Several technical details that are useful to check and reproduce
our calculations are collected in the appendices, which contain also various formulas and
results that may be relevant for possible extensions of our analysis beyond the leading
planar approximation.

2 Extremal correlators in N = 2 superconformal gauge theories

We consider a generic N = 2 superconformal Yang-Mills theory in R4 with gauge group
SU(N) and denote by ϕ(x) the complex field in the adjoint vector multiplet. A set of
interesting gauge-invariant local operators of this theory is that of the multi-traces of the
powers of ϕ. Given a collection of integers

n = {n1, n2, . . . , n`} , (2.1)

we define
On(x) = trϕ(x)n1 trϕ(x)n2 . . . trϕ(x)n` (2.2)
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where the traces are in the fundamental representation. On(x) is a chiral primary operator
with conformal dimension

|n| = n1 + n2 + · · ·+ n` , (2.3)

and is annihilated by half of the supercharges of the N = 2 algebra. The anti-chiral
operator On(x) is defined in a similar way with ϕ(x) replaced by its complex conjugate
ϕ(x), and is annihilated by the other half of the supercharges.

The operators (2.2) satisfy the freely generated chiral ring relation

On(x)Om(0) = On,m(0) + . . . , (2.4)

where the notation n,m simply denotes the union of n and m, and the ellipses stand for
terms that are exact with respect to the supercharges annihilating the chiral operators.

In the following we will study the so-called “extremal” correlators given by

〈
On1(x1) . . . Onk(xk)Om(y)

〉
=

Gn1,...,nk;m(
4π2(x1 − y)2)|n1| . . .

(
4π2(xk − y)2)|nk|

(2.5)

where the space-dependent terms in the denominator arise from the free scalar propagator
in R4 and the coefficient Gn1,...,nk;m in the numerator is a non-trivial function of the Yang-
Mills coupling g and of N which satisfies the selection rule

Gn1,...,nk;m ∝ δ|n1|+···+|nk|,|m| (2.6)

imposed by the U(1)R symmetry. By repeatedly using the chiral ring relation (2.4), it is
easy to realize that this same coefficient appears in the 2-point function

〈
On1,...,nk(x)Om(y)

〉
=

Gn1,...,nk;m(
4π2(x− y)2)|n1|+···+|nk|

. (2.7)

Thus, the computation of the extremal correlators (2.5) is effectively reduced to the com-
putation of the 2-point functions of generic multi-trace operators.

Particular cases of the general formula (2.7), on which we will focus in the following
sections, are the 2-point functions of single-trace operators

〈
On(x)Om(y)

〉
=

Gn;m(
4π2(x− y)2)n (2.8)

where
Gn;m = Gn δn,m , (2.9)

and the 3-point functions of single-trace operators

〈
On1(x1)On2(x2)Om(y)

〉
=

Gn1,n2;m(
4π2(x1 − y)2)n1 (4π2(x2 − y)2)n2 (2.10)

where
Gn1,n2;m = Gn1,n2 δn1+n2,m with Gn1,n2 = Gn2,n1 . (2.11)
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The coefficients Gn1,...,nk;m can in principle be computed in perturbation theory using
Feynman diagrams, but in this way only very few terms can be found in an explicit form
due to the intrinsic difficulty of the evaluation of the loop integrals. As originally pointed
out in [12–15], a much more efficient way to obtain these coefficients, even at high orders,
is by using the localization techniques and matrix models.

2.1 Matrix model approach

As extensively discussed in the literature (for a review see for example [1]), by exploiting
localization one can replace aN = 2 SYM theory on R4 with an interacting matrix model on
a 4-sphere S4 [2] and reduce the calculation of the correlation functions to finite dimensional
matrix integrals.

Denoting by a a (N ×N) traceless hermitian matrix, such that

a = ab Tb (2.12)

where Tb (b = 1, . . . , N2−1) are the SU(N) generators in the fundamental representation,3

the partition function of the matrix model is given by

Z =
∫
da e− tr a2−Sint(a) . (2.13)

Here we follow the so-called “full Lie algebra” approach [19, 24, 26, 27, 34] and integrate
over all elements ab of the matrix with a measure given by

da =
N2−1∏
b=1

dab√
2π

(2.14)

in such a way that the Gaussian integration is normalized to 1. In (2.13) Sint(a) represents
an interaction term whose explicit form depends on the representation R in which the
matter hypermultiplets transform. As shown in [22, 24], for a generic N = 2 SU(N) theory
Sint(a) can be written as a linear combination of the following traces4

TrR a2k − Tradjoint a
2k , (2.15)

which, when expressed in terms of the traces in the fundamental representation, become a
superposition of double traces of the form

(
tr a` tr a2k−`) and of single traces of the form

tr a2k. From (2.15), we see that if R is the adjoint representation, which is the case of
the N = 4 SYM theory, then Sint(a) vanishes and the matrix model becomes free with a
purely Gaussian term. In a genuinely N = 2 theory the interacting part Sint(a) is instead
not zero and can be regarded as a deformation of the free Gaussian model.

Given any function f(a), its expectation value is defined as

〈
f(a)

〉
= 1
Z

∫
da f(a) e− tr a2−Sint(a) =

〈
f(a) e−Sint(a)〉

0〈
e−Sint(a)〉

0

(2.16)

3Here and in the following we fix the normalization of the generators Tb in such a way that trTb Tc = 1
2δbc.

4We neglect the instanton contributions since we are ultimately interested in studying the ’t Hooft
large-N limit where instantons are exponentially suppressed.
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where the notation 〈 〉0 stands for the expectation value in the free model.5 Through
this formula, the calculation of any expectation value in the N = 2 matrix model is thus
reduced to the calculation of expectation values in the free theory. Given the structure of
Sint(a) that we have recalled above, which implies that Sint(−a) = Sint(a), only functions
that are even under the exchange a→ −a may have a non-vanishing expectation value.

A natural set of operators to consider in the matrix model is that of the multi-traces

Ωn = tr an1 tr an2 . . . tr an` (2.17)

which clearly obey the relation
Ωn Ωm = Ωn,m . (2.18)

We denote their expectation values as Tn, namely

Tn ≡ Tn1,...,n` =
〈

tr an1 tr an2 . . . tr an`
〉
, (2.19)

that are non-zero only if |n| is even.
The operators Ωn, however, are not the representatives in the matrix model of the

local chiral operators On(x) of the gauge theory [14]. Indeed, the latter correspond to
the normal-ordered version of Ωn which is defined by the Gram-Schmidt orthogonalization
procedure:

On = Ωn −
∑
|m|<|n|

Cm
n Om . (2.20)

Here the mixing coefficients Cm
n are fixed by demanding that On be orthogonal to all

operators Om of lower dimensions, i.e.〈
OnOm

〉
= 0 for all |m| < |n| . (2.21)

Notice that 2-point functions
〈
OnOm

〉
with |n| = |m| are not required to be diagonal.

Of course, it would be possible to redefine the operators and orthogonalize them as well.
However, the same situation holds for the corresponding multi-trace operators in the gauge
theory and there one does not usually redefine the operators by mixing different trace
structures with the same dimension. Therefore here, as in most of the literature, we do
not make this step and perform a Gram Schmidt procedure which is not complete.

Enforcing the condition (2.21) one can determine the mixing coefficients in terms of
the expectation values (2.19), and find that Cm

n is different from zero only when |n| and
|m| are both even or both odd. For example, the double-trace operator O2,3 of dimension 5
can only mix with the single-trace operator O3 of dimension 3, and the mixing coefficient is

C 3
2,3 = T2,3,3

T3,3
. (2.22)

Of course, when the dimension of the operators increases, the mixing coefficients become
more and more intricate. However, as shown in appendix A, it is possible to write them

5Here we have followed the conventions of [19, 24, 26] and instead of writing the Gaussian term as
e− 8π2N

λ
tr a2

, we have performed the rescaling a→
√
λ/(8π2N) a to bring it to the canonical form. In this

way all dependence on the coupling is inside the interaction action Sint(a) (see eq. (3.1) below).
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in closed form as ratios of determinants of matrices constructed with the expectation val-
ues (2.19).

The normal-ordered operators On satisfy the relation

OnOm = On,m + . . . (2.23)

where the dots stand for terms of dimension smaller than |n| + |m|, which is the matrix-
model counterpart of the chiral ring relation (2.4). From the definition (2.20) and the
orthogonality condition (2.21), one easily finds that〈

OnOm
〉

=
〈
ΩnOm

〉
=
〈
On Ωm

〉
for |n| = |m| . (2.24)

Notice that the last term can be further manipulated and rewritten using the expectation
values (2.19) as follows〈

On Ωm
〉

=
〈
Ωn Ωm

〉
−

∑
|p|<|n|

C p
n
〈
Ωp Ωm

〉
+

∑
|q|<|p|<|n|

C p
n C q

p
〈
Ωq Ωm

〉
+ . . .

= Tn,m −
∑
|p|<|n|

C p
n Tp,m +

∑
|q|<|p|<|n|

C p
n C q

p Tq,m + . . . .
(2.25)

The various terms in the second line above can be summed and a closed-form expression
for the correlator can be obtained as a ratio of determinants of matrices constructed with
the expectation values (2.19) (see appendix A for details).

As proposed in [12–15], the coefficient Gn1,...,nk;m appearing in the extremal correla-
tor (2.5) of the gauge theory is entirely captured by the 2-point correlator between On1,...,nk

and Om in the matrix model, namely

Gn1,...,nk;m =
〈
On1,...,nk Om

〉
. (2.26)

From (2.21) and (2.24) it immediately follows that the right hand side is non-vanishing
only if |n1|+ . . .+ |nk| = |m|, in agreement with the selection rule (2.6). In case of single-
trace operators these formulas simplify. In particular, for the 2-point correlators we have
Gn;m = Gn δn,m with

Gn =
〈
OnOn

〉
=
〈
On Ωn

〉
, (2.27)

while for the 3-point correlators we have Gn1,n2;m = Gn1,n2 δn1+n2,m with

Gn1,n2 =
〈
On1,n2 On1+n2

〉
=
〈
Ωn1,n2 On1+n2

〉
=
〈
On1,n2 Ωn1+n2

〉
. (2.28)

Thus, the calculation of the 2- and 3-point functions of the single-trace primary operators
in the gauge theory is reduced to the calculation of the 2-point correlators in the matrix
model and ultimately to the evaluation of the expectation values Tn1,...,nk .

2.2 Single-trace correlators at large N

Several significant simplifications occur in the procedure outlined above, when one considers
the ’t Hooft large-N limit in which N →∞ with

λ = Ng2 (2.29)

– 8 –
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kept fixed. Focusing for simplicity on the single-trace observables, one can show that in the
planar limit instead of the operators On, which are orthogonal to all operators of dimension
smaller than n with both single and multi-traces, it is enough to consider a set of simpler
operators On, which are orthogonal to only the single-trace operators of dimension smaller
than n. These operators are defined by

On = Ωn −
∑
m<n

Cn,mOm (2.30)

where the mixing coefficients Cn,m are obtained by requiring that〈
OnOm

〉
= 0 for m < n . (2.31)

This amounts to implement the Gram-Schmidt orthogonalization procedure only in the
subspace of the single-trace operators. Thus, the operators On and On differ from each
other.6 However, one can show (see for example [15, 24]) that the difference is sub-leading
in the large-N expansion, i.e.

On = On + 1
N

(
single and multi traces

)
(2.32)

where the second term in the right hand side stands for single and multi-trace operators of
dimension smaller than n which, when inserted inside correlators, yield contributions that
are suppressed in the large-N limit. It is worth pointing out that the coefficients Cmn and
Cn,m, which account for the mixing of the single-trace operator of dimension n with the
single-trace operator of dimension m in the two schemes, are not the same but they agree
at large N :

Cmn = Cn,m +O
(
1/N

)
. (2.33)

Using these properties, we can simplify the calculation of the 2- and 3-point correla-
tors in the large-N limit. Let us first consider the 2-point correlator (2.27), which upon
using (2.30) becomes

Gn =
〈
On Ωn

〉
=
〈
OnOn

〉
. (2.34)

Then, exploiting (2.32), we can replace On with On and conclude that

Gn =
〈
OnOn

〉
+O

(
1/N

)
. (2.35)

This is precisely the form of the 2-point correlator that was used, for example, in the
calculations reported in [24, 26].

Also the 3-point correlators of single-trace operators in the large-N limit can be written
only in terms of the operators On. To show this, we first observe that in last term of (2.28)
we can substitute Ωn1+n2 with On1+n2 since the difference consists of operators of dimension
smaller than (n1 + n2) which are orthogonal to On1,n2 . Thus we have

Gn1,n2 =
〈
On1,n2 Ωn1+n2

〉
=
〈
On1,n2 On1+n2

〉
. (2.36)

6Actually, On = On for n = 2, 3, 4, 5 since in these cases the mixing can occur only with single-trace
operators. For n > 5, instead, where also multi-trace operators appear, one has On 6= On.
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Then, we can use the following relation, proven in [15],

On1,n2 = On1On2 +
(
single traces

)
+ 1
N

(
multi traces

)
, (2.37)

and upon substituting it in (2.36), we get

Gn1,n2 =
〈
On1 On2 On1+n2

〉
+O

(
1/N

)
. (2.38)

Indeed, the single traces in (2.37) are of dimension smaller than (n1 + n2) and, hence, are
orthogonal to On1+n2 , while the multi traces give rise to contributions which are suppressed
when N →∞.

The 2- and 3-point correlators (2.35) and (2.38) can be explicitly evaluated with a
moderate computational effort, and thus provide a very efficient way to obtain information
on the 2- and 3-point correlation functions of the SYM theory in the planar limit.

3 Two- and three-point functions in the E theory at large N : perturba-
tive results

In the following we will provide explicit examples of the functions Gn and Gn1,n2 in the
so-called E theory [22, 24]. When the hypermultiplets are in the symmetric plus anti-
symmetric representation of SU(N), using (2.15), one can show that the interacting part
of the matrix model is [22, 24, 26]

Sint(a) = 4
∞∑

`,m=1
(−1)`+m

(
λ

8π2N

)`+m+1 (2`+ 2m+ 1)! ζ(2`+ 2m+ 1)
(2`+ 1)! (2m+ 1)! tr a2`+1 tr a2m+1

(3.1)
where ζ are the Riemann zeta-values. The fact that, differently from what happens in other
N = 2 superconformal theories, only products of two traces of odd powers of a appear
in (3.1) is the main reason behind the possibility of obtaining closed-form expressions and
eventually extrapolate the perturbative results at strong coupling.

Using the interaction action (3.1), it is rather straightforward to obtain the first pertur-
bative contributions to the 2- and 3-point coefficients Gn and Gn1,n2 , even if the calculation
becomes longer and longer as the dimensions of the operators grow. This is clearly due
to the fact that, even in the simplified set-up of the large-N limit, an increasing number
of mixing coefficients have to be determined in order to find the explicit expression of the
operators On to be used in the correlators. Nevertheless, in the E theory the very first
perturbative terms in Gn and Gn1,n2 can be easily obtained in full generality at large N ,
as we are going to show in the following.

3.1 Two-point functions

The planar limit of the 2-point functions Gn in the E theory has been extensively studied
in [24, 26], and here we simply recall the main results. When N →∞, one finds7

Gn = G(0)
n

[(
1 + ∆n

)
+O

(
1/N2)] . (3.2)

7In the E theory, the first non-planar corrections are of order 1/N2, differently from other superconformal
theories in which they are of order 1/N . In the matrix model this property is a consequence of the fact
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Here G(0)
n denotes the 2-point function coefficient in the N = 4 SYM at large N , which in

our normalization is given by
G(0)
n = n

(
N

2

)n
, (3.3)

and ∆n is a function of λ representing the deviation from the N = 4 result. As shown
in [24, 26], when n = 2k

∆2k = 0 , (3.4)

and when n = 2k + 1

∆2k+1 = −ζ(4k + 1)
22k−1

(
4k + 2
2k + 1

) (
λ

8π2

)2k+1
+O

(
λ2k+2) . (3.5)

Thus, in the large-N limit the 2-point functions of operators of even dimensions of the E
theory coincide with those of the N = 4 SYM, while those of operators of odd dimension
are different.

3.2 Three-point functions

So far, the 3-point functions Gn1,n2 in the E theory have not been studied. Here we report
the results of the calculations in the large-N limit that we have performed following the
procedure described above (for details we refer again to [24, 26]). Analyzing in detail
numerous examples, we find that the general structure of the 3-point functions is

Gn1,n2 = G(0)
n1,n2

[(
1 + ∆n1,n2

)
+O

(
1/N2)] (3.6)

where
G(0)
n1,n2 = n1n2(n1 + n2)

2

(
N

2

)n1+n2−1
(3.7)

is the 3-point coefficient in the N = 4 SYM at large N , and ∆n1,n2 is a function of λ.
When n1 = 2k and n2 = 2` we get

∆2k,2` = 0 (3.8)

in analogy with (3.4). Thus, like the 2-point functions, also the 3-point functions of oper-
ators of even dimension do not deviate from those of the N = 4 theory at large N . When
n1 = 2k and n2 = 2`+ 1 we find

∆2k,2`+1 = −ζ(4`+ 1)
22`−1

(
4`+ 2
2`+ 1

) (
λ

8π2

)2`+1
+O

(
λ2`+2) . (3.9)

This is exactly the first perturbative contribution of order λ2`+1 to ∆2`+1 as we see
from (3.5). Thus, we can write

∆2k,2`+1 = ∆2`+1
∣∣
λ2`+1 +O

(
λ2`+2) . (3.10)

that the interaction action Sint(a) of the E theory contains only products of two odd traces, as one can see
from (3.1). On the contrary, the interaction action of other superconformal theories contains also products
of two even traces and/or terms with single traces. As explicitly shown in [24], this different structure is
responsible for the different behavior in the large-N limit.
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Figure 1. Graphical representation of the chiral and anti-chiral operators On(x) and On(y). The
outgoing lines represent the chiral field ϕ while the incoming lines represent the anti-chiral field ϕ.

Figure 2. When the contractions are made with free propagators one obtaines the tree-level result
G

(0)
n at the leading order for N →∞ is given by (3.3).

Finally, when n1 = 2k + 1 and n2 = 2`+ 1, with k ≤ `, we have

∆2k+1,2`+1 =
(
1 + δk,`

)
∆2k+1

∣∣
λ2k+1 +O

(
λ2k+2) . (3.11)

These results show that, like the 2-point functions, also the 3-point functions involving
operators of odd dimensions are different from those of the N = 4 theory even in the
large-N limit8

3.3 Diagrammatic interpretation

The results reported above have a nice diagrammatic interpretation. Indeed, the 2-point
function Gn corresponds to the diagram in figure 1, where the n legs of On(x) have to be
contracted with the n legs of On(y) using the rules and methods explained in [22, 24].

If these contractions are made with free propagators like in figure 2, one obtains the
tree-level contribution G(0)

n whose leading term at large N is given by (3.3). If instead the
8One can easily check that the tree-level 2- and 3-point functions given in (3.3) and (3.7) are in agreement

with the chiral ring relation (2.4). Furthermore, they are related as follows: G(0)
n1,n2 = n1+n2

N
G

(0)
n1 G

(0)
n2 .

Using (3.8), (3.10) and (3.11), it is easy to realize that the same relation holds also in the interacting theory
at the first perturbative order.
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Figure 3. The diagram which produces a planar contribution when inserted in the contraction of
(2k + 1) legs as an effective vertex. In the right hand side we use the same notation of [19, 22] for
the matter hypermultiplets represented by the dashed and dotted lines. This contribution turns
out to be proportional to ζ(4k + 1)λ2k+1, as a result of the integration over the loop momenta
according to [46].

contractions are made with the insertion of interaction vertices, one gets the loop correc-
tions. In [24] it was proved that when n = 2k there is no planar diagram that contributes
to the 2-point function so that ∆2k = 0, in agreement with the matrix model result.9

On the contrary, when n = 2k + 1 one can show that the first perturbative contribu-
tion at large N arises from the diagram represented in figure 3, which is proportional to
ζ(4k + 1)λ2k+1. The insertion of this structure in the contraction between O2k+1(x) and
O2k+1(y), as shown in figure 4, yields precisely the term proportional to λ2k+1 in G2k+1,
namely G(0)

2k+1 ∆2k+1
∣∣
λ2k+1 , in agreement with the matrix model calculation.

This analysis can be easily extended to the 3-point function Gn1,n2 which is obtained
from the diagram in figure 5.

By contracting the (n1 +n2) legs of On1,n2(x) with those of On1+n2(y) with free prop-
agators as shown in figure 6, one obtains the tree-level result G(0)

n1,n2 whose leading term
at large N is given by (3.7). Using the same argument of the 2-point functions of even
operators (see footnote 9), one can show that no loop diagram can contribute to the planar
limit of G2k,2`, so that ∆2k,2` = 0 in agreement with the matrix model result. If instead
either n1 or n2 or both are odd, there is a non-trivial planar contribution because we can
insert the structure of figure 3 in the contraction. For example, if n1 = 2k and n2 = 2`+ 1,
we can draw the diagram shown in figure 7 which produces the term G

(0)
2k,2`+1 ∆2`+1

∣∣
λ2`+1

in the planar limit, in full agreement with the matrix model calculation. When n1 = 2k+1

9This argument is based on the fact that in the 2-point functions of even operators the first perturbative
contribution is produced by a structure similar to that represented in figure 3, but with an even number of
incoming and outgoing legs. A careful analysis of the color factor associated to this structure shows that
this contribution either vanishes or is sub-leading in N with respect to the tree-level term. For details we
refer to section 7.1 of [24].
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Figure 4. When the effective vertex of figure 3 is used in the contraction of the (2k+1) legs, one gets
the first perturbative contribution to the 2-point function G2k+1 proportional to ζ(4k + 1)λ2k+1,
as given in (3.5).

Figure 5. Graphical representation of the chiral operator On1,n2(x) on the left, with two groups
of legs corresponding to its two traces, and of the anti-chiral operator On1+n2(y) on the right.

and n2 = 2` + 1, we can use the effective vertex of figure 3 to contract either the n1 legs
or the n2 legs of the two traces inside On1,n2(x) with those of On1+n2(y). Suppose that
k < `. In this case the first perturbative correction arises from the insertion of the effective
vertex in the contraction of the 2k+ 1 legs emanating from the first trace of O2k+1,2`+1(x).
This insertion produces a planar term proportional to ζ(4k + 1)λ2k+1 in agreement with
the matrix model result reported in (3.11). The insertion of the effective vertex in the
contraction of the 2` + 1 legs of the second trace of O2k+1,2`+1(x) also produces a planar
term, but this is of higher order because ` > k. Finally, if k = ` the effective vertex can
obviously be used in the contraction of the legs of both traces, and this fact accounts for
the factor of 2 which appears in (3.11) when k = `.
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(x)

<latexit sha1_base64="uuw/BxgE5bPPwco5D0HZe/EuOAA=">AAACF3icbVC9SgNBEN7z3/gXtbRZDIIihDsRtRRt7FQwGkjCMbeZ6OLe3rE7J4TjHsBH8ClstbITW0sL38W9mEKjU318P8zMF6VKWvL9D29sfGJyanpmtjI3v7C4VF1eubRJZgQ2RKIS04zAopIaGyRJYTM1CHGk8Cq6PS71qzs0Vib6gvopdmK41rInBZCjwmqtnTi5TOftGOhGgMpPiyLMdRhs63Cn2OxvOZdf9wfD/4JgCGpsOGdh9bPdTUQWoyahwNpW4KfUycGQFAqLSjuzmIK4hWtsOaghRtvJB88UfCOzQAlP0XCp+IDEn4kcYmv7ceSc5cF2VCvJ/7RWRr2DTi51mhFqUS4iqXCwyAojXQ3Iu9IgEZSXI5eaCzBAhEZyEMKRmaut4voIRr//Cy536sFeffd8t3Z4NGxmhq2xdbbJArbPDtkJO2MNJtg9e2RP7Nl78F68V+/t2zrmDTOr7Nd4718yOaAV</latexit>

On1+n2
(y)

Figure 6. By contracting all legs with the tree-level propagators one obtains the coefficient G(0)
n1,n2

whose leading term at large N is given in (3.7).

Figure 7. The effective vertex of figure 3 is used in the contraction of the (2`+ 1) legs and yields
a planar contribution proportional to ζ(4`+ 1)λ2`+1 in the 3-point function G2k,2`+1.

4 A simple three-point function at large N

Before addressing the strong-coupling behavior of the 3-point functions Gn1,n2 in full gener-
ality, we discuss in detail a simple example, namely G2,3. In the matrix model this 3-point
function is given by10

G2,3 '
〈
O2O3O5

〉
(4.1)

where, according to the definitions presented in section 2, the operators are

O2 = Ω2 − T2 , O3 = Ω3 , O5 = Ω5 −
T3,5
T3,3

Ω3 . (4.2)

10Here and in the following, the symbol ' means that only the leading term in the large-N expansion is
written.
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Using these expressions, we easily obtain
〈
O2O3O5

〉
=
〈
Ω2O3O5

〉
= T2,3,5 −

T3,5
T3,3

T2,3,3 . (4.3)

The expectation values T2,n1,n2 satisfy the relation (proven in appendix B, see in particu-
lar (B.11))

T2,n1,n2 = 1
2
(
N2 − 1 + n1 + n2 − 2λ ∂λF

)
Tn1,n2 + λ ∂λTn1,n2 (4.4)

where F = − logZ is the free energy. Exploiting this relation, after straightforward ma-
nipulations we can rewrite (4.3) as follows

〈
O2O3O5

〉
= T3,5 + λ ∂λ

(
T3,5
T3,3

)
T3,3 . (4.5)

The crucial observation is that it is possible to write an exact formula for the expectation
values Tn1,n2 in the E theory that is valid for all values of the ’t Hooft coupling at large
N . This formula makes use of the infinite matrix X, firstly introduced in [24, 26], which is
related to the partition function Z of the matrix model in the following way

Z = det−
1
2
(
1− X

)
, (4.6)

and whose elements are

Xk,` = −8(−1)k+`
√

(2k + 1)(2`+ 1)
∫ ∞

0

dt

t

et

(et − 1)2 J2k+1

(
t
√
λ

2π

)
J2`+1

(
t
√
λ

2π

)
(4.7)

where k, ` ≥ 1 and J are the Bessel functions of the first kind. More precisely, in [26] it
was proved that at large N the even expectation values T2k,2` do not depend on λ and thus
coincide with those of the N = 4 SYM, namely

T2k,2` '
Nk+`+2

2k+`
(2k)! (2`)!

k! (k + 1)! `! (`+ 1)! , (4.8)

while the odd expectation values T2k+1,2`+1 depend in a non-trivial way on λ and at large
N are given by

T2k+1,2`+1 '
(
N

2

)k+`+1 k−1∑
i=0

`−1∑
j=0

ck,i c`,j

( 1
1− X

)
k−i,`−j

(4.9)

where
ck,i =

(
2k + 1
i

)
√

2k − 2i+ 1 . (4.10)

In particular, the correlators T3,3 and T3,5 appearing in (4.5) are

T3,3 '
3N3

8

( 1
1− X

)
1,1

,

T3,5 '
15N4

16

[( 1
1− X

)
1,1

+ 1√
15

( 1
1− X

)
1,2

]
.

(4.11)
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Expanding the matrix X for small λ by exploiting the well-known expansion of the Bessel
functions, and using the result in the above expressions, it is possible to generate very
long series in a quite efficient way. For example, the first few terms in the perturbative
expansion of the correlator

〈
O2O3O5

〉
obtained with this method are:

〈
O2O3O5

〉
' 15N4

16

[
1−10ζ(5)

(
λ

8π2

)3
+ 245ζ(7)

2

(
λ

8π2

)4
− 2331ζ(9)

2

(
λ

8π2

)5

+4
(
2541ζ(11)+25ζ(5)2)( λ

8π2

)6
− 13

4
(
26169ζ(13)+700ζ(5)ζ(7)

)( λ

8π2

)7

+ 105
16
(
105963ζ(15)+3072ζ(5)ζ(9)+1988ζ(7)2)( λ

8π2

)8
+. . .

]
. (4.12)

Actually we have generated all terms of
〈
O2O3O5

〉
up to order λ139 without any difficulty.

These long expansions are very useful for the numerical analysis, as we will see in the next
subsection.

More importantly, using the asymptotic expansion for large λ of the Bessel functions
appearing in (4.7) and then performing a Mellin transform, it is possible to obtain the
strong-coupling behavior of the matrix X and show [26] that when λ → ∞ it becomes
three-diagonal with elements given by

Xk,` = (−1)k+`+1

√
2`+ 1
2k + 1

(
δk−1,`

k(2k − 1) + δk,`
k(k + 1) + δk+1,`

(k + 1)(2k + 3)

)
λ

8π2 +O(λ0) .

(4.13)
From this expansion, following the procedure explained in appendix A of [26], one can show
that ( 1

1− X

)
k,`

= 4π2

λ

√
(2k + 1)(2`+ 1)×

 k(k + 1) if k ≤ ` ,
`(`+ 1) if k ≥ ` ,

(4.14)

up to terms of order 1/λ2. Using this result in (4.9) and performing the sums over i and
j, one finally gets

T2k+1,2`+1 '
4π2

λ

(
N

2

)k+`+1 (2k + 1)!
k! (k − 1)!

(2`+ 1)!
`! (`− 1)!

1
k + `

+O
(
1/λ2) ≡ T

(∞)
2k+1,2`+1 . (4.15)

We have now all ingredients to write the correlator
〈
O2O3O5

〉
at strong coupling. In

fact, from (4.15) we see that for λ→∞

T3,3 ' T
(∞)
3,3 = 9N3π2

λ
+O

(
1/λ2) and T3,5 ' T

(∞)
3,5 = 30N4π2

λ
+O

(
1/λ2) . (4.16)

This implies that at leading order in the large-λ expansion, the ratio T3,5/T3,3 is constant
so that the λ-derivative term in (4.5) can be discarded, leaving us with

〈
O2O3O5

〉
' 30N4π2

λ
+O

(
1/λ2) . (4.17)

Writing the result in the form (3.6), namely

G2,3 = 15N4

16
[(

1 + ∆2,3
)

+O
(
1/N2)] , (4.18)
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we see from (4.17) that the strong-coupling expansion of the deviation ∆2,3 is given by

∆2,3 = −1 + 32π2

λ
+O

(
1/λ2) . (4.19)

4.1 Numerical checks

Here provide a few numerical checks that we have performed in order to test the above
results. First of all, using the perturbative expansion of the matrix X inherited from
that of the Bessel functions appearing in (4.7), we have generated very long series for the
expectation values T3,3 and T3,5 and numerically evaluated the coefficients up to order λ139.
Using these expansions, we have then obtained the mixing coefficient of O5 in the form

C5,3 = T3,5
T3,3

=
139∑
k=0

C
(k)
5,3

(
λ

π2

)k
+O

(
λ140) (4.20)

where
C

(0)
5,3 '

5N
2 (4.21)

is the mixing coefficient in the free theory, i.e. in the N = 4 SYM. The series (4.20) has a
radius of convergence at λ = π2 (see for example the discussion in [24, 26]) but it can be
extended beyond this bound with a Padé resummation. Therefore, we have computed the
diagonal Padé approximants

P[M/M ](C5,3) =
[ 139∑
k=0

C
(k)
5,3

(
λ

π2

)k ]
[M/M ]

(4.22)

for M = 26, 40, 68 and compared them with the strong-coupling behavior of C5,3 that can
be obtained using the asymptotic form of T3,3 and T3,5 given in (4.16), i.e.

C
(∞)
5,3 = lim

λ→∞
C5,3 '

T
(∞)
3,5

T
(∞)
3,3

= 10N
3 . (4.23)

The three Padé approximants that we have computed and the strong-coupling result (4.23)
are plotted in figure 8, which shows that for increasing values of M and for large values of
λ the numerical curves tend towards the expected asymptotic value.11

We have also computed the correlator G2,3 in the E theory with a Monte Carlo
simulation using the Metropolis-Hastings algorithm (see for instance [47]) for N = 50
and N = 150, along the same lines discussed in [26]. The results of these simulations
are shown in figure 9, where we have also plotted the Padé approximant for the ratio
G2,3/G

(0)
2,3 = (1 + ∆2,3) with M = 68 and the large-λ theoretical prediction (4.19). We see

that as λ increases, the Monte Carlo points tend towards the Padé curve which in turn
tends towards the theoretical strong-coupling curve. As expected, the agreement of the
Monte Carlo simulation is better for N = 150 than for N = 50. We regard these numerical
results as a strong evidence of the validity of our analysis.

11The agreement could be improved by considering sub-leading contributions to the asymptotic value.
These contributions can be obtained by keeping the sub-leading terms in the expansion of the matrix X for
large λ.
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Figure 8. Comparison between the Padé curves P[M/M ](C5,3) for M = 26 (green curve), M = 40
(blue curve), M = 68 (red curve) and the large-λ theoretical prediction (4.23) (black dashed curve)
for the mixing coefficient C5,3 divided by N .
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Figure 9. Comparison between the Padé curve at M = 68 for the ratio G2,3/G
(0)
2,3 (red curve),

the large-λ theoretical prediction (4.19) (black dashed curve) and the points from the Monte Carlo
simulations at N = 50 (green open circles) and at N = 150 (blue open triangles).
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5 Three-point functions in the E theory at large N : strong coupling
results

We now extend the results of the previous section by computing a generic 3-point function
of single-trace operators of the E theory in the large-N limit at strong coupling.

To do so, we first analyze in more detail the structure of the single-trace operators On
introduced in (2.30). The mixing coefficients Cn,m, defined by imposing the orthogonality
relation (2.31), are given by

Cn,m =
〈
ΩnOm

〉〈
ΩmOm

〉 (5.1)

where n and m are both even or both odd, with m < n. It is not difficult to realize that
these coefficients in the end become rational homogeneous functions of the expectation
values Tr,s where r and s are both even if n and m are even, or both odd if n and m are
odd.

As discussed in the previous sections, the form of these expectation values is explicitly
known in the large-N limit, both at weak and at strong coupling. Using this information
we find that when λ→ 0, i.e. in the N = 4 SYM, the mixing coefficients are12

C(0)
n,m = lim

λ→0
Cn,m '

(
N

2

)n−m
2
(

n
n−m

2

)
. (5.2)

On the other hand when λ → ∞ we can exploit the strong-coupling behavior of the
expectation values Tr,s given in (4.8) and (4.15), and find that when the indices are even,
the mixing coefficients remain unchanged at leading order, namely

C
(∞)
2k,2` = lim

λ→∞
C2k,2` ' C

(0)
2k,2` '

(
N

2

)k−` ( 2k
k − `

)
, (5.3)

while when the indices are odd they acquire an extra simple numerical factor and become

C
(∞)
2k+1,2`+1 = lim

λ→∞
C2k+1,2`+1 '

k + `+ 1
2`+ 1 C

(0)
2k+1,2`+1 '

2k + 1
2`+ 1

(
N

2

)k−` ( 2k
k − `

)
. (5.4)

Note that for k = 2 and ` = 1 we recover the explicit result in (4.23). The relation (5.4),
which we have checked in numerous examples even with very high values of k and `, can
be proven with a nested inductive method as shown in appendix C.13

To perform explicit calculations it is actually more convenient to express the operators
On in the basis of the vevless operators14

Ω̂n = Ωn −
〈
Ωn
〉

= Ωn − Tn , (5.5)
12This result follows directly from the findings of [17] where it was shown that in the free Gaussian model

at large N the mixing coefficients of an operator of dimension n are related to the coefficients of the n-th
Chebyshev polynomial of the first kind. Using this information, the result in (5.2) immediately follows, see
also section 3.2 of [24].

13We warmly thank the anonymous referee for suggesting this proof.
14Note that Ω̂0 = Ω̂1 = 0 and Ω̂2k+1 = Ω2k+1.
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and write
On =

∑
2≤m≤n

Mn,m Ω̂m (5.6)

with n and m being both even or both odd. Comparing this with (2.30), we easily see that
the mixing matrices M and C are related as follows

Mn,m =
( 1

1 + C

)
n,m

. (5.7)

In the free theory at large N , using (5.2) one can show that

M (0)
n,m = lim

λ→0
Mn,m '

(
−N2

)n−m
2 n

m

(
n+m−2

2
n−m

2

)
(5.8)

and check that the expression in the right hand side is related to the coefficients of (suitably
rescaled) Chebyshev polynomials, as originally pointed out in [17]. At strong coupling,
instead, we have a different behavior depending on whether the indices are even or odd.
In fact, from (5.3), (5.4) and (5.7) we find, respectively,

M
(∞)
2k,2` = lim

λ→∞
M2k,2` ' M

(0)
2k,2` '

(
−N2

)k−` k
`

(
k + `− 1
k − `

)
, (5.9)

and

M
(∞)
2k+1,2`+1 = lim

λ→∞
M2k+1,2`+1 '

2k
k + `

M
(0)
2k+1,2`+1 '

2k + 1
2`+ 1

(
−N2

)k−` k
`

(
k + `− 1
k − `

)
.

(5.10)
We are now in the position of computing the generic 3-point function of single-trace

operators in the E theory. We start by considering G2,2`+1. In this case we have to compute〈
O2O2`+1O2p+1

〉
(5.11)

with p = `+ 1. Using (5.6) we immediately find

〈
O2O2`+1O2p+1

〉
=
〈
Ω2O2`+1O2p+1

〉
=
∑̀
r=1

p∑
s=1

M2`+1,2r+1M2p+1,2s+1 T2,2r+1,2s+1 ,

(5.12)
which, upon exploiting the relation (4.4), can be rewritten as

1
2
(
N2 + 1− 2λ ∂λF

) ∑̀
r=1

p∑
s=1

M2`+1,2r+1M2p+1,2s+1 T2r+1,2s+1

+
∑̀
r=1

p∑
s=1

M2`+1,2r+1M2p+1,2s+1 (r + s)T2r+1,2s+1 (5.13)

+
∑̀
r=1

p∑
s=1

M2`+1,2r+1M2p+1,2s+1 λ ∂λT2r+1,2s+1 .
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The first line in the above expression vanishes because the double sum reconstructs the
expectation value

〈
O2`+1O2p+1

〉
which is zero due to the orthogonality condition (2.31).

Since we are interested in the strong coupling limit at large N , we can replace the mixing
coefficients M and the expectation values T with their asymptotic expressions M (∞) and
T (∞) given, respectively, in (5.10) and (4.15). Having done this and exploiting the fact that
λ ∂λT

(∞)
2r+1,2s+1 = −T (∞)

2r+1,2s+1, we see that also the third line of (5.13) does not contribute
at leading order when λ→∞ because it is proportional to

〈
O2`+1O2p+1

〉
which vanishes.

Thus, we are left with

〈
O2O2`+1O2p+1

〉
'
∑̀
r=1

p∑
s=1

M
(∞)
2`+1,2r+1M

(∞)
2p+1,2s+1 (r + s)T (∞)

2r+1,2s+1

= −
(
−N2

)`+p+1 16π2

λ
` (2l + 1) p (2p+ 1)

×
∑̀
r=1

(−1)r (`+ r − 1)!
(`− r)! r! (r − 1)!

p∑
s=1

(−1)s (p+ s− 1)!
(p− s)! s! (s− 1)! , (5.14)

where the second step follows from (5.10) and (4.15) and some simple algebraic manipula-
tions. Using the identity

∑̀
r=1

(−1)r (`+ r − 1)!
(`− r)! r! (r − 1)! = (−1)` , (5.15)

we finally obtain

〈
O2O2`+1O2p+1

〉
'
(
N

2

)`+p+1 16π2

λ
` (2`+ 1) p (2p+ 1) . (5.16)

Setting p = `+ 1 in this expression, we deduce that at strong coupling the 3-point function
G2,2`+1 is simply

G2,2`+1 '
(
N

2

)2`+2 16π2

λ
` (`+ 1)(2`+ 1) (2`+ 3)

' G
(0)
2,2`+1

16π2

λ
` (`+ 1) .

(5.17)

Of course, for ` = 1 we retrieve the results of section 4 (see (4.17)–(4.19)).
Applying the same methods, one can show that

〈
O2mO2`+1O2p+1

〉
'
(
N

2

)m+`+p 16π2

λ
m` (2`+ 1) p (2p+ 1) (5.18)

which is a simple generalization of (5.16). The details of the derivation of this result can
be found in appendix D. If in (5.18) we set m = k and p = k + `, we obtain

G2k,2`+1 '
(
N

2

)2k+2` 16π2

λ
k ` (k + `) (2`+ 1) (2k + 2`+ 1)

' G
(0)
2k,2`+1

16π2

λ
` (k + `) ,

(5.19)
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while if we set m = k + `+ 1 and p = k, we get

G2k+1,2`+1 '
(
N

2

)2k+2`+1 16π2

λ
k ` (2k + 1) (2`+ 1) (k + `+ 1)

' G
(0)
2k+1,2`+1

16π2

λ
k ` .

(5.20)

This concludes the analysis of the 3-point functions at strong coupling.

6 Summary of results and conclusions

The main result we have obtained in this paper is the strong coupling behavior of the
3-point functions of single-trace operators On(x) of the E theory at large N . Writing

〈
On1(x1)On2(x2)On1+n2(y)

〉
=

Gn1,n2(
4π2(x1 − y)2)n1 (4π2(x2 − y)2)n2 , (6.1)

we have found for λ→∞ that

G2k,2` ' G
(0)
2k,2` ,

G2k,2`+1 ' G
(0)
2k,2`+1

16π2

λ
` (k + `) ,

G2k+1,2`+1 ' G
(0)
2k+1,2`+1

16π2

λ
k ` ,

(6.2)

where G(0)
n1,n2 is the 3-point correlator in the N = 4 SYM given in (3.7). On the other hand

in [26] it was shown that at strong coupling and in the large-N limit the 2-point functions
of the single-trace operators in the E theory are

〈
On(x)On(y)

〉
=

Gn(
4π2(x− y)2)n , (6.3)

with
G2k ' G

(0)
2k ,

G2k+1 ' G
(0)
2k+1

8π2

λ
k (2k + 1) ,

(6.4)

where G(0)
n is the 2-point correlator in the N = 4 SYM given in (3.3). We can combine

these results by defining the normalized operators

Ôn(x) = On(x)√
Gn

(6.5)

whose correlators are

〈
Ôn(x) Ôn(y)

〉
=

1(
4π2(x− y)2)n

〈
Ôn1(x1) Ôn2(x2) Ôn1+n2(y)

〉
=

Ĝn1,n2(
4π2(x1 − y)2)n1 (4π2(x2 − y)2)n2

(6.6)
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with
Ĝn1,n2 = Gn1,n2√

Gn1 Gn2 Gn1+n2

. (6.7)

Using (6.2) and (6.4), it is easy to see that at strong coupling

Ĝ2k,2` '
1
N

√
(2k) (2`) (2k + 2`) ,

Ĝ2k,2`+1 '
1
N

√
(2k) (2`) (2k + 2`) ,

Ĝ2k+1,2`+1 '
1
N

√
(2k) (2`) (2k + 2`+ 2) .

(6.8)

These normalized coefficients are part of the intrinsic data that characterize the conformal
field theory under consideration in the strong-coupling regime. To our knowledge this is
the first time that such a strong-coupling result is obtained in a N = 2 SYM theory.

We can rephrase our findings in a suggestive way by observing that the operators with
even dimension Ô2k(x) belong to the so-called “untwisted” sector, while those with odd
dimension Ô2k+1(x) are in the “twisted” sector. As explained in [26, 28] this terminol-
ogy derives from the string construction of the E theory in terms of a suitable orientifold
projection of a two-node quiver model, which in turn can be engineered with a system of
fractional D3-branes in a Z2 orbifold of Type II B string theory [48]. Indeed, by exploit-
ing the open/closed string correspondence, one can prove that the even operators Ô2k(x)
correspond to open string configurations that are dual to closed string excitations of the
untwisted sector which are even under the orbifold/orientifold parity, while the odd oper-
ators Ô2k+1(x) are associated to open string configurations that are dual to closed string
modes of the Z2 twisted sector surviving the orbifold/orientifold projection [49]. In com-
puting the 3-point functions we have therefore two possibilities: a 3-point function with
three untwisted operators or a 3-point function with one untwisted and two twisted oper-
ators. Calling, in an obvious notation, CU1U2U3 and CU1T2T3 the coefficients appearing in
the corresponding 3-point functions, our strong-coupling results (6.8) can be rewritten as

CU1U2U3 '
1
N

√
dU1 dU2 dU3 , (6.9a)

CU1T2T3 '
1
N

√
dU1 (dT2 − 1) (dT3 − 1) , (6.9b)

where d denotes the conformal dimension of the operator.
We point out that (6.9a) is the same result found in N = 4 SYM. Indeed, the untwisted

operators of the E theory behave in the same manner as the corresponding ones of the
N = 4 SYM since they do not feel the Z2 orbifold/orientifold projection. By exploiting the
AdS/CFT correspondence, the strong-coupling formula (6.9a) has been explicitly confirmed
long ago in [50] with an explicit calculation of the 3-point functions in AdS5 × S5. On the
other hand, (6.9b) is a new strong-coupling result which would be very interesting to
compare with a dual calculation in an AdS space with a Z2 orbifold/orientifold.

Note added. While this paper was being reviewed, we have extended the calculation of
the 3-point functions of scalar operators and of the corresponding structure constants to

– 24 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
9

N = 2 quiver gauge theories with M nodes, and showed that the strong-coupling behavior
predicted by localization perfectly agrees with the one obtained with an holographic ap-
proach based on the AdS/CFT correspondence [51, 52]. The E theory considered in this
paper is obtained from the two-node quiver theory by means of an orientifold projection.
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A The mixing coefficients

In this appendix we provide some details on mixing coefficients Cm
n appearing in the re-

cursive definition (2.20) of the normal ordered operators On, and derive a closed-form
expression in terms of expectation values of non-normal ordered multi-trace operators.

Note that the definition of the normal ordered operators On is such that they are
orthogonal to all operators of lower dimension only. The 2-point functions 〈OnOm〉 with
|n| = |m| are instead not required to be diagonal. Of course, one could redefine the
operators so as to orthogonalize them. However, like in the gauge theory where one does
not mix different trace structures with the same dimensions, also in the matrix model we do
not make this step and perform a Gram Schmidt procedure which is not complete. Thus,
the formulas that we obtain in this way are not standard. Nevertheless we think that it
may be useful to report them, also because they are valid in any matrix model and not
only in the E theory considered in this paper.

The coefficients Cm
n are determined by solving recursively the orthogonality condi-

tions (2.21). Keeping n fixed, for all m’s such that |m| < |n| we have to impose

0 =
〈
OmOn

〉
=
〈
Om Ωn

〉
−

∑
|p|<|n|

〈
OmOp

〉
C p

n . (A.1)

If we have already determined the expression of operators with dimensions lower than |n|
and their 2-point functions

Gm;p =
〈
OmOp

〉
, (A.2)

then we can solve the linear system for the unknowns C p
n given by the equations (A.1) for

all values of m with |m| < |n|.
Due to the symmetry of the matrix model integral, the Gram-Schmidt procedure takes

place separately in the sectors of even and odd operators. Here, for definiteness, we illus-
trate the formulas in the odd sector. The lowest dimension odd operator is O3, for which
the expansion (2.20) reduces simply to O3 = Ω3, so that

G3;3 = T3,3 . (A.3)
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At dimension 5 there are two operators, O5 and O2,3, for which the expansion (2.20) reads

O5 = Ω5 − C 3
5 O3 , O2,3 = Ω2,3 − C 3

2,3 O3 . (A.4)

For each of these operators we have to impose a single orthogonality relation of the
type (A.1), with m = 3. This immediately determined the mixing coefficients which are

C 3
5 = T3,5

T3,3
, C 3

2,3 = T3,2,3
T3,3

. (A.5)

With this information, we can now compute the 2-point correlators between the two oper-
ators of dimension 5, finding

G5;5 = 1
T3,3

∣∣∣∣∣T3,3 T3,5
T5,3 T5,5

∣∣∣∣∣ , G5;2,3 = 1
T3,3

∣∣∣∣∣T3,3 T3,2,3
T5,3 T5,2,3

∣∣∣∣∣ , G2,3;2,3 = 1
T3,3

∣∣∣∣∣ T3,3 T3,2,3
T2,3,3 T2,3,2,3

∣∣∣∣∣ .
(A.6)

Proceeding recursively to operators of higher dimensions, we find that these formulas
can be generalized as follows. Let us introduce the matrices T (k) whose matrix elements
are the 2-point functions of the operators Ωm with dimensions up to k, namely[

T (k)]
m;p = Tp,m with |m| , |p| ≤ k . (A.7)

Then the mixing coefficient Cm
n can be expressed in closed form as a ratio of determinants

according to

Cm
n =

det T (m)
∣∣∣
m→n

det T (m)
, (A.8)

where the notation in the numerator means that one has to replace the elements Tp,m in
the column corresponding to the index m of T (m) with the quantities Tp,n. For example,
the mixing coefficient C 5

7 is given by

C 5
7 =

det T (5)
∣∣∣
5→7

det T (5) =

∣∣∣∣∣∣∣
T3,3 T3,7 T3,2,3
T5,3 T5,7 T5,2,3
T2,3,3 T2,3,7 T2,3,2,3

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

T3,3 T3,5 T3,2,3
T5,3 T5,5 T5,2,3
T2,3,3 T2,3,5 T2,3,2,3

∣∣∣∣∣∣∣ . (A.9)

Finally, to describe the 2-point function Gn;n′ we introduce the matrix T (n;n′) with elements[
T (n;n′)]

p;q = Tp,q (A.10)

with |p| < |n| or p = n and |q| < |n′| or q = n′. In practice, the matrix T (n;n′) is obtained
from the matrix T (|n|−2) introduced above, by adding one row with index n and one column
of index n′. For instance,

T (5;2,3) =
(
T (3) T3,2,3
T5,3 T5,2,3

)
=
(
T3,3 T3,2,3
T5,3 T5,2,3

)
, (A.11)
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and

T (7;4,3) =

 T (5)
T3,4,3
T5,4,3
T2,3,4,3

T7,3 T7,5 T7,2,3 T7,4,3

 =


T3,3 T3,5 T2,2,3 T3,4,3
T5,3 T5,5 T5,2,3 T5,4,3
T2,3,3 T2,3,5 T2,3,2,3 T2,3,4,3
T7,3 T7,5 T7,2,3 T7,4,3

 . (A.12)

Then, the 2-point functions are written as ratio of determinants as follows

Gn;n′ =
det T (n;n′)

det T (|n|−2)
. (A.13)

B Recursion relations

In this appendix we derive a relation valid at large N between a correlator of the type

T2m,n =
〈
Ω2m,n

〉
=
〈

tr a2m tr a2`1+1 tr a2`2+1 . . .
〉

(B.1)

where n = {2`1 +1, 2`2 +1, . . .} has an even number of odd components, and the correlator
where the even insertion is missing, namely

Tn =
〈
Ωn
〉

=
〈

tr a2`1+1 tr a2`2+1 . . .
〉
. (B.2)

The non-trivial relation that we find is instrumental in deriving the strong-coupling expres-
sion of the 3-point functions of one even and two odd operators which is reported in (5.18)
of the main text and is derived in appendix D. This relation can also be useful in evaluating
the large-N behavior of more general correlators in the matrix model.

Insertion of tr a2. In the case m = 1 it is quite straightforward to obtain an exact
relation which is valid for any multi-trace Ωn, not restricted to have only odd components.
This is due to the special role played by the operator tr a2, which is the Gaussian weight
of the matrix model.

Using the definition (2.16), we have

T2,n =
〈
Ω2,n

〉
= 1
Z

∫
da tr a2 Ωn e− tr a2−Sint(a) . (B.3)

If we perform the rescaling

a =

√
8π2N

λ
M , (B.4)

then the quadratic term acquires a weight −8π2N
λ and the interaction action become inde-

pendent of the coupling. More explicitly, we have

∫
da tr a2 Ωn e− tr a2−Sint(a) =

(
8π2N

λ

)N2+1+|n|
2 ∫

dM trM2 Ω̃n e−
8π2N
λ

trM2−S̃int(M)

(B.5)
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where Ω̃n = trMn1 trMn2 . . . and S̃int(M) = Sint(a). Similarly, the partition function
becomes

Z =
(

8π2N

λ

)N2−1
2 ∫

dM e−
8π2N
λ

trM2−S̃int(M) . (B.6)

Thus, after the rescaling the correlator (B.3) is given by

T2,n =
(

8π2N

λ

) |n|
2 +1

∫
dM trM2 Ω̃n e−

8π2N
λ

trM2−S̃int(M)∫
dM e−

8π2N
λ

trM2−S̃int(M)
. (B.7)

Now we can trade the operator trM2 appearing in the numerator for a derivative with
respect to the coupling. With simple manipulations we find

T2,n =
(

8π2N

λ

) |n|
2 λ ∂λ

∫
dM Ω̃n e−

8π2N
λ

trM2−S̃int(M)∫
dM e−

8π2N
λ

trM2−S̃int(M)
. (B.8)

Now we change integration variables back to the original matrix a getting

T2,n =
(

8π2N

λ

) |n|
2 λ ∂λ

[(
λ

8π2N

)N2−1+|n|
2

∫
daΩn e− tr a2−Sint(a)

]
(

λ

8π2N

)N2−1
2
Z

. (B.9)

Taking the derivative, we remain with two contributions that can be recast as follows

T2,n = N2 − 1 + |n|
2 Tn + 1

Z
λ ∂λ

(
Z Tn

)
, (B.10)

and further rearranged into

T2,n = 1
2
(
N2 − 1 + |n| − 2λ ∂λF

)
Tn + λ ∂λTn (B.11)

where F = − logZ is the free energy of the matrix model. For a 2-component vector
n = {n1, n2}, this formula becomes the one written in (4.4) of the main text.

Insertion of tr a2m. When we consider the insertion of a generic even operator tr a2m,
we can no longer use the strategy of the previous subsection because this operator does
not appear in the free part of the matrix model action. In fact, in the E theory it does not
appear at all in the action.

Using the recursion relations described in [19], it is not difficult to see that the following
holds in the free theory (λ = 0):

t2m,n ≡
〈
Ω2m,n

〉
0 = t2m

(
1 + m(m+ 1) |n|

2N2 +O(1/N4)
)
tn , (B.12)
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where n has an even number of odd entries. In the interacting case, we consider

T2m,n =

〈
Ω2m,n e−Sint(a)〉

0〈
e−Sint(a)〉

0

. (B.13)

Expanding in powers of the interaction action, up to quadratic order we have

T2m,n = t2m,n − T (1)
2m,n + T

(2)
2m,n + . . . (B.14)

where

T
(1)
2m,n =

〈
Ω2m,n Sint(a)

〉
0 −

〈
Ω2m,n

〉
0
〈
Sint(a)

〉
0 , (B.15a)

T
(2)
2m,n = 1

2
〈
Ω2m,n S

2
int(a)

〉
0 −

1
2
〈
Ω2m,n

〉
0
〈
S2

int(a)
〉

0 − T
(1)
2m,n

〈
S2

int(a)
〉

0 . (B.15b)

We take now into account the explicit form of the interaction action in the E theory, given
in (3.1), which only contains products of traces of two odd operators, and write as

Sint(a) =
∞∑
p=2

p−1∑
q=1

(
λ

8π2N

)p+1
fp,q tr a2q+1 tr a2(p−q)+1 . (B.16)

The coefficients fp,q can be determined by comparison with (3.1), but their expression is
not relevant for our present computation. Inserting (B.16) into (B.15a), we get

T
(1)
2m,n =

∞∑
p=2

p−1∑
q=1

(
λ

8π2N

)p+1
fp,q

(
t2m,n,2q+1,2(p−q)+1 − t2m,n t2q+1,2(p−q)+1

)
. (B.17)

Now we can exploit the relation (B.12) obtaining

T
(1)
2m,n = t2m

∞∑
p=2

p−1∑
q=1

(
λ

8π2N

)p+1
fp,q

{
tn,2q+1,2(p−q)+1 − tn t2q+1,2(p−q)+1 (B.18)

+ m(m+ 1)
N2

[( |n|
2 + p+ 1

)
tn,2q+1,2(p−q)+1 −

|n|
2 tn t2q+1,2(p−q)+1

]
+O(1/N4)

}
.

Rearranging the terms and noting that, inside the sum, p+ 1 can be traded for the action
of λ ∂λ, we see that the sum over p and q reduces to the one in the expansion (B.16) of
Sint(a), and thus we can write

T
(1)
2m,n = t2m

{[
1 + m(m+ 1)

N2

( |n|
2 + λ∂λ

)]
T

(1)
n + m(m+ 1)

N2 λ∂λ
〈
Sint(a)

〉
0tn +O(1/N4)

}
.

(B.19)
The same methods can be used to evaluate the terms quadratic in the interaction action
given in (B.15b), even if the algebra is a bit more involved. The result is

T
(2)
2m,n = t2m

{[
1 + m(m+ 1)

N2

( |n|
2 + λ∂λ

)]
T

(2)
n (B.20)

+ m(m+ 1)
N2

[1
2λ∂λ

〈
S2

int(a)
〉

0tn −
1
2λ∂λ

〈
Sint(a)

〉2
0tn + λ∂λ

〈
Sint(a)

〉
0T

(1)
n

]
+O(1/N4)

}
.
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Putting everything together, up to terms that are sub-leading at large N we obtain

T2m,n = t2m

[
1 + m(m+ 1)

N2

( |n|
2 + λ ∂λ

)] (
tn − T (1)

n + T
(2)
n
)

(B.21)

− t2m
m(m+ 1)

N2 v

[
λ ∂λ

〈
Sint(a)

〉
0
(
tn − T (1)

n
)
− 1

2 λ ∂λ
〈
S2

int(a)
〉

0 tn + 1
2 λ ∂λ

〈
Sint(a)

〉2
0 tn

]
+ . . . .

The expression in square brackets in the second line above can be rewritten in terms of the
logarithmic derivative of the free energy, which is

λ ∂λF = −
λ ∂λ

〈
e−Sint(a)〉

0〈
e−Sint(a)〉

0

(B.22)

= λ ∂λ
〈
Sint(a)

〉
0 −

1
2 λ ∂λ

〈
S2

int(a)
〉

0 + 1
2 λ ∂λ

〈
Sint(a)

〉2
0 + . . . .

Indeed, by expanding

− t2m
m(m+ 1)

N2 λ ∂λF Tn (B.23)

up to the second order in the interaction action, we precisely obtain the second line
of (B.21). This result clearly suggests its completion to all orders. Altogether we get

T2m,n = t2m

[
1 + m(m+ 1)

N2

( |n|
2 − λ ∂λF + λ ∂λ

)
+O(1/N4)

]
Tn . (B.24)

In the particular case n = 0, this reduces to the following expression for the expectation
value of an even trace:

T2m = t2m

(
1− m(m+ 1)

N2 λ ∂λF +O(1/N4)
)
, (B.25)

which was already given in eq. (3.47) of [26]. Using (B.25) inside (B.24), we can rewrite
the latter as

T2m,n = T2m

[
1 + m(m+ 1)

N2

( |n|
2 + λ ∂λ

)
+O(1/N4)

]
Tn . (B.26)

If in (B.24) we take m = 1 we retrieve, up to corrections of order 1/N4, the exact formula
given above in (B.11).

C Proof of eq. (5.4)

Eq. (5.4) can be proved with a (nested) induction argument, namely we fix k and, assuming
it is valid for any k′ < k, we prove that is valid also for k.

First of all, under our hypothesis we show that at strong coupling the following relation
holds 〈

Ω2k+1O2`+1
〉
' 4π2

λ

(
N

2

)k+`+1 2` (2`+ 1) (2k + 1)!
(k − `)! (k + `)! . (C.1)
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We can prove this by induction on `. We have〈
Ω2k+1O2`+1

〉
=
〈
Ω2k+1 Ω2`+1

〉
−
∑
m<`

C2`+1,2m+1
〈
Ω2k+1O2m+1

〉
' 4π2

λ

(
N

2

)k+`+1 (2k + 1)!
k! (k − 1)!

(2`+ 1)!
`! (`− 1)!

1
k + `

(C.2)

−
∑
m<`

[ 2`+ 1
2m+ 1

(
N

2

)`−m( 2`
`−m

)] [4π2

λ

(
N

2

)k+m+1 2m (2m+ 1) (2k + 1)!
(k −m)! (k +m)!

]
.

Here the second line follows from (4.15), while the two square brackets in the last line arise
from using, respectively, (5.4) and (C.1) under our nested induction hypothesis. With some
straightforward algebra, we can recast (C.2) in the following form〈

Ω2k+1O2`+1
〉

' 4π2

λ

(
N

2

)k+`+1
(2k + 1) (2`+ 1)

[
k `

k + `

(
2k
k

)(
2`
`

)
−
∑
m<`

2m
(

2k
k −m

)(
2`

`−m

)]
.

(C.3)

Using the following binomial identity

∑
m≤`

2m
(

2k
k −m

)(
2`

`−m

)
= k `

k + `

(
2k
k

)(
2`
`

)
, (C.4)

we see that most of the terms cancel and we remain with

〈
Ω2k+1O2`+1

〉
' 4π2

λ

(
N

2

)k+`+1
(2k + 1) (2`+ 1) 2`

(
2k
k − `

)

' 4π2

λ

(
N

2

)k+`+1 2` (2`+ 1) (2k + 1)!
(k − `)! (k + `)! (C.5)

which is (C.1). Then, using this result it is easy to see that

C
(∞)
2k+1,2`+1 = lim

λ→∞

〈
Ω2k+1O2`+1

〉〈
Ω2`+1O2`+1

〉 '
4π2

λ

(
N

2

)k+`+1 2` (2`+ 1) (2k + 1)!
(k − `)! (k + `)!

4π2

λ

(
N

2

)2`+1 2` (2`+ 1) (2`+ 1)!
(2`)!

' 2k + 1
2`+ 1

(
N

2

)k−` ( 2k
k − `

)
, (C.6)

which is the relation appearing in (5.4) of the main text.

D The calculation of
〈
O2m O2`+1 O2p+1

〉
Here we provide some details on the computation of the 3-point function〈

O2mO2`+1O2p+1
〉

(D.1)
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in the strong-coupling limit at large N for the E theory.
Using (5.6) we have〈
O2mO2`+1O2p+1

〉
=

m∑
n=1

∑̀
r=1

p∑
s=1

M2m,2nM2`+1,2r+1M2p+1,2s+1
(
T2n,2r+1,2s+1 − T2nT2r+1,2s+1

)
.

(D.2)

Exploiting the relation (B.26) for the case at hand, we easily see that

T2n,2r+1,2s+1 − T2nT2r+1,2s+1 '
n(n+ 1)
N2 T2n [(r + s+ 1)T2r+1,2s+1 + λ ∂λT2r+1,2s+1] .

(D.3)
Inserting this result into (D.2), we realize that the factor (r + s + 1) can be replaced by
(r + s) since the 1 gives a vanishing contribution. Indeed, the resulting double sum over r
and s factorizes and reproduces the expectation value

〈
O2`+1O2p+1

〉
which is zero due to

the orthogonality condition (2.21). Thus, the correlator (D.2) becomes〈
O2mO2`+1O2p+1

〉
' 1
N2

m∑
n=1

∑̀
r=1

p∑
s=1

n(n+ 1)T2nM2m,2nM2`+1,2r+1M2p+1,2s+1 (r + s)T2r+1,2s+1

+ 1
N2

m∑
n=1

∑̀
r=1

p∑
s=1

n(n+ 1)T2nM2m,2nM2`+1,2r+1M2p+1,2s+1 λ ∂λT2r+1,2s+1 .

(D.4)

To find the strong-coupling limit at large N we can replace the mixing coefficients M and
the expectation values T in the above formula with the corresponding asymptotic expres-
sionsM (∞) and T (∞) for λ→∞. Exploiting the fact that λ ∂λT

(∞)
2r+1,2s+1 = −T (∞)

2r+1,2s+1, we
observe that the second line of (D.4) does not contribute in this limit since it is proportional
to 〈O2`+1O2p+1〉 which vanishes. We are then left with

〈O2mO2`+1O2p+1〉

' 1
N2

m∑
n=1

∑̀
r=1

p∑
s=1

n(n+ 1)T (∞)
2n M

(∞)
2m,2nM

(∞)
2`+1,2r+1M

(∞)
2p+1,2s+1 (r + s)T (∞)

2r+1,2s+1 .
(D.5)

Notice that the sum over n and the sums over r and s factorize. In particular the double
sum over r and s is precisely what appears in the first line of (5.14). Therefore, following
the same steps described in section 5 that lead to (5.16), we have

∑̀
r=1

p∑
s=1

M
(∞)
2`+1,2r+1M

(∞)
2p+1,2s+1 (r + s)T (∞)

2r+1,2s+1 '
(
N

2

)`+p+1 16π2

λ
` (2`+ 1) p (2p+ 1) .

(D.6)

Let’s now consider the remaining sum over n. To evaluate it, we first recall that

T
(∞)
2n ' Nn+1

2n
(2n)!

n! (n+ 1)! (D.7)
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(see eq. (3.3) of [24]); then using (5.9) we get

1
N2

m∑
n=1

n(n+ 1)T (∞)
2n M

(∞)
2m,2n ' m

(
N

2

)m−1 m∑
n=1

(−1)m+n(m+ n− 1)!
(m− n)!n! (n− 1)! = m

(
N

2

)m−1

(D.8)

where in the last step we have exploited the identity (5.15). Finally, multiplying (D.6)
and (D.8) we obtain

〈
O2mO2`+1O2p+1

〉
'
(
N

2

)m+`+p 16π2

λ
m` (2`+ 1) p (2p+ 1) (D.9)

which is eq. (5.18) of the main text.

E Sub-leading corrections

In this appendix we study the sub-leading corrections in the large-N expansion of the
correlators of single-trace operators with odd dimension. Even if this material is not directly
relevant for the main purpose of this paper, it may be useful in future developments.

As a first step, we briefly recall that in the free theory, i.e. in N = 4 SYM, at the
leading order (LO) in the large-N expansion one has (see [24] for details)〈

Ω2`1+1 Ω2`2+1
〉

0 ' HLO
`1,`2 β`1 β`2 (E.1)

where

β` = N `+1/2
√

2
` (2`+ 1)!!

(`+ 1)! and HLO
`1,`2 = 1

1 + `1 + `2
. (E.2)

More generally, at large N the correlator involving an even number n of odd operators
takes the form

〈
Ω2`1+1 Ω2`2+1 · · ·Ω2`n+1

〉
0 ' H

LO
`1,`2,...,`n

n∏
i=1

β`i (E.3)

where HLO
`1,`2,··· ,`n represents the total Wick contraction computed with the “propagator”

HLO
`i,`j

. For example, if n = 4 we have

HLO
`1,`2,`3,`4 = HLO

`1,`2 H
LO
`3,`4 +HLO

`1,`3 H
LO
`2,`4 +HLO

`1,`4 H
LO
`2,`3 . (E.4)

Let us now consider the next-to-leading (NLO) corrections in the large-N expansion.
Going to order 1/N2, the 2-point correlator (E.1) becomes〈

Ω2`1+1 Ω2`2+1
〉

0 ' HLO
`1,`2 β`1 β`2 +HNLO

`1,`2 β`1 β`2 (E.5)

where

HNLO
`1,`2 = 1

12N2

[ 2∑
i=1

(`i − 1)(`i − 3) + (`1 − 1)(`2 − 1)− 20
]
. (E.6)
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This term can be interpreted as the O
(
1/N2) correction to the propagator HLO

`1,`2
. There-

fore, we can promoteHLO
`1,`2,··· ,`n toHLO+NLO

`1,`2,··· ,`n by performing the Wick contractions with the
propagator HLO

`i,`j
+ HNLO

`i,`j
. However, if we compute the 4-point correlator〈

Ω2`1+1 Ω2`2+1 Ω2`3+1 Ω2`4+1
〉

0, we see that its O
(
1/N2) correction is not entirely captured

by HLO+NLO
`1,`2,`3,`4

and one has to include an extra NLO term given by

V NLO
`1,`2,`3,`4 = 1

N2

( 4∑
i=1

`i + 4
)
. (E.7)

Indeed, one can check that

〈
Ω2`1+1 Ω2`2+1 Ω2`3+1 Ω2`4+1

〉
0 '

(
HLO+NLO
`1,`2,`3,`4

+ V NLO
`1,`2,`3,`4

) 4∏
i=1

β`i . (E.8)

We have verified that, remarkably, this quartic “vertex” together with the corrected prop-
agator is enough to generate the NLO terms in all higher correlators using Wick’s rule and
that no higher vertices are needed at this order. For example the correlator of six operators
up to NLO reads

〈
Ω2`1+1 Ω2`2+1 Ω2`3+1 Ω2`4+1 Ω2`5+1 Ω2`6+1

〉
0 '

(
HLO+NLO
`1,`2,`3,`4,`5,`6

+HLO
`1,`2 V

NLO
`3,`4,`5,`6

+HLO
`1,`3 V

NLO
`2,`4,`5,`6 + . . . +HLO

`5,`6 V
NLO
`1,`2,`3,`4

) 6∏
i=1

β`i . (E.9)

This structure becomes more transparent if we use the basis of the normalized normal-
ordered operators of the free theory defined as

ω2`+1 = 1√
G

(0)
2`+1

∑̀
r=1

M
(0)
2`+1,2r+1 Ω2r+1 (E.10)

where M (0)
2`+1,2r+1 and G

(0)
2`+1 are given, respectively, in (5.8) and (3.3). By construction,

these operators are orthogonal to each other at LO, but if we include the NLO corrections
their 2-point correlator acquires a non-diagonal term and becomes

〈
ω2`1+1 ω2`2+1

〉
0 ' δ`1,`2 + 1

N2 f
NLO
`1,`2 (E.11)

with

fNLO
`1,`2 =

√
(2`1 + 1)(2`2 + 1)

24

( 2∑
i=1

`i(`i + 1)− 14
) ( 2∑

i=1
`i(`i + 1)

)
. (E.12)

Using the ω-basis, one finds that the quartic vertex (E.7) takes the following form

vNLO
`1,`2,`3,`4 =

( 4∏
i=1

√
2`i + 1

) ( 4∑
i=1

`i(`i + 1)
)
. (E.13)
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fNLO
<latexit sha1_base64="l0SdVBtpyXYDMdz4x8qm9lR+JAI=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQiJKrJRBJQRNBQIgkQeUmKi82UTTjk/dLeOFFlu+QpaqOgQLf9Bwb9gGxcQmGo0s6udHTeUQqNlfRilhcWl5ZXyamVtfWNzy9zeaesgUhxaPJCB6rpMgxQ+tFCghG6ogHmuhI47Oc/8zhSUFoF/i7MQHI+NfTESnGEqDUxzehf3PYb3youvLq+TZGBWrZqVg/4ldkGqpEBzYH72hwGPPPCRS6Z1z7ZCdGKmUHAJSaUfaQgZn7Ax9FLqMw+0E+fJE3oQaYYBDUFRIWkuws+NmHlazzw3ncxC6nkvE//zehGOTp1Y+GGE4PPsEAoJ+SHNlUgrAToUChBZlhyo8ClniiGCEpRxnopR2lEl7cOe//4vaR/V7ONa/aZebZwVzZTJHtknh8QmJ6RBLkiTtAgnU/JInsiz8WC8GK/G2/doySh2dskvGO9f4mGYaw==</latexit>

vNLO

Figure 10. Graphical representation of the right hand side of (E.15). The first term corresponds
to the LO “propagator” DLO defined in (E.14). The second term represents the NLO contribution
to the propagator arising from the quadratic “vertex” fNLO defined in (E.12) which we have drawn
as a blue square. The last term describes the contribution due to the quartic “vertex” vNLO given
in (E.13) which is represented by a red circle. Note that all lines stand for the propagator DLO.
The only exception is the closed line above vNLO, which represents the difference DLO − 1.

Let’s now analyze the sub-leading corrections in the E theory. As proved in [24], at
LO the 2-point correlators of the operators (E.10) are given by〈

ω2`1+1 ω2`2+1
〉
'
( 1

1− X

)
`1,`2

≡ DLO
`1,`2 (E.14)

where X is an infinite matrix whose elements are defined in (4.7). Higher point correla-
tors of ω operators are described at LO by Feynman diagrams constructed only with this
“propagator” and no interaction vertices.

When we include the 1/N2 corrections, after some algebra we find that (E.14) becomes

〈
ω2`1+1 ω2`2+1

〉
' DLO

`1,`2 + 1
N2

(
DLO
`1,m f

NLO
m,n DLO

n,`2 + 1
2 DLO

`1,k v
NLO
k,m,p,q

(
DLO
p,q − δp,q

)
DLO
m,`2

)
(E.15)

where repeated indices are summed over. The right hand side can be graphically rep-
resented as in figure 10 which shows that the sub-leading terms can be understood as
corrections to the “propagator” DLO due to the NLO “vertices” fNLO and vNLO.

We have checked this result in the perturbative regime for several values of `1 and `2 by
expanding the matrix X for λ→ 0. On the other hand, knowing that DLO is proportional
to 1/λ at strong coupling and observing that the NLO correction in (E.15) is quadratic
and cubic in DLO, we see that the sub-leading correction to the 2-point correlators are of
order 1/λ2 when λ → ∞. Going back to the initial basis of the Ω operators by inverting
the relation (E.10), we may conclude that also the NLO terms of the 2-point correlators
T2`1+1,2`2+1 =

〈
Ω2`1+1 Ω2`2+1

〉
in the E theory are proportional to 1/λ2 at strong coupling.

Like in the 2-point correlator (E.15), also for the higher point correlators of ω operators
the NLO contribution is given by Feynman diagrams constructed with the “propagator”
DLO and with at most one quadratic “vertex” fNLO or one quartic “vertex” vNLO, in which
two lines may also be contracted with DLO − 1 as in figure 10.
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