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Abstract
This research addresses ongoing rock fall processes that affect the tract of the ancient 
Appia route crossing the Apennines at the Aurunci Mountain pass (central Italy). Elements 
of cultural heritage are endangered as calcareous blocks descending from the rock slope 
that delimits the route track were observed lying on the pavement. Based on cooperation 
between geologists and experts in remote sensing, a multi-disciplinary study was pursued 
to assess rock fall susceptibility. This study included aero-photogrammetric reconstruction 
of slope topography, field-based structural and kinematic analyses, terrestrial laser scanner 
and unmanned aerial system surveys and probabilistic rock fall modelling. This last was 
performed by simulating a large number of 3D trajectories and initially adopting a lumped 
mass approach, therefore tracking dimensionless rock blocks (kinematic modelling). The 
structural setting of the investigated rock slope shows evidence of four tectonic phases, 
including in chronological order folding, thrusting, strike-slip and normal faulting. Non-
homogeneous joint sets distribution within the rock masses, due to the tectonic inheritance, 
was found to strongly condition rock failure mechanisms and sizes of detaching blocks. 
Different estimates of design rock block volumes and masses were integrated into kine-
matic modelling, finally achieving a dynamic 3D reconstruction of the rock fall process. 
Based on modelling results, a remediation plan has been drafted focused on positioning 
and sizing of elastic barriers.
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1 Introduction

At the scale of rocky mountain ranges, inherited structural features can drive the onset and 
development of deep-seated gravitational slope deformations (DSGSDs) or large rock slope 
failures (e.g. Agliardi et al. 2001, 2009; Kellog 2001; Di Luzio et al. 2004; Ambrosi and 
Crosta 2006; Scarascia-Mugnozza et al. 2006; Esposito et al. 2007, 2014; Bianchi Fasani 
et al. 2011, 2014; Saintot et al. 2011; Penna et al. 2017). At the slope scale, the role played 
by local structural settings on discontinuity-controlled rock slope instabilities is also sig-
nificant and can be difficult to unravel. In this case, the evaluation of the rock slope condi-
tion, aimed at hazard or susceptibility assessment, largely depends on a detailed structural/
geomechanical analysis (Badger 2002; Coe and Harp 2007; Brideau et al. 2009; Massironi 
et al. 2011; Pedrazzini et al. 2011; Agliardi et al. 2013; Di Luzio et al. 2013; Humair et al. 
2013; Stead and Wolter 2015; Guo and Wang 2018).

Among the types of slope instabilities, rock falls are defined as relatively small land-
slides that originate from the detachment of individual blocks—separated from a rock mass 
by structural/mechanical discontinuities—and evolve into subsequent downslope move-
ment by flying, bouncing and rolling (Varnes 1978; Evans and Hungr 1993; Cruden and 
Varnes 1996; Hungr et  al. 2014). Due to their unpredictability and high velocity, these 
events can cause casualties or great damage, even if the mobilized rock mass is small. Rock 
falls can affect communication routes, infrastructures, villages and cultural heritage ele-
ments (Tunusluoglu and Zorlu 2009; Wang et al. 2012; Di Luzio et al. 2013; Fanti et al. 
2013; Margottini et al. 2015; Dinçer et al. 2016; Boldini et al. 2018).

This paper presents a study aimed at analysing the rock fall processes threatening the 
tract of the ancient Appia route which crosses the central Apennines at the Aurunci Moun-
tain pass, between the modern towns of Fondi and Itri (Fig. 1). Nowadays, this stretch of 
the “Appia antica” is among the best preserved sections of the entire route (Quilici 1999, 
2004, 2011), which was the first Roman consular road to be constructed between the 4th 
and 2nd cen. B.C.E. connecting the Tyrrhenian to the Adriatic coast of peninsular Italy and 
crossing the Apennine belt (Fig. 1, upper right insight). In the study area, at the Aurunci 
Mountain pass, the Appia route was built leaning against a steep rock slope composed of 
Jurassic and Cretaceous carbonates (Figs. 2a, b, 3). The slope is delimited by the narrow 
fluvial incision of the St. Andrea Valley and its morphogenesis has a clear tectonic inherit-
ance (Di Luzio and Carfora 2018; Di Luzio 2019). Instabilities mainly concern the upper-
most rock escarpments from which detaching blocks can reach the ancient road track, thus 
threatening elements of cultural heritage and safety of visitors.

The rock fall process was investigated by a multiple-step procedure, including the recon-
struction of the local topography by an aero-photogrammetric survey and an inventory of 
the calcareous blocks found lying above the Appia pavement. The inventory was used as a 
constraint, in a back-analysis mode, for iterative modelling calibration. A kinematic model-
ling was then performed through a 3D simulation (e.g. Scioldo 1991, 2006; Agliardi and 
Crosta 2003; Dorren and Seijmonsbergen 2003; Crosta and Agliardi 2004; Guzzetti et al. 
2002; Lan et al. 2007), based on a probabilistic approach (Li and Lan 2015 for a review) 
that allowed the prediction of trajectories, accumulation areas, run-out distances and kin-
ematic parameters of dimensionless falling blocks (lumped mass approach). The modelling 
simulates single events of rock fall rather than a continuous accumulation of rock debris 
which are absent along the Appia route (Fig. 2a). The evaluation of possible trigger effects 
(rainfall, vegetation growth, seismic inputs) was not considered, being beyond the objec-
tives of this work.
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Field-based structural and kinematic analyses were completed to decipher defor-
mation patterns and determine rock failure mechanisms and design blocks volumes. 
For inaccessible slope sectors, these operations largely benefit from the application of 
remote sensing methodologies, such as unmanned aerial system (UAS) and terrestrial 
laser scanner (TLS) surveys. Currently, integration among classic structural analysis 
and remote sensing methodologies has become a fundamental practice for rock slope 
characterization and risk assessment (Jaboyedoff et  al. 2007, 2012; Sturzenegger and 
Stead 2009; Abellan et al. 2010, 2014; Sturzenegger et al. 2011; Gigli et al. 2012; Niet-
hammer et  al. 2012; Fanti et  al. 2013; Riquelme et  al. 2014; Martino and Mazzanti 
2014; Baleani and Mazzanti 2017; Matasci et al. 2018; Fiorucci et al. 2018; Mazzanti 
et al. 2018).

The evidence of different failure mechanisms and magnitude of detachable blocks on 
the rock slope edge were related to variations in the style of tectonic deformation and 
the joint sets distribution in particular. Downstream of these results, multiple estimates 
of design block volumes were considered to upgrade the kinematic rock fall simulations 
into a dynamic model. A countermeasure plan was finally defined, consisting of place-
ment and sizing of elastic barriers and directed towards the safeguard of local cultural 
heritage and tourist protection.
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Fig. 1  Geological setting of the areas crossed by the ancient Appia route nearby the Tyrrhenian coast-
line (from Parotto and Tallini 2013, modified) and location of the study area. Legend: (1) Continental and 
marine deposits (Holocene-Upper Pleistocene), (2) Volcanic deposits (Upper-Middle Pleistocene), (3) Syn-
orogenic siliciclastic deposits (Upper-Middle Miocene), (4) Liguridi Unit basinal deposits (Lower Miocene-
Oligocene), (5) Carbonate platform deposits (Paleocene-Jurassic), (6) Carbonate platform deposits (Lower 
Jurassic-Upper Triassic), (7) Thrust, (8) Normal fault (dashed when inferred), (9) Strike-slip fault, (10) 
Location of the study area. Upper right inside: the track of the ancient Appia route across central-southern 
Italy
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2  Geological setting and rock fall evidence

The Aurunci Mountains hosting the ancient Appia route belong to the peri-Tyrrhenian sec-
tor of the central Apennines (Fig. 1). At the Aurunci pass, the route track crosses mountain 
ridges composed of a carbonate sequence including limestone and dolomites. The youngest 
units (Neocomian-Upper Jurassic) crop out in the southern part of the study area, whereas 
the Lower and Upper Cretaceous units characterize the central and northern sectors. Qua-
ternary continental units feature talus slopes, alluvial and colluvial deposits and are found 
within the St. Andrea Valley (Fig. 2a).

Southward, the morphotectonic setting is dominated by thrusting, folding and strike-
slip faulting. A main ENE–WSW-oriented, recumbent anticline (Fig. 4a) is recognized in 
the hanging wall (HW ANT) of a south-verging thrust (Th1), along which the Lower Cre-
taceous sequence overlies the Upper Cretaceous section (Figs. 2b, 3). The thrust surface 
cut through a tight syncline which is paired with a wider, iso-oriented footwall anticline 
(FW ANT) developed in the Upper Cretaceous sequence and cut by a further thrust surface 
(Th2). Initial folding (T1) and subsequent thrusting (T2) features can be related to the mid-
dle Miocene orogenetic process in the westernmost part of the central Apennines (Cosen-
tino et al. 2002; Centamore et al. 2007; Parotto and Tallini 2013).

These structures are clearly dissected by a NNW–SSE-oriented and counter-slope-dip-
ping main fault (MF) showing strike-slip (left-lateral) kinematics (Fig. 4b, c). Transpres-
sive features are developed corresponding to restraining bends, whereas bedding panel 
rotations are observed in the footwall block (Fig. 2a). The MF played a significant mor-
phogenetic role since inaccessible or hardly accessible rock escarpments up to 20  m in 
height were generated in its hanging wall block (Fig.  4b); here, a damaged zone (here-
after DZ) presenting severe brittle deformation extends for approximately 10 m into the 
slope (Fig. 4c). The morphological expression of the MF decreases northwards, where rock 
escarpments are not higher than 6 m (Fig. 3). The age of the strike-slip event (T3) is uncon-
strained, but the relative chronology places it later than the Miocene events and prior to the 
Pliocene–Quaternary extensional tectonics (T4) that affected the Apennine belt (e.g. Cavi-
nato and De Celles 1999; Galadini and Messina 2004; Patacca et al. 2008); this last phase 
produced NE–SW to NNE–SSW-oriented faults in the study area (Fig. 2a).

Rock falls from the slope edging the ancient Appia route are evidenced by several cal-
careous blocks found above the volcanic flagstone (Fig. 5a–d). Between 2013 and 2017, 
three rock fall failures were documented on different sections of the route track, whereas 
there is no record of other events in local chronicles or Italian landslide databases (Trigila 
2007; Trigila and Iadanza 2008). Therefore, due to the lack of historical data, only a sus-
ceptibility analysis was pursued in this paper.

Fig. 2  a Geological map of the Aurunci Mountain pass and the St. Andrea Valley (modified from Di Luzio 
and Carfora 2018). Legend: (1) Alluvial deposits, (2) Terraced alluvial deposits, (3) Colluvial deposits, (4) 
Talus slope and paleo-landslide deposits, (5) Detritic and dolomitic limestone, dolomites (Upper Creta-
ceous, Turonian), (6) Detritic and dolomitic limestone (Upper Cretaceous, Cenomanian), (7) Micritic and 
detritic limestone and breccias (Lower Cretaceous, Aptian-Neocomian), (8) Detritic and oolitic limestone 
and dolomites (Neocomian-Upper Jurassic), b geological profile along trace A–A′–A″ (in the MF hanging 
wall block)

▸
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3  Methodologies

3.1  Aerial photogrammetry and remote sensing techniques

The topographic setting of the St. Andrea slope-to-valley system was reconstructed through 
an aerial photogrammetric modelling (1:3000 scale) described in Di Luzio and Carfora 
(2018). From aero-photogrammetry a DTM of the area was reconstructed (1 m cell size) 
and used to derive the shaded-relief map as shown in Fig. 6 (azimuth and altitude angle of 
the light source N315° and 45°, respectively).

Integrated surveys by multi-platform and multi-sensor remote sensing techniques were 
performed to obtain a widespread coverage of the rock slope and the inaccessible area in 
particular, with a resolution suitable for structural analysis. Photographic surveys through 
optical UAS flights and TLS measurements were planned, designed and completed consid-
ering the local slope characteristics (Fig. 7).

A network of targets was designed (Fig. 7a) including fifteen rectangular and painted 
PVC plates (21 × 30 × 0.4 cm) equipped with a reflecting target in central points (Fig. 7a′) 
and used for both UAS and TLS surveys (St1–15). Based on a multi-platform configura-
tion (i.e. different points of view for the same slope sector), these hybrid targets were also 
equipped with a pointing system based on a 3D oscillating steel head (Fig. 7a″), allowing 
their proper orientation. The target network was completed with the installation of seven 
round reflecting targets (T1–7), having diameters ranging from 5 to 10 cm, for the TLS sur-
veys only (Fig. 9a‴). The accurate (centimetre accuracy) 3D geographic coordinates of the 
targets network (in the WGS84 datum) were collected using a GNSS system in Real-Time 
Kinematic (RTK) mode, with the support of the Italian GNSS permanent network for dif-
ferential corrections.

Optical UAS surveys were performed by a multi-copter drone equipped with a GO-PRO 
HERO 3 camera. Nine flights were completed, allowing the collection of more than 4800 
photographs. Both nadir and oblique images (for the steepest slope sectors) were collected.

For the TLS survey, a Riegl VZ1000 system was used (instrumental range up to 
1400 m), equipped with a high-resolution calibrated digital camera for the acquisition of 
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real-colour 3D models. Six different scan positions were set (TLS1–6 in Fig. 7) to reduce 
the shadow zones. Data collected from each scan position were processed and aligned to 
draw a single high-density point cloud containing more than 700 million points. Finally, 
each point of the 3D model was assigned an RGB value based on the optical images col-
lected by the digital camera (Fig.  7b), thus allowing the generation of a 3D real-colour 
point cloud imaging the entire (virtual) slope.

Data acquired through the TLS survey were processed by Discontinuity Set Extractor 
(DSE), an open-source software package dedicated to detection of structural discontinui-
ties from 3D point clouds. By adopting a semi-automatic approach, the error related to the 
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operator subjectivity was reduced; the main joint sets were detected and classified based 
on the geometric distribution of points in the space. Following Riquelme et al. (2014), this 
methodology was developed through the following steps: (1) local curvature calculation, 
which consists of the nearest neighbour searching and determination of the discontinuity 
(plane) orientation in every point; and (2) statistical and cluster analysis of planes to infer 
main orientations (dip/dip direction) representing the different discontinuity sets (user-con-
trolled operation).

3.2  Field‑based structural analysis, failure mechanisms and block volumes 
assessment

Structural analysis was performed at 18 sites on the slope (Figs. 2a, 8a), outside an inacces-
sible or hardly accessible area (see Figs. 4b, 6, 7a, b). Dip direction/dip data were collected 
together with measurements and observations regarding fracture spacing, length, aperture; 
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Fig. 5  Evidence of calcareous rock blocks (in white rectangles) fallen on the volcanic flagstone of the 
ancient Appia route, featuring different volumes and shapes: a wedge-shaped, b sub-cubic, c sub-cubic and 
prismatic, d parallelepiped-shaped
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etc., according to ISRM 2007 (Online Resource 1). Lower hemisphere, equal-angle pro-
jections were drawn for all sites to delineate joint sets within the structural domains as 
presented in Fig. 8a: (1) the hanging wall anticline (HW ANT) of the south-verging thrust 
Th1; the footwall anticline (FW ANT); and (3) the strike-slip damaged zone (DZ), which is 
superimposed on the others.

Compatibility of rock mass discontinuities to different failure mechanisms was assessed 
through the Markland analysis (1972). For this purpose, a basic friction angle Φb = 38° for a 
generic unweathered joint surface in dolomitic limestone was assumed by literature (Hoek 
and Bray 1981; Cruden and Hu 1988; Bruce et  al. 1989; Goodman 1989; Gonzalez de 
Vallejo et al. 2005; Waltham 2009). The values of the residual friction angles Φr were then 
estimated according to the Barton and Choubey (1977) equation Φr = (Φb − 20°) + 20(r/R), 
where r and R are the Schmidt’s hammer rebound number on weathered and unweath-
ered fracture surfaces, respectively. Sclerometric measures were taken at sites S1–S8 and 
S16–S17 (Fig. 8a). After calculations, an average value of Φr = 31° was used in the planar 
sliding, wedge sliding and toppling failure analyses.

Finally, the results of structural and Markland analyses at sites S1–S18 and in the inac-
cessible area (site S19)—with the aid of the TLS survey—were used to reconstruct the 
geometries and volumes of potentially unstable rock blocks by means of the ROCSCI-
ENCE software suite.

3.3  Rock block inventory and modelling assumptions

A geo-referenced rock block inventory including 80 elements was completed. Calcareous 
blocks are present throughout the entire route of the Via Appia, even if with an uneven 
distribution (Fig.  8b). Downslope propagations of detached rock blocks were simulated 
through the  ROTOMAP® software code (Scioldo 1991, 2006) that implements a probabil-
istic model by calculating a large number of 3D trajectories and adopting a lumped mass 
approach, i.e. only the boulder centre of mass is tracked (kinematic modelling). Therefore, 
the effects on trajectories of block size and shape are neglected (Ritchie 1963; Evans and 
Hungr 1993; Guzzetti et al. 2002; Agliardi and Crosta 2003; Dorren 2003; Lan et al. 2007). 
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Successively, the implementation of the kinematic simulations in a dynamic modelling is 
achieved considering a design block with a reference volume and mass.

For the assessment of model inputs the following assumptions were made: (1) start-
ing points were set at the bases of former detachment areas (Figs. 6, 8b); (2) two ini-
tial starting velocities [V0 = Cd√(2gH)] were distinguished considering detachments 
from two groups of rock escarpments with different maximum heights (H = 6 or 20 m 
in Fig. 8b, from DTM analysis); (3) possible impacts along non-vertical scarps were 
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considered by imposing the coefficient of damping Cd = 0.75 and then slightly reduc-
ing V0 along starting lines. Terrain classes were identified by interpretation of UAS-
derived images and field checks. Then, following a literature review, initial values of 
the elastic restitution coefficients (Kn and Kt) and dynamic friction angle (Φd) were 
assigned to each terrain class to account for the loss of energy during bouncing and 
rolling phases of motion (Table 1). 

Modelling calibration (through a back-analysis procedure) was focussed on setting 
different ranges of values for Kn, Kt and Φd parameters. Basically, the model was cali-
brated considering the blocks found on the Appia road and few others observed right 
above the roadside scarp. The thick arboreal vegetation prevented from distinguishing 
any blocks that stopped on the intermediate part of the slope. The few blocks visible 
downslope, at the bottom of the St. Andrea Valley, were ignored since they could have 
been transported or moved from their original position by flood events. The simulation 
process was repeated until modelling results matched the A-dataset (48 blocks corre-
sponding to 60% of the entire rock block inventory); the B-dataset, including 40% of 
the observed blocks (32 features), was instead kept aside during modelling and used 
later for validation (Fig. 8b).
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Table 1  Literature review of Kn, Kt and Φd values for terrain classes distinguished on the slope

K, undifferentiated values
Averaged values before calibration and final values after calibration (with percentage variations) are 
reported in bold and italics, respectively

Calcareous bedrock (CB) Arboreal vegetation (AV)

Kn Kt Φd Kn Kt Φd

Broili (1973) 0.75–0.80 (K)
Piteau and Clayton 

(1987)
0.65–0.75 0.8–0.9

Pfeiffer and Bowen 
(1989)

0.30–0.33 0.8–0.83

Giani (1992) 0.25
Budetta and Santo 

(1994)
0.20 0.53

Azzoni and de Frei-
tas (1995)

0.51–0.92 (K)

Azzoni et al. (1995) 0.75–0.90 (K) 0.40–0.45
Chau et al. (2002) 0.40–0.60 0.65–0.90
Agliardi and Crosta 

(2003)
0.35 0.65 0.55

Guzzetti et al. (2003) 0.65 0.80 0.30
Guzzetti et al. (2004) 0.65 0.75 0.25
Ferrari et al. (2013) 0.60 0.80 0.20 0.20 0.40 0.70
Average min/max 

values
0.573–0.674 0.744–0.811 0.287–0.30 0.275–0.282 0.616–0.626 0.625

Average (before 
calibration)

0.623 0.777 0.293 0.278 0.621 0.625

Average (after cali-
bration)

0.60 0.70 0.35 0.20 0.4 0.75

Variation (%) − 4.76% − 9.10% + 16.28% − 14.38% − 35.58% + 16.67%

Shrub-like vegetation (SV) Flagstone (FL)

Kn Kt Φd Kn Kt Φd

Pfeiffer and Bowen 
(1989)

0.30–0.33 0.83–0.87 0.37–0.42 0.87–0.92

Pfeiffer and Higgins 
(1990)

0.82–0.85 0.37–0.42 0.87–0.92

Azzoni et al. (1995) 0.75(K) 0.40–0.45
Agliardi and Crosta 

(2003)
0.33 0.75 0.50 0.45 0.7 0.6

Ferrari et al. (2013) 0.4 0.9 0.2
Average min/max 

values
0.315–0.33 0.80–0.823 0.50 0.468–0.488 0.818–0.838 0.400–0.417

Aver. (before cali-
bration)

0.315 0.812 0.50 0.478 0.828 0.408

Average (after cali-
bration)

0.38 0.60 0.60 0.40 0.68 0.50

Variation (%) + 17.10% − 26.10% + 16.67% − 16.32% − 17.87% + 18.4%



921Natural Hazards (2020) 102:909–937 

1 3

4  Results

4.1  Aerial photogrammetry

The topography setting of the St. Andrea slope-to-valley system, which was recon-
structed through a DEM surface derived from aerial photogrammetry, is characterized 
by 24 half-circle or wedge-shaped rock scars in the uppermost and middle portions of 
the carbonate ridge. After field checks, these scars were assumed to be source areas 
(detachment zones) of past rock fall events. Figure  6 shows how the identified areas 
cover almost the entire length of the upper escarpment. Instead, rock cuts in the lower-
most part of the slope, nearby the Appia route, were recognized as rock quarries by Di 
Luzio and Carfora (2018).

4.2  Structural analysis from field surveys and TLS‑UAS data elaboration

The results of field-based structural analysis are reported in Fig.  9 and Table  2. Recur-
ring and secondary joint sets can be distinguished, as well as differences in deformation 
patterns among structural domains. The joint sets J1, including NNE–SSW- to NE–SW-
oriented fractures, is present throughout the whole area, both in the FW ANT (sites S1–6; 
S8–10 in Fig. 8a) and the HW ANT (sites S11, S13, S14, S16, and S17) domains. The joint 
system J2, featuring NW–SE-oriented and NE-dipping, low- to medium-angle (20°–45°) 
discontinuities, characterizes the FW ANT, while it is absent in the HW ANT (apart sites 
S7, S11 and S18). A third recurring joint system, J6, is observed within the DZ or near 
the MF trace, at sites S4, S14–16. Secondary joint sets (J3, J4, J5 and J7) are distributed 
both in the FW ANT and HW ANT domains. Among all joint sets, J1 shows significant 
lengths and wider openings (Online Resource 1); locally, J1 fractures can be characterized 
as mega-joints cutting through the whole rock slope. Bedding (S0) is also reported as a 
mechanical discontinuity for all sites in Fig. 9. Within the DZ, data measured in the MF 
footwall or hanging wall are distinguished, and an anti-clockwise bedding rotation is evi-
denced in the first case (sites S12, S14–17).

Table  2 compares the results from field-based structural analysis with those obtained 
from TLS data elaboration on the entire length of the inaccessible area (Fig. 4b). Figure 10 
focuses on the southern sector of the same area, which is identified as site S19, and illus-
trates the results of the DSE analysis. TLS points located on joints with different orienta-
tions are plotted on the cloud by different colours and the spatial distribution of eight main 
joint sets (JA–JH) is reconstructed. Approximately 26% of the points fall on gently-dipping 
discrete surfaces belonging to JA, which can be identified with J2. The second prevailing 
joint system is JB (14,6%), which is recognized as J6. The J1 joint set is also present (JD, 
9.4%), and the other sets evidenced by field-based structural analysis can be found.

High-resolution images obtained from the UAS survey allowed overall views of the area 
and helped outline the structural setting. For instance the front view in Fig. 11a, showing 
part of the slope sector imaged in Fig. 10, evidences how the discontinuities belonging to 
set J1 can isolate rock pillars as high as the entire escarpment (20 m) and between 7 and 
8 m wide. Considering the entire thickness of the DZ associated with the MF (10 m) to 
infer the depth of the blocks, their volume would range between 700 and 800 m3. However, 
the UAS nadir image reported in Fig. 11b, c clearly shows that rock pillars are fragmented 
in smaller blocks due to significant rock mass disruption into the DZ.
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4.3  Kinematic analysis

Table 3 shows the results of the Markland analyses performed at sites S1–19. In the FW 
ANT domain, wedge sliding failure mechanisms are favoured by the geometric combina-
tion between the J1 and J2 joint sets (see Fig. 9, lower right box, site S3). Compatibility 
with wedge sliding is also assured by further joint combinations (J1, J3 and J5) or intersec-
tions between joint surfaces belonging to a single joint system. Toppling is also possible 
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Fig. 9  Lower hemisphere, equal angle projections for sites of structural analyses S1–S18. Legend: Ji, joint 
set; SL, slope orientation; S0 FW and S0 HW, bedding within the MF foot wall and hanging wall block, 
respectively; for other terms see previous figures. Lower right box: Markland analysis for wedge sliding and 
toppling failure mechanisms at sites S3, S11, respectively. Legend: FC, friction cone; LL, lateral limits
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and may develop on S0 and W-dipping fractures belonging to the J1 (site S8) and J6–J7 
sets (sites S4 and S5, respectively). Planar sliding is expected only at sites S4 and S8, 
where it may occur along east-dipping J1 discontinuities.

Due to the absence of J2 (Fig. 9), wedge failures are partially inhibited in the northern 
sector of the HW ANT (sites S12–17); such kind of failure can occur only at a few sites 
(S13, S16, and S17) due to the combination of other joint sets. In contrast J2 is documented 
within the core of the same HW ANT (sites S7, S11, S18) and indicated as the prevalent 
discontinuity system by DSE analysis (S19, Fig. 10; Table 2). Toppling in the HW ANT 
and within the DZ domain can be driven by failures along S0, J6 (Fig. 9, lower right box, 
S11) and, subordinately, J4. Joints and slope geometric attitudes are again unfavourable to 
planar sliding (apart at site S18 along J2 fractures).

Finally, Table 3 reports volume estimates for potential detachments at sites S1–18 and 
S19 for different failure mechanisms. Minimum and maximum values reflect correspond-
ing variations in joint spacing.

Table 2  Joint sets observed at sites S1–18 ad S19 and hypothesis of correspondence between field-based 
and TLS-aided structural analyses

Main planes were calculated separately for opposite dip directions in the same joint set
a Point percentage from point clouds

Field-based structural analysis (sites S1–18)
Set J1 J2 J3 J4 J5 J6 J7
Dip Direction (main 

plane)
N326/N142 N38 N170/N350 N201 N343/N163 N245 N272/N88

Dip 71/67 42 73/78 69 78/71 79 74/79
Semi-automatic 3D point clouds elaboration (site S19)
Set JA JB JC JD JE JF JG JH
Dip direction (Main 

plane)
N55 N235 N101 N307 N176 N298 N198 N277

Dip 41 76 83 85 81 39 41 86
Percentage (%)a 26.3% 14.6% 9.8% 9.4% 6.3% 3% 2.5% 2.5%
Correspondence J2 J6 J7 J1(~ S0) J3 (?) J4 J7

ingrandimento

0 30m

JA(J2)

JD(J1) 
JH(J7)

JE(J3)

JF(?)

 JC(J7)

JG(J4)

JOINT SETS
IDENTIFIED BY DSE

S0+J1
J1

SL

J3

M.F.

rock pillar 2 Figs.11a,b

rock pillar 1 Figs.11a,b

JB(J6)

N

Fig. 10  Front view of the virtual slope (from TLS data) after DSE analysis. A different colour was assigned 
to each joint set and used for cyclographs in the stereonet
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5  Rock fall modelling

The statistical sample of rock blocks detected on the ancient Appia route shows a 
bimodal volumetric distribution over a range spanning from 2  ×  10−3 to 1.75  m3 
(Fig. 12a), with a mean value of 0.343 m3. Before arresting, rock blocks propagate down 
a slope mainly covered by arboreal and shrub-like vegetation (AV and SV in Fig. 12b), 
with narrow outcrops of the calcareous bedrock (CB).

Graphical outputs of the kinematic modelling are presented in Fig. 13. The rock fall 
simulations were eventually accepted when 75% of inventoried rock blocks (A-dataset 
in Fig. 8b) were found to be located within a 2 m-wide buffer zone around accumulation 
areas (Fig. 13a). Buffering was imposed to account for the uncertainty in GPS localiza-
tions of rock blocks and their possible remobilizations from the original arrest points on 
the road track. Model validation was performed by comparing results with the B-dataset 
(Fig.  8b); adopting the same buffering rule, more than 70% of blocks resulted to be 
inside accumulation areas identified by modelling.

N

MF
det. 6
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rock pillar 1rock pillar 2
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(b)
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Fig. 11  a UAS image of the area investigated by TLS in Fig. 10, showing the J1 mega-joints, two rock pil-
lars and some detachment areas (dt. 6–8); b top view of the same area; c line-drawing of joints sets and S0 
into the DZ
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Table 1 reports both the initial (averaged from literature) and final (after calibration) 
values of Kn, Kt and Φd. Differences among values are < 20% except for AV and SV 
terrain classes which show a decrease in Kt values after calibration equal to 35.6% and 
26.1%, respectively.

A number of 3D trajectories equal to the products between starting points, initial 
velocities and falling directions were simulated (160 and 392 from 20 to 6  m high 
scarps, respectively). Basically, motions take place by rolling and show minimal 
diversions from the maximum slope direction (Fig.  13b). Rock blocks can reach the 
Appia route at different sections; the main concentrations are foreseen beneath source 
areas 6–8, 12–15 and 20–24 (Fig.  13a). A contour map of the specific kinetic energy 
(Ecin = 1/2v2) gained by dimensionless blocks along their paths is presented in Fig. 13c. 
Maximum values of 200–250 m2/s2 are reached in the central and north-western sectors 
by blocks detached from the highest escarpments (20  m).  Ecin values for escarpments 
with a lower height (6  m) do not exceed 150  m2/s2. The last model output illustrates 
the distribution map of the bouncing heights (Fig. 13d). Rebounds higher than 2 m can 
occur only for rock falls from 20 m-high escarpments. In these cases, blocks can reach 
the roadside scarp (Fig.  5a, c) with rebound heights ranging from 2 to 6  m. Higher 
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real-like vegetation; CB, calcareous bedrock; FL, flagstone; SV, shrub-like vegetation
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values (8–18 m) are referred to as blocks flying over the Appia retaining walls into the 
St. Andrea Valley.

6  Discussion

Localization of former source areas is of primary importance for rock fall modelling 
(Aksoy and Ercanoglu 2006; Copons and Vilaplana 2008; Vangeon et al. 2001; Guzzetti 
et al. 2003; Wieczorek et al. 2008). Despite the lack of historical records, 24 detachment 
areas were identified on the investigated slope (Figs.  6, 8b). From these areas rock fall 
simulations were run, with interactions between rock blocks and the slope being controlled 
by coefficients of normal and tangential restitution and the friction angle.

The last model simulation obtained after model calibration (Fig. 13) implies minor vari-
ations in initial dynamic parameters (Table 1). The only significant differences regard the 
reduced Kt values for the AV and SV slope classes after calibration; this result may be 
explained by admitting a significant role for vegetation in decreasing elastic energy during 
rebounds. Validation of modelling results by comparison with the B-dataset in the rock 
block inventory was satisfactory. Few rock block clusters north of detachment area 24 and 
in the southern sector, below detachment areas 1–4, seem inconsistent with the model 
results (Fig. 13a). In the first case, the presence of many rock blocks is imputed to the exca-
vation of rock quarries (see Fig. 6) for the supply of stone materials during the road con-
struction (Di Luzio and Carfora 2018), whereas falls from the roadside scarp (Figs. 5a–c) 
can be invoked to explain the other situation.

Upgrading from kinematic modelling of falling dimensionless blocks to a dynamic 
modelling for the design of countermeasures required the choice of a “design block” with 
a specific volume and mass (e.g. Pantelidis and Kokkalis 2011; Bourrier et al. 2015). This 
can be defined as the most likely or the largest block detaching from the rock slope. Shape 
and dimension of the design block depend on joint characteristics and the failure mecha-
nism prevailing within the rock mass, which on the slope overhanging the Appia route are 
both differentiated depending on deformation patterns originating during the T1–T4 tec-
tonic events (Fig. 14).

In the FW ANT domain and into the core of the HW ANT two main joint sets pre-
vail, i.e. J1 and J2 (Fig. 9). The first set is persistent throughout the area and is considered 
to be part of the brittle deformation linked to normal faulting (T4). Joint set J2 is found 
near thrust Th1 (S7, S11, S18) and—within the FW ANT—closer to thrust Th2 (S1–4 and 
S8–10); DSE analysis of TLS point cloud features J2 as the most relevant joint set in the 
core of the HW ANT (Fig. 10; Table 2). This significant evidence suggests that this joint 
set likely developed as a consequence of thrusting (T2). The geometric combination of J2 
and J1 favours wedge sliding failure mechanisms both in the FW ANT and the core of the 
HW ANT (Fig. 14a; Table 3). In contrast, the absence of J2 within the northern flank of 
the HW ANT (sites S12–17 in Fig. 9) made partially unfavourable the same kind of failure.

Therefore while wedge sliding and toppling mechanisms coexist in the FW ANT and 
the core of the HW ANT, toppling is prevalent in the rest of the HW ANT sector (Table 3). 
This last mechanism mainly develops along the joint sets related to the strike-slip event 
(T3), such as J6 (Fig. 14b, c) and J7 which are often counter-slope dipping.

Once failure mechanisms were acknowledged, volumes of potentially unstable rock 
blocks were estimated at sites S1–18 or calculated by DSE point cloud analysis at S19. 
From these values, different design blocks were inferred for the geological domains HW 
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ANT, HW ANT core and FW ANT, all in the order of a few cubic metres (Table 3). Before 
considering such an order of magnitude it was necessary to investigate the role played by 
a few mega-joints belonging to set J1 and having plurimetric lengths, large spacing and 
wide openings. Rock pillars 1 and 2 shown by UAS images in Fig. 11a are affected by a 
high degree of internal tectonic deformation which leads to a disruption of the rock mass 
(Fig. 11b, c). Therefore, it is unlike that a significant volume of rock (700–800 m3) can 
detach from the slope face. A more realistic hypothesis sees smaller blocks that gradually 
detach from the slope edge, thus generating the half-circle or wedge-shaped detachment 
areas recognized in Fig. 11a–c.

Downstream of all these considerations, in the southern sector of the FW ANT domain 
(sites S1–S4 and S8–S10 in Fig. 9; Table 3), wedge sliding failures from the rock slope 
may involve rock volumes between 0.1 and 3.3 m3, not very different from the values for 
events of toppling failures (0.8–3.0 m3). Then, a first design block DB1 with a volume of 
3.5 m3 was defined and assigned to detachment areas 1–5 (Figs. 6, 15). In the central sec-
tor, near Th1 and within the core of the HW ANT (sites S7, S11, S18 and S19), the rock 
escarpment is 20 m high due to the morphological signature of the MF (Fig. 11a) and top-
pling plays an important role in possible failures (Fig. 14b). A design block DB2 of 7 m3 
was assumed for detachment areas 6–9 (Figs.  6, 15), taking into account the maximum 
volume estimated from the point cloud analysis at S19 (6.7 m3). Slightly lower values were 
calculated again for toppling failure at site S11 (5. 8 m3) and for wedge failures at site S19 
(4.3 m3). In the northern part of the HW ANT domain (S12–S17), wedge sliding is absent 
or rare and may involve a very small volume of rock blocks detaching from the slope face 
(0.5–1.7 m3 in Table 3). Again, the maximum volume corresponds to the prevailing top-
pling mechanism, mainly acting along J6 fractures (parallel to the MF, Fig. 14c). Due to 
the reduced height of the tectonic-controlled escarpment along the northern tract of the MF 
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(Fig. 3), the design block has a lower magnitude than in the HW ANT core zone, equal to 
2.5 m3 (DB3). This value was assigned to detachment areas 10–24 (Fig. 15).

The choice of maximum volumes from Table 3 may imply an overestimate of the DB 
volumes with respect to the bimodal distribution of fallen rock block volumes as evidenced 
in Fig. 12a (0.75 or 0.15 m3). Significant fragmentation should occur during the downslope 
propagation, and it is reasonable to consider that a large part of this process takes place 
when fractured blocks reach the hard-stone pavement of the Appia route, after a rebound 
phase over the roadside scarp (Fig. 13b). Therefore, the volume distribution observed on 
the route was retained as not fully representative of the real dimensions of rock blocks 
potentially detaching from the main escarpment upslope. The choice for DB1–DB3 vol-
umes identified on the rock slope edge definitively ensures a greater degree of safety of the 
remediation plane. In addition, the distinction of a greater value for DB1 is consistent with 
a higher concentration of large blocks (0.25 < V < 1 m3 and 1 < V < 2 m3) in the central part 
of the route track (Fig. 8b).

Table  4 reports calculations to estimate the necessary absorption energy of the rock 
barrier that should be installed to protect the ancient Appia route. For each design block 
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Table 4  Estimate of barrier absorption energy for different design block volumes

A rock density δ = 2500 kg/m3 for the carbonate rock masses was considered
DB1–3, design blocks;  Ecinmax, maximum value of specific kinetic energy observed along the slope (see 
Fig. 13c)

V  (m3) Mass (kg) Weight (N) Ecinmax  (m2/s2) Energy (kJ) Barrier 
energy 
(kJ)

DB2 7 17,500 171,675 250 4375 5000
200 3500 5000

DB1 3.5 8750 85,837.5 150 1312.5 2000
100 875 1000

DB3 2.5 6250 61,312.5 200 1250 2000
100 625 1000
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DB1–DB3, the block mass (V·δ, with δ = 2500 kg/m3) was multiplied by different values 
of the specific kinetic energy  (m2/s2) (Fig. 13c). Then, the value of the absorption energy 
required for the rock block to be stopped was derived, ranging from 1000 to 5000 kJ. Dif-
ferent sizing (length, height, absorption energy) of the protection barrier was then evalu-
ated, and its positioning was planned considering rock fall trajectories (Fig. 13b), distribu-
tion of kinetic energy and bouncing height along the slope (Fig. 13c, d).

Figure 15 illustrates the 3D representation of the remediation project aimed at reducing 
the local geohazard determined by rock falls along the ancient Appia route. The absorp-
tion energy and height of each barrier were differentiated according to modelling results. 
Rock fall barriers are positioned very close to each other and in some cases with linear 
overlaps; this to avoid damage by events from unexpected source areas. The project should 
be arranged in the next few years to ensure the protection of the archaeological site and the 
safe fruition by visitors. However, the same remediation plan should be integrated with 
continuous monitoring and an adequate early warning system.

7  Conclusion

The Mesozoic carbonate rock slope that is crossed by the ancient Appia route track at the 
Aurunci Mountain pass is affected by rock falls, which represent a serious danger for the 
preservation and fruition of the archaeological site. The same rock slope shows a morpho-
tectonic inheritance with evidence of four tectonic phases, including Neogene folding and 
thrusting, undated strike-slip tectonics and Plio–Pleistocene normal faulting. Related brit-
tle deformation includes both persistent and scattered joint sets unequally distributed over 
the area.

The results of field-based structural analysis and remote sensing surveys (TLS and 
UAS) outline how distribution of joint sets along the slope influences the type of rock fail-
ure mechanism and size of falling blocks. Low-angle joint surfaces (J2) are concentrated 
near compressive structural features whereas high-angle and slope-parallel discontinuities 
(J6) gather along a deformation zone developed near a main strike-slip fault that has a clear 
morphogenetic role in the local landscape. The only persistent joint system in the area (J1) 
can be attributed to normal faulting, it is highly oblique to the slope direction and locally 
features extensive and wide-open discontinuities.

As a consequence of joint spatial variations, prevailing wedge sliding and toppling 
failure mechanisms can involve three different design blocks, one doubling the others in 
volumetric terms (7 m3, 3.5 m3, and 2.5 m3). Design block volumes were included in a 
probabilistic, kinematic modelling of the rock fall process. Model results were obtained 
after calibration by a back-analysis procedure and using an inventory of fallen rock blocks 
documented over the Appia flagstone as a main constraint. Finally, a remediation project 
was designed that should guarantee protection of the cultural heritage and visiting tourists 
through the placement of elastic barriers with absorption energy ranging between 1000 and 
5000 kJ.
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