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Strategic Performance of Deferred Acceptance in Dynamic 
Matching Problems†

By John Kennes, Daniel Monte, and Norovsambuu Tumennasan*

In dynamic matching problems, priorities often depend on  previous 
allocations and create opportunities for manipulations that are 
absent in static problems. In the dynamic school choice problem, 
students can manipulate the period-by-period deferred acceptance 
(DA) mechanism. With a commonly used restriction on the schools’ 
priorities, manipulation vanishes as the number of agents increases, 
but without it the mechanism can be manipulated, even in large 
 economies. We also check manipulation in large finite economies 
through a novel computer algorithm, which can check every possible 
manipulation by examining all the different matchings that a single 
player can induce. (JEL C78, I21, I28)

This paper proposes a market design solution to dynamic matching problems. 
Many important assignment markets are inherently dynamic because some 

agents repeatedly participate in the assignment process. A few notable examples are 
the following: the problem of allocating children to public day care centers, where 
the same child is assigned to day care centers in consequent periods; the centralized 
assignment of teachers to public schools, and on-campus housing assignments.1, 2 
In practice, even the school choice problem has dynamic features: Families with 
multiple children participate in the assignment of schools several times.3

An important feature present in many dynamic markets is that the priori-
ties of one side of the market is history-dependent. For example, in both the day 

1 See Kennes, Monte, and Tumennasan (2014) for detailed information on the current Danish daycare system, 
Pereyra (2013) for dynamic teacher assignment, and Kurino (2014) for dynamic housing assignment. 

2 Indeed, there is a myriad of examples of dynamic matching. In addition to those listed above, one can think 
of the allocation process in the Army, the allocation of public sector workers among different offices, and the 
 allocation of diplomats in different embassies. 

3 See Dur (2011) for school choice with siblings. 
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care  assignment and the teacher assignment problems a child or teacher cannot 
be  involuntarily  displaced from a school to which she is currently assigned. This 
 history dependence creates opportunities for manipulations that are absent in static 
problems. An agent might misreport her preferences to affect the priority ranking 
and to receive a  better allocation in the future. This opportunity for manipulations 
implies that results in dynamic-market design are mostly negative. Kennes, Monte, 
and Tumennasan (2014) proved an impossibility result: There does not exist any 
mechanism that is both stable and strategy-proof. This leaves open the important 
market design  question of how to operate such markets.

Our model is a school choice problem in which children live for two periods 
and schools are infinitely lived. We assume throughout the paper that preferences 
are rankable, in the sense that they are separable over time and consistent across 
periods.4 We consider two commonly used classes of priorities of schools over 
 children in the paper, and show that they capture two strikingly different aspects of 
the problem. First, we consider a class of strict priorities that are history-dependent 
only through Guaranteed Continued Enrollment—that is, a student who has been 
allocated to a school will have the highest priority in that school. We say that this 
class of  priorities satisfies independence of previous assignment since priorities do 
not change at schools in which the agent was not assigned to. Second, we consider 
a class of priorities in which, additionally to the guaranteed continued enrollment, 
there is a second channel in which past allocations affect current priorities. Namely, 
an agent can have a higher priority at some schools if she stays home in the first 
period. This is motivated by the assignment system of young children to public day 
care centers in Denmark, which is one of the practical dynamic matching problems 
we have in mind. In the Danish system, it is often the case that a day care  institution 
gives high priority to a child who was eligible to participate in the assignment 
 system in the previous period, but nevertheless was not allocated to any day care— 
this child receives a higher priority than those who attended any day care institution 
other than the one in question. This rule is denoted “child care guarantee.” Thus, for 
lack of a better label, we denote this priority system as Danish priorities.

Our paper studies the strategic performance of the period-by-period deferred 
acceptance (DA) mechanism in dynamic markets under these two priority  systems. 
The DA has played a prominent role in the school choice problem—the static 
 problem most closely related to ours. Our results show that the way  priorities are 
 dynamically updated according to previous matchings are of paramount  importance 
for the  strategic performance of the DA in large economies. We provide two sets 
of results under the two priority systems (i) we prove that under independence 
of  previous assignment the DA is approximately strategy-proof in large  markets, 
whereas it remains manipulable under Danish priorities, and (ii) we provide 
 computer simulations to show that finite markets with similar size to markets in 
common applications are very rarely manipulable under independence of previous 
assignment, but remain manipulable under Danish priorities.

4 This does not exclude the possibility of switching costs or status quo biases. Rankability is similar to 
 responsiveness (see Roth and Sotomayor 1990). Without rankability, it can be shown that a stable matching might 
not exist in dynamic markets. 
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The positive results of the strategic performance of DA under independence of 
previous assignment justify the use of this mechanism and priority system in our 
environment. There is a wide range of markets that might benefit from this  positive 
result. The most natural application is the assignment of young children to day 
care centers, and the day care system is public and centralized in most European 
 countries and many other places. Another natural application of our results is on the 
problem of assigning teachers to public schools.

To better understand the intuition behind these two contrasting results, obtained 
under the two different priority systems, let us illustrate their main features using the 
two examples below. In both examples we assume that children live for two periods 
and that schools have unit capacity.

Example 1 (Priorities: Guaranteed Continued Enrollment): David is born 
in period 0, Ana and Bob are born in period 1, while Chris is born in period 2. 
There are three schools,   s 1   ,   s 2    , and   s 3   . David’s favorite school is   s 1    and   s 1    gives 
David the  highest priority among all four children. Thus, David will be allocated 
to   s 1    in period 1. Let us assume that preferences over the different pairs of schools 
(one school per period) for Ana, Bob, and Chris are (partially) represented by the 
 following table:

   
Ana:

  
 s 1  

  
≻

  
 s 2  

  
≻

  
 s 3  

    Bob:   s 3    ≻   s 1    ≻   s 2      
Chris:

  
 s 3  

  
≻

  
 s 1  

  
≻

  
 s 2  

   .

The information in the table is a partial representation of the preferences of the stu-
dents. For example, Ana’s preferences are such that she would prefer to be  allocated 
in   s 1    for both periods than to be allocated in   s 2    for both periods, which in turn is 
better than being placed in   s 3    for both periods. Let us also assume that she would 
prefer to be allocated to   s 3    and   s 1    instead of   s 2    for both periods (this  information is 
not in the table). Bob and Chris have identical preferences and they rank   s 3    as the 
best school, followed by   s 1   , and only then by   s 2    . This is the only information we will 
need for the purpose of this example. The schools’ priorities for incoming students 
are such that Ana is the preferred student at schools   s 2    and   s 3    , while Chris is the 
preferred student at school   s 1    and is ranked higher than Bob at schools   s 2    and   s 3    . 
We represent the priorities below:

   
 s 1  :

  
Chris

  
⊳

  
Ana

  
⊳

  
Bob

     s 2  :  Ana  ⊳  Chris  ⊳  Bob    
 s 3  :

  
Ana

  
⊳

  
Chris

  
⊳

  
Bob

  

We also assume that priorities in a given period depend on the previous  allocation 
only through Guaranteed Continued Enrollment; a student placed in any given 
school will have the highest priority in that school in the subsequent period. In a 
static DA mechanism, Ana and Bob would report the following preferences in the 
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first period   s 1   ≻  s 2   ≻  s 3    and   s 3   ≻  s 1   ≻  s 2    , respectively. Using DA, we can see 
that Ana will be placed at   s 2   , while Bob is placed at   s 3    . In the following period, 
Ana and Bob repeat their reports and Chris reports   s 3   ≻  s 1   ≻  s 2    . Given that Bob 
was allocated at   s 3    , Guaranteed Continued Enrollment implies that he will have 
the  highest priority in that school, and will remain there. Ana will be placed at   s 2    
and Chris at   s 1    . This describes the final outcome under truth-telling of this simple 
 economy. Suppose that Ana, instead of reporting   s 1   ≻  s 2   ≻  s 3    in the first period, 
reports   s 1   ≻  s 3   ≻  s 2    . She will be placed at   s 3    and Bob will go to   s 2    . In the second 
period, Ana reports her truthful preferences   s 1   ≻  s 2   ≻  s 3    . Ana’s final allocation 
is  ( s 3  ,  s 1  )  to which she prefers when compared to her allocation under truth-telling: 
  ( s 2  ,  s 2  ) .

In the example above, adapted from Kennes, Monte, and Tumennasan (2014), 
Ana gained from not telling the truth about what we denote, for now, as her static 
preferences. That is, in period 1 she reported   s 3    as a better school than   s 2    , which is 
not true. This triggered a sequence of events. Bob was not able to get to his best 
school and instead went to   s 2    . Because of this, in period 2, Bob and Chris competed 
for school   s 3    and Chris had a higher priority. This leaves school   s 1    free for Ana to 
come. Note that when Ana reports her true static preference, Bob is allocated to   s 3    
and due to Guaranteed Continued Enrollment, he has a higher priority than Chris 
in period 2, so Chris has to go to his second best school,   s 1    , forcing Ana back to 
school   s 2    . The mechanism is manipulable, in the sense that reporting their true static 
 preference is not a weakly dominant strategy.5

Let us now look at a second example, which incorporates Danish priorities.

Example 2 (Danish Priorities): Camilla is born in period 0, Anna is born in 
period 1, and Bo is born in period 2. There are two schools:   s 1    and   s 2    . Camilla has 
the highest priority in school   s 1    , her favorite one. Let  h  represent the option of stay-
ing home. Anna’s preference profile can be partially represented by

  Anna: ( s 1   ,  s 1   ) ≻ ( s 2   ,  s 1   ) ≻ (h,  s 1   ) ≻ ( s 2   ,  s 2   ) ≻ (h,  s 2   ) ≻ (h, h ) .

Bo prefers   s 1    over   s 2    . The priorities assigned to the schools are such that Bo has a 
higher priority than  Anna  in any school. However, priorities might change depending 
on previous allocation. They might change due to guaranteed continued enrollment, 
or if a student stayed home in the previous period. Specifically, every student will 
have the highest priority in the school they were allocated in the previous period, 
and they will have the highest priority among newcomers in any given school if 
they were eligible for school in the previous period but were not allocated to any 
school in the system. With this priority system, if Anna reports truthfully, she will be 
allocated to   (s 2   ,  s 2   )  . In the second period she competes with Bo for a spot at   s 1    , but 

5 Indeed this incentive for manipulation is present for another celebrated mechanism, the Top-Trading Cycles. 
In fact, a stronger result is proved in Monte and Tumennasan (2015), the only mechanism that is Pareto efficient, 
non-bossy, and strategy-proof is the sequential dictatorship. 
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Bo has a higher priority. If, instead, Anna reports home as being preferred to   s 2    she 
will be allocated to  h  in the first period and will have a higher priority than Bo in the 
second period, so her final allocation will be  (h,  s 1   )  , which she prefers over  ( s 2  ,  s 2  ) .

The example above captures the fact that manipulating under Danish 
 priorities does not have to lead to a chain of events, and in this sense it is  easier 
than  manipulating the mechanism under independence of previous assignment. 
In  contrast to Example 1, here Anna simply stays home and this gives her a higher 
priority in her favorite school in period 2.

In our large market session, the growth of the market we consider here is the 
same as the one in Azevedo and Leshno (2016): the set of agents along with the 
capacities of the schools (not the set of schools) increases. Under this growth 
dynamic we identify the conditions for the implementation of the DA mechanism as 
the  number of participants increases. We show that if each schools’ priorities over 
agents depend on the previous history only through previously enrolled agents—the 
condition that also guarantees the stability of the DA mechanism (Kennes, Monte, 
and Tumennasan 2014) —then the DA mechanism is approximately strategy-proof 
in large markets. Specifically, in Theorem 4, we show that the fraction of agents 
who may have incentives to misreport their preferences when all other participants 
are reporting truthfully approaches zero as the market size tends to infinity.

On the other hand, if the deferred acceptance mechanism is applied 
 period-by-period  in a market with Danish priorities, the system remains 
 manipulable  even in large markets. One intuition for these strikingly different 
results is the  following. The DA is known to be strategy-proof in static problems, 
thus, given that preferences are rankable, a successful manipulation must imply 
an improvement in the second-year allocation (at the cost of a weakly worse 
 first-year allocation). In order to improve her second-year allocation, the agent must  
 manipulate her report in the first year in such a way that priorities for the 
 second period change to benefit her. If the priority system is such that the only 
 history-dependence is through guaranteed continued enrollment, the agent cannot 
change her own  priority at a school other than the one she attends in her first period. 
Thus, a  successful manipulation must mean that she was able to change other 
agents’ priorities at schools. As the market gets large, changing her report does not 
help her to affect the threshold priorities of the schools. On the other hand, Danish 
priorities implies that an agent can change her priority at different schools simply by 
a  unilateral move, that is, by staying home. This move does not depend on the size 
of the market. Thus, these contrasting results highlight the fact that our large market 
result is not simply a consequence of the fact that the agent is too small, but rather it 
is dependent on the specific priority system in place.

We then proceed through simulations to show how often agents have an  incentive 
to manipulate the DA mechanism under the two priority systems that we study. 
There is, however, a significant computational complexity. To illustrate, consider a 
market with 30 schools. In this market, any given agent has a strategy set of  30   ! ele-
ments (more than   10   32   elements). Thus, checking each possible manipulation is not 
a feasible task. In static marriage problems it is well-known that to evaluate whether 
an agent, say a woman, has an incentive to manipulate the men-proposing DA mech-
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anism it suffices to check the truncation strategies— those in which the woman only 
reduces her acceptable matches without rearranging her preference ranks of the 
men. It turns out, however, that sometimes agents in dynamic matching markets can 
manipulate the DA mechanism only by rearranging their preference ranking of the 
schools. Therefore, truncating or dropping strategies are not sufficient to identify 
whether the DA mechanism is manipulable in certain markets.

To overcome this computational problem, we construct a new algorithm. We first 
note that any two-year old student should reveal her true preferences because the 
DA mechanism is strategy-proof in static settings. In addition, if a one-year-old 
agent can manipulate the DA successfully by submitting a particular preference 
report, then all the preference reports that lead to the same matching must also be 
a beneficial manipulation for the agent. It turns out that in a typical market, there is 
only a limited number of matchings produced by the DA mechanism when an agent 
varies her preference reports. We use this result in the construction of our algorithm. 
Specifically, in each round our algorithm finds the DA matching corresponding to 
some report of a given one-year agent and disregards (nearly) all the preference 
reports that lead to the same DA matching. With our algorithm, we can significantly 
reduce the computational complexity of spanning every possible matching that a 
single agent can induce: to illustrate, we provide an example in which there are over 
39 million strategy profiles that an agent might submit. Checking each such profile 
is infeasible, but our algorithm checks only 20 reports.

Using the algorithm described above, which we believe is of independent  interest, 
we estimate the percentage of the markets in which a given agent can  successfully 
manipulate the DA mechanism based on randomly generated data. We again  consider 
the two priority systems. Furthermore, in order to capture the fact that schools  differ 
in quality, we allow the preferences to be correlated. Under  priorities  satisfying 
 guaranteed continued enrollment, the manipulation percentage is 0.99  percent 
when there are hundred schools with the capacity of one. This  percentage drops to 
0.08 percent if each school’s capacity increases to 20. Therefore, the manipulation 
percentage of the DA mechanism quickly converges to zero if the priorities satisfy 
IPA. On the other hand, under Danish priorities, the manipulation percentages are 
31.4 percent to 37.73 percent, respectively, when there are hundred schools with 
capacities of 1 and 20.

Our paper is related both to the literature on dynamic matching as well as the 
 literature on matching in large markets. Kurino (2014), Pereyra (2013), Dur (2011), 
and Kennes, Monte, and Tumennasan (2014) study the centralized  matching when 
the set of agents evolve in the overlapping generations fashion. Kurino (2014) focuses 
on the house allocation problem. Pereyra (2013) shows that the DA  mechanism 
is stable and strategy-proof under seniority based priorities and  time-invariant 
 preferences. Dur (2011) studies the dynamic school choice problem faced by fam-
ilies with multiple children. Kennes, Monte, and Tumennasan (2014) considers the 
problem of allocating children to day care centers where each child attends day 
care centers in multiple periods and participating children evolve in the overlap-
ping generations fashion. Both Dur (2011) and Kennes, Monte, and Tumennasan 
(2014) show that (i) the DA mechanism results in a stable matching and (ii) no 
mechanism is both stable and strategy-proof. The key reason for their impossibility 
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results is that they consider a broader class of schools’ priorities than the seniority 
based ones, due to the applications considered in these papers. Bloch and Cantala’s 
(2013) dynamic matching problem is similar to ours, but they focus on the long-run 
 properties of different assignment rules. Ünver (2010) studies the kidney exchange 
problem  considering a dynamic environment in which the pool of agents evolves 
over time. Compte and Jehiel (2008) has a static model, but with a condition similar 
to our guaranteed continued enrollment.

We use the concept of stability for dynamic environments that was introduced 
by Kennes, Monte, and Tumennasan (2014). Other authors have proposed different 
stability notions, see, for example, Kurino (2008, 2009), Damiano and Lam (2005), 
Doval (2015), and Kadam and Kotowski (2018).

Our paper is also related to the literature on large matching markets, for which 
there is a broad recent literature.6 In static matching settings, Che and Kojima (2010) 
and Azevedo and Leshno (2016) consider the dynamics of the market size growth we 
study here: a large number of agents matched to a finite number of objects. Che and 
Kojima (2010) shows that the probabilistic serial dictatorship mechanism becomes 
strategy-proof as the number of agents along with the copies of the objects tend to 
infinity. Azevedo and Leshno (2016) considers the convergence of stable matchings 
in many-to-one matching settings as the market size increases, and they show that in 
a wide class of markets the stable matchings converge to a matching that is a unique 
stable matching in the continuum economy. We use some of Azevedo and Leshno’s 
(2016) results extensively, but our paper differs from theirs in two major aspects: 
(i) our focus is the manipulation of the DA while theirs is stability in large or con-
tinuum economies, and (ii) we study dynamic environments while they concentrate 
on a static setting.

The paper is organized as follows. In Section I, we provide the model and the 
main definitions. In Section II, we describe a version of the deferred acceptance 
 mechanism from Kennes, Monte, and Tumennasan (2014). In Section III, we 
 examine the main properties of the mechanism in small economies. Section IV 
contains the results for an economy with a continuum of agents. In Section V, we 
prove our main convergence result. In Section VI, we provide our algorithm to check 
whether an agent can manipulate the DA mechanism, and we present our simulation 
results on the manipulability of the DA. The longer proofs are in the Appendix.

I. Model

Time  t  is discrete and  t = 1, …, ∞  . There is a finite number of infinitely lived 
schools.7 Let  S = { h,  s 1  , …,  s m   }  be the set of schools as well as the option of  
staying home,  h . Let  r =  (  r    s  ) s∈S    be the vector of capacities, with   r    s  ∈ 핅  . 

6 See Peranson and Roth (1999); Immorlica and Mahdian (2005); Kojima and Pathak (2009); Manea (2009); 
Che and Kojima (2010); Kojima and Manea (2010); Kojima, Pathak, and Roth (2013); Liu and Pycia (2016); 
Azevedo and Leshno (2016); Che and Tercieux (2018); Abdulkadiroğlu, Che, and Yasuda (2015); Azevedo and 
Hatfield (2013); Lee (2017); and Azevedo and Budish (forthcoming).

7 Equivalently, one could think of daycare centers instead of schools, as in Kennes, Monte, and Tumennasan’s 
(2014) prototypical application. 
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We  assume that each school other than home has a finite capacity,   r    s  < ∞  ,  
for all  s ≠ h , whereas home does not have a capacity constraint, that is,   r    h  = ∞ .8

Each agent can attend school when she is one and two years old.9 If an agent 
attends schools  s  and  s′  when she is 1 and 2, respectively, then we write  (s, s′  )  to 
denote this.

An agent  i  is one year old in period   t i    and has a strict preference relation   ≻ i    over 
the set of possible pairs of schools. She is initially endowed with a priority score 
vector,   x i   =  (  x   i  

s  ) s∈S   ∈  [0, 1)   m+1   . We represent each agent  i  as a triplet  (  t i   ,  ≻ i   ,  x i   )  
and write that  i = (  t i   ,  ≻ i   ,  x i   ) .

At period  t ≥ 1  , a finite set of one-year-old agents   I t    arrives, i.e.,  i ∈  I t    if and 
only if   t i   = t . We use the notation   I 0    to denote the set of the agents who are two 
in period 1. Consequently, at any period  t ≥ 1,  the set of school-age agents is  
  I t−1   ∪  I t    . The set of school-age agents evolves over time in an “overlapping 
 generations” (OLG) fashion. Let  I =  ( I t   )  t=0  

∞    . With slight abuse of language, an 
economy is said to be finite if there is a finite number of agents in each period. Thus, 
a finite economy  E = ( I, r, X )  specifies a finite set of agents per cohort,  I  , a vector 
of capacities,  r,  and a priority updating rule,  X  , which will be defined later. We now 
define the matching in our setting.10

DEFINITION 1 (Matching): A period-0 matching   μ 0    is a correspondence  
  μ 0   :  I 0   ∪ S →  I 0   ∪ S  such that   μ 0   (i ) = { h}  for all  i ∈  I 0    ,   μ  0   (h) =  I 0    and   
μ  0   (s) = ∅  for all  s ≠ h  .

A period-t matching at any  t ≥ 1  ,   μ t    , is a correspondence  
  μ t   :  I t−1   ∪  I t   ∪ S →  I t−1   ∪  I t   ∪ S  such that:

 (i ) for all  i ∈  I t−1   ∪  I t    ,   |  μ t   (i ) |  = 1 , and   μ t   (i ) ⊂ S ;

 (ii ) for all  s ∈ S  ,   |  μ t   (s) |   ≤  r    s  , and   μ t   (s) ⊂  I t−1   ∪  I t    ;
11

 (iii ) for all  i ∈  I t−1   ∪  I t    ,  i ∈  μ t   (s)  if and only if  s ∈  μ t   (i ) .

A matching  μ  is a collection of period matchings:  μ =  (  μ t   )  t=1  
∞    .

With slight abuse of notation, denote by   μ t   (i )  the school to which agent  i  is 
matched under   μ t    . We use the notation  μ(i )  to denote the pair of schools that  i  is 

8 While we assume throughout the paper that capacities are fixed, our results are robust to increasing capacities 
over time (but not to decreasing ones).

9 In the school choice setting with siblings, this assumption is equivalent to the one in which each family has two 
children. Incorporating families with one child into the model is straightforward (Dur 2011); in each period there is 
a set of agents who participate in the allocation process only once.

10 Our definition of matching only specifies matchings that are observed. Other authors, including Kurino 
(2008) and Doval (2015), focus on full contingent plan of assignments.

11 It can be that   μ t   (s) = ∅  for some school  s . In such cases, no agent attends  s  at period  t  .
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matched with under matching  μ : μ(i ) =  ( μ  t i     (i ),  μ  t i  +1   (i ))  . Let    t    be the set of 
period  t  matchings.

From the definition above, observe that in period 0, every agent stays home, i.e., 
the schools start their operation at period 1. As a  consequence of this assumption, all 
matchings we consider have a  common period 0 matching in which all school-age 
agents are matched with  h  .12

Agents’ Preferences.— Each agent  i  has strict preferences,   ≻ i     . We write  
 ( s, s′ )  ⪰ i   ( s – ,  s – ′ )  if either  (s, s′ )  ≻ i   ( s – ,  s – ′ )  or  (s, s′  ) = ( s – ,  s – ′ )  . We impose some 
 restrictions on agents’ preferences. First, we assume that each agent has an 
 underlying ranking over schools (not the pairs of schools) that stays stable over 
time.13 Consequently, if a school  s  is superior to another school  s′  , then it must be 
that  (s, s)  ≻ i   (s′, s′ )  . In addition, there is no complementarity from attending two 
different schools, but there could be from attending the same school for two  periods. 
Specifically, attending an inferior school  s′  in one period and a different school  
s″  in the other eligible period is always worse than attending a superior school  s  
and school  s″  . On the other hand, attending  s′  for two periods may be better than 
 attending the superior school  s  in one period and  s′  in the other eligible period. This 
latter scenario could be due to switching costs. We collect these assumptions below.

ASSUMPTION 1 (Rankability): If  ( s, s )  ≻ i   ( s′, s′ )  for some  i  ,  s , and  s  ′  , then  
 (s, s″ )  ≻ i   (s′, s″ )  and  (s″, s)  ≻ i   (s″, s′ )  for any  s″ ≠ s′  . Let    be the set of 
 preferences  satisfying Assumption 1.

Now let us define a stronger version of the rankability assumption which rules 
out the possibility that attending an inferior school for two periods is better than 
 attending this school for one period and a superior school in the other eligible period.

DEFINITION 2 (Strong Rankability): If  (s, s)  ≻ i   (s′, s′ )  for some  i  ,  s , and  s′ , then  
(s, s″ )  ≻ i   (s′, s″ )  and  (s″, s)  ≻ i   (s″, s′ )  for any  s″  .

The strong rankability assumption means that the switching costs are not too 
large. We remark here that the sole purpose of the strong rankability assumption is 
to simplify the presentation of some of our examples, i.e., none of our theoretical 
results rely on this stronger assumption.

When defining the preferences, we are following a more general axiomatic 
approach. Before proceeding further, let us give an example that illustrates a 
 parametric approach.

12 We can relax this restriction so that a period 0 matching is defined similarly to the other period matchings. 
Given that we interpret period 0 as the period that occurred right before the start of our model, period 0 matching 
cannot be altered. Thus, all matchings must have a common period 0 matching, which is one of the primitives of 
the model. With the modified definition of a period 0 matching, all the results except those in Section V go through. 
In footnote 25, we will present an additional assumption that guarantees the validity of results in Section V. 

13 In the school choice with siblings setting this means that two children of the same household have the same 
preferences of schools. 
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Example 3 (Parametric Utility Function): Suppose that by attending school  s  for 
one period, child  i  benefits   u i   ( s ) > 0 , which does not depend on the child’s age. 
Each child weights the periods by  (1 − δ ) > 0  in the period when she is born,   
t i    and  δ > 0  , when she is in the market for the second time. Note that the case 
where  δ < 1  is the typical time-discounting framework if we normalize period 1 
and  consider a discount rate  β =   δ ____ 

1 − δ    . Moreover, child  i  incurs a switching cost 
of   c i   > 0,  that is, a cost incurred only if there was a change in the school from 
period  t  to period  t + 1 . Finally, the utility of child  i  attending schools  s  and  s′  at her 
 respective ages of 1 and 2 is

   U i   (s, s′ ) =  { 
(1 − δ )  u i   ( s ) + δ  u i   ( s′  ) −  c i    

if s ≠ s′ and s ≠ h
     

(1 − δ )  u i   ( s ) + δ  u i   ( s′ )
  

otherwise
    .

Clearly, these underlying preferences for the children satisfy Assumption 1 and 
 furthermore, they satisfy strong rankability as well if the cost   c i    of a school to school 
change is sufficiently small.

Schools’ Priorities and Priority Updating Rules. —We previously mentioned that 
each agent  i  is endowed with a priority score vector   x i    . This priority score vector will 
be used to determine the agent’s priority in each school in the period that this agent 
is one year old, i.e., in period   t i    . It is fixed at the agent’s birth year, but may change 
in the following period when the schools’ priorities are history-dependent, which 
we will assume. If an agent  i  has a priority score vector   x i    and an agent  j  , born in the 
same period has a priority score vector given by   x j    , with   x  i  

s  >  x  j  
s   , for some  s ∈ S  , 

we have that agent  i  has a higher priority in period   t i    than agent  j  at school  s .14

ASSUMPTION 2 (Strict Priorities): For any two agents  i, j  in   I t−1   ∪  I t    ,   x  i  
s  ≠  x  j  

s   
for all  s ∈ S .

Given the dynamic nature of our problem, we will consider the case in which the 
priority score of agent  i  at period   t i   + 1  depends on the previous period’s matching. 
We consider only two specific channels through which the priority vector of an 
agent may change over time. This is motivated by natural applications of dynamic 
matching problems, such as the centralized assignment of young children to public 
day care centers, the assignment of teachers to public schools, and when there is 
priority for incumbent students and their siblings in the school choice problem.

The two priority updating rules that we consider are: (i) the schools give the 
 highest priorities to their previously enrolled agents and this is the only way in which 
priorities change over time; and (ii) additionally to giving highest  priority to their 
 previous attendees, schools also give high priority to agents who were not enrolled 
in any school in the previous period despite their eligibility. The high  priority to 

14 We should note that in many applications priorities are coarse and a tie-breaking rule is constructed to 
 determine the priority ordering of the students. The assumptions in this paper imply that the same tie-breaking rule 
is used across periods. 
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 previously enrolled agents is a feature present in many real-life  applications. Given 
the importance of this restriction for many different systems and on its  natural  
appeal, i.e., agents will not be forced out of a school, we will  maintain this 
 assumption  throughout our paper. That is, both priority systems that we consider 
satisfy this  condition. The second priority system satisfies both  channels, where the 
second channel is motivated by a concept of the assignment of young children to day 
care centers in Denmark, called guaranteed spot. We return to this in Assumption 3b.

To formally incorporate the history-dependence of priorities in our model, we 
define the priority score function, or priority updating rule, of each agent  i  at some 
school  s  as a mapping   X  i  

s  :    t i  −1   ∪    t i     → [0, 2] , such that   X  i  
s  (  μ  t i  −1   ) =  x  i  

s   for all   
μ  t i  −1   ∈    t i  −1    . This means that if a period-  t  matching was   μ t   ∈   t    , then at period  
t + 1  the priority score of a school-age agent  i  at school  s  is   X  i  

s  (  μ t   ) .15 If  i  was born 
in period  t + 1  , then her priority score at school  s  must be   X  i  

s  (  μ t   ) =  x  i  
s   , which is 

exogenously determined.
For a given matching   μ t   ∈   t    , we denote the priority score vector of  s  at 

period  t + 1  by   X   s  (  μ t   ) ≡  (  X  i  
s  (  μ t   )) i∈ I t  ∪ I t+1      and school-age agent  i ’s priority scores 

at all schools by   X i   (  μ t   ) ≡  (  X  i  
s  (  μ t   )) s∈S    . We will maintain the following assumption 

throughout the paper.

ASSUMPTION 3 (Gauranteed Continued Enrollment): Each agent’s priority score 
function at any school  s  for which  i ∈  μ  t i     (s)  satisfies

   X  i  
s   (  μ  t i     )  >  X  j  

s  (  μ  t i     ) , ∀ j ∉  μ  t i    (s). 

This assumption states that an agent who is matched to a school  s  when she is one 
year old will have the highest priority score at that school in the subsequent year. 
In addition, the agent’s priority score at any other school remains the same unless 
she was matched to that school at the age of one.

The first class of economies that we consider are such that the priority score 
 function is history-dependent only through the guaranteed continued enrollment. 
When this is the case, we will say that the priority system satisfies independence of 
past attendances, or simply IPA.

ASSUMPTION 3a (Independence of Past Attendances (IPA)): Each agent’s  priority 
score function at any school  s  satisfies that

   X  i  
s  (  μ  t i     )  =  { 

2
  

if i ∈  μ  t i     (s)   
 x  i  

s 
  

otherwise
     

for all   μ  t i     ∈  M  t i      .

15 Moving forward it is convenient to have one notation that expresses the priority scores of both one- 
and  two-year-old agents. 
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Here, observe that the attendees of any school  s  at some period  t  will have the 
same priority score of 2 at the school in the following period, where note that  
 2 >  x  i  

s  ∀ i, s .16

In the current Danish day care assignment system IPA is not satisfied; if an older 
child who has not attended any day care previously asks for a guaranteed spot then 
at some day care she is given a priority over all the children who have attended 
some day care previously, as well as some younger children who are participating 
in the assignment process for the first time.17 The current rule does not spell out for 
which day care this older child gets a priority.18 Due to incompleteness of this rule, 
we  cannot accurately define the current Danish priority system. However, given its 
 practical importance we would like to examine this feature of the  current Danish 
 priority system closely when we study the incentives to manipulate the deferred 
acceptance mechanism. Consequently, we will consider throughout the paper a 
 second priority system in which each school assigns a higher priority to  two-year-old 
children who have not attended any school in the previous period over one-year-old 
children and over two-year-old children who previously attended a school other than 
the one in question.19 That is, we maintain the guaranteed continued enrollment, 
but also add the feature that children who have not attended any school have higher 
priority over other children who attended some school.

ASSUMPTION 3b (Failure of IPA: Danish Priorities): A priority scoring system is 
Danish if each agent’s priority score function at each school  s  satisfies the following 
condition:

   X  i  
s   (  μ  t i     )  =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

2

  

if i ∈  μ  t i     (s)
   1 +  x  i  

s   if i ∈  μ  t i     (h)   

 x  i  
s 

  

otherwise

    

for all   μ  t i     ∈  M  t i      .

In the Danish priority scoring system an agent who stays at home when she 
is young will have a priority score of  1 +  x  i  

s   at school  s  in the following period. 
Consequently, by staying home at age one, an agent jumps ahead of almost all 
agents (except the school’s previous period’s attendees) in the priority ranking of 
any school at age two. However, observe here that the relative rankings of those who 
stay home when they are age one do not change.

16 This assumption, as we will see later, does not cause any problem running the version of the deferred 
 acceptance algorithm used in this paper—note that given Assumption 2, we will never have the problem that there 
are more students with the same score at a school than the school’s capacity. 

17 Children who have special needs (due to disability or due to a foreign language spoken at home) or who have 
siblings at a specific daycare always have higher priority over the children who ask for a guaranteed spot. 

18 Officials in charge of the assignments decide this on a case-by-case basis. 
19 This assumption is stronger than what is actually done in practice, however, it illustrates the issue well. 
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It is important to note that a priority system might satisfy Assumption  3a 
or Assumption  3b, but not both. Also note that both Assumptions  3a and  3b 
respect the guaranteed continued enrollment assumption.

Threshold Scores.—For a given matching  μ , let the period- t  threshold score of 
school  s  corresponding to  μ  be   p  t  

s   such that

   p  t  
s  =  { 

0
  

if  |  μ t   (s)|  <  r    s 
    

 inf i∈ μ t  (s)    X  i  
s  (  μ t−1   )

  
otherwise

  .  

Observe here that the threshold score of  h  corresponding to any matching is always 
0 because  h  does not have any capacity restriction. We use the following notations:   
p t   =  (  p  t  

s  ) s∈S    and  p =  (  p t   )  t=1  
∞    .

II. Mechanism and the Deferred Acceptance

A mechanism (for finite economies) is a systematic process that assigns a 
 matching for each finite economy. We use the notation  φ  to denote a typical mech-
anism for finite economies. Let   φ i   (E )  be the pair of schools to which agent  i  is 
matched under  φ . For each mechanism, there is an associated preference revelation 
game. If no agent has incentives to misrepresent her preferences in this game, then 
we say the mechanism is strategy-proof. Below we state the formal definition.

DEFINITION 3 (Strategy-Proofness): We say that a mechanism  φ  is manipulable 
(individually) at a finite economy  E  if there exists an economy  E′ = (I′, r, X ),  and 
an agent  i ∈ I  , such that:

 (i )  E′  differs from  E  only in agent  i ’s preference ordering (i.e.,   ≻ i   ≠  ≻  i  ′    and   
≻ j   =  ≻  j  ′    , for all  j ≠ i  ). and

 (ii )   φ i   (E′ )  ≻ i    φ i   (E )  .

A mechanism  φ  is strategy-proof if it is not manipulable for any finite economy.

The DA is widely used in school choice problems, so it is natural to ask how it 
performs in a dynamic matching problem. A first technical difficulty is that the DA 
is framed as each agent reporting her preference profile ranking the schools—not 
the pairs of schools. Since our goal is to study the DA, as it is known and used in 
practice, we will present a version of the DA for multiple periods (which is a DA 
period-by-period).

Before we define this mechanism in detail, let us present a concept that we will 
call isolated preferences (Kennes, Monte, and Tumennasan 2014).20

20 Consider period  t ≥ 1  , and suppose that the period matchings up until this period are assigned. Let us now 
assume that the agents who are eligible to attend school in this period are asked to rank the schools (not pairs 
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DEFINITION 4 (Isolated Preference Relation): For any given period  t ≥ 1  , and 
for a given matching   μ t−1    , the isolated preference relation of period  t  ,   P i   (  μ t−1  )  is a 
binary relation satisfying:

 (i )  ∀ i ∈  I t  : s  P i   (  μ t−1   ) s′  if and only if  (s, s)   ≻ i   (s′, s′ )  for any  s, s′ ∈ S ;

 (ii )  ∀ i ∈  I t−1  :   s  P i   (  μ t−1   ) s′  if and only if  (  μ t−1   (i ) , s)  ≻ i   (  μ t−1   (i ), s′ )   
for any  s, s′ ∈ S .

We here note that in any period the isolated preferences of one-year-old 
agents do not depend on the preceding period’s matching. Let  P(  μ t−1   )  be the 
 collection of isolated preferences for the school-age agents in period  t  , i.e.,  
 P(  μ t−1   ) ≡  (  P i   (  μ t−1   )) i∈ I t−1  ∪ I t      . In addition, the notation    denotes the set of all 
 possible isolated preferences. We will usually write   P i    instead of   P i   (  μ t−1   )  as long as 
doing so does not create confusion.

We note here that if an agent’s preferences are strongly rankable, then her 
 isolated preferences will be the same regardless of her age or the previous period’s 
matching.

The period-by-period Gale and Shapley deferred acceptance mechanism will 
utilize the isolated preferences. Kennes, Monte, and Tumennasan (2014) consider 
this mechanism and denote it by Deferred Acceptance Mechanism using Isolated 
Preferences (DA-IP). In this mechanism agents report their full preference profile 
and the mechanism constructs the isolated preferences. (Alternatively one could 
define it as a mechanism in which the school-age agents in any given period report 
their isolated preferences over schools knowing their previous period’s matchings). 
Formally, the DA-IP mechanism associates each economy with the matching that is 
the result of the DA-IP algorithm, which we define below.

Fix a finite economy  E  . Because this paper revolves around the DA-IP  
mechanism, we reserve the notation  η  for the matching that is the result of the 
DA-IP algorithm. Recall that for all matchings, every agent stays home in period 0. 
Thus, every agent is assigned  h  at   η 0    . The DA-IP algorithm determines period-1 
DA-IP matching   η 1    using   η 0    . Once the period-1 DA-IP matching is determined, 
the  algorithm uses this matching to determine the period-2 DA-IP matching   η 2    , 
and it does so for every subsequent period. The period-1 DA-IP matching is found 
by  running the following algorithm in finite rounds (in essence, the well-known 
deferred acceptance algorithm).

Period-1 Assignment:  Set the isolated preferences for each school-age agent  i  in 
this period to   P i   (  η 0   ) . In addition, set the priority score vector of each school  s  in 
this period to   X   s  (  η 0   )  .

of schools). Given the motivations for the rankability assumption, perhaps any one-year-old agent  i  would rank  s  
over   s ′    if and only if  s  is superior to   s ′    , i.e., if and only if  (s, s)  ≻ i   (s′, s′ ) . A two year old, on the other hand, would 
rank  s  over  s′  if and only if  (  μ t   (i ), s)  ≻ i   (  μ t   (i ), s′ ) , given that she knows her match in the previous period. This is 
the motivation behind the concept of isolated preferences. 
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Round 1: Each school-age agent of period 1 applies to her most preferred school 
according to her isolated preferences (   P i   (  η 0   )  in this case). Each school  s  then 
“holds” the   r s    applicants with the highest priority score (according to   X   s  (  η 0    )  in this 
case) and rejects all others.

In general, at:

Round k : each agent whose application was rejected in the previous round applies 
to her most preferred school (according to her isolated preferences,   P i   ( η 0  ) ) that has 
not rejected her. Each school  s  considers the pool of applicants composed of the new 
applicants and the agents whom  s  has been holding from the previous round. Each 
school  s  then “holds” the   r s    agents in the pool who have the highest priority score 
(according to   X   s  ( η 0   )  in this case) and rejects all others.

The algorithm terminates when no proposal is rejected and each agent is assigned 
her final tentative assignment. This final matching is   η 1   .

Period-2 Assignment: Set the isolated preferences of each school-age  i  in this 
period to   P i   (  η 1   )  and the priority score vector of each school  s  in this period to  
  X   s  (  η 1   )  . Now using the algorithm described above, we can find the period-2 DA-IP 
matching   η  2    .

Period- t  Assignment: Set the isolated preferences of each school-age  i  in this 
period to   P i   ( η t−1   )  and the priority score vector of each school  s  in this period to  
  X   s  (  η t−1   ) . Now using the algorithm described above, we can find the period- t   
DA-IP matching   η t    .

As we mentioned at the outset of this paper, stability is a key reason why the DA 
plays a prominent role in the static school choice problem. In fact, its adoption in 
dynamic settings—DA-IP—also turns out to be stable as long as the priorities sat-
isfy IPA (Theorem 1 of Kennes, Monte, and Tumennasan 2014).21

Many real-life mechanisms allow agents to submit different reports in different 
periods. For instance, in the Danish day care system, any agent who is enrolled at a 
day care currently can submit a new ranking over day cares. The same is true for the 
teacher allocation problems. Observe that the DA-IP can handle such cases because 
it runs on a period-by-period basis. Consequently, we can allow agents to report two 
preference reports in different periods.22 Then the period DA-IP mechanisms only 
consider the reports of that period. For those who are reporting truthfully, reporting 

21 We are considering here the stability notion introduced by Kennes, Monte, and Tumennasan (2014)  
that  captures justified envyness in a dynamic environment, where priorities are changing over time as a function of 
previous allocations. Other definitions prior to ours include Kurino’s (2008) notion of dynamic  pairwise-stability, 
Damiano and Lam’s (2005) self-sustaining stability, and, more recently, Doval (2018) and Kadam and  
Kotowski (2018) also provide their own definition of dynamic stability.

22 Both or one of them can be replaced by isolated preference reports. We believe that a two-year-old ranking 
schools is not controversial because she knows her match of the previous period. In this sense, the ranking is the 
isolated preferences for two-year-olds. We believe that the isolated preferences are natural rankings over schools 
even for one-year-olds. 
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the preference once or twice does not matter. However, reporting one’s preferences 
twice of course creates new possibilities of manipulation. For our theoretical results, 
whether we allow one or two preference reports makes no difference. However, 
they do for simulation results. The numbers we report correspond to the situation in 
which the agents report their preferences twice.

III. Manipulation in Small Economies

It is well known that in static settings, the agent proposing DA mechanism is 
strategy-proof. In contrast, Kennes, Monte, and Tumennasan (2014) show that in 
dynamic environments the DA-IP mechanism is not strategy-proof,23 i.e., in some 
small economies an agent finds it profitable to misrepresent her preferences (when 
everyone else reports her preferences truthfully).

THEOREM 1 (DA-IP is Manipulable): The DA-IP mechanism is not strategy proof.

In the introduction we presented an example (Example  1) in which an agent 
manipulates her report and is assigned to a worse school in the first period, but to 
a better school in the second period. Overall her payoff improved. This example is 
enough to prove the theorem above. Below we present another example ( different 
from Example  1 and from the one that Kennes, Monte, and Tumennasan 2014 
use in their proof of the impossibility result) to show that there is also a class of 
 manipulations in which agents do not have to get worse off in their first period in 
order to manipulate the DA-IP, i.e., a manipulating agent gets to be assigned to the 
same school that she would get assigned under truth-telling. This, of course, follows 
from the fact that the DA is bossy.

Example 4 (Manipulation under Assumption 3a): Consider the following 
 economy  E  with five schools   s 1  ,  s 2  ,  s 3  ,  s 4    , and   s 5    , and six agents,   i 1   ,  i 2   ,  i 3   ,  i 4   ,  i 5    ,  
and   i 6    . Each school has a capacity of one agent and suppose that   I 0   = {  i 1  ,  i 2   }  ,   
I 1   = {  i 3  ,  i 4  ,  i 5   }  ,   I 2   = {  i 6   }  .

Each agent’s preferences are strongly rankable, and the agents’ isolated 
 preferences are as follows:
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 s 5  

  

 

  

 s 2  

   .

23 Their result is even stronger: no stable and strategy-proof mechanism exists. 
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The priority scores of the agents are presented below, where each line shows how 
each different school ranks the different students:

   

 x   i 1    
 s 1    >  x   i 6    

 s 1    >  x   i 3    
 s 1    >  x   i 4    

 s 1    >  x   i 5    
 s 1    >  x   i 2    

 s 1   

    

 x   i 2    
 s 2    >  x   i 4    

 s 2    >  x   i 1    
 s 2    >  x   i 3    

 s 2    >  x   i 5    
 s 2    >  x   i 6    

 s 2   

     x   i 6    
 s 3    >  x   i 4    

 s 3    >  x   i 3    
 s 3    >  x   i 5    

 s 3    >  x   i 1    
 s 3    >  x   i 2    

 s 3       

 x   i 6    
 s 4    >  x   i 5    

 s 4    >  x   i 3    
 s 4    >  x   i 4    

 s 4    >  x   i 1    
 s 4    >  x   i 2    

 s 4   

    

 x   i 3    
 s 5    >  x   i 5    

 s 5    >  x   i 4    
 s 5    >  x   i 2    

 s 5    >  x   i 1    
 s 5    >  x   i 6    

 s 5   

   .

Let   E ′    be an economy which differs from  E  only in agent   i 3   ’s preferences, which 
are still strongly rankable and given by

    i 3   :   s 1     s 3     s 5     .

The DA-IP matchings in economies  E  and  E′  are given

    

 

  

Economy E

    
Period 1

  
 ( 

 i 1    
 i 2    

 i 3    
 i 4    

 i 5    
–
    s 1  

   s 2  
   s 5  

   s 4  
   s 3  

  – ) 
    

Period 2

  

 ( 
–

  
–
  

 i 3    
 i 4    

 i 5    
 i 6     –  –   s 5  

   s 4  
   s 3  

   s 1  
 ) 

      

 

  

Economy E′

    
Period 1

  
 ( 

 i 1    
 i 2    

 i 3    
 i 4    

 i 5    
–
    s 1  

   s 2  
   s 5  

   s 3  
   s 4  

  – ) 
    

Period 2

  

 ( 
–
  

–
  

 i 3    
 i 4    

 i 5    
 i 6     –  –   s 1  

   s 2  
   s 3  

   s 4  
 ) 

    .

Thus, agent   i 3    has an incentive to manipulate the DA-IP mechanism at economy  E .  
Interestingly, agent   i 3    still gets to match with school   s 5    in period 1 but gets to match 
with a better school,   s 1  ,  in period 2.

In the above example, agent   i 3    manipulates the DA-IP successfully by ranking   s 3    
ahead of   s 5    , and there is no other preference report that improves   i 3    over truth telling. 
In particular, there is a bossy manipulation, but no nonbossy manipulation. Agents 
must alter the relative ranking of the schools in order to successfully manipulate the 
DA-IP mechanism.

Observe from the Examples 1 and 4 that at her successful  manipulation the agent 
does not get better when she is age 1 but gets better when she is age 2. This turns out 
to be a general phenomenon as shown in Lemma 1.

LEMMA 1: If an agent  i  can successfully manipulate the DA-IP mechanism in 
a finite economy  E  , then  i  cannot be born in period 0. In addition, if the DA-IP 
 matchings in economy  E  and at  i ’s successful manipulation are  η  and   η ˆ   ,respectively, 
then the following conditions must be satisfied:

(1)  (   η ˆ    t i  +1  (i ),   η ˆ    t i  +1  (i ))  ≻ i   (  η  t i  +1  (i ),  η  t i  +1  (i ) )  ⪰ i   (  η  t i     (i ),  η  t i     (i ) )  ⪰ i   (   η ˆ    t i     (i ),   η ˆ    t i     (i )). 
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PROOF: 
See Appendix C.
This lemma shows that to manipulate the DA-IP mechanism successfully, one will 

have to accept a weakly worse allocation when she is young in order to improve her 
future assignment. This is indeed true even in the Danish priority system for which 
IPA is violated. However, there is an essential difference in the information required 
for manipulation. Recall that Example 2 in the introduction presented an example 
of a system with the Danish priority structure in which the DA-IP is manipulated.

Examples 1 and 4, on one hand, and Example 2, on the other hand, suggest that 
successful manipulations for different priority systems differ in terms of required 
“sophistication.” In Example 2, the Danish system, the agent could manipulate 
 simply by staying home when she is young; by doing that, she jumps ahead of almost 
everyone in the priorities of all schools. This is a relatively  simple  manipulation as 
it only involves one action, which is staying home when young—which  ultimately 
improves the agent’s priority score relative to the scores of  others. On the other 
hand, manipulating the DA-IP mechanism in systems  satisfying IPA is rather 
 difficult. To  see this let us return to Example 4. When agent   i 3     misreports her 
preferences, the agent who was matched to school   s 1    in period  t + 1  under truth 
telling (in our case   i 6    ) will still have priority over   i 3    at school   s 1    . In other words, 
agent   i 3   ’s priority score at   s 1    does not improve at all no matter what she does. This 
means that agent   i 3   ’s manipulation must benefit agent   i 6    so that she never applies 
to school   s 1   . This, of course, is possible in the example we  considered, but the 
agent must be rather sophisticated to see through all of these possible effects of 
her manipulation.

IV. School Assignment with a Continuum of Agents

In this section, we study the school assignment problem when there is a 
finite  number of schools and a continuum of agents. Recall that throughout 
the paper we will assume guaranteed continued enrollment (Assumption 3). 
We will  compare the strategic performance of the DA-IP under the different 
 priority structures  considered in the previous section, namely Assumptions 3a 
and 3b. An economy with a  continuum of agents provides a clean environment 
to obtain two  important  results for our paper: (i) that under IPA the DA-IP is 
 non-manipulable in the continuum economy, and that (ii) under Danish priorities 
the DA-IP remains manipulable even in a continuum economy. Given the positive 
result of the DA-IP implementation in a continuum economy under IPA, we study 
in the next section the convergence of large markets to a continuum market; and 
in Section VI, we provide simulation results to study large, but finite markets, and 
again we compare the strategic  performance of the DA-IP under the to different 
priority structures.

To study the continuum economy in a dynamic environment we borrow some of 
the notation from Azevedo and Leshno (2016) and adapt some of their results to 
our dynamic environment. In this part, we again assume that each agent is endowed 
with a strict preference ordering over the schools and a vector of threshold scores  x . 
The set of schools is finite, but we assume that the set of agents born in each period  
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t  ,    I 
–
  t   = t ×  ×  [0, 1)   m+1   , is a continuum mass of students, where recall    is the 

set of strict preference orderings satisfying rankability. The set of children is thus  
  I 
–
  =  ∪  t=0  

∞     I 
–
  t   = ℕ ×  ×  [0, 1)   m+1  . Let   ν –    be a measure on   I 

–
  . We assume that the 

 distribution of the children born in each period is identical, i.e., for any  t ≠ τ  ,    J 
–
  t   ⊆   I 

–
  t    

and    J 
–
  τ   ⊆   I 

–
  τ   , such that child  (t, ≻, x) ∈   J 

–
  t    if and only if child  (τ, ≻, x) ∈   J 

–
  τ     , we 

have that   ν –  (   J 
–
  t   ) =  ν –  (   J 

–
  τ   ) . One can relax this assumption without affecting the main 

results of the paper, but the notation will be considerably more complicated. Let   
r –    be the vector of capacities. A continuum economy is   F 

–
  = ( ν –  ,  r –  ,  X 

–
  )  , with   X 

–
    being 

the score updating rule, as before. For simplicity, we assume that   ν –  (  I t   ) = 1  , for all  
t ≥ 0 . We will maintain the following assumption throughout the paper.

ASSUMPTION 4 (Strict Priorities): For any school  s ∈ S  , the measure of agents 
born in the same period who have the same priority at this school is 0, i.e.,  
  ν –   ({i :  t i   = t and  x  i  

s  = e})  = 0  for any  t ≥ 0  and  ∀ e ∈ [0, 1)  .

The assumption above immediately implies that the measure of each agent is 0, 
i.e.,   ν –  ({ i }) = 0 .

We are now ready to present the definition of matching which, as in finite 
 economies, is a collection of period matchings. The definition of a period 
 matching is the same one that Azevedo and Leshno (2016) use in static continuum 
economies.

DEFINITION 5 (Matching): A period-0 matching    μ –   0    is a function  
   μ –   0   :   I 

–
  0   ∪ S →   I 

–
  0   ∪ S , such that  |   μ –   0   (i )| = 1  and    μ –   0   (i ) = {h}  , for all 

 i ∈  I 0    ,    μ –   0   (h) =  I 0    and    μ –   0   (s) = ∅  , for all  s ≠ h .

A period matching in period  t ≥ 1  ,    μ –   t    , is a  function  
   μ –     t  :   I –  t   ∪   I 

–
  t−1   ∪ S →   I 

–
  t   ∪   I 

–
  t−1   ∪ S  such that:

 (i ) for all  i ∈   I 
–
  t−1   ∪   I 

–
  t    ,   |  μ –   t   (i )|  = 1  and    μ –   t   (i ) ∈ S ;

 (ii )  for all  s ∈ S  ,   ν –   (  I –  t−1   ∩   μ –   t   (s))  +  ν –   (  I –  t   ∩   μ –   t   (s))  ≤   r –    s   and    μ –   t   (s) ⊂   I 
–
  t−1   ∪   I 

–
  t   ;

 (iii )  for all  i ∈   I 
–
  t−1   ∪   I 

–
  t    ,  i ∈   μ –   t   (s)  if and only if  s =   μ –   t   (i) .

 (iv)  Each period- t  matching is right continuous, i.e., for any sequence of agents  

  { i   k }  =  { (τ, ≻,  x   k ) }   where  τ = t − 1, t  converging to  i = (τ, ≻, x)  , we can 

find some large  K  such that    μ –   t   ( i   k  ) =   μ –   t   (i )  for all  k > K .

 A matching   μ –    is a collection of period matchings:   μ –   = (   μ –   0   ,   μ –   1   , …,   μ –   t   , …) .

Requirement (iv) rules out a multiplicity of stable matchings that  differ 
only by sets of measure zero. As in the finite economy case, we assume 
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that in period 0  everyone stays home. We use the following notations:  
  ν –   (   μ –   t   (s))  ≡  ν –   (   I –  t−1   ∩   μ –   t   (s))  +  ν –   (   I –  t   ∩   μ –   t   (s))   and   μ –  (i ) ≡  (   μ –    t i     (i ),   μ –    t i  +1   (i ))  .

Now that we have defined matching in continuum economies, we can define the 
isolated preferences (   P 

–
   i   (   μ –   t   ) ), priority score functions (   X 

–
    i  
s  (  μ –  ) ),  threshold scores  

(    p –     s  (  μ –  ) ), and mechanism (   φ –    ) for continuum economies as we did in finite  economies. 
Furthermore, all the assumptions and notions used in finite economies such as IPA, 
the Danish priority system, stability,  manipulability, and  strategy-proofness are 
 analogously defined for continuum economies.

The DA-IP Mechanism in Continuum Economies. —The DA-IP mechanism for 
continuum economies associates each continuum economy with the matching that 
is the result of the DA-IP algorithm, which we define below.

Fix a continuum economy   F 
–
  . We reserve the notation   η –    for the matching which is 

the result of the DA-IP algorithm. By the definition of matching, it must be that    η –   0    
matches each agent in    I 

–
  0    to  h . Now the period-1 DA-IP matching    η –   1    is found by 

running the following algorithm:24

Set the isolated preferences for each school-age agent  i  in this period to    P 
–
   i   (  η 0   )  . 

In addition, set the priority score vector of each school  s  in this period to    X 
–
     s  (  η 0   )  .

Round 1: Each school-age agent of period 1 applies to her most preferred school 
according to her isolated preferences (   P 

–
   i   (   η –   0   )  in the case of period 1). For each school  

s  , let    p –    1  
s1   be the minimum priority score such that the measure of the  applicants to  s  

with priority scores (   X 
–
    i  
s  (   η –   0   )  in the case of period 1) weakly higher than    p –    1  

s1   does not 
exceed the capacity of school  s  ,    r –    s  . School  s  rejects all the applicants whose priority 
score is strictly below    p –    1  

s1   and “holds” the others.

In general, at:

Round k: Each agent who was rejected in the previous round applies to her 
next choice school according to her isolated preferences (   P 

–
   i   (   η –   0   )  in the case of 

period 1). Each school  s  considers the pool of agents that consist of applicants 
it has been  holding and the current applicants. For each school  s  , let    p –    1  

sk   be the 
minimum  priority score such that the measure of the agents in the pool of  s  with 
priority scores (weakly) higher than    p –    1  

sk   does not exceed the capacity of school  
s  ,    r –    s  . School  s  rejects those in the pool whose priority score is strictly below    p –    1  

sk   
and “holds” the others.

The algorithm terminates when no proposal is rejected and each agent is assigned 
her final tentative assignment. Let    p –   1   =   ( lim k→∞     p –    1  

sk )  s∈S    , which is the period-1 
threshold vector associated with the DA-IP.

In period 2, the schools’ priority scores are updated based on the period-1 DA-IP 
matching,    η –   1   . In addition, all the school-age agents in this period report their isolated 
preferences based on the period-1 DA-IP  matching,    η –   1   . Now using the algorithm 

24 The algorithm converges, even though it may require infinite rounds (see Azevedo and Leshno 2016). 
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described above, we find the period-2 DA-IP matching,    η –   2    . Let    p –   1    be the threshold 
vector corresponding to period 1 DA-IP matching.

In each period  t ≥ 2 , we can run the DA-IP algorithm described above recur-
sively based on the preceding period’s DA-IP matching. Let    p –   t    be the threshold 
vector corresponding to period- t  DA-IP matching. Also let   p –   =  (   p –   t   )  t=0  

∞    .
The DA-IP mechanism yields a unique matching in each economy.25

A. Strategic Performance of the DA-IP in Continuum Economies

In this section we compare the strategic performance of the DA-IP under the 
two priority systems, IPA and Danish. We show that the DA-IP is strategy-proof 
under IPA, but is manipulable under Danish priorities. The main intuition here is 
that no student alone can modify, by manipulating her preferences, the threshold 
scores in the second period. That is, the threshold score vector is immune to single 
deviations in an environment in which each student has measure zero.26 Therefore, 
if priorities satisfy IPA, an agent that manipulates her preferences will receive a 
weakly worse allocation in her first period (since the DA is strategy-proof in a 
static  environment) without being able to affect the threshold score in the second 
period, thus, essentially retaining the same options that she would have without 
manipulating. We explore this positive result further in the next section for finite 
large economies. In contrast, if priorities are Danish the DA-IP is manipulable. 
This happens since agents can affect their own priority score in the second period 
that they participate.

THEOREM 2 (IPA: Strategy-Proofness of the DA-IP): If the  priority  system  satisfies 
IPA, then the DA-IP mechanism is strategy-proof in continuum economies.

PROOF: 
Suppose that agent  i  can manipulate the DA-IP mechanism in some continuum 

economy   F 
–
  . At the manipulation, let agent  i  misreport her preferences as   ≻  i  ′   ≠  ≻ i    .  

Let the economy that results from  i ’s misreporting be   F 
–
 ′ . Let   η –    and   η –  ′  be the DA-IP 

matchings in   F 
–
   and   F 

–
 ′ , respectively. Let the threshold scores corresponding to the   

η –    and   η –  ′  be  p  and   
_

 p ′  , respectively. Since the two economies differ in only agent  i ’s 
preferences and given that the measure of each agent is 0, we have that

   
_

 p  =  p –  ′. 

Since  i  can manipulate the DA-IP mechanism at   F 
–
   , similar to Lemma  1,  

we obtain that

   (  η –     t i  +1  ′   (i ),   η –     t i  +1  ′   (i ))   ≻ i    (  η –    t i  +1   (i ),   η –    t i  +1   (i ))   ⪰ i    (  η –    t i     (i ),   η –    t i     (i ))   ⪰ i    (  η –     t i    ′   (i ),   η 
–     t i    ′   (i )) . 

25 This result is a straightforward adaptation of the proof by Azevedo and Leshno (2016, theorem 1). 
26 Azevedo and Leshno (2016) notes that small changes in the measure  η  (or in the capacity of each school) can 

affect the threshold priority score vector significantly. However, note that a zero-measure agent is not able to affect 
the threshold scores through unilateral deviations. 
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Set  s ≡   η –     t i  +1  ′   (i ) . The relation above means that  i  is not matched to  s  in period   t i    
at both matchings   η –    and   η –  ′ . Consequently, it must be that    X 

–
    i  
s  (  η –    t i    )  =   X 

–
    i  
s   (  

_
 η    t i    ′   )  =  x  i  

s   .  
However,  i  is matched to  s  in period   t i   + 1  at   η –  ′  but not at   η –   . In other words,  
   X 
–
    i  
s   (  η –     t i    ′  )  =  x  i  

s  ≥   p –     t i  +1   ′   s     but    X 
–
    i  
s  (  η –    t i    )  =  x  i  

s  <   p –     t i  +1  
s    . However, these two inequalities 

contradict that    p –     t i  +1   ′   s    =   p –     t i  +1  
s   . ∎

In the theorem above, we assumed that the schools’ priorities satisfy IPA. For the 
Danish priority system, the theorem above no longer holds. An agent’s  preference 
report can place her at the top of the priority ranking of a school in the subsequent 
period, provided that she reports this school as her top choice followed by home 
care. Under the Danish priority system, an agent can change her standing in the 
schools’ priorities of the subsequent period.

THEOREM 3 (Danish Priorities: Manipulation of the DA-IP): If the priority  system 
satisfies Danish priorities, then the DA-IP mechanism is manipulable in some 
 continuum economies.

PROOF: 
Consider an economy in which the threshold score at some school  s  

 corresponding to the DA-IP matching is   p –    with    p –    t  
s  > 0  ,    p –    t+1  

s   > 0  and  t ≥ 1  . 
Consider an agent  i  who was born in period  t  , and whose preferences  satisfy the 
following two  conditions: (i)  (s, s)  is the most preferred bundle, and (ii)  (h, s)  
≻ i   (s′, s″ )  for all  s′ ≠ s  and  s″ ≠ s . In addition, suppose that   x i   < min  {    p –    t  

s ,   p –    t+1  
s   }  . 

Clearly, agent  i  does not attend  s  by reporting her preferences truthfully. However, 
if she reports  s  as her first choice and  h  as her second choice, then she will stay 
home when she is one but attends  s  when she is two. Thus agent  i  has a profitable  
manipulation. ∎

The theorem above implies that there are some economies in which a positive 
mass of agents may be able to each independently manipulate the DA-IP mechanism 
for this economy.

V. Large Markets and Convergence

Given the positive result of the strategic performance of the DA-IP in 
 continuum  economies under IPA, and the important policy implications of this 
result, in this section we study this strategic performance in large but finite 
 economies. Consider a finite economy  E = (I, r, X ) . We now define the measure 
for each finite economy  E  based on its empirical distribution. Specifically, the 
measure of each agent  i  is   ν ̃  ({ i }) = 1/  |  I 0   |  . On the other hand, let the capacities 
of the schools be   r ̃   = r / |  I 0   |  . Using this empirical distribution, we will denote 
finite economies in a similar  fashion to continuum economies. Specifically, 
let us  redefine the finite economies by denoting   F ̃   = ( ν ̃  ,  r ̃  , X )  the finite  
economy  E . With this notation we can define the convergence of finite economies 
to a  continuum economy.
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DEFINITION 6: A sequence of finite economies   E   k   converges to a continuum 
 economy   F 

–
   if the sequence of economies    F ̃     k  =  (  ν ̃     k ,   r ̃     k , X )   corresponding to   E   k    

satisfies the following two conditions:

 (i)    ν ̃     k   converges to   ν –    in weak* topology;

 (ii)    r ̃     k   converges to   r –   in supremum norm.

Here observe that if   E   k   converges to   F 
–
   , then the ratio of the size of agents born in 

any period  t  to the size of the agents born in  t − 1  converges to 1.
In this section, we assume the following assumption in order to ensure the con-

vergence of the stable matchings when the finite economies converge to a contin-
uum economy.

ASSUMPTION 5 (Market Thickness): Consider any continuum economy   F 
–
  . Then 

for any  t ≥ 0  , any isolated preferences   P 
–
   ∈   

–
    and any  x ≪ x′ ≪ 1  ,

   ν –    ( {i :  t i   = t,   P 
–
   i   =  P 

–
  , and x ≤  x i   ≤ x′} )  > 0. 

The assumption above means that the market is thick in the sense that the 
 distribution of types is continuous. This assumption guarantees the uniqueness of 
stable matchings in continuum economies. We emphasize that the distribution of 
types does not have to be the same across periods, so the market might be very 
 different from one period to another.

We now consider what happens to the DA-IP matchings when the sequence of 
economies converges to a continuum economy. To study this, we first define the 
distance between two DA-IP matchings (Azevedo and Leshno 2016). Let  η  and   η –    be 
the DA-IP matchings of a continuum economy  F  and of a finite economy  E . The 
period  t  distance between   η –    and  η  are as follows:

   d t   (η,  η –  ) = ∥  p t   −   p –   t    ∥ ∞   . 

Let  d(η,  η –  ) =   ( d t   (η,  η –  ))   t=0  
∞    .

Now that the distance between two DA-IP matchings are defined, we can con-
sider the convergence of the DA-IP matchings when the sequence of finite econo-
mies converges to a continuum economy.

DEFINITION 7: A sequence of DA-IP matchings,   { η   k }   , in economies   { E   k }   
 converges to   η –    if

    lim  
k→∞

    d t    ( η   k ,  η –  )  = 0 for all t ≥ 1. 

Now we are ready to present the convergence result of the DA-IP matchings as 
the sequence of finite economies converges to a continuum economy.
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PROPOSITION 1:  If a sequence of finite economies   E   k   converges to a continuum 
economy   F 

–
   , then the sequence of DA-IP matchings   { η   k }   converges to   η –    .

PROOF: 
See Appendix C.
We are now finally ready to study how the incentives to manipulate the DA-IP 

mechanism change as the market size grows. For a finite economy  E  , let us define   
L t    as the set of the agents born in period  t  who benefits by manipulating the DA-IP 
mechanism in this economy. In the following theorem, we show that as finite 
 economies converge to a continuum economy, the fraction of the agents who can 
manipulate in finite economies converges to zero.

THEOREM 4: If a sequence of finite economies satisfying IPA,   { E   k }   , converges to 

a continuum economy   F 
–
   , then   { | L  t  

k | / | I  t  k | }  → 0  for each  t ≥ 1 .

PROOF: 
See Appendix C.
The main idea of the theorem above is the following: in Lemma 1 we showed 

that to manipulate the DA-IP mechanism an agent must weakly get worse at her 
first period, but better in her second period. However, in order to improve her 
allocation in the second period, she must either lower the threshold scores of the 
schools, or improve her own score at some school that she was not able to attend 
in her first period. Due to IPA, the latter is not possible: she can only improve her 
own score at a school that she attends. Thus, we investigate how likely it is that she 
might change the threshold score of the schools. As the economy grows, this agent 
becomes a very small part of the economy, and at some point her manipulation 
will have a negligible impact on the threshold scores because these are converging 
to a fixed value, due to Proposition 1. Thus, if an agent can manipulate the DA-IP 
 mechanism in a large economy then her priority score at the school she manages 
to attain as a result of the manipulation must be very close the threshold score of 
this school. As the market grows, the proportion of such agents in the economy 
vanishes.27

REMARK 1: The market thickness assumption (Assumption 5) can be weakened 
significantly in Theorem 4. Specifically, once the DA-IP matching is fixed we can 
define a static continuum economy in each period in which the school age children 
in that period participate and their preferences are determined by their isolated 
 preferences.28 If each such economy has a unique stable matching (in the static 
sense), then the main result of this paper is still valid. Azevedo and Leshno (2016) 

27 Recall that we assumed that in period 0 every agent stays home. This assumption can be relaxed, but one extra 
minor assumption must be made not to affect our convergence results. As we already mentioned in footnote 12, we 
take   μ 0    and    μ –   0    as the primitives of our model. To preserve our main results, we need to assume that the sequence of 
period-0 matchings in finite economies,   { μ  0  

k  }   , converges to    μ –   0    as   E   k   converges to   F 
–
  . 

28 See Appendix C for more information. 
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shows that a wide range of static economies has a unique stable matching. In this 
sense, the approximate strategy-proofness of the DA-IP matching is valid in a vast 
array of economies. Theorem 4 is not valid if the limiting continuum economy has 
multiple stable matchings. We show this point in online Appendix D by  presenting an 
 example in which the fraction of agents who can manipulate the DA-IP  mechanism 
does not converge to zero as a sequence of finite economies converge to such a 
 continuum economy.

As a last remark, if the priority system is Danish, then, as in the continuum 
 economies, the fraction of agents who can manipulate the DA-IP does not converge 
to zero as the market gets large.

VI. Simulation Study

In the previous section, we showed that the DA-IP becomes approximately 
 strategy-proof as the market size increases. But how large must the market be so 
that the percentage of agents who can manipulate the DA-IP is small enough?  
In this section, using randomly generated data we show that a modest market size 
suffices for this. Therefore, the results in this section complement and  reinforce the 
theoretical results on large markets of the previous section. To conduct this exercise, 
we first need to figure out whether a given agent has a successful  manipulation of 
the DA-IP. A brute force approach—checking all possible  preference reports of an 
agent—is not feasible, because there are   ( | S |!)   2   number of preference reports.29 
Of course, the brute force approach is not feasible in the static marriage and the 
 many-to-one matching problems either, but in those problems there are two types 
of strategies—truncating and dropping—that are sufficient to check whether an 
agent has a successful manipulation of the static DA mechanism. However, as 
our Example  4 shows, focusing on such strategies could miss some  successful 
 manipulations. Therefore, we construct our own algorithm to overcome this 
 complexity problem that we present next.

A. Theoretical Results

In this section, we present our algorithm that checks if an agent can manipulate 
the DA-IP.

We first note that for any two-year-old agent the DA-IP mechanism is a 
static DA mechanism. Thus, given our focus on the domain of preferences sat-
isfying  rankability, no two-year old agent has an incentive to misreport her 
 isolated-preference because the DA mechanism is strategy-proof in the static 
school choice problem. As a result, any manipulating agent must misreport her 
isolated-preference when she is one year old. Secondly, each manipulating agent’s 
submitted isolated preference report at the period she is age one must alter the 
period matching of that period. Otherwise, no agent’s priority score or isolated 

29 In fact, given rankability and the fact that the DA-IP is strategy-proof in a static market, it is enough to check 
only  |S |!  different preference profiles, but this too, very quickly becomes infeasible. 
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preference differ from the ones under truth-telling. Therefore, we need to find all 
the DA-IP matchings that follow from a one-year-old agent’s isolated preference 
reports. We will describe how we do this in the next  subsection. Before that, let us 
take this algorithm as given and describe in words how we will proceed to check 
if there are successful manipulations.

Fix an economy  E  and an agent  i . Suppose that agent  i  is born in period  t ≥ 1 .

The Algorithm to Check the Manipulability of the DA-IP Mechanism. 

Step 0:  Run the DA-IP mechanism in economy  E  until period  t + 1  and find the 
DA-IP matching of  i . Identify the schools that by attending any of these in period  t  
and her most preferred school in period  t + 1  ,  i  improves over her DA-IP match 
under truth-telling. Call these schools potentially beneficial.

Step 1: 

 (a) Find a period- t  matching which is potentially beneficial and can be reached 
through some isolated-preference misreport of  i . Denote this  matching by   μ  t  

1   .

 (b) Find the isolated preferences,  P ( μ  t  
1 )   , and update the agents  priorities,  

X  ( μ  t  
1 )  . Find the corresponding period  t + 1  matching and call it   μ  t+1  

1   .  

If   ( μ  t  
1  (i ),  μ  t+1  

1   (i ))   ≻ i   η(i )  , then stop the algorithm. In this case,  i  can 
 manipulate the DA-IP mechanism. Otherwise, move to the next step.

Step k: 

 (a) Find a period- t  matching which is potentially beneficial and has not 
been considered in the previous steps and can be reached through some 
 isolated-preference report of  i  in period  t . Call this matching by   μ  t  

k  .

 (b) Find the isolated preferences,  P ( μ  t  
k )   , and update the priorities,  

 X ( μ  t  
k )  . Find the corresponding period  t + 1  matching and call   μ  t+1  

k   .  

If   ( μ  t  
k  (i ),  μ  t+1  

k   (i ))   ≻ i   η(i )  , then stop the algorithm. In this case,  i  can 
 manipulate the DA-IP mechanism. Otherwise, move to the next step.

If all the period- t  matchings to which  i  can lead by reporting some isolated 
 preference in period  t  are exhausted, then the DA-IP mechanism is not manipulable. 
Exhausting all the period-t matchings (part (a) of all the steps) in a feasible amount 
of time is the most difficult part, and we will describe below the algorithm to achieve 
this. Finding isolated preferences for a given period in part (b) is straightforward 
given the preference profile of the agents and the matching in the previous period.

Algorithm to Find All the Matchings to Which an Agent Can Induce.— 
The  algorithm that we will present in this section allows us to compute every 
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matching that a single agent can induce, given the reports of others. It is possible to 
improve on this algorithm further (in terms of speed of execution) and the interested 
readers can find the full version of our algorithm, used in our simulation, in online 
Appendix D.

This algorithm might be useful in other contexts. For instance, one can compute 
how a misreport (by simple error or a calculated strategic manipulation) by a single 
agent can affect the entire matching. Also one perhaps can study different  properties 
of the DA mechanism. For example, it is well-known that the DA mechanism is 
bossy30, i.e., an agent sometimes can misreport her preference and alter others’ 
allocation without changing her own allocation. With the help of our algorithm one 
can figure out how often an agent has a bossy manipulation.

In this section, we focus on static economies. We refer to economies defined 
in Section  I as dynamic economies. The notations  S = {h,  s 1   , …,  s m   }  and  
 r =  (  r    s  ) s∈S    indicate the set of schools and their capacities as before. The same 
assumptions,   r    s  < ∞  for all  s ≠ h  and   r    h  = ∞  , are satisfied here too. However, 
each agent  j  in static economies is characterized by a pair   ( P j   ,  x j  )  , where   P j    is  
j   ’s strict preferences over  S  (not over the set of possible pairs of schools) and  
  x j   =   ( x  j  

s )  
s∈S

   ∈  [ 0, 1]   m+1   is  j ’s priority scores at schools. Let  J  be the set of agents 
and a pair  (J, r)  is a static economy. Here, every agent wants to get matched to 
only one school and we use the DA mechanism for each static economy. A typical 
 matching in static economy  (J, r)  is denoted by  σ .

Fix  i ∈ J,  and we now find all the DA matchings to which  i ’s preference reports 
in economy  ( J, r )  can lead. In other words, we vary  i ’s preference report while  fixing 
everyone else’s preferences as in economy  ( J, r  ) . To simplify our  presentation, we 
say a matching  σ  is attainable if there exists a preference report   P  i  ′    such that the DA 
mechanism produces  σ  if  i  submits   P  i  ′    (while the other agents submit their  preference 
reports truthfully).

Here the number of  i ’s preference reports in a static economy explodes very 
quickly with the number of schools. For instance, in a world with 10 schools and the 
possibility of staying home, an agent  i  has 11! (or more than 39 million) preference 
reports. Therefore, finding the attainable matchings using brute force is not feasible. 
Fortunately, there is an easier way to achieve our goal, but we first present a concrete 
example that is repeatedly used in this section.

30 Dubins and Freedman (1981) show that the DA is strategy-proof but not group strategy-proof. Pápai (2000) 
demonstrates that the group strategy-proofness is equivalent to strategy-proofness and nonbossiness. Based on 
these, the DA is bossy. See also Kojima (2010). 
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Example 5: There are 11 schools (including  h ) and 10 agents. Each school has 
a capacity of one agent per period. Below we present the preferences and priorities 
of the schools:31

    

 i 1   :

  

 s 1  ,

  

 s 3  ,

  

 s 9  ,

  

 s 10  ,

  

 s 8  ,

  

 s 4  ,

  

 s 2  ,

  

 s 6  ,

  

 s 7  ,

  

 s 5  ,

  

h

       

 i 2   :

  

 s 4  ,

  

 s 8  ,

  

 s 1  ,

  

 s 10  ,

  

 s 2  ,

  

 s 9  ,

  

 s 3  ,

  

 s 5  ,

  

 s 7  ,

  

 s 6  ,

  

h

       

 i 3   :

  

 s 2  ,

  

 s 6  ,

  

 s 8  ,

  

 s 10  ,

  

 s 4  ,

  

 s 7  ,

  

 s 3  ,

  

 s 9  ,

  

 s 5  ,

  

 s 1  ,

  

h

       

 i 4   :

  

 s 3  ,

  

 s 9  ,

  

 s 4  ,

  

 s 2  ,

  

 s 5  ,

  

 s 1  ,

  

 s 6  ,

  

 s 10  ,

  

 s 8  ,

  

 s 7  ,

  

h

       
 i 5   :  

 s 9  ,  
 s 8  ,  

 s 10  ,  
 s 4  ,  

 s 5  ,  
 s 6  ,  

 s 3  ,  
 s 7  ,  

 s 2  ,  
 s 1  ,  

h
       

 i 6   :
  

 s 4  ,
  

 s 2  ,
  

 s 1  ,
  

 s 6  ,
  

 s 10  ,
  

 s 8  ,
  

 s 9  ,
  

 s 3  ,
   s 5  ,

  
 s 7  ,

  
h
       

 i 7   :

  

 s 3  ,

  

 s 8  ,

  

 s 2  ,

  

 s 10  ,

  

 s 6  ,

  

 s 1  ,

  

 s 4  ,

  

 s 9  ,

  

 s 7  ,

  

 s 5  ,

  

h

       

 i 8   :

  

 s 2  ,

  

 s 8  ,

  

 s 3  ,

  

 s 10  ,

  

 s 1  ,

  

 s 5  ,

  

 s 6  ,

  

 s 4  ,

  

 s 7  ,

  

 s 9  ,

  

h

       

 i 9   :

  

 s 9  ,

  

 s 10  ,

  

 s 6  ,

  

 s 2  ,

  

 s 7  ,

  

 s 4  ,

  

 s 1  ,

  

 s 8  ,

  

 s 5  ,

  

 s 3  ,

  

h

       

 i 10   :

  

 s 1  ,

  

 s 6  ,

  

 s 8  ,

  

 s 10  ,

  

 s 3  ,

  

 s 4  ,

  

 s 2  ,

  

 s 9  ,

  

 s 7  ,

  

 s 5  ,

  

h

   

    

 s 1   :

  

 i 2  ,

  

 i 9  ,

  

 i 1  ,

  

 i 10  ,

  

 i 8  ,

  

 i 5  ,

  

 i 4  ,

  

 i 7  ,

  

 i 6  ,

  

 i 3  

       

 s 2   :

  

 i 2  ,

  

 i 6  ,

  

 i 10  ,

  

 i 8  ,

  

 i 9  ,

  

 i 4  ,

  

 i 1  ,

  

 i 7  ,

  

 i 3  ,

  

 i 5  

       

 s 3   :

  

 i 1  ,

  

 i 7  ,

  

 i 3  ,

  

 i 9  ,

  

 i 2  ,

  

 i 5  ,

  

 i 4  ,

  

 i 8  ,

  

 i 6  ,

  

 i 10   

       

 s 4   :

  

 i 10  ,

  

 i 9  ,

  

 i 1  ,

  

 i 7  ,

  

 i 4  ,

  

 i 3  ,

  

 i 5  ,

  

 i 2  ,

  

 i 6  ,

  

 i 8  

       
 s 5   :  

 i 6  ,  
 i 8  ,  

 i 9  ,  
 i 5  ,  

 i 4  ,  
 i 10  ,  

 i 1  ,  
 i 2  ,  

 i 3  ,  
 i 7          

 s 6   :
  

 i 8  ,
  

 i 7  ,
  

 i 3  ,
  

 i 2  ,
  

 i 10  ,
  

 i 4  ,
  

 i 9  ,
  

 i 6  ,
  

 i 1  ,
  

 i 5  
       

 s 7   :

  

 i 5  ,

  

 i 3  ,

  

 i 10  ,

  

 i 2  ,

  

 i 4  ,

  

 i 6  ,

  

 i 8  ,

  

 i 7  ,

  

 i 1  ,

  

 i 9  

       

 s 8   :

  

 i 4  ,

  

 i 10  ,

  

 i 9  ,

  

 i 1  ,

  

 i 5  ,

  

 i 3  ,

  

 i 2  ,

  

 i 8  ,

  

 i 6  ,

  

 i 7  

       

 s 9   :

  

 i 8  ,

  

 i 1  ,

  

 i 7  ,

  

 i 6  ,

  

 i 4  ,

  

 i 2  ,

  

 i 5  ,

  

 i 9  ,

  

 i 3  ,

  

 i 10  

       

 s 10   :

  

 i 1  ,

  

 i 8  ,

  

 i 9  ,

  

 i 4  ,

  

 i 10  ,

  

 i 7  ,

  

 i 6  ,

  

 i 5  ,

  

 i 3  ,

  

 i 2  

  . 

There are 11! (  ≅ 3.9 ×  10   7   ) possible preference reports that agent   i 1    can  
submit, but it turns out that these reports lead to only 10 different matchings.

We will need several new notions to present our algorithm to find all the 
 attainable matchings. If  i  is matched to  s  under some attainable matching then 
we say a school  s  is attainable (for agent  i  ). Otherwise,  s  is non-attainable. We 
reserve the  notations   S   A   and   S   NA   for the set of attainable and non-attainable schools, 
 respectively. We note that  h  is attainable because agent  i  is assigned to  h  if she ever 
applies to  h  at any round of the DA algorithm. A simple way to check if a given 
school  s  is attainable is to find the DA matching when  i  places  s  at the top of her 
preference report. However, one needs to run the DA algorithm  |S|  times. This 
number can be decreased  significantly due to the lemma below (the proof is in 
online Appendix D).

31 Instead of giving the schools’ priority scores, we give the rankings of the agents. 
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LEMMA 2:  Let  s  be an attainable school. The DA allocates  i  to  s  if and only if  i  
 submits a preference report which lists only non-attainable schools ahead of  s .

The lemma above is a direct consequence of the fact the DA mechanism is 
 strategy-proof in static settings. It says that the DA mechanism matches agent  i  
to the highest ranked attainable school in her preference report. This allows us to 
 construct a simple algorithm to find all the attainable schools. First,  i  modifies her 
true  preferences so that  h  is the least preferred school. We then find the DA match 
of  i  corresponding to this report. By Lemma 2, we have identified the first  attainable 
school. To find the second one we run the DA algorithm when  i  modifies the  previous 
report only in that the first attainable school is the least preferred. The modified report 
is identical to the original one up till the first attainable school appears in the original 
report. Consequently, the DA algorithm produces the identical result until the round 
in which  i  applies to different schools under the two reports. This suggests that after 
finding the first attainable school, one should reset the DA algorithm to the round 
in which  i  applied to this school. Now we continue with the DA algorithm but by 
 making  i  apply to the school that follows the first attainable in her preference report. 
By repeating this process until  i  matches to  h  , one finds all the attainable schools.

The Algorithm to Find the Set of Attainable and Non-Attainable Schools— 
Set   S   A  = ∅ .

Step 1: Agent  i  updates her true preference report by placing  h  at the very end 
of her list. Everyone else reports one’s own true preferences. This step consists of 
several rounds. Set the reset round for step 1, denoted by   RR   1  , to 1. Go through the 
same rounds as in the standard DA algorithm, but if  i  is rejected in some round  k  , 
then set   RR   1   to  k + 1 . Step 1 concludes at the round in which no one is rejected. 
Assign the agents to the schools that hold them in this round and call this  matching   
σ   1   . Add   σ   1  (i )  to   S   A  . If   σ   1  (i ) = h  , then terminate the algorithm. By construction, 
agent  i  applied to   σ   1  (i )  at round   RR   1   and was last rejected by some school at round   
RR   1  − 1 . 

Step  κ : Update agent  i ’s preference report of Step  κ − 1  by placing   s   κ−1   to the 
very end. This step starts from the reset round found in the previous step. That is, we 
assume that the application and rejection rounds until the reset round of the previous 
step have already happened in the DA algorithm. Set the reset round of this step,   
RR   κ   , to   RR   κ−1  . As in Step 1, proceed as in any standard round of the DA algorithm 
(while keeping the track of the reset round) until the round in which no agent is 
rejected. Assign the agents to the schools which hold them and call this matching   
σ   κ  . Add   σ   κ  (i )  to   S    A  . Terminate the algorithm if   σ   κ  (i ) = h . Otherwise, proceed to 
the next step.

The algorithm must terminate because at each step, the schools that have rejected  
i  as well as the unacceptable schools for  i  grow. Thus, at some step of the algorithm  
i  applies to  h  , and is matched to it. The set of attainable schools is   S   A   found at the 
last step of the algorithm.
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Due to Lemma 2, the algorithm finds the highest ranked attainable school in  i ’s 
report of a given step. In addition,  i ’s report in any step ranks the attainable school 
found in the preceding step after  h . As a result, the algorithm not only yields a new 
attainable school at each round, but also finds all the attainable schools in the exact 
order that were listed in  i ’s very first report. Consequently, the number of steps at 
which the algorithm stops is the number of attainable schools.32

In Example 5, there are seven attainable and four non-attainable schools for agent 
1, i.e.,   S   A  = {  s 3   ,  s 4   ,  s 5   ,  s 7   ,  s 9   ,  s 10   , h}  and   S   NA  = {  s 1   ,  s 2   ,  s 6   ,  s 8   }. 

We say a matching  σ  is  s  -attainable if (i)  σ  is attainable and (ii)  i  is matched to  s.   
For some attainable school  s  , let us find all the  s -attainable matchings. Lemma 2 
shows that if  i  is to get allocated to  s , then she has to rank  s  as the highest ranked 
attainable school in her report. In other words, the schools  i  ranks ahead of  s  must 
all be non-attainable. A useful result is that the DA produces the same matching  
for two reports of  i  that rank the same non-attainable schools ahead of  s .33  
Therefore, the maximal number of reports needed for finding the  s -attainable  

matchings is   2    |  S   NA  |    — the number of all subsets of   S   NA  . Thus, in Example 5, the 
 original 39 million plus strategies reduce to no more than  16 × 7  to find all the 
attainable matches.

The number   2    |  S   NA  |    is still unmanageable if there are many non-attainable schools. 
Fortunately, it turns out that depending on the attainable school, we can dispose of 
some non-attainable schools. Specifically, once  i  fixes the relative positioning of 
the remaining schools in her report where she places such schools does not affect 
the resulting DA matching. Thus, for each attainable school  s  , we now split the 
 non-attainable schools into two groups: redundant and non-redundant.

DEFINITION 8: Fix  s ∈  S   A  . A school   s ′    is  s  -redundant if the DA produces the same 

matching when  i  submits any two preference reports,   P  i  
s   and    P ̃    i  s   , where:

 (i ) in both reports   P  i  
s   and    P ̃    i  s   ,  s  is the highest ranked attainable school; and

 (ii ) the sets of schools ranked higher than  s  under   P   i  
s   and    P ̃    i  s   differ only in that the 

one under   P  i  
s   does not contain  s′  while the one under    P ̃    i  s   does.

A non-attainable school  s′  is  s -non-redundant if  s′  is not redundant for  s . We use 
the notations   S   R  (s)  and   S   NR  (s)  to denote the  s -redundant and  s -non-redundant 
schools, respectively.

32 For the purpose of finding if the DA-IP is manipulable or not by  i  , all the schools that are not potentially 
beneficial should be dropped from   S   A  . 

33 Note that each DA matching corresponding to one of these preferences of  i  is stable in a static sense in the 
economy corresponding to the other report of  i . Also, recall that each DA matching in any static economy is the 
agent optimal stable matching in that economy. Combining this with the fact that agent  i  is matched to school  s  at 
both DA matchings, we find that each DA matching weakly Pareto dominates the other. This of course means that 
the two DA matchings must be the same. 
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Where  s -redundant schools are ranked in  i ’s report does not lead to additional DA 
matchings as long as  s  is the highest ranked attainable school. Thus, by  identifying 
the redundant schools one can significantly decrease the number of preference 
reports leading to different DA matchings. But how can we identify these schools? 
Below we present an alternative characterization of redundant schools which is easy 
to work with. Let us first fix the required notation. Fix an attainable school  s  and 
write    P ˆ    i  

s   to denote a preference report of  i  in which  s  is the top ranked school. 
We write    σ ˆ     s   to denote the DA matching when  i  reports    P  ˆ    i  

s  .

LEMMA 3: Fix  s ∈  S   A  . A school  s′  is  s -redundant if and only if the priority score 
of agent  i  at school  s′  is lower than the priority score of those who are matched to  
s′  under    σ ˆ   t    , i.e.,

   x  i  
s′  <   min  

j∈ σ ˆ  (s′ )
    { x  j  

s′ } . 

PROOF: 
See the proof of Lemma 9 in the online Appendix D.
The intuition of the lemma above as follows: Consider    P ˆ    i  

s  , which by construction 
ranks  s  as the most preferred. If  s′  is  s -redundant, then ranking  s′  ahead of  s  does 
not alter the DA matching by definition. Because  i  matches to  s  ,  i  must have been 
rejected from  s′  at some point in the DA algorithm. This means that in order for  i   
to be rejected from  s′  , those who are matched to  s′  must have better priorities than  i  
at  s′ . This is the exact condition needed for redundancy.

Lemma 3 gives us an easy way to find the non-redundant schools for each 
 attainable school. That is, one first needs to find the DA matching when  i  ranks a 
given attainable school  s  first in her preference report. If some agent who is matched 
to an unattainable school  s′  has a lower priority than  i  in that school then  s′  is  
 s -non-redundant. Consequently, to find the set of  s -attainable matchings, one needs 
to find all the subsets of non-redundant schools for  s  and place each subset ahead  
of  s  in  i ’s report and run the DA algorithm for each report. This process yields all the  

s -attainable matchings. Here, one only considers   2    | S   NR (s)|    possible preference reports.
Let us now revisit Example 5 in which   S   A  =  { s 3  ,  s 4  ,  s 5  ,  s 7  ,  s 9  ,  s 10  , h}   and  

  S   NA  =  { s 1  ,  s 2  ,  s 6  ,  s 8  }   for agent  1. Let us find the  h   -non-redundant schools. 
When agent 1 ranks  h  first in her report then the following DA match emerges:

   
 s 1   ↔  i 10    

 s 2   ↔  i 6    
 s 3   ↔  i 7    

 s 4   ↔  i 2    
 s 6   ↔  i 3        

 s 7   ↔  i 9  
  

 s 8   ↔  i 5  
  

 s 9   ↔  i 4  
  

 s 10   ↔  i 8  
  

h ↔  i 1  
   .

At schools   s 1    and   s 8    , agent   i 1    has a higher priority than the respective matches of 
these schools, i.e.,   i 10    and   i 5   . The same cannot be said for   s 2    and   s 6   . Thus,   s 1    and   s 8    are  
h  -non-redundant, while   s 2    and   s 6    are  h  -redundant. By following the same steps, we 
find that only two other attainable schools, namely   s 5    and   s 10    , have  non-redundant 
schools. In both cases,   s 1    and   s 8    are non-redundant.

We next present two more results that speed the process of finding attainable 
matchings. The first one says that the set of  h  -non-redundant schools is larger than 
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the one for any other attainable school. Consequently, if there is no  h  -non-redundant 
school then there is only one attainable matching per each attainable school. Recall 
that we identify one attainable matching in each step of the algorithm to find all 
the attainable schools. Hence, in some cases, the process of finding the attainable 
schools can identify all the attainable matchings.

LEMMA 4: Fix an attainable school  s ≠ h  . If school  s′  is  s  -non-redundant, then  s′  
is  h  -non-redundant.

PROOF: 
See online Appendix D.
Ideally, if two reports of  i  lead to the same DA matching, then only one of them 

should be considered. The next lemma helps in this direction. Fix two different 
reports produce the same DA matching which matches  i  to  s . Then these two reports 
continue to produce the identical matchings even if they include more  non-attainable 
schools ahead of  s .

LEMMA 5: Fix  s ∈  S   A   ,  S ⊂  S   NA  , and   S ̃   ⊂  S   NA  . If two preference reports of  
agent  i  respectively placing the members of  S  and   S ̃    ahead of  s  lead to the same 
DA matching then for any  S′ ⊂  S   NA  , any two reports of  i  placing  S′ ∪ S  and  S′ ∪  S ̃    
respectively ahead of  s  lead to the same DA matching.

PROOF: 
See online Appendix D.
To find all the attainable matchings, we run the DA algorithm for vari-

ous  preference reports of agent  i . Because all the other agents report their true 
 preferences, the DA goes through many similar application and rejection cycles. 
To mitigate this  problem, we use the result of McVite and Wilson (1971) that 
the DA algorithm can be run sequentially. To be precise, in each round of their 
version of the DA, only one agent (who was either rejected in the previous round 
or has not made any  applications yet) applies to the highest ranked school that 
has not rejected her previously, and the school rejects the lowest ranked agent 
among those whom it has been holding plus the new applicant if there are no 
free spots. In this algorithm, let  i  be the last agent to apply to any school. Then 
the tentative matching right before  i  makes her first proposal is the DA matching 
corresponding to  i  ’s report which places  h  at the top of  i ’s report. We call this 
matching by   σ   ⁎  . To find the DA matching corresponding to any report of  i  , we set 
the tentative matching right before  i ’s first application to be   σ   ⁎   and continue with 
the McVittie and Wilson version of the DA from the round in which  i  applies to 
a school the first time. The time we save this way when the DA is repeatedly run  
is significant.

The Algorithm to Find the Attainable Matchings.—This algorithm considers all 
the attainable schools sequentially in each step starting with  h . Each step could 

 consist of several rounds. Order the members of   S   A   so that   {h,  s   1 , …,  s    |  S   A  | −1 }  .
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Step 0: Fix a preference report of  i  in which  h  is ranked first. Compute the 
DA matching, denoted by   σ   0   , under this report and using Lemma 3, find all the  
h   -non-redundant schools, i.e.,   S   NR  (h) . If   S   NR  (h) = ∅  , then consider the  algorithm 
to find the attainable schools. Recall that in each step of that algorithm, one  attainable 
school and matching is identified. These are the only attainable matchings and ter-
minate the algorithm. If   S   NR  (h) ≠ ∅ , then let   S   NR  (s) =  {S : S ⊆  S   NR  (s)}   . Order 

the elements in this set   S   NR  (h)  in increasing number of elements that each of the 
subsets contains. For example, the first element in the set will have only one school. 
When two sets have the same number of elements, rank them randomly. We now 
find the set of  h -attainable matchings denoted by  Σ(h) . Initially,  Σ(h) =  { σ   0 }  .

Round 1. Consider the first element   S   NR  (h) . Let  i  place the single school in this 
element ahead  h  in her report. Find the DA matching corresponding to this report 
and add it to  Σ(h) .

Round k. Consider the  k th element of   S   NR  (h)   denoted by   S   k  . Let  i  place only the 
schools in   S   k   ahead of  h  in her report. Find the DA matching corresponding to this 
report and if it is different than the  h  -attainable matchings identified in the previous 
rounds, then add to  Σ(h) . If not, delete all the elements of   S   NR  (h)  that contain   S   k   and 
comes after   S   k  . Step 0 ends once we have considered all the elements of   S   NR  (h)  and 
we continue to the next step.

Step  κ : Fix a preference report of  i  in which   s   κ   is ranked first. Compute the 
DA matching, denoted by   σ   κ   under this report and using Lemma  3, find all the   
s   κ    -non-redundant schools, i.e.,   S   NR  ( s   κ  ) . Initially, the set of   s   κ   -attainable matchings,  
Σ( s   κ ) = {  σ   κ  } . If   S   NR  ( s   κ ) = ∅  , then we are done with this step. If   S   NR  ( s   κ ) ≠ ∅  
then find all the   s   κ   -attainable matchings by using the same algorithm used in Step 1.

The algorithm ends once we have exhausted all the elements of   S   A   and the set of 

all attainable matchings is  Σ(h) ∪ Σ( s   1 ) ∪ ⋯ ∪ Σ (  s    | S   A | −1 )  .

PROPOSITION 2:  The algorithm above yields all the matchings that are the result 
of the DA mechanism for some report of  i  and in which  i  is allocated to  s .

PROOF: 
This proposition is a simple consequence of Lemmas 3, 4, and 5. ∎

To find all the  h  -attainable matchings in our Example 5, we consider only four-
different preference reports that place different subsets of  h  -non-redundant schools 
for  h  , i.e.,  {  s 1  ,  s 8   }  , ahead of  h  in agent 1’s report. It turns out that placing only   s 1    or   s 8    
ahead of  h  lead to the same DA matching. Thus, we do not need to consider the case 
in which both   s 1    and   s 8    are placed ahead of  h . The four of them leads to only three 
different DA matchings under which, of course, agent 1 is matched to  h .

Our algorithm significantly reduces the complexity if compared to the brute 
force approach. The number of reports used in our algorithm depends on the 
example. For instance, in Example 5, the brute force algorithm would consider  
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 11! ≈ 39 million  preference reports and run the same number of DA algorithms. 
On the other hand, our algorithm only runs the DA 20 times: 7 to find attainable 
schools, 7 to find redundant schools (1 for each attainable school) and 6 more to find 
the DA matchings under which agent 1 is matched to   s 5    ,   s 10   , or  h .

B. Simulation Results

In this section, we generate markets randomly and then estimate the percentage 
of the markets in which a given agent has a successful manipulation of the DA-IP 
mechanism. Given that each agent participates in the assignment system twice, 
we only consider a two-period version of our model. Specifically, one-third of the 
agents are two years old and another one-third are one year old in period 1. The 
 remaining  one-third of the agents are one year old in period 2. As in the model, in 
each period only school age children participate in the DA-IP mechanism of that 
period. We vary the number of schools, the schools’ capacities, and the number of 
the agents. However, we assume that each market is balanced, i.e., the number of 
agents that the schools can admit in each period is the same as the number of the 
school-age agents in that period.

We will consider different ways of generating the primitives of the preferences 
in the economy. However, in all versions considered, each agent’s payoff from 
 attending two schools in two periods is the sum of the payoffs the agent obtains by 
holding a spot at these schools, i.e., the agents’ preferences are strongly rankable. 
The agents’ priority scores are drawn according to a uniform distribution on the  
[ 0, 1]  interval. We consider both Danish priority and the one satisfying IPA.

In each simulation exercise we vary the number of schools and the schools’ 
 capacities. For each combination, we randomly generate 10,000 markets, and in 
each market we check whether agent #1 can manipulate the DA-IP mechanism 
using the algorithm we proposed in the previous section.

We first consider the cases in which the agents have correlated preferences. We 
model this by assuming that there is an underlying ranking of schools which affects 
the agents’ payoffs. To be specific, the payoff of each agent  i  from a school consist 
of (i) a deterministic part which is common to everyone and (ii) a random part 
which is individual specific and varies with schools. Formally,

   u i   (  s k   ) =   m + 1 − k _ m   +  ϵ i   (  s k   ) ∀  s k    ∈ {  s 1   , …,  s m   } and

  u i   (h) =  ϵ i   (h) ,

where   ϵ i   (s)  for  s ∈ {h,  s 1   , …,  s m   }  is randomly drawn according to the uniform 
distribution on the [0, 1] interval. In addition, the random shocks are independent 
of each other. Observe here that in expectation, homecare yields the worst payoff 
and the lower indexed schools result in better payoffs than their higher indexed 
 counterparts. In terms of expected payoffs, two schools with consecutive indices 
differ by  1/m  . For the same two schools, the probability that the lower indexed one 
yields a higher payoff is  0.5 + (2m − 1)/2 m   2  , which translates to approximately 
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0.51 in the case of 100 schools. We report our results in Table 1, and for each case 
we generated 10,000 markets.

Under priorities satisfying IPA, the percentage of markets in which a given agent 
can manipulate DA-IP mechanism is low in general, and this number drops  sufficiently 
close to zero as the schools’ capacities increase when the priorities  satisfy IPA. For 
instance, if the schools’ capacities are 20, then agent #1 can  manipulate in 8 out 
of the 10,000 markets with 100 schools. The capacity of 20 agents is small if we 
consider the typical day care institutions.

When the priorities are Danish, the manipulation percentages are strikingly 
higher than those under priorities satisfying IPA. Clearly, the agents have now an 
extra  channel of manipulation which is to stay home in period 1. By staying home 
in period 1, one improves her priority scores near the top in the second period for 
each school. Consequently, the manipulating agent would almost surely attain her 
 favorite school in the second period, thus gaining in terms of the payoff in that period. 
However, staying home or any other manipulation is costly in period  1 because 
this period’s allocation is worse. Here, with correlated preferences, the  numbers 
for manipulation under Danish priorities are the highest ones in our  exercises: 
the   percentage of the manipulable markets ranges from 19 percent to 38 percent 
depending on the number of schools and their capacities.

We now consider the case in which the agents’ payoffs from holding a spot at 
a school (including homecare) are drawn according to a uniform distribution on 
the  [0, 1]  interval.34 In other words, there is no underlying ranking of the schools. 
Each payoff for each agent is drawn independently. In the previous exercise, with 
 correlated preferences, the lower indexed schools were highly demanded. Thus, 
these schools were able to pick among their most preferred applicants. In this sense, 
the situation is comparable to the cases in which the school-proposing DA is used. In 
the new simulation exercise below, the agent proposing DA is much more  favorable 
to the agents. In Table 2 we present the  percentage of markets in which agent #1 
has a successful manipulation.

Here, when the priorities satisfy IPA, the percentage of markets in which a given 
agent can manipulate DA-IP mechanism is again low in general, and this  number 

34 We also considered cases in which the payoff from homecare is zero. In other words, the cost of staying home 
is very high. The manipulation percentages are higher than the ones we obtain here and reach 3.62 percent in some 
cases when the capacity is 1. However, they become negligible as the capacities increase. We include these results 
in the online Appendix. 

Table 1— (Correlated Preferences): The Percentage of Markets in Which an 
Agent Can Manipulate the DA-IP Mechanism

Schools’  
 capacity

Priorities satisfying IPA Danish priorities

10 schools 50 schools 100 schools 10 schools 50 schools 100 schools

1 0.97% 0.98% 0.99% 19.3% 28.75% 31.42%
5 0.29% 0.36% 0.30% 26.42% 29.37% 35.90%
10 0.20% 0.11% 0.13% 26.83% 34.90% 36.83%
15 0.14% 0.08% 0.10% 27.04% 34.96% 37.73%
20 0.06% 0.07% 0.08% 28.11% 35.79% 36.51%
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drops sufficiently close to zero as the schools’ capacities increase. For instance, 
if the schools’ capacities are 20, then agent #1 can manipulate in 17 out of the 
10,000  markets with 100 schools. Again the trend that the manipulation percentage 
drops with the schools’ capacity remains the same.

When the priorities are Danish, the manipulation percentages are higher than 
those under priorities satisfying IPA but the magnitude drops significantly compared 
to the ones under correlated preferences. Here, there is no differential competition 
for the schools in both periods while before there was very fierce competition for 
lower indexed schools. Consequently, under uncorrelated preferences, the potential 
benefit of staying home becomes relatively low. Competition for the schools is the 
main driving force for manipulation being high under Danish priorities. Indeed, if 
we introduce competition in markets with uncorrelated preferences (by considering 
unbalanced markets and increasing the number of students), the manipulation rates 
under Danish priorities increases significantly.35

Finally, we emphasize that in all of our simulations we assumed that an agent who 
is contemplating to misreport her preference knows everyone else’s preferences. 
This, of course, is a very strong assumption in reality. To analyze this question in 
a bit more detail, we study how one’s manipulation performs if there is incomplete 
information. Specifically, we assume that an agent who is about to misreport her 
preference knows the payoffs and priorities of the agents who are born at the same 
time period as her, but not of those who are born in the subsequent period. We first fix 
such an agent and consider markets with 50 schools that have one spot each. Then, 
we generate 5,000 markets using the same method in our first simulation  exercise 
where the agents have correlated preferences. We focus on the markets in which 
agent 1 has a successful manipulation. To introduce incomplete  information, for 
each of these markets we generate 1,000 new variations of them. In each  variation, 
we fix the payoffs and priorities for the agents born in period 1 while randomly 
generating new payoffs and priorities for the agents who arrive in the second period. 
Thus, we can now calculate the expected payoff of the agent under truth telling and 

35 With correlated preferences, competition for the best schools leads to higher manipulation rates. It is 
 important to highlight that in unbalanced markets there are two opposing forces. Competition means that agents 
are being  allocated to lower ranked schools on average, which suggests that manipulation is more likely to be 
 successful. On the other hand, competition in unbalanced markets also forces many students out of school under 
truth-telling. These students will not be able to manipulate under Danish prioritities. In addition, those who 
 manipulate by staying home do not get better priority than those who are forced to stay home. This again reduces 
the  possibility of  manipulation under Danish prioirities. We include some simulation results for unbalanced markets 
in the online Appendix. 

Table 2—The Percentage of Markets in Which a Given Agent Can Manipulate 
the DA-IP Mechanism

Schools’  
 capacity

Priorities satisfying IPA Danish priorities

10 schools 50 schools 100 schools 10 schools 50 schools 100 schools

1 0.58% 1.48% 1.67% 2.87% 2.57% 2.74%
5 0.20% 0.47% 0.60% 1.63% 1.26% 1.07%
10 0.05% 0.23% 0.25% 1.05% 0.94% 0.77%
15 0.03% 0.15% 0.22% 0.75% 0.77% 0.41%
20 0.02% 0.15% 0.17% 0.67% 0.53% 0.39%
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any other strategy. To avoid the computational complexity, we focus on the very first 
reports that were found as successful manipulations in the original markets instead 
of all the possible preference reports.

Under priorities satisfying IPA, there were 52  markets in which agent  1 can 
manipulate. The expected payoff of the agent from the manipulation exceeded the 
one from truth telling in 2 cases only when incomplete information is introduced. 
On average, the payoff from truth telling was 8.5 percent higher. Furthermore, out 
of all the possible 52,000 markets (52 × 1,000), manipulation was a better strategy 
in 2,744 cases while truth telling was better in 44,369 cases. This means that any 
manipulation of the DA-IP in one specific market is not likely to succeed in other 
markets if the payoffs for the agents who arrive later are randomly drawn. Although 
our assumption on the payoff distribution is somewhat specific, we believe that this 
exercise reinforces our general conclusion that the manipulation of the DA-IP in 
dynamic markets is not a significant problem.

When priorities are Danish, we found that there were 1,439 cases in which an 
agent can manipulate. Out of these, staying home was the manipulation strategy 
in 1,398 cases which led to 1,398,000 newly generated markets. Staying home 
 outperformed truth telling in 90.6  percent of the these markets with an average 
 margin of 12.8  percent. In terms expected payoffs, in 92 percent of the 1,398  markets, 
staying home was superior to truth telling.

VII. Conclusion

In this paper we have studied the strategic incentives in the DA mechanism 
in dynamic matching markets. The DA mechanism is manipulable in a dynamic 
school choice model, and here we analyzed how manipulable it is in a dynamic 
large  market. We showed that under a suitable restriction on the schools’ priorities, 
there is a large market relief. Specifically, we proved that if each school’s priority is 
affected by the previous period’s matching only through previously enrolled agents, 
then the period-by-period DA mechanism is approximately strategy-proof when the 
schools’ capacities as well as the number of participating agents is large. We also 
show that without this restriction the mechanism might remain manipulable even 
in large markets, as we illustrate with the case of the priority system in Danish day 
cares. An interesting question here is whether incomplete information would make 
agents less likely to manipulate.

Further, we constructed an algorithm that checks each possible deviation for 
the agent in a dynamic market. The fact that the DA fails non-bossiness, implies 
that there is a significant computational complexity in checking each possible 
 deviation. Thus, we constructed our own algorithm to overcome this complexity. 
Our  construction relies on well-known properties of the DA and we focus on the 
attainable matchings by a single agent, matchings that an agent can unilaterally 
induce fixing others’ reports. We believe that this algorithm might be of indepen-
dent interest. For example, one might investigate how manipulable is a mecha-
nism that improves efficiency by combining DA with TTC. Another interesting 
question is to investigate the impact of a single agent in the entire matching. If an 
agent misreports her action by mistake, for example, what is the average impact of 
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this mistake in the entire economy. Our algorithm provides a tool to answer these 
questions.

With our algorithm, we have done simulations based on randomly generated 
data to have a better assessment of how large a market must be in order for us to 
 consider that the market is almost strategy-proof assuming IPA. Our numbers are 
rather encouraging: for markets with 100 schools, this percentage is already very 
small. With Danish priorities, they are significantly higher.

Many important matching markets are dynamic, so our results provide a  guidance 
on how to organize some of these markets in practice. Some of the most notable 
examples are the assignment of teachers to public schools, and children to day care 
centers. Despite the wide range of important applications, the dynamic  centralized 
matching literature is still rather small, specially if compared to the literature on 
static matching, including the well-known school-choice literature. Most of the 
results in this dynamic matching literature have been negative, including our own 
 impossibility result (Kennes, Monte, and Tumennasan 2014). Our current paper 
shows that despite failing strategy-proofness, the DA-IP mechanism might be 
 successfully implemented in large markets.

Here we considered two classes of priority systems: IPA and Danish priorities. 
It  would be interesting to have a maximal domain result concerning the type of  
priority structures that guarantee strategy-proofness in a dynamic matching market.

Appendix A: Static Stability in Small Economies

To prove Proposition  1, we need some new definitions and results, which we 
include in Appendices A and B. The proof of Proposition 1 is in Appendix C.

Fix a finite economy  E = (I, r, X)  and a period  t − 1  matching   μ t−1    of this 
 economy. Now let us construct a new period-  t  finite economy   E t   (  μ t−1   )  based on 
our original economy and   μ t−1   . In this new economy the set of agents is   I t   ∪  I t−1    and 
each agent  i  is defined by a pair  ( P i   (  μ t−1   ),  X i   (  μ t−1  )) .

Observe that no two agents  i  and  j  in this static period- t  economy   E t   (  μ t−1   )   
can have the same priority score which is less than 1, i.e., it cannot be that  
  X  i  

s  (  μ t−1   ) =  X  j  
s  (  μ t−1   ) < 1  for any  s .

DEFINITION 9 (Static Stablility): We say that school-agent pair  (s, i)  blocks a 
period  t  matching   μ t    in economy   E t   (  μ t−1   )  if there exists a school-agent pair  (s, i)  
such that:

 (i )  s  P i   (  μ t−1   )  μ t   (i ), 

 (ii )  |  μ t   (s )|  <  r    s   or/and   X  i  
s  (  μ t−1   ) >  X  j  

s  (  μ t−1   )  for some  j ∈  μ t   (s) .

A matching   μ t    is statically stable in economy  E(  μ t−1   )  if no school-agent pair 
blocks   μ t   .

From Gale and Shapely (1962) each period  t ≥ 0  DA-IP matching   η t    is statically 
stable in economy   E t   (  η t−1   ) .
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We state the following lemma which is needed later in the online Appendix D.

LEMMA 6: Consider two static economies in period  t  ,   E t    and   E  t  ′   , which are  identical 
except that the set of schools preferred to some school  s  for some agent  i  in economy   
E t    is a subset of the one in economy   E  t  ′     . Let   μ  t  ′   be a statically stable matching in   E  t  ′     . 
If   μ  

 t  ′  (i ) = s  , then   μ   t  ′   is a statically stable matching in   E t    .

PROOF: 
Recall that every agent has the same priority score in the two economies. 

In   addition, each agent  j ≠ i  has the same isolated preferences in the two   
economies. By combining these with the fact that   μ   t  ′   is stable in economy  E′  , we 
obtain that no school  s′  and agent  j ≠ i  can block   μ   t  ′   in economy   E t    . Suppose that  i  
and some school  s′  blocks   μ   t  ′   in economy   E t    . Then  i  must have a higher priority at  s′  
in   E t    . Then, by the conditions given in the lemma,  i  must have a higher priority at   s ′    
in   E  t  ′   . Therefore,  i  and   s ′    should have been able to block   μ   t  ′   in   E  t  ′    , which contradicts 
that   μ  t  ′   is stable in   E  t  ′    . Thus,  i  cannot be a part of a blocking pair. ∎

Appendix B: Static Stability in Continuum Economies

Let us fix an economy  ( ν –  ,  r –  )  satisfying Assumption  5. Fix any period  t ≥ 0  
and a period  t − 1  matching    μ –   t−1   . Now let us construct a new period  t  continuum 
 economy    F 

–
  t   (  μ t−1   ) = (   ν –   t   ,  r –   )  based on our original economy and    μ –   t−1   . In this 

new economy the set of agents is    I 
–
  t   ∪   I 

–
  t−1    and each agent  i  is defined by a pair  

   (  P 
–
   i   (   μ –   t−1   ),   X 

–
   i   (   μ –   t−1   ))  . With the new notations,    I 

–
  t   ∪   I 

–
  t−1    is distributed on    

–
   ×  [ 0, 1]   n   

according to a measure    ν –   t   , where

     ν –   t   ( {i ∈   I 
–
  t−1   ∪   I 

–
  t   : x ≤   X 

–
   i   (   μ –   t−1   ) ≤ x′ } )  

  =  ν –   ( {i ∈  I t−1   : x ≤   X 
–
   i   (   μ –   t−1   ) ≤ x′} )  +  ν –   ( {i ∈  I t   : x ≤   X 

–
   i   (   μ –   t−1   ) ≤ x′} )  

for all  x, x′ ∈  [ 0, 1]   n   where  x ≪ x′ .
Let    

–
    be the all possible rankings of  S . Now observe that    ν –   t    has a full support 

because by Assumption 5 it must be that

   ν –   ( {i ∈  I t   :  P 
–
   =  P 

–
  (  μ t−1   ) and x ≤   X 

–
   i   (   μ –   t−1   ) ≤ x′ } )  > 0 

for all   P 
–
   ∈   and  x, x′ ∈  [0, 1]   n   where  x ≪ x′ . In addition,  

   ν –   t   ( {i ∈   I ˆ   t   :  X  i  
s  (   μ –   t−1   ) = x} )  = 0  for all  x < 1  and  s ∈ S .

DEFINITION 10: Period  t  matching    μ –   t    is statically stable in economy    F 
–
  t   (   μ –   t−1   )  if 

there exists no school-agent pair  (s, i )  such that:

 (i )  s   P 
–
   i   (   μ –   t−1   )   μ –   t   (i ), 

 (ii )   ν ˆ  (  μ t   (s)) <   r –    s   or/and    X 
–
    i  
s  (   μ –   t−1   ) >   X 

–
    j  
s  (   μ –   t−1   )  for some  j ∈   μ –   t   (s) .
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LEMMA 7: For any economy    F 
–
  t   (   μ –   t−1   )  , there exists a unique statically stable 

matching.

PROOF: 
We have already pointed out that    ν –   t    has a full support and  

   ν –   t     ( {i ∈   I 
–
  t−1   ∪   I 

–
  t   :   X 

–
    i  
s  (   μ –   t−1   ) = x} )  = 0  for all  x < 1  and  s ∈ S . Therefore, 

all the requirements for Theorem 1 of Azevedo and Leshno (2016) are satisfied, 
hence    F 

–
  t   (   μ –   t−1   )  has a unique statically stable matching. ∎

LEMMA 8: For any economy    F 
–
  t   (   η –   t−1   ) ,    η –   t    is a unique statically stable matching.

PROOF: 
This follows from Lemma 8 and Proposition A1 of Azevedo and Leshno (2016). ∎

Appendix C: Proofs

PROOF OF LEMMA 1: 
First, let us show that any agent born in period  0  cannot manipulate the DA-IP 

mechanism. To see this, recall that these agents’ matching in period  0  is  exogenously 
determined and to determine the period-1 matchings, the DA-IP mechanism 
uses the isolated preferences. In addition, because the DA mechanism is strat-
egy proof in static settings, by misreporting no agent born in period 0 improves 
in terms of her isolated preferences. Thus, we shall prove the three relations  
below:

(2)   (  η ˆ    t i  +1   (i ),   η ˆ    t i  +1   (i ))    ≻ i    
 

⏟
 

1

    (( η  t i  +1   (i ),  η  t i  +1   (i ))    ⪰ i    
 

⏟
 

2

    ( η  t i     (i ),  η  t i     (i ))    ⪰ i    
 

⏟
 

3

    (  η ˆ    t i     (i ),   η ˆ    t i     (i )) . 

To prove Relation 3 in (1), observe that the DA-IP—a strategy-proof mechanism 
in static settings—yields   η  t i     (i )  under truth telling and    η ˆ    t i     (i )  under the manipulation. 
Consequently,   η  t i     (i )  P i    ( η  t i  −1  )    η ˆ    t i     (i )  , which is Relation 3.

Agent  i  has the highest priority at school   η  t i     (i )  in period   t i   + 1 . Thus, the 
 definitions of isolated preferences and DA-IP yield that

(3)  η(i )  ⪰ i    ( η  t i     (i ),  η  t i     (i )) . 

The relation above and Assumption 1 yield Relation 2 in (1).
Now we show Relation 1. On contrary  suppose   ( η  t i  +1   (i ),  η  t i  +1   (i ))   

 ⪰ i    (  η ˆ    t i  +1   (i ),   η ˆ    t i  +1   (i ))  . First observe that    η ˆ    t i  +1   (i ) ≠   η ˆ    t i     (i ) . Otherwise, Relation 3 

and (3) yield that  η(i )  ⪰ i    η ˆ  (i )  which is a contradiction. Because    η ˆ    t i  +1   (i ) ≠   η ˆ    t i     (i )  , 
Assumption 1 and Relation 3 yield that

(4)   ( η  t i     (i ),   η ˆ    t i  +1   (i ))   ⪰ i    η ˆ  (i ) .
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Now observe that    η ˆ    t i  +1   (i ) ≠  η  t i     (i ) . Otherwise, (4) gives that  
 ( η  t i     (i ),  η  t i     (i ))  ⪰ i    η ˆ  (i ) . This and (3) give that  η(i )  ⪰ i    η ˆ  (i )  , which is a contradiction. 
Because   η  t i     (i ) ≠   η ˆ    t i  +1   (i )  , the supposition and Assumption 1 give

  η(i )  ⪰ i    ( η  t i     (i ),   η ˆ    t i  +1   (i )) . 

This and (4) yield that    η ˆ    t i  +1   (i ) =  η  t i  +1   (i ) . Then the fact that    η ˆ    t i  +1   (i ) ≠   η ˆ    t i     (i ) , 
Relation 3 and Assumption 1 yield that  η(i ) ⪰  η ˆ  (i )  which is a contradiction. ∎

PROOF OF PROPOSITION 1: 
Take any sequence of DA matchings  {  η   k  }  and the corresponding sequence of 

threshold scores  {  p   k  }  . For this proof we will use an induction argument. Assume 
that for all  τ = 0, …, t − 1 ,   p  τ  

k   → k→∞     p –   τ   . At  t = 1  , this is definitely true because   
p  0  

k   = 0  and    p –   0   = 0 . Now we show   p  t  
k   → k→∞     p –   t   .

As in Appendices A and B, we construct period- t  economies   { E  t  
k   ( η  t−1  

k  ) }   

and    F 
–
  t   (  η –   t−1  ) . Now, based on   E  t  

k   ( η  t−1  
k  )  , let us define economy    F ̃    t  

k
   ( η  t−1  

k  )  = ( ν ̃  ,  r ̃  ),   
where the measure   ν ̃    is a measure satisfying   ν ̃  ({ i }) = 1/| I  0  k   | , and   r ̃   = r/| I  0  k  | . 
Because   η  t−1  

k    → k→∞     η –   t−1   , any sequence  {  p  t−1  
k   }  converges to    p –   t−1   . Consequently, 

the sequence of measures    ν ̃    t  k   must converge to    ν –   t    in the   weak   ⁎   sense. Then 
Theorems  2(ii) and 2(iii) of Azevedo and Leshno (2016) give that   p  t  

k   →    p –   t   . 
This completes the proof. ∎

PROOF OF THEOREM 4: 
Suppose that agent  i  in finite economy  E  can manipulate the DA-IP mechanism. 

Let agent  i ’s DA-IP matchings in economy  E  and at the successful manipulation be  
η(i )  and   η ˆ  (i )  , respectively. Let  p  and   p ˆ    be the threshold scores corresponding to  η  
and   η ˆ    , respectively.

Lemma 1 implies that agent  i  is not matched to  s ≡   η ˆ    t i  +1   (i )  in period   t i    at both 
matchings   η ˆ    and  η . Thus,   X  i  

s  (  η t−1   ) =  X  i  
s  (   η ˆ   t−1   ) =  x  i  

s   . Then because  i  is matched 
to  s  at period   t i   + 1  under   η ˆ    but not under  η  , it must be that

    p ˆ     t i  +1  
s   ≤  x  i  

s  <  p   t i  +1  
s  . 

In other words, if an agent  i  can manipulate the DA-IP mechanism then there 
must exist a school  s ∈ S  such that the inequality above is satisfied. Therefore, 
to prove the theorem it suffices to show that at each  t ≥ 1  ,  s ,  ϵ > 0  , there exists 
large enough   k 

–
   such that for all  k ≥  k 

–
   , there exists no agent with   t i   = t − 1  ,  

  |  x  i  
s  −   p –    t  

s |  ≥ ϵ  and    p ˆ    t  
sk  ≤  x  i  

s  <  p  t  
sk  .

Suppose that the statement above is false. This means that for some  t ≥ 1  ,  
 s  ,  ϵ > 0  and any   k 

–
   , there exists  k ≥  k 

–
   and  i  with   t i   = t − 1 ,   |  x  i  

s  −   p –    t  
s  |  ≥ ϵ  and  

   p ˆ    t  
sk  ≤  x  i  

s  <  p  t  
sk  . In other words, we can choose a subsequence of economies   E    k j     ,  



96 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS MAY 2019

such that in each economy in this sequence, there exists agent   i    k j     who is born in 
period  t − 1  ,   |  x   i    k j     

s   −   p –    t  
s  |  ≥ ϵ  and    p ˆ    t  

s k j    ≤  x   i    k j     
s   <  p  t  

s k j     . Clearly,  {  E    k j    }  converges to   F 
–
   in   

weak   ⁎   sense. This means that   p  t  
s k j     must converge to    p –    t  

s   . Now consider the sequence 
of finite  economies    E ˆ      k j    ,which differs from   E    k j     only in that the preferences of agent   i    k j     
is the same as the the preferences reported at the successful manipulation. Because 
in each of these economies only one agent’s preferences are changed,    E ˆ      k j     converges 
to   F 

–
   in   weak   ⁎   sense. This means that  {   p ˆ    t  

s k j    }  must converge to    p –    t  
s   . Recall that we 

already showed that   p  t  
s k j     converges to    p –    t  

s   . This means that as   k j    increases,   x   i    k j     
s    must be 

arbitrarily close to    p –    t  
s   because    p ˆ    t  

s k j    ≤  x   i    k j     
s   <  p  t  

s k j      . Therefore, for a high enough   k j    it 
cannot be   |  x   i    k j     

s   −   p –    t  
s  |  ≥ ϵ  which is a contradiction.

This completes the proof as   ν –   ({i :  t i   = t  and   x  i  
s  = e})  = 0  for any  t  and  

e ∈ [0, 1)  . ∎

REFERENCES
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