
Received 8 April 2023, accepted 4 May 2023, date of publication 23 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279106

Before Ethereum. The Origin and Evolution
of Blockchain Oracles
GIULIO CALDARELLI
Department of Management, University of Turin, 10124 Turin, Italy

e-mail: giulio.caldarelli@unito.it

ABSTRACT Before the advent of alternative blockchains such as Ethereum, the future of decentralization
was all in the hands of Bitcoin. Together with Nakamoto itself, early developers were trying to leverage
Bitcoin’s potential to decentralize traditionally centralized applications. However, because Bitcoin was a
decentralized machine, the available non-trustless oracles were considered unsuitable. Therefore, strategies
had to be elaborated to solve the so-called ‘‘oracle problem’’ in the newborn scenario. By interviewing early
developers and crawling early forums and repositories, this paper aims to retrace and reconstruct the chain
of events and contributions that gave birth to oracles on Bitcoin. The evolution of early protocols, along with
the difficulties encountered in their development, are also outlined. Analyzing technical and social barriers
to building oracles on Bitcoin, the transition to Ethereum will also be discussed.

INDEX TERMS Bitcoin, blockchain, contracts, oracles, extrinsic data, multi-signature, OP_return.

I. INTRODUCTION
‘‘That’s cheating, though, isn’t it?. . . but all of the really
interesting complex contracts I can think of require data
from outside the blockchain’’ [1]. ‘‘Cheating’’ is how Gavin
Andresen provocatively referred to utilizing oracles on the
blockchain to run smart contracts. The idea is that in order to
be able to finally utilize the blockchain for something above
cryptocurrencies, renouncing to a degree of decentralization
may be considered a fair take. Whether it is right to leave
hard-achieved decentralization and the degree to which it has
to be renounced in exchange for more interoperability have
yet to be defined [2], [3], [4].

The literature on blockchain oracles is a small niche. Two
recent studies show that the total number of academic papers
concerning oracles barely reaches two hundred [5], [6]. Aca-
demic and practitioner interest in blockchain oracles rose,
in fact, after the 2017 initial coin offering (ICO) hype, where
hundreds of blockchain integration proposals were launched
in almost every sector [7]. Because many have turned out
to be fraudulent or unrealistic, studies have arisen on the
motives for their infeasibility [8], [9], [10], [11]. An emergent
stream of literature guided by the works of Egberts [12],

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

Frankenreiter [13], and Damjan [14] also started to investi-
gate the role of oracles, along with their uses, risks, and legal
implications in real-world blockchains. As general awareness
of the so-called ‘‘oracle problem’’ increased, many other
papers concerning oracle technical structure and classifica-
tion emerged [2], [15]. The paper by Al-Breiki et al. [16]
is one of the first to classify trustworthy blockchain oracle
protocols by evaluating their security and the foundations of
their trust models. Eskandari et al. [17] and Liu et al. [18]
instead focus on oracles used in DeFi. The first provides
a theoretical framework to classify them, while the second
outlines, by gathering on-chain data, the deviation rates of
the different oracle designs. In contrast, recent research by
Pasdar et al. [19] involves a consistent number of oracles.
It investigates the data type they can provide, their resistance
to Sybil attacks, and their exposure to the so-called ‘‘verifier
dilemma.’’ The dilemma concerns the preference of the veri-
fier to vote for an outcome that guarantees himself a reward
instead of performing work for correctness.

It has to be said that since the academic literature on oracles
started in 2017–2018, the whole decentralized infrastructure
had already shifted from Bitcoin to Ethereum and other alt
chains by that time. Therefore, the studies undertaken mainly
involved the infrastructure active and observable in that
timeframe and onward, thus reflecting a specific philosophy

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50899

https://orcid.org/0000-0002-8922-7871
https://orcid.org/0000-0001-5822-3432

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

and belief. However, the concept of decentralizing applica-
tions with blockchains and the use of oracles is intuitively
much older [20]. Before the advent of Ethereum, Bitcoin was
the leading ecosystem on which early smart contract develop-
ers and blockchain enthusiasts experimented with decentral-
ized applications. As data from the real world require oracles,
they had to be primarily theorized and built on Bitcoin.
Although research in [12] and [20] hinted that oracles on
Bitcoin worked with multisignature (multisig), to the best of
the author’s knowledge, no broader and further studies can
be retrieved on how those protocols were theorized and built.
Since Bitcoin is much older than Ethereum, it is reasonable
to hypothesize that more than one oracle type was active on
top of its chain.

The idea of this paper is that the oracle literature broadly
misses the transition from Bitcoin to Ethereum, which should
also include the blockchain oracle’s origin. For this reason,
the theoretical background and evolution of oracles may be
biased by an investigation of projects already developed on
Ethereum and alt chains. Research in [5] supports the view
of excessive heterogeneity and confusion in oracle defini-
tions and boundaries. As the oracle origin and underlying
idea have yet to be defined, it is arguable that those aspects
may be clarified by investigating early-stage proposals and
improvements.

In the absence of dedicated academic or gray literature,
the author opted for an exploratory study to shed light on
the advent of blockchain oracles. The data collection was
therefore guided by experts in the field who were among
the first to theorize and develop oracles on the Bitcoin
blockchain. The motives for creating their protocols and the
protocol themselves will be outlined to better understand how
blockchain oracle structures have evolved. Where possible,
the data provided by the experts were double-checked with
available online documents, repositories, emails, and forum
posts.

The research questions of this study are as follows:
1) What is the exact origin of blockchain oracles, and how

were they theorized?
2) How did the first oracle protocols work, and how did

they evolve?
3) What were the difficulties faced by early oracle

developers?
4) Which factors mainly drove the shift of oracles devel-

opment to the Ethereum ecosystem?
The paper proceeds as follows. Section II introduces the
methodology and data collection, while Section III outlines
the findings. Section IV discusses the results and answers
the research questions. Section V concludes the paper by
providing hints for further research.

II. METHODOLOGY
Aware of the niceness of the research topic, the original
idea was to investigate the origin of blockchain oracles
by performing a multivocal literature review, thus blend-
ing academic material with practitioner posts and white

papers. As a sector in rapid evolution, the blockchain liter-
ature includes several papers utilizing this methodological
approach [17], [21], [22]. It was soon clear, however, that
neither academic nor practitioner articles were written on the
topic despite its importance. Conversely to Ethereum-based
protocols, no systemized or generalized information could be
found for Bitcoin-based protocols. The only available choice
was to conduct an explorative study aimed at progressively
gathering the required information when relevant data were
discovered. The idea was to start with interviews with experts
and then expand the data collected with retrieved official
documents, emails, forum posts, or specific articles directly
suggested by the experts. Therefore, the study’s core idea is
to identify early oracle developers and let them guide the
research by offering additional research material. The author
is aware that by not building on prior research methodolo-
gies, the study may raise concerns about the reliability and
replicability of the results. For this reason, data collection
is described as transparently as possible, and the material
to which it refers is almost all available online. The only
exceptions are the interviews, which, although recorded, are
kept private, except for some sentences. Concerning the repli-
cability of the results, given the scarcity of available material,
it is arguable that a different research approach would have
led to the same data, although probably obtained in a different
order.

The involvement and guidance of experts also served to
avoid biases from the author’s personal background and
beliefs. The field was haunted by false information, so their
advice was also necessary to distinguish relevant and origi-
nal contributions from those that were misleading. To limit
redundancy and pursue a high quality of data, only people
who founded or proposed specific oracle protocols were inter-
viewed, avoiding, for this study, general Bitcoin experts.

When experts were asked for information, they were also
asked to provide a link to a written resource as hard proof
of the data provided. Interviews with experts were semi-
structured. The proposed length was 45 minutes, but given
the wideness of the content, the mean interview time was
73 minutes. Some interviews were also split to better accom-
modate the experts’ schedules. Along with direct interviews
done with Zoom software due to physical distance, there
were communications by email, phone, and instant messages
for clarification and further information. All the elaborated
content was sent to each expert for final approval.

A. DATA COLLECTION
The research began on August 30, 2022, with the first inter-
view with Edmund Edgar. Edgar is the founder of Reality
Keys and, in this [23] online resource, was indicated as the
developer who wrote the first lines of code for an oracle
on Bitcoin. Above mentioning other experts and oracle pro-
tocols, he suggested Bitcointalk (as well as some specific
threads) as a valuable resource for findingmaterial and identi-
fying early protocols. The interviews continued with Tomasz
Kolinko, the founder of Orisi, on September 20, 2022, and

50900 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

with Mike Hearn on October 27, 2022. The interview with
Mike Hearn pointed out two critical resources: Bitcoin Wiki
(with the first wiki page discussing blockchain oracles) and
the official Nakamoto emails shared with early Bitcoin devel-
opers. Given the impossibility of contacting Nakamoto, his
emails and forum posts were the only resources on which
to rely when speculating on his vision of oracles. Although
Bitcoin.org (the first Bitcoin forum founded by Nakamoto)
was no longer accessible, with Bitcoin at a very early stage by
that time, it is arguable that no specific information could be
found on this topic. Furthermore, Nakamoto’s first posts on
Bitcointalk concerning Bitcoin implementation in real-world
applications came out much later. Therefore, it is reasonable
to hypothesize that no critical data on the topic were missed.
The interview rounds continued with representatives of the
Truthcoin and Oraclize projects mentioned in the previous
interviews. The research ended with the data collection on
Counterparty since the online resources proposed and the
projects mentioned became mainly redundant. Concerning
the Counterparty section, it has to be said that in addi-
tion to the video interview with Adam Krellenstein (one
of the founders), another phone interview, several emails,
and direct messages were needed to clarify some concepts
concerning the OP_Return war. This piece of Bitcoin history
included many contradictory sources, and thorough research
was required to find unbiased information on the topic. The
description of the OP_Return debate made in this study was
based on official posts by Bitcoin core developers and devel-
opers directly involved in the dispute. Therefore, it is poten-
tially not biased by opinion posts written by third parties.
All the materials and projects relevant to this study were
retrieved. The only project mentioned by a couple of experts
but excluded in this research is Early Temple. Although the
original webpage was found on the web archive [24], the
retrieved content was insufficient to contribute to this paper,
and it was impossible to interact with any founders to further
elaborate on the project. The protocol, however, never went
into production and was abandoned, with any related material
removed. Therefore, its absence should not alter the signifi-
cance of the study. An overview of the data collected in this
study is provided in Table 1.

III. FINDINGS
The present section summarizes the information collected
from the interviews and other online material. Unlike the
material concerning the origin of blockchain oracles, the
other presented projects do not follow chronological order.
They were arbitrarily organized based on how they differ-
entiated from the first oracle proposal. The chronological
ordering of oracles was seen as unsuitable since an arbi-
trary ordering criterion had to be chosen (project elaboration,
first line of code, first announcement, website, or whitepa-
per release). Therefore, the author opted for an ordering
that could at least improve content delivery. The quotations
from each paragraph (unless stated otherwise) are from the
experts indicated in Table 1. After each section that describes

TABLE 1. Data collection.

a specific protocol, a dedicated subparagraph outlines the
constraints faced and difficulties encountered.

A. THE NAKAMOTO CONTRACTS
According to the data gathered in this study, the origin of
blockchain oracles can be traced back to 2011 from some
interaction between Satoshi Nakamoto and Mike Hearn,
an early Bitcoin developer. As the young developer found
some unusual piece of code in Bitcoin, he queried Nakamoto
for clarification. The lines of code emerged as the base struc-
ture for something new called ‘‘contracts’’ [25]. Contracts
were dynamic agreements based on the Bitcoin blockchain,
for which a certain amount of Bitcoin was moved to prede-
termined addresses when specific conditions were met. The
original example of a contract theorized by Nakamoto [25]
concerns an unregistered and open transaction (Fig. 1) that
can be updated multiple times until a specific deadline
(nLockTime). It was supposed to work as follows:

• The contract contains payments from multiple parties
and has a deadline for it to be broadcast.

• To rewrite the contract, each party must sign the trans-
action with a higher sequence number (#1, #2,. . . #n)
before the deadline. The party adding resources to the
contract (e.g., Bitcoin) should be the first to sign the

VOLUME 11, 2023 50901

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 1. Graphical conceptualization of Nakamoto’s contracts.

updated version. As per Nakamoto’s idea, by signing,
the input owner says, ‘‘I agree to put my money in if
everyone puts their money in, and the outputs are this.’’

• Leveraging SIGHASH_SINGLE instead, a user can lock
a specific output in the contract de facto, bowing out
of negotiations concerning outputs except for a specific
one. By using SIGHASH_NONE, a user declares to
agree to any chosen output and thereforewithdraws from
any ongoing negotiations.

• A pre-agreed default option can also be created utilizing
a higher sequence number and OP_CHECKMULTISIG.
Since it is based on multisig and therefore validated by a
subset of parties, it can be used as insurance if one of the
parties is unresponsive or refuses to sign the transaction.

• At the deadline, the contract that will be broadcast is
not necessarily the one with the higher sequence number
but the last one on which all parties (or the valid subset)
agreed.

It must be noted that there is an essential difference between
using SIGHASH_NONE and refusing to sign a transaction.

In the first case, the user opts out of negotiation and agrees
to any condition, de facto contributing to the successful exe-
cution of the contract. In the latter case, by not signing the
transaction, the user opts out of negotiations by rejecting any
condition, de facto impeding contract execution.

The contracts theorized by Nakamoto had, then, as condi-
tions, specific actions made by users (e.g., deciding if and
how to sign a transaction) and a predetermined amount of
time passed. In reply to Mike Hearn’s requests for clarifi-
cation, Nakamoto also shared his vision of the possibility
of Bitcoin scripts being conditional on extrinsic data [26].
His opinion was that if Bitcoin had access to outside data,
which may change between nodes, it could generate a fork
in the chain. Arguably, he was not keen on that hypothesis.
Furthermore, commenting on the chance of having contracts
with known and trusted entities, such as Google, he suggested
that those had to be executed in a trustless way by making
trusted entities sign the contract prior to its creation. There-
fore, no particular advantage should have been granted to
trustworthy entities in the real world.

B. THE FIRST CONCEPTUALIZATION OF A BLOCKCHAIN
ORACLE
By the time Nakamoto left the Bitcoin community, the code
to support contracts was insufficient to execute them fully,
and no indications were left on how to continue their devel-
opment. In light of contributing to their development, Mike
Hearn started a Bitcoin Wiki page concerning the so-called
contracts on May 22, 2011, defining them as ‘‘a method
of using Bitcoin to form agreements with people, anony-
mously and without the need for trust.’’ Although he was
the main contributor to the page, other developers (often
using pseudonyms) also contributed. Hearn also had a famous
talk concerning Bitcoin extensions and contracts in London
in 2012, which inspired many developers to build on his and
Nakamoto’s ideas.

An initial example of the contract described on the page
was the promise of later payment using data from the
blockchain (e.g., timestamp) to determine the exact time to
unlock the money (Timelocks). Later, Hearn also inserted
an example of a ‘‘will.’’ A will contract concerns the event
of death and therefore introduces arbitrary data on the
blockchain for the first time. Due to that new contract type,
on July 25, 2011,MikeHearn also added the concept of oracle
to the wiki page, explaining that ‘‘as Bitcoin nodes cannot
measure arbitrary conditions, we must rely on an ‘oracle.’’’
In the same contribution, an oracle was defined as ‘‘a server
that has a keypair, and signs transactions on request when a
user-provided expression evaluates to true’’ [27].

In the will example described in the wiki, the oracle was the
third key owner of anM-of-Nmultisig contract that signed the
transactionwhen the condition death= true. Thewill contract
(illustrated in Fig. 2) was meant to work as follows:

The creator of the will (e.g., grandfather for grandson)
would create a transaction spending the output and setting the
output to:

50902 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 2. Will contract relying on a trusted external data source.

<oracle pubkey> <grandson pubkey> 2 CHECKMUL-
TISIGVERIFY <hash> OP_TRUE
This means that the transaction is complete from the

grandfather’s side, but its expendability is conditional on the
script’s output mentioned above. The script requires two other
key owners to sign the transaction when a specific hash is
verified.

The oracle then accepts the request and receives the expres-
sion and a copy of the partially complete transaction along
with the output script. The oracle pubkey would be published
on the oracle website, which is meant to be a trusted data
source (in this case, it concerns people’s deaths). Then, the
sentence about the grandfather’s death should be in a form
that the oracle can understand (e.g., a hash). Ideally, it may
be a hashed form of the string:

has_died(‘john smith’, born_on=1950/01/02)
The oracle then verifies whether the hash of the expression

matches the hash of the output scripts, and if it does, it signs
the transaction. Otherwise, it returns an error.

Assuming that the grandson has already signed his part
of the script, when the oracle successfully signs its part,
the grandson can broadcast the contract transaction and the
money claim [27], [28].

A critical feature of this example is that the creator of the
will contract decides the oracle that can unlock the funds.

• DIFFICULTIES AND LIMITATIONS
Mike Hearn’s approach to oracles was purely theoretical, and
he never developed an actual oracle. As oracles were known
as black boxes, Hearn’s efforts were toward ‘‘how to make
that black box a little more transparent.’’ As for the reason
why he used the name oracle, he replied, ‘‘The name itself
(oracle) is a bit of everything, just like contracts; all these
things are metaphors. I think I used it because there is a
history of using that term in the field of cryptography, and
what I was developing was similar to the concept of random
oracle.’’
The main limitation of the development of newborn con-

tracts was the absence of a Bitcoin wallet with contract
support. In 2012–2013, the wallet market was, in fact,
small and fragmented. In 2014, Bitcoin wallets were
banned by Apple [29]. Aiming for a solution, Mike
Hearn started the development of Bitcoin-J, a wallet that
could successfully support contracts. Unfortunately, other

difficulties were faced, of which Hearnmentioned as themost
problematic:

• Development Hardness – Contracts, as a new type of
programming, were not easy to develop. They involved
cryptography, which is something programmers were
not always very familiar with.

• Non-interoperable wallets – As developers were devel-
oping their own wallets, there was an evident lack of
interoperability. Programs hardly worked on one wallet
and rarely worked on others.

• Incomplete contributions – Many contracts were just
proof of concept, not even integrated into a wallet, and
often only executable from the command line. As the
final integration into a wallet was difficult, the develop-
ers were not doing so.

As per Hearn’s advice, apart from being an important exper-
iment, oracle mechanisms are unlikely to be broadly used
in the future. He sees higher potential in the ‘‘trusted com-
puting’’ area he has dedicated to after leaving the Bitcoin
community in 2015.

C. AN EARLY STANDARDIZATION OF THE ORACLE API
(ORACLIZE)
The most direct extension of Hearn’s proposal was Oraclize.
The protocol was developed by Thomas Bertani, who came
across both the Hearn wiki page and the London conference
video and was ‘‘fascinated by those complex conditional
transactions.’’

Bertani’s main concern and purpose were to find a practical
solution to the problem of feeding automated transactions
with real-world data. The first version of what later became
Oraclize, in fact, was based on the concept of creating a
pre-authorized Bitcoin transaction by partially signing it and
having the oracle put the second signature when a certain
condition was met. What Oraclize offered was the possibility
of allowing any application programming interface (API) to
be leveraged as a blockchain oracle, also providing proof that
the data fetched were not altered in the process.

When Ethereum was launched in May 2015, the Oraclize
interface was adapted to run on the new blockchain, with the
first tests done in August directly on the main net. It was
soon actively used in smart contracts, as Bertani declared,
‘‘the oracle to get data from the APIs was something that
got much traction. We had a peak of tens of thousands
of transactions every month to get data about all different
things’’ [30]. By then, both Bitcoin and Ethereum versions
were live and available on the Oraclize website. For Bitcoin,
there was an API with a point-and-click interface and a
dedicated library. For Ethereum, however, there was solid-
ity integration. To expand the use of the oracle, Oraclize
implemented an authenticity proof to validate the fact that
the oracle behaved honestly. It was called ‘‘honesty proof’’
at the beginning. Still, the name was soon rebranded, given
the fact that as data source reliability was out of oracle’s
control, it could have created false expectations. This new

VOLUME 11, 2023 50903

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 3. Oraclize data fetching and contract signing with proof shield on Bitcoin.

feature guaranteed that the data provided matched the data
drawn from the source.

Oraclize in Bitcoin can be leveraged using conditional
transactions and a pay-to-script-hash (P2SH). The Bitcoin
script had to include the condition (or set of conditions),
the required signature to be redeemed, the data source, the
outcome (or set of outcomes), and possibly an expiration date
so that in case of oracle malfunction or inability of parties to
sign the transactions, the funds are returned to their owners.

The following example, taken from the protocol library and
formalized in Fig. 3, outlines its use [31].

The two agents (Alice and Bob) establish that if the temper-
ature in Milan (Italy) is above 10 degrees or if it rains from
the contract is established until the next 24 hours, Bob can
unlock the funds; otherwise, Alice can. They establish that
the conditions are checked hourly via Wolfram Alpha until a
condition is matched or the time limit elapses.

In this contract, we then have the following:

• A number of agents: Alice, Bob, and Oraclize. A fourth
agent (e.g., Carol) can be the arbitrator if one of the
others is unreachable or inactive. Otherwise, an nLock-
Time script can establish the refund of the money after
a certain amount of time.

• Pre-established conditions and outcomes. The condi-
tions are the temperature in Milan above 10 degrees and
the event of rain. In both cases, the outcome is that Bob
can unlock the funds. If both conditions are not verified
within the timeframe, the outcome is that Alice takes
the funds. Action outcomes can overlap, but conditions
should not. This is done to avoid ambiguity in contracts
and certain types of attacks. For example, if a condition
is ambiguous, an oracle can select the most convenient
result for selfish purposes.

• The data source in this case is Wolfram Alpha, but the
parties can agree on any other source.

• A Timeframe in which the contract is active.

The contract resolves when two of the three key owners sign
the transaction.

Truthfully, the contract can be written and established
without the help of Oraclize, as it can directly point to a
web API. Similar to Hearn’s solution, the data provider may
offer its signature to the data and transaction. What Oraclize

does, however, is standardize the data transfer so that any
web API can be a data source for the blockchain without
any adaptation from its end. Leveraging Qualcomm Trusted
Execution Environment (TEE) technology, Oraclize can also
guarantee that the data drawn from the web API have not
been manipulated. Intuitively, only data sources with SSL
encryption can be utilized with Oraclize since in the absence
of this level of security, the protocol would be unable to
guarantee the reliability of the data due to unforeseen man-in-
the-middle attacks. An additional level of security was also
developed called ‘‘ProofShield.’’ With this feature, it could
have been ensured that the proof of authenticity was already
correctly verified if a transaction had been signed. Without
‘‘ProofShield’’ on a chain similar to Bitcoin, the verification
could not have been enforced but only verified and audited
manually at a later time.

• DIFFICULTIES AND LIMITATIONS

Conceptually, the idea of launching Oraclize relied on the
fact that during his conferences, Bertani noticed a great
interest in automated transactions (contracts) based on real-
world events. As oracles were necessary to build contracts,
he thought they would have been huge in the short term.
On this early thought, however, he realized that ‘‘I was wrong.
Oracles are still a very long-term problem; I don’t think there
is a convincing solution at the moment. It’s a partially solved
problem for very simple use cases such as price feeds.’’

It was also hard to find developers to work on the project
because although they understood the potential of Oraclize,
they were skeptical because of script length, high costs,
and network congestion. Against skeptical opinions, Bertani
managed to continue the development of Oraclize, thanks to
some hackathon awards, the first of which was actually won
by proposing a half-life insurance model based on Oraclize.
The team continued the development of insurance, as well
as other ideas, but they soon realized that every application
needed a specific solution to the oracle problem. Therefore,
they decided to drop all the side projects and focus exclusively
on the oracle module.

Due to the already discussed problems of Bitcoin condi-
tional transactions (length, costs, and congestion), Bitcoin
integration was eventually dismissed. It must also be noted
that it never went into actual production besides being used

50904 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

for testing purposes. The team also considered integration
with Reality Keys and Amazon Mechanical Turk as data
sources, but given the scarcity of requests, these features did
not go into production.

To date, the project’s rebranded ‘‘Provable’’ is still under
development, and since its inception, it has processed mil-
lions of transactions on the Ethereum blockchain, making it
one of the longest-running and most widely used oracles.

D. MULTIPLE INDEPENDENT ORACLES ON BITCOIN
(ORISI)
A further extension of the Hearn proposal was the Orisi
protocol, which considered the possibility of adding multiple
trusted data feeds for the first time. Orisi, in principle, was
meant to support the launch of a stablecoin on the Bitcoin
protocol. To build a stablecoin, a data feed was necessary
to constantly update its exchange rate, and by that time, the
only available and known oracles were Reality Keys and
Truthcoin. Reality Keys was an already operating and reliable
oracle project. However, in its early versions, it did not offer
the possibility of a data feed, and it was mainly oriented
toward a one-off event, such as election results. The other
oracle, Truthcoin, was still under development, and, similar
to Reality Keys, it was more oriented to one-off events rather
than data feeds.

Due to the lack of available data feeds, a new oracle (Orisi)
was considered necessary. An entry for the decentralized data
feed based on theOrisi protocol was also added to the contract
Bitcoin Wiki page on June 9, 2014.

The key innovation of Orisi oracle, compared to previous
proposals based on multisig, was to add a ‘‘set’’ of indepen-
dent oracles (Fig. 4). On the basis of having multiple data
providers, it was difficult to bribe more than half of the ora-
cles. In addition, as different entities, they would have imple-
mented various hardware and applications, thus reducing the
chance of them all being hacked. A list of trusted oracles
was proposed on the platform website, but users could also
select other trusted nodes. Instead of direct IP communica-
tion, the protocol also implemented ‘‘Bitmessage’’ to protect
the identity of oracle nodes and to prevent spam [32]. The
following example, involving two agents (Alice and Bob),
better clarifies how Orisi differentiates from previous oracles
based on multisig.

• Alice promises Bob that if candidate Awins the election,
she will give him 10 Bitcoins.

• Both agree that the condition for the payment would be
that on a specific website, the election of candidate A is
declared. Then, they both agree on a set of seven oracle
nodes.

• Alice should then deposit 10 Bitcoins in a multisig
address that is considered a ‘‘safe’’ until oracles decide
to forward the funds to Bob or to return them to Alice
(in case candidate A loses the election). To do so, Alice
creates an ‘‘unlock’’ transaction to forward the funds
from the safe and pays the fees to the oracles and the
Orisi project.

FIGURE 4. Multiple independent oracles with multi-signature.

• The oracles then verify the transaction and the validity
of the request. If valid, they add the transaction and
notify the agents. If all the oracles acknowledge the
validity of the transaction, Alice transfers the 10Bitcoins
to the wallet for the contract to be finally active.

• If candidate A wins the election, then as soon as the
oracle nodes notice the information on the website, they
sign the transaction that is also broadcasted through
Bitmessage. Once enough oracles sign the transaction,
Bob can also sign the transaction with his keys and
broadcast the transaction to the Bitcoin network to
finally unlock the funds.

• DIFFICULTIES AND LIMITATIONS

In the Orisi underlying idea, oracles must be trusted entities
from the financial world (e.g., banks and other financial insti-
tutions) sending data about real-world asset prices. Therefore,
instead of adding only an oracle key, the protocol requires
multiple keys to be as decentralized as possible.

However, relying on multisig, technical limits prevented
the number of oracles from being large, as was initially
planned. TheM-of-Nmultisig protocol is, in fact, not entirely
customizable, and there is a limited key combination from
which users can choose. The standard multisig was, in fact,
two out of three keys, and more complex ones allowed, in the-
ory, a maximum of up to 15 keys. In practice, however, not all
key holders can be oracles. For example, if a multisig is three
out of five keys and three keys belong to oracles, then all the
oracles may decide to send the funds to an arbitrary address.
Therefore, if the maximum is 15 keys and a multisig wallet is
12 out of 15, then no more than 11 keys can be in control
of the oracles, while users should control the rest. Thus,
1 + (m of n) is turned into (n + 1 of 2n - m + 1) [33].
This intrinsic multisig limitation made it impossible to add
more reporters to the oracle, thus dramatically limiting the
functionalities of Orisi.

VOLUME 11, 2023 50905

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

Unfortunately, another issue was encountered in the devel-
opment of Orisi. The scripts of the Orisi oracle were, in fact,
hardly mined for two inherent reasons:

1) First, there was an economic disincentive to mine Orisi
transactions because the scripts were larger than usual.
As they occupied the weight of many simple Bitcoin
transactions, miners could have collected more fees by
selecting other transactions instead of Orisi’s. There-
fore, although a bit more rewarding than a simple Bit-
coin transfer, it was unlikely for miners to mine the
script voluntarily.

2) Second, and most importantly, by that time, scripts
were not a common transaction type. P2SH was intro-
duced in 2012, and part of the community was not keen
on inserting scripts on Bitcoin. Many wanted to keep it
as a payment system only. Miners feared that process-
ing scripts on the Bitcoin network could have broken
the chain and altered the payment system. Therefore,
the miners did not relay the scripts, leaving them in the
mempool. If, after some time, the transaction was not
mined, it was automatically rejected.

Bitcoin miners can actually exert a sort of ‘‘veto’’ for which
they can arbitrarily decide which transaction to put in their
block. Censorship resistance is, however, guaranteed since for
a miner who refuses to put a transaction in a block, others
will agree to mine it. The chance for all miners to collude
to reject a specific transaction is ideally remote. However,
some transactions considered ‘‘non-standard’’ (e.g., multisig
above three keys), although perfectly valid, are unlikely to
be mined [34]. Even though the miners did not deliberately
collude to reject those transactions, they were so unusual that
they naturally decided not to include them. This was a sort of
Schelling point [35].

Relying on Bitcoin scripts, unfortunately, despite being
legitimate, Orisi transactions were generally not mined. The
Orisi team had to search for a compliant mining pool to
have their transaction mined. Providentially, they managed
to involve Eligius Pool, which had around 7% of the Bitcoin
hash rate (as of June 2014). With 7% of the hash rate, Orisi
transactions had a 7% chance of being mined, which resulted
in one transaction every 8–15 blocks on average.

Finally, due to the multisig limitations and the difficulties
in including Orisi transactions in blocks, the Orisi project was
abandoned. The multisig limits prevented honest and trusted
oracles from joining the project, and the frequency of updates
(every one or two hours) made it impossible for Orisi to serve
as a price feed for a stablecoin.

E. BRIDGING REALITY TO THE BITCOIN BLOCKCHAIN
(REALITY KEYS)
Reality Keys was a project that proposed a different alter-
native to the scheme outlined by Mike Hearn. The ora-
cle protocol was developed by Edmund Edgar, who was,
at that time, trying to implement Bitcoin as an official cur-
rency for OpenSim (an open alternative to Second Life).
As he came across the Mike Hearn London talk, he started

following many discussion threads on Bitcointalk about the
need for a trusted oracle for Bitcoin to build real-world appli-
cations [36]. He noticed, however, that it had yet to be an
official practical implementation of this idea, so he started
working on his own. The first lines of code for Reality Keys
were written in late 2013, and the project was released in
early 2014. Its ecosystem was built in response to the need of
that time to create a bridge from blockchain to the real world
and strict Bitcoin technical constraints. Congesting and even-
tually breaking the chain with these new applications was the
primary concern; therefore, Edmund thought about making
its oracle ecosystem ultimately work off-chain. Furthermore,
given the technical limitations of Bitcoin and adherence to
the available scripts, the oracle was set to answer only binary
(yes/no) questions.

The following example, conceptualized in Fig. 5, provides
an overview of how Reality Keys could be used as an oracle
on Bitcoin.

Consider having two agents, Alice and Bob, who wish to
bet on Bitcoin prices. Alice bets that by June 1, 2014, the price
of Bitcoin would reach or exceed $400, while Bob, on the
contrary, bets that by the same date, the price of Bitcoin would
be lower than $400.

The agents can solve the bet themselves or entrust it to
a third-party oracle, such as Reality Keys. If they decide to
use Reality Keys oracle, they must make a simple binary
(yes/no) question on the oracle website asking whether,
by June 1, 2014, the Bitcoin price is above/equal to $400,
which corresponds to Alice’s bet. If the oracle replies no, then
Bob wins the bet.

Both agents know how and from which source Reality
Keys draws the answers, and they both trust the source and
the Reality Keys project. Otherwise, they would freely opt
for another contract resolution method.

Reality Keys creates two key pairs (public and private)
for both yes and no answers. The two public keys are then
published on their website. When the selected date comes
(June 1, 2014), the Reality Keys system checks the price
of Bitcoin on the proposed data source, but the results are
published in two stages. First, the system automatically pub-
lishes the results (not the key) on its website and waits for
an objection period. During this objection period, an agent
can ask for a ‘‘human check’’ of the results, offering a tip of
10 millibitcoins [37]. Once the objection period has elapsed,
the team then publishes the correct private key and deletes the
private key corresponding to the false outcome.

From a technical point of view, the role of Reality Keys
ends with the publication of the correct private key. However,
it is vital to understand what happens or can happen between
the publication of the public key and the private key in the
Bitcoin network.

Although some examples were offered on the Reality Keys
website, there was actually no specific or ‘‘standard’’ way
of implementing their oracle service. The choice of imple-
menting a standard or non-standard multisig transaction or
using a script (P2SH), along with any specific conditions, was

50906 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 5. Reality Keys workflow.

totally in the hands and responsibility of the users. Depending
on the selected choices, different costs, technical difficulties,
or security standards would have been obtained, for which
Reality Keys was not responsible.

One of the few still available demo scripts (realitykeys-
demo.py) implement Reality Keys, creating a conditional
contract on the outcome of the oracle using pybitcoin-
tools [38]. The mentioned commands refer explicitly to the
script described in the repository. From the user’s side, the
steps are as follows:

1) Alice creates a key pair with the command below and
sends the public key to Bob. She then funds her address
using any Bitcoin client. Bob does the same.

./realitykeysdemo.py makekeys
2) Alice and Bob register a Reality Key and get the

ID <reality_key_id> from the Uniform Resource
Locator.

3) In case one of the two parties (Alice or Bob) dis-
appeared before completing the transaction, the other
party could get the money back from the temporary
address with the command.

./realitykeysdemo.py pay <address> -a <amount> -f
[<fee>]

4) Alice creates a P2SH address spendable by combining
(Alice key+ reality key-yes) or (Bob key+ reality key-
no). Afterward, she creates a transaction, spending the
contents of both her and Bob’s temporary address to
the P2SH address, using her private key. The following
output is then sent to Bob for him to sign and broadcast.

./realitykeysdemo.py setup<reality_key_id> <yes_winner_
public_key> <yes_stake_amount> <no_winner_public_
key> <no_stake_amount>

5) When Bob receives the partially signed transaction,
he recreates it to check if the output is the same.
If everything is as expected, he signs the transaction
and broadcasts it.

6) When the result is issued, whoever wins the bet, Alice
or Bob, can execute the following script to unlock
the funds from the contract and send them to another
address of their choice:

./realitykeysdemo.py claim<reality_key_id> <yes_winner_
public_key> <no_winner_public_key> -f [<fee>] -d
[<destination_address>]

• DIFFICULTIES AND LIMITATIONS
At the first implementation of Reality Keys, the research

for the data and the publication of the correct answer were
done directly by the project team and eventually by Edmund
himself. However, the users who made the questions knew
the data source fromwhich the information was taken. There-
fore, despite the system being relatively centralized and not
automated, there was a certain degree of transparency. In this
regard, however, Edmund specified that although his spe-
cific system design was centralized, he hoped the whole
blockchain oracle ecosystem would eventually be decentral-
ized. He expected, in fact, many other competitors to show
up in the short term. Therefore, if Reality Keys was just one
of the available oracles, users could freely select among the
most trusted and reliable alternatives.

When the oracle system was ready and running, it served
different kinds of requests, from Bitcoin prices to soccer
scores. However, there was no specific application man-
aged by Reality Keys until the team uilt a sponsorship inte-
gration. They used RunKeeper API to promote walks and
marathon-related events. However, personal challenges con-
cerning walks and runs with humanitarian aims were also
sponsored. Someone could, for example, challenge himself
that if he does not run a certain number of kilometers by a
specific date, he has to send some Bitcoin to a charity. Thanks
to a system of APIs, Reality Keys can provide information on
whether the user has reached his goal.

With these new implementations, the team also faced new
challenges. Integration with RunKeeper required, in fact,
a dedicated website for the application. The user was then
supposed to generate a key, and the website should have been
able to perform a transaction with that key. Since a work-
ing wallet such as Metamask was not available for Bitcoin,
as well as tools for coding, the whole implementation should
have been written from scratch. In the end, they managed to

VOLUME 11, 2023 50907

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

complete the website, but as Edgar declared, ‘‘This is very
hard, and this is very hard to do securely.’’ Unfortunately, the
absence of a wallet supporting contracts and developing tools
remained almost unchanged on Bitcoin. Since the systemwas
inflexible, there was not much demand for contracts, and
since there was not much demand, interest in building those
applications was eventually scarce.

The system then remained almost unchanged until the
advent of Ethereum, with only binary questions available, but
improvement attempts were made on the range of available
data types. Freebase was then added as a data source for
Reality Keys. Freebase allowed for a wide variety of queries
to be made using the structured data system run by Google.

From that point onward, however, the development of
Reality Keys switched to Ethereum, mainly for three rea-
sons. First, Google shut down the Freebase website. Since it
constituted one of the primary Reality Keys sources of data,
it eventually affected its overall utility. Second, the outcome
of the block-size war made Bitcoin more expensive to use for
contracts, ultimately decreasing the demand for Reality Keys
service. Lastly, the implementation of Ethereum could have
allowed the switch from a yes/no based platform to a system
of signed data of any type to be directly used on-chain.

Since the platform radically changed, the project was
rebranded first to Realitio and finally to Reality.eth. Besides
the technical differences, the new Ethereum version also had
a different theoretical approach. What Reality Keys offered
on Bitcoin was simply a bridge between real-world data and
on-chain contracts. Therefore, it grabbed existing data from
trusted sources (e.g., Freebase) and made it available.

However, the team realized that there was a need for
data that did not exist anywhere. Therefore, Reality.eth on
Ethereum was meant to provide data that could not be pulled
from APIs or websites. The philosophy of the platform
switched from delivering data to creating data. Two factors
mainly drove the design change:

1) A trusted data source (API) could not be found for
specific applications.

2) Other projects became specialized in the bridging pro-
cess (e.g., Oraclize), and it was not helpful to provide a similar
service.

The project, therefore, evolved into its current version,
in which it can answer any human language question.

F. BITCOIN ORACLES THROUGH META-CHAINS
(COUNTERPARTY)
The standardization of Bitcoin OP_Return in 2013 allowed
a broad range of new applications to be built on top of
the chain. Therefore, it also opened possibilities for new
oracle mechanisms. Leveraging this new feature, Counter-
party, a meta-chain with a built-in oracle, was launched in
early 2014. A meta chain is a chain in which transaction data
is contained on another chain called a master chain. Meta-
chain transaction data run after master chain transactions are
complete [39].

Counterparty transactions are Bitcoin transactions but with
extra metadata. If a blockchain is a book, and blocks are
pages, Counterparty software writes information in the mar-
gin of those pages. Intuitively, Bitcoin software ignores that
extra data; therefore, specific software is needed to read it.

The Counterparty protocol’s idea is that when someone
signs a transaction with Bitcoin, they add some metadata to
the transaction. The content of this metadata is then veri-
fied by all Counterparty users to ensure that the transaction
is valid. The architectural pattern is called state machine
replication.

Let’s assume that Alice wishes to transfer five Counter-
party tokens to Bob. Shewill then sign a Bitcoin transaction in
which OP_Return (or OP_Multisig) declares a willingness to
transfer five Counterparty tokens to Bob. Since Counterparty
is a meta-chain, the related Bitcoin transaction will always
be confirmed as long as Alice pays the necessary transaction
fees. Therefore, if Alice decides to spend five Counterparty
tokens and only owns two, the transaction on the Bitcoin
blockchain will be confirmed anyway. The corresponding
counterparty transaction will instead be marked invalid.

The Counterparty transaction data is retrievable with a
block explorer, but it is encoded and appears in a format such
as the following:

The format is not human-readable and must be decoded by
the Counterparty engine to be read and digested. The string,
in fact, needs to be deobfuscated with the ARC4 Cypher
and verified if it starts with CNTRPRTY (first eight bytes).
From the 9th byte, information on the transaction type (send,
broadcast, and issuance) should be retrieved, followed by
the specific transaction data. Fig. 6 outlines the deciphered
content of a Counterparty transaction data chunk [40].

Once deciphered, the transaction will be digested by the
Counterparty engine, which also verifies its validity.

Being able to inject extrinsic data into the blockchain, the
Counterparty engine may already be considered an oracle
for Bitcoin. However, on top of Counterparty, applications
that further require data from the outside, such as prediction
markets or decentralized exchanges, can be built. Data, such
as a price feed for a decentralized exchange, are injected
into the protocol thanks to the ‘‘broadcast’’ transaction type.
A broadcast message publishes textual and numerical infor-
mation, along with a timestamp. A series of broadcasts
from the same address is called a ‘‘feed.’’ Intuitively, the

FIGURE 6. Counterparty data chunk.

50908 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 7. Screenshots of a Counterparty broadcaster (oracle) address, with transaction details and rating mechanism.

timestamps of a feed should increase monotonically [41].
On the Counterparty Explorer (xchain.io), users can leave
feedback and comments on the address that publishes feeds.
Fig. 7 provides an overview of what a broadcast price feed
shows, the details of the transaction, and feedback. The oracle
mechanism described above, developed and available from
day one of Counterparty, is usable for a broad range of
applications. Users could, for example, also wager on the
outcome of a feed placing their bets into an escrow, which
is settled when the feed that they rely on passes the chosen
deadline [41].

• DIFFICULTIES AND LIMITATIONS

Counterparty was already launched with full functionali-
ties on day one. Features were added quickly except for
one, as the chief developer said: ‘‘The most difficult thing
to add was the decentralized and trustless gaming in the
form of rock paper scissors. But we had a decentralized
exchange on day one, and it was already working when
we launched it.’’ In line with other projects at that time,
Counterparty was announced on Bitcointalk [42]. Still, the
developer team decided to stay anonymous at the begin-
ning and opt for a proof-of-burn to launch their currency
(Counterparty), de facto renouncing to raise any money for
their project. The reasons for those choices were mainly the
following:

1) The choice reflected what Nakamoto did with Bitcoin:
staying anonymous and renouncing any reward for his
project.

2) There were high concerns about the legal implications
of raising capital with cryptocurrencies, ‘‘which turned
out to be not very serious.’’

3) There were personal concerns about the project’s devel-
opment and how it could have turned out, as unforeseen
events may have damaged personal reputation of devel-
oper team members.

4) Replicating bitcoin issuance (electricity consumption),
they wanted to burn resources (bitcoins) instead of
transferring resources.

5) They were against raising capital for a project in the
alpha–beta stage. ‘‘We didn’t want to raise money dur-
ing the development as we thought it was dishonest.’’

Initially, the proof of burn was supposed to work by con-
suming bitcoin as fees for the miners, de facto not really
destroying bitcoins. However, many community members on
Bitcointalk argued that miners could have exploited their
position to produce Counterparty tokens unlimitedly. Under-
standing that it was an actual threat, the developer team
decided to change the burning mechanism and made it by
transferring Bitcoin tokens to an address whose private keys
were unknown (e.g., an impossible vanity address), de facto
making them permanently unspendable.

VOLUME 11, 2023 50909

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

Above the hardships of developing a project without fund-
ing, Counterparty suffered the effect of a dispute labeled
the OP_Return war [43]. To add the required transaction
data, Counterparty needed an OP_Return size greater than
the 40 bytes the Bitcoin core developers set in the offi-
cial v0.9.0 release [44]. Counterparty utilized the shrunk
OP_Return feature, but the limited size also forced them to
use others, such as multisig, to make their protocol work.
Multisig was designed for features such as escrow payments,
but the second signature could be leveraged to store data
instead [45]. However, this workaround drew the attention of
the opposing faction of the OP_Return war.

In March 2014, Luke Dashjr, a Bitcoin core developer and
owner of a mining pool, started to filter all Counterparty
transactions (eventually without success). As Luke declared,
this censorship’s motivation was to prevent the exploitation
of network resources by Counterparty [42], [43]. However,
although probably beneficial for Bitcoin nodes, this decision
was criticized because Luke was also a co-founder of Block-
stream, a major Counterparty competitor [46], [47].

Although OP_Return size was increased at a later date, the
development of Counterparty was inevitably affected by this
limit [43]. Furthermore, above the constraints resulting from
the reduced payload size, the most significant consequence
of this debate was the fear of censorship of the Counterparty
protocol. The widespread climate of uncertainty prevented
developers from building on Counterparty, further impacting
its development and competitiveness. It should be noted that
Ethereum, the second biggest network after Bitcoin, was
negatively affected by OP_Return limit in its development,
as Vitalik Buterin argued on social media. Although some
considered it an overclaim, Vitalik declared that the original
idea of Ethereum was a ‘‘counterparty-style metacoin on top
of Primecoin. Not Bitcoin because the OP_RETURN wars
were happening’’ [48], [49].

The launch of Ethereum also had an impact on the devel-
opment of Counterparty. The main innovation of Ethereum
was not smart contracts but the virtual machine, along with
the language to write smart contracts. Counterparty had
smart contracts, but only those written and supported by its
developers. It was possible to code more smart contracts,
but every application built had to be part of the protocol.
Ethereum, on the other hand, had an extensible infrastructure
that allowed anyone to write their own smart contracts. Only
the language was part of the protocol, and applications could
be deployed on top of it. As Krellenstein stated: ‘‘It is a more
elegant and flexible system. . . but ultimately does the same
thing.’’

Aware of the value of the Ethereum virtual machine
(EVM), it was ported to Counterparty (EVMParty) so that
Ethereum smart contracts could be run on Bitcoin via Coun-
terparty [50]. However, an official version was never released
due to multiple factors. In the beginning, there was the idea
that the user base would have been minimal since few people
were building on Ethereum, andmost of the applications were
still on Bitcoin. After, when developers started to move to

Ethereum, it was clear that Bitcoin could not compete in
the smart contract field. First, contracts would have been
slow due to Bitcoin block time, even if they were more
user friendly with the introduction of EVM. Second, due
to the block-size war, the price of Bitcoin increased, while
Ethereum was very cheap. Therefore, nobody would have
preferred Bitcoin to build contracts. To date, Counterparty is
still an active project on Bitcoin and wields the same structure
and premises as when it was built.

G. ENABLING ORACLES ON BITCOIN SIDECHAINS
(TRUTHCOIN)
Shortly before his last communication [26], Nakamoto com-
mented on the possibility of broadening the range of appli-
cations built on Bitcoin. He was planning an ‘‘eBay style’’
marketplace built on top of Bitcoin but with the same mecha-
nism of review and ratings of modern intermediary platforms.
However, due to Bitcoin’s ‘‘locked-in nature,’’ he shared the
idea of utilizing other chains (e.g., sidechains) with more
developer-friendly rules but with the sameminers as Bitcoins.
He suggested that inputs for the other chains could have
been data from Bitcoin blocks (e.g., the nonce) to achieve
interconnectedness between the two chains. The alternative
chain to which Nakamoto referred to in his example was
‘‘BitDNS,’’ an early sidechain proposal apparently unrelated
to current projects sharing the same name [51], [52]. As com-
munications fromNakamoto halted thereafter, no information
was retrieved on how he wished to transfer extrinsic data on
sidechains.

Ideally, as chains with new and more developer-friendly
rules, sidechains would also have allowed new oracle mech-
anisms. The first to theorize a sidechain as an oracle ecosys-
tem was Paul Sztorc. Disappointed with the closure of
InTrade [53], he resolved to find a way to leverage Bitcoin
technology to launch an open and uncensorable prediction
market. Other than the markets themselves, it would have
included a new peer-to-peer ‘‘oracle’’ (Truthcoin) to resolve
them without trusted third parties.

In its whitepaper, Truthcoin is described as a ‘‘proof-of-
work sidechain that collects information on the creation and
state of Prediction Markets (PMs)’’ [54]. Compared to other
oracle mechanisms directly built on Bitcoin, Truthcoin shows
a higher level of complexity that could never have been
reached at that time without leveraging sidechains.

To gather reliable data, the Truthcoin protocol exploits
the concept of ‘‘salience.’’ The Oxford Dictionary defines
salience as the quality of being particularly noticeable or
important [55]. Salient information is something that should
be well known by anyone. The solution proposed in Truthcoin
to achieve salience is based on time. The idea is that informa-
tion is certain and true after a certain amount of time. Instead
of providing a piece of information as soon as it is known, the
idea is to provide it at a point where it is undoubtedly certain.
Technically, it is organized as follows:

Two coins are present on Truthcoin: CashCoins and Vote-
coins. CashCoin is pegged 1:1 to Bitcoin (via sidechain) and

50910 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

allows users to create, buy, and sell PM shares. VoteCoins rep-
resent each user’s reputation, are tradable, and pay dividends
over time. VoteCoin allows users to vote on PM decisions and
collect PM fees. The ownership of VoteCoins can only change
due to the effect of voting activity. In the whitepaper, the total-
ity of voters is referred to as a ‘‘corporation.’’ The concept
behind this is that the reputation of the entire system is more
relevant than the reputation of each individual. VoteCoins are
not mined but are proportionally shared among voters in such
a way that if someone acquires some VoteCoins, someone
else has less, as its total amount remains constant.

Two types of decisions are supported on Truthcoin: binary
(0,1) and scalar (Xmin, Xmax). A third state (0.5) identifies
decisions that are non-resolvable or confusing. Four entities
are present on the platform:

Authors: Users who create a prediction market and pro-
vide initial liquidity. The difficult work of an author lies in
finding a market that may attract many users and identifying
a decision that will bewell-known to the voters after a specific
time.

VoteCoin Owner: User who votes on a decision. Their
main task is to maintain or increase their reputation.

Traders: Users who trade on any PMs; they are the cus-
tomers of the platform.

Miners: Those who mine blocks on the sidechain. For a
Bitcoin sidechain that allows merged mining (hash reuse),
Bitcoin miners can mine sidechain blocks at negligible costs.

The resolution of a market and a decision on its ‘‘true’’
outcome, as described in Fig. 8, are as follows.

An author adds a decision specifying the topic and the
time of resolution, and then waits for the transaction to be
included in a block. When a decision is added, the author can
also add a market that provides initial liquidity. Then, they
wait for the transaction to be included in a block. When a
market is added, trading begins. The market can be advertised
so that users can buy and sell the shares of the different
market states (such as ‘‘yes’’ and ‘‘no’’). Eventually, the event
occurs and becomes ‘‘observable.’’ After this, when the time
specified by the creator has passed, the decision is considered
‘‘mature.’’ The set of all mature decisions is called a ‘‘ballot.’’
Staking their tokens, owners of VoteCoins are called to vote
for all the decisions in the ballot, and when votes are revealed,
VoteCoins staked are frozen. The decision is then resolved
according to the consensus algorithm, which also reallocates
VoteCoins. After a decision is resolved, a waiting time of one
week starts. Once the waiting time expires, another phase
starts in which miners can veto the ‘‘resolved ballots.’’ If
more than 50% of the blocks of this period veto the ballot,
all the decisions inside the ballot must be re-voted. When all
the above-mentioned phases are concluded, the redemption
phase starts, in which all the winning shares are given a price,
and users can redeem them for CashCoins.

Crucial for the oracle’s good outcome is the creator’s
role, which must choose an event whose outcome should
be ‘‘salient’’ at a certain point in time, and voters that must
correctly predict the answer of the majority of voters. If an

event is not salient, voters will not be able to vote, leading to
an unresolved market. Otherwise, if voters are incapable of
coordinating, they will be slashed off their tokens. Failing to
report or report outside the accepted value range results de
facto in a slash. The number of tokens slashed is proportional
to the distance of the reported value to the one identified as
the true outcome.

Finally, the Truthcoin ecosystem can be broken if someone
obtains 51% of the corporation. This means being able to con-
trol 51% of the system’s economic value, which is unlikely to
happen.

• DIFFICULTIES AND LIMITATIONS

When Sztorc had the idea of building a decentralized predic-
tion market on Bitcoin, Reality Keys was a reliable oracle
in development, but Sztorc was concerned that its system
could have been manipulated for information of high value.
Alternatives based on multisig were also not viable in the
long run: ‘‘I was convinced that multisig was not the solution
to the oracle problem. If the oracle problem is like sending
a man to the moon, using a multisig is like trying to do it
with a catapult.’’ Emerging projects were also more oriented
toward the idea of data feeds and, therefore, to a constant
update of data to the blockchain. Sztorc’s approach was,
however, opposite: ‘‘We don’t need a data feed, we don’t need
a frequent check. . .we only need to check if some information
is true at a certain point.’’

For this reason, although in principle not interested in ora-
cles, he developed his own Truthcoin by the end of 2013, pub-
lishing the first version of the whitepaper in early 2014. The
Truthcoin whitepaper and the project itself were influenced
by what was called the ‘‘blocksize war,’’ a fierce dispute
between Bitcoin developers on block size growth and the
emergence of numerous alternatives to Bitcoin of dubious
value. As the intention was to formalize the Truthcoin idea
and then to have some other group do the actual development,
Sztorc never launched the project. He could not take the risk
of his ideas being manipulated by charlatans or of his project
being erroneously labeled as a scam.

Therefore, the Truthcoin whitepaper was written in a
highly scrupulous, detailed way so that debates such as
the block-size war could never happen on his project. Fur-
thermore, to alienate any association with alt/scam coins,
he strictly adhered to Bitcoin and Nakamoto’s ideas. In light
of this, Truthcoin was planned to be developed as a Bitcoin
sidechain.

In addition to being endorsed by Nakamoto, sidechains
were also valuable because they allowed for the avoidance
of using complex Bitcoin scripts. In the script design of
prediction markets, ‘‘each bitcoin transaction would be like
an enormous computer program.’’ The script’s length is due
not only to the application’s data but also to the information
on how to digest that data. Although better programmable,
the same limitations would have been encountered using
an all-purpose blockchain such as Ethereum. A dedicated
sidechain was then seen as a better solution since it already

VOLUME 11, 2023 50911

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

FIGURE 8. Truthcoin market resolution mechanism [54].

knows how to process the data and only needs minimal inputs
to code each user action. All the required code is preloaded,
and the full node already knows where to find and how to
process the incoming data.

Although theorized and discussed in 2010, with
Nakamoto’s help, sidechains were still underdeveloped when
Sztorc proposed Truthchoin [52]. The first practical idea
of a two-way peg sidechain was discussed in December
2013 by Luke Dashjr. Along with others, they released the
Blockstream whitepaper in October 2014, a system to enable
blockchain innovation via pegged sidechains [56].

Sztorc started to develop a sidechain concept (‘‘Drive
Chain’’) in 2014. Still, being alone and aware of the work
of Luke Dashjr, he decided to focus on other aspects of the
Truthcoin project, hoping to use the Blockstream sidechain
once completed. Therefore, inspired by Robin Hanson’s
work, he refined Truthcoin’s logarithmic market scoring rules
(LMSR) [57]. Concerning Hanson’s contribution, Sztorc
stated, ‘‘Each buy and sell happens unilaterally and atom-
ically, so it was perfect for the blockchain.’’ Apparently,
LMSR also inspired what is now called automated market
makers on Ethereum [58].

In 2015, the Truthcoin software was almost complete, but
unfortunately, by that time, it was clear that the Blockstream
sidechain project was not going to succeed in the short run.
Therefore, Sztorc switched again to the development of a
Bitcoin sidechain, ‘‘Drivechain’’ (spelled without a space
this time), of which an advanced version was published in
November 2015 so that it could have been beneficial not
only for his now rebranded project Hivemind but also for the
whole Bitcoin community. Due to the slow development of
sidechains, the Truthcoin protocol is still under development.

IV. DISCUSSION
This section elaborates on the retrieved material to answer
the research questions. The first part discusses the origin of
the oracle idea, Nakamoto’s view on extrinsic data on chains,
and its influence on oracle development. The second part is

concerned with the limitations of building oracles on Bitcoin
and further elaborates on the passage to Ethereum and alt
chains.

A. ORACLE ORIGIN AND NAKAMOTO’S VISION OF
EXTRINSIC DATA
As per experts’ experience, the oracle concept’s first appear-
ance came from the developer Mike Hearn, who had it for-
malized in a Bitcoin Wiki post. In his interview, Hearn stated
that he was not inspired by the work of someone else, but
he borrowed part of the idea directly from the computer
science concept of the ‘‘random oracle.’’ It also emerged
that the name was meant to be provisional since oracles in
computer science referred to something quite the opposite
to what he wanted to elaborate on. Arguably, if an ‘‘ora-
cle’’ is a black box that feeds a centralized machine with
trusted data, Hearn’s proposal of a transparent box that feeds
a decentralized application with trustless data should have
been addressed with a different name. However, the name
is stuck to date, and the heterogeneity in blockchain oracles
definitions found in [5] may also be due to this taxonomic
overlap. Intuitively, suppose a developer is asked to write
an ‘‘oracle’’ for a blockchain, and the principle of the white
box is not explicitly explained. In that case, he will probably
write the type of oracle learned from legacy computer science.
Truthfully, both oracle types have the same finality but should
work in a different way and under different logic.

Interestingly, it emerged that the word ‘‘smart contract’’
had also been improperly used, as Nakamoto named applica-
tions built on Bitcoin just ‘‘contracts.’’ In its contract exam-
ple, of a transaction that is executed as soon as enough
conditions are met, no particular ‘‘smart’’ feature emerges.

According to Mike Hearn’s reminiscences, the prefix
‘‘smart’’ started to be used a bit later—on the one hand—
because it slightly resembled the concept of smart money
or smart contract developed by Nick Szabo [59] and—on
the other hand—it was seen as necessary to alienate the
‘‘legal aura’’ from the word contracts. Bitcoin contracts

50912 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

would probably have attracted unnecessary attention if erro-
neously perceived as related to legal contracts. However,
similar to oracles, as smart contracts in origin referred to
something else, their purpose and use could have been
misinterpreted [59], [60], [61].

Concerning Nakamoto’s idea of oracles, we cannot fully
speculate on his opinion, given the limited number of avail-
able messages and posts certainly traceable to him. Thanks
to an email from Mike Hearn on April 27, 2009, we can
confirm that at some point, Nakamoto contemplated the idea
of a third-party arbitrator to enable chargebacks on Bitcoin
transactions [62]. In 2009, Bitcoin was at its earliest stage,
and no scripts had yet been implemented. In that email,
Nakamoto stated that if an agent required the possibility of
a chargeback, an ‘‘escrow’’ transaction (which was still not
implemented) should have been used. Therefore, a third party
with the power to decide whether to return or release the
money had to be designated. The idea was also to implement
an expiration date to escrow for the funds to be automatically
returned if no options were exerted within the time limit.
Interestingly, the original Nakamoto proposal of escrow was
slightly different. He proposed an escrow system in which
Bitcoins were either released or burned. It was a sort of
‘‘kill switch’’ that prevented thieves from gaining benefits
from cheating [63]. However, the community voted against
the burning mechanism, opting for a chargeback mechanism
instead. The kill switch was thought to penalize the buyer
excessively (and also the whole community) by permanently
removing Bitcoin from circulation [64].

Concerning extrinsic data, Nakamoto was arguably reluc-
tant to have it on the Bitcoin mainchain. However, a mar-
ketplace, such as the one he proposed to launch on a
sidechain, requires extrinsic data on products and feedback.
Still, no explanation is given for how these data should have
been securely fetched. It is arguable but not provable that
Nakamoto was not planning any specific data transferring
system for his sidechain, different from the traditional ones.

B. THE ON-CHAIN DATA DEBATE
Nakamoto’s vision undoubtedly influenced early developers
and enthusiasts. For Bitcoin core developers, extrinsic data
injection into the blockchain was often seen as improper use
of the ledger [43]. Following Nakamoto’s idea, real-world
applications utilizing extrinsic data should have been devel-
oped only through sidechains. This general mindset affected
the development of oracles in many ways. Reality Keys
was, in fact, developed entirely off-chain to avoid messing
with Bitcoin. Truthcoin was created as a Bitcoin sidechain
to adhere strictly to Nakamoto’s ideas. Orisi transactions
were considered non-standard and unlikely to be mined,
although they were perfectly valid. Oraclize struggled to find
developers due to skepticism about using Bitcoin scripts.
Finally, Counterparty was dragged into the OP_Return war,
which is also said to have impacted the Ethereum launch and
development.

The OP_Return war is a matter that requires further elab-
oration. It was always ‘‘technically possible’’ to add data
unrelated to Bitcoin transactions on the Bitcoin blockchain.
Although achievable with other features, such as the one
Nakamoto utilized to add the famous string ‘‘The Times
03/Jan/2009 Chancellor on brink of second bailout for
banks’’ [65] on the genesis block, the OP_Return, was the
easiest way to perform this operation [66], [67]. However,
adding extrinsic datawithOP_Return resulted in a transaction
considered unusual or non-standard. As explained in the Orisi
case, non-standard transactions are transactions that, despite
being perfectly valid and minable, are not relayed by ordinary
Bitcoin nodes and, therefore, are unlikely to be included in
blocks. However, with a compliant miner (or by mining the
transaction autonomously), it was possible to add any sort of
data, such as hashes, pieces of articles, song lyrics, pieces of
poetry, or pieces of whitepapers [43]. There are, in fact, online
repositories, such as bitcoinstrings.com, that keep track of
all this extrinsic data on Bitcoin. Fearing network bloat and
discouraging widespread adoption of this practice, Bitcoin
core developers, with the 2014 version v0.9.0., reduced the
OP_RETURN payload size to 40 bytes (after a pre-release
testing phase at 80 bytes), which made it practical for stor-
ing a hash plus some small metadata [68], [69]. Significant
on-chain data were thought to negatively impact transaction
fees and network performance. However, with this update,
transactions with OP_Return of 40 bytes (or less) were con-
sidered standard and relayed by nodes with default settings.

This piece of Bitcoin history is exciting because, from this
study, a discrepancy emerges in how the events are described
and recalled by experts in the industry. According to the
official Bitcoin Wiki, and reliable work of literature on the
Bitcoin protocol, the OP_Return operator was inserted with
version v0.9.0. and directly at 40 bytes [70], [71]. OP_Return
at 80 bytes was described as an early hypothesis that was
soon discarded and then accepted as an improvement in
February 2015 with the v0.10.0 release. This view of history,
however, clashes with some information found online and
what some experts recall. The OP_Return operator, in fact,
appears to already be part of the Bitcoin code developed by
Nakamoto in 2009 [72]. As also discussed in official forums,
it was leveraged as a ‘‘non-standard’’ feature long before
2014 [69].

Nonetheless, the main ‘‘trigger’’ of the OP_Return war
appears to be an early release of v0.9.0, which de facto
included a standardized OP_Return operator with a payload
size of 80 bytes in the middle of 2013. According to what
was declared by Bitcoin core developers, 80 bytes was a
random value picked for testing purposes, and 40 bytes was
then sought to be a fair amount to be finally included in
the official release [69]. However, since the testing release
was not widely announced and advertised to avoid overuse
of the experimental features, other protocol developers build-
ing on Bitcoin in 2013 were unaware that the features they
were using were meant to be ‘‘provisional.’’ Therefore, when
v0.9.0. was officially released with OP_Return payload at

VOLUME 11, 2023 50913

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

40 bytes, they interpreted the ‘‘slash’’ as a deliberate censor-
ship attempt, resulting in a fierce debate (therefore labeled as
‘‘war’’) within the community [43], [44].

Furthermore, from a technical point of view, the standard-
ization of the OP_Return promoted with 2014 v0.9.0 was de
facto inserted on Bitcoin in 2013 (for testing purposes) with
pull request #2738 [73]. Therefore, for developers already
leveraging OP_Return in 2013 as a standard feature, the
2014 standardization announcement was a ‘‘lie,’’ further fuel-
ing the harshness of the debate [74]. From a strictly technical
perspective, the main change in OP_Return with the v0.9.0
2014 official release was just the halving of the payload
size [75].

According to other views, however, the OP_Return
debate was an exaggeration since they saw it just as an
excuse for some people to promote their alt chains, blam-
ing Bitcoin core developers for creating division in the
community [43], [48].

Further details on the OP_Return debate are beyond the
scope of this research. What clearly emerges is that the
discussion of whether it is right to inject extrinsic data into
Bitcoin is a conundrum of a difficult solution. If, on the one
hand, Nakamoto’s vision is evident in the fact that Bitcoin
should remain pure (of data except for time), on the other
hand, inventions in history are not always used as the inventor
intended. In the case of Bitcoin, however, being decentralized
and maintained by the community, any network ‘‘misuse’’ is
paid by all the nodes regardless of their approval. As some
objected, however, the exponential growth of the Bitcoin
blockchain is also due to an increase in its use rather than
just arbitrary data injection [74], [76].

Although still unsolved, nowadays, the debate is of less
interest since real-world applications are mainly built on alt
chains such as Ethereum. In the author’s opinion, however,
Nakamoto’s idea to keep the mainchain pure and experiment
on additional layers—alt chains or sidechains—could have
been a reasonable, fair take at the end.

C. TRANSITION TO ETHEREUM
It is widely known that building on Bitcoin in the early days
was a difficult task; therefore, oracle development was also
problematic. The existence of applications, such as Satoshi
Dice or Lighthouse, supports the view that it was actually
possible to build on Bitcoin, but the development was not
standardized, and every developer had to find the proper
workaround for their application. Although Hearn developed
Bitcoin-J as a wallet aimed at being like Metamask for
Ethereum, it lacked the contributions of other developers
to build further on top of it. The experience of Edmund
Edgar with Runkeeper API also confirms that although it
was possible to build with Bitcoin, the absence of a proper
wallet and developing tools constituted a critical limita-
tion. With developing tools and Metamask, EVM undoubt-
edly constituted an incentive for developers to migrate to
Ethereum.

As discussed in the previous paragraph, concerns about
net congestion and transaction costs were another element
that further contributed to pushing real-world application
development outside the Bitcoin domain. Despite the interest
and prizes that Oraclizemanaged to obtain, he could never put
the Bitcoin version into production due to low usage and the
struggle to find developers. The Orisi project was abandoned
due to skepticism about scripts and the inability to have their
transactions mined. Their experience made it clear that no
application could rely entirely on non-standard scripts for
survival. Truthcoin was built following Nakamoto’s advice,
but to date, a working version is still unavailable due to the
struggle to build a proper sidechain. Although not facing the
issues of building directly on Bitcoin, it is suffering from
the issue of not having an existing chain to be developed
upon. In fact, other projects inspired by Truthcoin, such as
Augur, could have been successfully launched on Ethereum
in 2016 [77]. However, in complyingwith different standards,
it is debatable whether that choice constitutes an improve-
ment in the original design.

In the author’s opinion, the actual limit of building
on Bitcoin emerges through the experience of Counter-
party. Regardless of whether or not they were misusing the
OP_Return feature, their history shed light on the fact that
building on Bitcoin was simply ‘‘unwelcome’’ [43]. The
Ethereum gas system compromise allows anyone to program
any type of application as long as the proper gas fees are paid.
Ethereumwas bornwith this system, and those who run nodes
know their roles and purposes. Different philosophies and
visions co-exist on Bitcoin; however, not all the nodes/miners
share the same ideas. Although Bitcoin has a system of fees
that varies according to net congestion and transaction type,
it was not meant to run programs in the first place. Therefore,
the payment of a fee is not necessarily a good compromise
for those who wish for a light and mono-purpose chain.
When Ethereum was launched, the environment was divided
into two leading platforms, one of which was tormented by
disputes on extrinsic data usage and block size and another
one that was cheap and full of enthusiasts building and experi-
menting [78], [79]. Above all, much funding was also coming
to the Ethereum platform, so it was understandable to expect
a consistent migration of developers [80].

Nowadays, many improvements have been made to the
Bitcoin network with the development of second layers, such
as the Lightning network [81]. Ideally, they are capable of
bringing the entire ecosystem built on Ethereum to the Bit-
coin network. In addition, advancements have been made
by Blockstream concerning sidechains. It is arguable, then,
to expect a working version in the near future. Nonetheless,
due to the shift from an electronic cash system to a safe-haven
asset, as a consequence of the block-size war, many who own
a significant amount of bitcoins share the philosophy of ‘‘hold
for dear life.’’ Therefore, even if decentralized applications
will eventually be built on Bitcoin, skepticism emerges about
the existence of a solid user base willing to spend its precious
assets on them.

50914 VOLUME 11, 2023

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

V. CONCLUSION
This study provides an overview of the origin of blockchain
oracles—from the first theoretical idea to the early practical
applications on Bitcoin until the advent of Ethereum. In the
absence of dedicated literature, experts who worked on ora-
cles in the early days were interviewed, and the information
provided was enriched with the available written material
found online. From the research, it emerges that the idea
of an oracle mechanism came from Mike Hearn, which was
formalized on an early Bitcoin Wiki page. The concept was
then further elaborated theoretically by other experts and then
translated into actual software by a few enthusiasts. All these
projects were developed in 2014. All approaches to solving
the oracle problem bear peculiarities that are primarily due
to the specific applications for which they were designed.
Another aspect that emerges from this research is the dif-
ficulty of building oracles and, in general, applications on
Bitcoin. According to experts’ opinion, the main difficulties
concerned the following:

• The absence of developing tools and wallets
• The large size and costs of Bitcoin scripts
• Concerns about net congestion.
• Skepticism in storing extrinsic data in Bitcoin

Interestingly, the hardest to overcome was not technical diffi-
culties. A part of the Bitcoin communitywas, in fact, reluctant
to introduce extrinsic data into the chain due to concerns
about network growth/congestion and transaction fees. The
same applies to some non-standard Bitcoin scripts. The pas-
sage to Ethereum was, therefore, inevitable.

The present research contributes to the academic litera-
ture filling the gap that exists from the origin of oracles
on Bitcoin to modern oracles on Ethereum and alt chains.
The original concepts of oracles, as well as smart con-
tracts, are clarified. Therefore, the theoretical background
of future academic papers could build on the findings
of this research. Practitioners can also benefit from this
research by understanding how oracles were theorized at
early stages and how they were initially adapted to different
applications.

The study also has limitations since, although data were
double-checked and verified by the author, the history is
described through the eyes of the experts interviewed. There-
fore, it can be biased by their personal views and background.
Furthermore, the impossibility of interviewing Nakamoto,
and given the scarcity of retrieved material concerning his
opinion/idea on oracles, the accuracy of the interpretation
provided cannot be guaranteed.

Further studies can build on this by comparing the oracles
analyzed in this paper with those developed afterward on
Ethereum and other alt chains to outline their evolution in a
broader timeframe.

ACKNOWLEDGMENT
The author would like to thank the anonymous reviewers
and all the experts interviewed for their kind support and

contributions to the research. Their cooperation in data col-
lection was crucial to the successful outcome of the study.
The author also wishes to thank all the colleagues who offered
valuable feedback on the early versions of the paper.

REFERENCES
[1] G. Andresen. (Jun. 9, 2014). Bit-thereum | GavinTech. GavinTech.

Accessed: Jan. 21, 2023. [Online]. Available: http://gavintech.blogspot.
com/2014/06/bit-thereum.html

[2] G. Caldarelli, ‘‘Understanding the blockchain Oracle problem: A call
for action,’’ Information, vol. 11, no. 11, p. 509, Oct. 2020, doi:
10.3390/info11110509.

[3] G. Caldarelli, Blockchain Oracles and the Oracle Problem: A Practical
Handbook to Discover the World of Blockchain, Smart Contracts, and
Oracles—Exploring the Limits of Trust Decentralization, 1st ed. Naples,
Italy: Amazon, 2021.

[4] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, ‘‘A survey
on blockchain interoperability: Past, present, and future trends,’’ ACM
Comput. Surv., vol. 54, no. 8, pp. 1–41, Nov. 2022, doi: 10.1145/3471140.

[5] G. Caldarelli, ‘‘Overview of blockchain Oracle research,’’ Future Internet,
vol. 14, no. 6, p. 175, Jun. 2022, doi: 10.3390/fi14060175.

[6] S. K. Ezzat, Y. N. M. Saleh, and A. A. Abdel-Hamid, ‘‘Blockchain
oracles: State-of-the-art and research directions,’’ IEEE Access,
vol. 10, pp. 67551–67572, 2022, doi: 10.1109/ACCESS.2022.
3184726.

[7] S. Ibba, A. Pinna, G. Baralla, and M. Marchesi, ‘‘ICOs overview: Should
investors choose an ICO developed with the lean startup methodology?’’
in Proc. Int. Conf. Agile Softw. Develop., in Lecture Notes in Business
Information Processing, vol. 314, 2018, pp. 293–308, doi: 10.1007/978-
3-319-91602-6_21.

[8] S. Lahajnar and A. Rožanec, ‘‘Initial coin offering (ICO) evaluation
model,’’ Invest. Manag. Financial Innov., vol. 15, no. 4, pp. 169–182, 2018,
doi: 10.21511/imfi.15(4).2018.14.

[9] B. Barraza, ‘‘The worth of words: How technical white papers influ-
ence ICO blockchain funding,’’ MIS Quart. Executive, vol. 18, no. 4,
pp. 281–285, Dec. 2019, doi: 10.17705/2msqe.00021.

[10] H. Treiblmaier, ‘‘The impact of the blockchain on the supply chain: A
theory-based research framework and a call for action,’’ Supply Chain
Manag., Int. J., vol. 23, no. 6, pp. 545–559, Sep. 2018, doi: 10.1108/SCM-
01-2018-0029.

[11] A. Kumar, R. Liu, and Z. Shan, ‘‘Is blockchain a silver bullet for sup-
ply chain management? Technical challenges and research opportuni-
ties,’’ Decis. Sci., vol. 51, no. 1, pp. 8–37, Feb. 2020, doi: 10.1111/deci.
12396.

[12] A. Egberts, ‘‘The Oracle problem—An analysis of how blockchain
oracles undermine the advantages of decentralized ledger systems,’’
SSRN Electron. J., 2017. [Online]. Available: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=3382343, doi: 10.2139/ssrn.3382343.

[13] J. Frankenreiter, ‘‘The limits of smart contracts,’’ J. Inst. Theor. Econ.,
vol. 175, no. 1, pp. 149–162, 2019, doi: 10.1628/jite-2019-0021.

[14] M. Damjan, ‘‘The interface between blockchain and the real world,’’
Ragion Prat., vol. 2018, no. 2, pp. 379–406, 2018, doi: 10.1415/91545.

[15] A. Pasdar, Z. Dong, and Y. C. Lee, ‘‘Blockchain Oracle design patterns,’’
Jun. 2021, arXiv:2106.09349.

[16] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic,
‘‘Trustworthy blockchain oracles: Review, comparison, and open
research challenges,’’ IEEE Access, vol. 8, pp. 85675–85685, 2020, doi:
10.1109/ACCESS.2020.2992698.

[17] S. Eskandari, M. Salehi, W. C. Gu, and J. Clark, ‘‘SoK:
Oracles from the ground truth to market manipulation,’’ Proc.
Under Rev., vol. 1, no. 1, Jun. 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3479722.3480994

[18] B. Liu, P. Szalachowski, and J. Zhou, ‘‘A first look into DeFi ora-
cles,’’ in Proc. IEEE Int. Conf. Decentralized Appl. Infrastruct. (DAPPS),
Aug. 2021, pp. 39–48, doi: 10.1109/DAPPS52256.2021.00010.

[19] A. Pasdar, Y. C. Lee, and Z. Dong, ‘‘Connect API with blockchain: A sur-
vey on blockchain Oracle implementation,’’ ACM Comput. Surv., vol. 55,
no. 10, pp. 1–39, Oct. 2023, doi: 10.1145/3567582.

[20] A. Beniiche, ‘‘A study of blockchain oracles,’’ 2020, arXiv:2004.07140.
[21] G. Caldarelli and J. Ellul, ‘‘The blockchain Oracle problem in decentral-

ized finance—Amultivocal approach,’’ Appl. Sci., vol. 11, no. 16, p. 7572,
Aug. 2021, doi: 10.3390/app11167572.

VOLUME 11, 2023 50915

http://dx.doi.org/10.3390/info11110509
http://dx.doi.org/10.1145/3471140
http://dx.doi.org/10.3390/fi14060175
http://dx.doi.org/10.1109/ACCESS.2022.3184726
http://dx.doi.org/10.1109/ACCESS.2022.3184726
http://dx.doi.org/10.1007/978-3-319-91602-6_21
http://dx.doi.org/10.1007/978-3-319-91602-6_21
http://dx.doi.org/10.21511/imfi.15(4).2018.14
http://dx.doi.org/10.17705/2msqe.00021
http://dx.doi.org/10.1108/SCM-01-2018-0029
http://dx.doi.org/10.1108/SCM-01-2018-0029
http://dx.doi.org/10.1111/deci.12396
http://dx.doi.org/10.1111/deci.12396
http://dx.doi.org/10.2139/ssrn.3382343
http://dx.doi.org/10.1628/jite-2019-0021
http://dx.doi.org/10.1415/91545
http://dx.doi.org/10.1109/ACCESS.2020.2992698
http://dx.doi.org/10.1109/DAPPS52256.2021.00010
http://dx.doi.org/10.1145/3567582
http://dx.doi.org/10.3390/app11167572

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

[22] G. Caldarelli, ‘‘Wrapping trust for interoperability: A preliminary study
of wrapped tokens,’’ Information, vol. 13, no. 1, p. 6, Dec. 2021, doi:
10.3390/INFO13010006.

[23] Blockchain Oracle Summit. (Apr. 2022). BOS Pre-Event Webinar: Oracles
& Prediction Markets. Accessed: Mar. 23, 2023. [Online]. Available:
https://www.youtube.com/watch?v=GRNHwJNcmRM&t=210s

[24] (Jul. 9, 2019). Early Temple | Smart Contracts for Next-Generation
Business Models. Accessed: Apr. 2, 2023. [Online]. Available:
https://web.archive.org/web/20190709201247/http://earlytemple.com/

[25] S. Nakamoto. (Mar. 9, 2011). Re: Open Sourced My Java SPV Impl
| Satoshi’s Archive. Accessed: Nov. 25, 2022. [Online]. Available:
https://www.bitcoin.com/satoshi-archive/emails/mike-hearn/13/

[26] S. Nakamoto. (Apr. 20, 2011). Re: Holding Coins in an Unspend-
able State for a Rolling Time Window | Satoshi’s Archive. Accessed:
Nov. 25, 2022. [Online]. Available: https://www.bitcoin.com/satoshi-
archive/emails/mike-hearn/15/

[27] M. Hearn. (2011). Contracts. Bitcoin Wiki. Accessed:
Dec. 2, 2022. [Online]. Available: https://en.bitcoin.it/w/index.php?
title=Contract&oldid=13637

[28] Furunodo and Bitcoin Wiki. (2020). Contracts. Accessed:
Dec. 12, 2022. [Online]. Available: https://en.bitcoin.it/w/index.php?
title=Contract&oldid=67871

[29] J. Southurst. (Feb. 6, 2014). Apple Removes Blockchain Bitcoin Wallet
Apps From Its App Stores. Accessed: Nov. 21, 2022. [Online].
Available: https://www.coindesk.com/markets/2014/02/06/apple-
removes-blockchain-bitcoin-wallet-apps-from-its-app-stores/

[30] Etherscan. (2023). Oraclize Address Transactions. Accessed:
Jan. 30, 2023. [Online]. Available: https://etherscan.io/
address/0x26588a9301b0428d95e6fc3a5024fce8bec12d51#analytics

[31] D-Nice. (May 12, 2017). GitHub—Provable-Things/Oraclize-Lib: Ora-
clize Node.js Library. Accessed: Jan. 27, 2023. [Online]. Available:
https://github.com/provable-things/oraclize-lib

[32] J. Warren. (2012). Bitmessage: A Peer-to-Peer Message Authentication
and Delivery System. Accessed: Nov. 24, 2022. [Online]. Available:
https://www.Bitmessage.org

[33] T. Kolinko, G. Pstrucha, and K. Kucharski. (2014). Orisi
Whitepaper. Accessed: Sep. 6, 2022. [Online]. Available:
https://github.com/orisi/wiki/wiki/Orisi-White-Paper

[34] S. Bistarelli, I. Mercanti, and F. Santini, ‘‘An analysis of non-standard
transactions,’’ Frontiers Blockchain, vol. 2, p. 7, Aug. 2019, doi:
10.3389/FBLOC.2019.00007.

[35] T. C. Schelling. (1960). The Strategy of Conflict. Public Domain,
Google-Digitized. Accessed: Feb. 13, 2023. [Online]. Available:
https://www.hup.harvard.edu/catalog.php?isbn=9780674840317

[36] A. Piscitello. (Jul. 23, 2013). Implementing External State Contracts—
Feedback Requested. Accessed: Jan. 3, 2023. [Online]. Available:
https://bitcointalk.org/index.php?topic=260898.0

[37] J. Southurst. (2014). Reality Keys: Bitcoin’s Third-Party Guarantor
for Contracts and Deals. Accessed: Jan. 6, 2023. [Online]. Available:
https://www.coindesk.com/markets/2014/01/17/reality-keys-bitcoins-
third-party-guarantor-for-contracts-and-deals/

[38] E. Edgar and C. Delrey. (2014). Realitykeysdemo.py.
Accessed: Jan. 6, 2023. [Online]. Available: https://github.com/
edmundedgar/realitykeys-examples/blob/master/realitykeysdemo.py

[39] K. Pani. (2014). How to Create the Meta Chain. Accessed: Jan. 16, 2023.
[Online]. Available: https://blogs.sap.com/2014/01/06/how-to-create-the-
meta-chain/

[40] D. Weller. (2016). Decoding a Transaction. Accessed: Jan. 24, 2023.
[Online]. Available: https://github.com/tokenly/counterparty-
spec/blob/master/spec/02-decoding.md

[41] D. Weller, I. Zuber, and Chiguiretor. (2019). Protocol Specification |
Counterparty. Accessed: Jan. 25, 2023. [Online]. Available: https://
github.com/CounterpartyXCP/Documentation/blob/master/Developers/
protocol_specification.md

[42] A. Krellenstein, E. Wagner, and R. Dermody. (Mar. 21, 2014).
[ANN][XCP] Counterparty—Pioneering Peer-to-Peer Finance—
Official Thread. Accessed: Jan. 15, 2023. [Online]. Available: https://
bitcointalk.org/index.php?topic=395761.msg5817170#msg5817170

[43] BitMex-Research. (2022). The OP_Return Wars of 2014—Dapps vs
Bitcoin Transactions. Accessed: Jan. 12, 2023. [Online]. Available:
https://blog.bitmex.com/dapps-or-only-bitcoin-transactions-the-2014-
debate/

[44] BCH World Order. (2018). A Few Months After the Counterparty
Developers Started Using OP_RETURN, Bitcoin Developers
Decreased the Size of OP_RETURN From 80 Bytes to 40
Bytes. The Sudden Decrease in the Size of the OP_RETURN
Function Stopped Networks Launched on Top of Bitcoin From
Operating Properly. Accessed Jan. 19, 2023. [Online]. Available:
https://www.reddit.com/r/btc/comments/80ycim/a_few_months_after_the
_counterparty_developers/

[45] D. Bradbury. (2014). Developers Battle Over Bitcoin
Block Chain. Accessed: Jan. 19, 2023. [Online]. Available:
https://www.coindesk.com/markets/2014/03/25/developers-battle-over-
bitcoin-block-chain/

[46] Historian1111. (2015). Blockstream Co-Founder Luke-jr Banning
Mastercoin and Counterparty Transactions, Adding Blacklists to Gentoo
Bitcoind by Default. Accessed: Jan. 17, 2023. [Online]. Available:
https://www.reddit.com/r/Bitcoin/comments/2pfxak/blockstream
_cofounder_lukejr_banning_mastercoin/

[47] Insette. (2018). Your Best Pitch for Decred. Accessed:
Jan. 19, 2023. [Online]. Available: https://old.reddit.com/r/decred/
comments/6wxueo/your_best_pitch_for_decred/dmcer4d/

[48] M. I. Moneyist. (2019). The OP_Return War ‘Debunked’.
Accessed: Jan. 14, 2023. [Online]. Available: https://twitter.com/
notgrubles/status/1187470076833697794

[49] V. Buterin. (Nov. 12, 2017). The Very Earliest Versions of ETH Protocol.
[Online]. Available: https://twitter.com

[50] E. Muratov. (2016). Bitcoin Minimalism: Counterparty to Talk With
Bitcoin in Ethereish. Accessed: Jan. 20, 2023. [Online]. Available:
https://web.archive.org/web/20170623073803/http:/forklog.net/bitcoin-
minimalism-counterparty-to-talk-with-bitcoin-in-ethereish/

[51] S. Nakamoto. (Mar. 9, 2011). Re: 2 Open Sourced My Java SPV
Impl | Satoshi’s Archive. Accessed: Nov. 25, 2022. [Online].
Available: https://www.bitcoin.com/satoshi-archive/emails/mike-
hearn/14/#selection-25.4239-25.4589

[52] Appamatto. (Nov. 15, 2010). BitDNS and Generalizing Bitcoin.
Accessed: Feb. 20, 2023. [Online]. Available: https://bitcointalk.org/
index.php?topic=1790.0

[53] C. Isidore. (Mar. 11, 2013). Intrade shut down due to financial
probe. CNN Business. Accessed: Dec. 1, 2022. [Online].
Available: https://money.cnn.com/2013/03/11/investing/intrade-
shutdown/index.html

[54] P. Sztorc. (Dec. 14, 2015). Truthcoin Peer-to-Peer Oracle System and
Prediction Marketplace. Accessed: Feb. 15, 2023. [Online]. Available:
https://bitcoinhivemind.com/papers/truthcoin-whitepaper.pdf

[55] Salience Noun—Definition, Pictures, Pronunciation and Usage Notes
| Oxford Advanced Learner’s Dictionary. Accessed: Feb. 15, 2023.
[Online]. Available: https://www.oxfordlearnersdictionaries.
com/definition/english/salience

[56] A. Back et al., ‘‘Enabling blockchain innovations with
pegged sidechains,’’ Tech. Rep., 2014. [Online]. Available:
https://blockstream.com/sidechains.pdf

[57] R. Hanson, ‘‘Logarithmic markets coring rules for modular combinatorial
information aggregation,’’ J. Predict. Markets, vol. 1, no. 1, pp. 3–15,
Dec. 2012, doi: 10.5750/jpm.v1i1.417.

[58] G. Angeris and T. Chitra, ‘‘Improved price Oracles: Constant function
market makers,’’ SSRN Electron. J., pp. 80–91, 2020. [Online]. Avail-
able: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3636514, doi:
10.2139/ssrn.3636514.

[59] N. Szabo. (1994). Smart contracts, Personal Blog. Accessed:
Feb. 8, 2023. [Online]. Available: https://www.fon.hum.uva.nl/
rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool
2006/szabo.best.vwh.net/smart.contracts.html

[60] S. Nick. (1997). Formalizing and Securing Relationships on
Public Networks. Accessed: Feb. 15, 2020. [Online]. Available:
https://journals.uic.edu/ojs/index.php/fm/article/view/548

[61] A. M. Antonopoulos and G. Woods,Mastering Ethereum: Building Smart
Contracts and DAPPS. Sebastopol, CA, USA: O’Reilly Media, 2018.

[62] S. Nakamoto. (Apr. 27, 2009). Re: Lack of Chargeback Support | Satoshi’s
Archive, Nakamoto Email. Accessed: Nov. 25, 2022. [Online]. Available:
https://www.bitcoin.com/satoshi-archive/emails/mike-hearn/8/

[63] S. Nakamoto. (Aug. 7, 2010). Escrow. Accessed: Feb. 20, 2023. [Online].
Available: https://bitcointalk.org/index.php?topic=750.0

[64] Sebastian. (Mar. 2011). Bitcoin Secure Chargebacks (With Votes)?
Accessed: Feb. 20, 2023. [Online]. Available: https://bitcointalk.
org/index.php?topic=4856.0

50916 VOLUME 11, 2023

http://dx.doi.org/10.3390/INFO13010006
http://dx.doi.org/10.3389/FBLOC.2019.00007
http://dx.doi.org/10.5750/jpm.v1i1.417
http://dx.doi.org/10.2139/ssrn.3636514

G. Caldarelli: Before Ethereum. The Origin and Evolution of Blockchain Oracles

[65] C. Murray. (Dec. 7, 2021). The Mystery of the Genesis Block—CoinGeek.
Accessed: Feb. 7, 2023. [Online]. Available: https://coingeek.com/the-
mystery-of-the-genesis-block/

[66] N. O’Dell. (Dec. 29, 2016). Op Return—What Was the Very Initial
Value of OP_RETURN?—Bitcoin Stack Exchange. Accessed:
Feb. 6, 2023. [Online]. Available: https://bitcoin.stackexchange.
com/questions/50414/what-was-the-very-initial-value-of-op-return

[67] M. Bartoletti and L. Pompianu, ‘‘An analysis of Bitcoin OP_RETURN
metadata,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., in Lecture
Notes in Computer Science: Including Subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics, vol. 10323, 2017,
pp. 218–230, doi: 10.1007/978-3-319-70278-0_14.

[68] Seandotau. (2016). OP_RETURN 40 TO 80 BYTES. Accessed:
Jan. 23, 2023. [Online]. Available: https://www.talkcrypto.org/
blog/2016/12/30/op_return-40-to-80-bytes/

[69] G. Andresen. (2013). Relay OP_RETURN Data TxOut as Stan-
dard Transaction Type. Accessed: Jan. 23, 2023. [Online]. Available:
https://github.com/bitcoin/bitcoin/pull/2738

[70] A. M. Antonopoulos, Mastering Bitcoin: Programming the Open
Blockchain, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, 2017.

[71] Furunodo. (2020). OP_RETURN—Bitcoin Wiki. Accessed: Feb. 7, 2023.
[Online]. Available: https://en.bitcoin.it/wiki/OP_RETURN

[72] (Aug. 30, 2009). 2009 Bitcoin Code. Accessed: Feb. 7, 2023.
[Online]. Available: https://github.com/bitcoin/bitcoin/blob/4405b
78d6059e536c36974088a8ed4d9f0f29898/script.cpp#L170

[73] G. Andresen. (Oct. 24, 2013). Core Development Update #5.
Accessed: Feb. 9, 2023. [Online]. Available: https://web.archive.org/
web/20131024212741/https://bitcoinfoundation.org/blog/?p=290

[74] T. Swanson, ‘‘Bitcoin hurdles: The public goods costs of securing a decen-
tralized seigniorage network which incentivizes alternatives and central-
ization,’’ SSRN Electron. J., pp. 1–52, 2014.

[75] G. Andresen. (Feb. 26, 2014). Script: Reduce OP_RETURN Stan-
dard Relay Bytes to 40 by Jgarzik · Pull Request #3737 · Bit-
coin/Bitcoin · GitHub. Accessed: Feb. 10, 2023. [Online]. Available:
https://github.com/bitcoin/bitcoin/pull/3737/files

[76] E. Strehle and F. Steinmetz, ‘‘Dominating OP returns: The impact of Omni
and veriblock on Bitcoin,’’ J. Grid Comput., vol. 18, no. 4, pp. 575–592,
Dec. 2020, doi: 10.1007/S10723-020-09537-9.

[77] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander, ‘‘Augur:
A decentralized Oracle and prediction market platform,’’ Jan. 2015,
arXiv:1501.01042.

[78] C. Russo. (Jul. 11, 2020). Sale of the Century: The Inside Story
of Ethereum’s 2014 Premine—CoinDesk. Accessed: Feb. 12, 2023.
[Online]. Available: https://www.coindesk.com/markets/2020/07/11/sale-
of-the-century-the-inside-story-of-ethereums-2014-premine/

[79] V. Buterin. (Jul. 22, 2014). Launching the Ether Sale | Ethereum
Foundation Blog. [Online]. Available: https://blog.ethereum.org/
2014/07/22/launching-the-ether-sale Accessed: Feb. 12, 2023.

[80] Cryptopedia Staff. (Mar. 10, 2022). Initial Coin Offerings: The Ethereum
ICO Boom | Gemini. Accessed: Feb. 12, 2023. [Online]. Available:
https://www.gemini.com/cryptopedia/initial-coin-offering-explained-
ethereum-ico

[81] J. Poon and T. Dryja. (2016). The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. Accessed: Feb. 12, 2023. [Online]. Available:
https://lightning.network/lightning-network-paper.pdf

[82] L. Gudgeon, D. Perez, D. Harz, B. Livshits, and A. Gervais, ‘‘The
decentralized financial crisis,’’ in Proc. Crypto Valley Conf. Blockchain
Technol. (CVCBT), Piscataway, NJ, USA, Jun. 2020, pp. 1–15, doi:
10.1109/CVCBT50464.2020.00005.

[83] E. Edgar. (Jan. 20, 2014). [ANN] Reality Keys: An Oracle Letting You
Use External State in Transactions. Accessed: Apr. 7, 2023. [Online].
Available: https://bitcointalk.org/index.php?topic=423638

[84] Pacyrus. (2021). Multi-Signature—Bitcoin Wiki. Accessed: Apr. 7, 2023.
[Online]. Available: https://en.bitcoin.it/wiki/Multi-signature

[85] BitcoinWiki. OP_RETURN—Bitcoin Wiki. Accessed: Apr. 7, 2023.
[Online]. Available: https://en.bitcoin.it/wiki/OP_RETURN

[86] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. Accessed: Jun. 11, 2019. [Online]. Available: https://bitcoin.
org/bitcoin.pdf

[87] J. Willett. (2013). The Second Bitcoin Whitepaper. [Online].
Available: https://github.com/bitsblocks/mastercoin-whitepaper/
blob/master/index.md

[88] Redleader556. (2015). Exposed: Luke-jr Plans on Forcing Blacklists
on All Gentoo Bitcoin Users by Default, for the Second Time.
Accessed: Jan. 17, 2023. [Online]. Available: https://www.reddit.
com/r/Bitcoin/comments/2pfgjg/exposed_lukejr_plans_on_forcing
_blacklists_on_all/

GIULIO CALDARELLI received the M.S. degree
in management and governance from the Univer-
sity of Siena, Italy, in 2013, and the Ph.D. degree
in economics andmanagement from theUniversity
of Verona, Italy, in 2022.

He is currently a Researcher with the Univer-
sity of Turin, Italy, and a Lecturer of financial
accounting and decentralized finance. He is inves-
tigating oracular mechanisms and issues related to
the use of oracles in real-world blockchains. Most

of his work concerns sustainable supply chains and decentralized finance.
He recently published a book titled Blockchain Oracles and the Oracle
Problem.

Dr. Caldarelli was the Chairperson for the first Blockchain Oracle Summit,
in 2022. Within the IEEE, he presented a paper on the Oracle problem
at IEEE ICTMOD 2020 and served as the Session Chair for the IEEE
Cybermatics 2020.

Open Access funding provided by ‘Università degli Studi di Torino’ within the CRUI CARE Agreement

VOLUME 11, 2023 50917

http://dx.doi.org/10.1007/978-3-319-70278-0_14
http://dx.doi.org/10.1007/S10723-020-09537-9
http://dx.doi.org/10.1109/CVCBT50464.2020.00005

