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DOES DC IMPLY ACω, UNIFORMLY?

ALESSANDRO ANDRETTA AND LORENZO NOTARO

Abstract. The Axiom of Dependent Choice DC and the Axiom
of Countable Choice ACω are two weak forms of the Axiom of
Choice that can be stated for a specific set: DC(X) asserts that
any total binary relation on X has an infinite chain, while ACω(X)
asserts that any countable collection of nonempty subsets of X has
a choice function. It is well-known that DC ⇒ ACω. We study for
which sets and under which hypotheses DC(X) ⇒ ACω(X), and
then we show it is consistent with ZF that there is a set A ⊆ R for
which DC(A) holds, but ACω(A) fails.

1. Introduction

The Axiom of Choice AC is the statement ∀X AC(X), where

(AC(X)) X 6= ∅ ⇒ ∃f : P(X) → X ∀A ⊆ X (A 6= ∅ ⇒ F (A) ∈ A).

The function f is a choice function for X . Observe that AC(X) if and
only if “X can be well-ordered”.

By restricting the choice function we have that AC(X) ⇒ ACI(X),
where

(ACI(X))
For any sequence (Ai)i∈I of nonempty subsets of X there
is (ai)i∈I such that ∀i ∈ I (ai ∈ Ai).

Of particular interest is the case when I = ω: the Axiom of Count-

able Choice ACω is ∀X ACω(X). (In the literature CC is another name
for this axiom.)

Let R be a binary relation on a set X .

• An R-chain is a sequence (xn)n∈ω of elements of X such that
xi R xi+1 for all i ∈ ω. The element x0 is the starting point of
the chain.

• An R-cycle is a finite string x0, . . . , xn of elements of X such
that xi R xi+1 for all i < n and xn R x0.

• R is total on X if ∀x ∈ X ∃y ∈ X x R y.
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2 ALESSANDRO ANDRETTA AND LORENZO NOTARO

Any R-cycle yields an R-chain.
The Axiom of Dependent Choice DC is ∀X DC(X), where

(DC(X))
For any nonempty, total R ⊆ X2 there is (xn)n∈ω such
that ∀n ∈ ω (xn R xn+1).

The axioms DC and ACω are ubiquitous in set theory and figure
prominently in many areas of mathematics, including analysis and
topology. They are probably the most popular weak-forms of the axiom
of choice, since they are powerful enough to enable standard mathemat-
ical constructions, yet they are weak enough to avoid the pathologies
given by AC.

It is well-known that DC ⇒ ACω (Theorem 2.4), so one may ask if
this results holds uniformly, that is: does DC(X) ⇒ ACω(X) for all X?
This implication holds for many Xs, but in order to prove it in general,
ACω(R) we must be assumed (Theorem 2.8). In Section 4 we will show
that the assumption ACω(R) cannot be dropped, as it is consistent with
ZF that there is a set A ⊆ R for which DC(A) holds, but ACω(A) fails
(Theorem 4.1). In Section 5 we discuss some complementary results
along with the question on the definability of the set constructed in
Section 4.

Notation. Our notation is standard, see e.g. [Jec03]. We write X -
Y to say that there is an injection from X into Y , and X ≈ Y to
say that X and Y are in bijection. Ordered pairs are denoted by
(a, b), finite sequences are denoted by 〈a0, . . . , an〉 or by (a0, . . . , an),
countable sequences are denoted by 〈an | n ∈ ω〉 or by (an)n∈ω. The
concatenation of a finite sequence s with a finite/countable sequence
t is the finite/countable sequence sat obtained by listing all elements of
s and then all elements of t. The set of all finite (countable) sequences
from X is <ωX (respectively: ωX). The collection of all finite subsets
of a set X is [X ]<ω.

If Y is a subset of a topological space X , then Cl(Y ) is its closure,
and ClA(Y ) := Cl(Y )∩A is the closure of Y ∩A with respect to A ⊆ X .

Following set-theoretic practice, we refer to members of ωω or P(ω)
as “reals”, and we effectively identify R with the Baire space ωω.

2. Basic constructions

For the reader’s convenience let us recall a few notions and results
that will be used throughout the paper.

A set X is finite if X ≈ n for some n ∈ ω; otherwise it is infinite.
A set X is Dedekind-infinite if ω - X ; otherwise it is Dedekind-

finite or simply D-finite. Every finite set is D-finite, and assuming
ACω the converse holds.

It is consistent with ZF that infinite D-finite sets exist (see Sec-
tion 3.1). By [Kar19] it is even consistent that every set is the surjective
image of a D-finite set.
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Let R be a binary relation. With abuse of notation we write

R(x) := {y | x R y}

for the set of all ys that are related to x, and

R ↾A := R ∩ (A×A)

for the restriction of R to the set A. The transitive closure of R

R+ := {(x, y) | ∃〈y0, . . . , yn〉 (x R y0 R y1 R · · · R yn R y)}

is the smallest transitive relation containing R.
The next few results are folklore.

Proposition 2.1. Let X be a set.

(a) If Y is the surjective image of X, then DC(X) ⇒ DC(Y ).
(b) DC(X) is equivalent to the seemingly stronger statement: For

any total R ⊆ X ×X and for any a ∈ X, there is an R-chain

starting from a.
(c) If ∅ 6= An ⊆ X and An ∩ Am = ∅, then DC(X) implies that

there is a choice function for the An’s.

(d) DC(X × ω) ⇒ ACω(X).

Proof. (a) Assume DC(X) and let R be a total relation on Y and
let F : X → Y be a surjection. The relation S = {(x, x′) ∈ X2 |
(F (x), F (x′)) ∈ R} is total on X , so by assumption there is an S-chain
(xn)n∈ω. Then (F (xn))n∈ω is an R-chain.

(b) Suppose R ⊆ X2 is total and let a ∈ X . Observe that S =
R ↾R+(a) is total on R+(a). By part (a) DC(R+(a)) holds, hence there
is an S-chain (yn)n∈ω. Let (x0, . . . , xk+1) witness that y0 ∈ R+(a), i.e.
x0 = a, xk+1 = y0 and xi R xi+1 for all i ≤ k: then (x0, . . . , xk)

a(yn)n∈ω
is an R-chain starting from a.

(c) Let R be the relation on
⋃

nAn ⊆ X defined by

x R y ⇔ ∃n ∈ ω (x ∈ An ∧ y ∈ An+1)

By part (a) DC(
⋃

n An) holds, hence by part (b) there is an R-chain
(xn)n∈ω in

⋃

nAn starting from any a0 ∈ A0. Observe that any R-chain
(an)n∈ω is such that an ∈ An for all n ∈ ω.

(d) Given ∅ 6= An ⊆ X , let Ān = An × {n} ⊆ X × ω. By hypothesis
and part (c), there is a sequence (an, n)n∈ω such that (an, n) ∈ Ān,
hence an ∈ An. �

The gist of part (c) of Proposition 2.1 is that we can use dependent
choice rather than countable choice whenever the set we choose from
are disjoint. Here is an example of such application.

Lemma 2.2. Suppose X is a first countable space and a ∈ Cl(A) \ A
where A ⊆ X. Assume DC(A) holds. Then there are distinct an ∈ A
such that an → a. In particular ω - A.
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Proof. Let {Un | n ∈ ω} be a neighborhood base for a. Then choose
an ∈ (Un \ Un+1) ∩ A—these sets are pairwise disjoint, and by passing
to a subsequence, if needed, we may assume they are nonempty. �

Lemma 2.3. Let X be a set.

(a) X × 2 - X ⇒ X × ω - X.

(b) If X 6= ∅ then <ω(<ωX) - <ωX, so <ωX × 2 - <ωX.

(c) ∀X ∃Y (X ⊆ Y ∧ <ωY - Y ).

Proof. (a) If f0, f1 : X → X are injections with ran(f0) ∩ ran(f1) = ∅,
then define an injection F : X × ω → X as follows:

F (x, 0) = f0(x), F (x, n+ 1) = f1 ◦ · · · ◦ f1
︸ ︷︷ ︸

n+1 times

◦f0(x).

(b) If X is a singleton, then <ωX ≈ ω, and the result follows at
once. If X has at least two elements, the result follows from [AMR22,
Proposition 2.1].

(c) Given X take Y = Vλ with sufficiently large limit λ. �

From Lemma 2.3 and Proposition 2.1(d) we obtain at once:

Theorem 2.4. (a) If X × 2 - X then DC(X) ⇒ ACω(X). In

particular: DC(R) ⇒ ACω(R).
(b) ∀X ∃Y (X ⊆ Y ∧ (DC(Y ) ⇒ ACω(Y )).
(c) DC ⇒ ACω.

Lemma 2.5. (a) If A ⊆ R and ACω(A) holds, then A is separable.

(b) ACω(R) ⇔ ∀A ⊆ R (A is separable).
(c) Suppose A ⊆ R contains a nonempty perfect set, and assume

DC(A). Then DC(R) holds, and hence ACω(A) holds.

Proof. As A is second countable, part (a) of Lemma 2.5 follows.
(b) The direction (⇒) is a direct consequence of part (a). For the

other direction, fix a sequence (An)n∈ω of nonempty subsets of R and
consider the set A = {〈n〉ax | n ∈ ω and x ∈ An}. From an enumera-
tion of a dense subset of A (which exists by assumption) we can extract
a choice function for (An)n∈ω.

(c) If P ⊆ A is perfect, then P ≈ R, and since A surjects onto P ,
then DC(R) holds, and hence ACω(R) holds. �

Note that the implication in part (a) of Lemma 2.5 cannot be re-
versed: if A ⊆ R is a witness of the failure of countable choice, then
the same is true of the separable set A ∪Q.

2.1. ACω(X) follows from DC(X) together with ACω(R). Let us
start with the following combinatorial result that might be of indepen-
dent interest. It is stated for families of sets indexed by an arbitrary
set I, but when I = ω the assumption ACI(P(I)) becomes ACω(R).
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Lemma 2.6. Let (Xi)i∈I be nonempty sets, and assume ACI(P(I)).
Then there are (Yi)i∈I such that ∅ 6= Yi ⊆ Xi and for all i, j ∈ I either

Yi = Yj or else Yi ∩ Yj = ∅.

Proof. Let F :
⋃

i∈I Xi → P(I), F (x) = {i ∈ I | x ∈ Xi} and let
Ai = {a ∈ ran(F ) | i ∈ a}. Observe that for all x ∈ X and all i ∈ I

(1) x ∈ Xi ⇔ F (x) ∈ Ai.

In particular, ∅ 6= Ai ⊆ P(I) for all i ∈ I. By ACI(P(I)) pick ai ∈ Ai,
and let Yi = F−1({ai}) ⊆ X . Then

Yi = {x | F (x) = ai} = {x | {j | x ∈ Xj} = ai}

and since i ∈ ai, then Yi ⊆ Xi. The sets Yi need not be distinct as the
ais need not be distinct, but if ai 6= ai then Yi ∩ Yj = ∅. �

By (1) if the Xis are finite, then so are the Ais. If P(I) is linearly
orderable (e.g. when I is well-orderable), the ais can be chosen without
appealing to any axiom. Therefore:

Corollary 2.7. If P(I) is linearly orderable and (Xi)i∈I are finite,

nonempty sets, then there are ∅ 6= Yi ⊆ Xi such that for all i, j ∈ I
either Yi = Yj or else Yi ∩ Yj = ∅.

Theorem 2.8. Assume ACω(R), then ∀X (DC(X) ⇒ ACω(X)).

Proof. Assume DC(X) and let ∅ 6= Xn ⊆ X for n ∈ ω. By Lemma 2.6
there are ∅ 6= Yn ⊆ Xn such that for all n,m ∈ ω either Yn = Ym or
else Yn ∩ Ym = ∅. Let I ⊆ ω be such that {Yi | i ∈ I} = {Yn | n ∈ ω}
and Yi ∩ Yj = ∅ for every distinct i, j ∈ I. If we can find yi ∈ Yi for all
i ∈ I, then we can extend this to a choice sequence yn ∈ Yn ⊆ Xn for
all n ∈ ω as required. If I is finite, the yis can be found without any
appeal to choice. If I is infinite, then I ≈ ω so we can find the yis by
part (c) of Proposition 2.1. �

The following follows from the argument of Theorem 2.8 together
with Corollary 2.7.

Corollary 2.9. ∀X (DC(X) ⇒ AC
<ω
ω (X)), where AC

<ω
ω (X) asserts

that every countable collection of nonempty finite subsets of X has a

choice function.

2.2. Does DC(X) imply ACω(X)? By Theorem 2.4 and Theorem 2.8

(2) ∀X (DC(X) ⇒ ACω(X))

follows from either one of the following assumptions:

• X × 2 - X for all infinite X ,
• ACω(R).
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Sageev in [Sag75] proved that “X × 2 - X for all infinite X” does not
imply ACω(R), while Monro in [Mon74] proved that DC (and hence the
weaker ACω(R)) does not imply “X × 2 - X for all infinite X”. So
neither assumption implies the other.

The obvious question is if (2) is a theorem of ZF. Suppose that there
is a set X such that DC(X)∧¬ACω(X). By the proof of Lemma 2.6 the
set A := F [X ] ⊆ P(ω) is such that DC(A) holds, as A is the surjective
image of X , and ACω(A) fails, as otherwise, arguing as in Theorem 2.8,
ACω(X) would hold. Therefore if (2) fails, then the witness of this
failure can be taken to be a subset of R. In Section 4 we construct a
model of ZF in which

(3) ∃A ⊆ R (DC(A) ∧ ¬ACω(A))

showing that (2) is not a theorem of ZF. By Lemma 2.5 any A as in (3)
is neither D-finite, nor it contains a perfect set. It can be shown that (3)
fails both in Cohen’s first model (Proposition 3.4) and in the Feferman-
Levy model (Proposition 5.3), and hence in both these models (2) holds.

2.3. An equivalent formulation of DC. A tree on X is a T ⊆ <ωX
that is closed under initial segments, that is if t ∈ T and s ⊆ t then
s ∈ T . A tree T on X is pruned if for every t ∈ T there is s ∈ T such
that t ⊂ s. A branch of T is a b : ω → X such that ∀n ∈ ω (b ↾n ∈ T ).
A tree T it is ill-founded if it has a branch, otherwise it is well-

founded. Let

(DCω(X)) Any nonempty pruned tree on X is ill-founded

and let DCω be ∀X DCω(X). As DC is equivalent to DCω (Corollary 2.11
below) the axiom of Dependent Choice is often is stated as DCω. The
advantage of this formulation is that it can be generalized to ordinals
larger than ω.

Proposition 2.10. DCω(X) ⇔ DC(<ωX), for every nonempty set X.

Proof. (⇒) Suppose R is a binary relation on <ωX such that ∀s ∃t (s R
t). If ∅ R ∅, then 〈∅, ∅, . . .〉 is an R-chain as required, so we may
assume otherwise. Let R′ ⊆ R be the sub-relation on <ωX obtained by
choosing the shortest possible t′, that is

s R′ t ⇔ s R t ∧ ∀t′ ⊂ t¬(s R t′).

The relation R′ is total and any R′-chain is an R-chain. Then

T = {t ∈ <ωX | ∃s0, . . . , sn (∅ R′ s0 R
′ . . . R′ sn ∧ t ⊆ s1

a . . . asn)}

is a pruned tree onX , so it has a branch. By the minimality assumption
of R′, given a branch b of T one can construct inductively an R′-chain
(sn)n such that s0

as1
a . . . asn ⊆ b for all n.

(⇐) If T is a pruned tree on X , let R ⊆ T × T be defined by

s R t ⇔ s ⊂ t ∧ lh(s) + 1 = lh(t).
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As T ⊆ <ωX then DC(T ) holds, and since R is total, as T is pruned,
there is an R-chain. Any such chain yields a branch of T . �

Corollary 2.11. DC ⇔ DCω.

Proposition 2.12. Let X be a set.

(a) DCω(X) ⇒ DC(X).
(b) DCω(X) ⇒ ACω(X).

Proof. X injects into <ωX , so part (a) holds by Proposition 2.10.
For part (b) argue as follows. If ∅ 6= An ⊆ X , then {〈x0, . . . , xn〉 |

∀i ≤ n (xi ∈ Ai)} is a pruned tree on X , and any branch of it is a
sequence (an)n such that an ∈ An for all n ∈ ω. �

In light of Proposition 2.12, our main result, Theorem 4.1, tell us it
is consistent with ZF that there is a set A ⊆ R for which DC(A) holds
but DCω(A) fails.

3. Symmetric extensions

The model we construct in Section 4 is an iterated symmetric ex-
tension. For the reader’s convenience, lets us recall a few facts about
forcing and symmetric extensions.

If P is a forcing notion, i.e. a preordered set with a maximum 1P we
convene that p ≤P q means that p is stronger than q. (When there
is no danger of confusion we drop the subscript P.) Dotted letters
line ẋ, ẏ, . . . vary over the class of P-names, while x̌ is the canonical
P-name for x, while Ġ is the P-name for the generic filter. If F is a
set of P-names, then F • is the P-name {(ẋ, 1) | ẋ ∈ F}. If G ⊆ P is
V-generic, then ẋG is the object in V[G] obtained by evaluating ẋ with
G.

Let P be a forcing notion. Every automorphism π ∈ Aut(P) acts
canonically on P-names as follows: given ẋ a P-name,

πẋ = {(πẏ, πp) | (ẏ, p) ∈ ẋ}.

Lemma 3.1 (Symmetry Lemma, [Jec03, Lemma 14.37]). Let P be a

forcing notion, π ∈ Aut(P) and ẋ1, . . . , ẋn be P-names. For every

formula ϕ(x1, . . . , xn)

p  ϕ(ẋ1, . . . , ẋn) ⇔ πp  ϕ(πẋ1, . . . , πẋn).

Let G be a subgroup of Aut(P). A nonempty collection F of sub-
groups of G is a filter on G if it is closed under supergroups and finite
intersections. A filter F on G is said to be normal if for every H ∈ F
and π ∈ G, the conjugated subgroup πHπ−1 belongs to F as well.

We say that the triple 〈P,G,F〉 is a symmetric system if P is a
forcing notion, G is a subgroup of Aut(P) and F is a normal filter on
G. Given a P-name ẋ, we say that ẋ is F-symmetric if there exists
H ∈ F such that for all π ∈ H , πẋ = ẋ. This definition extends by
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recursion: ẋ is hereditarily F-symmetric, if ẋ is F -symmetric and
every name ẏ ∈ dom(ẋ) is hereditarily F -symmetric. We denote by
HSF the class of all hereditarily F -symmetric names.

Theorem 3.2 ([Jec03, Lemma 15.51]). Suppose that 〈P,G,F〉 is a

symmetric system and G ⊆ P is a V-generic filter. Denote by N
the class {ẋG | ẋ ∈ HSF}, then N is a transitive model of ZF, and

V ⊆ N ⊆ V[G].

The class N is also known as a symmetric extension of V. Sym-
metric extensions are often used to produce models of ZF in which the
axiom of choice fails. We next practise with this notion by discussing
the construction due to Cohen of a symmetric extension in which there
exists an infinite, D-finite set of reals. This model will be the first step
of the iteration in our main construction (Theorem 4.1).

3.1. The first Cohen model. Let P be the forcing that adds count-
ably many Cohen reals, i.e.

P = {p :⊂ ω → <ω2 | dom(p) is finite} ,

with p ≤ q if dom(p) ⊇ dom(q) and p(n) ⊇ q(n) for all n ∈ dom(q).
Although this is not the standard presentation of such a forcing, this
way of defining P will come useful in the Section 4. Let ȧn be the
canonical name for the n-th Cohen real, that is

ȧn = {( ˇ(k, i), p) | p ∈ P ∧ n ∈ dom p ∧ p(n)(k) = i}.

Observe that Ȧ := {ȧn | n ∈ ω}• is forced to be a dense subset of ω2.
Every permutation π on ω induces an automorphism of P as follows:

given p ∈ P, we let πp ∈ P be defined by

∀n ∈ dom(p)
(
πp(πn) = p(n)

)
.

We conflate the notation by using the same symbol π to denote both
the permutation and the automorphism on P it induces. Let G be
the group of all such automorphisms. For every finite E ⊂ ω, let
Fix(E) be the subgroup of G of all those automorphisms induced by
permutations that pointwise fix the set E. Let F be the filter on G
generated by {Fix(E) | E ⊂ ω finite}. It is easy to check that F is
actually a normal filter on G, hence 〈P,G,F〉 is a symmetric system.
Let G be a V-generic filter and let N0 be the corresponding symmetric
extension, which we call first Cohen model.

Denote by A the realization of the name Ȧ in V[G], i.e. the set ȦG.

Note that every ȧn is in HSF and so is Ȧ.

Proposition 3.3 ([Jec03, Example 15.52]). N0 � “A is D-finite”.

The set A, being infinite and D-finite, it is certainly not separable as
a subspace of R (indeed every infinite, separable T1 space is Dedekind-
infinite), and DC(A) also fails (see Lemma 2.2). The simultaneous local
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failure of both ACω and DC is not accidental, as the next proposition
shows that the first Cohen model satisfies (2) and even more.

Proposition 3.4. N0 � ∀X (DC(X) ⇒ AC(X)).

Lemma 3.5. Let X be a linearly ordered set, and let Y ⊆ [X ]<ω. If

ω - Y , then ω -
⋃

Y .

Proof. Let ≤ be a linear ordering of X , and let (An)n∈ω be a sequence
of distinct elements of Y . By passing to a subsequence we may assume
that An+1 * A0∪· · ·∪An, and that A0 6= ∅. Let x0 be the least element
of A0, and xn+1 be the least element of An+1 \ (A0∪ · · ·∪An). The xns
are distinct, and belong to X , as required. �

Lemma 3.6. If DC(Y ) with Y ⊆ [R]<ω infinite, then ω -
⋃
Y .

Proof. It is enough to show that ω - Y and then apply Lemma 3.5
with X = R. If

⋃
Y has no limit points, then it is discrete, so ω - Y .

Now suppose otherwise, and let x ∈ R be a limit point of
⋃
Y . Without

loss of generality we may assume that {x}, ∅ /∈ Y . For all A ∈ Y let
d(x,A) = min{|r − x| | r ∈ A \ {x}} be the distance of x from the rest
of A. Let R ⊆ Y 2 be the binary relation defined as follows: for every
A,B ∈ Y ,

R(A,B) ⇔ d(x,B) < d(x,A).

The relation R is acyclic and, by our hypothesis on x, it is total. If
follows from DC(Y ) that R has an infinite chain, and hence ω - Y . �

Proof of Proposition 3.4. In the first Cohen model, for every set X
there is a map sX : X → [A]<ω, known as the least support map, such
that s−1({B}) is well-orderable for every B ∈ [A]<ω [Jec73, Theorem
5.21, Exercise 5.22].

Let X ∈ N0 be such that DC(X) holds. Then also DC(ran(sX))
holds. If ran(sX) were infinite then letting Y = ran(sX) in Lemma 3.6
we have that ω -

⋃
ran(sX) ⊆ A, against the fact that A is D-finite.

Hence ran(sX) is finite, and X , being a finite union of well-orderable
sets, is well-orderable. �

4. The main result

This section is devoted to proving the following:

Theorem 4.1. It is consistent with ZF that there is a set A ⊆ R such

that DC(A) and ¬ACω(A).

4.1. Outline of the proof. We prove the theorem via an iteration of
symmetric extensions of length ω. We start the iteration with the first
Cohen model N0, with A ∈ N0 being the generic D-finite set of reals
(see Section 3.1). As already noted, in this model A is not separable
(in particular ACω(A) fails) and also DC(A) fails. Next, we define a
chain of models N0 ⊂ N1 ⊂ · · · ⊂ Nω such that, for each n, Nn+1 is
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a symmetric extension of Nn that contains a generic set of chains for
all binary relation in Nn that are total and acyclic on A. At the final
stage, Nω, which is our model, is going to be something resembling to
“the model of sets definable from finitely many elements of

⋃

n Nn”. If
we do the construction properly, we can prove that in Nω we’ve added
enough countable subsets of A (or, equivalently, enough sequences over
A) to guarantee DC(A) (Theorem 4.10), but A is still not separable, in
particular ACω(A) fails (Corollary 4.8).

Actually, we don’t only show that A is not separable in our model,
but we give a topological characterization of its separable subsets:
among the subsets of A, the separable ones are precisely those which
are scattered with finite scattered height (Definition 4.5, Theorem 4.7).

4.2. The symmetric system. We start by defining recursively a se-
quence 〈Pn,Gn,Fn〉n∈ω of symmetric systems. Let 〈P0,G0,F0〉 be the
symmetric system defined in Section 3.1, i.e. the one that induces the
first Cohen model. For each n we denote by ≤n,n the ordering and
the forcing relation of Pn, respectively, and by HSn the class HSFn

, i.e.
the class of all hereditarily Fn-symmetric Pn-names. We also let

Rn = {Ṙ ∈ HSn | ∀ẋ ∈ dom(Ṙ) ∃n,m ∈ ω (ẋ = (ȧn, ȧm)
•)},

so that Rn is the set of all “good” hereditarily Fn-symmetric Pn-names
for binary relations on Ȧ.

Recursively on n, we define Pn+1 to be the set of all the sequences
p = 〈pk | k ≤ n+ 1〉 such that

(1) p ↾n + 1 ∈ Pn,
(2) pn+1 : dom(pn+1) → Rn × <ωω with dom(pn+1) a finite subset

of ω,
(3) For each k ∈ dom(pn+1) with pn+1(k) = (Ṙ, 〈n0, . . . , nl〉) we

have p ↾n + 1 n “Ṙ is total, acyclic and ȧn0
Ṙ ȧn1

Ṙ . . . Ṙ
ȧnl

”,

where, at stage n = 0, we identify the conditions p ∈ P0 with their
singleton sequence 〈p〉.

For each p ∈ Pn+1 and k ∈ dom(pn+1) with pn+1(k) = (Ṙ, s), we
denote Ṙ and s by pRn+1(k) and psn+1(k), respectively. Given p, q ∈ Pn+1

we let p ≤n+1 q if and only if

• p ↾n + 1 ≤n q ↾n+ 1,
• dom(pn+1) ⊇ dom(qn+1),
• ∀k ∈ dom(qn+1) (p

R
n+1(k) = qRn+1(k) and psn+1(k) ⊇ qsn+1(k)).

This defines the forcing Pn+1. Now we are left to define the subgroup
Gn+1 of Aut(Pn+1).
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Consider a sequence ~π = 〈π0, . . . , πn+1〉 with each πi being a permu-
tation of ω. By induction hypothesis1 ~π ↾n + 1 induces an automor-
phism ~π ↾n + 1 ∈ Gn. Note that, as in Section 3.1, we conflate the
notation by using the same symbol to denote both sequences of permu-
tations and the automorphisms they induce. Now, the sequence ~π in-
duces an automorphism on Pn+1 as follows: given p ∈ Pn+1, we let ~π(p)
be the condition in Pn+1 such that ~π(p) ↾n+1 = ~π ↾n+1(p ↾n+1) and,

for each k ∈ dom(pn+1) with psn+1(k) = 〈n0, . . . , nl〉 and pRn+1(k) = Ṙ,

~π(p)Rn+1(πn+1(k)) = ~π ↾n+ 1(Ṙ),

~π(p)sn+1(πn+1(k)) = 〈π0(n0), . . . , π0(nl)〉.

Let Gn+1 be the group of all such automorphisms on Pn+1, i.e. the
ones induced by sequences (of length n+ 2) of permutations of ω. For

each sequence ~H = 〈H0, . . . , Hn+1〉 of subsets of ω, we let Fix( ~H) be
the subgroup of all those ~π ∈ Gn+1 such that πk pointwise fixes Hk

for all k ≤ n + 1. We define Fn+1 be the filter on Gn+1 generated

by {Fix( ~H) | Hk is finite for all k ≤ n+ 1}. From now on we use the

symbol ~H to denote finite sequences of finite subsets of ω.
This ends the inductive definition of the sequence 〈Pn,Gn,Fn〉n∈ω.

Note that, for each n < m, there is a natural complete embedding
in,m : Pn → Pm and a natural embedding jn,m : Gn → Gm. Thus we let
P and G be the direct limits of the forcings Pn and of the groups Gn,
respectively. We now define the normal filter F on G in the expected
way: we let F be the filter generated by

{Fix( ~H) | Hk is finite for all k < lh( ~H)},

where, given any ~H finite sequence of subsets of ω, Fix( ~H) is the sub-
group of G made of all those ~π such that πk pointwise fixes Hk for all
k < lh( ~H).

Henceforth 〈P,G,F〉 is our symmetric system, with HS being the
class of all F -symmetric P-names and ≤, being the ordering and the
forcing relation of P, respectively.

Remark 4.2. Our iterative construction fits into the general framework
developed by Asaf Karagila [Kar19] to deal with iterations of symmetric
extensions.

For each n, k ∈ ω, we let

ḟn.k = {((ľ, ȧm)
•, p) | l, m ∈ ω, p ∈ P, psn+1(k)(l) = m},

Ḟn = {ḟn,k | k ∈ ω}•,

Ḟ = {Ḟn | n ∈ ω}•.

Note that all names defined so far are all in HS. Given a ẋ ∈ HS we say
that ~H is a support of ẋ if ~π(ẋ) = ẋ for all ~π ∈ Fix( ~H). Also, given

1At n = 0 we identify each π ∈ G0 with the singleton sequence 〈π〉.
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p = 〈p0, . . . , pn〉 ∈ P and ~H = 〈H0, . . . , Hn〉 we write p ↾ ~H to denote
the sequence 〈p0 ↾H0, . . . , pn ↾Hn〉. Note that the latter sequence needs
not, in general, belong to P.

Lemma 4.3 (Restriction Lemma). Let ϕ(x1, . . . , xn) be a formula in

the forcing language, and let ẋ1, . . . , ẋn ∈ HS. For any p ∈ P and for

any ~H, if ~H is a support for each of the ẋi’s and, for all m > 0, for all
k ∈ Hm∩dom(pm), ~H ↾m is a support for pRm(k) and ran(psm(k)) ⊆ H0,

then p ↾ ~H ∈ P and

p  ϕ(ẋ1, . . . , ẋn) ⇔ p ↾ ~H  ϕ(ẋ1, . . . , ẋn).

Proof. We prove the lemma by induction on the length of ~H.
Let’s first assume ~H = 〈H0〉 for some finite H0 ⊂ ω, then p ↾ ~H ∈ P0.

Assume by contradiction that p ↾ ~H 6 ϕ(ẋ1, . . . , ẋn), then there is a

q ≤ p ↾ ~H such that q  ¬ϕ(ẋ1, . . . , ẋn). Let ~π ∈ G such that π0

fixes H0 and such that π0[dom(q0)] ∩ dom(p0) = H0 ∩ dom(p0) and
πn[dom(qn)] ∩ dom(pn) = ∅ for all n > 0. Then ~πq  ¬ϕ(ẋ1, . . . , ẋn)
but p and ~πq are compatible, contradiction.

Now let’s assume that ~H = 〈H0, . . . , Hn〉. The claim p ↾ ~H ∈ P fol-
lows from the hypotheses of the lemma and the induction hypothesis—
the latter being applied to the names of binary relations appearing in
the range of p ↾ ~H. Assume by contradiction that p ↾ ~H 6 ϕ(ẋ1, . . . , ẋn),

then there is a q ≤ p ↾ ~H such that q  ¬ϕ(ẋ1, . . . , ẋn). Let ~π ∈ G such
that πk pointwise fixes Hk for each k ≤ n and such that πk[dom(qk)] ∩
dom(pk) = Hk ∩ dom(pk) for all k ≤ n and πk[dom(qk)] ∩ dom(pk) = ∅
for all k > n. Then ~πq  ¬ϕ(ẋ1, . . . , ẋn) but p and ~πq are compatible,
contradiction. �

4.3. The model. Fix a V-generic filter G for P and, for all n, let Nn

be the symmetric extension obtained from 〈Pn,Gn,Fn〉, and N be the
symmetric extension, obtained from 〈P,G,F〉. Clearly we have

V ⊆ N0 ⊆ N1 ⊆ · · · ⊆ N = Nω.

For each P-name defined so far (e.g. Ȧ), we let its symbol without the
dot (i.e. A) be its evaluation according to G (i.e. ȦG).

Lemma 4.4. For every n ∈ ω, for every total and acyclic binary rela-

tion R ∈ Nn on A, there is an an R-chain in Nn+1.

Proof. Let p ∈ G and Ṙ ∈ HSn such that

p  Ṙ ⊆ Ȧ× Ȧ total and acyclic.

We can suppose wlog that p ∈ Pn. Now let

Ṙg = {((ȧn, ȧm)
•, q) | n,m ∈ ω, q ∈ Pn, and q  ȧn Ṙ ȧm}.

It readily follows that Ṙg is in Rn and p  Ṙ = Ṙg. Fix any q ≤ p.
Pick an m ∈ ω \ dom(qn+1) and consider the finite sequence q′ such
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that q′l = ql for every l 6= n+1 and q′n+1 = qn+1 ∪ {(m, (Ṙg, ∅))}. Then
q′ ∈ P, q′ ≤ q and

q′  ḟn,m is an Ṙg-chain, and Ṙg = Ṙ.

By density,
p  ∃f ∈ Ḟn which is an Ṙ-chain.

Since Fn ∈ Nn+1 we are done. �

In order to get to the key result, we need to introduce the notion of
scattered space.

Definition 4.5. Given a topological space X , we let by ordinal induc-
tion

X(0) = X,

X(α+1) = {x ∈ X(α) | x is a limit point of X(α)},

X(λ) =
⋂

α<λ

X(α) for λ a limit ordinal.

For every space X there is necessarily an ordinal α such that X(α) =
X(α+1), and we call the least such ordinal the scattered height of the
space. A topological space X is scattered if there is an α such that
X(α) = ∅.

Every second countable scattered space is countable.
The next proposition tells us that, in N , the closures with respect

to A of the generic countable subsets of A we are iteratively adding are
scattered with finite scattered height.

For each t ∈ <ω2 we denote by Ṅt the canonical name for the basic
open set Nt, i.e. the set of all infinite binary sequences extending t.

Proposition 4.6. For each n, k ∈ ω, N � (ClA(ran(fn,k)))
(n+2) = ∅.

Proof. We prove the proposition by induction on n. We first consider
the case n = 0.

Let k ∈ ω, p ∈ P0, Ṙ ∈ R0 with support 〈H0〉 such that p  “Ṙ is
total and acyclic” and dom(p0) = H0. For every X ⊆ ω we denote the

name {ȧm | m ∈ X}• by ȦX .

Claim 4.6.1. 〈p, {(k, (Ṙ, ∅))}〉  ran(ḟ0,k) \ ȦH0
is discrete.

Proof. Suppose by contradiction that there are q ≤ 〈p, {(k, (Ṙ, ∅))}〉
and l ∈ ω such that

q  ḟ0,k(l) /∈ ȦH0
and ḟ0,k(l) is a limit point of ran(ḟ0,k) \ ȦH0

.

Without loss of generality suppose that lh(qs1(k)) > l + 1 and let m =

qs1(k)(l), t = q0(m)—in particular, m /∈ H0 and q  ḟ0,k(l) = ȧm ∈ Ṅt.
By assumption there must be a z ≤ q and an h > l such that

z  ḟ0,k(h) ∈ Ṅt \ ȦH0
.
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Assume wlog lh(zs1(k)) > h and let m′ = zs1(k)(h), t
′ = z0(m

′)—in
particular, m′ /∈ H0, t

′ ⊇ t and z0  ȧm Ṙ+ ȧm′ . By the Restriction
Lemma,

p′ = z0 ↾(ω \ {m}) ∪ {(m, t′)}  ȧm Ṙ+ ȧm′ .

Let π0 : ω → ω be the permutation that swaps m and m′ fixing every-
thing else—in particular, π0 ∈ Fix(H0). Then

π0p
′ = p′  ȧm′ Ṙ+ ȧm,

but then p′ both extends p and forces ȧm Ṙ+ ȧm, which is a contradic-
tion, since we assumed that p forces Ṙ to be acyclic. �

Claim 4.6.2. 〈p, {(k, (Ṙ, ∅))}〉  (ClȦ(ran(ḟ0,k)))
(1) ⊆ ȦH0

.

Proof. Suppose by contradiction that the claim is false, then there is a
q ≤ 〈p, {(k, (Ṙ, ∅))}〉 and an m /∈ H0 such that

q  ȧm is a limit point of ran(ḟ0,k).

From Claim 4.6.1 it follows that q also forces ȧm not to be in the
range of ḟ0,k. The condition q′ = 〈q0, q1 ↾{k}〉 extends p and, by the
Restriction Lemma, forces the same statement. Let t be q0(m)—in

particular q′  ȧm ∈ Ṅt.
We now show q′  Ṅt ⊆ Cl(ran(ḟ0,k)\ȦH0

), which clearly contradicts
Claim 4.6.1. Pick any z ≤ q′ and a t′ ⊇ t. Fix an m′ /∈ H0 ∪ dom(z0)∪
ran(qs1(k)). Define z′ to be the condition such that z′0 = z0 ∪ {(m′, t′)}
and z′i = zi for every i > 0. Now, z′ clearly extends z but, letting π0

be the permutation of ω that swaps m and m′, it extends also 〈π0〉q
′,

which means

z′  ȧm′ ∈ Ṅt′ ∩ Cl(ran(ḟ0,k) \ ȦH0
).

By density we have

q′  Ṅt ⊆ Cl(ran(ḟ0,k) \ ȦH0
),

which, as said, is a contradiction. �

Since H0 is finite, it follows directly from Claim 4.6.2 that

〈p, {(k, (Ṙ, ∅))}〉  (ClȦ(ran(ḟ0,k)))
(2) = ∅.

For any fixed k, the set of conditions 〈p, {(k, (Ṙ, ∅))} we are considering
is pre-dense in P. It follows that for every k ∈ ω

 (ClȦ(ran(ḟ0,k)))
(2) = ∅.

Suppose now n > 0. Let k ∈ ω, p = 〈p0, . . . pn〉 ∈ Pn, Ṙ ∈ Rn

with support ~H = 〈H0, . . . , Hn〉 such that p  “Ṙ is total and acyclic”.
Assume also that, for each i ≤ n, dom(pi) = Hi, and, for all 0 < i ≤ n,

for all j ∈ Hi, ~H ↾ i is a support for pRi (j).
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Claim 4.6.3.

〈p, {(k, (Ṙ, ∅))}〉  ran(ḟn,k) \
(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)
)

is discrete.

Proof. Suppose by contradiction that there are q ≤ 〈p, {(k, (Ṙ, ∅))}〉
and l ∈ ω such that

q  ḟn,k(l) /∈ ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j) and ḟn,k(l) is a limit point of

ran(ḟn,k) \
(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)
)

.

Suppose wlog that lh(qsn+1(k)) > l + 1 and let m = qsn+1(k)(l), t =

q0(m)—in particular, q  ḟn,k(l) = ȧm ∈ Ṅt. By assumption there
must be a z ≤ q and an h > l such that

z  ḟn,k(h) ∈ Ṅt \

(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)

)

.

Assume wlog lh(zsn+1(k)) > h and let m′ = zsn+1(k)(h), t
′ = z0(m

′)—in

particular t′ ⊇ t and z ↾n+ 1  ȧm Ṙ+ ȧm′ . Let

p′ = 〈z0 ↾(ω \ {m}) ∪ {(m, t′)}, z1 ↾H1, . . . , zn ↾Hn〉,

then, by the Restriction Lemma,

p′  ȧm Ṙ+ ȧm′ .

Let π0 : ω → ω be the permutation that swaps m and m′ fixing every-
thing else. Then

〈π0〉p
′ = p′  ȧm′ Ṙ+ ȧm,

but then p′ both extends p and forces ȧm Ṙ+ ȧm, which is a contradic-
tion, since we assumed that p forces Ṙ to be acyclic. �

Claim 4.6.4.

〈p, {(k, (Ṙ, ∅))}〉  (ClȦ(ran(ḟn,k)))
(1) ⊆ ȦH0

∪
⋃

i<n
j∈Hi+1

ran(ḟi,j).

Proof. Suppose by contradiction that this is not the case, then there is
a q ≤ 〈p, {(k, (Ṙ, ∅))}〉 and an m such that

q  ȧm is a limit point of ran(ḟn,k) and

ȧm /∈ ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j).

From Claim 4.6.3 it follows that q also forces ȧm not to be in the
range of ḟn,k. Let

q′ = 〈q0, q1 ↾H1, . . . , qn ↾Hn, qn+1 ↾{k}〉,
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then q′ extends p and, by the Restriction Lemma, forces the same
statement. Let t be q0(m)—in particular q′  ȧm ∈ Ṅt.

We now show that

q′  Ṅt ⊆ Cl

(

ran(ḟn,k) \

(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)

))

,

which contradicts Claim 4.6.3. Pick any z ≤ q′ and t′ ⊇ t. Fix an
m′ ∈ ω such that

m′ /∈ H0 ∪ dom(z0) ∪ ran(qsn+1(k)) ∪
⋃

i<n
j∈Hi+1

ran(qsi+1(j)).

Define z′ to be the condition such that z′0 = z0∪{(m′, t′)} and z′i = zi for
all i > 0. Now, z′ clearly extends z but, letting π0 be the permutation
of ω that swaps m and m′, it also extends 〈π0〉q′, which means that

z′  ȧm′ ∈ Ṅt′ ∩ Cl

(

ran(ḟn,k) \

(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)

))

.

By density,

q′  Ṅt ⊆ Cl

(

ran(ḟn,k) \

(

ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j)

))

,

which, as said, is a contradiction. �

It follows from Claim 4.6.4 and the induction hypothesis that

〈p, {(k, (Ṙ, ∅))}〉  (ClȦ(ran(ḟn,k)))
(n+2) = ∅.

For any fixed k, the set of conditions 〈p, {(k, (Ṙ, ∅))}〉 we are consider-
ing is pre-dense in P. Hence, for every k ∈ ω,

 (ClȦ(ran(ḟn,k)))
(n+2) = ∅. �

In light of Proposition 4.6, we can prove that in N every separable
subset of A is scattered with finite scattered height.

Theorem 4.7. In the model N the following holds: for every separable

S ⊆ A there is an n ∈ ω such that S(n) = ∅.

Proof. Let S ∈ N be a separable subset of A and fix a function f : ω →
A such that S ⊆ ClA(ran(f)). Then there must be a p ∈ G such that

p  ḟ : ω̌ → Ȧ,

where ḟ ∈ HS is a symmetric name for f , with support ~H = 〈H0, . . . , Hn〉.
We can assume wlog that dom(pi) = Hi for each i, and that for all i > 0,
for all j ∈ Hi, H ↾ i is a support for pRi (j). We claim that

p  ran(ḟ) ⊆ ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j).
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If we manage to do so, then Proposition 4.6 ensures that (ClA(ran(f))
(n+2) =

∅, and we would be done.
Suppose that the claim is false, then there exist a q ≤ p, l, m ∈ ω

such that

q  ḟ(l) = ȧm /∈ ȦH0
∪

⋃

i<n
j∈Hi+1

ran(ḟi,j).

Let q′ = 〈q0, q1 ↾H1, . . . , qn ↾Hn〉, then, by the Restriction Lemma, q′

forces the same statement. Fix an m′ ∈ ω such that

m′ /∈ H0 ∪ dom(q0) ∪
⋃

i<n
j∈Hi+1

ran(qsi+1(j)).

Let π0 be the permutation of ω that swaps m and m′, then 〈π0〉q′ and
q′ are compatible, but they both extend p and

〈π0〉q
′  ḟ(l) = ȧm′ 6= ȧm,

which is a contradiction. �

Corollary 4.8. N � ¬ACω(A).

Proof. Assume by contradiction that ACω(A) holds, then A is certainly
separable. By Theorem 4.7, A would be scattered of finite scattered
height. But actually A has no isolated points, contradiction. �

Now we are left to prove that DC(A) holds in N . Let Ṅn be the
canonical name for the intermediate model Nn.

Lemma 4.9. Let n ∈ ω and ẋ ∈ HS with support ~H = 〈H0, . . . , Hn〉,
then

 ẋ ⊆ Ṅn ⇒ ẋ ∈ Ṅn

Proof. For each (ẏ, p) ∈ ẋ fix a maximal antichain A(ẏ,p) below p and a
map f(ẏ,p) : A(ẏ,p) → HSn such that, for each q ∈ A(ẏ,p), either q  ẏ =

f(ẏ,p)(q) or q  ẏ /∈ Ṅn. Let A
′

(ẏ,p) = {q ∈ A(ẏ,p) | q  ẏ ∈ Ṅn} and

C = {~π(f(ẏ,p)(q)) | (ẏ, p) ∈ ẋ, q ∈ A′

(ẏ,p), ~π ∈ Fix( ~H)}.

Consider the following name:

ẋ′ = {(ẏ, q) | ẏ ∈ C, q ∈ Pn and q  ẏ ∈ ẋ}.

Claim 4.9.1. ẋ′ ∈ HSn with support ~H.

Proof. Let ~π ∈ Fix( ~H) and (q, ẏ) ∈ ẋ′. By definition, q  ẏ ∈ ẋ, hence
~πq  ~πẏ ∈ ẋ. Since ~πẏ ∈ C, this means that (~πq, ~πẏ) ∈ ẋ′. Hence
~πẋ′ = ẋ′. �

Suppose there is a p ∈ P such that p  ẋ ⊆ Ṅn.

Claim 4.9.2. p  ẋ′ = ẋ.
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Proof. Let q ≤ p and ż ∈ HS such that q  ż ∈ ẋ. By definition of
C and our hypothesis on p, there is an r ≤ q and a ẏ ∈ C such that
r  ż = ẏ ∈ ẋ. By the Restriction Lemma, r ↾n + 1  ẏ ∈ ẋ, hence
(r ↾n + 1, ẏ) ∈ ẋ′ and, in particular, r  ż = ẏ ∈ ẋ′. By density,
p  ẋ ⊆ ẋ′.

The other inclusion is immediate, as it follows directly from the
definition of ẋ′. �

By density,  ẋ ⊆ Ṅn → ẋ ∈ Ṅn. �

Theorem 4.10. N � DC(A).

Proof. Since every binary relation R ∈ N on A is a subset of A×A ∈
N0, it follows from Lemma 4.9 that R ∈ Nn for some n. Now, either
R is cyclic, but then it surely has a chain, or it is acyclic, but then
Lemma 4.4 says that in Nn+1 ⊆ N there is a chain for this relation. �

This finishes the proof of Theorem 4.1.

5. Some complementary results

We collect some facts related to our main results.

5.1. Dependent Choice propagates under finite unions. By Propo-
sition 2.1 the axiom DC(X) is closed under surjective images, and hence
under subsets. The next result shows that it is also closed under finite
unions.

Theorem 5.1. DC(X) ∧ DC(Y ) ⇒ DC(X ∪ Y ).

Corollary 5.2. DC(X) ⇒ DC(X × n), for all sets X and all n ∈ ω.

The natural progression from Corollary 5.2 would be to prove that
DC(X) ⇒ DC(X × ω), but this cannot be established in ZF, since
DC(X × ω) implies ACω(X) (part (d) of Proposition 2.1) and we know
from Theorem 4.1 that DC(X) does not necessarily imply ACω(X).

If a binary relation R is such that ran(R) ⊆ dom(R), then it is total
on its domain. The largest R′ ⊆ R such that ran(R′) ⊆ dom(R′) is

D(R) =
⋃

{S ⊆ R | ran(S) ⊆ dom(S)} .

By part (a) of Proposition 2.1 it is easy to see that

(4) DC(X) ⇔ ∀R ⊆ X2 (D(R) 6= ∅ ⇒ there is a D(R)-chain).

Proof of Theorem 5.1. Suppose DC(X) and DC(Y ), and let R ⊆ (X ∪
Y )2 be total, towards proving that there is an R-chain. Without loss of
generality, we may assume that X and Y are nonempty and disjoint. If
D(R ↾X) 6= ∅, then by DC(X) and (4) there is a D(R ↾X)-chain, which
is, in particular an R-chain. Similarly, if D(R ↾Y ) 6= ∅, then there is
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an R-chain. Therefore, without loss of generality, we may assume that
R is acyclic, and that

(5) D(R ↾X) = D(R ↾Y ) = ∅.

Recall that R+ is the smallest transitive relation containing R. If x ∈
X∪Y and R+(x) ⊆ X , then R ↾R+(x) would witness that D(R ↾X) 6=
∅, against (5). Similarly R+(x) cannot be included in Y . Therefore

(6) ∀x ∈ X ∪ Y (R+(x) * X ∧ R+(x) * Y ).

Here is the idea of the proof. By (6) any R-chain (zn)n∈ω must visit
both X and Y infinitely often, so (zn)n∈ω can be seen as the careful
merging of two sequence (xn)n∈ω in X and (yn)n∈ω in Y . The sequence
(xn)n∈ω is obtained by applying DC(X) to a total relation RX on X
such that R ↾X ⊆ RX ⊆ R+. Using (xn)n∈ω a suitable total relation
RY on some Y ′ ⊆ Y is defined, and by DC(Y ) the required sequence
(yn)n∈ω is obtained. Here come the details.

Let RX be the relation on X given by R ↾X , together with all pairs
(x, x′) such that x R y0 R y1 R · · · R yn R x′ for some finite sequence
of elements of Y

RX = (R ↾X) ∪ {(x, x′) ∈ X2 | ∃m ≥ 1 ∃s ∈ mY

(x R s(0) ∧ s(m− 1) R x′ ∧ ∀i < m (s(i) R s(i+ 1)))}.

It is immediate that RX ⊆ R+.

Claim 5.2.1. RX is total on X.

Proof. We must show that dom(RX) = X . Let x ∈ X . As R is total
on X ∪ Y , it follows that ∅ 6= R(x) ⊆ R+(x). By (6) R+(x) * Y so
there are y0, . . . , yn ∈ Y and x′ ∈ X such that x R y0 R . . . R yn R x′.
Thus (x, x′) ∈ RX , so x ∈ dom(RX). �

By DC(X) there is an RX -chain (xn)n∈ω.

Claim 5.2.2. ∀n ∃m > n¬(xm R xm+1).

Proof. Towards a contradiction suppose that there is n̄ ∈ ω such that
xm R xm+1 for every m ≥ n̄. Then R ↾{xm | m ≥ n̄} is total on
{xm | m ≥ n̄} and contained in R ↾X , against (5). �

Let (nk)k∈ω be the sequence enumerating the set of ms such that
¬(xm R xm+1). By the definition of RX , each xnk

is linked to xnk+1

via R through some finite path in Y , and let Yk be the collection of all
places visited by these paths:

Yk :=
⋃{

ran(s) | ∃s ∃m
(
s ∈ m+1Y ∧ xnk

R s(0) ∧ s(m) R xnk+1 ∧

∀i < m (s(i) R s(i+ 1))
)}

.

Claim 5.2.3. The Yks are nonempty, pairwise disjoint subsets of Y .
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Proof. For each k we have (xnk
, xnk+1) ∈ RX \R. This means that there

is some 〈y0, . . . , ym〉 ∈ <ωY such that xnk
R y0 R . . . R ym R xnk+1. In

particular, Yk 6= ∅.
Towards a contradiction suppose there are indeces k < j such that

Yk ∩ Yj 6= ∅. Pick y ∈ Yk ∩ Yj. Then y R+ xnk+1 R+ xnj
R+ y, if

xnk+1 6= xnj
, or y R+ xnk+1 = xnj

R+ y otherwise. Either way, this
contradicts our assumption that R is acyclic. �

Now we let RY be the relation on
⋃

k∈ω Yk

⋃

k∈ω

(R ↾Yk) ∪
⋃

k∈ω

{(y, y′) ∈ Yk × Yk+1 | y R xnk+1 and xnk+1
R y′}.

It readily follows from the definition that RY ⊆ R+.

Claim 5.2.4. RY is total on
⋃

k∈ω Yk.

Proof. Pick k ∈ ω and y ∈ Yk, towards proving that y ∈ dom(RY ).
Then there is a finite sequence 〈y0, . . . , ym〉 of elements of Yk such that
xnk

R y0 R · · · R ym R xnk+1, and y = yi for some 0 ≤ i ≤ m. If
i < m, then y R yi+1. If i = m then y RY y′ for any y′ ∈ Yk+1 such
that xnk+1

R y′. In either case y ∈ dom(RY ). �

By DC(Y ), there is an RY -chain (yn)n∈ω. By part (b) of Proposi-
tion 2.1 we can suppose that y0 ∈ Y0 and that xn0

R y0. As the Yks are
disjoint, for every n there is a unique k such that yn ∈ Yk, and let i(n)
be this k.

Claim 5.2.5. The set Ik = {n ∈ ω | i(n) = k} is a finite interval of

natural numbers.

Proof. By definition of RY it follows that either i(n + 1) = i(n) or
else i(n + 1) = i(n) + 1, so it is enough to show that Ik is finite.
Towards a contradiction, suppose Ik̄ is infinite, for some k̄ ∈ ω. This
means that there is n̄ such that i(n) = i(n̄) for all n ≥ n̄, that is
{yn | n ≥ n̄} ⊆ Yk̄. But then R ↾{yn | n ≥ n̄} would be a total on
{yn | n ≥ n̄} and contained in R ↾Y , against (5). �

Let mk = max(Ik) so that I0 = [0;m0] and Ik+1 = [mk + 1;mk+1].
Then

〈x0, . . . , xn0
〉a〈y0, . . . , ym0

〉a〈xn0+1, . . . , xn1
〉a〈ym0+1, . . . , ym1

〉a · · ·

· · ·a〈xnk+1, . . . , xnk+1
〉a〈ymk+1, . . . , ymk+1

〉a · · ·

is the required R-chain. �

5.2. The Feferman-Levy model. Feferman and Levy showed that
the following is consistent relative to ZF:

(FL) R is the countable union of countable sets.

(See [Jec73, p. 142] for an exposition of the Feferman-Levy model.)



DOES DC IMPLY ACω, UNIFORMLY? 21

The next result shows that in the Feferman-Levy model the state-
ment of Theorem 4.1 fails, that is there is no set A ⊆ R such that
DC(A) and ¬ACω(A).

Proposition 5.3. FL implies that if DC(A) holds with A ⊆ R, then A
is countable.

We need a preliminary result.

Lemma 5.4. Assume FL. Then there is a sequence of pairwise disjoint,

nonempty, countable sets (Xn)n∈ω such that R =
⋃

nXn, and such no

infinite subsequence of (Xn)n∈ω has a choice function.

Proof. Fix a bijection π : R → Rω, and for each m ∈ ω let πm : R → R
be defined as πm(x) = π(x)m. If Y ⊆ R and f : ω → Y is surjective,

then Ỹ , the closure of Y under the πms, is also countable, as

f̃ : <ωω × ω → Ỹ (〈n0, . . . , nk〉, m) 7→ πnk
◦ · · · ◦ πn0

◦ f(m)

is surjective. By FL let (Yn)n∈ω be a sequence of countable sets such
that R =

⋃

n Yn, and without loss of generality we may assume that
each Yn is closed under every πm. Then let Xn = Yn \

⋃

m<n Xm for
each n ∈ ω. If necessary, we can pass to a subsequence to get them to
be nonempty.

We claim that no infinite subsequence of (Xn)n∈ω has a choice func-
tion. Otherwise there would be an infinite sequence (xn)n∈ω ∈ Rω

whose range intersects infinitely many Xns. Let x ∈ R be such that
π(x) = (xn)n∈ω. Then there must be an k ∈ ω with x ∈ Xk ⊆ Yk, and
hence

∀n ∈ ω (xn = πn(x) ∈ Yk ⊆ X0 ∪ · · · ∪Xk)

as Yk is closed under the πns. But this contradicts the assumption that
{xn | n ∈ ω} intersects infinitely many Xns. �

Proof of Proposition 5.3. Fix (Xn)n∈ω as in Lemma 5.4. Let A ⊆ R
such that DC(A) holds, and let I = {n ∈ ω | A ∩Xn 6= ∅}. If I is
infinite then (modulo a trivial reindexing) DC(A) would imply the ex-
istence of a choice function for the family {A ∩Xn | n ∈ I}, which is,
in particular, a choice function for {Xn | n ∈ I}, against Lemma 5.4.
So I must be finite, that is A ⊆ X0 ∪ · · · ∪ Xk for some k. But the
finite union of countable sets is countable, so A is countable. �

5.3. Definability of the counterexample. Theorem 4.1 shows that
the statement (3) is consistent with ZF, that is to say: it is consistent
that there is a set A ⊆ R such that DC(A) and ¬ACω(A). The set A
constructed in the proof of Theorem 4.1 is a set of Cohen reals, so it is
not ordinal definable. But what is the possible descriptive-complexity
of a set A as above?

By part (c) of Proposition 2.5 the set A cannot contain a perfect set.
Recall that a set has the perfect set property if it is either countable, or
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else it contains a perfect subset. Assuming ACω(R) every Borel set has
the perfect-set property. In a choice-less context the situation becomes
murky. Assuming FL, every set of reals is Fσσ (i.e. countable union
of Fσ sets), and by taking complements it is also Gδδ (i.e. countable
intersection of Gδ sets), so every set is ∆0

4, as Fσ = Σ0
2 ⊂ Π0

3, and
hence Fσσ ⊆ Σ0

4. Therefore FL collapses the Borel hierarchy at level 4.
Moreover FL implies that there is an uncountable set in Π0

3 without a
perfect subset [Mil11, Theorem 1.3].

On the other hand A. Miller has shown in ZF that Σ0
3 6= Π0

3 [Mil08,
Theorem 2.1], and that every set in Σ0

3 has the perfect-set property
[Mil11, Theorem 1.2].

Recall that a subset of R is Π1
n if it is the complement of a Σ1

n,
and it is Σ1

n if it is the projection of a Π1
n−1 set C ⊆ R × R, where

Π1
0 is the collection of closed sets. The lightface hierarchy Σ1

n, Π
1
n is

obtained by replacing Π1
0 with Π1

0 , the collection of recursively-closed
sets, see [Kan09, Ch. 3, §12]. Working in ZF, every Σ1

1 set has the per-
fect set property, and by Mansfield-Solovay theorem (see [Kan09, Ch. 3,
Corollary 14.9]) every Σ1

2 set is either well-orderable, being included in
L[a] for some real a, or else it contains a perfect set.

By part (c) of Lemma 2.5 we obtain:

Corollary 5.5. If A ⊆ R is Σ0
3 or Σ1

2 and DC(A) holds, then ACω(A).

We conclude with a question.

Question 5.6. Is it consistent with ZF that there is a Π1
2 set A ⊆ R

such that DC(A) and ¬ACω(A)?
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