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Approximation Measures for Logarithms of Algebraic Numbers

FRANCESCO AMOROSO - CARLO VIOLA

Ann. Scuola Nonn. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001 ), pp. 225-249

Abstract. Given a number field K and a number )  lll we say that A &#x3E; 0 is a

K-irrationality measure of 03BE if, for any e &#x3E; 0, &#x3E; - ( 1 + e) p h(o)
for all p E K with sufficiently large Weil logarithmic height h(~). We find
Q~(a)-irrationality measures of log a for suitable algebraic numbers a, where log a
denotes the principal value of the logarithm. We combine the saddle point method
in complex analysis with an arithmetic method based on the p-adic valuation
of the gamma-factors occurring in the Euler integral representation of Gauss’s
hypergeometric function.

Mathematics Subject CtassiRcation(2000): 11J82 (primary), 1 lJ 17, 1 lJ72 (sec-
ondary).

1. - Introduction

Let a E C be an algebraic number satisfying a ~ 1 and a ~ (-oo, 0], and
let log a denote the principal value of its logarithm, i.e.,

with

In this paper we obtain Q(a)-irrationality measures of log a if the degree of a
is not too large. For instance, taking a = B/2, we get

for all a, b, c, d E Z with (c, d) ~ (0, 0). A further interesting example is given
by the choice a = ei1r/6. We prove

Pervenuto alla Redazione il 23 giugno 2000.
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for all a, b, c, d E Z with (c, d) ; (0, 0). In particular, taking d = 0, we get
the following linear independence measures of 1, ~, log 2 and of 1, v’3, 7r

over Q :

and

for all a, b, c E Z. We remark that all our results are effective.
In order to obtain K-irrationality measures of log a for a E K, where K

is a suitable number field, it is natural to consider the Pad6 approximants to
the function log( 1 + z) of the complex variable z, i.e., pairs ( pn (z), qn (z)) of
non-zero polynomials of degree s n with rational coefficients such that

vanishes at z = 0 to the order 2n -I-1. Changing for convenience 1-E- z into z,
we write ( 1.1 ) in the form

with an, bn E of degree  n. It is well known that (1.2) has the repre-
sentation

(see e.g. [AR], formula (17)), where we assume again z 0 (201300,0] and
logz = log I z with -x  arg z  1f. The integral representation
(1.3) for z = a allows one to compute K-irrationality measures of log a for
a E K, when K is either Q or an imaginary quadratic extension of Q (see [AR],
Theorem 1).

The main contribution of the present paper is to extend such methods of

computation to more general number fields K. As above, let a E C be an

algebraic number satisfying a ; 1 and ot 0 (-oo, 0]. In order to get Q(a)-
irrationality measures of log a, we employ asymptotic estimates, as n -+ oo, of

of hn(a), and of the Weil height h (an (a)/bn (a)) . Note that, with the change
of variable 1 + x(z - 1) = t, (1.3) can be written in the form
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where the integration path is the segment in C joining 1 with z. By Cauchy’s
theorem, in the integral representation (1.4) for z = a we can move the path of
fixed endpoints 1 and a through the closer of the two stationary points t = :l:,Ja
of the function (t - 1 ) (a - and then a straightforward application of the
saddle point method in complex analysis yields the required asymptotic estimate
of I,,(ot). As for bn (a), we have the Cauchy integral representation

of the coefficient in (1.3), where now the integration path is a contour
enclosing the pole t = 0, whence the asymptotic estimate of is obtained

by taking z = a in (1.5) and applying again the saddle point method. Finally,
the required estimate of is reduced to an upper asymptotic
estimate of lan(a)lv and Ihn(a)lv, for every normalized absolute value v of

If v is ultrametric, we do this by a crude estimate of the denominators.
If v is Archimedean, v is associated with an embedding or : ~ C, so that

= I and = Since an (z), bn(Z) E Q[z], we
have = and = Thus, for the estimate of

= we take z = or((x) in (1.5) and apply the saddle point
method. It is worth noting that, even though a 0 (2013oo,0], for some or the

conjugate or (a) of a may be a negative real number, so that the saddle point
method must be also applied to (1.5), with some additional complications, in
the case z  0. Since In (z) - bn (z) log z, the estimate of =

lan(u(a»1 [ is obtained from the estimates of In(a(a)) and and, again
because may be negative, the integration in (1.4) when z  0 is made
over a simple path from 1 to z contained in the upper half-plane.

Along these lines, we prove a general result (Theorem 2.2) which yields
Q(a)-irrationality measures of log a, for suitable algebraic numbers a. In order
to improve our numerical results and to enlarge the set of the algebraic numbers
to which Theorem 2.2 applies, we extend the method given in [V] for a E Q, to
the case of algebraic numbers a of higher degree. Such an extension (Theorem
2.3) is obtained by replacing the function

appearing in (1.4) and (1.5), with

where j and I are integer parameters such that j &#x3E; t &#x3E; 0, and by combining
the saddle point method with an arithmetic method introduced in [RV], based
on the p-adic valuation of the gamma-factors occurring in the Euler integral
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representation of Gauss’s hypergeometric function. In fact, the introduction of
the above parameters j and I in (1.3) yields a modified integral

where now (An (z), Bn (z)) are Pad6-type approximants to log z, and where

is known to be related to the Gauss hypergeometric function. Using the invari-
ance of this function under the interchange of the two parameters appearing in
the numerator of the hypergeometric series, one transforms (1.6) into an integral
of a similar type multiplied by a quotient of factorials, and the p-adic valu-
ation of such factorials yields further arithmetic information on the Pad6-type
approximants mentioned above.

2. - Notation, preliminaries and statement of the main results

Let K c C be a number field, and let MK be the set of places of K. For
any V E MK we denote by [ Iv the normalized absolute value associated with
v, and we let iiv = [Kv : Thus, if a is an embedding of K in C and if
v = V(1 is the associated place, we have for fl E K, and qv = 1 if
o- is real and rw = 2 otherwise. If, instead, v p where p is a prime number,
the absolute value ~ ~ - 1, is normalized by Iplv = p-1.

We recall the definition of the Weil absolute logarithmic height:

for

where log+ x = log max{x, 1 } for x ? 0. It is easy to see that h(fi) depends
only on the algebraic number P, and is independent of the number field K
containing P. For any P2 E II~ we plainly have

since max{x + y, 1 }  2 max{x, l}max{y, 1 } for all x &#x3E; 0, y &#x3E; 0.
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We also recall that, for any p E we have the product formula

and the Liouville inequality

where

As usual, Koo denotes the completion of the field K with respect to the euclidean
absolute value, i.e., if K C R and Koo = C otherwise.

DEFINITION 2. l. Let K C C be a number field, let ~ E Km B K, and let A
be a positive real number. We say that A is a K-irrationality measure of ~ if

for any E &#x3E; 0 there exists a constant ho = &#x3E; 0 such that

for all p E K with h(p) &#x3E; ho. The least K-irrationality measure of 03BE is denoted
by 

We recall that, by the Dirichlet box principle,

(see [S], pp. 253 and 255).
Our first result is the following.
THEOREM 2.2. Let a E C be an algebraic number with a :0 1 and a 0 (-oo, 0],

let

and let

(note that &#x3E; 0 since ot 0 (-oo, 0] ). Moreover, let
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where

and let

If k (ot) &#x3E; 0, we have log a 0 and

Using the arithmetic method of [RV] alluded to in the introduction (compare
with [V]), we can improve the above result. Let j and I be two fixed integers
with j &#x3E; 1 &#x3E; 0, and let z ; 0, 1 be a complex parameter. Consider the function
of the complex variable t :

The stationary points of Kj,i(z; t), with respect to t, satisfying

are the roots t = t+(z) and t = t-(z) of the quadratic equation

O

i.e.,

If I2(z + 1)~ + 4( j 2 - 12)Z 0 0, we choose the square root in (2.10), i.e.,
the notation t+ (z) or t_ (z) for each of the two stationary points, according to
the following construction. Let S be the surface in = {(Re(t), Im(t), u)}
given by the equation u = t) ~ . The stationary points t:l:(z) are the

projections on R 2 = {(Re(t), Im(t))} of two saddle points of S, which, by
abuse of notation, we also denote t~ (z) . If z ~ (- oo, 0), let crz denote the

segment in C of endpoints 1 and z. If z E R, z  0, let az denote a simple
path from 1 to z entirely contained (except for the endpoints) in the upper
half-plane Im(t) &#x3E; 0. Since
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and

keeping the endpoints 1 and z fixed we can deform continuously az in C B 101
(i.e., without crossing the origin) into a path yz of endpoints 1 and z such that
the maximum of t) | I on yz is attained at a saddle point tmax of S, and
the tangent to the curve yz at tmax has the direction of the steepest descent over
the surface S. We denote

For brevity, let

(2.12) K+(z) = Kj,l(Z; t+(z)) and K_(z) = Kj,l(Z; t-(z)).
Let a and S be as in the statement of Theorem 2.2, and assume

Moreover, let

and

where

Finally, let be the set of the real numbers (0 E [0, 1) satisfying

where [x] denotes the integral part of x. We prove:
THEOREM 2.3. With the above notation and assumptions, if

= the logarithmic derivative of the Euler gamma-func-
tion, then and

Since j and I are integers, the set is the union of finitely many
intervals [r, s) with rational endpoints r and s, whence ’ f,2. J’ is a linear

combination with coefficients ±1 of the values at finitely many rational
points.

Note that el,o(a) = e(a), h[ o(a) = h*(a) and S2,,o = 0, whence À1,0(a) =
.X(a). Thus Theorem 2.2 is a special case of Theorem 2.3.
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For the computation of K-irrationality measures, we shall employ the fol-
lowing lemma.

LEMMA 2.4. Let K c cC be a number field, and let 3 be defined by (2.5). Let
ç E C, and let be a sequence of elements of K satisfying

for positive real numberso and c. If

K and 

PROOF. First we prove that t 0 K. If we had t E K, E K and,
by (2.14), t - 0. Hence, by the Liouville inequality (2.4) and by (2.2),

Dividing by n and letting n -&#x3E; oo yield, by (2.14), Q  8c. This contradicts

(2.15). Therefore $E K.
Since 0  3h  1, we can choose E such that

and

Let fl All the inequalities written below hold for &#x3E; ho = h o (c, ~, S, ~) &#x3E; 0,
where ho can be effectively computed. By (2.14), there exists an integer no &#x3E; 0
such that

and

for all n &#x3E; no. Let

whence

We distinguish two cases.

By (2.2) and (2.4) we have
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Therefore, since Lo - 8c = Q13 and 1 ~- ~  (1 + 4s) ( 1 - 28)  2, we obtain

whence [% - #m  2 ~ ~m - By the triangle inequality we get 2 I ~m - fl 1 
1 and, again by (2.16),

Second case: ~m - fl. fl [ - - log ~ ~ - [  ~ ( 1 
whence

3. - Proof of Theorem 2.2 and first examples

Let z E C, z # 1, z / (-oo, 0], and let n be a positive integer. Define

With the change of variable 1 + x (z - 1 ) = t we obtain
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where the integration path is the segment in C joining 1 with z. As in [V]
pp.354-355, from (3.2) we easily get, by the binomial theorem,

where log z = with the same integration path as in (3.2), whence
log z = log Izl + i arg z with -~c  arg z  7r, and where

and

Thus an (z) and bn (z) are polynomials of degree n satisfying bn (z) E Z[z] and
dnan (z) E 7~[z], where

Again using the binomial theorem, we get

where the integration is made over a contour enclosing t = 0. Hence, by (3.5),

LEMMA 3.1. Let z E C, z ~ 1, z V (-oo, 0], and let In (z), an (z) and bn (z) be
as in (3.1)- (3.5). Then

and

Moreover, for any Z E z  0, the polynomials an (z) and bn (z) satisfy
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PROOF. We apply the saddle point method (see, e.g., [D] pp. 279-285) to
evaluate asymptotically and as n - oo. Using the notation (2.9),
we abbreviate 

, -11 ..

The saddle points of the surface u = I are now given by (2.10) for
j = 1, 1 = 0, i.e., t~ (z) = ±.,/z-. We distinguish two cases, depending on
whether the complex parameter z ; 0, 1 satisfies z ~ (-oo, 0] or z E (-oo, 0).

If z 0 (-oo, 0], it is easily seen that, according to (2.11), t+(z) = 6 is
the square root satisfying Re(,JZ) &#x3E; 0, so that Im(z) and Im(qt) have the
same sign. With the notation (2.12) we have

and

whence IK+(z)1 I  In the integral (3.2) we deform the segment of
fixed endpoints 1 and z into the integration path yz described in Section 2, so
that the maximum of x (,z; t) I on yz is attained at t = #. By the saddle point
method we immediately obtain

Similarly, we can deform the integration contour in (3.7) so that the maximum
of K (z; t) I on the contour is attained at t = -~. Again by the saddle point
method we get

By (3.3), (3.8) and (3.9) we have

If z E R, z  0, by (2.11) t+(z) = 6 is the square root satisfying
Im(,/z-) &#x3E; 0. We now define

where yz is the path from 1 to z, described in Section 2, such that the maximum
of I on yz is attained at t = ~/z. Again by the binomial theorem, we
obviously have
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where now log z and where an (z) and are the polynomials
(3.4) and (3.5). In particular, (3.7) still holds. Since, in the present case,

= 0, we have jl - .J~12 = 11 + .J~12, i.e.,

From (3.11) we get, by the saddle point method,

In the integral representation (3.7) for we change the integration contour
into Yz U Tz, where yz is the path oriented from 1 to z considered above in

(3.11 ), and where the conjugate z is oriented from .z to 1. The contour 

passes through the saddle points ±,/z-, and, by (3.13), we cannot apply the
saddle point method for the asymptotic estimate of as we did in the

previous case. Since now z E R, we have K (z; t) = K (z; 1). Thus, by (3.11),

whence

Therefore

and, by (3.12),

Hence, by (3.14),

and
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PROOF OF THEOREM 2.2. Since a ~ (-oo, 01, Lemma 3.1 implies in partic-
ular that 0 and 0 for every sufficiently large n. Thus we may
apply Lemma 2.4 with K = Q(a), ~ and 6n = -an (a)/bn (a), whence,
by (3.3), ~ - 6n = In (a)/bn (a). By Lemma 3.1 we have

For the required upper asymptotic estimate of the Weil height h(O~), take any
v E If v oo, let v = Vcr be associated with an embedding cr : Q(a) ~
C. As we remarked in the introduction, we have = lan(u(a»1 I and

= Let dn be defined by (3.6), whence, by the prime number
theorem, lim 1 log d,,, = 1. Then, again by Lemma 3.1,n-m n 

" c 

If v ~ p where p is a prime, we use the ultrametric inequality x 1 + - ~ - 
and in particular 1 for m E Z. Since dn an and

are polynomials of degrees  n with integer coefficients, we get

and

whence

By the product formula (2.3) with P = we obtain
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whence, by (3.15) and (3.16),

Lemma 2.4 with Q = Q(a) and c = 1 + h* (a) yields the desired conclusion. 0

In Theorem 2.2, the cases where either a E Q, or Q(a) is an imaginary
quadratic extension of Q, are covered by Theorem 1 of [AR]. Thus the first

interesting case is that of real quadratic irrationals, for which 3 = 2. Let
a = a + bJ5 &#x3E; 0, with a square-free and with a, b E Z, and let
a’ = a - bJ5. Then

and

Therefore, if A(a) &#x3E; 0 then is a Q(a)-irrationality measure of loga.
Take for instance a = 42. We get:

We recall that, by a result of Reyssat [R],

for every quadratic irrational fl of sufficiently large logarithmic height (note that
the heights employed by Reyssat are not normalized, so that, using our notation,
the non-quadraticity measure 105 of log 2 found by Reyssat must be multiplied
by the factor 2 = [ ~(~8) : ~ ] ). Recently, Hata [H] has improved this result by
replacing 210 with 50.0926 (again, in our notation Hata’s exponent 25.0463
must be doubled). Our result (3.17) is quantitatively better, but holds only for
quadratic irrationals p E Q( -/2 ).

Other interesting examples are obtained by taking a = where

p/q is a convergent in the continued fraction expansion of ~/2. For instance,
we get
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Other examples are given by the square roots of rationals close to 1:

We now consider the case of cubic irrationals. We only give two examples:
the first with a cubic irrational R, and the second with a E R. Let a be
one of the two complex conjugate roots of the polynomial x3 - 5x + 5. Then

Let now a = 3 7/6. Then

In order to estimate how far the above numerical results are from the best
that one may expect, we prove the following proposition (compare with (2.6)).

PROPOSITION 3.2. Let K c C be a number field, and let 8 be defined by (2.5).
There exists a sequence (an)neN of elements of K such that 1, an ~ (-00, O],
and

where

The proof of Proposition 3.2 is an immediate consequence of the following
Lemmas 3.3 and 3.4.

LEMMA 3.3. Let sequence of elements of K such that fin ~ 0,
lim fin = 0, and, for a real number t &#x3E; 0,
n-m

Then

PROOF. For any ,z E C we plainly have
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Also, for any z E C, Z 0 1, let, as in (2.7),

Then, by (3.20),

Therefore

Let now a E K, 0, 1. Taking K = Q(a) in the definition (2.1) for
h(a), we get, by (2.8),

Hence, by (3.20),

For a = 1 + fIn we get

whence, by (2.2),

Taking z = 1 in (3.21), we get, for any sufficiently large n,

Therefore, by (3.19), (3.22) and (3.23),

whence, by (3.18),

LEMMA 3.4. There exists a sequence of elements of K satisfying the
assumptions of Lemma 3.3 with r = S.
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PROOF. If 8 = 1, we take fin = 1/M. If 8 &#x3E; 1, let v = [K : Q] and let
B = {Mi,..., uvl be a basis in the ring of integers of K. We apply Lemma
1.3.2 of [W], p.1 l, with X = Xn = n2, I = In = n2S and U 2: 
If K c R, we take p = 1 and i (f == 1,..., ~). If we take

p = 2 and

Then there exist ~ln~, ... , E Z, not all zero, with (~l n~ ~  Xn (i =
1,..., v), such that

satisfies

where cl = ci(B) &#x3E; 0. Note that /3n :0 0 and

with C2 = c2 (r3) &#x3E; 0. Therefore

By Liouville’s inequality (2.4) we obtain

4. - Proof of Theorem 2.3 and further examples

1, z ~ (-00,0], let

where h, j, I are integers such that

and
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As in Section 3, the change of variable 1 -f- x (z - 1 ) - t and the binomial
theorem yield

where E Q[z] and Bh, J,l (z) E Z[z] are polynomials of degrees not
exceeding max { j , h + I). Moreover, if we let

we easily obtain

where = lcm{ 1, ... , M}. Also, as in (3.7),

We now apply the arithmetic method introduced in [V] for the search of
irrationality measures of logarithms of rational numbers. Let 2 Fl (a, b; c; y)
denote the Gauss hypergeometric function:

where y is a complex variable satisfying  1, and a, b, c are any complex
parameters with c ~ o, _ ~ , - 2, .... Here

and similarly for (b)n and (c)n. Obviously

It is well known that the integral representation

where l~’ denotes the Euler gamma-function, holds for any a, b, c such that

Re(c) &#x3E; Re(b) &#x3E; 0. Moreover, the integral in (4.8) is clearly a holomorphic
function of y in C B [ 1, so that (4.8) gives the analytic continuation
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of for y 0 [1, +00). Choosing a = j - l -I- 1, &#x26;=A+1,
c = h -I- j + 2, y = 1 - z, we get, by (4.1), (4.7) and (4.8),

From (4.3) and (4.9) we have

We choose three fixed integers h, j, I satisfying (4.2) and

so that, by (4.4),

Thus, by (4.5) applied to the polynomial we obtain

For any n = 1, 2, ... we have, by (4.10),

where

by (4.5) and (4.11 ) . For a prime p, let

denote the fractional part of nlp. Applying to (4.12) the arguments of [RV],
pp. 44-45, it is easy to see that any prime p &#x3E; Mn for which

divides all the coefficients of the polynomial

Let S2 be the set of the real numbers W E [0, 1) satisfying (4.13), and let

and

Clearly

By [RV], pp. 50-51, or by [V], p. 357, we easily obtain Dn eZ and lim n log Dn =n

M - f ~ d1fr(x) = h -f - l - f ~ d1fr(x), = r’(x) /r(x) is the logarithmic
derivative of the Euler gamma-function.

We have proved
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LEMMA 4.1. Let h, j, I be integers such that j &#x3E; I &#x3E; 0 and h &#x3E; j - I, let
be the polynomial defined by (4.3), and let!1 be the set of the real numbers

(J) E [0, 1 ) satisfying (4.13). For any n = 1, 2,... there exists a positive integer
Dn such that 

- - -- -

and

where * (x) = r, (x) / r (x).
In the sequel, we apply Lemma 4.1 with h = j. We abbreviate 
and Bn (z) for .&#x3E;jn, jn,ln (Z), Ajn,jn,ln (z) and Bjn,jn,ln (z) respectively. Thus

we write (4.3) and (4.6) as

and

with t) defined by (2.9).
LEMMA 4.2. Let Z E C, Z 96 1, z 0 (-oo, 0], and let Jn (z), An (z) and Bn (z)

be as in (4.14) and (4.15). I, f z satisfies

with K+ (z) and K_ (z) given by (2.12) with the notation (2.11 ), then

and

Moreover, for any Z E C, Z 96 0, 1, and z not necessarily satisfying (4.16), the
polynomials An (z) and Bn (z) satisfy

PROOF. The proof of (4.17) and (4.18), by virtue of the assumption (4.16),
is exactly similar to the proof of (3.8), (3.9) and (3.10) in Lemma 3.1. As for
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(4.19), we can deform the integration contour in (4.15) so that the maximum
of t) ~ I on the contour is attained either at just one of the two saddle
points t~ (z), or at both. In the former case, by the saddle point method the
limit of exists, and is either IK+(z)1 or In particular

In the latter case we have

say, and the integration contour can be written as y+ U y-, where y+ is the

path yz described in Section 2, oriented from 1 to z and passing through t+(z),
and y- is a path oriented from z to 1 and passing through t_ (z). Then

say, where, by the saddle point method,

Therefore

Finally, the required upper asymptotic estimate for IAn(z)II/n is obtained from

and from the upper estimates for IJ:(z)1 I and Bn (z) I . This completes the proof
of (4.19). 0

PROOF OF THEOREM 2.3 The arguments are similar to the proof of Theorem
2.2. Since a ~ (-oo, 0], and by the assumption (2.13), Lemma 4.2 implies
that 0 and 0 for every sufficiently large n. We apply
Lemma 2.4 with K = Q(a), g = By (4.14),
~ - ~n = By (4.17) and (4.18) we have
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For any V E = v,, we have = I and
= Let Dn be the integer in Lemma 4.1, where we choose

h = j. Then, by Lemma 4.1 and by (4.19),

We recall that and are polynomials of degrees::: (j 
with integer coefficients. Hence, for any V E MQ(a) with v f oo, we have

(4.21) *

i I

As in the proof of Theorem 2.2 we get, by the product formula (2.3) with
fJ = Dn Bn (a),

whence, by (4.20) and (4.21),

Theorem 2.3 follows, by Lemma 2.4 with to = and
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Theorem 2.3 allows us to improve the numerical results given in Section 3,
and to find further approximation measures.

Take a = V2, and let j = 5 and l = 1. With the notation (2.11 ) we have

and

The set nS,1 is the union of the intervals

whence

Theorem 2.3 yields

Let now a be one of the complex conjugate roots of the polynomial x3 -
5x + 5, and let j = 7 and I = 1. If we take, e.g., a to be the root with

Im(a) &#x3E; 0, we have

Also

The set is the union of the intervals

whence

(see [V]). By Theorem 2.3 we get

For we have
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and

The set 529,1 I is the union of

and we have

Hence

Finally, let

We have

Theorem 2.3 gives the following Q(V3)-irrationality measure of x, stated in
the introduction:
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