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Abstract

We consider linear boundary value problems for higher-order parameter-elliptic equations, where the
boundary data do not belong to the classical trace spaces. We employ a class of Sobolev spaces of mixed
smoothness that admits a generalized boundary trace with values in Besov spaces of negative order. We
prove unique solvability for rough boundary data in the half-space and in sufficiently smooth domains. As
an application, we show that the operator related to the linearized Cahn—Hilliard equation with dynamic
boundary conditions generates a holomorphic semigroup in L7 (R} ) x L? (R 1.
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1. Introduction
In the present paper, we study linear differential boundary value problems of the form

A—Au=f inQ,
_ (1.1)
Bju=g; (j=1,...,m) onT,
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where  is either the half-space R’} := {x € R" : x,, > 0} or a domain in R" with compact and
sufficiently smooth boundary I". Moreover, A is a differential operator of order 2m and B; is a
boundary operator of order m; < 2m for j =1, ..., m. Whereas for sufficiently smooth f and
g this problem can be solved by classical theory, we focus on rough boundary data g, ..., gmn-
In particular, we want to solve (1.1) for f € L”(Q2) but g; € B;ﬁ, (I"), where s; may be zero or
even negative. For such rough boundary data, even the formulation of the boundary conditions
needs justification: It is known that the classical trace u — u|r, first defined for smooth functions,
has a continuous extension to an operator yp: H ;(Q) — B;,,_,l/ P(T) if and only if s > % ([23)).

Nevertheless, it is possible to define a continuous trace on subspaces of H IS,(Q) for s < i, see,
e.g., Lions—Magenes ([24], [25]) and Roitberg ([29], [30]). In the present paper, we will introduce
aclass of Sobolev spaces H ;,"” (R™) of anisotropic type, for which the trace exists as a continuous
operator, following the ideas from Grubb ([17], [18]).

The motivation to study problem (1.1) with rough boundary data is two-fold: The first mo-
tivation arises in the study of stochastic partial differential equations (SPDEs) with boundary
noise. Exemplarily, we mention here [33] and [27] for parabolic equations and reaction-diffusion
systems with Neumann boundary conditions, [9] for the heat equation with Dirichlet boundary
conditions, [3] and [8] for a free boundary value problem in fluid mechanics, and [10] for dy-
namical boundary conditions. The key step in the analysis of these problems is to understand
the properties of the solution operator to the boundary value problem (formulated for Neumann
boundary conditions)

o — Au =0 1n (0, 00) X Q,
oyu =& on (0,00) x T,

1.2)

where & stands for the boundary noise and d,, denotes the derivative in the direction of the out-
ward pointing unit normal vector of the boundary I'. As it is known that the paths of Gaussian
white noise belong with probability one to some Besov space with negative regularity (see, e.g.,
[71, [20], [38]), this fits into the setting of (1.1) with f = 0. In the context of SPDEs, the solution
operator is often denoted as the Neumann (or Dirichlet) map.

The second motivation for studying (1.1) arises from boundary value problems with Wentzell
or dynamical boundary conditions. As a prototype example, we consider the heat equation with
Wentzell boundary conditions

oru — Au=0 1in (0, 00) x €,
Au+d,u=0 on (0,00) x T, (1.3)
Ul=0 = ug in Q.
Replacing Au = 9;u in the boundary condition, we obtain the dynamic boundary condition 9,z +

dyu = 0. In a standard approach, one decouples u =: u; and u|r =: uy and obtains a resolvent
problem of the form

Aup — Aup = fin €,
(1.4)
Aup+0dyur =g onl’
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with the additional condition u|r = up. The corresponding operator acts on the tuple u =
(u1,u2) as Au = (Auy, —dyu1). From the point of view of maximal regularity for (1.3), the
basic space for this operator would be L?(€2) x Bll,;l/ P(TI"), where the second component is the
trace space of H ;(Q) for the Neumann boundary operator. In fact, for boundary value problems
with dynamic boundary conditions, the generation of a holomorphic semigroup in trace spaces
was shown in [28] for the Cahn-Hilliard equation and in [12] for a general class of problems.
However, a more natural basic space for the operator A is L?(2) x LP(T"). At least for p =2,
form methods can easily lead to the proof of the generation of a holomorphic semigroup. This
was elaborated, e.g., for second-order equations in [6] and in [39], for the Bi-Laplacian in [11],
and in an abstract setting in [14]. For the analysis in the basic space L?(2) x L?(T"), one has
to deal with boundary values in L”-spaces, which again is not covered by classical theory. In
the present paper, we will apply our solution theory to the Cahn—Hilliard equation with dynamic
boundary conditions.

Our analysis of (1.1) starts with the observation that (at least in the smooth situation) this prob-
lem fits into the framework of Boutet de Monvel’s calculus of pseudodifferential boundary value
problems. In this calculus, the solution operator for f = 0 is called a Poisson operator, and such
operators have good mapping properties in the complete scale of Sobolev spaces. This follows,
e.g., from the work of Grubb ([16], [17]) and Grubb and Kokholm [18]. However, the classical
trace only exists for sufficiently smooth functions. Therefore, one has to define an appropriate
generalization of the trace on the boundary. In the literature, one can find several approaches to
generalized traces and corresponding boundary value problems with rough boundary data: By
considering the dual boundary value problem as by Lions and Magenes ([24], [25]), one obtains
unique solvability in some negative order spaces. However, these spaces depend on the boundary
conditions, which is the reason for introducing the universal (but less natural) spaces E°(2) in
[25], beginning of Section 6.3. By Roitberg ([29], [30]), generalized traces were defined using
completion of smooth functions. Here, the solution of the boundary value problem is given as
a tuple of the form (u, go, - .., g2m—1), Where the first component u# belongs to some dual space
and go, ..., g2m—1 are generalized boundary traces. This concept leads to isomorphism results,
but the considered spaces are non-standard and in general not even spaces of distributions on
Q. The Roitberg spaces are described in more detail in Remark 2.7 below. Another approach
to rough boundary data was developed, e.g., by Hummel and Lindemulder ([19], [21]), where
weighted Sobolev spaces (with respect to some distance function to the boundary) lead to a
priori-estimates. The spaces are natural and do not depend on the operators, but the order at the
boundary is still restricted to the non-negative scale (see [21], Theorem 6.2). Spaces of arbitrary
negative (tangential) order can be obtained in combination of weighted spaces and spaces of
dominating mixed smoothness, see [19], Theorem 6.1.

In this paper, we use another approach to a generalized trace by considering a new class of
Sobolev spaces with mixed smoothness, which was introduced by Grubb ([17]) for p = 2. These
spaces differ from anisotropic Sobolev spaces in the sense of [23] and [35] and from spaces with
dominating mixed smoothness in the sense of [32] and [37]. For this class of Sobolev spaces, both
the existence of a continuous trace and the unique solvability of parameter-elliptic model prob-
lems in the whole space and in the half-space follow immediately from known results. However,
the passage from model problems (i.e., constant coefficients and no lower-order terms) to vari-
able coefficients is not standard. It requires the application of an elaborate localization procedure,
even for problems on the half-space. In domains, the definition of the Sobolev spaces with mixed
smoothness is not canonical. Therefore, we work with classical Sobolev spaces in domains but
employ local embeddings into our spaces of mixed smoothness. The necessity to estimate certain
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commutators leads to restrictions on the orders of the involved spaces (see Lemma 4.4); however
these restrictions still allow to deal with boundary values in L?(I"), for example.

The paper is structured as follows. In Section 2, we define and analyze Sobolev spaces of
mixed smoothness, including parameter-dependent norms. We show trace results and typical
embeddings. In Lemma 2.3, interpolation properties are shown which seem not to follow im-
mediately from known results. Section 3 deals with boundary value problems in the half-space.
The main result (Theorem 3.12) gives unique solvability of parameter-elliptic boundary value
problems under appropriate smoothness assumptions on the coefficients. Note that we do not
consider the infinitely smooth setting and thus pseudodifferential theory cannot be applied. Here,
the boundary data may belong to Besov spaces with arbitrary low order. As a corollary, one ob-
tains unique solvability in classical Sobolev spaces (Corollary 3.13). The situation in domains is
studied in Section 4. The main result (Theorem 4.9) yields unique solvability in classical Sobolev
spaces for rough boundary data. Finally, in Section 5, we apply the above results to the linearized
Cahn—Hilliard equation with dynamic boundary conditions. We show that the related operator A
generates a holomorphic semigroup in L? (R" ) x L? (R"~1), see Theorem 5.6. In fact, we even
show that, for every Ao > 0, the operator A — A generates a bounded holomorphic semigroup of
angle 7. In the proof, we use the bounded H*°-calculus for the Laplacian with explicit symbol
estimates, see Lemma 5.4. The same method can be applied to the (much easier) boundary value
problem (1.4), and we obtain unique solvability of (1.4) and the generation of a holomorphic
semigroup for the related operator.

2. Sobolev spaces of mixed smoothness and traces

Let us fix some notation used throughout the paper. We consider the Euclidean space R" with
variable x = (x’, x,) and corresponding co-variable & = (§/,&,). We fix m € N and define

(E,2) = (1 + &2+ MY™VZ and (£, 1) := (1 + 1812 + A/ m)1/2

for £ € R" and A € C. Moreover, we write (£) := (£,0), (§') := (£/,0) and () := (0, A). For
(suitable) functions ¢(&) defined on R"” we denote by ¢ (D) its associated Fourier multiplier,
which is defined by ¢(D)u := .% ' (¢.Zu), where .# denotes the Fourier transform acting in
the space .’ (R") of tempered distributions. In particular, we have D% = (—i)!%13% for « € Ng.
In case p(&) = p(&’) is independent of &,, the associated Fourier multiplier will also be denoted
by ¢(D’).

For two Banach spaces X and Y let L(X, Y) be the space of bounded linear operators X —
Y and L(X) := L(X, X). We shall write X =Y if both spaces have the same elements and
equivalent norms, and we write X C Y if X is a subset of Y and the inclusion map X — Y is
bounded.

2.1. Some function spaces
In the following, let H IS, (R™) and B‘I‘;p(R”) denote the standard Bessel potential and Besov
spaces for s € R. Throughout the paper, we assume p € (1, 00). For p = 2, the following defini-

tion can also be found in [17], Appendix A.3.

Definition 2.1. For 5,0 € R and p € (1,00) we define the Bessel potential space of mixed
smoothness H,? (R") as
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Hy?(R") ={ue ' ([R") : (D')7u € Hy(R")}
={uc. ' (R") : (D)(D)uelLl’R")}

with canonical norm [ul| 5o gny = ||(D/)OM||HIS)(]Rn) = [(D)*(D")ull Lr Rn)-

In the previous definition, (D’)? acts only on the x’-variable. Therefore, the above spaces
have different smoothness in x’-direction and in x,,-direction, which is the reason of the notion
of mixed smoothness.

Clearly, H,S,’U(]R”) is a Banach space. Since (D)’ and (D)* leave .(R") invariant, the
rapidly decreasing functions are a dense subset of H ;;’U (R™). For every t, T € R the map

(D)t(D/)T: H;,U(Rn) N H;—Z,O'—T(Rn)

is an isometric isomorphism with inverse (D)~ (D).
We remark that the scale H ;"’(R") for 5,0 € R is different from the scale of anisotropic

spaces H,S,’“ (R™) in the sense of [23], Proposition 2.10 (see also [35], Section 5.1.3). In particular,
for s > 0 and o < —s, we have positive smoothness with respect to x, but negative smoothness
in x’, which is not allowed for the anisotropic spaces. H[S,’U (R™) is also different from the space
of dominating mixed smoothness (see, e.g., [37], Section 1.1.2). Spaces of dominating mixed
smoothness are defined similarly as above, but with (£) being replaced by I—[';’:l 1+ Ef)l/ 2 We
refer to [32], Section 1, and [20], Subsection 2.2, for further information on spaces of dominating
mixed smoothness and applications to boundary value problems.

We state some elementary properties of the Bessel potential spaces with mixed smoothness
which we shall use frequently later on.

Proposition 2.2. Let 5,0 € R.
a) Hy (R") = H,(R") and Hpy® (R") = LP(R, HS R")).

b) Hy*(R") C Hy° (R") whenever s <t and o <.
c) For o =0 we have

=+ n s,0 n s n §,—0 n S—0 n
H(R") C H?(R") C H,(R") C H;y 7 (R") C H,  (R").
d) If q is the dual coefficient to p, i.e. % + % = 1, then the standard bilinear pairing LP (R™) x

L1(R") — C induces an identification of the dual space of Hy° (R™) with Hy "% (R").
e) In case of s > 0 we have

Hy° (R") = LP(R, Hy (R"™1) N H3 (R, HT (R"™")).

f) For a € N§j, the derivative 3% : Hy° (R") — H;_la""g_‘all(]R”) is continuous.

g) If s € Ny is an integer, u € .7/ (R") belongs to H,° (R") if and only ifdiu e H[(,)’S+U_'j (R™)
forall j =0,...,s. Moreover, ||u| := Zj’:O ||8,{M||H;)),s+a—j(Rn) defines an equivalent norm
on Hy? (R™).

89



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

Proof. a) is clear. b) is true, since (D)*~'(D’)?~" is a bounded operator in L”(R") due to
Mikhlin’s theorem.

¢) By Mikhlin’s theorem, both (D)~°(D’)° and (D)~ are bounded operators in L?(R")
for o > 0. This yields the first and the second inclusion, respectively. The other two are verified
analogously.

d) As (D"): Hy’ (R") — H)(R") is an isometric isomorphism, the adjoint operator
(DY : (H;,(IR”))/ — (H,°(R")) is an isometric isomorphism in the dual spaces. In the
bilinear pairing, this adjoint operator is again (D’)?, and the dual space of H »(R™) is given
by H,*(R"). Hence, the dual space of H,“(R") is identified with (D')7(H*(R")) =

—S§,—0 (Rn).

e) The equality is known to be true in case o = 0. Applying (D'}~ to both sides of this
equality yields the claim.

f) holds because 0¥ (D’)_‘O‘/| (D)~% is bounded in L? (R") due to Mikhlin’s theorem.

g) Again this is known in case o = 0. Then, the general case holds true because (D")? com-
mutes with d,,. O

2.2. Interpolation spaces

Let us briefly recall the complex interpolation method, following [22], Section C.2 (see also
[34], Section 1.9). Let Xo and X; be an interpolation couple of complex Banach spaces and

={z € C:0 <Rez < 1}. Denote by F(Xo, X1) the space of all continuous functions f : S —
X0+ X1 such that f|g is holomorphic as an (X¢ + X1)-valued function on S and, for j € {0, 1},
the function b — f(j+ib) : R — X is bounded and continuous. 7 (X, X1) becomes a Banach
space with the norm

I fllFxo xp) = max sup | f(j +ib)llx;-
1 peR

For 6 € (0, 1), the complex interpolation space [Xo, X1]g is defined as the space of all x €
Xo + X1 for which x = f(0) for some f € F(Xo, X1), endowed with the norm

lxllixo,x173 = inf{ll fll Fxo.x1) = f(O) =x}.

With this norm, the complex interpolation space becomes a Banach space satisfying Xo N X C
[Xo, X1]o C Xo + Xi. In the definition of the interpolation space and the norm, the space
F(Xo, X1) can be replaced by the subspace Fy(Xo, X1) which consists of all f € F(Xo, X1)
such that b — | f(j + ib)|lx; vanishes for [b| — oo and j =0, 1. We will also consider the
space Fo(Xo, X1; Xo N X1) con51st1ng of all f € Fyp(Xo, X1) for which f(z) € Xo N X for all
z € § and where f is continuous on S and holomorphic in S as a function with values in Xo N X1
(note that the definition of this space differs from the one in [22]). By [34], Theorem 1.9.1,
Fo(Xo, X1; Xo N X 1) is dense in Fy(Xg, X1).

Lemma 2.3. Let sg, 0¢, 51,01 € R and 6 € (0, 1). Then
[0 (R"), Hy (RN = Hy ™ (R") @1
with sg = (1 — 0)sg + 0s1 and o9 = (1 — O)og + Oo1.

90



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

Proof. For simplicity, we write H),"°' := H,"?'(R") etc. in the proof. Due to [Xo, Xilg =
[X1, Xoli—g, we may assume sg < s1. Applying the operator (D)1 (D’)°° and setting s := 5o —
s1 <0 and o := 01 — 09 € R, by the retraction argument from [4], Proposition 2.3.2, it remains
to show that

[H;,’O, Hl?,a]e — H]()l—@)s,@o. 2.2)

Note that Hy" = Hj and Hy® = LP(R, HJ (R"~")) by Proposition 2.2 a).

We first show “C” in (2.2). For this, let u € [H?, H,?’G]e, and choose g € Fo(H?, H,?"’) with
g(0) = u. By density, there exists a sequence (gx)reN C Fo(HS, HS’U; HyN HI(,)’U) such that
g — g in F(HS, HY®). It follows that g¢(6) — g(6) in [H?, Hy" Jg. For k € N let us define

fel@) =" (D) (2) (z€D).

First we show that fx(z) € H IS, with continuous and holomorphic dependence on z € S and z € S,
respectively. This is equivalent to showing that

hi(z) == (D) (D) gk (z) (z€S)

defines a function /i : S — L? which depends on z as requested. In case of o < 0 note that
gr: S— H ;, hence (D)*gy: S — LP, with the requested dependence on z. Then the claim for
hy follows from Lemma 5.6.8 in [22]. By (5.53) of [22] we also find the estimate

@Iy = CA + o Imz|)lige@Dllay (2 € S).
If o > 0, note that (D)* € L(LP) since s < 0. Then write
(D)8 (z) = (D) “ V(D)7 gi(2).

Since gx: § — Hg’a, hence (D)% gi: S — LP, with the requested dependence on z, the claim
again follows by Lemma 5.6.8 of [22]. Also

I (@)llLr < C(1+ o Imz gk (@)l oo @ €5).
This yields
I fe@lay < Cllgk@ll gy o 2 €5)

with € := C sup,g (1 + |ob])e! 0",
Arguing similarly, one finds fi(ib) € Hj, and fi(1 + ib) € L? with continuous dependence
on b € R and
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sup [ /i (6l < C sup | g i) 1.
beR beR

sup || fik(1 +ib)llLr < C sup [|ge (L + D)l o0
beR beR 4

Summing up, we have shown that f; € F(H;, L?) with

I il arim < Cllgkl 2y oy

As (gr)reN 1s convergent and therefore a Cauchy sequence, the above estimate, applied to
S — fe, yields that also (fx)reny C F(HS, L?) is a Cauchy sequence. Again by the defini-
tion of the interpolation space [H¥, L?]y, we obtain that (f;(0))reN is a Cauchy sequence in

[HS,LPlg=H ;,1_9” (for the last equality, see [22], Theorem 5.6.9). By completeness, there ex-
ists v e HY ™" with fi(6) — v. On the other hand, f;(6) = (D) ¢x(6) and g; () — g(6) =

win [H5, Hlg, hence fi(8) — (D)?7u in .%/(R™). Therefore, u = (D')~#7v € HY' =907
with norm

—0)s.00 < s Il < i s < i .o
el -0 < Cllvlliag Loy, < € B fill 7y, < € Jim gkl g 00,
= C”g”]:(H;rHI?G)
As g € Fo(H?, H,(,)’”) was arbitrary with g(0) = u, we obtain

_ <
”u”H1<71 0)s.00 < C”M”[H]s),()’H;).a]e

which finishes the proof of “C”.

The proof of the embedding “>” follows in exactly the same way. Let u € and v :=
(DY € H,(,lfg)s, and let f € Fo(H®, LP) with f(6) = v. We approximate f by a sequence
(fidreN C Fo(HS, LP; LP) and set gi(2) := eZ 0" (D'}~ fi(z) forz € Sand k e N. If & > 0,
we see that gx(z) € L? C H?, and for 0 < 0 we have gi(z) € H,(,)’U, so we have gx(z) € H;, +

(1-0)s,00
HP

H I(,)’U for all z € S. Therefore, we can argue as above to show the embedding “>”in (2.2). O

In addition to the spaces above, we will also consider the standard Besov spaces B[S,p (R™) for
pe(l,00)ands € R. For X € {.%7, ., H), B, H,?} and a domain Q C R”, we define

pp’
X(Q):={u|lg:ucXR"}
(where restriction is understood in the distributional sense) with the canonical norm
lvllx @) = inf{[lull x®n) :u € X(R"), ulqg = v}
(see, e.g., [35], Definition 4.1). Moreover, for a closed subset A C R" we define

X(A):={u e X(R") :suppu C A}.

92



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

Then by definition we see that X (£2) can be identified with the quotient space X (R")/ X(R” \ Q).
Note that we consider Hy,° () only for Q =R”,..

Remark 2.4.a) Let Q = R’|. Then the restriction IR XRY) - XRY), u ulRn is a
retraction. This follows from the fact that there exists a restriction-extension pair (R, E) for
("(R™), #"(R",)) in the sense of [5], Theorem VI.1.2.3, which yields the restriction-extension
pair (ar eRn) on (X(R"), X (R )) by [5], Lemma VIL2.8.1. In particular, the extension op-
erator eR" is universal for all considered spaces. Later, we will also consider eQ, the canonical
extension from €2 to R” by zero.

b) Similarly, if 2 C R” has smooth boundary, the map u — u|q is a retraction from H ; R™)
to H IS,(Q) and from BZP (R™) to B;p(Q), and for all N € N there exists a common co-retraction
(i.e., a continuous right-inverse) for all |s| < N (see [36], Theorem 3.3.4).

¢) Due to a) and standard retraction-coretraction arguments (see [4], Section 1.2.3), all state-
ments of Proposition 2.2 and Lemma 2.3 remain valid if we replace R” by R”. , with the exception
of Proposition 2.2 d) which has to be modified in the following form: For all s, o e R the dual
space of Hy,° (R"}) with respect to the standard pairing is given by (H,? (R%)) = K 7(RY).
This follows from (H, S(R)) = Y(IR ) (see [5], Theorem VII.4.4.2) in the same way as in

the proof of Proposition 2.2 d), notlng that (D)% u has support in R_’}r if u does.
2.3. Boundary traces

To define the trace space of H,? (R”.) on the boundary dR’, = R™~!, we first note that for
the standard space H (R ) the trace

yo: HS(R") — By, "P(R"™), u> you := ulgn- 2.3)

exists and is continuous if and only if s > l In fact, it was shown in [23], Theorem 2. 4 that

for s < L the map u — ypu is not even contlnuous from HS R%) to Z'(R"~ . If s > 1, then
(2.3) is a retraction, and yy is the unique extension of the classwal boundary trace u u| Xp=
for smooth functions u € .7 (R’} ). We will also con51der the higher-order traces y; : H, (R —

Bf,p" YP(@®n=1y, 41> yydju for je Ngand s > j + L 5

Definition 2.5. Let j € Ng, s € (j + %, 00), and o € R. Then we define the j-th order trace y;
on Hy (R”) as

Vi Hy (R — By~ VPR e (D) Oy (D) u. (2.4)

Remark 2.6. Note that ¥; is well-defined as (D")°u € H, s (R") and the unique continuous ex-
tension of the classical trace which is defined on the dense subspace .#(R",). The fact that y;
is a retraction on the classical space H (R’ ) immediately implies that (2.4) is a retraction, too.
In fact, if ¢; is a co-retraction to y;, then ej:==(D')"% (D’) is a co-retraction to ¥;. As y; is
(for o < 0) the unique continuous extension of y; to H » (R ), we will write y; instead of ¥ Vi
again.
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Remark 2.7 (Roitberg spaces). There is a theory of generalized boundary value problems in
spaces of negative regularity due to Roitberg [29]. In this theory, for s € R and £ € Ny, the
space ﬁf,’(l) (R’}) is defined as the set of all tuples (u, go, ..., ge—1) such that there exists a
sequence (ux)keN C (R satisfying (ug, youx, ..., ve—1ur) — (u, go, ..., ge—1), where the
convergence takes place in the space

-1
HRY) x [] By’ PR Yy if s > 0,
j=0

-1
HS®Y) x [ By’ /P ®"if s <.
j=0
For s > ¢ — 1 4+ 1/p, the space ﬁ,s,’(e) (R) can be identified with the standard Sobolev space
H;(R:‘L), and we have g; = y;u for j =0, ..., £ — 1 in this case, see [29], Section 2.1.

Let £ € Ng, s >€—1+1/p, and o <0, and let u € Hy° (R"}.). By density, there exists
a sequence (ux)reN C ' (R}) with [luy — u||H;;,a ®R") ~ 0 (k — 00). The continuity of (2.4)

yields yjux — yju € B;;U_j_l/p(R”’l) for j =0, ...,¢— 1. From this and Lemma 2.2 a), we
obtain the continuous embeddings

Hy (RY) CHFO®E) ifs+0>0,
Hy?(RY)N I"I;+” @®R") C ﬁ;Jr"’(e)(R'j_) ifs+o0 <0,

where we identify u € H,° (R’}) with the tuple (u, you, ..., ye—u).
2.4. Parameter-dependent spaces

We will also need parameter-dependent versions of the above spaces. For this, we follow the
approach of Grubb—Kokholm [18].

Definition 2.8. If X, and Y, are families of Banach spaces (parametrized by A from some index
set), a family of linear operators 7(1): X; — Y, is said to be continuous if T(X) € L(X}, Y))
for every fixed A and the operator norm ||T°(1)||(x,,y,) is uniformly bounded in A. A continuous
family is called an isomorphism if each 7' () is invertible and T(W)~L: Y, — X, is a continuous
family, too.

In our context, the occurring families of spaces X, will consist of a fixed vector space X
equipped with a norm depending on the parameter A.

Definition 2.9. For A € C let «; denote the homeomorphism of .#’(R") given on . (R") by
(kpu)(x) = u((A)x). Then, we define the parameter-dependent norms by

K — —1
”MHHPVK;(Rn) = <)\_>Y+(T n/P”K)L MHH;’”(R”) (S, o € R),

s—(n—1 —1
”u”B:,p_)L(]R"’l) = <)\,>V (n )/p“K)L Ll”le)p(Rnfl) (s € R).
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Additionally, we set Hy ; (R") := H;zg (R") for s € R. Analogously, we define H, »9 (R'}) and
R,

Lemma 2.10.
a) The statements from Proposition 2.2 a)—f), Lemma 2.3, Remark 2.4 and Remark 2.6 remain

valid in the spaces H;’fkr for A € C with respect to the parameter-dependent norms.
b) Foralls,o € R and A € C, we have

leell 57 @y = I1(D", 2) 7wl , ey = KD, 2)* (D', ) ael| Lo ey -

¢) (Interpolation inequality) Let sy < s < s1 and o € R. For every € > O there exists a constant
C () > 0 such that, for every . € C and u € HY1 G(R”)

”u“HI;K(R") =< ‘9”” ”H;lA‘7 (R™) + C(S) ()‘->S_SO ”u”H;JOAG R")"

The analog statement holds for R', instead of R".

Proof. a) We can apply the above results in the parameter-independent norms to the function
' ' and obtain constants independent of A, noting also that k), commutes with taking the trace
on the boundary R"~!.
b) For o = 0, the statement follows from [18], Formula (1.9). For general o, we use the
identity
M7 (D) i =10 {0) DAY K = (DA,

which is obtained by straightforward calculation. This yields

itz ey = YD1 ] gy oy = 7 (DY g g

/
= H<D 7)‘)0””11;_“]1&»1) = H<D’ )'(D', 1) u”LP(]R”)
¢) An application of the standard interpolation inequality gives

el e ey = 00D ] g

< G (D)l et ey + COIDN KTl o g )

< Ellu”H;}f(R") + C(&‘) <)">S_SO ”M ||H;E))»L0(Rn). 0

Let us remark that a statement analogous to Lemma 2.10 b) does not hold for the
parameter-dependent Besov spaces (with L?(R") being replaced by B0 (R"’l)) Although

(D', \)5: B“ )L(]R” > ng , (R 1) is an isomorphism, the norm in ng , (R 1y still de-
pends on A, 1n contrast to | - || HO, RM) = = | - llLr@r")- This was observed in [13], Section 1.1.
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2.5. Multiplication operators

We finish this section with some considerations concerning multiplication operators. For a suf-
ficiently smooth function a: R” — C, we define the multiplication operator M, by M,u ‘= au
whenever the function u belongs to some Sobolev space of positive order. For negative order
spaces, we define the multiplication operator by duality with respect to the canonical pairing
LP?(R"™) x L1(R™), where % + % = 1. In the following, BUC" (£2) denotes the space of all func-
tions which are r-times continuously differentiable in 2 and for which all derivatives up to order
r are bounded and uniformly continuous.

Lemma 2.11. Let s, 0 € R, and define r' =r'(s, o) := max{|s|, |o|, |s + o|} and

r=r(s,o):=r'| +1. 2.5)
Let a € BUC" (R") and let M, denote the operator of multiplication by a.

a) There are constants C =C(r)=C(s,0) > 0and y =y (s, o) > 0 such that for all A € C

1—
IMallz iy @y < COallr g lale. (2.6)

b) If we only have a € BUCI" \(R™), M,, is still a multiplier in H;i (R™) and (2.6) holds with
y =0.
c) For every ¢ > 0 there existsa § =6(e,s,0) > 0and a Ag = A0(||a||BUCr(Rn)) > 0 such that

| M, ||L(H;:K(R”)) <e
whenever ||a||co < 8 and ) € C with |A| = Ao.

d) The results in a), b) and c) hold analogously for R', instead of R" with a € BUC" (R'}).
e) The results in a), b) and c) also hold if we replace H;i R™) by B;pﬁx(Rn_l), taking o =0,

ie.r' =|s|, and a e BUC'(R" V) ora e BUC! (R™"™1), respectively.
Proof. a) Consider the hexagon which is the convex hull of the vertex set
H = {(ra 0)7 (07 r)’ (_ra r)7 (_ra 0)7 (Oa _r)’ (r7 _r)}

(see Fig. 2.1). In a first step we are going to show that for all P € H we can deduce the bound
||Ma||L(HPP(]Rn)) = C)laliBuc ®rn)-

For the first two vertices this follows from the fact that Hy°(R") = H}(R") and H," (R") =
LP(R,H ]’, (R"~1)) due to Lemma 2.2 a) as well as the product rule. Their counterparts (0, —r)

and (—r, 0) can be treated by a duality argument. For the space H[r,’_r(]R”) we use Lemma 2.2 g)
to obtain
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s
s
—~
*:\‘;
\\‘5
S—

Fig. 2.1. In a first step, we see that the operator M, is continuous on H [f (R"™) for every vertex P € H of the outer

hexagon and therefore by interpolation continuous on H II,D ¥ (R™) for every Py on its boundary. Finally, we interpolate
between that boundary and the origin to get the continuity on Hf,’a (R™) for every (s, o) on the boundary of the dashed
hexagon. In the origin, we have y = 1, on the boundary of the outer hexagon, we have y =0.

,
J :
laul yrr ey < C () ZO 107 @)l 0.1 o,
]:

roj )
<CO YD @ D@l i g

j=01=0

roJ ]
<C() Y Y NG D@l ot -

j=01=0

Here we used / < j and hence H[(,)’_l (R™) is continuously embedded in H,?’_j (R™). Furthermore
we have 9;] 4 e BUC! (R™) as j <r.So we may apply the boundedness of M-, on H,?’_l (R™)
and find

roJ
Jj—l l
latl = gy < €)Y Y CONB allguci g 192l 0 ey
j=01=0

roJ
< COllalluc @y Y Y 13ull o1 g,
j=01=0

97



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

)
= C(Mllallpuer @ Y =1+ DIdjull o1 gy
=0

,
< COllallue @ Y 191l 01 gy
=0

< C(”)”“”BUCr(R”)”””H{;—"(Rny

The last vertex follows by duality again.

In a second step we interpolate along the edges of the hexagon, which is precisely the domain
{(z, T) : max{|z|, |z|, |t + 7|} = r}. For any point Py = (1 — 0) Py + 6 P;, where 0 <6 < 1 and
Py, P € H, we obtain by interpolation H;” (R") = [H;O (R™), H;l (R™)]g and thus

A ClIM, | ° M, < C(llallpuc ®n)- 2.7)

< .
L(H,? R™) = L(H, (R™)) L(H) ®R7) ~
Moreover, we observe that in L?(R") = Hy*(R") we have || Myl|1(Lr®ny) = lla]loo. Finally,
we interpolate along a straight line that starts in the origin, passes through (s, o) and hits the
rs ro

boundary of the hexagon in the point (7, 7). More precisely, we use the interpolation

H;‘),O'(Rn) — [LP(R’Z), H;S/r/,rﬂ/r,(Rn)]r//r

to find that
1Mol oo ey < ClMall Ll Ml < Crlallh e g llal
a L(Hb’ Rm)) = allL(Lp(R")) a L(H,r)s/r’,rd/r’(Rn)) — BUC" (R") 00
._ r 7’

In order to carry the result over to the parameter-dependent norms, we observe the following
for any bounded operator T in H,? (R"): By Definition 2.9 we have

|| Tu ||H;vi(Rn) = <A>S+0—H/P ”K)L—l (TM) ”H;U(Rn)

= (WP GG Tio) G W) g oy
Dividing by ”””H;:‘;(R") = (n)to-n/p ||K)L_1u||L(H;-D'(]Rn)) and passing to the supremum over all
0O#ueH ;i (R™) we conclude that
-1
||T||L(H;-;(Rn)) = l«; TK)»"L(H;‘”(R"))'
Since we have
k5 Matcu(x) = k5 a(@)u ()] = a((h) " nux) = (' a) (x)u(x)
it holds
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| M, “L(H;:‘;(R”)) = ”MK;‘a”L(H;’U(R”))

Thus
1_
||Ma||L(H;:‘;(R’1)) < C()llx, aIIBUCr(Rn)IIK la|% < C(r)”a”BUCr(Rn)”a”gOv (2.8)

since 9% (k; ' @)lloo = (M) 71 [8%a oo < 18%al| oo for every o € NI with |a| <.

b) Obviously [r'] # r only for r’ € Ny. So for r’ ¢ Ny, the proof from a) remains unchanged.
For r’ € Ny, we proceed analogously as in a), just replacing r by [r'] = r’ but stop at (2.7).
Carrying over this result to the parameter-dependent norms as before yields (2.6) with y = 0.

¢) Let ¢ > 0 and choose § € (0, 1) with §” < %(r) Let a € BUC"(R") with ||a]lco < 8. As

18 i @)oo = (1) 711 18%all o, there is a 1o = Ao (llallpuc @) > O such that

,
D 1% ) o < 1

=1

for all A € C with |A]| > X¢. For all such A we obtain

I allucr ey < ks talloo + 1= llalloo +1<84+1<2

and therefore, using the analog of (2.8), | M, ||L(HAY.«;(R,,)) <Cr)N2'7rsr <e.
P,

d) There exists a bounded extension operator E]R'Jlr : BUC"(R) — BUC" (R") forany r € Ny
(see, e.g., the construction in [1], Theorem 5.19). Then for R:‘L part a) follows from

IMaull o ey < IMEgn alery W gy ®ey = CIERy allBucr @ lerr ull a7 @)

= Cllalsucr @y lull s @e)-

e) Taking o = 0, we use the result from a) and b) for the spaces H‘Y+p (R*1y and

; P(R"1) for a sufficiently small p > 0 such that |s & p| < [|s]] + 1 still holds Then the
result follows by real interpolation of the A-dependent, but classical Sobolev spaces, which was
established in [18, (1.16)]. O

Remark 2.12. In the case of r' € Ny in Lemma 2.11 b) and 0 = A = 0, we directly get back
the classical results for the usual Sobolev spaces H ; (R™). We remark that for r' =5 =0 =0,

the assumption a € BUC!(R") is not optimal for the statement in ¢), as in this case ||a|lguc®r)
coincides with ||a]~, and it would be sufficient to assume a € BUC(R"). As we are mainly
interested in the case o # 0, we did not specify the smoothness for this specific case. Note that
for positive r’ € N and for a € BUC’/(R") the statement in c¢) seems to hold if A is allowed to
depend also on ¢. For non-integer r’, the condition a € BUC"(R") seems to be optimal, given
that we only want to consider integer-valued smoothness parameters.

Furthermore, we would like to note that pointwise multipliers in Besov spaces with A =0 are
described, e.g., in [26] and [40]. In particular, it is known that functions which are Holder con-
tinuous with Holder index larger than |s| are multipliers in B;p (R"~1 (see [31], Theorem 4.7.1
(i1)). For our purposes, however, Lemma 2.11 e) is sufficient.
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3. Boundary value problems in the half-space

We now deal with boundary value problems in domains and in the half-space. In the following,
let Q C R" be a domain with compact and sufficiently smooth boundary T, or let 2 =R’} with
boundary I' = R”~!. We consider the boundary value problem

A—Au=f inQ,
) 3.1
Bju=g; (j=1,...,m) onT,

where A and B; are linear differential operators of order 2m and linear boundary operators of
order mj < 2m, respectively, of the form

A=A(x. D)= aq(x)D*, (3.2)

o] <2m

Bj=Bj(x.D)=Y_  bjgx)pD’. (3.3)

|Bl<m;

We also write B = (By, ..., By). Here, ag: Q@ — C and bjg: I' — C are sufficiently smooth
functions. More precisely, we will consider the following smoothness assumptions, depending
on (s,0) € R2.

(S1) Letr' =r'(s —2m, o) :=max{|s —2m|, |o|,|s + 0 —2m|} and r := |r’] + 1. We assume
ay € BUCT(Q) for all || = 2m and a, € BUC"' () for all || < 2m.

(S2) If Q is unbounded, then aq (00) := limye@, |x|— o0 Ao (x) exists for all |o| < 2m. In addition,
all derivatives of the function

x+—>aa<i> (x £ 0)
|x|2

up to order r for |a| = 2m (and up to order [r'] for |a| < 2m) possess a continuous exten-
sion to x = 0.

(S3) Foreach je{l,...,m},let k;. =ls+o—m;— %| and k; := Lk;J + 1. We assume b g €
BUCk/ (I") for all || =m, and b3 € BUC™I|(I") for all |B| < m;.

(S4) If Q =R", then bjg(00) :=lim, cgn-1, x| o0 Djp(x) exists forall j € {1, ..., m}and |B] <
m . In addition, all derivatives of the function

x.—>bjﬁ<ﬁ) (x £0)

up to order k; for || =m; (and up to order fk}} for |B| < m;) possess a continuous
extension to x = 0.
(S5) The domain  is of class CZ"+["T,

In the following, let A C C be a closed sector in the complex plane with vertex at the origin.
Then the family A — A(x, D) is called parameter-elliptic in A if the principal symbol Ag(x, £) :=
> jaj=am e (X)E* satisfies
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A= Ag(x, E)| = C(IM+E1") (xeQ, 1eA, &R, (£,1)#0) (3.4

for some constant C > 0. Similarly, we define the principal symbols B j(x,&) :=
Z‘ Bl=m; bjg(x)& P . The boundary value problem is called parameter-elliptic in A if A — A(x, D)
is parameter-elliptic in A and if the following Shapiro—Lopatinskii condition holds:

Let xp € 92 be an arbitrary point of the boundary, and rewrite the boundary value prob-
lem (A — Ao(x0, D), Bo,1(x0, D), ..., Bom(xo, D)) in the coordinate system associated with x,
which is obtained from the original one by a rotation after which the positive x,-axis has the
direction of the interior normal to 92 at xo. Then the trivial solution w = 0 is the only stable
solution of the ordinary differential equation on the half-line

(= Ao(x0, &', Dn))w(xn) =0 (x, € (0, 00)),
Bo,j(x0, &', Dp)w(0) =0 (j=1,...,m)
forall & e R* ' and A € A with (&, 1) #0.

In this section we show that parameter-elliptic problems induce an isomorphism between
parameter-dependent spaces (in the sense of Definition 2.8). We focus on the case of the half-
space.

3.1. Model problems and small perturbations
Lemma 3.1 (Model problem in R"). Let Ag(D) = Zla\=2m ayD* have constant coefficients

ay € C, and let A — Ag(D) be parameter-elliptic in A. Then, for every s,o € R and every
ro > 0, the operator family

= Ag: HYS(R™) — H) 2™ (R") (3.5)
is an isomorphism for ). € A with || > Ao.
Proof. The result is well known in case o = 0, see [16], Theorem 1.7, or can be obtained im-

mediately from Mikhlin’s theorem. Let us denote by (A — AO)(_SIO) the corresponding inverse
operator. We use the description of the norm in H;i (R™) from Lemma 2.10 b).

Since Ay commutes with (D', A)? and (D', 1) : H;’Z(R”) — H;’g(R") is an isometric iso-
morphism, the inverse to (3.5) is

(A= A0) Ly = (D', 1) 7 (h = Ao) ;o) (D', 1),
which then has the same uniform bound as (A — Ao)(_slo). O

Let us now pass to the situation in the half-space, where we consider the following boundary
problem.

Theorem 3.2 (Model problem in R” ). Let (A — Ao, Bo) be parameter-elliptic in A. Here
again, we have Ao(D) = Z|a|=2m au D¥ with constant coefficients ay € C, as well as By :=
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(Bo,1(D), ..., Bom (D)) where By j(D) = Z|ﬁ|=mj bjﬂyoDﬁ with constant coefficients bjg € C

for j=1,...,m. Then, for every s > max;m; + % o € R, and Ao > 0, the family of operators
A—Ag $,0 N s—=2m,o ;myn - sto—mj—1/p on—1
By ) HT R = Hy 5P (R [1Bope @Y (3.6)
j=1

is an isomorphism for A € A with |A| > Ap.
Proof. The proof is similar to that of Lemma 3.1. The result is known for o = 0, see [16],

Theorem 1.9; let Ls,0)(A) be the inverse. All involved operators commute with (D', 1) . Hence
the inverse operator L s (1) for general o is given by

(D', M) L(s.0)(Mdiag((D', 1), ..., (D", \)?),

where the diagonal matrix acts as (D', A} on each space on the right-hand side of (3.6). Hence
L (s,5(1) has the same uniform norm-bound as L oy(A). O

Motivated by the last two results, we define the parameter-dependent spaces

Ey7(Q):=Hy5(Q)  (with@=R"orQ=R}), (3.7)
as well as
F7(R") := H, 2" (R"),
m
‘ — oemy—1p (3.8)
FyO(RY) = H) ™ ®RY) < []B),5 " PRy
j=1
fors,o e R.

A—A
r—Ag: E}°(R") — Fy° (R") and ( Bo 0) (EYCRY) > Fy O (RY)

are both isomorphisms. Below, we will consider the case of variable coefficients which are close
to constant coefficients in an appropriate sense. As a preparation, we show some auxiliary conti-
nuity results.

Lemma 3.3. Let (s, o) € R2.
a) Let A be a differential operator in R" as in (3.2) and assume (S1) to hold. Let My :=

max|q|=2m llde |BUCT (R7) + MaX|g|<2m |ldq ”BUCW Ry Then for every € > QO there exist con-
stants § =68(¢e,s,0) > 0 and Ay = Ag(M ) > O such that

1AL @5 ®).Fye @) < €
holds for all . € C with |\| > Ao provided max|q|=om ||ldqlloo < 8.
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b) Let (A, B) be a boundary value problem of the form (3.2)—=(3.3) in R, and assume (S1) and
(S3) to hold with s > max; m; + % Let

Ma = max, lae llBUCr (R" )+|H|flax laallgycrr e )+

+ rr11ax ”bjﬂ”BUCk./'(]Rnfl)+j=rr]1?‘)im”bjﬁ”

|Bl=m |Bl<m;

/ .
Buc' Ry

Then for every € > 0 there exist constants § = (e, s,0) > 0 and Ag = Ao(M4 ) > 0 such

that
H( )HL(]E”(R D).F (R ))

holds for all . € C with |A| > Ao provided

max [laglloc + max |bjgllec <.
|a|=2m j=1,..m
|Bl= m,

Proof. a)Let Ag = ZM:M ay (x) D* be the principal part of A and set A=A— Ag.Lete >0
be fixed and u € H;’f; (R™) arbitrary. Then, due to Lemma 2.11 ¢), for appropriate &’ > 0 there
exist §(¢’,s,0) > 0 and Ao(M4) > O such that for || > Ay we have

§—zom,o =< ° o s—2m,o
Aol g-ame oy = D NaaC)D"ull o

|a|=2m

&
/
=&’ D0 D% ull oo gy = 5 Ml o

la|=2m

given max,q|=2m ||dulloc < 8. For Au we use Lemma 2.11 b), as we only need the fact that the
coefficients are multipliers, which justifies the weaker regularity assumptions for the lower order
terms. Thus, we obtain the estimate

|Aull i ey < 3 N0a()D ] yr-mo gy

|a|<2m

<CMy ) ||D°‘u||Hc o gy (3.9)
loe|<2m
-1
=< CMA||”||H;:\'-0(Rn) S CMa(A) ”u”H;’,i(R”)'
The last inequality holds true because we have

el 21 gy = 1D 2™ HD' ) ull ey < COYTHID, A (D', ) ull Lo gy
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uniformly in A, since (1) (£, A)~! is a Mikhlin multiplier with symbol estimates that are uniform
in A. As (A)~! vanishes for |A| = 0o, we can choose A so large that CM 4 (1)~ < % whenever
[A] = Ao.

b) The calculations for A are similar to a), we just replace the whole space estimates by the
half-space estimates. For the boundary operators B; we use Lemma 2.11 e) instead, noting that
(S3) yields the required smoothness. Hence for B; we split off the lower order terms again. Then
for a given ¢ > 0, again, for appropriate ¢’ > 0 there exist §(¢’, s,0) > 0 and Ao(M 4 ) > 0 such
that for |A| > Ao we obtain

1Bo.jutll ey ) = Y 1bisOvDPull siommi-o

pp,A |ﬂ|:m1 ppsA (R”*l)

<¢' Y 1nDPull ssom;-

|/3|:m]' pPA (R’l—l)
)
< / B s—m ;.o < o
= ﬂZ 1%l s gy = 5 Wl e,
=m;

given maxg|=2m [|dalloo + Max;—1, . m MaX|g|=m; 1bglloo < 6. Here we also used the continu-
ity of the trace from Definition 2.5. The lower order terms can be handled as in a), applying
Lemma 2.11 e) once more. [

Lemma 3.4 (Small perturbation in R"). Let A — Ay be as in Lemma 3.1, and let A = Ag + ;{,
where

A=A(x.D)y= ) Gy(x)D".

loe| <2m

Moreover, let s, o € R and assume (S1) to hold. Define § = 8(%, s,0) and Ao = max{Lo(M3y), 1}
as in Lemma 3.3 a), where

. -1
L= ‘illlpl (A — Ao) ||L(Fi’a(R")v]Ei’a(R"))'
=

Then, if max|q|=2m |4 llco < 8, the operator family
L—A:EYR") - F° (R
is an isomorphism for A € A with |L| > Ag.
Proof. Using Lemma 3.1, we can write
A—A=0—A)(I - —A) ') (L#0).
Choosing é and Ag as stated and applying Lemma 3.3 a) to A, we obtain

1

Z 5.0 on 5.0 mnyy < T
ANl LS Ry Fo ) 2
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whenever [A| > Ao and max|y|=om |4y |lco < 8. Therefore,

1

I — Ao)—l/?uuma(w)) <3

By the usual Neumann series argument, / — (A — Ao)~' A is invertible with
I = = A~ Ay @se @y <2
for every |A| > Ag. We conclude that, for such A,
h=A)'=(1- (- A)TTA) - ag) !
with
-1 -1
(A —A) ”L(]Fi’“(R"),]Ei'“(]R")) <2|[(A = Ao) ”L(]F;'“(R"),Ej" (Rm))-
Using Lemma 3.1 once more completes the proof. O

Theorem 3.5 (Small perturbation in R’} ). Consider the boundary value problem (. — A, B) with
A=Ap+ Aand B = By + B where (A Ag, Bo) is as in Theorem 3.2,

A=A(x,D)= ) Gy(x)D"

loe] <2m

and B = (By, ..., By) with

=
I
DJZ

Z bjp(x)yo D

<

and mj < 2m. Moreover, let s,0 € R with s > max;m; + % and assume (S1) and (S3) to hold.
Define

0 —lilllp ILIN Lo R B R )
>1

where L(A) denotes the inverse of the map in (3.6), and choose § = 8(%,&0) and Ay =
max{io(M3 5). 1} as in Lemma 3.3 b). If

max (alloo + max Bjplloe <3,

then
(k ;A> (EYORY) - Fy0(RY) (3.10)
is an isomorphism for A € A with |A| > Ao.
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Proof. We first note that by Theorem 3.2, the inverse L(}) of the map in (3.6) exists, so we can

(5= ()= Cam) e (3)

Choosing § and A as stated and applying Lemma 3.3 b), we see that

~

~ ) <
B ) IL@E;"®RY.FRL)  2p

for all A € C with |A| > Ag provided

|or|=2 j=L..,

Therefore

ol

which allows us to use the Neumann series just as above, yielding the desired isomorphism. O

L(E}” (R™))

3.2. General boundary value problems

The analysis of the general case of variable coefficients is based on the classical method of
freezing the coefficients.

In the following, let (A — A, B) be a boundary value problem in R’} of the form (3.2)—~(3.3)
which is parameter-elliptic in A for all x € R_'jr U {oo}. Let (s, o) € R2, and assume the validity
of (S1)—(S4).

For every xg € R", we consider the model problem A — Ag(xg, D) with frozen coefficients
aq(xg) € C and without lower-order terms. By the assumption of parameter-ellipticity, we can
apply Lemma 3.1 and obtain the existence of the inverse operator

(» — Ao(xo, D))~ € L(F}° (R"), ES (R™))

for A € A. In the same way, for xo € R”~! U {oo} and s > max; m; + %, we obtain from Theo-
rem 3.2 the existence of the inverse operator

A — Ag(xo, D)

—1
Bo(xo, D) ) e L(F} 7 (RY), E}° (RY)).

Lyy(A) = (

Lemma 3.6. With the above notation, we have

pagi= sup (.= Aotxo, D)l mre ®ey E ®ey +
X()ER"
rEA, |A>1
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+osup Ly Ml Lse e ) B0 R )) < OO
xoGR”_l
AEA, [A|=1

Proof. Let us consider the first supremum and assume this supremum to be infinite. Then
there exist sequences (xg)reny C R and (Ar)geny C A with [Ag] > 1 such that ||(Ax —

Ao(xg, D))~ | — oo for k — 0o. By passing to a subsequence we may assume that x; — x* for
k — oo where either x* € R, or x* = co. Now write

A — Ao(xx, D) = A — Ag(x*, D) — AK(D),  AK¥(D) := Ag(xx, D) — Ag(x*, D).

Since Ag(x*, D) satisfies the assumptions of Lemma 3.1, we get

e — Ao(xk, D) = (e — Ao(x*, D)[1 = (i — Ao(x*, D))~ A¥(D)].
Now let

* % _1
p = sup |[(A—Ao(x", D))" |l Fso Ry ES (R
AeA, [A=1 (57 Rm),E37 (R™)

which is finite due to Lemma 3.1. Moreover, observe that
1K (D)ullgs @y < 1{D, 1) 72" (D', 1) AXD)D, 1)~ (D', 1)~ llrry) X

X I{D, 1)* (D", \)7 ull Ly (o)

=1(D, 1)~ A D)l ooy Nl g @ -

It is a straightforward consequence of Mikhlin’s Theorem that

_ ~ k—o00
sup [[{D, 1) 72" AX(D)|| (Lo )y ——> O,
reC

since the (constant) coefficients of Ak (D) tend to zero with k — oo. It follows that

1 1
sup |0 = Ao (", D) A D) gy ey = 5
rEA, [A|>1

for all sufficiently large k. As above, using the Neumann series, we conclude that
-1
| (A —Ao(xk, D)) ”L(]F;}:’(R”),]ER’Z(R”))
=201 = AoC™, D)l pge o, B oy < 207
for all sufficiently large k. This is a contradiction. O
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Remark 3.7. In the following, we construct a finite covering of R’ consisting of balls and the
complement of a ball centered in the origin. Afterwards, we need to extend the coefficients of
the localized problems to R", Ri, and R"1, respectively. To this end, we will use a general
extension function. We fix x € C*°([0,00)) with0 < x <1, x(z)=1forO0<z<1land x(z) =0
for z > 2 and define the function xy: R” — R" U {oo} via

2+ x(f) (= 2)  ifthere exists 1/ > 0: U =R"\B(0, "),

Xu(x) = ’ lx—x'] N fop ol ’ n ’o

x4+ x(55)(x —x)) ifthere existr’ > 0, x’ € R" : U = B(x', r).

The function xy coincides with the identity on U and is later compatible with the parameter-
ellipticity of the local operators. Since we use reflection techniques for the construction of xy, it
is crucial that our covering consists of balls and the complement of a ball centered in the origin.

For the localization, we first apply Lemma 3.3 with ¢ := ﬁ, where pa p is taken from
Lemma 3.6. We fix ’

1
8o 1= ( ,s,a)>0 G.11)

as being defined in Lemma 3.3. Let xo := 0o and Up := {x € R" : |x| > ro} where rg is suffi-
ciently large such that

m ) — 0o (7 1
|a\=212xm”aa() aa(xo)IIL (UO(']R_:_)—F

+max 1bjp() = bjp (o)l dyrn-ty < %o (3-12)

|Bl=m;

with U := {x €R": |x| > 2} (this is possible due to (S2) and (S4)). As the coefficients of A and
B are continuous and B(0, ro) "R~ ! is compact, there exists a finite covering R ¢ U,ﬁo Uy
with Uy := B(xi,ry) CR" fork=1,..., Koy, where x; € R"~! and r; > 0 are chosen such that

max |layg () —ag(x 7 AR" T
la‘sz” D(() a( k)“LOO(Ukﬂ]RJr)

+ max i) = bip )l @ime-1) < %o 3.13)

|Bl=m
with Uy := B(xg, 2r) fork =1, ..., Ko. We set

Ko
Smax ::sup{3 >0:R"" x[0.8]1c | Uk}.
k=0

Similarly, as RQ’_ \ U/@o Uy is compact, we can choose xj € R’i and 0 < ry < ‘S"ﬁ‘“ for k =
Ko+1,..., K such that Uy := B(xg, i) C {z eR" |z, > 5"5‘" },

max ldg (-) — da ()l oo 3, < %0 (3.14)

|a|=2m

108



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

with Uy := B(xy, 2rg) fork =Ko+ 1,..., K and R ¢ & Us.

Remark 3.8 (Local operators and extensions). Let xq, ..., xg be chosen as above. Starting out
from the coefficient functions a, and b g let us define

ab(x) = as(xu,(x))  (x eR),

big(x) :=bjg(xu,(x))  (xeR"1)

fork=0,...,Kpand, fork=Ko+1,..., K,

ak @) = au(u, (x))  (x €R").

Here the function xy, is defined as in Remark 3.7. These new coefficients have the same smooth-
ness as before. a(’; coincides with ay on Uy NR’} and Uy NR", respectively, b’;ﬂ coincides with

bjg on U N R”"~!. By (3.12)—(3.14), we have

||a§(-) —aa(xk)HLoo(R,D <8y fork=0,..., Ky,
|ak () — o (X | ooy < B0 fork=Ko+1,..., K, (3.15)

|b55() = bjgxe) ||L00(Rn,l) <8 fork=0,..., Ko.
With the new coefficient functions we associate the operators A¥ and B¥ = (B, ..., B,’,‘l) via

At =A@, D)= ) al()D*,  Bi=Bj(x,D):= Y  bix)nD”.

lor|<2m |Bl<m;

We remark that the localization procedure contains a subtlety concerning the constants § and
Ap in Lemmas 3.3-3.4 and Theorem 3.5. We defined the neighborhoods Uy and the radii r¢ in
dependence of §p which depends only on pa g, s, and o, see (3.11). For the new coefficients
aft, blj‘.ﬂ, the || - ||co-norm still satisfies the desired smallness conditions, as seen in (3.15). How-

ever, as xy, appears in the definition of the new coefficients, the BUC"-norm and BUC¥i -norm
of the new coefficients, respectively, depend on Uy and therefore on the radius r;. Here, it is
important that §y does not depend on the BUC"-norm (in contrast to Ag, see Lemma 3.3). Due to
this, the above modification of the coefficients might lead to a larger constant Ao, but we do not
have to redefine the radii ¢, which prevents a circular reasoning in the definition of Uy.

Lemma 3.9. Let 5,0 € R with s > max;m; + %, and assume (S1)—(S4) to hold. Then there
exists a Mo > 1 such that the operators

)\_Ak 5,0 n 5,0 n
gt ) ET®RDSF®RY  (k=0,.... Ko),
A— AR ESTR") - (R (k=Ko+1,...,K)

defined in Remark 3.8 are isomorphisms for every A € A with || > Ag. We denote the inverse
operators by Ly (L) fork =0, ..., K.
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Proof. We split the operators into a part with constant coefficients and a perturbation, i.e., Ak =
A§ + A* with

A= 2 @D, A= 37 (aa() =)D+ ) ag()D".

la|=2m la|=2m la|<2m

The B¥ can be decomposed in a similar way. Due to the smallness property (3.15), the considered
operators thus fit into the setting of Lemma 3.4 and Theorem 3.5, respectively. This yields the
assertion. [

In the following, we will fix a smooth partition of unity ¢ € C®MR"), k=0,...,K, with
suppor C Uk, 0 < ¢ <1, and Zf:o ¢r =1 on R’} . In addition, we fix functions ¢ € C*°(R")
with 0 < ¥ <1, supp ¥« C Uy and ¥ = 1 on supp ¢x. We can solve (3.1) locally in Uy, using
the extended local operators in the half-space and in the whole space and their inverses Ly()).
However, the solution operators L (}) are not local, so we have to multiply the half-space solu-
tion by Y. In this way, commutators appear, which are estimated in the following lemma. We
write [, -] for the standard commutator and use the notation 1 also for the operator of multipli-
cation by V. For the boundary operators, the commutator [Bk, Y] is defined as

[BX, Y lu = B*(Yeu) — (o) B¥u.

Lemma 3.10. Let 5,0 € R with s > max;m; + %, and assume (S1)—(S4) to hold. Let Ry(L) be
defined on F;’G(R’j_) by

AT o f u
Ro()»)( ):=Zmum( ¢ )+ > L) (i f)- (3.16)
8 paar oerg/ 5
Then
A—A
< 3 )RO(A)=1+C(A) (3.17)

where C(1) € L(Fy° (RY), F} ™ (RY)), and there exists a %o = 1 such that 1+ C() €
L(F;° (RY)) is invertible for all A € A with |X| > Ao.

Proof. As first step of the proof we show the commutator estimates

—[A*, Y]

Cr(M) :=
£() ([Bk,wu

)Lk()\) € L(F;° (RY), IF;“"’(M)) (k=0,...,Kp),

Cr(1) = —[AK, Y lLy (V) e LAES R, FSTO(R™)  (k=Ko+1,...,K).

We shall only consider the case k =0, ..., Ko, since the proof for k = Ko+ 1, ..., K is analo-
gous (and simpler).

The operator [AX, ] is a differential operator of order not greater than 2m — 1. Therefore, it
is a bounded operator

110



R. Denk, D. Plofs, S. Rau et al. Journal of Differential Equations 366 (2023) 85-131

(A% yad: By (RY) = HyS (RY) — Hy5 207 (RY).

For the boundary operators, we have for j =1,...,m

Bj(xu) =Y BignoDP (Yu)

|Bl<m

= Z b.l;ﬁ)/()(lﬂkD/gu—}— Z Cj,k,ﬂ,y(')Dyu)
|Bl<m; Y<B,v#B

= (oY) Bju+ Y _bhg(vocinp ) oD u,
By

where the coefficients c; i g, depend on . Consequently, the operator [Bf, Y] is a boundary
operator of order not greater than m; — 1. In the case m ; = 0, this operator is zero. Therefore,
[B]?, Y] is continuous as an operator

st+o—mj+1-1/p

o (Rn_l).

(B}, yu]: B3 (RY) — B

Hence the commutator estimates are true, since Li (1) € L(F;° (R’), E}? (R”,)) by Lemma 3.9.
Now let v := Ro(A)(f, g). We write

Ko K
A—A) (A—A) o f L—A
v=y_ wLi( )+ Y Y Le (W) (e f)
< B -\ B Goeg/) =\ B
and treat each term separately. For k =1, ..., K¢, we obtain

A—A ok f > (?»—Ak) ( ok f )
Li(h = Li(h
( B )wk K )((Vofﬂk)g P AGA (Yowk)g
wk(x—A")> <—[Ak,wk]> ( ok f )
— Li(h Li(h
[( oovost )Pk g )Y ogos
Vi f > ( ok f >
— Cr (A
((Vowk)()/ofﬂk)g ) (Yoor)g

=< o f )JFCk(A)( o f )
(Yopr)g (Yopr)g

Fork =Ko+ 1,..., K, we obtain in the same way

A=A o
( B )kak()\)(wkf)=<¢"f+ 15( )(onf)).

Summing up over k yields

A=A —a s con(!
( . )v_< ; <>>(g)
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with
Ky EK:
f). < ot ) (ck(/\)(gokf))
cw( )= G i |
( )(g kX=(:) k) (Yowr)g k=Ko+1 0

Note that for sake of readability we have dropped the extensions and restrictions from our nota-
tion, here. More precisely, the upper entry in the last term above would be rr» C ()u)e]%n orf-
+

From the above commutator estimates and the fact that multiplication by ¢y preserves the
smoothness, we obtain C(1) € L(F;"7 (R"}), IF;J“]’"(R’JLF)).

Proceeding as in the proof of Lemma 3.3 a) (see (3.9)) for the lower order terms and using the
Neumann series as in Lemma 3.4, we obtain that for sufficiently large A, the operator 1 + C(A) €
L(]Fi’a (R’})) is invertible, and the norm of the inverse is not greater than 2. O

The last result provides a solution operator for the boundary value problem (3.1). To show
uniqueness, the following observation will be useful.

Lemma 3.11. Let E, F be Banach spaces, and let T € L(E, F) be a retraction, i.e., there exists
R e L(F, E) with TR =idf. Let Eg be a dense subset of E. If T |g,: Eo — F is injective, then
T is injective.

Proof. Let f € F andu € E with Tu = f. Choose a sequence (i,),eN C Eo withu, — u (n —
00) in E. As T |g, is injective, we have u, = Rf,, where f, := Tu,. With the continuity of T,
we see f, =Tu, — Tu = f in F, and from the continuity of R we get u, = Rf, — Rf in E.
As the limit is unique, this yields # = R f, which shows the injectivity of 7. O

The following theorem is the key result of this section.

Theorem 3.12. Let p € (1,00) and s,0 € R with s > max;m; + %. Let (. — A,B) be a
boundary value problem in R’ of the form (3.2)—(3.3) which is parameter-elliptic in A for all

X € M U {oo}, and assume (S1)—(S4) to hold. Then, there exists a Lo > 1 such that for every
A € A with |A| > Ao, the operator

(A;A> (EPRY) - Fy 7 (RY) (3.18)
is an isomorphism. Its inverse is given by
R() =RoM)(1+CG))~" e LEF 7 ([RY), EY? (RL)),
where Ry(L) and C ()) are defined in Lemma 3.10.

Proof. Let A9 be as in Lemma 3.10. For R(L) = Ro(\)(1 + C(1))~!, we have R()) €
L(F;?(R%), E}° (R’)) by Lemma 3.9 and Lemma 3.10. From (3.17) we obtain

A—A 1.
< B >R()»)=(1+C(?»))(1+C(k)) = idgsoge) -
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In particular, the operator in (3.18) is surjective.

To show injectivity (i.e., uniqueness of the solution), we remark that T 2m’O(R” ) and
]Ezm O(R ) are classical spaces, and therefore we obtain unique solvability in these spaces (see,
e.g., [2], Theorem 2.1). In particular, the restriction of the operator (3.18) to (IR"}, ) is injective.
Now we can apply Lemma 3.11 with 7' = ()‘ A) and R = R(}) in the spaces E = IEY U(R ),

=F;°@R"),and Eg=.7(R%). O
Corollary 3.13. In the situation of Theorem 3.12, let additionally o € (—o0, 0]. Then, there exists
a Ao > 1 such that for every A € A with |A| > Ao and

m
(f’ g) e H;’—}LZH‘L(R{:_) X 1_[ B;;!{;L*mjil/p(Rn—l)

the boundary value problem (3.1) has a unique solution u € H b (R ). In particular, we have
ue HH"’ (R%) and

||M||HA+U(Rn <C(||f||Hr ZIN(R)L)+Z||gj|| S+0 —. mj— (Rn—l))

/ 1 PP A
with a constant C independent of A.

Proof. This follows immediately from Theorem 3.12 and the continuous embeddings
HYZ2"(RY) € HY 2™ (RY) and HYS(RE) € H3EO(RY). O

In Theorem 3.12, we considered the half-space case. For an operator A acting in the whole
space, the analog results hold, where the proofs are similar but much simpler, due to the absence
of boundary operators. We obtain the following result.

Lemma 3.14. Let A = A(x, D) be an operator of the form (3.2) with coefficients ay: R" — C,
and assume that A — A is parameter-elliptic in A. Let s,0 € R, and assume (S1) and (S2) to
hold. Then, there exists a o > 1 such that for every A € A with |\| > Ao, the operator

r—A:EYR") - Fy° (R

is an isomorphism.
4. Boundary value problems in domains

We now consider (3.1) in a bounded or exterior domain. Throughout this section, we assume
2 to be a domain with compact boundary I", and (A — A, B) to be a boundary value problem
which is parameter-elliptic in some sector A C C. Moreover, we assume (S1)-(S3) and (S5) to
hold.

We define C*®°(Q) as the restriction of all u € Cgo (R") to 2. As the definition of the spaces

H ;‘; is non-canonical in domains, we will only consider standard Sobolev spaces on 2. For the
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construction of the solution operators, we will use local coordinates where the space H 5 "(R )
is available.

We start with some remarks concerning the localization technique: Let xo € I'. Since the
domain § has a 2 +[7"] boundary, there is an open set U xo containing xo, a radius Iy > Oanda
szH’] -diffeomorphism ¥y, : on — Uxo, where on = B(0, 2ry,), such that z?xO(VxO NRY) =
UxO N and 1y, (0) = xo. We set Vy, := B(0, ry,) and Uy, = ¥y,(Vy,). By compactness of T,
there are x1, ..., xg, € I' and open sets Uy, ..., U,CKO as above such that I' C Uk:l Uy, . For the
sake of simplicity, we shall use k instead of x; as index.

We proceed similarly as in the half-space case. Hence, we define

Ko
Smax ‘= sup{S > 0‘ (reQ disttx. 1) <8} | J Uk}.
k=1

If @ is bounded, €2\ U/f=01 Uy is compact, and we can choose x; in Q and 0 < r; < 5"5"‘ such
that

. . amax
Uy = B(xg,1x) C {x € Q:dist(x, T') > > } 4.1)

fork=Ko+1,....,Kand @ c UK U;.

In the case of an exterior domain, this construction has to be slightly modified. We first define
Ugo+1 :=R"\ B(0, rx,+1), where the radius rg,41 is chosen such that R* \ @ C B(0, TKot!1 ).
Now @\ UK°+1 Uy is compact, and we choose x; and ry with (4.1) fork = Ko+ 2, ..., K such
that again Q C Uk=1 Us.

For formal reasons, we define Vj := Uy and ¥ :=idy, fork =Ko+ 1,..., K

Remark 4.1 (Local operators and extensigns). Let x1,...,xg be chosen as above. For k €
{1,..., Ko}, we define the local operator AF as the pullback of the operator A by . More
precisely, for v € C*°(Vy), we write

(A0 () =A@ N () = Y @D () (yeViNRY).

la|<2m

The explicit description of the coefficients 5{; (Faa di Bruno-formula, see [15], Formula B) shows
that Eg contains the function a, o ¥ as well as derivatives of ¥, 1 up to order 2m + 1 — |«| for
|| > 1 (and no derivative for |¢| = 0), concatenated with 9. Hence we always need at most
2m derivatives of ¥, ! which ensures 5k e BUC"'1. For || =2m at most one derivative of 19_1
appears and as m € N we have 2m + (r’} —1>r]+1, Wthh shows @k € BUC” for |a| =
Consequently, condition (S5) implies that (S1) also holds for @’ a . In the same way, we deﬁne the
local operator Bk = (Bk, .. Bk) via

(B o)) =Biwod Hm = Y. BsmnDPuy) (veVinR™.

[Bl<m;

A simple calculation shows that 2m + [r'] > m ; + Lk}J +1=mj +k; and thus (S5) also implies
that the transformed operators E’f satisfy (S3) for all |B| <mj.Fork € {Ko+1,..., K}, we set
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Eg (y) :=aq(y) for y € B(xg, 2r;) with some obvious modifications in the case of an exterior
domain for k = Ko + 1.

Again with the general extension function from Remark 3.7, we extend the coefficients 5{;
and E’j‘ 5 10 R’ , R" and R respectively. We set

a () = (») (eRL) fork=1,..., Ko,
ay() =ay(xv, () (yeR™ fork=Ko+1,....K,
b3 =B (xv (3)  (yeR"™)fork=1,....Ko.

Finally, we define

Av@y)y= )" ak(y)D*v() (yeR%) fork=1,..., Ko,

la|<2m

Ay = Y ag(y)D*v(y) (yeR") fork=Ko+1,...,K,

lee] <2m

Bjv(y) = ) bymnDfuy) (yeR" D fork=1.....Ko.

|Bl<m;

The extended local operators A¥ and B satisfy the above smoothness and ellipticity assump-
tions, so we can apply the results from Section 3. However, as we do not have the spaces H ;K
in domains, we use the standard Sobolev spaces as in Corollary 3.13.

Therefore, we additionally consider the spaces

£ (Q) = Hy 57 (), (4.2)

m

- s+o—mj—1

Fro@) = H 2@ < [ B2 4.3)
j=1

and the analog spaces with  being replaced by R”.. We also set &7 (R") := H;:;‘T (R™) and

Fy(R™) = H;f'" (R™). Note that for o < 0 we have the continuous embeddings (Proposi-
tion 2.2 ¢) and Remark 2.4 b))

Fy? CFy? and E}7 CE°. (4.4)

Lemma 4.2. Let 5,0 € R with s > max;m; + %, and let A*, B* denote the extended local
operators. Then there exists a Ay > 1 such that the operator families

)\_Ak s,0 n s,0 n
s P EFT®RD S FO®Y (k=1.....Ko),

(4.5)
A— AR EST R - FORY) (k=Ko+1,...,K)
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for A € A with |A| > Ao are isomorphisms. We denote the inverse operator by Li(L). For o <
0, the restrictions of Ly(A) to F;° (R".) and F;° (R"), respectively, yield bounded operator
families

Lk()»)EL(]:;G(R )5;0(]1% ) (k=1,...,Kp),

S, 0 S,0 (46)
Li(\) € L(F; (R”),E’A’ R") (kk=Ko+1,...,K).

Proof. We have seen above that A%, B satisfy conditions (S1) and (S3). Conditions (S2) and
(S4) follow directly from the fact that the extended coefficients are constant far away from the
origin by construction. Hence the statement follows for k € {1, ..., Ko} from Theorem 3.12 and
Corollary 3.13 and for k € {Kg + 1, ..., K} from Lemma 3.14 and the embeddings (4.4). O

To solve (3.1) in €2, we first construct an approximate solution operator Ry(1), using the local
solution operators Lk ()A) from Lemma 4.2 and the local coordinate maps ¥ fork=1,..., K.
Setting Orv:=vo ¥, ! the c2m+1r I_diffeomorphism ¥ induces isomorphisms

O HS, (ViNRY) — HS, (UxNQ) (k=1,...,Ko),

4.7
O Hy, (V) = Hy, (U k=Ko+1,....K)

for s € [0, 2m + [r']]. Since we have @k(I:I;q)L(Vk NRL)) = H;’A(Uk N ), we even get (4.7)
for all |s| < 2m + [r’] via duality. Moreover, by the definition of the Besov space on the closed
C?m+1"_manifold T, the restriction Uklyare-1: Vi N R"~! — Uy N T also induces isomor-
phisms

O: By, (Vi NR" 1 - B, ,(UyNT)

fork=1,..., Ko and all |s| < 2m + [r']. We fix a smooth partition of unity (p,? € C*®([R"),
k=1,...,K, with suppp® C Uy, 0 < ¢ < 1, and 3j_ ¢ = 1 on Q. Additionally, let
w,fz € C*(R") with 0 < 1//,52 <1, supplﬁlf2 C Uy and w,fz =1 on supp<p,§2. We set iy :=
O, 'y =¥ o ¥k, where here and in the following, we identify functions with compact sup-
port and the1r trivial extensions for sake of readability. Without this identification, we have, e.g.,
Y = er (rUk wk ) for k = Ko+ 1, ..., K, where again ry, stands for the restriction to Uy

and er for the trivial extension to R” by zZero.
In the following let Ap > 1 be given as in Lemma 4.2. The approximate solution operator
Ro(A) is now for A € A, |A| > A formally defined as

K
Rom() ZLkm( f) > LEM@E . (4.8)

ooie) Kol

Here, L,?(A) is defined by

L¥() <f> = Oy (kak(,\)@k—l (f)) k=1,..., Ko,
g g (4.9)

LEO)f = Or (W Lk (MO f) (k=Ko+1,...,K).
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Lemma 4.3. Let s,0 € R with s > max;m; + - and o < 0. Then the operator Ry(A) in (4.8) is
well-defined on ]-')f C(Q) for & € A with |\] > ko and yields a bounded operator family

Ro(}) € L(F; 7 (), &7 (Q)). (4.10)

Proof. The continuity of Ry(A) in the corresponding spaces follows from (4.7) and Lemma
42. O

In the following, we will modify Rp(A) to get a solution. For this, we compute (A —
A, B)Ro(M)(f, g), where we may choose ( f, g) sufficiently smooth such that the classical theory
can be applied. Therefore, we introduce s’, and assume from now on that s, o, s’ € R satisfy

s > max m/+l

1 —1<0o<0, s >max{2m,s). (4.11)
j=1,..., m

Moreover, we assume (S1)—(S3) and (S5) for (s, o) (as before) and also for (s’, 0). The conditions
with respect to (s’, 0) collapse to r' =s’ — 2m and k;. =5 —mj— % In the end we take the
maximum, respectively.

In contrast to the half-space situation, we have a restriction on o in (4.11). This is essentially
due to the commutator estimates and the fact that we only consider standard Sobolev spaces in 2.

Lemma 4.4. Let s, o and s’ satisfy (4.11). Let 0 < ¢ < min{l + o, %}.
a) For . € A with |A| > Ao, define the operator Ci(A) by

—[AK, Yy
[BX, ¥

Cr(A) i= —[ A%, YL () k=Ko+1,...,K).

Cr(A) ::( )Lk(k) (k=1,...,Kop),

Then

Cr(2) € L(F7 (RY), Fy T (RY)) (k=1,...,Ko),
Cr() € L(FLTR™), Fy 7 R™)  (k=Ko+1,....K).

b) Let (f,g) € ]-'i/’o(Q), and set v := Ro(L)(f, g) with Ro()A) being defined in (4.8). Then

(A_A)u=(1+cu))<f) (4.12)
B g

holds with an operator C()\) € L(]:;’U(SZ), f;+8’0 (2)) and there exists a A1 > Ao such that
1+ C(A) € L(F;°(RQ)) is invertible for all A € A with [X| = Aj.

Proof. a) The operator [Ak , Yi] is a differential operator of order not greater than 2m — 1. There-
fore, the mapping

[Ak I//k] SS O'(R )= HA+U(RVL)_) Ha 2m+1+<r(Rn)C H;j£72m(R )
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is bounded.

In analogy to the proof of Lemma 3.10 we obtain that the operator [B;f, Y] is a bound-
ary operator of order not greater than m; — 1. In the case m; = 0, this operator is zero. As
EVT(RY) = H;:;U (R") and o > —1, the boundary operator [Bf, Y] is defined in the classical
sense and is continuous as an operator

st+o—mj+1-1/p
PP

s+et+o—mj—1/p

n—1
R"™H Bpp,k

(B, vnl: £°(RY) > B ®R"h).
By Lemma 4.2, we have L (%) € L(F;° (R7), ;"7 (R)). This and the above mapping proper-
ties for the commutators show Cy(%) € L(F;7 (R™), F, 757 (R™)).

b) We first remark that v € 5;/’0(52) holds due to Lemma 4.3, and, as s’ > 2m, the boundary
operators B; can be applied to v in the classical sense. Using calculations similar to the ones in

the proof of Lemma 3.10 and the equality ® (Vx @,:1 (go,i2 )= w,%p,? f, we obtain

A=A C(n !
( . )v_< ; <>>(g)
with

Ko Q K R
C(/\)<£) :=Z®k (Ck(k)e)k—l( o f >)+ Z <®k(Ck()»)(3k (7% f))).

Q
k=1 (ropi)g k=Ko-+1

From a) and the fact that multiplication by <,0,§2 and the coordinate transformations ®y, @,:1

preserve the smoothness as ¢ < %, we obtain

C() € L(FY°(Q), F 17 ().

Proceeding as in the proof of Lemma 3.3 a), and using the Neumann series as in Lemma 3.4,
we obtain that for sufficiently large A, the operator 1 + C(}) € L(]-';"7 (£2)) is invertible, and the
norm of the inverse is not greater than 2. 0O

The following theorem is the key result of this section and gives an a priori-estimate for
the solution operator of (3.1) in spaces of rough regularity. Note that we first consider smooth
functions, where the boundary operators are defined in a classical way and where we know unique
solvability by classical results. However, the a priori-estimate gives a continuous extension of the
solution operator to larger spaces.

Theorem 4.5. Let (. — A, B) be parameter-elliptic in the sector A, and let s,o0,s € R sat-
isfy (4.11). Assume (S1)—(S3), (S5) to hold for (s,o) and (s',0). Then taking A; > Ay as in
Lemma 4.4 b), for all A € A with |A| > A1, and every (f, g) € ]-';/’O(Q), the unique solution
ue & 0Q) of 3.1) is given by

u=R0) (f> — RyO)(1 +C()~! (f)
8 8
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and we have the a priori-estimate

[l =1 (2)

with a constant C not depending on f, g or A. In particular, the solution operator R()\) extends
uniquely to a continuous operator family

4.13
F2(Q) ( )

R(L) € L(FY7(Q), £7 ().

Proof. First, we remark that 7, ‘;,’O(Q) and 6';/’0(52) are classical spaces, and therefore we obtain
unique solvability in these spaces (see, e.g., [2], Theorem 2.1). By Lemma 4.4 b) with (s,0) =

(s’,0), the operator 1 4+ C() is invertible in L(}'i/’o(Q)), and from Lemma 4.3 we get Ry(A) €
L(}'i/’O(Q), 5;/’0(9)) because of s’ > s. Therefore, u := R()L)(f;) € 5)’;/’0(9). As

()\ - A>u =1 +CO)(1+ C(A))1<f) = (f)
B g g

by Lemma 4.4 b), u is the unique solution of (3.1). Finally, the a priori-estimate (4.13) follows
from Lemma 4.3 and (1 + C(A)~! € L(F°(R)). O

The existence of continuous solution operators given by Theorem 4.5 is the main part of the
analysis of (3.1). To formulate the uniqueness of the solution, we have to consider a function
space over 2 where the boundary operators are well-defined. For this, we apply the theory of
Roitberg ([29], [30]), which leads to the space H ; A.s0 (2) as defined below. Note that for the
construction of the solution operator, the results by Roitberg were not used. We still assume
(4.11) to hold.

Definition 4.6. Let 5o € R with sg > s — 2m. Then we define H*

A SO(Q) as the completion of

C*°(Q) with respect to the norm

s, @ = Il g + AUl -

Remark 4.7. By the continuity of A: H ;°+2m () — H,’(2) and the condition on so, we find
that

lullms @) < llullms

<
p,A,sO(Q) — C”u ||Hx70+2m

) ()

for every u € C*°(Q). It follows that
HYT™M(Q) C H)y 4 () C HY(RQ)
with dense embeddings.
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Lemma 4.8. Let s € R with so > —1 + % and so > s — 2m. Then

<2) H'Y (@) — HY(Q) x ]_[B”" mi=lP (4.14)

j=1

is well-defined and continuous.

Proof. For smooth u, we write B;u in the form

mj
Bju=yy Y bjg()DPu=>" Mj(x.D)yu, (4.15)
|[Bl<m; =0

where y;: u +— (36u)|r is the classical trace and M j; (x, D') is a differential operator of order not
greater than m ; — [ which contains only derivatives in tangential direction. We first show that for
allu € C*°(Q) and [ =0, ..., max; m; we have

il gyso-t-in gy < Cllullgsse @y- (4.16)

Indeed, if s + 0 > max;m; + %, this follows from classical trace results, where we can even

replace the norm on the right-hand side of (4.16) by ||u||H;+o(Q). If s +0 <max;m; + %, we

first note that we have s + 0 > —1 + % by (4.11). Therefore, we can apply [29], Theorem 6.1.1
and (6.1.29) (see also the text after [29], Definition 6.2.1) and obtain

110l gsso-t-170 gy < C Il sty + 1 Aull grro-2m ). 4.17)
Now choose 0 < £ < 1 such that

1 1
s+o0—2m<maxm;+ — —2m<—1+—+¢<s.
J P

Then

1 1

, —1+14 i . —
HYQCH, " (@=H, " @ cH" @),

where the equality can be found, e.g., in [34], Theorem 4.3.2/1. Hence we may replace

| Aull gsto-2m g in (417) by [|Aull 0 g, Which yields (4.16).

From the continuity of M j;(x, D): BHU = 1/p(l*)
(4.16), and the definition of the norm in H - (R2) we obtaln

1 . .
S+g i /p(F), the estimate in

Aso

||Au||HVO(Q)+Z||B ull riomj-n |

<Cllu s+o
1 Bpp )T | ”HPvAJo )
Jj=
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Hs—i—a

for all u € C®(Q). As C®(Q) is dense in s

unique extension and continuous. O

(£2), the operator (4.14) is well-defined by

Now we are able to formulate our main result. At first we will cover the general situation and
then, as a corollary, the simpler setting f € L? ().

Theorem 4.9. Let (. — A, B) be parameter-elliptic in the sector A, and let s,0 € R with
s >max;m; + % and o € (—1,0]. Let —1 + % <so<s+o, and so > s — 2m. We fix
s" := max{2m, so + 2m}. Assume conditions (S1)—(S3), (S5) to hold with respect to (s,o) as
well as (s, 0). Then there exists a A1 > 1 such that for all . € A with |A| > Ay and all

m
+o—mj—1
(f.g) € H;O(Q) « HBIS?pU mj—1/p

I, (4.18)
Jj=1
the boundary value problem (3.1) has a unique solution u € H;?’X”SO(Q). This solution is given

byu = R(}) (g) and satisfies the a priori-estimate (4.13).

Proof. By the assumptions on s and o, (4.11) holds, and for sufficiently large |A|, we can define
u:=R(L) (;) € 5;’0 (2). By Theorem 4.5, u satisfies the a priori-estimate (4.13). For the rest of
the proof let A be arbitrary but fixed.

We want to show that u € H**C

oA s (£2). For this we denote the space in (4.18) by F;’U’SO(Q)

and first note that fi/’O(Q) is dense in the space F, "(2), as even smooth functions are dense.
ey e 750 0o ik 1Y (f

Therefore, we can choose a sequence (gi) € F; 7 (Q) with || (g:) - (g) H]'—;‘U’XO @ — 0 fork — 00

and set uy := R(A)(g’;). By Theorem 4.5 and Remark 4.7, we know uy € 5; ’O(Q) = H;,(Q) C

H;XSO (2). Moreover, Buy is defined in the classical sense, and we have ()‘;A)uk = (g) by

Theorem 4.5. In particular, Aux = Auy — fx. This and (4.13) yield

||uk—ue||H;3f:0(Q) = lluk = uell o @) + lAux = Auell o g

<G,

(fk
8k

)~

Je
8¢

)

-FLV‘U(Q) + ||fk - ff”H;O(Q) + |)\4|||Mk - ME”H]S,O(Q)

A

fk) (fe)
EC — oS + A Ur — U s+o
A (gk o ]__; 0 () [A] [[uk E”Her Q)
<G (fk>—(f‘5> 50 (k£ 00).
8k ge) 17" @

Recall that here we have used parameter-independent norms and the a priori-estimate (4.13) for
fixed 1. We also use the condition 5o < s + 0. We have seen that (uy)cN is @ Cauchy sequence in

H ;JX’SO () and therefore convergent to some element v € H ;ffso (€2). By (4.13), we see ux —> u
in Hy"7 (), and therefore u = v € H, "7 (Q).

As u e Hst“’m(Q) and 5o > —1 + L, the expression Bu is well-defined in the sense of
Lemma 4.8, which also yields the continuity of the operator in the respective spaces. Hence, the
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above approximation shows that ()‘EA)M = (g ), therefore u is a solution of (3.1). For the unique-

ness we make use of Lemma 3.11 once more, where we take E = H’™C (), F= Fy7(Q),

p,A,s
Ey=£&"@),and T =(";"). O

The conditions on the parameters s, o and on the smoothness are much simpler in the case
f € LP(K2). We obtain the following corollary, which shows that boundary spaces of order close
to —1 may appear.

Corollary 4.10. Let (A — A, B) be parameter-elliptic in the sector A, and let T € R with
max;m; + % — 1 <1 <2m and t© > 0 (the last condition is automatically satisfied except for

2m =2 and m| =0). Assume (S1) and (S3) to hold for r' :=2m — © and k; =2m—m; — L

p
Let Q be of class C*"+1r 1 and assume (S2) if Q is unbounded.
Then there exists a .1 > 1 such that for all A € A with |A| > A1 and all

(f.9) e L@ x [ By ™ "D,
Jj=1

the boundary value problem (3.1) has a unique solution u € H ; 4.0(R2), which satisfies the a
priori-estimate (4.13).

Proof. We apply Theorem 4.9 with so = 0. If 7 > max; m; + %, we choose s :=t and o :=0.

In the case 7 < max;m; + l, we set s :=max; m; + licando:=7—sfore>0 sufficiently
small. Note that for this choice of (s, o) the conditions in Theorem 4.9 are fulfilled. O

5. Boundary value problems with dynamic boundary conditions

As an application of the above results, we consider a boundary value problem with dynamic
boundary conditions, which is related to the linearized Cahn—Hilliard equation and was discussed
in detail in [28]. We show that the corresponding operator generates a holomorphic semigroup
in L?. For simplicity, we restrict ourselves to the model problem situation and do not consider
a general domain. The related model problem in the half-space has the form (see [28], Equation

2.1)

(8 + A®)u = f in (0, 00) x R,
du 4 dyu — A'u=g on (0, 00) x R" 7,
3yAu=0 on (0, 00) x R""!
(plus initial condition), where A’ stands for the tangential Laplacian. Here we have set the con-
stants to 1 and omitted lower-order terms. Following a standard approach for boundary value
problems with dynamical boundary conditions, we decouple u =: 1 and you =: u, and consider

the Cauchy problem in a product space, where now the compatibility condition u| = ygu; has to
be added. The corresponding resolvent problem is given by
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A+ A%u; = finR",
dour + (. — Auy =g on R"™!, 51
3,Au; =0 on R" ! .

you; —uz =0 on R* 1,

It was shown in [28], Remark 2.2, that the related operator generates an analytic Cp-semigroup

in the basic space L?(R’}) x Blr,p (R"=1) for all r € [2 — %, 3— %]. In the present paper, we

consider the basic space X := L”(R") x L? (R"~1). In order to define a suitable operator A
representing (5.1), we have to verify the parameter-ellipticity of the auxiliary problem below.

In the following, let arg(-) denote the argument of a complex number with values in (—m, ].
Furthermore let /- denote the principal branch of the complex square root which is holomorphic
in C \ (—o0, 0] and for which we have Re ,/z > 0 for all z € C \ (—o0, 0].

Lemma 5.1. Let 6 € (0, ). Then the boundary value problem (. + A2, yy, 3,A) in R% is
parameter-elliptic in the sector A := g, where

g :={z € C\{0}: |argz| < 0}.

Proof. Obviously, the operator A + A? is parameter-elliptic in A. To see that the Shapiro—
Lopatinskii condition holds, we first assume A € A \ {0}. Then every stable solution of the ODE

[x+ @2 =11 w@x) =0 (x, > 0) (5.2)

is of the form w(x,) = c1e™"*" 4 e~ ™% with the roots 112 = 71 2(|€’|, 1), where

12(18], 2) == €17 £ iV (5.3)

Note that we have Re7;(]§’|,A) > 0 for j =1,2and all ¢’ € R L
The first boundary condition w(0) = 0 yields ¢; = —c3, and from the second boundary con-
dition we obtain

0=—03,(32 — |&'1Hw(0) = 71 (z — [€'Per + 12(73 — |€'P)ea

64
= i«/x(l'lcl — 1703).

Therefore, 0 = t1¢1 — T2c2 = (71 + ©)c1. As Re(t; + 70) > 0, we obtain ¢; = ¢ =0.
In the case A = 0, every stable solution of (5.2) is of the form w(x,) = (¢ + cax,)e ™15 P,
From w(0) = 0 we obtain ¢; =0, and

0=—0,(3; — |&'Hw(0) = —2c2|¢"|?
shows ¢ = c; =0 forevery £ e R"~1\ {0}. O

Definition 5.2. Now we are able to define the operator A: X D D(A) — X with X := L (R} ) x
L?(R""") by
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A2
A(D)u :=(_§V 2) (u € D(A)),

where
D(A):={u= (1, up) e X: A(D)ueX, d,Au; =0, you; —u =0on R" 1.

Remark 5.3. a) Due to the parameter-ellipticity of the boundary value problem in Lemma 5.1
we may use Theorem 3.2 to solve the system

(A4 A»u;=f inR2,
YoU1 = up on Rn_l, 5.5)
3,Au; =0 onR" !

Now, the existence of all traces is clear, as we are in the half-space situation and have the spaces
H,° (R") at our disposal. Using the embeddings L?(R") C HO’_4(R”) and LP(R"* ") c
1/p(IR” 1y we obtain u; € H4 4(1R ), which shows that A is well-defined, as d,u; €
B‘1 YP(Rn=1) and 8, Au; e B‘3 ””(R" b,
b) Next, we observe that the operator A is densely defined. For this, let (f,g) € X =
LP(R%) x LP(R"™"), and let & > 0. We first choose ¢, € C3°(R" 1) with [l@2 — gl Lp(gn-1y < &
and then define ¢; € H;,t (R’}) as the unique solution of

2 .
(14+ A% =0 inR’,
yop1 =¢ on R"~ !,
9, Ap; =0 on R"!

By definition, we obtain (¢1, ¢2) € D(A). In a second step, we choose ¢ € C3°(R") with |l¢] +
— f||Lp(R1) < &. Then (¢}, 0) € D(A), which implies that u := (¢1 + ¢}, ¢2) € D(A). By
construction, we know ||u — (f, g)llx < 2e.
c) Finally, the operator A is closed. To see this, let (uk)keN C D(A) be a sequence with uk =
(ul, u2) — u = (u1,ur) in X and Auk — v = (vi, v2) in X. Then we have Azu]f — A2%uy in
4(R ) due to the continuity of the operator AZ: LP(RY) — H, 4(R ) as well as — Azull‘ —
vy in LP(R" ) and therefore also in H, 4(]R" ). By uniqueness of the limit, we see that —AZu| =

vy € LP(R’}). Similarly, using the spaces from a), one shows —d,u1 + A'uy = vy € LP (R"~ 1
and 9, Auy = you1 — up = 0. Therefore, u € D(A) and Au =v.

Now we want to show that the operator A generates a holomorphic semigroup in L? (R’ ) x
LP(R"1). The key step in the proof consists in the analysis of the solution operator of (5.1) with
f =0and A € Xy. For this, we take the partial Fourier transform (% u;)(¢’, x,) =: w(§’, x,) =:
w(x,) and obtain the ODE (5.2) as well as (5.4) from the boundary condition 9, Au; = 0. From
the proof of Lemma 5.1 we know that w(x,) = cje™ " + cpe” ™" and tic| = 12¢p, Where
7120 = 11.2(|§'], A) are defined in (5.3). Inserting this into the second line of (5.1), we get

T+ e+ A +1E 1P +e)=8:=Fg.
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With ¢; = %q , this yields

(2] A
a= /(2 8
(T + )R+ 87 +2un

For 1> (") = (F'uy) (€', 0), we obtain

1+ 1
(M + )+ ) +2un

r=ci+tec= g=:S(1&", Mg (5.6)

Therefore, we have to analyze the symbol S(|¢], 1). As we will use the bounded H *°-calculus,
we will extend this symbol with respect to the first variable to a small sector X,. We start with a
technical result on the zeros 77 and 15.

Lemma 5.4. Let 6 € (%, 7) and e € (0, Z2).

a) Let 112 ¥c x X9 — C be defined by

112z ) =22 £ivA (2, 1) € Ze x ).

Then 112 is holomorphic in ¥, x Xg and satisfies

Clzl + MY <1tz )] <C'(zZl+ M"Y (=1,2), (5.7)
C(lzl+ MY <tz M) + 12z, M| < C(Jz] + 1A% (5.8)

for suitable constants C,C' > 0 and all (z,A) € T, x Xg.
b) Forall (z,)) € X, X Xg we have

(—e, BTy ifargh e (%,0),
(—3%.%) ifargre[-%, %],
(—HZ &) ifarghe(—0,-3).

( 71(z, M) 12(2, A)
(t1(z, M) + 12(z, 1))

Proof. a) As +iv € (04,2, the condition on ¢ implies 2+ivre X (0+x)/2- This shows that
7; is well-defined and holomorphic in X, x Xy with values in X g4r)/4. The function ¢(z, 1) :=
[7j(z, M (z| + A 1/4y=1 is smooth and quasi-homogeneous of degree 0 in the sense that

9(pz. p* M) =@z, }) (p>0, 7€, A€ Xp).
Therefore, its minimum and maximum are attained on the compact set
M:={(z,1) €T x Tg : |z] + |A|/4 = 1}

(here we note that 7; can be extended continuously to M). As t; # 0 forall (z, A) € M, we obtain
0<C <¢(z,)) <C’' < oo, which yields (5.7).
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Because of 7; € ¥(g4x)/4, there exists a constant Cy > 0 with Ret; > Cy|7;|. Consequently,
|71 + 72l = Re(t1 + 12) = Re 1y > Cylt1| = CCy(|z| + |A]'/H).

As the other inequality in (5.8) is obvious, we obtain a).

b) For Re A > 0 we have 71, 12 € X3;/3. Consequently, the same holds for un_

T+ fl_|+fz_| .

Now, let arg) € (%,0). Analogously, we get T?JZZ € X (g+4r)/4- To see arg (T?JZ) > —¢g, it is

2
sufficient to prove Im (M) > 0. We set ¢ := /A /z* and obtain

2z (t1+12)

2 2 2
1+ 0" 11T T11°T2 + |T2|°T
'12 o _ ol l” Lol 4icW/T—ic+ |1 —iclvT+ic.
zlz] (11 + 12) z|z|

By the condition on A and z, we know that ¢ = a + ib for some a, b > 0. In a first step, we show

Im(vV1+ic++1—ic)>0. (5.9)

Using the formula Im v/x £iy =%,/ % forall x e R and y > 0, we get

Im(m+m):\/|l—b+iaz|—(l—b)_\/|1+b—ia2|—(1+b)’

such that (5.9) is equivalent to

VI +5)? +a2 = V(1= b)?+a? <2b,

which holds by the reverse triangle inequality in R? applied to the points (1 +b, a) and (1 —b, a).
With the inequalities |1 —ic| > |1 +ic| and Im+/1 +ic >0 as well as (5.9), we finally get

Im(]1 +iclvV1 —ic+ |l —iclv/1+4ic) > |1 +iclIm(v/1 —ic++14ic)>0.

Consequently, the statement in b) holds for arg € (%, 6). The statement for argA € (—6, —%)
follows from 71 2(z, A) = 12,1(Z, A). O

Lemma 5.5. Let 6 € (£, ) and ¢ € (0, ”4;0). For A € g and 7z € X, define

A+ (11 + 1)
A+t + 1)+ 21112

m(z, ) =+ 228z, 1) = (5.10)

Then m: ¥, x L9 — C is holomorphic and bounded.

Proof. For the boundedness we notice that

1

2711
+ (+22)(11+12)

m(z, ) =
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4K5) 1k}
R ye—— € X, for some ¢ € (0, ). In the case ReA > 0 we have oin € 23n/8

due to Lemma 5.4 b), which yields

and show

172

— ¥ .
O+t 8

Ifarg A € (£, 0) we use again Lemma 5.4 b) and obtain arg (;L:i) € (—e¢, 9%). By the condi-

tion on A and z, we get arg(A + z2)~! € (=8, 2¢) and therefore

102

L
O+ 22t + 1) 0

3R]

L x . __un
For arg) € (=6, —%) we argue in the same way to see e y—

€ Yg4e. Obviously, m is
holomorphic in X, x ¥g. O

The last two lemmas allow us to prove the main result of this section. We recall that the
operator A is described in Definition 5.2.

Theorem 5.6. For every Ao > 0, the operator A — Ly generates a bounded holomorphic Cy-
semigroup of angle % in X := LP(R") x LP(R™Y). In particular, A generates a holomorphic
Co-semigroup of angle % in X. Furthermore we obtain H 2_regularity of the solution. More
precisely for any ¢ > O we have

D(A) C HyPVPTERY) x HAR™Y).
We may choose ¢ =0 if p > 2.

Proof. Let 6 € (£, ), and let Ag > 0. Then there is some k6 > 0 with
A0+29C{A629:|A|2X6}. (5.11)

We show that for every A € Xg with |A| > X, and every (f, g) € X, equation (5.1) has a unique
solution u = (u1,uz) € D(A) and |A| ||u]lx < C||(f, &) |lx with a constant not depending on A.
(i) Let (f, g) € X. We construct the unique solution u = (11, u2) € D(A) of equation (5.1) by
solving two different boundary value problems. First, we consider the boundary value problem
o+ AHud = finR",
youl =0 on R" 1, (5.12)
BvAu(l) =0 onR*!.
By Lemma 5.1, this problem is parameter-elliptic, and by classical results (see [16], Theorem 1.9,

or apply Theorem 3.2 with s = 4 and o = 0), there exists a unique solution u? € H;(R’j_) of
(5.12) and

IMudllr ey < CllFllr @)
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where the constant C depends on 6 and A, but not on f or A.
(ii) Next, we solve

O+ Ay =0 inR,
douy + (A — Auy =g onR" 7!,

(5.13)
d,Au}; =0 on R,

youy = up on R"™!

such that the solution of (5.1) is given by u = (u1, us) with u; = u’l + u(l). Here, we have set
¢ :=g — 9,u’. Note that

1wl o oty < ClOVET g ety = Clldll sy < CULF oy
and therefore
18" Lo -1y < C(lIgll Loty + I fllir®ry) < CICS &)lx-
With the same calculations as those leading up to (5.6), we observe that the boundary value

problem (5.13) possesses a unique solution (u), u2) satisfying @> = S(|’|, 1)¢’ and therefore
up = S(|D'|, A)g’. Since m is bounded due to Lemma 5.5 and

(_A/)]/Z: L‘D(Rnil) D D((_A/)]/Z) — W;(Rnfl) — Lp(Rnfl)
has a bounded H *°-calculus (see, e.g., [13], Corollary 2.10), the operator
m((=A)Y2 ) =+ A)HS(D'|. »)

is well-defined and a bounded operator in L?(R"~!). The operator norm can be estimated by a
constant independent of A € Xy. This shows that

S(D'|,2): LP(R"™") — HX(R"™) (5.14)
A1
}\,"FZZ - 1+%
the boundedness of AS(|D’|, ) on L?(R"™1).

(iii) With (ii) and us = S(|D'|, 1)g’ we get

is continuous, and as

is a bounded holomorphic function as well, we also obtain

A 2l Lo oty < Cllg gty < CICE ©)llx
The function u/ in particular solves the problem
(. +AMu; =0 inR”,
you| =uz on R""1, (5.15)
dyAuy =0 onR"!
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As this boundary value problem is parameter-elliptic due to Lemma 5.1, we can apply The-
orem 3.2 with s := 4, 0 := —4 + 1/(2p). We use the embeddings L?(R"~!) = HS’A(R"_I) C
B;p]’/k(zp )(R"1) and H;L”;Hl/ @r) RY)CH [17/ A(ZP ) (R”}) (see Proposition 2.2 c)) and obtain from
Theorem 3.2 that u} € H [17/ A(ZP) (R%) satisfies the estimate

1/@p)y,,’ < / < /
|A] il e ey < Clluy ”H’}_/fl”(Rp = Cllu; IIH;:;4+1/<21)>(RD

< Clluall y-viem gty < Clluzll ooy
pp.

for A € Xy with |A| > A;,. Altogether, u = (u1, uz) with uy = u’ + ”(1) is the unique solution of
(5.1) and fulfills the uniform estimate || |lullx < C||(f, g)llx for A € Zy with |A| > X;,. Writing
A—A=(— ) — (A — Ao) and recalling (5.11), we see that A — Ao generates a bounded
analytic Co-semigroup of angle 7 in X, and therefore A generates an analytic Cp-semigroup of
angle 7 in X.

(iv) From (5.14) we even know that u; = S(|D’|, A)g’ lies in HI%(R"’I). Consequently, we
can also apply Theorem 3.2 to (5.15) with s =4 and 0 = -2 + % — ¢. Hence, taking a fixed
A € Xy, we obtain the desired higher regularity due to

leenll y2e/p-e gy < Calluy ”H}‘,‘;;M/P*S(Ri)
< C)»””ZHBIZJ;E(R;FI) =< C)»””Z“H;(R”_l)'
For p > 2, the last embedding also holds fore =0. O

Remark 5.7. a) In the above estimates we could show that

|1 ||M2||Lp(Rn—1) =< C||g/||Lp(]R"—‘)

holds for all A € Xy. The condition |A| > Lo with arbitrary small Ao > O was only used for the
uniform estimate of ||u|| LP(RY)-

b) The proof of Theorem 5.6 is essentially based on the estimate from Lemma 5.5 and an ap-
plication of the general result from Theorem 3.2. We expect generation of an analytic semigroup
in some general setting, starting from Theorem 3.2 in R”, or Theorem 4.9 in domains. However,
it is not so obvious to obtain an analogue of Lemma 5.5, which can be seen as an estimate on (a
part of) the Lopatinskii matrix related to the dynamic boundary value problem. Analog estimates
might heavily depend on the mixed-order structure of the Lopatinskii matrix and on the orders
of the boundary operators. We plan to address this question in future research.

Example 5.8. With exactly the same methods as for (5.1), one can also treat the more simple
boundary value problem with dynamics boundary condition given as

rAup—Auy=f inRﬁ_,
Ao+ dur =g onR", (5.16)

your —uzy =0 on RrR™ L
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The operator A related to (5.16) acts in the space X := LP(R"}) x LP(R" ) and is defined by
D(A) :={u=1,uz) €e X: A(D)u € X, ypu1 — upy =0}, where

A(D)u := (—Aé)v 8) u (ue D(A)).

In the same way as above, but with much simpler resolvent estimates, one sees that A — X¢
generates for every A9 > 0 a bounded holomorphic Cyp-semigroup in X. The symbol which we
have to estimate now has the form

A
A+ A+ 72

m(z, A) =

for (z,A) € 2 x 2.
Data availability
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