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Abstract

We consider linear boundary value problems for higher-order parameter-elliptic equations, where the 
boundary data do not belong to the classical trace spaces. We employ a class of Sobolev spaces of mixed 
smoothness that admits a generalized boundary trace with values in Besov spaces of negative order. We 
prove unique solvability for rough boundary data in the half-space and in sufficiently smooth domains. As 
an application, we show that the operator related to the linearized Cahn–Hilliard equation with dynamic 
boundary conditions generates a holomorphic semigroup in Lp(Rn+) × Lp(Rn−1).
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper, we study linear differential boundary value problems of the form

(λ − A)u = f in �,

Bju = gj (j = 1, . . . ,m) on �,
(1.1)
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where � is either the half-space Rn+ := {x ∈ Rn : xn > 0} or a domain in Rn with compact and 
sufficiently smooth boundary �. Moreover, A is a differential operator of order 2m and Bj is a 
boundary operator of order mj < 2m for j = 1, . . . , m. Whereas for sufficiently smooth f and 
gj this problem can be solved by classical theory, we focus on rough boundary data g1, . . . , gm. 
In particular, we want to solve (1.1) for f ∈ Lp(�) but gj ∈ B

sj
pp(�), where sj may be zero or 

even negative. For such rough boundary data, even the formulation of the boundary conditions 
needs justification: It is known that the classical trace u �→ u|�, first defined for smooth functions, 
has a continuous extension to an operator γ0 : Hs

p(�) → B
s−1/p
pp (�) if and only if s > 1

p
([23]). 

Nevertheless, it is possible to define a continuous trace on subspaces of Hs
p(�) for s ≤ 1

p
, see, 

e.g., Lions–Magenes ([24], [25]) and Roitberg ([29], [30]). In the present paper, we will introduce 
a class of Sobolev spaces Hs,σ

p (Rn) of anisotropic type, for which the trace exists as a continuous 
operator, following the ideas from Grubb ([17], [18]).

The motivation to study problem (1.1) with rough boundary data is two-fold: The first mo-
tivation arises in the study of stochastic partial differential equations (SPDEs) with boundary 
noise. Exemplarily, we mention here [33] and [27] for parabolic equations and reaction-diffusion 
systems with Neumann boundary conditions, [9] for the heat equation with Dirichlet boundary 
conditions, [3] and [8] for a free boundary value problem in fluid mechanics, and [10] for dy-
namical boundary conditions. The key step in the analysis of these problems is to understand 
the properties of the solution operator to the boundary value problem (formulated for Neumann 
boundary conditions)

∂tu − Au = 0 in (0,∞) × �,

∂νu = ξ on (0,∞) × �,
(1.2)

where ξ stands for the boundary noise and ∂ν denotes the derivative in the direction of the out-
ward pointing unit normal vector of the boundary �. As it is known that the paths of Gaussian 
white noise belong with probability one to some Besov space with negative regularity (see, e.g., 
[7], [20], [38]), this fits into the setting of (1.1) with f = 0. In the context of SPDEs, the solution 
operator is often denoted as the Neumann (or Dirichlet) map.

The second motivation for studying (1.1) arises from boundary value problems with Wentzell 
or dynamical boundary conditions. As a prototype example, we consider the heat equation with 
Wentzell boundary conditions

∂tu − 
u = 0 in (0,∞) × �,


u + ∂νu = 0 on (0,∞) × �,

u|t=0 = u0 in �.

(1.3)

Replacing 
u = ∂tu in the boundary condition, we obtain the dynamic boundary condition ∂tu +
∂νu = 0. In a standard approach, one decouples u =: u1 and u|� =: u2 and obtains a resolvent 
problem of the form

λu1 − 
u1 = f in �,

λu + ∂ u = g on �
(1.4)
2 ν 1
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with the additional condition u1|� = u2. The corresponding operator acts on the tuple u =
(u1, u2) as Au = (
u1, −∂νu1). From the point of view of maximal regularity for (1.3), the 
basic space for this operator would be Lp(�) × B

1−1/p
pp (�), where the second component is the 

trace space of H 2
p(�) for the Neumann boundary operator. In fact, for boundary value problems 

with dynamic boundary conditions, the generation of a holomorphic semigroup in trace spaces 
was shown in [28] for the Cahn–Hilliard equation and in [12] for a general class of problems. 
However, a more natural basic space for the operator A is Lp(�) × Lp(�). At least for p = 2, 
form methods can easily lead to the proof of the generation of a holomorphic semigroup. This 
was elaborated, e.g., for second-order equations in [6] and in [39], for the Bi-Laplacian in [11], 
and in an abstract setting in [14]. For the analysis in the basic space Lp(�) × Lp(�), one has 
to deal with boundary values in Lp-spaces, which again is not covered by classical theory. In 
the present paper, we will apply our solution theory to the Cahn–Hilliard equation with dynamic 
boundary conditions.

Our analysis of (1.1) starts with the observation that (at least in the smooth situation) this prob-
lem fits into the framework of Boutet de Monvel’s calculus of pseudodifferential boundary value 
problems. In this calculus, the solution operator for f = 0 is called a Poisson operator, and such 
operators have good mapping properties in the complete scale of Sobolev spaces. This follows, 
e.g., from the work of Grubb ([16], [17]) and Grubb and Kokholm [18]. However, the classical 
trace only exists for sufficiently smooth functions. Therefore, one has to define an appropriate 
generalization of the trace on the boundary. In the literature, one can find several approaches to 
generalized traces and corresponding boundary value problems with rough boundary data: By 
considering the dual boundary value problem as by Lions and Magenes ([24], [25]), one obtains 
unique solvability in some negative order spaces. However, these spaces depend on the boundary 
conditions, which is the reason for introducing the universal (but less natural) spaces �s(�) in 
[25], beginning of Section 6.3. By Roitberg ([29], [30]), generalized traces were defined using 
completion of smooth functions. Here, the solution of the boundary value problem is given as 
a tuple of the form (u, g0, . . . , g2m−1), where the first component u belongs to some dual space 
and g0, . . . , g2m−1 are generalized boundary traces. This concept leads to isomorphism results, 
but the considered spaces are non-standard and in general not even spaces of distributions on 
�. The Roitberg spaces are described in more detail in Remark 2.7 below. Another approach 
to rough boundary data was developed, e.g., by Hummel and Lindemulder ([19], [21]), where 
weighted Sobolev spaces (with respect to some distance function to the boundary) lead to a 
priori-estimates. The spaces are natural and do not depend on the operators, but the order at the 
boundary is still restricted to the non-negative scale (see [21], Theorem 6.2). Spaces of arbitrary 
negative (tangential) order can be obtained in combination of weighted spaces and spaces of 
dominating mixed smoothness, see [19], Theorem 6.1.

In this paper, we use another approach to a generalized trace by considering a new class of 
Sobolev spaces with mixed smoothness, which was introduced by Grubb ([17]) for p = 2. These 
spaces differ from anisotropic Sobolev spaces in the sense of [23] and [35] and from spaces with 
dominating mixed smoothness in the sense of [32] and [37]. For this class of Sobolev spaces, both 
the existence of a continuous trace and the unique solvability of parameter-elliptic model prob-
lems in the whole space and in the half-space follow immediately from known results. However, 
the passage from model problems (i.e., constant coefficients and no lower-order terms) to vari-
able coefficients is not standard. It requires the application of an elaborate localization procedure, 
even for problems on the half-space. In domains, the definition of the Sobolev spaces with mixed 
smoothness is not canonical. Therefore, we work with classical Sobolev spaces in domains but 
employ local embeddings into our spaces of mixed smoothness. The necessity to estimate certain 
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commutators leads to restrictions on the orders of the involved spaces (see Lemma 4.4); however 
these restrictions still allow to deal with boundary values in Lp(�), for example.

The paper is structured as follows. In Section 2, we define and analyze Sobolev spaces of 
mixed smoothness, including parameter-dependent norms. We show trace results and typical 
embeddings. In Lemma 2.3, interpolation properties are shown which seem not to follow im-
mediately from known results. Section 3 deals with boundary value problems in the half-space. 
The main result (Theorem 3.12) gives unique solvability of parameter-elliptic boundary value 
problems under appropriate smoothness assumptions on the coefficients. Note that we do not 
consider the infinitely smooth setting and thus pseudodifferential theory cannot be applied. Here, 
the boundary data may belong to Besov spaces with arbitrary low order. As a corollary, one ob-
tains unique solvability in classical Sobolev spaces (Corollary 3.13). The situation in domains is 
studied in Section 4. The main result (Theorem 4.9) yields unique solvability in classical Sobolev 
spaces for rough boundary data. Finally, in Section 5, we apply the above results to the linearized 
Cahn–Hilliard equation with dynamic boundary conditions. We show that the related operator A
generates a holomorphic semigroup in Lp(Rn+) × Lp(Rn−1), see Theorem 5.6. In fact, we even 
show that, for every λ0 > 0, the operator A −λ0 generates a bounded holomorphic semigroup of 
angle π

2 . In the proof, we use the bounded H∞-calculus for the Laplacian with explicit symbol 
estimates, see Lemma 5.4. The same method can be applied to the (much easier) boundary value 
problem (1.4), and we obtain unique solvability of (1.4) and the generation of a holomorphic 
semigroup for the related operator.

2. Sobolev spaces of mixed smoothness and traces

Let us fix some notation used throughout the paper. We consider the Euclidean space Rn with 
variable x = (x′, xn) and corresponding co-variable ξ = (ξ ′, ξn). We fix m ∈N and define

〈ξ,λ〉 := (1 + |ξ |2 + |λ|1/m)1/2 and 〈ξ ′, λ〉 := (1 + |ξ ′|2 + |λ|1/m)1/2

for ξ ∈ Rn and λ ∈ C. Moreover, we write 〈ξ 〉 := 〈ξ, 0〉, 〈ξ ′〉 := 〈ξ ′, 0〉 and 〈λ〉 := 〈0, λ〉. For 
(suitable) functions ϕ(ξ) defined on Rn we denote by ϕ(D) its associated Fourier multiplier, 
which is defined by ϕ(D)u := F−1(ϕFu), where F denotes the Fourier transform acting in 
the space S ′(Rn) of tempered distributions. In particular, we have Dα = (−i)|α|∂α for α ∈ Nn

0 . 
In case ϕ(ξ) = ϕ(ξ ′) is independent of ξn, the associated Fourier multiplier will also be denoted 
by ϕ(D′).

For two Banach spaces X and Y let L(X, Y) be the space of bounded linear operators X →
Y and L(X) := L(X, X). We shall write X = Y if both spaces have the same elements and 
equivalent norms, and we write X ⊂ Y if X is a subset of Y and the inclusion map X → Y is 
bounded.

2.1. Some function spaces

In the following, let Hs
p(Rn) and Bs

pp(Rn) denote the standard Bessel potential and Besov 
spaces for s ∈R. Throughout the paper, we assume p ∈ (1, ∞). For p = 2, the following defini-
tion can also be found in [17], Appendix A.3.

Definition 2.1. For s, σ ∈ R and p ∈ (1, ∞) we define the Bessel potential space of mixed 
smoothness Hs,σ

p (Rn) as
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Hs,σ
p (Rn) = {u ∈ S ′(Rn) : 〈D′〉σ u ∈ Hs

p(Rn)}
= {u ∈ S ′(Rn) : 〈D〉s〈D′〉σ u ∈ Lp(Rn)}

with canonical norm ‖u‖H
s,σ
p (Rn) := ‖〈D′〉σ u‖Hs

p(Rn) = ‖〈D〉s〈D′〉σ u‖Lp(Rn).

In the previous definition, 〈D′〉σ acts only on the x′-variable. Therefore, the above spaces 
have different smoothness in x′-direction and in xn-direction, which is the reason of the notion 
of mixed smoothness.

Clearly, Hs,σ
p (Rn) is a Banach space. Since 〈D′〉σ and 〈D〉s leave S (Rn) invariant, the 

rapidly decreasing functions are a dense subset of Hs,σ
p (Rn). For every t, τ ∈R the map

〈D〉t 〈D′〉τ : Hs,σ
p (Rn) → Hs−t,σ−τ

p (Rn)

is an isometric isomorphism with inverse 〈D〉−t〈D′〉−τ .
We remark that the scale Hs,σ

p (Rn) for s, σ ∈ R is different from the scale of anisotropic 
spaces Hs,
a

p (Rn) in the sense of [23], Proposition 2.10 (see also [35], Section 5.1.3). In particular, 
for s > 0 and σ < −s, we have positive smoothness with respect to xn but negative smoothness 
in x′, which is not allowed for the anisotropic spaces. Hs,σ

p (Rn) is also different from the space 
of dominating mixed smoothness (see, e.g., [37], Section 1.1.2). Spaces of dominating mixed 
smoothness are defined similarly as above, but with 〈ξ 〉 being replaced by 

∏n
j=1(1 + ξ2

j )1/2. We 
refer to [32], Section 1, and [20], Subsection 2.2, for further information on spaces of dominating 
mixed smoothness and applications to boundary value problems.

We state some elementary properties of the Bessel potential spaces with mixed smoothness 
which we shall use frequently later on.

Proposition 2.2. Let s, σ ∈ R.

a) H
s,0
p (Rn) = Hs

p(Rn) and H 0,σ
p (Rn) = Lp(R, Hσ

p (Rn−1)).

b) H
t,τ
p (Rn) ⊂ H

s,σ
p (Rn) whenever s ≤ t and σ ≤ τ .

c) For σ ≥ 0 we have

Hs+σ
p (Rn) ⊂ Hs,σ

p (Rn) ⊂ Hs
p(Rn) ⊂ Hs,−σ

p (Rn) ⊂ Hs−σ
p (Rn).

d) If q is the dual coefficient to p, i.e. 1
p

+ 1
q

= 1, then the standard bilinear pairing Lp(Rn) ×
Lq(Rn) → C induces an identification of the dual space of Hs,σ

p (Rn) with H−s,−σ
q (Rn).

e) In case of s ≥ 0 we have

Hs,σ
p (Rn) = Lp(R,H s+σ

p (Rn−1)) ∩ Hs
p(R,Hσ

p (Rn−1)).

f) For α ∈Nn
0 , the derivative ∂α : H

s,σ
p (Rn) → H

s−|αn|,σ−|α′|
p (Rn) is continuous.

g) If s ∈ N0 is an integer, u ∈ S ′(Rn) belongs to Hs,σ
p (Rn) if and only if ∂j

nu ∈ H
0,s+σ−j
p (Rn)

for all j = 0, . . . , s. Moreover, ‖u‖ :=∑s
j=0 ‖∂j

nu‖
H

0,s+σ−j
p (Rn)

defines an equivalent norm 

on Hs,σ
p (Rn).
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Proof. a) is clear. b) is true, since 〈D〉s−t 〈D′〉σ−τ is a bounded operator in Lp(Rn) due to 
Mikhlin’s theorem.

c) By Mikhlin’s theorem, both 〈D〉−σ 〈D′〉σ and 〈D′〉−σ are bounded operators in Lp(Rn)

for σ ≥ 0. This yields the first and the second inclusion, respectively. The other two are verified 
analogously.

d) As 〈D′〉σ : H
s,σ
p (Rn) → Hs

p(Rn) is an isometric isomorphism, the adjoint operator 
(〈D′〉σ )′ : (Hs

p(Rn))′ → (H
s,σ
p (Rn))′ is an isometric isomorphism in the dual spaces. In the 

bilinear pairing, this adjoint operator is again 〈D′〉σ , and the dual space of Hs
p(Rn) is given 

by H−s
q (Rn). Hence, the dual space of H

s,σ
p (Rn) is identified with 〈D′〉σ (H−s

q (Rn)) =
H

−s,−σ
q (Rn).
e) The equality is known to be true in case σ = 0. Applying 〈D′〉−σ to both sides of this 

equality yields the claim.
f) holds because ∂α〈D′〉−|α′|〈D〉−αn is bounded in Lp(Rn) due to Mikhlin’s theorem.
g) Again this is known in case σ = 0. Then, the general case holds true because 〈D′〉σ com-

mutes with ∂n. �
2.2. Interpolation spaces

Let us briefly recall the complex interpolation method, following [22], Section C.2 (see also 
[34], Section 1.9). Let X0 and X1 be an interpolation couple of complex Banach spaces and 
S := {z ∈ C : 0 < Re z < 1}. Denote by F(X0, X1) the space of all continuous functions f : S →
X0 + X1 such that f |S is holomorphic as an (X0 + X1)-valued function on S and, for j ∈ {0, 1}, 
the function b �→ f (j + ib) : R → Xj is bounded and continuous. F(X0, X1) becomes a Banach 
space with the norm

‖f ‖F(X0,X1) := max
j=0,1

sup
b∈R

‖f (j + ib)‖Xj
.

For θ ∈ (0, 1), the complex interpolation space [X0, X1]θ is defined as the space of all x ∈
X0 + X1 for which x = f (θ) for some f ∈F(X0, X1), endowed with the norm

‖x‖[X0,X1]θ := inf{‖f ‖F(X0,X1) : f (θ) = x}.
With this norm, the complex interpolation space becomes a Banach space satisfying X0 ∩ X1 ⊂
[X0, X1]θ ⊂ X0 + X1. In the definition of the interpolation space and the norm, the space 
F(X0, X1) can be replaced by the subspace F0(X0, X1) which consists of all f ∈ F(X0, X1)

such that b �→ ‖f (j + ib)‖Xj
vanishes for |b| → ∞ and j = 0, 1. We will also consider the 

space F0(X0, X1; X0 ∩ X1) consisting of all f ∈ F0(X0, X1) for which f (z) ∈ X0 ∩ X1 for all 
z ∈ S and where f is continuous on S and holomorphic in S as a function with values in X0 ∩X1
(note that the definition of this space differs from the one in [22]). By [34], Theorem 1.9.1, 
F0(X0, X1; X0 ∩ X1) is dense in F0(X0, X1).

Lemma 2.3. Let s0, σ0, s1, σ1 ∈R and θ ∈ (0, 1). Then

[Hs0,σ0
p (Rn),H s1,σ1

p (Rn)]θ = Hsθ ,σθ
p (Rn) (2.1)

with sθ = (1 − θ)s0 + θs1 and σθ = (1 − θ)σ0 + θσ1.
90



R. Denk, D. Ploß, S. Rau et al. Journal of Differential Equations 366 (2023) 85–131
Proof. For simplicity, we write Hs1,σ1
p := H

s1,σ1
p (Rn) etc. in the proof. Due to [X0, X1]θ =

[X1, X0]1−θ , we may assume s0 ≤ s1. Applying the operator 〈D〉s1〈D′〉σ0 and setting s := s0 −
s1 ≤ 0 and σ := σ1 − σ0 ∈ R, by the retraction argument from [4], Proposition 2.3.2, it remains 
to show that

[Hs,0
p ,H 0,σ

p ]θ = H(1−θ)s,θσ
p . (2.2)

Note that Hs,0
p = Hs

p and H 0,σ
p = Lp(R, Hσ

p (Rn−1)) by Proposition 2.2 a).

We first show “⊂” in (2.2). For this, let u ∈ [Hs
p, H 0,σ

p ]θ , and choose g ∈ F0(H
s
p, H 0,σ

p ) with 

g(θ) = u. By density, there exists a sequence (gk)k∈N ⊂ F0(H
s
p, H 0,σ

p ; Hs
p ∩ H

0,σ
p ) such that 

gk → g in F(Hs
p, H 0,σ

p ). It follows that gk(θ) → g(θ) in [Hs
p, H 0,σ

p ]θ . For k ∈N let us define

fk(z) := ez2−θ2〈D′〉σzgk(z) (z ∈ S).

First we show that fk(z) ∈ Hs
p with continuous and holomorphic dependence on z ∈ S and z ∈ S, 

respectively. This is equivalent to showing that

hk(z) := 〈D〉s〈D′〉σzgk(z) (z ∈ S)

defines a function hk : S → Lp which depends on z as requested. In case of σ ≤ 0 note that 
gk : S → Hs

p , hence 〈D〉sgk : S → Lp , with the requested dependence on z. Then the claim for 
hk follows from Lemma 5.6.8 in [22]. By (5.53) of [22] we also find the estimate

‖hk(z)‖Lp ≤ C(1 + |σ Im z|)‖gk(z)‖Hs
p

(z ∈ S).

If σ > 0, note that 〈D〉s ∈ L(Lp) since s ≤ 0. Then write

〈D′〉σzgk(z) = 〈D′〉σ(z−1)〈D′〉σ gk(z).

Since gk : S → H
0,σ
p , hence 〈D′〉σ gk : S → Lp , with the requested dependence on z, the claim 

again follows by Lemma 5.6.8 of [22]. Also

‖hk(z)‖Lp ≤ C(1 + |σ Im z|)‖gk(z)‖H
0,σ
p

(z ∈ S).

This yields

‖fk(z)‖Hs
p

≤ C̃‖gk(z)‖Hs
p∩H

0,σ
p

(z ∈ S)

with C̃ := C supb∈R(1 + |σb|)e1−θ2−b2
.

Arguing similarly, one finds fk(ib) ∈ Hs
p and fk(1 + ib) ∈ Lp with continuous dependence 

on b ∈ R and
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sup
b∈R

‖fk(ib)‖Hs
p

≤ C sup
b∈R

‖gk(ib)‖Hs
p
,

sup
b∈R

‖fk(1 + ib)‖Lp ≤ C sup
b∈R

‖gk(1 + ib)‖
H

0,σ
p

.

Summing up, we have shown that fk ∈F(Hs
p, Lp) with

‖fk‖F(Hs
p,Lp) ≤ C‖gk‖F(Hs

p,H
0,σ
p )

.

As (gk)k∈N is convergent and therefore a Cauchy sequence, the above estimate, applied to 
fk − f�, yields that also (fk)k∈N ⊂ F(Hs

p, Lp) is a Cauchy sequence. Again by the defini-
tion of the interpolation space [Hs

p, Lp]θ , we obtain that (fk(θ))k∈N is a Cauchy sequence in 

[Hs
p, Lp]θ = H

(1−θ)s
p (for the last equality, see [22], Theorem 5.6.9). By completeness, there ex-

ists v ∈ H
(1−θ)s
p with fk(θ) → v. On the other hand, fk(θ) = 〈D′〉θσ gk(θ) and gk(θ) → g(θ) =

u in [Hs
p, H 0,σ

p ]θ , hence fk(θ) → 〈D′〉θσ u in S ′(Rn). Therefore, u = 〈D′〉−θσ v ∈ H
(1−θ)s,θσ
p

with norm

‖u‖
H

(1−θ)s,θσ
p

≤ C‖v‖[Hs
p,Lp]θ ≤ C lim

k→∞‖fk‖F(Hs
p,Lp) ≤ C lim

k→∞‖gk‖F(Hs
p,H

0,σ
p )

= C‖g‖F(Hs
p,H

0,σ
p )

.

As g ∈F0(H
s
p, H 0,σ

p ) was arbitrary with g(θ) = u, we obtain

‖u‖
H

(1−θ)s,θσ
p

≤ C‖u‖[Hs,0
p ,H

0,σ
p ]θ

which finishes the proof of “⊂”.
The proof of the embedding “⊃” follows in exactly the same way. Let u ∈ H

(1−θ)s,θσ
p and v :=

〈D′〉θσ u ∈ H
(1−θ)s
p , and let f ∈ F0(H

s, Lp) with f (θ) = v. We approximate f by a sequence 

(fk)k∈N ⊂ F0(H
s
p, Lp; Lp) and set gk(z) := ez2−θ2〈D′〉−σzfk(z) for z ∈ S and k ∈N . If σ ≥ 0, 

we see that gk(z) ∈ Lp ⊂ Hs
p , and for σ < 0 we have gk(z) ∈ H

0,σ
p , so we have gk(z) ∈ Hs

p +
H

0,σ
p for all z ∈ S. Therefore, we can argue as above to show the embedding “⊃” in (2.2). �
In addition to the spaces above, we will also consider the standard Besov spaces Bs

pp(Rn) for 
p ∈ (1, ∞) and s ∈R. For X ∈ {S , S ′, Hs

p, Bs
pp, Hs,σ

p } and a domain � ⊂Rn, we define

X(�) := {u|� : u ∈ X(Rn)}

(where restriction is understood in the distributional sense) with the canonical norm

‖v‖X(�) := inf{‖u‖X(Rn) : u ∈ X(Rn), u|� = v}

(see, e.g., [35], Definition 4.1). Moreover, for a closed subset A ⊂Rn we define

Ẋ(A) := {u ∈ X(Rn) : suppu ⊂ A}.
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Then by definition we see that X(�) can be identified with the quotient space X(Rn)/Ẋ(Rn \�). 
Note that we consider Hs,σ

p (�) only for � =Rn+.

Remark 2.4. a) Let � = Rn+. Then the restriction rRn+ : X(Rn) → X(Rn+), u �→ u|Rn+ is a 
retraction. This follows from the fact that there exists a restriction-extension pair (R, E) for 
(S ′(Rn), S ′(Rn+)) in the sense of [5], Theorem VI.1.2.3, which yields the restriction-extension 
pair (rRn+ , eRn+) on (X(Rn), X(Rn+)) by [5], Lemma VII.2.8.1. In particular, the extension op-

erator eRn+ is universal for all considered spaces. Later, we will also consider e0
�, the canonical 

extension from � to Rn by zero.
b) Similarly, if � ⊂ Rn has smooth boundary, the map u �→ u|� is a retraction from Hs

p(Rn)

to Hs
p(�) and from Bs

pp(Rn) to Bs
pp(�), and for all N ∈ N there exists a common co-retraction 

(i.e., a continuous right-inverse) for all |s| < N (see [36], Theorem 3.3.4).
c) Due to a) and standard retraction-coretraction arguments (see [4], Section I.2.3), all state-

ments of Proposition 2.2 and Lemma 2.3 remain valid if we replace Rn by Rn+, with the exception 
of Proposition 2.2 d) which has to be modified in the following form: For all s, σ ∈ R the dual 
space of Hs,σ

p (Rn+) with respect to the standard pairing is given by (Hs,σ
p (Rn+))′ = Ḣ

−s,−σ
q (Rn+). 

This follows from (Hs
p(Rn+))′ = Ḣ−s

q (Rn+) (see [5], Theorem VII.4.4.2) in the same way as in 

the proof of Proposition 2.2 d), noting that 〈D′〉σ u has support in Rn+ if u does.

2.3. Boundary traces

To define the trace space of Hs,σ
p (Rn+) on the boundary ∂Rn+ = Rn−1, we first note that for 

the standard space Hs
p(Rn+) the trace

γ0 : Hs
p(Rn+) → B

s−1/p
pp (Rn−1), u �→ γ0u := u|Rn−1 (2.3)

exists and is continuous if and only if s > 1
p

. In fact, it was shown in [23], Theorem 2.4, that 

for s ≤ 1
p

the map u �→ γ0u is not even continuous from Hs
p(Rn+) to D ′(Rn−1). If s > 1

p
, then 

(2.3) is a retraction, and γ0 is the unique extension of the classical boundary trace u �→ u|xn=0
for smooth functions u ∈ S (Rn+). We will also consider the higher-order traces γj : Hs

p(Rn+) →
B

s−j−1/p
pp (Rn−1), u �→ γ0∂

j
nu for j ∈N0 and s > j + 1

p
.

Definition 2.5. Let j ∈ N0, s ∈ (j + 1
p
, ∞), and σ ∈ R. Then we define the j -th order trace γ̃j

on Hs,σ
p (Rn+) as

γ̃j : Hs,σ
p (Rn+) → B

s+σ−j−1/p
pp (Rn−1), u �→ 〈D′〉−σ γj 〈D′〉σ u. (2.4)

Remark 2.6. Note that γ̃j is well-defined as 〈D′〉σ u ∈ Hs
p(Rn+) and the unique continuous ex-

tension of the classical trace which is defined on the dense subspace S (Rn+). The fact that γj

is a retraction on the classical space Hs
p(Rn+) immediately implies that (2.4) is a retraction, too. 

In fact, if ej is a co-retraction to γj , then ̃ej := 〈D′〉−σ ej 〈D′〉σ is a co-retraction to γ̃j . As γ̃j is 
(for σ ≤ 0) the unique continuous extension of γj to Hs,σ

p (Rn+), we will write γj instead of γ̃j

again.
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Remark 2.7 (Roitberg spaces). There is a theory of generalized boundary value problems in 
spaces of negative regularity due to Roitberg [29]. In this theory, for s ∈ R and � ∈ N0, the 
space H̃ s,(�)

p (Rn+) is defined as the set of all tuples (u, g0, . . . , g�−1) such that there exists a 
sequence (uk)k∈N ⊂ S (Rn+) satisfying (uk, γ0uk, . . . , γ�−1uk) → (u, g0, . . . , g�−1), where the 
convergence takes place in the space

Hs
p(Rn+) ×

�−1∏
j=0

B
s−j−1/p
pp (Rn−1) if s ≥ 0,

Ḣ s
p(Rn+) ×

�−1∏
j=0

B
s−j−1/p
pp (Rn−1) if s < 0.

For s > � − 1 + 1/p, the space H̃ s,(�)
p (Rn+) can be identified with the standard Sobolev space 

Hs
p(Rn+), and we have gj = γju for j = 0, . . . , � − 1 in this case, see [29], Section 2.1.
Let � ∈ N0, s > � − 1 + 1/p, and σ ≤ 0, and let u ∈ H

s,σ
p (Rn+). By density, there exists 

a sequence (uk)k∈N ⊂ S (Rn+) with ‖uk − u‖H
s,σ
p (Rn+) → 0 (k → ∞). The continuity of (2.4)

yields γjuk → γju ∈ B
s+σ−j−1/p
pp (Rn−1) for j = 0, . . . , � − 1. From this and Lemma 2.2 a), we 

obtain the continuous embeddings

Hs,σ
p (Rn+) ⊂ H̃ s+σ,(�)

p (Rn+) if s + σ ≥ 0,

H s,σ
p (Rn+) ∩ Ḣ s+σ

p (Rn+)⊂ H̃ s+σ,(�)
p (Rn+) if s + σ < 0,

where we identify u ∈ H
s,σ
p (Rn+) with the tuple (u, γ0u, . . . , γ�−1u).

2.4. Parameter-dependent spaces

We will also need parameter-dependent versions of the above spaces. For this, we follow the 
approach of Grubb–Kokholm [18].

Definition 2.8. If Xλ and Yλ are families of Banach spaces (parametrized by λ from some index 
set), a family of linear operators T (λ) : Xλ → Yλ is said to be continuous if T (λ) ∈ L(Xλ, Yλ)

for every fixed λ and the operator norm ‖T (λ)‖L(Xλ,Yλ) is uniformly bounded in λ. A continuous 
family is called an isomorphism if each T (λ) is invertible and T (λ)−1 : Yλ → Xλ is a continuous 
family, too.

In our context, the occurring families of spaces Xλ will consist of a fixed vector space X
equipped with a norm depending on the parameter λ.

Definition 2.9. For λ ∈ C let κλ denote the homeomorphism of S ′(Rn) given on S (Rn) by 
(κλu)(x) = u(〈λ〉x). Then, we define the parameter-dependent norms by

‖u‖H
s,σ
p,λ(Rn) := 〈λ〉s+σ−n/p‖κ−1

λ u‖H
s,σ
p (Rn) (s, σ ∈ R),

‖u‖Bs
pp,λ(Rn−1) := 〈λ〉s−(n−1)/p‖κ−1

λ u‖Bs
pp(Rn−1) (s ∈R).
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Additionally, we set Hs
p,λ(R

n) := H
s,0
p,λ(R

n) for s ∈ R. Analogously, we define Hs,σ
p,λ(Rn+) and 

Hs
p,λ(R

n+).

Lemma 2.10.

a) The statements from Proposition 2.2 a)–f), Lemma 2.3, Remark 2.4 and Remark 2.6 remain 
valid in the spaces Hs,σ

p,λ for λ ∈C with respect to the parameter-dependent norms.
b) For all s, σ ∈R and λ ∈C, we have

‖u‖H
s,σ
p,λ(Rn) = ‖〈D′, λ〉σ u‖Hs

p,λ(Rn) = ‖〈D,λ〉s〈D′, λ〉σ u‖Lp(Rn).

c) (Interpolation inequality) Let s0 < s < s1 and σ ∈ R. For every ε > 0 there exists a constant 
C(ε) > 0 such that, for every λ ∈C and u ∈ H

s1,σ
p,λ (Rn),

‖u‖H
s,σ
p,λ(Rn) ≤ ε‖u‖

H
s1,σ

p,λ (Rn)
+ C(ε)〈λ〉s−s0‖u‖

H
s0,σ

p,λ (Rn)
.

The analog statement holds for Rn+ instead of Rn.

Proof. a) We can apply the above results in the parameter-independent norms to the function 
κ−1
λ u and obtain constants independent of λ, noting also that κλ commutes with taking the trace 

on the boundary Rn−1.
b) For σ = 0, the statement follows from [18], Formula (1.9). For general σ , we use the 

identity

〈λ〉σ κλ〈D′〉σ κ−1
λ = κλ

〈〈λ〉D′, λ
〉σ

κ−1
λ = 〈D′, λ〉σ ,

which is obtained by straightforward calculation. This yields

‖u‖H
s,σ
p,λ(Rn) = 〈λ〉s+σ−n/p

∥∥〈D′〉σ κ−1
λ u
∥∥

Hs
p(Rn)

= 〈λ〉σ∥∥κλ〈D′〉σ κ−1
λ u
∥∥

Hs
p,λ(Rn)

= ∥∥〈D′, λ〉σ u
∥∥

Hs
p,λ(Rn)

= ∥∥〈D,λ〉s〈D′, λ〉σ u
∥∥

Lp(Rn)
.

c) An application of the standard interpolation inequality gives

‖u‖H
s,σ
p,λ(Rn) = 〈λ〉s+σ−n/p

∥∥〈D′〉σ κ−1
λ u
∥∥

Hs
p(Rn)

≤ 〈λ〉s+σ−n/p
(
ε‖〈D′〉σ κ−1

λ u‖
H

s1
p (Rn)

+ C(ε)‖〈D′〉σ κ−1
λ u‖

H
s0
p (Rn)

)
≤ ε‖u‖

H
s1,σ

p,λ (Rn)
+ C(ε)〈λ〉s−s0‖u‖

H
s0,σ

p,λ (Rn)
. �

Let us remark that a statement analogous to Lemma 2.10 b) does not hold for the 
parameter-dependent Besov spaces (with Lp(Rn) being replaced by B0

pp(Rn−1)). Although 
〈D′, λ〉s : Bs

pp,λ(R
n−1) → B0

pp,λ(R
n−1) is an isomorphism, the norm in B0

pp,λ(R
n−1) still de-

pends on λ, in contrast to ‖ · ‖H 0 (Rn) = ‖ · ‖Lp(Rn). This was observed in [18], Section 1.1.

p,λ
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2.5. Multiplication operators

We finish this section with some considerations concerning multiplication operators. For a suf-
ficiently smooth function a : Rn → C, we define the multiplication operator Ma by Mau := au

whenever the function u belongs to some Sobolev space of positive order. For negative order 
spaces, we define the multiplication operator by duality with respect to the canonical pairing 
Lp(Rn) × Lq(Rn), where 1

p
+ 1

q
= 1. In the following, BUCr (�) denotes the space of all func-

tions which are r-times continuously differentiable in � and for which all derivatives up to order 
r are bounded and uniformly continuous.

Lemma 2.11. Let s, σ ∈R, and define r ′ = r ′(s, σ) := max{|s|, |σ |, |s + σ |} and

r = r(s, σ ) := �r ′� + 1. (2.5)

Let a ∈ BUCr (Rn) and let Ma denote the operator of multiplication by a.

a) There are constants C = C(r) = C(s, σ) > 0 and γ = γ (s, σ) > 0 such that for all λ ∈C

‖Ma‖L(H
s,σ
p,λ (Rn)) ≤ C(r)‖a‖1−γ

BUCr (Rn)
‖a‖γ∞. (2.6)

b) If we only have a ∈ BUC�r ′�(Rn), Ma is still a multiplier in Hs,σ
p,λ(Rn) and (2.6) holds with 

γ = 0.
c) For every ε > 0 there exists a δ = δ(ε, s, σ) > 0 and a λ0 = λ0

(‖a‖BUCr (Rn)

)
> 0 such that

‖Ma‖L(H
s,σ
p,λ (Rn)) < ε

whenever ‖a‖∞ < δ and λ ∈C with |λ| ≥ λ0.
d) The results in a), b) and c) hold analogously for Rn+ instead of Rn with a ∈ BUCr (Rn+).
e) The results in a), b) and c) also hold if we replace Hs,σ

p,λ(Rn) by Bs
pp,λ(R

n−1), taking σ = 0, 

i.e. r ′ = |s|, and a ∈ BUCr (Rn−1) or a ∈ BUC�r ′�(Rn−1), respectively.

Proof. a) Consider the hexagon which is the convex hull of the vertex set

H := {(r,0), (0, r), (−r, r), (−r,0), (0,−r), (r,−r)}

(see Fig. 2.1). In a first step we are going to show that for all P ∈H we can deduce the bound

‖Ma‖L(HP
p (Rn)) ≤ C(r)‖a‖BUCr (Rn).

For the first two vertices this follows from the fact that Hr,0
p (Rn) = Hr

p(Rn) and H 0,r
p (Rn) =

Lp(R, Hr
p(Rn−1)) due to Lemma 2.2 a) as well as the product rule. Their counterparts (0, −r)

and (−r, 0) can be treated by a duality argument. For the space Hr,−r
p (Rn) we use Lemma 2.2 g) 

to obtain
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r

r

−r

−r

r ′

r ′

−r ′

−r ′

(s, σ )

(
rs
r ′ , rσ

r ′
)

0

Fig. 2.1. In a first step, we see that the operator Ma is continuous on HP
p (Rn) for every vertex P ∈ H of the outer 

hexagon and therefore by interpolation continuous on HPθ
p (Rn) for every Pθ on its boundary. Finally, we interpolate 

between that boundary and the origin to get the continuity on Hs,σ
p (Rn) for every (s, σ) on the boundary of the dashed 

hexagon. In the origin, we have γ = 1, on the boundary of the outer hexagon, we have γ = 0.

‖au‖
H

r,−r
p (Rn)

≤ C(r)

r∑
j=0

‖∂j
n (au)‖

H
0,−j
p (Rn)

≤ C(r)

r∑
j=0

j∑
l=0

‖(∂j−l
n a)(∂l

nu)‖
H

0,−j
p (Rn)

≤ C(r)

r∑
j=0

j∑
l=0

‖(∂j−l
n a)(∂l

nu)‖
H

0,−l
p (Rn)

.

Here we used l ≤ j and hence H 0,−l
p (Rn) is continuously embedded in H 0,−j

p (Rn). Furthermore 

we have ∂j−l
n a ∈ BUCl (Rn) as j ≤ r . So we may apply the boundedness of M

∂
j−l
n a

on H 0,−l
p (Rn)

and find

‖au‖
H

r,−r
p (Rn)

≤ C(r)

r∑
j=0

j∑
l=0

C(l)‖∂j−l
n a‖BUCl (Rn)‖∂l

nu‖
H

0,−l
p (Rn)

≤ C(r)‖a‖BUCr (Rn)

r∑ j∑
‖∂l

nu‖
H

0,−l
p (Rn)
j=0 l=0
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= C(r)‖a‖BUCr (Rn)

r∑
l=0

(r − l + 1)‖∂l
nu‖

H
0,−l
p (Rn)

≤ C(r)‖a‖BUCr (Rn)

r∑
l=0

‖∂l
nu‖

H
0,−l
p (Rn)

≤ C(r)‖a‖BUCr (Rn)‖u‖
H

r,−r
p (Rn)

.

The last vertex follows by duality again.
In a second step we interpolate along the edges of the hexagon, which is precisely the domain 

{(t, τ) : max{|t |, |τ |, |t + τ |} = r}. For any point Pθ = (1 − θ)P0 + θP1, where 0 < θ < 1 and 
P0, P1 ∈H, we obtain by interpolation HPθ

p (Rn) = [HP0
p (Rn), HP1

p (Rn)]θ and thus

‖Ma‖
L(H

Pθ
p (Rn))

≤ C‖Ma‖1−θ

L(H
P0
p (Rn))

· ‖Ma‖θ

L(H
P1
p (Rn))

≤ C(r)‖a‖BUCr (Rn). (2.7)

Moreover, we observe that in Lp(Rn) = H
0,0
p (Rn) we have ‖Ma‖L(Lp(Rn)) = ‖a‖∞. Finally, 

we interpolate along a straight line that starts in the origin, passes through (s, σ) and hits the 

boundary of the hexagon in the point 
(

rs
r ′ , rσr ′

)
. More precisely, we use the interpolation

Hs,σ
p (Rn) = [Lp(Rn),H

rs/r ′,rσ/r ′
p (Rn)]r ′/r

to find that

‖Ma‖L(H
s,σ
p (Rn)) ≤ C‖Ma‖1−r ′/r

L(Lp(Rn))
· ‖Ma‖r ′/r

L(H
rs/r′,rσ/r′
p (Rn))

≤ C(r)‖a‖1−γ

BUCr (Rn)
‖a‖γ∞

for γ := 1 − r ′
r

= 1 − r ′
�r ′�+1 > 0.

In order to carry the result over to the parameter-dependent norms, we observe the following 
for any bounded operator T in Hs,σ

p (Rn): By Definition 2.9 we have

‖T u‖H
s,σ
p,λ(Rn) = 〈λ〉s+σ−n/p‖κ−1

λ (T u)‖H
s,σ
p (Rn)

= 〈λ〉s+σ−n/p‖(κ−1
λ T κλ)(κ

−1
λ u)‖H

s,σ
p (Rn).

Dividing by ‖u‖H
s,σ
p,λ(Rn) = 〈λ〉s+σ−n/p‖κ−1

λ u‖L(H
s,σ
p (Rn)) and passing to the supremum over all 

0 �= u ∈ H
s,σ
p,λ(Rn) we conclude that

‖T ‖L(H
s,σ
p,λ (Rn)) = ‖κ−1

λ T κλ‖L(H
s,σ
p (Rn)).

Since we have

κ−1
λ Maκλu(x) = κ−1

λ [a(x)u(〈λ〉x)] = a(〈λ〉−1x)u(x) = (κ−1
λ a)(x)u(x)

it holds
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‖Ma‖L(H
s,σ
p,λ (Rn)) = ‖M

κ−1
λ a

‖L(H
s,σ
p (Rn)).

Thus

‖Ma‖L(H
s,σ
p,λ (Rn)) ≤ C(r)‖κ−1

λ a‖1−γ

BUCr (Rn)
‖κ−1

λ a‖γ∞ ≤ C(r)‖a‖1−γ

BUCr (Rn)
‖a‖γ∞, (2.8)

since ‖∂α(κ−1
λ a)‖∞ = 〈λ〉−|α|‖∂αa‖∞ ≤ ‖∂αa‖∞ for every α ∈Nn

0 with |α| ≤ r .
b) Obviously �r ′� �= r only for r ′ ∈N0. So for r ′ /∈N0, the proof from a) remains unchanged. 

For r ′ ∈ N0, we proceed analogously as in a), just replacing r by �r ′� = r ′ but stop at (2.7). 
Carrying over this result to the parameter-dependent norms as before yields (2.6) with γ = 0.

c) Let ε > 0 and choose δ ∈ (0, 1) with δγ < ε
2C(r)

. Let a ∈ BUCr (Rn) with ‖a‖∞ < δ. As 

‖∂α(κ−1
λ a)‖∞ = 〈λ〉−|α|‖∂αa‖∞, there is a λ0 = λ0(‖a‖BUCr (Rn)) > 0 such that

r∑
|α|=1

‖∂α(κ−1
λ a)‖∞ ≤ 1

for all λ ∈C with |λ| ≥ λ0. For all such λ we obtain

‖κ−1
λ a‖BUCr (Rn) ≤ ‖κ−1

λ a‖∞ + 1 = ‖a‖∞ + 1 < δ + 1 < 2

and therefore, using the analog of (2.8), ‖Ma‖L(H
s,σ
p,λ (Rn)) ≤ C(r)21−γ δγ < ε.

d) There exists a bounded extension operator ERn+ : BUCr (Rn+) → BUCr (Rn) for any r ∈N0
(see, e.g., the construction in [1], Theorem 5.19). Then for Rn+ part a) follows from

‖Mau‖H
s,σ
p,λ(Rn+) ≤ ‖MERn+a(eRn+u)‖H

s,σ
p,λ (Rn) ≤ C‖ERn+a‖BUCr (Rn)‖eRn+u‖H

s,σ
p,λ(Rn)

≤ C‖a‖BUCr (Rn+)‖u‖H
s,σ
p,λ(Rn+).

e) Taking σ = 0, we use the result from a) and b) for the spaces H
s+ρ
p,λ (Rn−1) and 

H
s−ρ
p,λ (Rn−1) for a sufficiently small ρ > 0 such that |s ± ρ| ≤ �|s|� + 1 still holds. Then the 

result follows by real interpolation of the λ-dependent, but classical Sobolev spaces, which was 
established in [18, (1.16)]. �
Remark 2.12. In the case of r ′ ∈ N0 in Lemma 2.11 b) and σ = λ = 0, we directly get back 
the classical results for the usual Sobolev spaces Hs

p(Rn). We remark that for r ′ = s = σ = 0, 
the assumption a ∈ BUC1(Rn) is not optimal for the statement in c), as in this case ‖a‖BUC(Rn)

coincides with ‖a‖∞, and it would be sufficient to assume a ∈ BUC(Rn). As we are mainly 
interested in the case σ �= 0, we did not specify the smoothness for this specific case. Note that 
for positive r ′ ∈ N and for a ∈ BUCr ′

(Rn) the statement in c) seems to hold if λ0 is allowed to 
depend also on ε. For non-integer r ′, the condition a ∈ BUCr (Rn) seems to be optimal, given 
that we only want to consider integer-valued smoothness parameters.

Furthermore, we would like to note that pointwise multipliers in Besov spaces with λ = 0 are 
described, e.g., in [26] and [40]. In particular, it is known that functions which are Hölder con-
tinuous with Hölder index larger than |s| are multipliers in Bs

pp(Rn−1) (see [31], Theorem 4.7.1 
(ii)). For our purposes, however, Lemma 2.11 e) is sufficient.
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3. Boundary value problems in the half-space

We now deal with boundary value problems in domains and in the half-space. In the following, 
let � ⊂ Rn be a domain with compact and sufficiently smooth boundary �, or let � =Rn+ with 
boundary � =Rn−1. We consider the boundary value problem

(λ − A)u = f in �,

Bju = gj (j = 1, . . . ,m) on �,
(3.1)

where A and Bj are linear differential operators of order 2m and linear boundary operators of 
order mj < 2m, respectively, of the form

A = A(x,D) =
∑

|α|≤2m
aα(x)Dα, (3.2)

Bj = Bj (x,D) =
∑

|β|≤mj

bjβ(x)γ0D
β. (3.3)

We also write B = (B1, . . . , Bm). Here, aα : � → C and bjβ : � → C are sufficiently smooth 
functions. More precisely, we will consider the following smoothness assumptions, depending 
on (s, σ) ∈ R2.

(S1) Let r ′ = r ′(s − 2m, σ) := max{|s − 2m|, |σ |, |s + σ − 2m|} and r := �r ′� + 1. We assume 
aα ∈ BUCr (�) for all |α| = 2m and aα ∈ BUC�r ′�(�) for all |α| < 2m.

(S2) If � is unbounded, then aα(∞) := limx∈�, |x|→∞ aα(x) exists for all |α| ≤ 2m. In addition, 
all derivatives of the function

x �→ aα

(
x

|x|2
)

(x �= 0)

up to order r for |α| = 2m (and up to order �r ′� for |α| < 2m) possess a continuous exten-
sion to x = 0.

(S3) For each j ∈ {1, . . . , m}, let k′
j := |s + σ − mj − 1

p
| and kj := �k′

j� + 1. We assume bjβ ∈
BUCkj (�) for all |β| = mj and bjβ ∈ BUC�k′

j �
(�) for all |β| < mj .

(S4) If � = Rn+, then bjβ(∞) := limx∈Rn−1, |x|→∞ bjβ(x) exists for all j ∈ {1, . . . , m} and |β| ≤
mj . In addition, all derivatives of the function

x �→ bjβ

(
x

|x|2
)

(x �= 0)

up to order kj for |β| = mj (and up to order �k′
j� for |β| < mj ) possess a continuous 

extension to x = 0.
(S5) The domain � is of class C2m+�r ′�.

In the following, let � ⊂ C be a closed sector in the complex plane with vertex at the origin. 
Then the family λ −A(x, D) is called parameter-elliptic in � if the principal symbol A0(x, ξ) :=∑

aα(x)ξα satisfies
|α|=2m
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|λ − A0(x, ξ)| ≥ C
(|λ| + |ξ |2m

)
(x ∈ �, λ ∈ �, ξ ∈ Rn, (ξ, λ) �= 0) (3.4)

for some constant C > 0. Similarly, we define the principal symbols B0,j (x, ξ) :=∑
|β|=mj

bjβ(x)ξβ . The boundary value problem is called parameter-elliptic in � if λ −A(x, D)

is parameter-elliptic in � and if the following Shapiro–Lopatinskii condition holds:
Let x0 ∈ ∂� be an arbitrary point of the boundary, and rewrite the boundary value prob-

lem (λ −A0(x0, D), B0,1(x0, D), . . . , B0,m(x0, D)) in the coordinate system associated with x0, 
which is obtained from the original one by a rotation after which the positive xn-axis has the 
direction of the interior normal to ∂� at x0. Then the trivial solution w = 0 is the only stable 
solution of the ordinary differential equation on the half-line

(λ − A0(x0, ξ
′,Dn))w(xn) = 0 (xn ∈ (0,∞)),

B0,j (x0, ξ
′,Dn)w(0) = 0 (j = 1, . . . ,m)

for all ξ ′ ∈ Rn−1 and λ ∈ � with (ξ ′, λ) �= 0.
In this section we show that parameter-elliptic problems induce an isomorphism between 

parameter-dependent spaces (in the sense of Definition 2.8). We focus on the case of the half-
space.

3.1. Model problems and small perturbations

Lemma 3.1 (Model problem in Rn). Let A0(D) = ∑|α|=2m aαDα have constant coefficients 
aα ∈ C, and let λ − A0(D) be parameter-elliptic in �. Then, for every s, σ ∈ R and every 
λ0 > 0, the operator family

λ − A0 : H
s,σ
p,λ(Rn) → H

s−2m,σ
p,λ (Rn) (3.5)

is an isomorphism for λ ∈ � with |λ| ≥ λ0.

Proof. The result is well known in case σ = 0, see [16], Theorem 1.7, or can be obtained im-
mediately from Mikhlin’s theorem. Let us denote by (λ − A0)

−1
(s,0) the corresponding inverse 

operator. We use the description of the norm in Hs,σ
p,λ(Rn) from Lemma 2.10 b).

Since A0 commutes with 〈D′, λ〉σ and 〈D′, λ〉σ : H
s,σ
p,λ(Rn) → H

s,0
p,λ(R

n) is an isometric iso-
morphism, the inverse to (3.5) is

(λ − A0)
−1
(s,σ ) = 〈D′, λ〉−σ (λ − A0)

−1
(s,0)〈D′, λ〉σ ,

which then has the same uniform bound as (λ − A0)
−1
(s,0). �

Let us now pass to the situation in the half-space, where we consider the following boundary 
problem.

Theorem 3.2 (Model problem in Rn+). Let (λ − A0, B0) be parameter-elliptic in �. Here 
again, we have A0(D) =∑ aαDα with constant coefficients aα ∈ C, as well as B0 :=
|α|=2m
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(B0,1(D), . . . , B0,m(D)) where B0,j (D) =∑|β|=mj
bjβγ0D

β with constant coefficients bjβ ∈C

for j = 1, . . . , m. Then, for every s > maxj mj + 1
p

, σ ∈ R, and λ0 > 0, the family of operators

(
λ − A0

B0

)
: Hs,σ

p,λ(Rn+) → H
s−2m,σ
p,λ (Rn+) ×

m∏
j=1

B
s+σ−mj −1/p

pp,λ (Rn−1) (3.6)

is an isomorphism for λ ∈ � with |λ| ≥ λ0.

Proof. The proof is similar to that of Lemma 3.1. The result is known for σ = 0, see [16], 
Theorem 1.9; let L(s,0)(λ) be the inverse. All involved operators commute with 〈D′, λ〉σ . Hence 
the inverse operator L(s,σ )(λ) for general σ is given by

〈D′, λ〉−σ L(s,0)(λ)diag(〈D′, λ〉σ , . . . , 〈D′, λ〉σ ),

where the diagonal matrix acts as 〈D′, λ〉σ on each space on the right-hand side of (3.6). Hence 
L(s,σ )(λ) has the same uniform norm-bound as L(s,0)(λ). �

Motivated by the last two results, we define the parameter-dependent spaces

Es,σ
λ (�) := H

s,σ
p,λ(�) (with � = Rn or � = Rn+), (3.7)

as well as

F s,σ
λ (Rn) := H

s−2m,σ
p,λ (Rn),

F s,σ
λ (Rn+) := H

s−2m,σ
p,λ (Rn+) ×

m∏
j=1

B
s+σ−mj −1/p

pp,λ (Rn−1)
(3.8)

for s, σ ∈ R.

λ − A0 : Es,σ
λ (Rn) → F s,σ

λ (Rn) and

(
λ − A0

B0

)
: Es,σ

λ (Rn+) → F s,σ
λ (Rn+)

are both isomorphisms. Below, we will consider the case of variable coefficients which are close 
to constant coefficients in an appropriate sense. As a preparation, we show some auxiliary conti-
nuity results.

Lemma 3.3. Let (s, σ) ∈R2.

a) Let A be a differential operator in Rn as in (3.2) and assume (S1) to hold. Let MA :=
max|α|=2m ‖aα‖BUCr (Rn) + max|α|<2m ‖aα‖BUC�r′�(Rn)

. Then for every ε > 0 there exist con-
stants δ = δ(ε, s, σ) > 0 and λ0 = λ0(MA) > 0 such that

‖A‖L(Es,σ
λ (Rn),F s,σ

λ (Rn)) < ε

holds for all λ ∈C with |λ| ≥ λ0 provided max|α|=2m ‖aα‖∞ < δ.
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b) Let (A, B) be a boundary value problem of the form (3.2)–(3.3) in Rn+ and assume (S1) and 
(S3) to hold with s > maxj mj + 1

p
. Let

MA,B := max|α|=2m
‖aα‖BUCr (Rn+) + max|α|<2m

‖aα‖BUC�r′�(Rn+)
+

+ max
j=1,...,m
|β|=mj

‖bjβ‖
BUCkj (Rn−1)

+ max
j=1,...,m
|β|<mj

‖bjβ‖
BUC

�k′
j
�
(Rn−1)

.

Then for every ε > 0 there exist constants δ = δ(ε, s, σ) > 0 and λ0 = λ0(MA,B) > 0 such 
that

∥∥∥(A

B

)∥∥∥
L(Es,σ

λ (Rn+),F s,σ
λ (Rn+))

< ε

holds for all λ ∈C with |λ| ≥ λ0 provided

max|α|=2m
‖aα‖∞ + max

j=1,...,m
|β|=mj

‖bjβ‖∞ < δ.

Proof. a) Let A0 =∑|α|=2m aα(x)Dα be the principal part of A and set Ã := A −A0. Let ε > 0
be fixed and u ∈ H

s,σ
p,λ(Rn) arbitrary. Then, due to Lemma 2.11 c), for appropriate ε′ > 0 there 

exist δ(ε′, s, σ) > 0 and λ0(MA) > 0 such that for |λ| ≥ λ0 we have

‖A0u‖
H

s−2m,σ
p,λ (Rn)

≤
∑

|α|=2m

‖aα(·)Dαu‖
H

s−2m,σ
p,λ (Rn)

≤ ε′ ∑
|α|=2m

‖Dαu‖
H

s−2m,σ
p,λ (Rn)

≤ ε

2
‖u‖H

s,σ
p,λ(Rn),

given max|α|=2m ‖aα‖∞ < δ. For Ãu we use Lemma 2.11 b), as we only need the fact that the 
coefficients are multipliers, which justifies the weaker regularity assumptions for the lower order 
terms. Thus, we obtain the estimate

‖Ãu‖
H

s−2m,σ
p,λ (Rn)

≤
∑

|α|<2m

‖aα(·)Dαu‖
H

s−2m,σ
p,λ (Rn)

≤ CMA

∑
|α|<2m

‖Dαu‖
H

s−2m,σ
p,λ (Rn)

≤ CMA‖u‖
H

s−1,σ
p,λ (Rn)

≤ CMA〈λ〉−1‖u‖H
s,σ
p,λ(Rn).

(3.9)

The last inequality holds true because we have

‖u‖
H

s−1,σ
p,λ (Rn)

= ‖〈D,λ〉s−1〈D′, λ〉σ u‖Lp(Rn) ≤ C〈λ〉−1‖〈D,λ〉s〈D′, λ〉σ u‖Lp(Rn)
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uniformly in λ, since 〈λ〉〈ξ, λ〉−1 is a Mikhlin multiplier with symbol estimates that are uniform 
in λ. As 〈λ〉−1 vanishes for |λ| → ∞, we can choose λ0 so large that CMA〈λ〉−1 < ε

2 whenever 
|λ| ≥ λ0.

b) The calculations for A are similar to a), we just replace the whole space estimates by the 
half-space estimates. For the boundary operators Bj we use Lemma 2.11 e) instead, noting that 
(S3) yields the required smoothness. Hence for Bj we split off the lower order terms again. Then 
for a given ε > 0, again, for appropriate ε′ > 0 there exist δ(ε′, s, σ) > 0 and λ0(MA,B) > 0 such 
that for |λ| ≥ λ0 we obtain

‖B0,j u‖
B

s+σ−mj −1/p

pp,λ (Rn−1)
≤
∑

|β|=mj

‖bjβ(·)γ0D
βu‖

B
s+σ−mj −1/p

pp,λ (Rn−1)

≤ ε′ ∑
|β|=mj

‖γ0D
βu‖

B
s+σ−mj −1/p

pp,λ (Rn−1)

≤ Cε′ ∑
|β|=mj

‖Dβu‖
H

s−mj ,σ

p,λ (Rn+)
≤ ε

2
‖u‖H

s,σ
p,λ(Rn+),

given max|α|=2m ‖aα‖∞ + maxj=1,...,m max|β|=mj
‖bjβ‖∞ < δ. Here we also used the continu-

ity of the trace from Definition 2.5. The lower order terms can be handled as in a), applying 
Lemma 2.11 e) once more. �
Lemma 3.4 (Small perturbation in Rn). Let λ − A0 be as in Lemma 3.1, and let A = A0 + Ã, 
where

Ã = Ã(x,D) =
∑

|α|≤2m

ãα(x)Dα.

Moreover, let s, σ ∈R and assume (S1) to hold. Define δ = δ( 1
2ρ

, s, σ) and λ0 = max{λ0(MÃ), 1}
as in Lemma 3.3 a), where

ρ := sup
|λ|≥1

‖(λ − A0)
−1‖L(F s,σ

λ (Rn),Es,σ
λ (Rn)).

Then, if max|α|=2m ‖̃aα‖∞ < δ, the operator family

λ − A : Es,σ
λ (Rn) → F s,σ

λ (Rn)

is an isomorphism for λ ∈ � with |λ| ≥ λ0.

Proof. Using Lemma 3.1, we can write

λ − A = (λ − A0)
(
I − (λ − A0)

−1Ã
)

(λ �= 0).

Choosing δ and λ0 as stated and applying Lemma 3.3 a) to Ã, we obtain

‖Ã‖L(Es,σ
λ (Rn),F s,σ

λ (Rn)) <
1

2ρ
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whenever |λ| ≥ λ0 and max|α|=2m ‖̃aα‖∞ < δ. Therefore,

‖(λ − A0)
−1Ã‖L(Es,σ

λ (Rn)) <
1

2
.

By the usual Neumann series argument, I − (λ − A0)
−1Ã is invertible with

‖(I − (λ − A0)
−1Ã)−1‖L(Es,σ

λ (Rn)) < 2

for every |λ| ≥ λ0. We conclude that, for such λ,

(λ − A)−1 = (I − (λ − A0)
−1Ã

)−1
(λ − A0)

−1

with

‖(λ − A)−1‖L(F s,σ
λ (Rn),Es,σ

λ (Rn)) < 2‖(λ − A0)
−1‖L(F s,σ

λ (Rn),Es,σ
λ (Rn)).

Using Lemma 3.1 once more completes the proof. �
Theorem 3.5 (Small perturbation in Rn+). Consider the boundary value problem (λ −A, B) with 
A = A0 + Ã and B = B0 + B̃ , where (λ − A0, B0) is as in Theorem 3.2,

Ã = Ã(x,D) =
∑

|α|≤2m

ãα(x)Dα

and B̃ = (B̃1, . . . , ̃Bm) with

B̃j = B̃j (x,D) =
∑

|β|≤mj

b̃jβ(x)γ0D
β

and mj < 2m. Moreover, let s, σ ∈R with s > maxj mj + 1
p

, and assume (S1) and (S3) to hold. 
Define

ρ := sup
|λ|≥1

‖L(λ)‖L(F s,σ
λ (Rn+),Es,σ

λ (Rn+)),

where L(λ) denotes the inverse of the map in (3.6), and choose δ = δ( 1
2ρ

, s, σ) and λ0 =
max{λ0(MÃ,B̃ ), 1} as in Lemma 3.3 b). If

max|α|=2m
‖̃aα‖∞ + max

j=1,...,m
|β|=mj

‖b̃jβ‖∞ < δ,

then (
λ − A

B

)
: Es,σ

λ (Rn+) → F s,σ
λ (Rn+) (3.10)

is an isomorphism for λ ∈ � with |λ| ≥ λ0.
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Proof. We first note that by Theorem 3.2, the inverse L(λ) of the map in (3.6) exists, so we can 
write (

λ − A

B

)
=
(

λ − A0

B0

)
+
(−Ã

B̃

)
=
(

λ − A0

B0

)(
I + L(λ)

(−Ã

B̃

))
.

Choosing δ and λ0 as stated and applying Lemma 3.3 b), we see that

∥∥∥(−Ã

B̃

)∥∥∥
L(Es,σ

λ (Rn+),F s,σ
λ (Rn+))

<
1

2ρ

for all λ ∈C with |λ| ≥ λ0 provided

max|α|=2m
‖̃aα‖∞ + max

j=1,...,m
|β|=mj

‖b̃jβ‖∞ < δ.

Therefore ∥∥∥∥L(λ)

(−Ã

B̃

)∥∥∥∥
L(Es,σ

λ (Rn+))

<
1

2
,

which allows us to use the Neumann series just as above, yielding the desired isomorphism. �
3.2. General boundary value problems

The analysis of the general case of variable coefficients is based on the classical method of 
freezing the coefficients.

In the following, let (λ − A, B) be a boundary value problem in Rn+ of the form (3.2)–(3.3)
which is parameter-elliptic in � for all x ∈ Rn+ ∪ {∞}. Let (s, σ) ∈ R2, and assume the validity 
of (S1)–(S4).

For every x0 ∈ Rn+, we consider the model problem λ − A0(x0, D) with frozen coefficients 
aα(x0) ∈ C and without lower-order terms. By the assumption of parameter-ellipticity, we can 
apply Lemma 3.1 and obtain the existence of the inverse operator

(λ − A0(x0,D))−1 ∈ L(F s,σ
λ (Rn),Es,σ

λ (Rn))

for λ ∈ �. In the same way, for x0 ∈ Rn−1 ∪ {∞} and s > maxj mj + 1
p

, we obtain from Theo-
rem 3.2 the existence of the inverse operator

Lx0(λ) :=
(

λ − A0(x0,D)

B0(x0,D)

)−1

∈ L(F s,σ
λ (Rn+),Es,σ

λ (Rn+)).

Lemma 3.6. With the above notation, we have

ρA,B := sup
x0∈Rn+

‖(λ − A0(x0,D))−1‖L(F s,σ
λ (Rn),Es,σ

λ (Rn)) +

λ∈�, |λ|≥1
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+ sup
x0∈Rn−1

λ∈�, |λ|≥1

‖Lx0(λ)‖L(F s,σ
λ (Rn+),Es,σ

λ (Rn+)) < ∞.

Proof. Let us consider the first supremum and assume this supremum to be infinite. Then 
there exist sequences (xk)k∈N ⊂ Rn+ and (λk)k∈N ⊂ � with |λk| ≥ 1 such that ‖(λk −
A0(xk, D))−1‖ → ∞ for k → ∞. By passing to a subsequence we may assume that xk → x∗ for 
k → ∞ where either x∗ ∈ Rn+ or x∗ = ∞. Now write

λk − A0(xk,D) = λk − A0(x
∗,D) − Ãk(D), Ãk(D) := A0(xk,D) − A0(x

∗,D).

Since A0(x
∗, D) satisfies the assumptions of Lemma 3.1, we get

λk − A0(xk,D) = (λk − A0(x
∗,D))

[
1 − (λk − A0(x

∗,D))−1Ãk(D)
]
.

Now let

ρ∗ = sup
λ∈�, |λ|≥1

‖(λ − A0(x
∗,D))−1‖L(F s,σ

λ (Rn),Es,σ
λ (Rn))

which is finite due to Lemma 3.1. Moreover, observe that

‖Ãk(D)u‖F s,σ
λ (Rn) ≤‖〈D,λ〉s−2m〈D′, λ〉σ Ãk(D)〈D,λ〉−s〈D′, λ〉−σ ‖L(Lp(Rn))×

× ‖〈D,λ〉s〈D′, λ〉σ u‖Lp(Rn)

=‖〈D,λ〉−2mÃk(D)‖L(Lp(Rn))‖u‖Es,σ
λ (Rn).

It is a straightforward consequence of Mikhlin’s Theorem that

sup
λ∈C

‖〈D,λ〉−2mÃk(D)‖L(Lp(Rn))
k→∞−−−→ 0,

since the (constant) coefficients of Ãk(D) tend to zero with k → ∞. It follows that

sup
λ∈�, |λ|≥1

‖(λ − A0(x
∗,D))−1Ãk(D)‖L(Es,σ

λ (Rn)) ≤ 1

2

for all sufficiently large k. As above, using the Neumann series, we conclude that

‖(λk−A0(xk,D))−1‖L(F s,σ
λk

(Rn),Es,σ
λk

(Rn))

≤ 2‖(λk − A0(x
∗,D))−1‖L(F s,σ

λk
(Rn),Es,σ

λk
(Rn)) ≤ 2ρ∗

for all sufficiently large k. This is a contradiction. �
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Remark 3.7. In the following, we construct a finite covering of Rn+ consisting of balls and the 
complement of a ball centered in the origin. Afterwards, we need to extend the coefficients of 
the localized problems to Rn, Rn+, and Rn−1, respectively. To this end, we will use a general 
extension function. We fix χ ∈ C∞([0, ∞)) with 0 ≤ χ ≤ 1, χ(z) = 1 for 0 ≤ z ≤ 1 and χ(z) = 0
for z ≥ 2 and define the function χU : Rn →Rn ∪ {∞} via

χU(x) :=
{

x
|x|2 + χ

(
r ′
|x|
)
(x − x

|x|2 ) if there exists r ′ > 0 : U = Rn\B(0, r ′),
x′ + χ

( |x−x′|
r ′
)
(x − x′) if there exist r ′ > 0, x′ ∈ Rn : U = B(x′, r ′).

The function χU coincides with the identity on U and is later compatible with the parameter-
ellipticity of the local operators. Since we use reflection techniques for the construction of χU , it 
is crucial that our covering consists of balls and the complement of a ball centered in the origin.

For the localization, we first apply Lemma 3.3 with ε := 1
2ρA,B

, where ρA,B is taken from 
Lemma 3.6. We fix

δ0 := δ
( 1

2ρA,B

, s, σ
)

> 0 (3.11)

as being defined in Lemma 3.3. Let x0 := ∞ and U0 := {x ∈ Rn : |x| > r0} where r0 is suffi-
ciently large such that

max|α|=2m
‖aα(·) − aα(x0)‖L∞(Ũ0∩Rn+)+

+ max
j=1,...,m
|β|=mj

‖bjβ(·) − bjβ(x0)‖L∞(Ũ0∩Rn−1) < δ0
(3.12)

with Ũ0 := {x ∈Rn : |x| > r0
2

}
(this is possible due to (S2) and (S4)). As the coefficients of A and 

B are continuous and B(0, r0)∩Rn−1 is compact, there exists a finite covering Rn−1 ⊂⋃K0
k=0 Uk

with Uk := B(xk, rk) ⊂ Rn for k = 1, . . . , K0, where xk ∈Rn−1 and rk > 0 are chosen such that

max|α|=2m
‖aα(·) − aα(xk)‖L∞(Ũk∩Rn+)+

+ max
j=1,...,m
|β|=mj

‖bjβ(·) − bjβ(xk)‖L∞(Ũk∩Rn−1) < δ0
(3.13)

with Ũk := B(xk, 2rk) for k = 1, . . . , K0. We set

δmax := sup

{
δ > 0 : Rn−1 × [0, δ] ⊂

K0⋃
k=0

Uk

}
.

Similarly, as Rn+ \⋃K0
k=0 Uk is compact, we can choose xk ∈ Rn+ and 0 < rk < δmax

2 for k =
K0 + 1, . . . , K such that Uk := B(xk, rk) ⊂

{
z ∈Rn | zn > δmax

2

}
,

max ‖aα(·) − aα(xk)‖L∞(Ũk)
< δ0 (3.14)
|α|=2m
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with Ũk := B(xk, 2rk) for k = K0 + 1, . . . , K and Rn+ ⊂⋃K
k=0 Uk .

Remark 3.8 (Local operators and extensions). Let x0, . . . , xK be chosen as above. Starting out 
from the coefficient functions aα and bjβ let us define

ak
α(x) := aα(χUk

(x)) (x ∈ Rn+),

bk
jβ(x) := bjβ(χUk

(x)) (x ∈Rn−1)

for k = 0, . . . , K0 and, for k = K0 + 1, . . . , K ,

ak
α(x) := aα(χUk

(x)) (x ∈ Rn).

Here the function χUk
is defined as in Remark 3.7. These new coefficients have the same smooth-

ness as before. ak
α coincides with aα on Uk ∩Rn+ and Uk ∩Rn, respectively, bk

jβ coincides with 

bjβ on Uk ∩Rn−1. By (3.12)–(3.14), we have∥∥ak
α(·) − aα(xk)

∥∥
L∞(Rn+)

< δ0 for k = 0, . . . ,K0,∥∥ak
α(·) − aα(xk)

∥∥
L∞(Rn)

< δ0 for k = K0 + 1, . . . ,K, (3.15)∥∥bk
jβ(·) − bjβ(xk)

∥∥
L∞(Rn−1)

< δ0 for k = 0, . . . ,K0.

With the new coefficient functions we associate the operators Ak and Bk = (Bk
1 , . . ., Bk

m) via

Ak = Ak(x,D) :=
∑

|α|≤2m

ak
α(x)Dα, Bk

j = Bk
j (x,D) :=

∑
|β|≤mj

bk
jβ(x)γ0D

β.

We remark that the localization procedure contains a subtlety concerning the constants δ and 
λ0 in Lemmas 3.3–3.4 and Theorem 3.5. We defined the neighborhoods Uk and the radii rk in 
dependence of δ0 which depends only on ρA,B , s, and σ , see (3.11). For the new coefficients 
ak
α, bk

jβ , the ‖ · ‖∞-norm still satisfies the desired smallness conditions, as seen in (3.15). How-

ever, as χUk
appears in the definition of the new coefficients, the BUCr -norm and BUCkj -norm 

of the new coefficients, respectively, depend on Uk and therefore on the radius rk . Here, it is 
important that δ0 does not depend on the BUCr -norm (in contrast to λ0, see Lemma 3.3). Due to 
this, the above modification of the coefficients might lead to a larger constant λ0, but we do not 
have to redefine the radii rk , which prevents a circular reasoning in the definition of Uk.

Lemma 3.9. Let s, σ ∈ R with s > maxj mj + 1
p

, and assume (S1)–(S4) to hold. Then there 
exists a λ0 ≥ 1 such that the operators(

λ − Ak

Bk

)
: Es,σ

λ (Rn+) → F s,σ
λ (Rn+) (k = 0, . . . ,K0),

λ − Ak : Es,σ
λ (Rn) → F s,σ

λ (Rn) (k = K0 + 1, . . . ,K)

defined in Remark 3.8 are isomorphisms for every λ ∈ � with |λ| ≥ λ0. We denote the inverse 
operators by Lk(λ) for k = 0, . . . , K .
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Proof. We split the operators into a part with constant coefficients and a perturbation, i.e., Ak =
Ak

0 + Ãk with

Ak
0 =

∑
|α|=2m

aα(xk)D
α, Ãk =

∑
|α|=2m

(
ak
α(·) − aα(xk)

)
Dα +

∑
|α|<2m

ak
α(·)Dα.

The Bk can be decomposed in a similar way. Due to the smallness property (3.15), the considered 
operators thus fit into the setting of Lemma 3.4 and Theorem 3.5, respectively. This yields the 
assertion. �

In the following, we will fix a smooth partition of unity ϕk ∈ C∞(Rn), k = 0, . . . , K , with 
suppϕk ⊂ Uk , 0 ≤ ϕk ≤ 1, and 

∑K
k=0 ϕk = 1 on Rn+. In addition, we fix functions ψk ∈ C∞(Rn)

with 0 ≤ ψk ≤ 1, suppψk ⊂ Uk and ψk = 1 on suppϕk . We can solve (3.1) locally in Uk , using 
the extended local operators in the half-space and in the whole space and their inverses Lk(λ). 
However, the solution operators Lk(λ) are not local, so we have to multiply the half-space solu-
tion by ψk . In this way, commutators appear, which are estimated in the following lemma. We 
write [·, ·] for the standard commutator and use the notation ψk also for the operator of multipli-
cation by ψk . For the boundary operators, the commutator [Bk, ψk] is defined as

[Bk,ψk]u = Bk(ψku) − (γ0ψk)B
ku.

Lemma 3.10. Let s, σ ∈ R with s > maxj mj + 1
p

, and assume (S1)–(S4) to hold. Let R0(λ) be 
defined on F s,σ

λ (Rn+) by

R0(λ)

(
f

g

)
:=

K0∑
k=0

ψkLk(λ)

(
ϕkf

(γ0ϕk)g

)
+

K∑
k=K0+1

ψkLk(λ)(ϕkf ). (3.16)

Then (
λ − A

B

)
R0(λ) = 1 + C(λ) (3.17)

where C(λ) ∈ L(F s,σ
λ (Rn+), F s+1,σ

λ (Rn+)), and there exists a λ0 ≥ 1 such that 1 + C(λ) ∈
L(F s,σ

λ (Rn+)) is invertible for all λ ∈ � with |λ| ≥ λ0.

Proof. As first step of the proof we show the commutator estimates

Ck(λ) :=
(−[Ak,ψk]

[Bk,ψk]
)

Lk(λ) ∈ L(F s,σ
λ (Rn+),F s+1,σ

λ (Rn+)) (k = 0, . . . ,K0),

Ck(λ) := −[Ak,ψk]Lk(λ) ∈ L(F s,σ
λ (Rn),F s+1,σ

λ (Rn)) (k = K0 + 1, . . . ,K).

We shall only consider the case k = 0, . . . , K0, since the proof for k = K0 + 1, . . . , K is analo-
gous (and simpler).

The operator [Ak, ψk] is a differential operator of order not greater than 2m − 1. Therefore, it 
is a bounded operator
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[Ak,ψk] : Es,σ
λ (Rn+) = H

s,σ
p,λ(Rn+) → H

s−2m+1,σ
p,λ (Rn+).

For the boundary operators, we have for j = 1, . . . , m

Bk
j (ψku) =

∑
|β|≤mj

bk
jβγ0D

β(ψku)

=
∑

|β|≤mj

bk
jβγ0

(
ψkD

βu +
∑

γ≤β,γ �=β

cj,k,β,γ (·)Dγ u
)

= (γ0ψk)B
k
j u +

∑
β,γ

bk
jβ(γ0cj,k,β,γ )γ0D

γ u,

where the coefficients cj,k,β,γ depend on ψk . Consequently, the operator [Bk
j , ψk] is a boundary 

operator of order not greater than mj − 1. In the case mj = 0, this operator is zero. Therefore, 
[Bk

j , ψk] is continuous as an operator

[Bk
j ,ψk] : Es,σ

λ (Rn+) → B
s+σ−mj +1−1/p

pp,λ (Rn−1).

Hence the commutator estimates are true, since Lk(λ) ∈ L(F s,σ
λ (Rn+), Es,σ

λ (Rn+)) by Lemma 3.9.
Now let v := R0(λ)(f, g). We write

(
λ − A

B

)
v =

K0∑
k=1

(
λ − A

B

)
ψkLk(λ)

(
ϕkf

(γ0ϕk)g

)
+

K∑
k=K0+1

(
λ − A

B

)
ψkLk(λ)(ϕkf )

and treat each term separately. For k = 1, . . . , K0, we obtain(
λ − A

B

)
ψkLk(λ)

(
ϕkf

(γ0ϕk)g

)
=
(

λ − Ak

Bk

)
ψkLk(λ)

(
ϕkf

(γ0ϕk)g

)

=
[(

ψk(λ − Ak)

(γ0ψk)Bk

)
Lk(λ) +

(−[Ak,ψk]
[Bk,ψk]

)
Lk(λ)

](
ϕkf

(γ0ϕk)g

)

=
(

ψkϕkf

(γ0ψk)(γ0ϕk)g

)
+ Ck(λ)

(
ϕkf

(γ0ϕk)g

)
=
(

ϕkf

(γ0ϕk)g

)
+ Ck(λ)

(
ϕkf

(γ0ϕk)g

)
.

For k = K0 + 1, . . . , K , we obtain in the same way(
λ − A

B

)
ψkLk(λ)(ϕkf ) =

(
ϕkf + Ck(λ)(ϕkf )

0

)
.

Summing up over k yields (
λ − A

)
v = (1 + C(λ))

(
f
)

B g
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with

C(λ)

(
f

g

)
:=

K0∑
k=0

Ck(λ)

(
ϕkf

(γ0ϕk)g

)
+

K∑
k=K0+1

(
Ck(λ)(ϕkf )

0

)
.

Note that for sake of readability we have dropped the extensions and restrictions from our nota-
tion, here. More precisely, the upper entry in the last term above would be rRn+Ck(λ)e0

Rn+
ϕkf .

From the above commutator estimates and the fact that multiplication by ϕk preserves the 
smoothness, we obtain C(λ) ∈ L(F s,σ

λ (Rn+), F s+1,σ
λ (Rn+)).

Proceeding as in the proof of Lemma 3.3 a) (see (3.9)) for the lower order terms and using the 
Neumann series as in Lemma 3.4, we obtain that for sufficiently large λ, the operator 1 +C(λ) ∈
L(F s,σ

λ (Rn+)) is invertible, and the norm of the inverse is not greater than 2. �
The last result provides a solution operator for the boundary value problem (3.1). To show 

uniqueness, the following observation will be useful.

Lemma 3.11. Let E, F be Banach spaces, and let T ∈ L(E, F) be a retraction, i.e., there exists 
R ∈ L(F, E) with T R = idF . Let E0 be a dense subset of E. If T |E0 : E0 → F is injective, then 
T is injective.

Proof. Let f ∈ F and u ∈ E with T u = f . Choose a sequence (un)n∈N ⊂ E0 with un → u (n →
∞) in E. As T |E0 is injective, we have un = Rfn, where fn := T un. With the continuity of T , 
we see fn = T un → T u = f in F , and from the continuity of R we get un = Rfn → Rf in E. 
As the limit is unique, this yields u = Rf , which shows the injectivity of T . �

The following theorem is the key result of this section.

Theorem 3.12. Let p ∈ (1, ∞) and s, σ ∈ R with s > maxj mj + 1
p

. Let (λ − A, B) be a 
boundary value problem in Rn+ of the form (3.2)–(3.3) which is parameter-elliptic in � for all 
x ∈ Rn+ ∪ {∞}, and assume (S1)–(S4) to hold. Then, there exists a λ0 ≥ 1 such that for every 
λ ∈ � with |λ| ≥ λ0, the operator(

λ − A

B

)
: Es,σ

λ (Rn+) → F s,σ
λ (Rn+) (3.18)

is an isomorphism. Its inverse is given by

R(λ) = R0(λ)(1 + C(λ))−1 ∈ L(F s,σ
λ (Rn+),Es,σ

λ (Rn+)),

where R0(λ) and C(λ) are defined in Lemma 3.10.

Proof. Let λ0 be as in Lemma 3.10. For R(λ) = R0(λ)(1 + C(λ))−1, we have R(λ) ∈
L(F s,σ

λ (Rn+), Es,σ
λ (Rn+)) by Lemma 3.9 and Lemma 3.10. From (3.17) we obtain(

λ − A
)

R(λ) = (1 + C(λ))(1 + C(λ))−1 = idF s,σ
λ (Rn+) .
B
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In particular, the operator in (3.18) is surjective.
To show injectivity (i.e., uniqueness of the solution), we remark that F2m,0

λ (Rn+) and 
E2m,0

λ (Rn+) are classical spaces, and therefore we obtain unique solvability in these spaces (see, 
e.g., [2], Theorem 2.1). In particular, the restriction of the operator (3.18) to S (Rn+) is injective. 
Now we can apply Lemma 3.11 with T = (λ−A

B

)
and R = R(λ) in the spaces E = Es,σ

λ (Rn+), 
F = F s,σ

λ (Rn+), and E0 = S (Rn+). �
Corollary 3.13. In the situation of Theorem 3.12, let additionally σ ∈ (−∞, 0]. Then, there exists 
a λ0 ≥ 1 such that for every λ ∈ � with |λ| ≥ λ0 and

(f, g) ∈ Hs−2m
p,λ (Rn+) ×

m∏
j=1

B
s+σ−mj −1/p

pp,λ (Rn−1)

the boundary value problem (3.1) has a unique solution u ∈ H
s,σ
p,λ(Rn+). In particular, we have 

u ∈ Hs+σ
p,λ (Rn+) and

‖u‖Hs+σ
p,λ (Rn+) ≤ C

(
‖f ‖

Hs−2m
p,λ (Rn+)

+
m∑

j=1

‖gj‖
B

s+σ−mj −1/p

pp,λ (Rn−1)

)
with a constant C independent of λ.

Proof. This follows immediately from Theorem 3.12 and the continuous embeddings
Hs−2m

p,λ (Rn+) ⊂ H
s−2m,σ
p,λ (Rn+) and Hs,σ

p,λ(Rn+) ⊂ Hs+σ
p,λ (Rn+). �

In Theorem 3.12, we considered the half-space case. For an operator A acting in the whole 
space, the analog results hold, where the proofs are similar but much simpler, due to the absence 
of boundary operators. We obtain the following result.

Lemma 3.14. Let A = A(x, D) be an operator of the form (3.2) with coefficients aα : Rn → C, 
and assume that λ − A is parameter-elliptic in �. Let s, σ ∈ R, and assume (S1) and (S2) to 
hold. Then, there exists a λ0 ≥ 1 such that for every λ ∈ � with |λ| ≥ λ0, the operator

λ − A : Es,σ
λ (Rn) → F s,σ

λ (Rn)

is an isomorphism.

4. Boundary value problems in domains

We now consider (3.1) in a bounded or exterior domain. Throughout this section, we assume 
� to be a domain with compact boundary �, and (λ − A, B) to be a boundary value problem 
which is parameter-elliptic in some sector � ⊂ C. Moreover, we assume (S1)–(S3) and (S5) to 
hold.

We define C∞(�) as the restriction of all u ∈ C∞
0 (Rn) to �. As the definition of the spaces 

H
s,σ is non-canonical in domains, we will only consider standard Sobolev spaces on �. For the 
p,λ
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construction of the solution operators, we will use local coordinates where the space Hs,σ
p,λ(Rn+)

is available.
We start with some remarks concerning the localization technique: Let x0 ∈ �. Since the 

domain � has a C2m+�r ′�-boundary, there is an open set Ũx0 containing x0, a radius rx0 > 0 and a 
C2m+�r ′�-diffeomorphism ϑx0 : Ṽx0 → Ũx0 , where Ṽx0 = B(0, 2rx0), such that ϑx0(Ṽx0 ∩Rn+) =
Ũx0 ∩ � and ϑx0(0) = x0. We set Vx0 := B(0, rx0) and Ux0 := ϑx0(Vx0). By compactness of �, 
there are x1, . . . , xK0 ∈ � and open sets Ux1, . . . , UxK0

as above such that � ⊂⋃K0
k=1 Uxk

. For the 
sake of simplicity, we shall use k instead of xk as index.

We proceed similarly as in the half-space case. Hence, we define

δmax := sup

{
δ > 0

∣∣∣ {x ∈ � | dist(x,�) ≤ δ} ⊂
K0⋃
k=1

Uk

}
.

If � is bounded, � \ 
⋃K0

k=1 Uk is compact, and we can choose xk in � and 0 < rk < δmax
2 such 

that

Uk := B(xk, rk) ⊂
{
x ∈ � : dist(x,�) >

δmax

2

}
(4.1)

for k = K0 + 1, . . . , K and � ⊂⋃K
k=1 Uk .

In the case of an exterior domain, this construction has to be slightly modified. We first define 
UK0+1 := Rn \ B(0, rK0+1), where the radius rK0+1 is chosen such that Rn \ � ⊂ B(0, 

rK0+1

2 ). 

Now � \⋃K0+1
k=1 Uk is compact, and we choose xk and rk with (4.1) for k = K0 + 2, . . . , K such 

that again � ⊂⋃K
k=1 Uk .

For formal reasons, we define Vk := Uk and ϑk := idVk
for k = K0 + 1, . . . , K .

Remark 4.1 (Local operators and extensions). Let x1, . . . , xK be chosen as above. For k ∈
{1, . . . , K0}, we define the local operator Ãk as the pullback of the operator A by ϑk . More 
precisely, for v ∈ C∞(Ṽk), we write

(Ãkv)(y) := A(v ◦ ϑ−1
k )(ϑk(y)) =:

∑
|α|≤2m

ãk
α(y)Dαv(y) (y ∈ Ṽk ∩Rn+).

The explicit description of the coefficients ̃ak
α (Faà di Bruno-formula, see [15], Formula B) shows 

that ̃ak
α contains the function aα ◦ ϑk as well as derivatives of ϑ−1

k up to order 2m + 1 − |α| for 
|α| ≥ 1 (and no derivative for |α| = 0), concatenated with ϑk . Hence we always need at most 
2m derivatives of ϑ−1

k , which ensures ̃ak
α ∈ BUC�r ′�. For |α| = 2m at most one derivative of ϑ−1

k

appears and as m ∈N we have 2m +�r ′� − 1 ≥ �r ′� + 1, which shows ̃ak
α ∈ BUCr for |α| = 2m. 

Consequently, condition (S5) implies that (S1) also holds for ̃ak
α. In the same way, we define the 

local operator B̃k = (B̃k
1 , . . . , ̃Bk

m) via

(B̃k
j v)(y) := Bj (v ◦ ϑ−1

k )(ϑk(y)) =:
∑

|β|≤mj

b̃k
jβ(y)γ0D

βv(y) (y ∈ Ṽk ∩Rn−1).

A simple calculation shows that 2m +�r ′� ≥ mj +�k′
j� +1 = mj +kj and thus (S5) also implies 

that the transformed operators B̃k satisfy (S3) for all |β| ≤ mj . For k ∈ {K0 + 1, . . . , K}, we set 
j
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ãk
α(y) := aα(y) for y ∈ B(xk, 2rk) with some obvious modifications in the case of an exterior 

domain for k = K0 + 1.
Again with the general extension function from Remark 3.7, we extend the coefficients ãk

α

and ̃bk
jβ to Rn+, Rn and Rn−1, respectively. We set

ak
α(y) := ãk

α(χVk
(y)) (y ∈Rn+) for k = 1, . . . ,K0,

ak
α(y) := ãk

α(χVk
(y)) (y ∈Rn) for k = K0 + 1, . . . ,K,

bk
jβ(y) := b̃k

jβ(χVk
(y)) (y ∈Rn−1) for k = 1, . . . ,K0.

Finally, we define

Akv(y) :=
∑

|α|≤2m

ak
α(y)Dαv(y) (y ∈Rn+) for k = 1, . . . ,K0,

Akv(y) :=
∑

|α|≤2m

ak
α(y)Dαv(y) (y ∈Rn) for k = K0 + 1, . . . ,K,

Bk
j v(y) :=

∑
|β|≤mj

bk
jβ(y)γ0D

βv(y) (y ∈Rn−1) for k = 1, . . . ,K0.

The extended local operators Ak and Bk satisfy the above smoothness and ellipticity assump-
tions, so we can apply the results from Section 3. However, as we do not have the spaces Hs,σ

p,λ

in domains, we use the standard Sobolev spaces as in Corollary 3.13.
Therefore, we additionally consider the spaces

E s,σ
λ (�) := Hs+σ

p,λ (�), (4.2)

F s,σ
λ (�) := Hs−2m

p,λ (�) ×
m∏

j=1

B
s+σ−mj −1/p

pp,λ (�) (4.3)

and the analog spaces with � being replaced by Rn+. We also set E s,σ
λ (Rn) := Hs+σ

p,λ (Rn) and 

F s,σ
λ (Rn) := Hs−2m

p,λ (Rn). Note that for σ ≤ 0 we have the continuous embeddings (Proposi-
tion 2.2 c) and Remark 2.4 b))

F s,σ
λ ⊂ F s,σ

λ and Es,σ
λ ⊂ E s,σ

λ . (4.4)

Lemma 4.2. Let s, σ ∈ R with s > maxj mj + 1
p

, and let Ak, Bk denote the extended local 
operators. Then there exists a λ0 ≥ 1 such that the operator families

(
λ − Ak

Bk

)
: Es,σ

λ (Rn+) → F s,σ
λ (Rn+) (k = 1, . . . ,K0),

λ − Ak : Es,σ
(Rn) → F s,σ

(Rn) (k = K + 1, . . . ,K)

(4.5)
λ λ 0
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for λ ∈ � with |λ| ≥ λ0 are isomorphisms. We denote the inverse operator by Lk(λ). For σ ≤
0, the restrictions of Lk(λ) to F s,σ

λ (Rn+) and F s,σ
λ (Rn), respectively, yield bounded operator 

families

Lk(λ) ∈ L(F s,σ
λ (Rn+),E s,σ

λ (Rn+)) (k = 1, . . . ,K0),

Lk(λ) ∈ L(F s,σ
λ (Rn),E s,σ

λ (Rn)) (k = K0 + 1, . . . ,K).
(4.6)

Proof. We have seen above that Ak, Bk satisfy conditions (S1) and (S3). Conditions (S2) and 
(S4) follow directly from the fact that the extended coefficients are constant far away from the 
origin by construction. Hence the statement follows for k ∈ {1, . . . , K0} from Theorem 3.12 and 
Corollary 3.13 and for k ∈ {K0 + 1, . . . , K} from Lemma 3.14 and the embeddings (4.4). �

To solve (3.1) in �, we first construct an approximate solution operator R0(λ), using the local 
solution operators Lk(λ) from Lemma 4.2 and the local coordinate maps ϑk for k = 1, . . . , K . 
Setting �kv := v ◦ ϑ−1

k , the C2m+�r ′�-diffeomorphism ϑk induces isomorphisms

�k : Hs
p,λ(Vk ∩Rn+) → Hs

p,λ(Uk ∩ �) (k = 1, . . . ,K0),

�k : Hs
p,λ(Vk) → Hs

p,λ(Uk) (k = K0 + 1, . . . ,K)
(4.7)

for s ∈ [0, 2m + �r ′�]. Since we have �k(Ḣ
s
p,λ(Vk ∩ Rn+)) = Ḣ s

p,λ(Uk ∩ �), we even get (4.7)
for all |s| ≤ 2m + �r ′� via duality. Moreover, by the definition of the Besov space on the closed 
C2m+�r ′�-manifold �, the restriction ϑk|Vk∩Rn−1 : Vk ∩ Rn−1 → Uk ∩ � also induces isomor-
phisms

�k : Bs
pp,λ(Vk ∩Rn−1) → Bs

pp,λ(Uk ∩ �)

for k = 1, . . . , K0 and all |s| ≤ 2m + �r ′�. We fix a smooth partition of unity ϕ�
k ∈ C∞(Rn), 

k = 1, . . . , K , with suppϕ�
k ⊂ Uk , 0 ≤ ϕ�

k ≤ 1, and 
∑K

k=1 ϕ�
k = 1 on �. Additionally, let 

ψ�
k ∈ C∞(Rn) with 0 ≤ ψ�

k ≤ 1, suppψ�
k ⊂ Uk and ψ�

k = 1 on suppϕ�
k . We set ψk :=

�−1
k ψ�

k = ψ�
k ◦ ϑk , where here and in the following, we identify functions with compact sup-

port and their trivial extensions for sake of readability. Without this identification, we have, e.g., 
ψk = e0

Vk
�−1

k (rUk
ψ�

k ) for k = K0 + 1, . . . , K , where again rUk
stands for the restriction to Uk

and e0
Vk

for the trivial extension to Rn by zero.
In the following let λ0 ≥ 1 be given as in Lemma 4.2. The approximate solution operator 

R0(λ) is now for λ ∈ �, |λ| ≥ λ0 formally defined as

R0(λ)

(
f

g

)
:=

K0∑
k=1

L�
k (λ)

(
ϕ�

k f

(γ0ϕ
�
k )g

)
+

K∑
k=K0+1

L�
k (λ)(ϕ�

k f ). (4.8)

Here, L�
k (λ) is defined by

L�
k (λ)

(
f

g

)
:= �k

(
ψkLk(λ)�−1

k

(
f

g

))
(k = 1, . . . ,K0),

L�(λ)f := � (ψ L (λ)�−1f ) (k = K + 1, . . . ,K).

(4.9)
k k k k k 0
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Lemma 4.3. Let s, σ ∈R with s > maxj mj + 1
p

and σ ≤ 0. Then the operator R0(λ) in (4.8) is 
well-defined on F s,σ

λ (�) for λ ∈ � with |λ| ≥ λ0 and yields a bounded operator family

R0(λ) ∈ L(F s,σ
λ (�),E s,σ

λ (�)). (4.10)

Proof. The continuity of R0(λ) in the corresponding spaces follows from (4.7) and Lemma 
4.2. �

In the following, we will modify R0(λ) to get a solution. For this, we compute (λ −
A, B)R0(λ)(f, g), where we may choose (f, g) sufficiently smooth such that the classical theory 
can be applied. Therefore, we introduce s′, and assume from now on that s, σ, s′ ∈R satisfy

s > max
j=1,...,m

mj + 1
p
, −1 < σ ≤ 0, s′ ≥ max{2m,s}. (4.11)

Moreover, we assume (S1)–(S3) and (S5) for (s, σ) (as before) and also for (s′, 0). The conditions 
with respect to (s′, 0) collapse to r ′ = s′ − 2m and k′

j = s′ − mj − 1
p

. In the end we take the 
maximum, respectively.

In contrast to the half-space situation, we have a restriction on σ in (4.11). This is essentially 
due to the commutator estimates and the fact that we only consider standard Sobolev spaces in �.

Lemma 4.4. Let s, σ and s′ satisfy (4.11). Let 0 < ε < min{1 + σ, 1
p
}.

a) For λ ∈ � with |λ| ≥ λ0, define the operator Ck(λ) by

Ck(λ) :=
(−[Ak,ψk]

[Bk,ψk]
)

Lk(λ) (k = 1, . . . ,K0),

Ck(λ) := −[Ak,ψk]Lk(λ) (k = K0 + 1, . . . ,K).

Then

Ck(λ) ∈ L(F s,σ
λ (Rn+),F s+ε,σ

λ (Rn+)) (k = 1, . . . ,K0),

Ck(λ) ∈ L(F s,σ
λ (Rn),F s+ε,σ

λ (Rn)) (k = K0 + 1, . . . ,K).

b) Let (f, g) ∈F s′,0
λ (�), and set v := R0(λ)(f, g) with R0(λ) being defined in (4.8). Then(

λ − A

B

)
v = (1 + C(λ))

(
f

g

)
(4.12)

holds with an operator C(λ) ∈ L(F s,σ
λ (�), F s+ε,σ

λ (�)) and there exists a λ1 ≥ λ0 such that 
1 + C(λ) ∈ L(F s,σ

λ (�)) is invertible for all λ ∈ � with |λ| ≥ λ1.

Proof. a) The operator [Ak, ψk] is a differential operator of order not greater than 2m −1. There-
fore, the mapping

[Ak,ψk] : E s,σ
(Rn+) = Hs+σ (Rn+) → Hs−2m+1+σ (Rn+) ⊂ Hs+ε−2m(Rn+)
λ p,λ p,λ p,λ
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is bounded.
In analogy to the proof of Lemma 3.10 we obtain that the operator [Bk

j , ψk] is a bound-
ary operator of order not greater than mj − 1. In the case mj = 0, this operator is zero. As 
E s,σ

λ (Rn+) = Hs+σ
p,λ (Rn+) and σ > −1, the boundary operator [Bk

j , ψk] is defined in the classical 
sense and is continuous as an operator

[Bk
j ,ψk] : E s,σ

λ (Rn+) → B
s+σ−mj +1−1/p

pp,λ (Rn−1) ⊂ B
s+ε+σ−mj −1/p

pp,λ (Rn−1).

By Lemma 4.2, we have Lk(λ) ∈ L(F s,σ
λ (Rn+), E s,σ

λ (Rn+)). This and the above mapping proper-
ties for the commutators show Ck(λ) ∈ L(F s,σ

λ (Rn+), F s+ε,σ
λ (Rn+)).

b) We first remark that v ∈ E s′,0
λ (�) holds due to Lemma 4.3, and, as s′ ≥ 2m, the boundary 

operators Bj can be applied to v in the classical sense. Using calculations similar to the ones in 
the proof of Lemma 3.10 and the equality �k(ψk�

−1
k (ϕ�

k f )) = ψ�
k ϕ�

k f , we obtain(
λ − A

B

)
v = (1 + C(λ))

(
f

g

)
with

C(λ)

(
f

g

)
:=

K0∑
k=1

�k

(
Ck(λ)�−1

k

(
ϕ�

k f

(γ0ϕ
�
k )g

))
+

K∑
k=K0+1

(
�k(Ck(λ)�−1

k (ϕ�
k f ))

0

)
.

From a) and the fact that multiplication by ϕ�
k and the coordinate transformations �k , �−1

k

preserve the smoothness as ε < 1
p

, we obtain

C(λ) ∈ L(F s,σ
λ (�),F s+ε,σ

λ (�)).

Proceeding as in the proof of Lemma 3.3 a), and using the Neumann series as in Lemma 3.4, 
we obtain that for sufficiently large λ, the operator 1 + C(λ) ∈ L(F s,σ

λ (�)) is invertible, and the 
norm of the inverse is not greater than 2. �

The following theorem is the key result of this section and gives an a priori-estimate for 
the solution operator of (3.1) in spaces of rough regularity. Note that we first consider smooth 
functions, where the boundary operators are defined in a classical way and where we know unique 
solvability by classical results. However, the a priori-estimate gives a continuous extension of the 
solution operator to larger spaces.

Theorem 4.5. Let (λ − A, B) be parameter-elliptic in the sector �, and let s, σ, s′ ∈ R sat-
isfy (4.11). Assume (S1)–(S3), (S5) to hold for (s, σ) and (s′, 0). Then taking λ1 ≥ λ0 as in 
Lemma 4.4 b), for all λ ∈ � with |λ| ≥ λ1, and every (f, g) ∈ F s′,0

λ (�), the unique solution 

u ∈ E s′,0
λ (�) of (3.1) is given by

u = R(λ)

(
f
)

:= R0(λ)(1 + C(λ))−1
(

f
)

,

g g
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and we have the a priori-estimate

∥∥∥R(λ)

(
f

g

)∥∥∥
Es,σ

λ (�)
≤ C

∥∥∥(f

g

)∥∥∥
F s,σ

λ (�)
(4.13)

with a constant C not depending on f, g or λ. In particular, the solution operator R(λ) extends 
uniquely to a continuous operator family

R(λ) ∈ L(F s,σ
λ (�),E s,σ

λ (�)).

Proof. First, we remark that F s′,0
λ (�) and E s′,0

λ (�) are classical spaces, and therefore we obtain 
unique solvability in these spaces (see, e.g., [2], Theorem 2.1). By Lemma 4.4 b) with (s, σ) =
(s′, 0), the operator 1 + C(λ) is invertible in L(F s′,0

λ (�)), and from Lemma 4.3 we get R0(λ) ∈
L(F s′,0

λ (�), E s′,0
λ (�)) because of s′ ≥ s. Therefore, u := R(λ)

(
f
g

) ∈ E s′,0
λ (�). As

(
λ − A

B

)
u = (1 + C(λ))(1 + C(λ))−1

(
f

g

)
=
(

f

g

)
by Lemma 4.4 b), u is the unique solution of (3.1). Finally, the a priori-estimate (4.13) follows 
from Lemma 4.3 and (1 + C(λ))−1 ∈ L(F s,σ

λ (�)). �
The existence of continuous solution operators given by Theorem 4.5 is the main part of the 

analysis of (3.1). To formulate the uniqueness of the solution, we have to consider a function 
space over � where the boundary operators are well-defined. For this, we apply the theory of 
Roitberg ([29], [30]), which leads to the space Hs

p,A,s0
(�) as defined below. Note that for the 

construction of the solution operator, the results by Roitberg were not used. We still assume 
(4.11) to hold.

Definition 4.6. Let s0 ∈ R with s0 ≥ s − 2m. Then we define Hs
p,A,s0

(�) as the completion of 

C∞(�) with respect to the norm

‖u‖Hs
p,A,s0

(�) := ‖u‖Hs
p(�) + ‖Au‖

H
s0
p (�)

.

Remark 4.7. By the continuity of A : H
s0+2m
p (�) → H

s0
p (�) and the condition on s0, we find 

that

‖u‖Hs
p(�) ≤ ‖u‖Hs

p,A,s0
(�) ≤ C‖u‖

H
s0+2m
p (�)

for every u ∈ C∞(�). It follows that

Hs0+2m
p (�) ⊂ Hs

p,A,s0
(�) ⊂ Hs

p(�)

with dense embeddings.
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Lemma 4.8. Let s0 ∈ R with s0 > −1 + 1
p

and s0 ≥ s − 2m. Then

(
A

B

)
: Hs+σ

p,A,s0
(�) → Hs0

p (�) ×
m∏

j=1

B
s+σ−mj −1/p
pp (�) (4.14)

is well-defined and continuous.

Proof. For smooth u, we write Bju in the form

Bju = γ0

∑
|β|≤mj

bjβ(·)Dβu =
mj∑
l=0

Mjl(x,D′)γlu, (4.15)

where γl : u �→ (∂l
νu)|� is the classical trace and Mjl(x, D′) is a differential operator of order not 

greater than mj − l which contains only derivatives in tangential direction. We first show that for 
all u ∈ C∞(�) and l = 0, . . . , maxj mj we have

‖γlu‖
B

s+σ−l−1/p
pp (�)

≤ C‖u‖Hs+σ
p,A,s0

(�). (4.16)

Indeed, if s + σ > maxj mj + 1
p

, this follows from classical trace results, where we can even 

replace the norm on the right-hand side of (4.16) by ‖u‖Hs+σ
p (�). If s + σ ≤ maxj mj + 1

p
, we 

first note that we have s + σ > −1 + 1
p

by (4.11). Therefore, we can apply [29], Theorem 6.1.1 
and (6.1.29) (see also the text after [29], Definition 6.2.1) and obtain

‖γlu‖
B

s+σ−l−1/p
pp (�)

≤ C
(‖u‖Hs+σ

p (�) + ‖Au‖
Ḣ s+σ−2m

p (�)

)
. (4.17)

Now choose 0 < ε < 1 such that

s + σ − 2m ≤ max
j

mj + 1

p
− 2m < −1 + 1

p
+ ε < s0.

Then

Hs0
p (�) ⊂ H

−1+ 1
p

+ε

p (�) = Ḣ
−1+ 1

p
+ε

p (�) ⊂ Ḣ s+σ−2m
p (�),

where the equality can be found, e.g., in [34], Theorem 4.3.2/1. Hence we may replace 
‖Au‖

Ḣ s+σ−2m
p (�)

in (4.17) by ‖Au‖
H

s0
p (�)

which yields (4.16).

From the continuity of Mjl(x, D′) : B
s+σ−l−1/p
pp (�) → B

s+σ−mj −1/p
pp (�), the estimate in 

(4.16), and the definition of the norm in Hs+σ
p,A,s0

(�) we obtain

‖Au‖
H

s0
p (�)

+
m∑

‖Bju‖
B

s+σ−mj −1/p

pp (�)
≤ C‖u‖Hs+σ

p,A,s0
(�)
j=1
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for all u ∈ C∞(�). As C∞(�) is dense in Hs+σ
p,A,s0

(�), the operator (4.14) is well-defined by 
unique extension and continuous. �

Now we are able to formulate our main result. At first we will cover the general situation and 
then, as a corollary, the simpler setting f ∈ Lp(�).

Theorem 4.9. Let (λ − A, B) be parameter-elliptic in the sector �, and let s, σ ∈ R with 
s > maxj mj + 1

p
and σ ∈ (−1, 0]. Let −1 + 1

p
< s0 ≤ s + σ , and s0 ≥ s − 2m. We fix 

s′ := max{2m, s0 + 2m}. Assume conditions (S1)–(S3), (S5) to hold with respect to (s, σ) as 
well as (s′, 0). Then there exists a λ1 ≥ 1 such that for all λ ∈ � with |λ| ≥ λ1 and all

(f, g) ∈ Hs0
p (�) ×

m∏
j=1

B
s+σ−mj −1/p
pp (�), (4.18)

the boundary value problem (3.1) has a unique solution u ∈ Hs+σ
p,A,s0

(�). This solution is given 

by u = R(λ)
(
f
g

)
and satisfies the a priori-estimate (4.13).

Proof. By the assumptions on s and σ , (4.11) holds, and for sufficiently large |λ|, we can define 
u := R(λ)

(
f
g

) ∈ E s,σ
λ (�). By Theorem 4.5, u satisfies the a priori-estimate (4.13). For the rest of 

the proof let λ be arbitrary but fixed.
We want to show that u ∈ Hs+σ

p,A,s0
(�). For this we denote the space in (4.18) by F s,σ,s0

λ (�)

and first note that F s′,0
λ (�) is dense in the space F s,σ,s0

λ (�), as even smooth functions are dense. 

Therefore, we can choose a sequence 
(
fk

gk

) ∈F s′,0
λ (�) with ‖(fk

gk

)−(f
g

)‖F s,σ,s0
λ (�)

→ 0 for k → ∞
and set uk := R(λ)

(
fk

gk

)
. By Theorem 4.5 and Remark 4.7, we know uk ∈ E s′,0

λ (�) = Hs′
p (�) ⊂

Hs+σ
p,A,s0

(�). Moreover, Buk is defined in the classical sense, and we have 
(
λ−A
B

)
uk = (fk

gk

)
by 

Theorem 4.5. In particular, Auk = λuk − fk . This and (4.13) yield

‖uk−u�‖Hs+σ
p,A,s0

(�) = ‖uk − u�‖Hs+σ
p (�) + ‖Auk − Au�‖H

s0
p (�)

≤ Cλ

∥∥∥(fk

gk

)
−
(

f�

g�

)∥∥∥
F s,σ

λ (�)
+ ‖fk − f�‖H

s0
p (�)

+ |λ|‖uk − u�‖H
s0
p (�)

≤ Cλ

∥∥∥(fk

gk

)
−
(

f�

g�

)∥∥∥
F s,σ,s0

λ (�)
+ |λ| ‖uk − u�‖Hs+σ

p (�)

≤ Cλ

∥∥∥(fk

gk

)
−
(

f�

g�

)∥∥∥
F s,σ,s0

λ (�)
→ 0 (k, � → ∞).

Recall that here we have used parameter-independent norms and the a priori-estimate (4.13) for 
fixed λ. We also use the condition s0 ≤ s +σ . We have seen that (uk)k∈N is a Cauchy sequence in 
Hs+σ

p,A,s0
(�) and therefore convergent to some element v ∈ Hs+σ

p,A,s0
(�). By (4.13), we see uk → u

in Hs+σ
p (�), and therefore u = v ∈ Hs+σ

p,A,s0
(�).

As u ∈ Hs+σ
p,A,s0

(�) and s0 > −1 + 1
p

, the expression Bu is well-defined in the sense of 
Lemma 4.8, which also yields the continuity of the operator in the respective spaces. Hence, the 
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above approximation shows that 
(
λ−A
B

)
u = (f

g

)
, therefore u is a solution of (3.1). For the unique-

ness we make use of Lemma 3.11 once more, where we take E = Hs+σ
p,A,s0

(�), F = F s,σ,s0
λ (�), 

E0 = E s′,0
λ (�), and T = (λ−A

B

)
. �

The conditions on the parameters s, σ and on the smoothness are much simpler in the case 
f ∈ Lp(�). We obtain the following corollary, which shows that boundary spaces of order close 
to −1 may appear.

Corollary 4.10. Let (λ − A, B) be parameter-elliptic in the sector �, and let τ ∈ R with 
maxj mj + 1

p
− 1 < τ ≤ 2m and τ ≥ 0 (the last condition is automatically satisfied except for 

2m = 2 and m1 = 0). Assume (S1) and (S3) to hold for r ′ := 2m − τ and k′
j := 2m − mj − 1

p
. 

Let � be of class C2m+�r ′�, and assume (S2) if � is unbounded.
Then there exists a λ1 ≥ 1 such that for all λ ∈ � with |λ| ≥ λ1 and all

(f, g) ∈ Lp(�) ×
m∏

j=1

B
τ−mj −1/p
pp (�),

the boundary value problem (3.1) has a unique solution u ∈ Hτ
p,A,0(�), which satisfies the a 

priori-estimate (4.13).

Proof. We apply Theorem 4.9 with s0 = 0. If τ > maxj mj + 1
p

, we choose s := τ and σ := 0. 

In the case τ ≤ maxj mj + 1
p

, we set s := maxj mj + 1
p

+ ε and σ := τ − s for ε > 0 sufficiently 
small. Note that for this choice of (s, σ) the conditions in Theorem 4.9 are fulfilled. �
5. Boundary value problems with dynamic boundary conditions

As an application of the above results, we consider a boundary value problem with dynamic 
boundary conditions, which is related to the linearized Cahn–Hilliard equation and was discussed 
in detail in [28]. We show that the corresponding operator generates a holomorphic semigroup 
in Lp . For simplicity, we restrict ourselves to the model problem situation and do not consider 
a general domain. The related model problem in the half-space has the form (see [28], Equation 
(2.1))

(∂t + 
2)u = f in (0,∞) ×Rn+,

∂tu + ∂νu − 
′u = g on (0,∞) ×Rn−1,

∂ν
u = 0 on (0,∞) ×Rn−1

(plus initial condition), where 
′ stands for the tangential Laplacian. Here we have set the con-
stants to 1 and omitted lower-order terms. Following a standard approach for boundary value 
problems with dynamical boundary conditions, we decouple u =: u1 and γ0u =: u2 and consider 
the Cauchy problem in a product space, where now the compatibility condition u1 = γ0u2 has to 
be added. The corresponding resolvent problem is given by
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(λ + 
2)u1 = f in Rn+,

∂νu1 + (λ − 
′)u2 = g on Rn−1,

∂ν
u1 = 0 on Rn−1,

γ0u1 − u2 = 0 on Rn−1.

(5.1)

It was shown in [28], Remark 2.2, that the related operator generates an analytic C0-semigroup 
in the basic space Lp(Rn+) × Br

pp(Rn−1) for all r ∈ [2 − 1
p
, 3 − 1

p
]. In the present paper, we 

consider the basic space X := Lp(Rn+) × Lp(Rn−1). In order to define a suitable operator A
representing (5.1), we have to verify the parameter-ellipticity of the auxiliary problem below.

In the following, let arg(·) denote the argument of a complex number with values in (−π, π]. 
Furthermore let 

√· denote the principal branch of the complex square root which is holomorphic 
in C \ (−∞, 0] and for which we have Re

√
z > 0 for all z ∈ C \ (−∞, 0].

Lemma 5.1. Let θ ∈ (0, π). Then the boundary value problem (λ + 
2, γ0, ∂ν
) in Rn+ is 
parameter-elliptic in the sector � := �θ , where

�θ := {z ∈ C\{0} : | arg z| < θ}.

Proof. Obviously, the operator λ + 
2 is parameter-elliptic in �. To see that the Shapiro–
Lopatinskii condition holds, we first assume λ ∈ � \ {0}. Then every stable solution of the ODE[

λ + (∂2
n − |ξ ′|2)2]w(xn) = 0 (xn > 0) (5.2)

is of the form w(xn) = c1e
−τ1xn + c2e

−τ2xn with the roots τ1,2 = τ1,2(|ξ ′|, λ), where

τ1,2(|ξ ′|, λ) :=
√

|ξ ′|2 ± i
√

λ. (5.3)

Note that we have Reτj (|ξ ′|, λ) > 0 for j = 1, 2 and all ξ ′ ∈ Rn−1.
The first boundary condition w(0) = 0 yields c1 = −c2, and from the second boundary con-

dition we obtain

0 = −∂n(∂
2
n − |ξ ′|2)w(0) = τ1(τ

2
1 − |ξ ′|2)c1 + τ2(τ

2
2 − |ξ ′|2)c2

= i
√

λ(τ1c1 − τ2c2).
(5.4)

Therefore, 0 = τ1c1 − τ2c2 = (τ1 + τ2)c1. As Re(τ1 + τ2) > 0, we obtain c1 = c2 = 0.
In the case λ = 0, every stable solution of (5.2) is of the form w(xn) = (c1 + c2xn)e

−|ξ ′|xn . 
From w(0) = 0 we obtain c1 = 0, and

0 = −∂n(∂
2
n − |ξ ′|2)w(0) = −2c2|ξ ′|2

shows c1 = c2 = 0 for every ξ ′ ∈ Rn−1 \ {0}. �
Definition 5.2. Now we are able to define the operator A : X ⊃ D(A) → X with X := Lp(Rn+) ×
Lp(Rn−1) by
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A(D)u :=
(−
2 0

−∂ν 
′
)

(u ∈ D(A)),

where

D(A) := {u = (u1, u2) ∈ X : A(D)u ∈ X, ∂ν
u1 = 0, γ0u1 − u2 = 0 on Rn−1}.

Remark 5.3. a) Due to the parameter-ellipticity of the boundary value problem in Lemma 5.1
we may use Theorem 3.2 to solve the system

(λ + 
2)u1 = f in Rn+,

γ0u1 = u2 on Rn−1,

∂ν
u1 = 0 on Rn−1.

(5.5)

Now, the existence of all traces is clear, as we are in the half-space situation and have the spaces 
H

s,σ
p (Rn+) at our disposal. Using the embeddings Lp(Rn+) ⊂ H

0,−4
p (Rn+) and Lp(Rn−1) ⊂

B
−1/p
pp (Rn−1) we obtain u1 ∈ H

4,−4
p (Rn+), which shows that A is well-defined, as ∂νu1 ∈

B
−1−1/p
pp (Rn−1) and ∂ν
u1 ∈ B

−3−1/p
pp (Rn−1).

b) Next, we observe that the operator A is densely defined. For this, let (f, g) ∈ X =
Lp(Rn+) ×Lp(Rn−1), and let ε > 0. We first choose ϕ2 ∈ C∞

0 (Rn−1) with ‖ϕ2 −g‖Lp(Rn−1) < ε

and then define ϕ1 ∈ H 4
p(Rn+) as the unique solution of

(1 + 
2)ϕ1 = 0 in Rn+,

γ0ϕ1 = ϕ2 on Rn−1,

∂ν
ϕ1 = 0 on Rn−1.

By definition, we obtain (ϕ1, ϕ2) ∈ D(A). In a second step, we choose ϕ′
1 ∈ C∞

0 (Rn+) with ‖ϕ′
1 +

ϕ1 − f ‖Lp(Rn+) < ε. Then (ϕ′
1, 0) ∈ D(A), which implies that u := (ϕ1 + ϕ′

1, ϕ2) ∈ D(A). By 
construction, we know ‖u − (f, g)‖X < 2ε.

c) Finally, the operator A is closed. To see this, let (uk)k∈N ⊂ D(A) be a sequence with uk =
(uk

1, u
k
2) → u = (u1, u2) in X and Auk → v = (v1, v2) in X. Then we have 
2uk

1 → 
2u1 in 
H−4

p (Rn+) due to the continuity of the operator 
2 : Lp(Rn+) → H−4
p (Rn+) as well as −
2uk

1 →
v1 in Lp(Rn+) and therefore also in H−4

p (Rn+). By uniqueness of the limit, we see that −
2u1 =
v1 ∈ Lp(Rn+). Similarly, using the spaces from a), one shows −∂νu1 + 
′u2 = v2 ∈ Lp(Rn−1)

and ∂ν
u1 = γ0u1 − u2 = 0. Therefore, u ∈ D(A) and Au = v.

Now we want to show that the operator A generates a holomorphic semigroup in Lp(Rn+) ×
Lp(Rn−1). The key step in the proof consists in the analysis of the solution operator of (5.1) with 
f = 0 and λ ∈ �θ . For this, we take the partial Fourier transform (F ′u1)(ξ

′, xn) =: w(ξ ′, xn) =:
w(xn) and obtain the ODE (5.2) as well as (5.4) from the boundary condition ∂ν
u1 = 0. From 
the proof of Lemma 5.1 we know that w(xn) = c1e

−τ1xn + c2e
−τ2xn and τ1c1 = τ2c2, where 

τ1,2 = τ1,2(|ξ ′|, λ) are defined in (5.3). Inserting this into the second line of (5.1), we get

τ1c1 + τ2c2 + (λ + |ξ ′|2)(c1 + c2) = ĝ := F ′g.
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With c2 = τ1
τ2

c1, this yields

c1 = τ2

(τ1 + τ2)(λ + |ξ ′|2) + 2τ1τ2
ĝ.

For û2(ξ
′) = (F ′u1)(ξ

′, 0), we obtain

û2 = c1 + c2 = τ1 + τ2

(τ1 + τ2)(λ + |ξ ′|2) + 2τ1τ2
ĝ =: S(|ξ ′|, λ)ĝ. (5.6)

Therefore, we have to analyze the symbol S(|ξ ′|, λ). As we will use the bounded H∞-calculus, 
we will extend this symbol with respect to the first variable to a small sector �ε. We start with a 
technical result on the zeros τ1 and τ2.

Lemma 5.4. Let θ ∈ (π
2 , π) and ε ∈ (0, π−θ

4 ).

a) Let τ1,2 : �ε × �θ → C be defined by

τ1,2(z, λ) :=
√

z2 ± i
√

λ ((z,λ) ∈ �ε × �θ).

Then τ1,2 is holomorphic in �ε × �θ and satisfies

C(|z| + |λ|1/4) ≤ |τj (z, λ)| ≤ C′(|z| + |λ|1/4) (j = 1,2), (5.7)

C(|z| + |λ|1/4) ≤ |τ1(z, λ) + τ2(z, λ)| ≤ C′(|z| + |λ|1/4) (5.8)

for suitable constants C, C′ > 0 and all (z, λ) ∈ �ε × �θ .
b) For all (z, λ) ∈ �ε × �θ we have

arg
( τ1(z, λ)τ2(z, λ)

(τ1(z, λ) + τ2(z, λ))

)
∈

⎧⎪⎨⎪⎩
(−ε, θ+π

4 ) if argλ ∈ (π
2 , θ),

(− 3π
8 , 3π

8 ) if argλ ∈ [−π
2 , π

2 ],
(− θ+π

4 , ε) if argλ ∈ (−θ,−π
2 ).

Proof. a) As ±i
√

λ ∈ �(θ+π)/2, the condition on ε implies z2 ±i
√

λ ∈ �(θ+π)/2. This shows that 
τj is well-defined and holomorphic in �ε ×�θ with values in �(θ+π)/4. The function ϕ(z, λ) :=
|τj (z, λ)|(|z| + |λ|1/4)−1 is smooth and quasi-homogeneous of degree 0 in the sense that

ϕ(ρz,ρ4λ) = ϕ(z,λ) (ρ > 0, z ∈ �ε, λ ∈ �θ).

Therefore, its minimum and maximum are attained on the compact set

M := {(z, λ) ∈ �ε × �θ : |z| + |λ|1/4 = 1
}

(here we note that τj can be extended continuously to M). As τj �= 0 for all (z, λ) ∈ M , we obtain 
0 < C ≤ ϕ(z, λ) ≤ C′ < ∞, which yields (5.7).
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Because of τj ∈ �(θ+π)/4, there exists a constant Cθ > 0 with Re τj ≥ Cθ |τj |. Consequently,

|τ1 + τ2| ≥ Re(τ1 + τ2) ≥ Re τ1 ≥ Cθ |τ1| ≥ CCθ(|z| + |λ|1/4).

As the other inequality in (5.8) is obvious, we obtain a).
b) For Reλ ≥ 0 we have τ1, τ2 ∈ �3π/8. Consequently, the same holds for τ1τ2

τ1+τ2
= 1

τ−1
1 +τ−1

2
. 

Now, let argλ ∈ (π
2 , θ). Analogously, we get τ1τ2

τ1+τ2
∈ �(θ+π)/4. To see arg

(
τ1τ2

τ1+τ2

)
> −ε, it is 

sufficient to prove Im
( |τ1+τ2|2τ1τ2

z|z|2(τ1+τ2)

)
≥ 0. We set c :=√λ/z4 and obtain

|τ1 + τ2|2τ1τ2

z|z|2(τ1 + τ2)
= |τ1|2τ2 + |τ2|2τ1

z|z|2 = |1 + ic|√1 − ic + |1 − ic|√1 + ic.

By the condition on λ and z, we know that c = a + ib for some a, b > 0. In a first step, we show

Im(
√

1 + ic + √
1 − ic) ≥ 0. (5.9)

Using the formula Im
√

x ± iy = ±
√

|x±iy|−x
2 for all x ∈R and y > 0, we get

Im(
√

1 + ic + √
1 − ic) =

√ |1 − b + ia| − (1 − b)

2
−
√ |1 + b − ia| − (1 + b)

2
,

such that (5.9) is equivalent to√
(1 + b)2 + a2 −

√
(1 − b)2 + a2 ≤ 2b,

which holds by the reverse triangle inequality in R2 applied to the points (1 +b, a) and (1 −b, a). 
With the inequalities |1 − ic| ≥ |1 + ic| and Im

√
1 + ic ≥ 0 as well as (5.9), we finally get

Im(|1 + ic|√1 − ic + |1 − ic|√1 + ic) ≥ |1 + ic| Im(
√

1 − ic + √
1 + ic) ≥ 0.

Consequently, the statement in b) holds for argλ ∈ (π
2 , θ). The statement for argλ ∈ (−θ, −π

2 )

follows from τ1,2(z, λ) = τ2,1(z, λ). �
Lemma 5.5. Let θ ∈ (π

2 , π) and ε ∈ (0, π−θ
4 ). For λ ∈ �θ and z ∈ �ε , define

m(z,λ) := (λ + z2)S(z,λ) = (λ + z2)(τ1 + τ2)

(λ + z2)(τ1 + τ2) + 2τ1τ2
. (5.10)

Then m : �ε × �θ → C is holomorphic and bounded.

Proof. For the boundedness we notice that

m(z,λ) = 1

1 + 2τ1τ2
(λ+z2)(τ1+τ2)
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and show τ1τ2
(λ+z2)(τ1+τ2)

∈ �ϕ for some ϕ ∈ (0, π). In the case Reλ ≥ 0 we have τ1τ2
τ1+τ2

∈ �3π/8

due to Lemma 5.4 b), which yields

τ1τ2

(λ + z2)(τ1 + τ2)
∈ �7π/8.

If argλ ∈ (π
2 , θ) we use again Lemma 5.4 b) and obtain arg

(
τ1τ2

τ1+τ2

)
∈ (−ε, θ+π

4 ). By the condi-

tion on λ and z, we get arg(λ + z2)−1 ∈ (−θ, 2ε) and therefore

τ1τ2

(λ + z2)(τ1 + τ2)
∈ �θ+ε.

For argλ ∈ (−θ, −π
2 ) we argue in the same way to see τ1τ2

(λ+z2)(τ1+τ2)
∈ �θ+ε . Obviously, m is 

holomorphic in �ε × �θ . �
The last two lemmas allow us to prove the main result of this section. We recall that the 

operator A is described in Definition 5.2.

Theorem 5.6. For every λ0 > 0, the operator A − λ0 generates a bounded holomorphic C0-
semigroup of angle π

2 in X := Lp(Rn+) × Lp(Rn−1). In particular, A generates a holomorphic 
C0-semigroup of angle π

2 in X. Furthermore we obtain H 2-regularity of the solution. More 
precisely for any ε > 0 we have

D(A) ⊂ H
2+1/p−ε
p (Rn+) × H 2

p(Rn−1).

We may choose ε = 0 if p ≥ 2.

Proof. Let θ ∈ (π
2 , π), and let λ0 > 0. Then there is some λ′

0 > 0 with

λ0 + �θ ⊂ {λ ∈ �θ : |λ| ≥ λ′
0}. (5.11)

We show that for every λ ∈ �θ with |λ| ≥ λ′
0 and every (f, g) ∈ X, equation (5.1) has a unique 

solution u = (u1, u2) ∈ D(A) and |λ| ‖u‖X ≤ C‖(f, g)‖X with a constant not depending on λ.
(i) Let (f, g) ∈ X. We construct the unique solution u = (u1, u2) ∈ D(A) of equation (5.1) by 

solving two different boundary value problems. First, we consider the boundary value problem

(λ + 
2)u0
1 = f in Rn+,

γ0u
0
1 = 0 on Rn−1,

∂ν
u0
1 = 0 on Rn−1.

(5.12)

By Lemma 5.1, this problem is parameter-elliptic, and by classical results (see [16], Theorem 1.9, 
or apply Theorem 3.2 with s = 4 and σ = 0), there exists a unique solution u0

1 ∈ H 4
p(Rn+) of 

(5.12) and

|λ|‖u0‖Lp(Rn ) ≤ C‖f ‖Lp(Rn ),
1 + +
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where the constant C depends on θ and λ′
0 but not on f or λ.

(ii) Next, we solve

(λ + 
2)u′
1 = 0 in Rn+,

∂νu
′
1 + (λ − 
′)u2 = g′ on Rn−1,

∂ν
u′
1 = 0 on Rn−1,

γ0u
′
1 = u2 on Rn−1

(5.13)

such that the solution of (5.1) is given by u = (u1, u2) with u1 = u′
1 + u0

1. Here, we have set 
g′ := g − ∂νu

0
1. Note that

‖∂νu
0
1‖Lp(Rn−1) ≤ C‖∂νu

0
1‖B

3−1/p
pp (Rn−1)

≤ C‖u0
1‖H 4

p(Rn+) ≤ C‖f ‖Lp(Rn+)

and therefore

‖g′‖Lp(Rn−1) ≤ C
(‖g‖Lp(Rn−1) + ‖f ‖Lp(Rn+)

)≤ C‖(f, g)‖X.

With the same calculations as those leading up to (5.6), we observe that the boundary value 
problem (5.13) possesses a unique solution (u′

1, u2) satisfying û2 = S(|ξ ′|, λ)ĝ′ and therefore 
u2 = S(|D′|, λ)g′. Since m is bounded due to Lemma 5.5 and

(−
′)1/2 : Lp(Rn−1) ⊃ D((−
′)1/2) = W 1
p(Rn−1) → Lp(Rn−1)

has a bounded H∞-calculus (see, e.g., [13], Corollary 2.10), the operator

m((−
′)1/2, λ) = (λ + 
′)S(|D′|, λ)

is well-defined and a bounded operator in Lp(Rn−1). The operator norm can be estimated by a 
constant independent of λ ∈ �θ . This shows that

S(|D′|, λ) : Lp(Rn−1) → H 2
p(Rn−1) (5.14)

is continuous, and as λ
λ+z2 = 1

1+ z2
λ

is a bounded holomorphic function as well, we also obtain 

the boundedness of λS(|D′|, λ) on Lp(Rn−1).
(iii) With (ii) and u2 = S(|D′|, λ)g′ we get

|λ| ‖u2‖Lp(Rn−1) ≤ C‖g′‖Lp(Rn−1) ≤ C‖(f, g)‖X.

The function u′
1 in particular solves the problem

(λ + 
2)u′
1 = 0 in Rn+,

γ0u
′
1 = u2 on Rn−1,

∂ 
u′ = 0 on Rn−1.

(5.15)
ν 1
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As this boundary value problem is parameter-elliptic due to Lemma 5.1, we can apply The-
orem 3.2 with s := 4, σ := −4 + 1/(2p). We use the embeddings Lp(Rn−1) = H 0

p,λ(R
n−1) ⊂

B
−1/(2p)
pp,λ (Rn−1) and H 4,−4+1/(2p)

p,λ (Rn+) ⊂ H
1/(2p)
p,λ (Rn+) (see Proposition 2.2 c)) and obtain from 

Theorem 3.2 that u′
1 ∈ H

1/(2p)
p,λ (Rn+) satisfies the estimate

|λ|1/(8p)‖u′
1‖Lp(Rn+) ≤ C‖u′

1‖H
1/(2p)
p,λ (Rn+)

≤ C‖u′
1‖H

4,−4+1/(2p)
p,λ (Rn+)

≤ C‖u2‖B
−1/(2p)
pp,λ (Rn−1)

≤ C‖u2‖Lp(Rn−1)

for λ ∈ �θ with |λ| ≥ λ′
0. Altogether, u = (u1, u2) with u1 = u′

1 + u0
1 is the unique solution of 

(5.1) and fulfills the uniform estimate |λ| ‖u‖X ≤ C‖(f, g)‖X for λ ∈ �θ with |λ| ≥ λ′
0. Writing 

λ − A = (λ − λ0) − (A − λ0) and recalling (5.11), we see that A − λ0 generates a bounded 
analytic C0-semigroup of angle π

2 in X, and therefore A generates an analytic C0-semigroup of 
angle π2 in X.

(iv) From (5.14) we even know that u2 = S(|D′|, λ)g′ lies in H 2
p(Rn−1). Consequently, we 

can also apply Theorem 3.2 to (5.15) with s = 4 and σ = −2 + 1
p

− ε. Hence, taking a fixed 
λ ∈ �θ , we obtain the desired higher regularity due to

‖u1‖H
2+1/p−ε
p (Rn+)

≤ Cλ‖u1‖H
4,−2+1/p−ε
p,λ (Rn+)

≤ Cλ‖u2‖B2−ε
pp,λ(Rn−1)

≤ Cλ‖u2‖H 2
p(Rn−1).

For p ≥ 2, the last embedding also holds for ε = 0. �
Remark 5.7. a) In the above estimates we could show that

|λ| ‖u2‖Lp(Rn−1) ≤ C‖g′‖Lp(Rn−1)

holds for all λ ∈ �θ . The condition |λ| ≥ λ0 with arbitrary small λ0 > 0 was only used for the 
uniform estimate of ‖u1‖Lp(Rn+).

b) The proof of Theorem 5.6 is essentially based on the estimate from Lemma 5.5 and an ap-
plication of the general result from Theorem 3.2. We expect generation of an analytic semigroup 
in some general setting, starting from Theorem 3.2 in Rn+ or Theorem 4.9 in domains. However, 
it is not so obvious to obtain an analogue of Lemma 5.5, which can be seen as an estimate on (a 
part of) the Lopatinskii matrix related to the dynamic boundary value problem. Analog estimates 
might heavily depend on the mixed-order structure of the Lopatinskii matrix and on the orders 
of the boundary operators. We plan to address this question in future research.

Example 5.8. With exactly the same methods as for (5.1), one can also treat the more simple 
boundary value problem with dynamics boundary condition given as

λu1 − 
u1 = f in Rn+,

λu2 + ∂νu1 = g on Rn−1,

γ u − u = 0 on Rn−1.

(5.16)
0 1 2
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The operator A related to (5.16) acts in the space X := Lp(Rn+) × Lp(Rn−1) and is defined by 
D(A) := {u = (u1, u2) ∈ X : A(D)u ∈ X, γ0u1 − u2 = 0}, where

A(D)u :=
(


 0
−∂ν 0

)
u (u ∈ D(A)).

In the same way as above, but with much simpler resolvent estimates, one sees that A − λ0
generates for every λ0 > 0 a bounded holomorphic C0-semigroup in X. The symbol which we 
have to estimate now has the form

m(z,λ) := λ

λ + √
λ + z2

for (z, λ) ∈ �ε × �θ .
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