
J. reine angew. Math. 791 (2022), 135–155 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2022-0045 © De Gruyter 2022

Polar foliations on symmetric spaces
and mean curvature flow

By Xiaobo Liu at Beijing and Marco Radeschi at Notre Dame

Abstract. In this paper, we study polar foliations on simply connected symmetric spaces
with non-negative curvature. We will prove that all such foliations are isoparametric as defined
in [E. Heintze, X. Liu and C. Olmos, Isoparametric submanifolds and a Chevalley-type restric-
tion theorem, in: Integrable systems, geometry, and topology, American Mathematical Society,
Providence (2006), 151–190]. We will also prove a splitting theorem which, when leaves are
compact, reduces the study of such foliations to polar foliations in compact simply connected
symmetric spaces. Moreover, we will show that solutions to mean curvature flow of regular
leaves in such foliations are always ancient solutions. This generalizes part of the results in
[X. Liu and C.-L. Terng, Ancient solutions to mean curvature flow for isoparametric submani-
folds, Math. Ann. 378 (2020), no. 1–2, 289–315] for mean curvature flows of isoparametric
submanifolds in spheres.

1. Introduction

In this paper we consider polar foliations .M; F / in a simply connected, non-negatively
curved symmetric space M . Recall that polar foliation F on a complete Riemannian mani-
fold M is a singular Riemannian foliation such that each point x 2 M is contained in a totally
geodesic submanifold, called a section, which meets all leaves of F and intersects them orthog-
onally. Polar foliations with flat sections are called hyperpolar foliations. Foliations given by
orbits of polar actions by Lie groups are homogeneous examples of polar foliations. Other typ-
ical examples include the foliations by parallel and focal submanifolds of any isoparametric
submanifold in a space form (cf. [26]). Each equifocal submanifold in a compact symmetric
space gives a hyperpolar foliation with leaves the images of parallel normal vector fields under
the exponential map (cf. [28]).

The study of isoparametric submanifolds can be traced back to Cartan’s work on isopara-
metric hypersurfaces in 1930’s. Such manifolds have become an important subject in submani-
fold geometry and have been extensively studied since then. A nice survey article on this subject
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can be found in [29]. For a general Riemannian manifold M , a submanifold L in M is called
isoparametric if the normal bundle ⌫L is flat, exp.⌫pL/ is totally geodesic in a neighborhood
of p for every p 2 L, and locally parallel submanifolds of L have parallel mean curvature
vector fields (cf. [11]). Here parallel submanifolds of L mean images of parallel normal vector
fields along L under the exponential map. When M is a space form, this notion coincides with
Terng’s definition of isoparametric submanifolds in [26]. Equifocal submanifolds L in a com-
pact symmetric space defined by Terng and Thorbergsson in [28] are precisely isoparametric
submanifolds with exp.⌫pL/ flat in a neighborhood of p for every p 2 L. The definition of an
isoparametric submanifold L given in [11] is in purely local terms. In particular, one can not
expect parallel submanifolds of L to give a global foliation of the ambient space in general. In
case that parallel submanifolds of L do give a global foliation of the ambient space, such a foli-
ation is called an isoparametric foliation. It turns out that each regular leaf of an isoparametric
foliation is always an isoparametric submanifold (cf. [11, Corollary 2.5]).

Polar foliations share many similar properties as isoparametric foliations. For example,
Alexandrino and Toeben have proved in [6] that for polar foliations in a complete simply
connected Riemannian manifold, each regular leaf has trivial normal holonomy. This implies
that the normal bundle of each regular leaf is flat. The existence of sections for polar folia-
tions also implies that exp.⌫pL/ is totally geodesic for all p in any regular leaf L. However,
unlike in the isoparametric case, there is no restriction for the mean curvature of the leaves of
polar foliations.

It is an interesting question when a polar foliation is indeed isoparametric. When the
ambient manifold has negative sectional curvature, then in the compact case there are no non-
trivial polar or isoparametric foliations (cf. [16, 31]), while in the simply connected case one
can easily produce examples of polar foliations that are not isoparametric (cf. [31, discussion
on the first page]).

The first main result of this paper shows that the situation is entirely different when the
symmetric space has non-negative curvature:

Theorem 1.1. Every polar foliation .M; F / on a simply connected symmetric space
with non-negative curvature is isoparametric.

Although this will not be used in the sequel, we remark that Theorem 1.1 implies that for
such a foliation, the mean curvature vector field along all regular leaves is basic in the sense that
it projects to a vector field on the manifold part of the leaf space M=F . It was proved in [19]
that, given a foliation with basic mean curvature vector field, there is an “averaging opera-
tor” projection Av W C

1
.M/ ! C

1
.M/

F (where C
1

.M/
F denotes the algebra of smooth

functions constant along the leaves of F ) which commutes with Laplacian. This opens the
possibility of studying polar foliations on symmetric spaces in terms of the algebra C

1
.M/

F ,
together with the action of the Laplacian, as was done in [21, 22] for singular Riemannian
foliations on spheres.

Splitting theorems play an import role in the classification of isoparametric and equifocal
submanifolds (cf. [26], [10], and [8]). These theorems assert that such submanifolds decompose
into products of lower-dimensional submanifolds if their associated Coxeter groups decom-
pose. In [18], Lytchak proved that every polar foliation .M; F / on a simply connected symmet-
ric space with non-negative curvature splits as product of hyperpolar foliations, polar foliations
with spherical sections, and trivial foliations. Here a trivial foliation means the foliation given
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by fibers of the projection from a product of two manifolds to one of its components. In this
paper, we will prove a splitting theorem of another type.

Theorem 1.2. Let .M; F / be a polar foliation with compact leaves on a simply con-
nected symmetric space with non-negative curvature. Then the foliation splits as the product of
a polar foliation on the compact factor of M , and an isoparametric foliation on the Euclidean
factor.

Theorem 1.2 is the special case of a more general, yet slightly wordier, result (cf. Theo-
rem 4.10). Isoparametric foliations on Euclidean spaces have been almost completely classified
(see, for example, survey articles [29] and [7]). Hence Theorem 1.2 reduces the study of cor-
responding polar foliation to those in compact simply connected symmetric spaces. Note that
canonical metrics on compact simply connected symmetric spaces have non-negative sectional
curvature.

The mean curvature flow (abbreviated as MCF) of a submanifold L in a Riemannian
manifold M is a map f W I ⇥ L ! M satisfying�f�t D H.t; � /;

where I is an interval and H.t; � / is the mean curvature vector field of Lt WD f .t; � /. It was
proved in [13] that the solution to MCF for any compact isoparametric submanifold in
a Euclidean space or in a sphere always exists over a finite interval [0, T) with each Lt an
isoparametric submanifold for t 2 Œ0; T / and it converges to a focal submanifold as t goes to
T . This result was generalized to MCF flow for equifocal submanifolds in [12] and MCF for
regular leaves of an isoparametric foliation on a compact non-negatively curved space in [5]. It
was also proved in [5] that such mean curvature flows always have type I singularity. An imme-
diate consequence of Theorem 1.1, Theorem 4.10, and results in [5] is that the same result holds
for MCF of regular leaves of any polar foliation on a simply connected symmetric space with
non-negative curvature.

If a solution to MCF exists for all t 2 .�1; T / for some T � 0, then it is called an
ancient solution. Ancient solutions to MCF have been extensively studied in recent years since
they are important in studying singularities of general MCF. So far most results about ancient
solutions are for MCF in Euclidean spaces and spheres. We refer to the reference in [14] for
some of these results. In [14], it was proved that MCF for isoparametric submanifolds in
Euclidean spaces and spheres always have ancient solutions. Moreover, in each isoparamet-
ric foliation on a sphere, there is a unique minimal regular leaf and MCF of any other regular
leaves always converge to the unique minimal regular leave as t goes to �1. Another main
result of this paper is that MCF of regular leaves of any polar foliation on a simply connected
symmetric space with non-negative curvature always have ancient solutions.

The main result, which applies in greater generality than symmetric space, is:

Theorem 1.3. Let .M; F / be an isoparametric foliation on a simply connected Rie-
mannian manifold, with M=F compact. If RicM .x/ > Ric†.x/ for every regular point p and
every vector x 2 TpM tangent to the section †, then there exists a unique minimal regular
leaf Lmin. Furthermore, for any regular leaf L in F the solution of MCF Lt with initial data
L0 D L is always an ancient solution converging to Lmin as t goes to �1.
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As a corollary we get:

Theorem 1.4. Let .M; F / be a polar foliation on a compact simply connected, non-
negatively curved symmetric space, with M=F compact. Then for any regular leaf L in F , the
solution of MCF Lt with initial data L0 D L is always an ancient solution and it converges to
a minimal leaf as t ! �1. Furthermore, if .M; F / does not split a trivial factor .M

0
; πptsº/

then the minimal leaf is unique.

This theorem will give many examples of ancient solutions of MCF in compact symmet-
ric spaces. The proof of Theorem 1.3 is based on estimates of Jacobi fields using comparison
theorem for solutions to the Riccati equation. This is completely different from the approach
in [14] which relies on structure of Coxeter groups associated to isoparametric submanifolds
and representations of mean curvature vectors in terms of curvature normals.

By Theorem 4.10, and the results in [13] and [14] one has a complete picture of the
mean curvature flow with regular leaves as initial data in a polar foliation on complete simply
connected symmetric spaces with non-negative curvature:

Corollary 1.5. Let .M; F / be a polar foliation on a complete simply connected symmet-
ric space with non-negative curvature. Then the solutions of the mean curvature flow starting
at regular leaves of F are ancient.

This paper is organized in the following way: In Section 2, we collect some known results
about polar foliations and holonomy Jacobi fields which will be needed in the proof of above
theorems. In Section 3, we prove a splitting result for hyperpolar foliations, i.e. Proposition 3.6,
which is the essential part of Theorem 1.2. In Section 4, we study polar foliations with spherical
sections and complete the proof of Theorems 1.1 and 1.2. Finally, we prove Theorems 1.3
and 1.4 in Section 5.

2. Preliminaries

2.1. Decomposition theorem. We will use in a fundamental way the following decom-
position theorem for polar foliations by Lytchak ([18, Theorem 1.2]):

Theorem 2.1 (Decomposition theorem). Let .M; F / be a polar foliation on a simply
connected non-negatively curved symmetric space M . Then we have a splitting

.M; F / D .M�1; F�1/ ⇥ .M0; F0/ ⇥

Y

i

.Mi ; Fi /;

where:

(1) .M�1; F�1/ is given by the fibers of the projection of M�1 onto a direct factor,

(2) .M0; F0/ is hyperpolar,

(3) .Mi ; Fi / are polar foliations, whose section has constant positive sectional curvature
(these were called spherical polar in [9]).

We will refer to the factors in the decomposition of .M; F / as factors of type 1, 2, 3.
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2.2. Structure of polar foliations on simply connected manifolds. We collect here
a number of results, about the structure of polar foliations on simply connected spaces.

Let .M; F / be a polar foliation on a simply-connected space. Then:

(1) The leaves of F are closed, and the leaf space M=F is a Hausdorff space ([17, Theo-
rem 1.2]).

(2) If there are singular leaves, the leaf space M=F has boundary. Furthermore, the points
on the boundary correspond to singular leaves, while points in the interior .M=F /0

correspond to principal leaves ([17, Theorem 1.6 ]).

(3) Given a section †, up to composing with the universal cover z† ! † we can assume that
† is simply connected and immersed in M . Then there is a discrete group W of isome-
tries of † (called the Weyl group) such that †=W is isometric to M=F ([30, Proposi-
tion 4.16]). Furthermore, for M simply connected, this group is generated by reflections,
i.e. isometries that fix a codimension 1 submanifold of † called wall ([3, Theorem 1.1]).

It follows that the leaf space is isometric to a smooth orbifold †=F , and away from its
topological boundary it is a smooth convex manifold.

2.3. Lagrangian families of Jacobi fields. We collect here the main definitions and
results about Lagrangian families of Jacobi fields. The interested reader can find more infor-
mation and proofs about the statements below, in [15] and [24].

Let V be a vector bundle over an interval I , endowed with a Euclidean product h � ; � i

and a metric connection r. A vector fields is then simply a function X W I ! V such that
X.t/ 2 Vt , and we will write rX.t/ simply as X

0
.t/. Given a section R 2 Sym2

.V⇤
/, an

R-Jacobi field is a vector field J W I ! V such that J
00
.t/ C RtJ.t/ D 0 for t 2 I .

A space ƒ of R-Jacobi fields is called isotropic if

hJ
0
1.t/; J2.t/i � hJ1.t/; J

0
2.t/i D 0 for all J1; J2 2 ƒ; t 2 I:

Notice that the quantity is constant in t , so it is enough to check that is holds for some t0 2 I .
An isotropic space of Jacobi fields is called Lagrangian if furthermore dim ƒ D dim V .

Given an isotropic space of Jacobi fields ƒ, the dimension of ƒ.t/ D πJ.t/ j J 2 ƒº

is constant and equal to dim ƒ for all but discretely many values ti , where the dimension
can drop. In this case, ti is called a focal distance and the quantity dim ƒ � dim ƒ.ti / is the
corresponding multiplicity. If ƒ.t/ has maximal dimension, we say that t is regular otherwise
it is singular.

If ƒ is Lagrangian, then there exists a smooth family St 2 Sym2
.V⇤

t / for all t such that
on regular times the equation StJ.t/ D J

0
.t/ holds for all J 2 ƒ. Such an operator satisfies

the Riccati equation
S

0
t C S

2
t C Rt D 0:

Given an isotropic space ƒ of Jacobi fields along a geodesic � W R ! M and some
interval Œa; bç, let the index of ƒ over Œa; bç be

indŒa;bç ƒ D

X

t2Œa;bç

.dim ƒ � dim ƒ.t//:

By the discussion above, the sum is actually finite for Œa; bç compact interval.
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2.4. Holonomy Jacobi fields in a polar foliation. Let .M; F / be a polar foliation, and
let L0 be a principal leaf. Since the normal bundle is trivial and flat with respect to the normal
connection, given a horizontal vector x 2 ⌫pL it is possible to extend x to a parallel vector
field X along L0, and this induces an end-point map

�X W L0 ! M; �X .q/ D expq Xq:

The image of �X is the leaf through �X .p/.
Fix a point p 2 L0. Then rescaling X induces a family of maps �tX W L0 ⇥ R ! M such

that �tX .p/ is the horizontal geodesic from p with �
0
.0/ D X.p/, and for every v 2 TpL0 the

vector field Jv.t/ WD dp�tX .v/ is the Jacobi field along �.t/ (called holonomy Jacobi field)
with Jv.0/ D v, J

0
v.0/ D S� 0.0/v, where S� 0.t/ denotes the negative of the shape operator of

the leaves along �.t/ in the direction �
0
.t/.

Along � , define Vt D ⌫�.t/† with the Euclidean structure induced by the metric on M .
Since † is totally geodesic, V is parallel and in particular the Levi-Civita connection restricts to
a connection on V . Letting Rt 2 Sym2

.V⇤
/ be Rt .v/ D R.v; �

0
.t//�

0
.t/, the R-Jacobi fields

are simply the Jacobi fields in M along � , which stay in V the whole time.
Let ƒh denote the vector space spanned by holonomy Jacobi fields along � . This can

be seen as a Lagrangian space of R-vector fields in V along � . For all regular times t , one
has ƒh.t/ D Vt D T�.t/Lt . Furthermore, the Riccati operator St for ƒh coincides with the
negative of the shape operator, S� 0.t/.

3. Factors of type 2: Hyperpolar foliations

In this section we focus our attention to factors of type 2, i.e. hyperpolar foliations
.M; F / on a simply connected symmetric space M with non-negative curvature, without triv-
ial factors.

The main goal is to prove Theorem 1.2 for the factors of type 2. That is, any factor of
type 2 with compact leaves splits as a product of a hyperpolar foliation on a compact symmetric
space, and an isoparametric foliation in Euclidean space.

We divide the section into three parts: First, given a polar foliation of type 2 .M; F /,
we show that it splits as a product of foliations .M1; F1/ ⇥ .M2; F2/ such that the curva-
ture operator on M1 along F1-horizontal directions is zero, and the curvature operator of M2

along F2-horizontal directions is only zero along the sections. Second, we show that M1 is the
Euclidean space. Finally, we show that M2 is compact.

3.1. Splitting of the foliation.

Lemma 3.1. Let .M; F / be a factor of type 2, p 2 M a regular point, † the section
through p, x 2 Tp†, and �.t/ D expp.tx/ the corresponding horizontal geodesic. Finally, let
Vt D ⌫�.t/†. The following are equivalent:

(1) trjV0
R. � ; x/x D 0.

(2) R. � ; x/x D 0.
(3) Rt D R. � ; �

0
.t//�

0
.t/ D 0 for all t .

(4) trjVt
Rt D 0 for all t .

(5) The space ƒh of holonomy Jacobi fields along � satisfies ind.�1;1/ ƒh < 1.
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Proof. (1) ) (2) This follows from the fact that the eigenvalues of R. � ; x/x are non-
negative, hence R.v; x/x D 0 for v 2 V0. But since † is flat, one has that R.y; x/x D 0 for
y 2 Tp† as well.

(2) ) (3) This follows from the fact that Rt is parallel along � hence the eigenvalues of
Rt are constant along � .

(3) ) (4) and (4) ) (1) are obvious.
(3) ) (5) Let e1; : : : ; en 2 V0 be an orthonormal basis of eigenvectors for the Riccati

operator S0 of ƒh (cf. Section 2.4), with eigenvalues �1 : : : �n. Then since Rt D 0, the Jacobi
fields in ƒh with Ji .0/ D ei and J

0
i .0/ D S0ei D �iei are given by Ji .t/ D .1 C �i t /Ei . In

particular, the Ji .t/ are everywhere orthogonal to one another, and the singular times for ƒh

are ti D �
1

�i
whenever �i ¤ 0. In particular, ind.�1;1/ ƒh  n < 1.

(5) ) (4) Suppose by contradiction that (4) does not hold, trjVt
Rt > 0. Since the trace

of Rt is constant along � , it follows that trjVt
Rt > nı > 0 for some ı. Fix a regular point

q D �.t⇤/ along � , and consider the function a.t/ D
1
n trjVtCt⇤ StCt⇤ , where St is as usual the

Riccati operator St of ƒh. Since trjVt
Rt > nı > 0, we can apply the Average Comparison

Theory for the Riccati operator, to obtain that a.t/  Na.t/, where Na.t/ is the solution of the
model equation Na

0
C Na

2
C ı D 0, with initial condition Na.0/ D a.0/. Such a solution is given

by Na.t/ D

p

ı tan.

p

ı.t0 � t // for some t0. As a consequence of the Comparison Theorem,
it follows that the first positive singular time of ƒh, which coincides with the first time t1 such
that limt!t�

1
a.t/ D �1, is bounded above by ⇡=

p

ı. That is, any two singular times of ƒh

are at most ⇡=

p

ı apart. Since every singular time contributes at least 1 to the index, it follows
that ind.�1;1/ ƒh D 1.

Given a type 2 factor .M; F /, let † be a section. Again, we will think of † ' R
n as

a flat space, (possibly not injectively) immersed in M .
For each p 2 †, define R W Tp† ! Sym2

.TpM/ given by x 7! R. � ; x/x, and let Dp

denote the kernel of R. Since R maps Tp† into the set of positive semidefinite self-adjoint
endomorphisms of TpM , it follows that Dp is a vector space: in fact given x0; x1 2 Dp, let
xt D tx1 C .1 � t /x0 and f .t/ D tr R. � ; xt /xt . Then f .t/ is a quadratic polynomial, every-
where non-negative and equal to 0 at t D 0; 1. Then f .t/ ⌘ 0 that is xt 2 Dp for every t .

Lemma 3.2. Let .M; F / be a hyperpolar foliation on a simply connected symmetric
space with non-negative curvature. Given a section †, the distribution D ✓ T † defined above
is parallel (in particular integrable with totally geodesic integral manifolds), and contained in
the Euclidean factor of M .

Proof. Let � be a path in † and X.t/ a parallel vector field along � with X.0/ 2 D�.0/

(hence R. � ; X.0//X.0/ D 0). Since R is parallel, we then have that the 1-form R. � ; X.t//X.t/

is parallel as well, and in particular zero everywhere since it is zero for t D 0. Therefore
X.t/ 2 D�.t/ hence D is parallel.

Write now M D G=H for some symmetric pair .G; H/ with H compact. Furthermore,
assume eH D p, and let ⇡ W G ! M denote the canonical projection. Letting g; h be the Lie
algebras of G and H respectively, there is a splitting g D h ˚ m, where m can be identified
via de⇡ with TpM . Recall that, with respect to this identification, the curvature operator of M

can be expressed as
R.x; y/z D ŒŒx; yç; zç for all x; y; z 2 m.
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Let x 2 Dp. By Lemma 3.1, for every v 2 TpM ' m one has

R.v; x/x D ŒŒv; xç; xç D 0 H) kŒv; xçk
2

D �hŒŒv; xç; xç; vi D 0 H) Œx; vç D 0:

Given w 2 h, we have that y D Œx; wç 2 m hence, using the bi-invariant metric in g, we get

kŒx; wçk
2

D hŒx; wç; Œx; wçi D �hŒx; yç; wi D 0

and therefore x belongs to the center of g. In particular, there is a splitting G D R
n

⇥ Gc for
some n > 0 and Gc some compact simply connected group (possibly Gc D πeº). Since H is
compact, it is contained in Gc , hence M D R

n
⇥ Gc=H , with x contained in the Euclidean

factor.

Lemma 3.3. Suppose that .M; F / is a factor of type 2 whose distribution D is neither
trivial nor it contains T †. Then the sections split as a product †1 ⇥ †2 with †1 an integral
manifold for D , and the Weyl group W splits as a product W1 ⇥ W2, where Wi acts on †i and
fixes †3�i , i D 1; 2.

Proof. Let † ' R
k be a (simply connected, immersed but possibly non-injectively)

section of F , and denote by Ä the set of codimension 1 affine subspaces of † fixed by some
reflection in the Weyl group W (the walls of W ).

Fix a regular point 0 2 † as the origin of †, denote with †1 the integral submanifold
of D through 0, and denote †2 the affine subspace of † through 0 perpendicular to †1. By
[27, Proposition 3.6], the union of all walls for the Weyl group is precisely the set of singular
points on †. Hence a geodesic starting at regular point in † passes a wall if and only if there
is an increase for the index of ƒh. By Lemma 3.1, a geodesic starting at a regular point in †

which is not tangent to †1 must intersect infinitely many walls. In particular, the number of
walls must be infinite.

We claim that †1 intersects finitely many walls. In fact, assume that there is a sequence
of walls wi intersecting †1, and let vi be a unit normal vector for wi . Then vi can be written
as aixi C biyi where xi and yi are unit vectors tangent to †1 and †2 respectively and ai ¤ 0.
Without loss of generality, we can assume that the xi converge to a unit vector x tangent
to †1. For i sufficiently large, hvi ; xi D haixi ; xi ¤ 0. Hence the geodesic exp.tx/ intersects
infinitely many walls wi , which contradicts Lemma 3.1.

Since a wall intersects †1 if and only if its normal vector is not perpendicular to †1,
there are only finitely many walls whose normal vector can be written as v D v1 C v2 with vi

tangent to †i and v1 ¤ 0. For infinitely many other walls, their normal vectors must be tangent
to †2.

Since the action of the Weyl group preserves the set of walls, we claim that the normal
vector to every wall is either tangent to †1 or to †2. In fact, assume by contradiction that
there is a wall with normal vector u D u1 C u2 and both u1; u2 are non-zero. Notice that,
since a geodesic �.t/ D expp tu2 from a regular point p in † must intersect infinitely many
walls wi , their normal vectors vi satisfy hvi ; u2i ¤ 0. Furthermore, for all but finitely many of
these the normal vector vi is tangent to †2.

The reflection r through this wall will map a wall to another wall. It is easy to check that
a reflection r fixing a wall w with unit normal v, takes a wall w

0 with normal vector v
0 to a wall

with normal vector
r⇤.v

0
/ D v

0
� 2hv

0
; viv:
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Assuming that there is a wall with normal vector u D u1 C u2, apply the corresponding
reflection r to the infinite walls wi above, whose normal vector vi is tangent to †2 and such
that hvi ; u2i ¤ 0. Each wall r.wi / has now normal vector r⇤.vi / D vi � 2hvi ; u2iu and in
particular its component tangent to †1 is �2hvi ; u2iu1 ¤ 0. Therefore, it follows that the
infinitely many walls r.wi / intersect †1, contradicting the fact that there are only finitely many
such walls.

In particular, Ä D Ä1 [ Ä2 where Äi denotes the set of walls whose normal vector is
tangent to †i . By [10, Lemma 2.4] the Weyl group splits as a product W D W1 ⇥ W2, where
Wi is generated by the reflections in Äi , and it acts on †i while fixing †3�i (i D 1; 2).

The splitting of the Weyl group action induces a splitting of the symmetric space itself.

Proposition 3.4. Assume .M; F / is a factor of type 2 whose section splits † D †1⇥†2

so that the Weyl group W splits as W D W1 ⇥ W2, with Wi acting on †i and fixing †3�i .
Then there is a splitting of the foliation .M; F / D .M1; F1/ ⇥ .M2; F2/ such that .Mi ; Fi / is
a factor of type 2 with section †i .

This result was proved by Ewert in [8] under the slightly stronger assumption that M

does not have Euclidean factors. We wrote a proof of Proposition 3.4, but recently a much
shorter one has been given by Silva and Sperança [25] using the completeness of Wilking’s
foliation .M; F #

/ dual to .M; F /. We will then omit our proof.

3.2. The case D D T †.

Proposition 3.5 (If D D T †). Suppose .M; F / is a hyperpolar foliation on a simply
connected symmetric space with non-negative curvature, let † be a section and assume that the
distribution D contains T †. Then there is a splitting M D R

n
⇥ M

0 such that .M; F / splits
as .R

n
; F0/ ⇥ M

0. In particular, if .M; F / is of type 2 (no non-trivial factors), then D D T †

implies M D R
n.

Proof. Write M D R
n

⇥ .Gc=K/, where Gc=K is a symmetric space of compact type.
Let † be a section. By Lemma 3.2, the distribution D of † is everywhere tangent to the
Euclidean factor of M . The assumption that D D T † implies that † is contained in the
Euclidean factor. We now claim that in fact every section is contained in the Euclidean factor.
Let †

0 denote any other section. Given a regular point p
0
2 †

0, let L denote the leaf through
p

0 and let p 2 L \ †. Given x
0
2 Tp0†0, let X the corresponding parallel vector field along L

and let x D X.p/. By equifocality, the geodesic expp0 tx
0 meets the same singular leaves as

expp tx at the same times, and in particular the famines ƒh, ƒ
0
h

of holonomy Jacobi fields
along expp tx, expp0 tx

0 respectively, satisfy ind.�1;1/ ƒ
0
h

D ind.�1;1/ ƒh. Since x 2 D by
assumption, it follows from Lemma 3.1 that the latter index is finite, hence ind.�1;1/ ƒ

0
h

< 1

and thus x
0
2 D as well. Since x

0 was arbitrary, T †
0
✓ D and therefore †

0 is contained in R
n

as well.
Since the horizontal space of every leaf (regular or singular) at a point p is spanned

by the tangent spaces of the sections through p (cf. [1, Theorem 2.4 (a)]) it follows that for
every point p D .pe; pc/ 2 R

n
⇥ Gc=K, the leaf through p contains πpeº ⇥ Gc=K, and thus

.R
n

⇥ Gc=K; F / D .R
n
; Fe/ ⇥ Gc=K as wanted.
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3.3. Splitting of hyperpolar foliations. We can now prove:

Proposition 3.6. Let .M; F / be a hyperpolar foliation on a simply connected symmet-
ric space with non-negative curvature. Then there is a splitting

.M; F / D .M1; F1/ ⇥ .R
k
; FRk /;

where .M1; F1/ satisfies trjVp
R. � ; x/x > 0 for any horizontal vector x 2 TpM1.

Proof. Let .M; F / be a polar foliation on a simply connected symmetric space with
non-negative curvature. It suffices to prove the statement assuming that there are no trivial fac-
tors. By Lemma 3.3, the section † splits as a product †1 ⇥ †2, where trjVp

R. � ; x1/x1 > 0 for
every x1 2 Tp†1 and R. � ; x2/x2 D 0 for every x2 2 Tp†2. By Proposition 3.4, this induces
a splitting .M; F / D .M1; F1/⇥ .M2; F2/, where .Mi ; Fi / is a polar foliation with section †i .

Since the horizontal spaces of M2 are contained in D , it follows that M2 D R
k is

a Euclidean space by Proposition 3.5. Finally, as every x1 2 †1 satisfies trjVp
R. � ; x1/x1 > 0,

it follows by Lemma 3.1 that every horizontal geodesic in †1 meets singular leaves infinitely
often. By equifocality, every horizontal vector in M1 meets singular leaves infinitely often,
hence trjVp

R. � ; x/x > 0 for every point p 2 M1 and horizontal vector x 2 TpM1.

As corollaries of Proposition 3.6 we get:

Corollary 3.7. Let .M; F / be a hyperpolar foliation with compact leaves on a simply
connected symmetric space with non-negative curvature. Then there is a splitting

.M; F / D .M1; F1/ ⇥ .R
k
; FRk /;

where M1 is compact.

Proof. By Proposition 3.6 it is enough to prove that if .M1; F1/ has compact leaves and
satisfies trjVp

R. � ; x/x > 0 for any horizontal vector x 2 TpM1, then M1 is compact. Assume
that M1 D Mc ⇥ R

m, where Mc is compact. Given a leaf L 2 F1, we prove by contradiction
that the projection ⇡e W L ! R

m is a submersion, thus proving that m D 0. In fact, if not there
exists a point p D .pc ; pe/ 2 L and xe 2 TpR

m perpendicular to dp⇡e.TpL/, then in particu-
lar x D .0; xe/ 2 Tpc Mc ⇥ Tpe R

m is perpendicular to L, hence horizontal, but R. � ; x/x D 0

contradicting the hypothesis.

Corollary 3.8. Given a hyperpolar foliation .M; F / on a simply connected symmetric
space with non-negative curvature, the leaf space M=F is non-compact if and only if .M; F /

splits off a foliation .R
k
; FRk / with more than one leaf.

Proof. If there are no trivial factors in .M; F /, let .M; F / D .M1; F1/ ⇥ .R
k
; FRk /

be the splitting of .M; F / from Proposition 3.6. Then M=F D M1=F1 ⇥ R
k
=FRk and it is

enough to prove that M1=F1 is compact. This is equivalent to prove that for any regular point
p 2 M1 and any horizontal direction x from p, the geodesic expp.tx/ meets the singular strata
at some point. However, since trjTpLp

.R. � ; x/x/ > 0 by the definition of M1, it follows by
Lemma 3.1 that expp.tx/ meets the singular stratum at least once (in fact, infinitely many
times).
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Finally, assume that .M; F / splits off trivial factors:

.M; F / D N ⇥ .N
0
; πptsº/ ⇥ .M

0
; F 0

/;

where N
0 is foliated by points, F jN is one leaf, and .M

0
; F 0

/ has no trivial factors. We can
split N

0 further as N
0
D N

0
c ⇥ R

k0 with N
0
c compact, and thus

.M; F / D N ⇥ .N
0
c ; πptsº/ ⇥ .R

k0
; πptsº/ ⇥ .M

0
; F 0

/ H) M=F D N
0
c ⇥ R

k0
⇥ M

0
=F 0

:

Thus M=F is non-compact if and only if either k
0
> 0 or M

0
=F 0 is non-compact. By the

discussion above, it follows that either way .M; F / splits off a Euclidean factor .R
k
; FRk /

with more than one leaf.

4. Factors of type 3: Spherical polar foliations

In this section, we focus our attention to factors of type 3. That is, a polar foliation .M; F /

on a simply connected symmetric space M , with sections of constant positive curvature. The
main goal of this section is to prove that factors of type 3 are compact and isoparametric, i.e.
they have parallel mean curvature vector field.

We start by proving compactness.

Proposition 4.1. Let .M; F / be a factor of type 3. Then M is compact.

Proof. Since the leaf space has positive curvature, it is not a metric product and thus
.M; F / is indecomposable. By [18, Corollary 6.5], such a foliation only has one dual leaf,
which has to be M itself. By [18, Lemma 4.1], dual leaves have to be compact, so M is
compact.

Rescale the metric so that sections have positive sectional curvature 1, and we will con-
sider the section as the (possibly non-injectively) immersed round sphere. In particular, all
horizontal geodesics are closed with common (not necessarily smallest) period 2⇡ , and the
end-point map �tX has period 2⇡ whenever X is a parallel normal vector of unit length along
a regular leaf.

Finally, since M is a symmetric space of non-negative curvature, along any horizon-
tal geodesic �.t/ the eigenvalues of Rt are constant and non-negative, and we call them
0 D �0  �

2
1  � � �  �

2
n.

Lemma 4.2. Given a factor .M; F / of type 3, with metric rescaled so that the section
† has sectional curvature 1. Then fixing a regular point p in † and a unit-speed horizontal
geodesic �.t/ D expp tx, the eigenvalues of the curvature operator Rt along � are squares of
integers. Furthermore, the kernel of Rt is contained in the kernel of the shape operator S� 0.t/.

Proof. Recall that a holonomy Jacobi field J.t/ along � is given by dp�tX .v/ for some
v 2 Vp. In particular, since �tX is periodic with period 2⇡ , so is any holonomy Jacobi field.

For any eigenvalue �
2 of Rt , let V�

t ✓ Vt be the corresponding eigenspace. Since Rt is
parallel, so are the sub-bundles V�. Furthermore, since R2⇡ D R0, we have V�

2⇡ D V�
0 and

in particular the projection ⇡V�J of a holonomy Jacobi field J onto a subspace V� is again
a periodic Jacobi field.
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Recall however that ⇡V�J.t/ D sin.�t /V .t/ C cos.�t /W.t/ for some parallel vector
fields V.t/; W.t/ 2 V�

t . Since ⇡V�J is periodic with period 2⇡ , it follows that each � is an
integer.

Finally, since holonomy Jacobi fields are periodic, they must be of the form

J.t/ D V0.t/ C

X

i

.sin.�i t /Vi .t/ C cos.�i t /Wi .t//

for V0.t/ parallel and tangent to V0, and Vi .t/; Wi .t/ parallel and tangent to V�i . In particular,
StJ D J

0
.t/ ? V0, i.e. St jV0 D 0.

Lemma 4.3. Let ƒh be the space of holonomy Jacobi fields along a horizontal geo-
desic � , and let m D indŒ0;2⇡/ ƒh. This index does not depend on the choice of initial regular
point p or horizontal geodesic � , and it equals 2

P
i �i .

Proof. The independence on the choice of geodesic, or on the regular point p, follows
from the continuity of the index for Lagrangian spaces of Jacobi fields proved in [15, Proposi-
tion 1.4], and the fact that in this case, any two horizontal closed geodesics of the same length
can be connected via a path of horizontal closed geodesics of constant length (because the
sections are round spheres).

For the second statement, fix a horizontal geodesic � and notice that for any integer k,
indŒ0;2⇡k/ ƒh D mk. We now consider a different Lagrangian space of Jacobi fields in V

along � , namely
ƒ0 D πJ j J.0/ D 0; J

0
.0/ 2 V�.0/º:

Let πe1; : : : ; enº ✓ V0 be a basis of eigenvalues of R0. Notice that any Jacobi field Ji 2 ƒ0

with Ji .0/ D 0, J
0
i .0/ D ei is given by Ji .t/ D sin.�i t /Ei .t/ (with Ei .t/ the parallel exten-

sion of ei ), which vanishes 2�i times for every period 2⇡ of the geodesic. As πJ1.t/; : : : ; Jn.t/º

are linearly independent whenever they are all nonzero, it follows that

indŒ0;2⇡/ ƒ0 D 2

X

i

�i H) indŒ0;2k⇡/ ƒ0 D 2k

X

i

�i :

On the other hand, it follows by [15, Proposition 1.4] that given two Lagrangian spaces of
Jacobi fields ƒ1; ƒ2 along V , then for any interval I one has

jindI ƒ1 � indI ƒ2j  dim V :

Applying this to the case of ƒh and ƒ0, one has that for any positive integer k,

k

ˇ̌
ˇ̌m � 2

X

i

�i

ˇ̌
ˇ̌ < n:

The only way this can be true for all k is that m � 2
P

i �i D 0.

Remark 4.4. It follows from the previous lemma that m is even, but this should not be
a surprise. Consider, in fact, the section † D S

n, cut by the walls wi fixed by reflections in the
Weyl group. Given a horizontal geodesic � along †, the singular times for the family ƒh of
holonomy Jacobi fields along � , i.e. the times in which dim ƒh.ti / < dim ƒh (cf. Section 2.3),
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coincide with the times in which �.ti / meets a wall wi of †. Furthermore, the multiplicity
mi D dim ƒh � dim ƒh.ti / corresponds to the multiplicity of the wall wi . Since � meets each
wall wi twice, at times ti and ti C ⇡ , each wall contributes 2mi to the index indŒ0;2⇡/ ƒh.

Corollary 4.5. Given a horizontal geodesic � , the curvature operator Rt satisfies

trjVt
Rt > 0:

Proof. It follows by [18, Lemma 2.3] that a polar foliation on a simply connected,
non-negatively curved symmetric space must contain singular leaves, unless the foliation is
of type 2. Therefore we have at least one singular leaf L, and there is at least one horizontal
closed geodesic � through L, which must satisfy indŒ0;2⇡/ ƒh DW m > 0.

By Lemma 4.3, this index is the same for any horizontal closed geodesic in the section.
Since

P
i �i D

m
2 > 0 by the previous lemma, one has trjVt

Rt D

P
i �

2
i > 0.

Lemma 4.6. Fix a factor .M; F / of type 3, with the metric normalized as above. Then
for any horizontal geodesic �.t/, the function det.d�tX / can be written as a linear combination

f .t/ D

X

i

ai sin.si t / C bi cos.si t /;

where si are integers of the same parity between �
m
2 and m

2 , where m
2 D indŒ0;⇡/ ƒh.

Proof. As usual let Vt be the bundle along � perpendicular to †. Let e1; : : : ; en be an
orthonormal basis of eigenvectors of R0, with eigenvalues �

2
i , and let Ei .t/ be the parallel

extension of ei along � . Assume that �i D 0 for i D 1; : : : ; r and �i > 0 for i D r C 1; : : : ; n.
Let ƒh be the family of holonomy Jacobi fields along � , with a basis J1; : : : ; Jn with

Ji .0/ D ei ; J
0
i .0/ D

X

j

bij ej :

Since M is a symmetric space, it follows that Rt is parallel and the Jacobi fields can be
explicitly computed as

Ji .t/ D

rX

j D1

.ıij C bij t /Ej .t/ C

nX

j DrC1

✓
ıij cos �j t C

bij

�j
sin �j t

◆
Ej .t/:

From Lemma 4.2 one has Ji .t/ D Ei .t/ for i D 1; : : : ; r , and for i D r C 1; : : : ; n

Ji .t/ D

nX

j DrC1

✓
ıij cos �j t C

bij

�j
sin �j t

◆
Ej .t/:

Since † D S
n is simply connected, the normal holonomy of † is contained in SO.n/

and in particular E1.t/; : : : ; En.t/ represent at each point an oriented orthonormal basis of Vt .
Hence, it makes sense to define f .t/ WD det.dp�tX / D det.hJi ; Ej i/, which is given by a lin-
ear combination of terms of the form

(4.1)
nY

iDrC1

sci .�i t /; sci 2 πsin; cosº:
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By using the product formulas for trigonometric functions, it follows that f .t/ is a linear
combination

f .t/ D

X

i

ai sin.si t / C bi cos.si t /;

where each si is a linear combination

si D ✏rC1�rC1 C � � � C ✏n�n

with coefficients ✏r ; : : : ; ✏n 2 π˙1º. In particular, si are integers, bounded between
P

�i D
m
2

and �
m
2 . All si have the same parity, since their difference is a linear combination of the �i

with coefficients in π�2; 0; 2º.

Proposition 4.7. Let .M; F / be a factor of type 3. Then the mean curvature is basic.

Proof. Fix a regular leaf L0 and a basic horizontal vector field X along L0. For p 2 L0,
let †p be the section through p, �p.t/ D expp tXp, Vp D ⌫†pj�p , ƒp the space of holonomy
Jacobi fields along �p, and E1.t/; : : : ; En.t/ a frame of parallel vector fields along �p, tangent
to Vp. Finally, let fp.t/ D det.hJi .t/; Ej .t/i/.

Once again, we normalize the metric so that the section is a round sphere of curva-
ture 1. By Lemma 4.2 the eigenvalues �

2
i of Rt are squares of integers, and by Lemma 4.3,P

i �i D
m
2 D indŒ0;⇡/ ƒL0

. Furthermore, by Lemma 4.6,

fp.t/ D

X

i

ai sin.si t / C bi cos.si t /; si D �1 ˙ �2 ˙ � � � ˙ �n;

where si can range within integers of the same parity from �

P
i �i D �

m
2 to m

2 . Taking
into account that cos.si t / D cos.�si t /, sin.�si t / D � sin.si t / and sin.0/ D 0, it follows that
depending on the parity of m

2 , the functions sin.si t /; cos.si t / are contained in the space T of
functions

T D

´
spanπ1; cos.2t/; sin.2t/; cos.4t/; sin.4t/; : : : ; cos.m

2 t /; sin.
m
2 t /º if m

2 is even;

spanπcos.t/; sin.t/; cos.3t/; sin.3t/; : : : ; cos.m
2 t /; sin.

m
2 t /º if m

2 is odd

in either case of dimension m
2 C 1, which does not depend on p. The projection of �p to M=F

will intersect singular strata at singular times t1; : : : ; tk 2 .0; ⇡/, and for each j D 1; : : : ; k

we can let mj WD dim L0 � dim Ltj D dim ƒp � ƒp.tj /. Notice that, by the equifocality of
singular Riemannian foliations (cf. [20, Proposition 4.3], [2, Theorem 2.9] or [24, Proposi-
tion 2.26]) the data tj , mj do not depend on the choice of point p 2 L0 but only on the choice
of basic vector field X : in fact, if we chose a different point q and let �q.t/ D expq.tXq/, then
�p and �q would meet the same leaf at each time t .

The fact that �p.t/ meets the singular leaves Ltj with dim ƒp � dim ƒp.tj / D mj can be
restated by saying that fp.t/ vanishes with order mj . This imposes, for every singular time tj ,
exactly mj conditions

fp.tj / D f
0

p.tj / D � � � D f
.mj �1/

p .tj / D 0:

These conditions form a system of
Pk

j D1 mj D
m
2 linear equations on T , which are

easily seen to be linearly independent: in fact, consider the subspace T 0
✓ T spanned by the

m
2 linearly independent functions

cosl
.t � tj /

sinl
.t � tj /

kY

iD1

sinmi .t � ti /; j D 1; : : : ; k; l D 1; : : : ; mj :
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Then the linear map T ! R
m
2 which sends h.t/ 2 T to .h

.l/
.tj //lD0;:::;mj �1; j D1;:::;k is invert-

ible when restricted to T 0 (as the matrix for this map is triangular with non-zero diagonals with
respect to that basis). Hence the kernel of this map has dimension 1, and fp is the unique
function in the kernel satisfying fp.0/ D 1.

In particular, fp.t/ is uniquely determined by X from information on the leaf space
M=F , and it is independent of p. Since

f
0

p.0/ D fp.0/ � tr S� 0
p.0/ D �hHp; Xpi;

it follows in particular that the inner product of H with any basic horizontal vector field X

along L0 is constant. Thus, H is basic as well.

Remark 4.8. By [18, Theorem 1.2], a polar foliation whose section has constant posi-
tive sectional curvature, is either a foliation of codimension 2, or a polar foliation on a sphere
or projective space .S

n
; F /, .CP

n
; F /, .HP

n
; F /. In the latter case, the foliation can always

be lifted to a polar foliation on a round sphere .S
n
; F /, where the fact that the mean curvature

vector field is basic was proved by Alexandrino and the second author in [4]. In particular, the
new information of Theorem 1.1 applies to polar foliations with 2-dimensional round section.

Remark 4.9. Even though the mean curvature vector field of factor of type 3 is basic,
the second fundamental form of leaves need not be constant in any natural sense, even in the
case of isoparametric hypersurfaces in CP

n, cf. [23].

We end this section with a proof of Theorems 1.1 (that is, polar foliations on symmetric
spaces with non-negative curvature are isoparametric) and 1.2 (polar foliations with compact
leaves on symmetric spaces with non-negative curvature split into a compact factor and an
Euclidean one).

Proof of Theorem 1.1. We check that this is true on every factor of the foliation.
This is trivially true for factors of type 1. For factors .M0; F0/ of type 2 (hyperpolar

foliations) this fact follows from [11, Theorems 2.4 and 6.5]. Finally, we proved that factors of
type 3 are isoparametric in Proposition 4.7.

Proof of Theorem 1.2. Let

.M; F / D .M�1; F�1/ ⇥ .M0; F0/ ⇥

Y

i

.Mi ; Fi /

be Lytchak’s decomposition (cf. Theorem 2.1). The result follows because each factor decom-
poses accordingly: For the trivial foliation .M�1; F�1/ the result is obvious. For the type 2

factor .M0; F0/ the result follows by Corollary 3.7. For each type 3 factor .Mi ; Fi / the result
follows by Proposition 4.1.

The following is a stronger version of Theorem 1.2:

Theorem 4.10. Let .M; F / be a polar foliation on a simply connected symmetric space
with non-negative curvature. Then there is a unique splitting .M; F / D .Mc ; Fc/ ⇥ .Me; Fe/,
where Mc=Fc is compact, Me is a Euclidean space, and .Me; Fe/ is an isoparametric foliation
with compact leaves.
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Proof. Let .M; F / D .M�1; F�1/ ⇥ .M0; F0/ ⇥

Q
i .Mi ; Fi / be Lytchak’s decompo-

sition (cf. Theorem 2.1). Let

(1) .M�1; F�/ D M
a
�1 ⇥ .M

b
�1; πptsº/ be the splitting of M�1 into the factor foliated by

points, and the factor with one leaf only. Furthermore, split M
b
�1 D M

c
�1 ⇥ M

e
�1 with

M
c
�1 compact and M

e
�1 Euclidean.

(2) .M0; F0/ D .M
c
0 ; F c

0 / ⇥ .M
e
0 ; F e

0 / be the splitting of F0 from Proposition 3.6.

(3) .M
c
; F c

/ be the product foliation

.M
c
; F c

/ D M
a
�1 ⇥ .M

c
�1; πptsº/ ⇥ .M

c
0 ; F c

0 / ⇥

Y

i

.Mi ; Fi /:

(4) .M
e
; F e

/ D .M
e
�1; πptsº/ ⇥ .M

e
0 ; F e

0 /.

Then .M; F / splits as a product .M; F / D .M
c
; F c

/ ⇥ .M
e
; F e

/, where

✏ M
c
=F c

D M
c
�1 ⇥ M

c
0 =F c

0 ⇥

Q
i Mi=Fi is compact by Corollary 3.8, and the fact that

Mi=Fi are spherical quotients.
✏ .M

e
0 ; F e

0 / is an isoparametric foliation in Euclidean space without trivial factors, and thus
its leaves are compact. Therefore, .M

e
; F e

/ D .M
e
�1; πptsº/ ⇥ .M

e
0 ; F e

0 / is an isopara-
metric foliation in a Euclidean space, with compact leaves.

5. Minimal isoparametric leaves and mean curvature flow

5.1. Minimal isoparametric leaves in positive Ricci curvature. The following propo-
sition is a generalization of a well-known result for families of parallel hypersurfaces in spaces
with positive Ricci curvature (cf. [32] for results that generalize this to intermediate Ricci
curvature):

Proposition 5.1. Let .M; F / be a polar foliation of dimension n with compact leaves
on a simply connected manifold M , with projection ⇡ W M ! M=F . Assume that for any prin-
cipal leaf L and any x 2 ⌫pL, the curvature operator R on M satisfies trTpL R. � ; x/x > 0.
Let vol denote the n-dimensional volume. Then the function

V W M=F ! R; V .p⇤/ D vol.⇡�1
.p⇤//

1
n

is strictly concave on the regular part of M=F , and equal to 0 on the singular part. In
particular, if M=F is compact, there is a unique leaf achieving the maximum volume.

Proof. Let �⇤ W Œ�a; bç ! M=F a geodesic segment on the regular part of M=F . It is
enough to prove that V.�⇤.t// is strictly concave.

Let Lt D ⇡
�1

.�⇤.t//, and let X be the horizontal parallel vector field along L0 project-
ing to �

0
⇤.0/, and let �tX W L0 ⇥ Œ�a; bç ! M be the end-point map defined in Section 2.4.

Then for every p 2 L0, �p.t/ D �tX .p/ is a horizontal geodesic in M projecting to �⇤. Let-
ting !t be the volume form of Lt , one has that �

⇤
tX!t .p/ D f .p; t/!0 for some function f .

Here the function f .p; t/ can be computed as

f .p; t/ D det.dp�tX/ D det.hJi .t/; Ej .t/i/;
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where Ji .t/ are holonomy Jacobi fields, Ei .t/ are parallel vector fields, and Ji .0/ D Ei .0/ D ei

is an oriented, orthonormal basis of TpL0. Then

V.�⇤.t// D vol.Lt /
1
n D

✓ Z

Lt

!t

◆ 1
n

D

✓ Z

L0

f .p; t/!0

◆ 1
n

:

Fixing a point p 2 L0, recall from Section 2.4 that the holonomy Jacobi fields form
a Lagrangian space ƒp of Jacobi fields of the bundle V given by Vt D T�p.t/Lt . In particular,
there is a Riccati operator S 2 Sym2

.V⇤
/ along �p.t/ such that StJi .t/ D J

0
i .t/, which solves

the ODE S
0
t C S

2
t C Rt D 0. Since by assumption trjVRt > 0, let ı > 0 be such that along �p,

trjVRt > nı. Up to rescaling the metric on M , we can assume that ı D 1 and trjVRt > n.
By comparison theory of the Riccati operator, letting s0 D

1
n tr.S0/, one has that

s.t/ WD

1

n
tr.St /

is bounded above by the solution Ns.t/ of the ODE
´

Ns
0
.t/ C Ns

2
.t/ C 1 D 0;

Ns.0/ D s0;

that is, Ns.t/ D � tan.t � t0/, where t0 D arctan.s0/. Finally, f .p; t/ satisfies

d

dt
.ln f .p; t// D tr.St /  �n tan.t � t0/:

Hence for any t > 0,

ln
✓

f .p; t/

f .p; 0/

◆


Z t

0
�n tan.t � t0/ dt D ln

✓
cosn

.t � t0/

cosn.t0/

◆
:

Since f .p; 0/ D 1, we have

f .p; t/ 

cosn
.t � t0/

cosn.t0/
; t > 0:

For negative values of t , we can repeat the same argument for y�.t/ WD �.�t /. In this case,
tr.Sy� 0.0// D � tr.S� 0.0// D �s0, and one can apply the comparison theory to obtain

1

n
tr.Sy�.t//  ys.t/;

where ys.t/ now solves ´
ys

0
.t/ C ys

2
.t/ C 1 D 0;

ys.0/ D �s0;

that is, ys.t/ D � tan.t C t0/. Now, yf .p; t/ WD f .p; �t / solves the ODE

d

dt
.ln yf .p; t// D tr.Sy�.t//  �n tan.t C t0/

and again since yf .p; 0/ D 1, one obtains for any t > 0,

yf .p; t/ 

cosn
.t C t0/

cosn.�t0/
:
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Substituting yf .p; t/ D f .p; �t /, one gets, now for negative values of t , that

f .p; t/ 

✓
cos.�t C t0/

cos.�t0/

◆n

D

✓
cos.t � t0/

cos.t0/

◆n

:

Therefore, the same inequality for f .p; t/ applies to both sides of t D 0. In particular, we have

V.�⇤.t// D

✓ Z

L0

f .p; t/!0

◆ 1
n



cos.t � t0/

cos.t0/

✓ Z

L0

!0

◆ 1
n

D

cos.t � t0/

cos.t0/
V .�⇤.0//

with equality at t D 0. In particular,

d
2

dt2

ˇ̌
ˇ
tD0

V.�⇤.t// 

d
2

dt2

ˇ̌
ˇ
tD0

✓
cos.t � t0/

cos.t0/
V .�⇤.0//

◆
D �V.�⇤.0// < 0:

Hence V is strictly concave in the interior of M=F . Since points on the boundary of
M=F correspond to lower-dimensional leaves, it follows that V is 0 on the boundary. More-
over, if M=F is compact, then V must have a maximum in the interior and this is the only
critical point in the interior since the interior of M=F is convex (cf. Section 2.2).

Remark 5.2. The setup in the statement of Proposition 5.1 can be extended to the case
of noncompact leaves, as follows. Let .M; F / be a polar foliation with non-compact leaves,
such that for any principal leaf L and any x 2 ⌫pL the curvature operator R on M satisfies
trjTpLR. � ; x/x > 0. Given a relatively compact open neighborhood P ✓ L of p, define:

(1) UP ⇢ M the open set UP D

S
q2P Cq , where Cq is the open Weyl chamber through q.

(2) .UP ; FP / the foliation by the intersections L
0
\ UP , for L

0
2 F .

It is easy to see that the inclusion UP ! M induces an injection UP =FP ! M=F which is
a homeomorphism onto the interior of M=F , and FP is full in the sense that for any leaf
L

0
\ UP in FP there exists some ✏ > 0 such that the normal exponential map of L

0
\ UP is

well defined in UP up to distance ✏. In particular, for any leaf L
0
\ UP of FP , and any parallel

normal vector field X along L
0
\ UP , The map �tX W L

0
\ UP ! UP is well defined for all t

in some interval around 0, and in this case it is a diffeomorphism onto a leaf of FP . This was
the crucial property used in Proposition 5.1, and allows to prove that the function

VP W UP =FP ! R; VP .p⇤/ D vol.⇡�1
.p⇤/ \ UP /

1
n

is strictly concave on UP =FP and approaches zero towards the boundary of its closure in M=F .
In particular, if the closure of UP =FP , i.e. M=F , is compact, there is a unique leaf achieving
the maximum volume.

Proof of Theorem 1.3. Let .M; F / be an isoparametric foliation as in Theorem 1.3, and
notice that the condition RicM .x/ > Ric†.x/ for all x 2 TpM tangent to †, is equivalent
to trjVp

R > 0.
By the definition of isoparametric foliation, the mean curvature vector of the regular

leaves of .M; F / is parallel, it projects to a vector field H⇤ on the regular part of M=F .
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Furthermore, the mean curvature flow f .t; � / starting from a regular leaf L D ⇡
�1

.p⇤/ of F

flows through regular leaves of F , and in fact Lt WD f .t; L/ D ⇡
�1

.�⇤.t//, where �⇤ is the
integral curve of H⇤ with �⇤.0/ D p⇤.

If the leaves of F are not compact, consider .UP ; F jUP
/ as in Remark 5.2. We have the

following properties:

(1) Given a leaf L
0
2 F and L

0
\ UP the corresponding leaf in FP , clearly the mean cur-

vature vector field of L
0
\ UP equals the mean curvature vector field of L

0, restricted
to L

0
\ UP . In particular, the mean curvature vector field of .UP ; F jUP

/ is still basic.

(2) Since UP is a union of (open sets of) sections, and the mean curvature vector field H of
FP is everywhere horizontal, the flow of H moves leaves of FP onto leaves of FP .

(3) Since the mean curvature vector field of any regular leaf L
0 is basic, it follows that L

0 is
minimal if and only if L

0
\ UP is minimal.

By the properties above, fUP
.t; L \ UP / D Lt \ UP is the solution for the mean curvature

flow starting from L \ UP 2 F jUP
if and only if f .t; L/ D Lt is the solution for the mean

curvature flow starting at L 2 F . In particular, up to replacing .M; F / with .UP ; F jUP
/, we

can assume that the leaves have finite volume.
We analyze the integral curves c⇤.t; � / D ⇡.f .t; � // of the vector field H⇤ on the mani-

fold part of M=F for t < 0. In particular, studying the behavior of f .t; � / as t ! �1 reduces
to studying the integral curves of �H⇤ for positive times. By [5, Proposition 3.3], as t ! �1

the flow f .t; � / escapes small tubular neighborhoods of any singular leaf. Thus, there is a tubu-
lar neighborhood U of the singular set of M=F such that the integral curves of �H⇤ starting
from .M=F / n U stay in .M=F / n U for all time t > 0. Since M=F was assumed to be
compact, it follows that .M=F / n U is contained in a compact set. Furthermore, the function
V W M=F ! R from Proposition 5.1 (resp. VP W UP =F jUP

! R) is a Lyapunov function for
the flow of �H⇤. In particular, the flow has a unique global attractor, that is the projection of
the unique minimal regular leaf of F .

Remark 5.3. The conditions in Proposition 5.1 are easily seen to be satisfied in the
following situations:

✏ M is compact with RicM > 0 and .M; F / is hyperpolar.
✏ M is compact with secM > 0 and .M; F / is polar.

Furthermore, Proposition 4.1 and Corollary 4.5 show that the condition above is satisfied for
factors of type 3.

Recall that, by [26, Theorems 1.18 and 1.20], the leaves of an isoparametric foliation
.R

k
; F / without trivial factors must be compact, and contained in concentric spheres. Further-

more, restriction of F to each sphere S is still isoparametric, and by [14, Theorem 1.1 (2)]
there is a unique regular leaf that is minimal in S . The following proposition is a generalization
of this result.

Proposition 5.4 (Minimal leaves of polar foliations). Let .M; F / be a polar foliation
on a simply connected symmetric space with non-negative curvature, and let

.M; F / D .M�1; F�1/ ⇥ .M0; F0/ ⇥

Y

i

.Mi ; Fi /
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be its decomposition into factors. Then:

(1) All leaves of F�1 are minimal.

(2) .M0; F0/ has either one or no minimal regular leaves, depending on whether M0=F0 is
compact or not.

(3) Each of .Mi ; Fi / has exactly one minimal regular leaf.

Proof. The first point is obvious. By Proposition 3.6, .M0; F0/ splits as a product of
hyperpolar foliations .M1; F1/ ⇥ .R

k
; F nc

0 /, where for every F1-horizontal direction x in
.M1; F1/, trjVR > 0. In this case, M0=F0 is compact if and only if k D 0.

If k D 0, then M0 D M1 has a minimal leaf by Theorem 1.1 and Remark 5.2. In fact,
by Theorem 1.1 a leaf L is minimal if and only if for any relatively compact subset P of L

one has H jP D 0, which is equivalent to the image of P in UP =FP being a critical point for
the volume functional VP (as defined in Remark 5.2). By Remark 5.2, there exists exactly one
such point.

If k > 0, then it is well known that the leaves of .R
k
; F nc

0 / are not minimal, and so
neither are the leaves of M0.

Finally, point (3) follows from Proposition 5.1 and Remark 5.3 since factors of type 3

have positive Ricci curvature.

Proof of Theorem 1.4. Given .M; F / polar foliation with compact quotient on a simply
connected symmetric space with non-negative sectional curvature, it follows by Theorem 1.1
that F is isoparametric. Furthermore, by comparing Proposition 3.6 and Corollary 3.7, it fol-
lows that F satisfies trjVR > 0 at regular points. Thus Theorem 1.3 applies, and the first part
of the theorem is proved. The second part about uniqueness of the minimal leaf follows directly
from Proposition 5.4
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