162. CLUSTER ANALYSIS TO EXPLORE CLINICAL SUBCLASSIFICATION OF EOSINOPHILIC GRANULOMATOSIS WITH POLYANGIITIS (CHURG–STRAUSS)

Emma Rubenstein1, Carla Maldini1, Augusto Vaglio2, Paolo Bottero3, Philipp Bremer4, Giacomo Emmi5, Paolo Fraticelli5, Andrea Giotfredi6, Gina Gregorini2, Julian Grossknecht6, Giuseppe Guida6, Bernhard Hellmich7, Claus Kroege6, Federica Maritati11, Alberto Pesce11, Matteo Resche-Rigon7, David Saadoun13, Renato Sinico11, Barbara Sokolowska14, Wojciech Szczeklik14, Jochen Zwerina15, Frank Moosig16, Thomas Neumann17 and Alfred Mah1

1Saint Louis Hospital Paris, France, 2University Hospital of Parma, Italy, 3Ospedale di Magenta Milano, Italy, 4Clinical Center Bad Bramstedt Bad Bramstedt, Germany, 5University of Firenze, Florence, Italy, 6Ospedali Riuniti Ancora, Italy, 7Spedali Civili Brescia Brescia, Italy, 8University Hospital of Jena Jena, Germany, 9Birago di Vische Hospital Torino, Italy, 10Vasculitis Center Tubingen-Kirchheim Kirchheim unter Teck, Germany, 11University of Parma Parma, Italy, 12University of Milano Bicocca Milan, Italy, 13Rheumazentrum Schleswig-Holstein Mitte Neumünster, Germany, 14Rheumazentrum Schleswig-Holstein Mitte Neumünster, Germany, 15Kantonsspital St. Gallen St Gallen, Switzerland

Background: Previous studies of eosinophilic granulomatosis with polyangiitis (Churg-Strauss, EGPA) suggested that EGPA may involve clinically distinct phenotypes. In particular, clinical manifestations might be determined by the presence or absence of antineutrophil cytoplasmic antibodies (ANCA) and reflect more prominent underlying vasculitic than eosinophilic disease processes. This study explored whether EGPA involves several subcategories by using hierarchical cluster analysis.

Methods: This study used clinical data for patients diagnosed with EGPA in 16 centers in Austria, France, Germany, Italy and Poland collected with a standardized case report form. The analyses pertained to patients reported to have asthma and who fulfilled the Lanham and American College of Rheumatology criteria, with ANCA positivity (by immunofluorescence or ELISA test) as an additional item. We used a multiple correspondence analysis followed by hierarchical cluster analysis with the Ward method. The cluster model included 10 clinical variables assessed at diagnosis (arthromuscular, mucocutaneous, ophthalmological, ENT, cardiovascular, pulmonary, gastrointestinal, renal, central or peripheral neurological involvement); a second model added ANCA positivity as an
input variable. Clinical relevance of the generated clusters was assessed by describing each cluster’s clinical characteristics.

Results: We had data for 482 patients (46.3% males; mean age at diagnosis: 51 years [SD 14.9]) with a diagnosis mostly from 1990 to 2015. The cluster analysis generated 4 clusters of 34, 371, 39 and 38 patients. No distinctive cluster characteristic could be identified and we found no mutually exclusive subgroups, even after adding ANCA positivity to the model. ANCAs were detected in 37.1% of patients and were mostly P-ANCA (85.2%) or anti-myeloperoxidase (87.5%) according to the technique used. As compared with ANCA-negative EGPA patients, those with ANCA-positive EGPA were more often male (P < 0.01), significantly younger (P < 0.002), with more renal (P < 0.0001) and peripheral neurological involvement (P < 0.0001) and tissue findings of vasculitis (P = 0.01), and fewer cardiovascular signs (P < 0.0001) and tissue findings of eosinophilic infiltration (P < 0.0001).

Conclusion: Although reinforcing the known associations of ANCA status with clinical manifestations, our data do not provide evidence for clearly distinct subclasses within EGPA. EGPA may be a phenotypic continuum rather than a phenotypic dichotomy, with entangled rather than distinct mechanistic pathways.

Disclosures: None