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Abstract

Several explanation and interpretation tasks, such as diagno-
sis, plan recognition and image interpretation, can be formal-
ized as abductive and consistency reasoning. The interpre-
tation task is usually executed for the purpose of performing
actions, e.g., in diagnosis, repair actions or therapy. In some
cases actions are the only or the main way for discriminat-
ing among alternative explanations. Some proposals address
the problem based on a task-independent representation of a
domain which includes an ontology or taxonomy of hypothe-
ses and actions. In this paper we rely on the same type of
representation, and we point out the role of abstractions in
an iterative process where, like in model-based diagnosis and
troubleshooting, further observations or actions are proposed
to achieve the overall goal of discriminating among candidate
hypotheses and, more importantly, performing the appropri-
ate actions for the case at hand. Discrimination is performed
up to an appropriate level which depends on the cost of ac-
tions (e.g. repair actions or therapy) to be taken based on the
results of abduction, and on the cost of additional observa-
tions, which should be balanced with the benefits, in terms of
more suitable actions, of better discrimination. Abstractions
have a significant impact on this trade-off, given that the cost
of observing the same phenomenon at different levels of ab-
straction may be quite different, and choosing a generic ac-
tion, without information on which specific instance is most
appropriate, is, in general, suboptimal.

Introduction
Several explanation and interpretation tasks, such as di-
agnosis, plan recognition and image interpretation, can
be formalized as abductive reasoning or related forms of
nonmonotonic reasoning. A number of approaches (Chu
and Reggia 1991; Console and Theseider Dupré 1994;
Kautz 1991), including recent ones (Besnard, Cordier, and
Moinard 2007; Neumann and Möller 2006), address the
problem based on a representation of a domain which in-
cludes an ontology or taxonomy of hypotheses.

Explanation or interpretation is usually an intermediate
step to a final goal, which is performing actions, such as re-
pair or therapy in diagnosis, or reacting to the recognized
plan, in plan recognition. Ontologies have also been pro-
posed as the basis for large knowledge bases to be used for
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problem solving that includes planning (Valente et al. 1999;
Gil and Blythe 2000), but, as noted in (Cohen et al. 1998),
they should be shared among different problem solvers for
related tasks; therefore, they should be developed indepen-
dently of the reasoning task1: i.e., the structure should re-
flect a natural representation of the domain, but it should not
necessarily provide directly the best structure for diagnosis,
interpretation, or planning and acting.

In this paper we adopt a similar representation, and con-
centrate on the following issues:

• Dealing with abduction as an iterative process where fur-
ther observations, as in model-based diagnosis (Ham-
scher, Console, and de Kleer 1992), or actions (e.g. sub-
stituting a suspect component in the system), as in trou-
bleshooting (Heckerman, Breese, and Rommelse 1995),
can be proposed to the intermediate goal of discriminat-
ing among candidate explanations and the ultimate goal
of performing actions that are appropriate for the case at
hand.

• Balancing the costs of observations with (reduced) costs
or (increased) benefits, in terms of actions, of the results
of abduction.

The costs associated with the results of abduction, in a di-
agnostic setting, correspond to the cost of repair actions or
therapy, and are expected to decrease as long as more in-
formation is available on hypotheses; in a plan recognition
or in an interpretation task, the human or software agent us-
ing the results should similarly achieve some benefit from
a better discrimination of hypotheses or from more specific
hypotheses, leading to a more focused action: this could ei-
ther imply a reduced cost — e.g. if hypotheses are threats to
the agent with costly defense actions — or an increased ben-
efit — e.g. if the agent might use the results to earn money.
In all settings, we intend that some action has to be taken
based, in general, on the remaining candidate hypotheses. If
the set of candidates is too broad or too abstract, the agent
may incur into higher action costs due to (a combination of)
the following reasons:

• an action which is stronger than necessary is taken, in
order to account for all current possibilities, e.g., in

1In perspective, a shared ontology for different reasoning tasks
may be available on the Web.



component-oriented diagnosis, replacing an entire sub-
system;

• more actions than necessary are taken, e.g. actions are per-
formed in an order based on their cost and the probability
of the related explanation, but they can be the wrong ac-
tion (repairing the wrong part, taking the wrong therapy,
defending from the wrong threat); and similarly, in the
benefit case, the action may only probably (but not cer-
tainly) be the right one for achieving the benefit.

The different issues are related: discrimination may be per-
formed among hypotheses at the same level of abstrac-
tion, but it could also involve refining hypotheses. In any
case, discrimination requires more observations, whose cost
should be balanced with the benefits, in terms of more suit-
able actions, of better discrimination.

The presence of a domain representation with abstractions
has a significant impact on this trade-off. The cost of observ-
ing the same phenomenon at different levels of abstraction
may vary significantly; in fact, it may range from subjective
information from a human (patient or user) to more or less
costly medical or technical tests, or, in an image interpre-
tation task, it may involve computationally complex image
processing, to be performed interactively with the reasoning
task, as suggested in (Lamma et al. 1999).

In several settings, an observation which is itself expen-
sive, because it consumes resources and time to be per-
formed, may imply additional costs due to the delay before
taking an action: breakdown costs in diagnosing a physi-
cal system, risk of death of the patient in medical diagnosis,
taking defensive actions too late, missing the opportunity of
earning money.

Moreover, if the knowledge base has been designed in-
dependently of the explanation/action task (e.g. diagnosis
and repair), it could include a detailed description of the do-
main which is not necessary for the task; more generally,
the usefulness of a detailed discrimination may depend on
the specific case at hand.

Finally, human problem solvers have knowledge and are
able to reason on abstract actions, such as “taking an an-
tibiotic therapy” if the leading hypothesis is “bacterial in-
fection”, and evaluating their costs in a broad sense, for ex-
ample including side effects, without necessarily reasoning
on specific instances. Of course, an abstract action cannot
be executed directly, but abstract knowledge may be used to
consider it as a candidate “next step” before committing to a
specific instance.

By explicitly considering abstractions in the iterative ab-
duction process, we expect to reduce the observation and
action costs significantly, yet maintaining the ability to ex-
ploit detailed observations and knowledge when convenient
(similar advantages have been shown in inductive classifica-
tion with abstractions, e.g. (Zhang, Silvescu, and Honavar
2002)).

In the following, we first describe the knowledge we ex-
pect to be available. We then describe a basic iterative ab-
ductive problem solving loop and we concentrate on the ex-
ecution of abstract tasks and on the criterion for selecting the
next step in the loop: either performing a further observation

at some level of detail, or an abstract or concrete action.

Domain Representation
The basic elements of the domain model are a set of tasks
T = {T1, . . . , Tl}, a set of abducibles (atomic assumptions)
A = {A1, . . . , An} and a set of manifestations M = {M1,
. . . , Mm}.

Each task Th is associated with an IS-A hierarchy Λ(Th)
containing abstract values of Th as well as their refinements
at multiple levels; similarly, each abducible Ai is associated
with an IS-A hierarchy Λ(Ai) and each manifestation Mj is
associated with an IS-A hierarchy Λ(Mj).

We assume that the direct refinements v1, . . . , vq of a
value V in a hierarchy (either Λ(Th), Λ(Ai) or Λ(Mj)) are
mutually exclusive, i.e. the Λ hierarchies are trees; more-
over, in a given situation, exactly one ground instance of
each manifestation Mj is true while, for each abducible
Ai, either one ground instance is true (i.e. the abducible
is present) or none of them is true (i.e. the abducible is not
present). The overall goal of our problem solving process is
to remove all of the abducibles which are present in a given
situation at an (approximately) minimum cost.

The actions set vals(Th) of a task Th is the set of all
of the elements θ drawn from the hierarchy Λ(Th), while
gndvals(Th) is the subset of vals(Th) containing only
ground actions t, i.e. the leaves of hierarchy Λ(Th). The
definition of set vals (resp. gndvals) can be extended to a
set of tasks by taking the union of the vals (resp. gndvals) of
each task in the set; we also define set vals (resp. gndvals)
for an action θ belonging to the hierarchy Λ(Th) by consid-
ering only the values (resp. ground values) belonging to the
sub-hierarchy of Λ(Th) rooted in θ.

Sets vals and gndvals are defined for abducibles Ai and
manifestations Mj in the same way as for tasks.

The hypotheses space S(A) is the set of all of the com-
binations γ of values drawn from one or more distinct hi-
erarchies Λ(Ai) (i.e. we allow the presence of multiple ab-
ducibles at the same time) and, similarly, the observations
space S(M) is the set of all of the combinations µ of values
drawn from one or more distinct hierarchies Λ(Mj).

The relationship between tasks and abducibles is defined
by the remove/repair domain knowledge, which we assume
to be a relation KR ⊆ vals(T ) × vals(A). Given an el-
ement θ ∈ vals(T ) and an element α ∈ vals(A), the fact
that (θ, α) ∈ KR means that θ is an appropriate action to be
taken to remove α, e.g. an action that repairs a fault α. Note
that, according to our definition of KR, the relation between
the status of the world (represented by the abducibles) and
the actions we can take (represented by the tasks) is simpler
than in general planning problems, where actions can have
complex pre-conditions and post-conditions.

The relationship between abducibles and manifestations
is defined by the explanatory domain knowledge KE ⊆
S(A) × S(M). Given a combination of instances of man-
ifestations µ ∈ S(M) and a combination of instances of
abducibles γ ∈ S(A), the fact that (γ, µ) ∈ KE means that
µ is a possible observation set corresponding to hypotheses
set γ (and, conversely, that γ is a possible explanation for
µ).



Our definition of KE and KR as relations is not intended
to imply that such relations should be represented exten-
sionally and that the reasoning algorithms should directly
manipulate such an extensional representation. KE may be
represented intensionally with a multi-valued propositional
or causal model (as it is the case in our illustrative example
of Figure 1) whose semantics correspond to the extensional
enumeration of the tuples in KE . Reasoning involving KE

may take place at the syntactic level, e.g. as propositional
or causal inference.

For each leaf value a of an abducible A, an a-priori prob-
ability p(a) is given. Instead, we associate costs with the
values of tasks and manifestations.

The cost of an action may, in general, depend on the cur-
rent status of the world, however, in this paper we assume
that for each leaf value t of a task, a cost tc(t) is assigned,
independently of the current hypotheses. The cost tc(θ) of
an abstract task value θ is either associated with θ by the user
(based, e.g. on experience) or estimated automatically as the
cost of the approximately optimal sequence of executions of
ground tasks (t1, . . . , tq) needed to execute θ, as explained
in the following sections.

As for the manifestations, let ω ∈ Λ(Mj) be a value be-
longing to the IS-A hierarchy of Mj ; its cost oc(ω) is the
cost of making the observation which refines value ω into
one of its children ω1, . . . , ωq in Λ(Mj).

In Figure 1 we show a fragment of a fictitious medical
domain model. On the left, there is the nosological de-
scription of some diseases, represented as three IS-A hier-
archies of abducibles (with roots Disease1 , Disease2 , and
Disease3). For example, Disease1 .1 and Disease1 .2 are
two refinements of Disease1 . On the right, there are possi-
ble symptoms and the possible medical examinations to be
performed, represented as three IS-A hierarchies of manifes-
tations (with roots Symptom1 , LabTest1 , and LabTest2 ).
The a-priori probabilities of the leaves of abducibles is as-
sumed to be 1

28 , except for p(Disease1 .1 ) = 1
27 .

Tasks associated with abducibles are not drawn explicitly;
in this example, exactly one action is associated with each
abducible, and its cost tc (the cost of treating the disease) is
given in Figure 1. Observation costs oc associated with each
internal node of manifestation hierarchies are the costs of
performing the related laboratory exam. The relationships
between abducibles and manifestations are represented
by rightwards dashed arrows. For example, Disease1
(and all its more specific diseases) implies LabTest2 to
be positive; Disease1 .2 implies LabTest1 to be positive,
and its refinements Disease1 .2 .1 and Disease1 .2 .2 imply
more specific positive values of LabTest1 .
The relation KE completes such explicit knowl-
edge with negative values of tests as default val-
ues, e.g. the hypotheses set {Disease3} predicts
{Symptom1 ,LabTest1Neg ,LabTest2Neg}, and when
refinements of hypotheses do not predict refinements of
observations, they are intended as compatible with all
refinements.

input: a sequence of values ϕ̂ = (ω̂1, . . . , ω̂m) representing
the initial observations

ϕ := ϕ̂
generate a set Γ of candidates γ which explain ϕ̂
generate a set Θ of tasks θ relevant for Γ
loop

σ := ChooseNextStep(Γ, Θ);
if σ = STOP then exit
if σ = ω ∈ vals(M)

ϕ := Observe(ω)
Γ := UpdateWithObs(Γ, ϕ, ω)

elseif σ = θ ∈ vals(T )
ϕ := Execute(θ)
Γ := UpdateWithAct(Γ, ϕ, θ)

endif
generate a set Θ of tasks θ relevant for Γ

end

Figure 2: Main loop of the abductive problem solving algo-
rithm.

The Abductive Problem Solving Process
The algorithm shown in Figure 2 illustrates the overall ap-
proach to abductive problem solving we take into this paper.

We define ϕ = (ω1, . . . , ωm) as the current fringe
over the manifestations, containing the most specific val-
ues ωj known to be true so far for manifestations Mj ,
j = 1, . . . , m.
Since we assume that at least one ground value of each mani-
festation is true in each situation, if we do not have any infor-
mation about the value of a manifestation Mj , its value in ϕ
is the root of the hierarchy for Mj , i.e. ωj = root(Λ(Mj ));
otherwise, ωj may be a more specific value in vals(Mj ).

An initial fringe ϕ̂ of observations is given and the fringe
is updated as the problem solving process goes on. In par-
ticular, if the current value in ϕ of a manifestation M is ω,
and we make an observation which refines ω into one of its
children ωk, ω is replaced by ωk as the value of M in ϕ.
Also when we perform an action t, we may need to substi-
tute the value ω of M with another value, as detailed in the
next section.

Given the set of initial observations ϕ̂, a set of candidate
explanations Γ and a set of tasks Θ relevant for solving the
candidates in Γ are generated.
In particular, a task θ is relevant for Γ if there exists an
atomic hypothesis αi,j of some candidate γi = {αi,1, . . . ,
αi,ri} ∈ Γ s.t. task θ is related to αi,j by the domain knowl-
edge KR (i.e. (θ, αi,j) ∈ KR).

At each iteration of the main loop, we select what to do
next based on the current candidate set Γ and the set of rel-
evant tasks Θ2. Clearly, this choice is in general subopti-
mal, due to the prohibitive complexity of making an optimal

2The choice may also need to take into account the sequence
Σ of observations/actions performed so far, e.g. in order to ignore
actions that have already been performed (Warnquist and Nyberg
2008). For the sake of clarity, in the following we do not explicitly
discuss the role of Σ.
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Figure 1: A (fictitious) medical domain model. The ellipses on the left represent the abducibles, i.e., the possible diseases,
arranged in IS-A hierarchies; the rectangles on the right represent the manifestations, i.e., the possible symptoms and labora-
tory exams, arranged in IS-A hierarchies. The rightwards dashed arrows represent the relationships between abducibles and
manifestations. The tasks (therapies), not drawn in the figure, have hierarchies isomorphic to the hierarchies of abducibles, and
costs tc shown above the diseases they repair.

choice.
When the problem is solved (or there are no useful ob-

servations/actions to make), the algorithm stops. Otherwise,
if the choice is to perform an observation, the candidate set
(and manifestations fringe) must be updated according to its
outcome, while if the choice is to perform a task, the can-
didate set must be updated according to the effects of t on
the abducibles and, possibly, on the manifestations fringe (as
explained in the next section).

The goal of this paper is to provide a general approach to
the selection of the next step.
We do not embrace a specific semantics of abduction and im-
plementation of the candidate generation and update steps in
the loop. Their concrete definition would depend on several
issues; in particular, it could involve a mix of abductive and
consistency reasoning depending on the completeness and
predictiveness of knowledge (Console and Torasso 1991;
Theseider Dupré 2000). Its formulation would also depend
on the wayKE andKR are represented — in particular, what
is explicitly represented and what is implicitly intended.

Predictiveness of knowledge, and, in particular, whether
a set of abducibles implies a single value for an observation

or not (so that requiring abductive explanations which imply
the observed value either makes sense or is too demanding)
is particularly relevant with hierarchies of abducibles and
observations. In general, we should accept an explanation
that implies some abstraction of the observation, rather than
the observation itself (Kautz 1991; Besnard, Cordier, and
Moinard 2007), but we do not explicitly address this issue in
this paper.

An important issue in the above algorithm is that there
may be too many detailed explanations of the given obser-
vations. This problem may be much more tractable thanks to
the presence of abstractions in the model and, in particular,
to the fact that abstract as well as detailed abducibles may
take part in explanations.
Independent of the way explanations are defined and com-
puted, a general criterion which is suitable in this setting
is the preference for least presumptive explanations (Poole
1989), which generalize minimal (wrt set inclusion) expla-
nations: an explanation γ that is a superset of another expla-
nation γ′ or that, based on the IS-A hierarchies Λ(Ai), is an
instance of another explanation γ′′, is not least presumptive.
In the following we assume that the candidates Γ computed



at each iteration represent the least presumptive explanations
of the observations made so far, i.e. we do not commit to a
detailed explanation when a more abstract one can explain
the observations.

We also assume that the relevant tasks in Θ are least pre-
sumptive, in the following sense: if two tasks θ and θ′ are
relevant for the same set of atomic hypotheses α1, . . . , αk

which appear in candidates belonging to Γ, and θ ISA θ′,
then θ is not least presumptive. Therefore, we do not commit
to a specific action when a more abstract one has the same
effects, so that we can delay the choice of how the abstract
action (which cannot be directly executed) will actually be
instantiated.

Task Execution
Let us start by considering the execution of a ground task t
when the candidate set is Γ. How does Γ look like, after exe-
cuting t? Given a (ground or abstract) task θ, we denote with
trg(θ) the set {α : (θ, α) ∈ KR}. Executing t makes all of
the abducible values in trg(t) false, therefore each candidate
γ ∈ Γ must be updated as follows:

γ′ = γ\trg(t)

resulting in an updated candidate set Γ′. Note that, if a can-
didate γ′i obtained from γi ∈ Γ through the execution of t
makes another candidate γ′j ∈ Γ′ a superset or an instance
of γ′i, the candidate γj must not be removed from Γ′. This
is because γ′j is still least presumptive in explaining the evi-
dence we have collected in the previous steps, while we have
no evidence yet on the actual effects of t on the values of the
manifestations; if, however, we can immediately obtain evi-
dence about the values of manifestations after the execution
of t s.t. γ′j is inconsistent with this new evidence, then γ′j
must be removed (see below).

Each updated candidate γ′ will make, in general, a set
of possibly non-deterministic predictions µ1, . . . , µq on the
values of manifestations M, where each prediction is a se-
quence µi = (ωi,1, . . . , ωi,m).
Let us denote with LUB(γ′,Mj ) the value in Λ(Mj) that is
the least upper bound of ω1,j , . . . , ωq,j (i.e. of the set of val-
ues for Mj predicted by γ′). The new fringe predicted by γ′
will then be ϕ(γ′) = (LUB(γ′,M1 ), . . . ,LUB(γ′,Mm))
(recall that a value in the fringe for Mj is the most specific
value of Mj known to be certainly true).
Similarly, we denote with LUB(Γ ′,Mj ) the value in
Λ(Mj) that is the least upper bound of {LUB(γ′,Mj ) :
γ′ ∈ Γ′} (i.e. of the set of values for Mj predicted
by Γ′). The new fringe predicted by Γ′ will therefore be
ϕ(Γ ′) = (LUB(Γ ′,M1 ), . . . ,LUB(Γ ′,Mm)).

From the discussion made so far, the execution of t would
make the candidate set become Γ′ and the fringe become
ϕ(Γ′); note that ϕ(Γ′) may contain very weak (i.e. abstract)
values for manifestations, since they must be consistent with
all of the possible predictions made by all of the (modified)
candidates in Γ′.
For this reason, (as anticipated above) it is useful to assume
that, for a (possibly empty) subset M∗ of manifestations, it
is possible to perform at no cost an immediate check (at a

given level of abstraction) after the execution of a task t.
In particular, following (Zhang, Caragea, and Honavar
2005), we define a cut C(M) on a hierarchy Λ(M) to be
a set of values ω ∈ vals(M ) s.t. each ground value in
gndvals(M ) is an instance of exactly one ω ∈ C(M) (i.e a
cut can be seen as a curve line which makes an horizontal
cut of the tree Λ(M) in two parts by touching a set of values
at possibly different levels of abstraction).
The immediate check on each manifestation Mj ∈M∗ will
result in exactly one (abstract) value ωj belonging to the cut
C∗(Mj) associated with Λ(Mj).
For instance, in our illustrative example, mani-
festation Symptom1 is associated with the cut
{Sym1Pres,Sym1Abs}, i.e. after performing a task we
know for free whether the symptom persists ({Sym1Pres})
or it has disappeared ({Sym1Abs}). For the other mani-
festations LabTest1 and LabTest2 , we assume trivial cuts
consisting just in the roots of the respective hierarchies.
Note that a cut may in general consist of both ground and ab-
stract values: for instance, {LabTest1Pos,LabTest1Neg}
would be a valid cut for LabTest1 , although LabTest1Pos
is an abstract value, while LabTest1Neg is a ground value.

In general, the observed value ωj ∈ C∗(Mj) of a mani-
festation Mj ∈M∗ may be more precise than the predicted
value LUB(Γ ′,Mj ) and it will therefore be included in the
new fringe. As a consequence, some candidates γ′ may be-
come inconsistent with the refined fringe.
We denote with Γ∗ the candidate set resulting from remov-
ing such inconsistent candidates, and with ϕ(Γ∗) the refined
fringe.

The contents of Γ∗ depend on the outcome of the checks
made at no cost on manifestationsM∗ after executing t. We
denote with PW (Γ , t) (for possible worlds) the set of all
of the possible candidate sets Γ∗ that may result by execut-
ing t and then checking manifestations M∗. The choice of
the next step will be based on PW (Γ , t), as described in
the next section. In general, the number of possible out-
comes of checking manifestationsM∗ can be exponential in
|M∗|, and therefore PW (Γ , t) may be intractable to com-
pute if M∗ is large. However, even when M∗ is large,
it is sufficient that the predictions made by the candidates
γ′ = γ\trg(t) on the values of manifestations M∗ are de-
terministic at the level of the cuts C∗(Mj); in such a case it
is easy to see that |PW (Γ , t)| is bounded by the number of
candidates |Γ|.

Let us now consider the execution of an abstract task θ.
Since θ, by being abstract, is not directly executable, we
need to perform a sequence of ground tasks t ∈ gndval(θ)
so that we ensure that all of the abducible values α ∈ trg(θ)
have been removed (i.e. have become false) in the candi-
dates Γ.
The algorithm starts by selecting an approximately best
ground task t ∈ gndvals(θ) to execute. After the exe-
cution of task t, we end up in one of the possible worlds
Γi ∈ PW (Γ , t).
If Γi does not contain any α ∈ trg(θ), the execution of θ is
complete, and the algorithm continues with the next iteration
of the main loop of observations/actions, or it stops. Other-
wise, a new approximately best ground task t′ is selected,



based on the candidate set Γi, and so on.
The selection of the best task to execute is based on

a slight modification of the efficiency measure defined in
(Heckerman, Breese, and Rommelse 1995). In particular,
let us denote with Γα the subset of Γ whose candidates
contain the abducible value α (i.e. Γα = {γ ∈ Γ :
γ = {α} ∪ ρ}) and let Γt be the subset of Γ whose can-
didates contain at least one abducible value affected by t
(i.e. Γt =

⋃
α∈trg(t) Γα); the efficiency of a ground task t is

defined as:

ef (t) =
p(Γt|Γ)
tc(t)

Intuitively, the task efficiency is increased by the probabil-
ity that it will actually remove some abducible value in the
candidate set and it is decreased by its cost. The task t to be
executed next is the one with the highest efficiency.

Independently of which sequence of ground tasks
(t1, . . . , tq) is actually executed, we end up with one of the
candidate sets PW (Γ , θ), as in the case of the execution of
a single ground task t.

Choosing the Next Step
We assume that the problem solving process stops only
when there are no useful actions or observations to be made.
In particular, let ω be an observation in ϕ and Γ1, . . . , Γq be
the possible candidate sets that would result by observing ω
and getting values ω1, . . . , ωq respectively. Then, ω is use-
ful if Γk 6= Γ for at least one k ∈ {1, . . . , q}, i.e. if at least
one possible outcome of observing ω makes the candidate
set change. We denote with Φ ⊆ ϕ the set of useful obser-
vations.
The stop criterion for our algorithm can therefore be formu-
lated more precisely as: Φ = ∅ (no useful observations) and
Θ = ∅ (no relevant tasks). Note that, in case our model does
not specify an action for some of the abducible values, we
may need to stop even if not all of the causes of manifesta-
tions have been removed.

Let us now assume that the stop criterion has not been met
yet. For each ω ∈ Φ (i.e. useful observation), we evaluate
the estimated cost c(ω), which is the sum of the cost oc(ω)
of refining ω and the expected cost of the candidate set after
refining ω, i.e.:

c(ω) = oc(ω) +
q∑

k=1

p(ωk|Γ) · c(Γk) (1)

where Γ1, . . . , Γq are the possible candidate sets that would
result by observing ω and getting values ω1, . . . , ωq respec-
tively; p(ωk|Γ) is the probability of getting value ωk (com-
puted based on current candidates Γ); and c(Γk) is the esti-
mated cost of Γk as detailed below.

For each θ ∈ Θ, we evaluate the estimated cost c(θ),
which is the sum of the cost tc(θ) of executing the task θ
and the expected cost of the candidate set after executing θ,
i.e.:

c(θ) = tc(θ) +
∑

Γk∈PW (Γ,θ)

p(Γk|Γ) · c(Γk) (2)

where PW (Γ, θ) is the set of possible candidate sets result-
ing from the execution of θ (as explained in the previous
section) and p(Γk|Γ) is the probability that the actual candi-
date set after executing θ is Γk.

In both equations 1 and 2, we need to be able to estimate
the cost of the problem solving process for a candidate set
Γk.
In order to compute such a cost, we adapt to our set-
ting a simple technique from the troubleshooting literature,
namely the greedy approach of (Langseth and Jensen 2003).
In particular, we start by computing Θk, i.e. the set of tasks
relevant for Γk; then we order the tasks θ ∈ Θk in decreas-
ing efficiency order using the following formula, which was
introduced in the previous section for ground tasks but can
be straightforwardly applied also to abstract tasks:

ef (θ) =
p(Γθ|Γk)

tc(θ)

where Γθ =
⋃

α∈trg(θ) Γα.

Let Θ̂k = (θ1, . . . , θq) be the sequence of tasks obtained in
this way. The cost of Γk is computed as follows:

c(Γk) =
q∑

i=1

tc(θi) · p(Γi
k 6= {∅})

where Γi
k is the candidate set after tasks θ1, . . . , θi−1 have

been executed starting from candidate set Γk.
Note that the cost of each task θi is weighted with the prob-
ability that the task will actually be executed, i.e. that the
candidate set Γi

k is not equal to {∅}, which corresponds to
the situation where the problem has already been solved and
this has been detected, so that the only candidate left is ∅.
The exact way p(Γi

k 6= {∅}) is computed depends on the set
of manifestations M∗ that can be checked at no cost after
the execution of each task, and on the cuts associated with
such checks. If we assume that, after each task execution, it
is possible to check at no cost whether the problem has been
solved or not, and let trg i(Θ̂) =

⋃
j=1,...,i trg(θj ), then:

p(Γi
k 6= ∅) = p({γ ∈ Γk : γ 6⊆ trg i−1 (Θ̂)})

Indeed, if the real world status is a candidate γ′ ∈ Γk which
is completely removed by executing θ1, . . . , θi−1, we must
be aware (through our checks) that the problem is solved,
and Γi

k must therefore be equal to {∅}; so, p(Γi
k 6= {∅}) is

the probability that γ′ is one of the candidates in Γk which
are not completely removed by θ1, . . . , θi−1, i.e. γ′ is not a
subset of trg i−1 (Θ̂).

After we have computed the expected observation costs
c(ω) and expected action costs c(θ), we perform the obser-
vation or action σ s.t.:

σ = argminσ̂∈(Φ∪Θ) [c(σ̂)]

i.e. the observation or action of minimum expected cost.

Example
Let us consider the execution of the algorithm on the exam-
ple in Figure 1.



Initial observations. Let us suppose that an initial mani-
festation of Symptom1 is detected, i.e., ϕin = {Sym1Pres,
LabTest1 , LabTest2}. The initial candidate set is Γ =
{{Disease1}, {Disease2}, {Disease3}}, representing the
possible alternative diagnoses (in fact, Disease1 , Disease2
and Disease3 explain Sym1Pres).

First iteration. The relevant tasks are, of course,
{T1, T2, T3} (i.e. the abstract tasks associated, respec-
tively, with Disease1 , Disease2 and Disease3 ), and the
useful observations are LabTest1 and LabTest2 .

The costs are computed as follows.
Regarding the observation ω = LabTest1 , two outcomes

are possible: the test is either negative (LabTest1Neg) or
positive (LabTest1Pos). For evaluating the candidate sets
Γ1 and Γ2 resulting from the observation of LabTest1 , we
adopt an approach similar to (Console, Theseider Dupré,
and Torasso 1990). In particular, if the outcome is
LabTest1Neg , it will be possible to exclude Disease1 .2 ,
because this abducible explains LabTest1Pos , which is in-
compatible with LabTest1Neg ; therefore:

Γ1 = {{Disease1 .1}, {Disease2}, {Disease3}}
On the other hand, if the outcome is LabTest1Pos , the min-
imal candidate set is:

Γ2 = {{Disease1 .2}}
only, which, since it explains LabTest1Pos , will be part
of every candidate set (see (Console, Theseider Dupré, and
Torasso 1990)). The probabilities of Γ1 and Γ2 are 5

7 and
2
7 respectively. The total expected cost associated with
LabTest1 is therefore:

c(LabTest1 ) = 2 +
5
7
· c(Γ1) +

2
7
· c(Γ2) = 15.86

(the immediate cost of performing LabTest1 is 2).
Estimated cost c(Γ1) is computed based on the fact that the
relative probabilities of the candidates are 2,2,1 and the cor-
responding actions are T1.1, T2, T3, in order of decreasing
efficiency, and therefore:

c(Γ1) = 8 +
3
5
· 10 +

1
5
· 15 = 17

while c(Γ2) = 6 (the cost of performing action T1.2 is 6).
Regarding the observation ω = LabTest2 , if the outcome

of this observation is negative (LabTest2Neg), then the re-
sulting candidate set is Γ′1 = {{Disease3}}. On the other
hand, if the outcome is positive (LabTest2Pos), the candi-
date set is Γ′2 = {{Disease1}, {Disease2}}, in this case
expected costs are:

c(Γ′1) = 15
c(Γ′2) = 13.33

and then:

c(LabTest2 ) = 8 +
1
7
· 15 +

6
7
· 13.33 = 21.57

since the immediate cost of performing LabTest2 is 8 and
the probabilities of Γ′1, Γ′2 are, respectively, 1

7 and 6
7 .

The expected cost associated with action θ = T1 is as
follows. If {Disease1} (having probability 4

7 ) is the correct

candidate, T1 solves the problem (which is detected because
Symptom1 becomes absent), otherwise the remaining can-
didates are {{Disease2}, {Disease3}}, and in this case the
expected cost is 10+ 1

3 ·15 = 15 given that T2 has higher ef-
ficiency than T3. The resulting expected cost if T1 is chosen
is then:

c(T1 ) = 10 +
3
7
· 15 = 16.43

since the cost of performing T1 is 10, and the probability
that this does not solve the problem is 1− 4

7 = 3
7

Similarly, the expected costs for T2 and T3 are:

c(T2 ) = 19.29

c(T3 ) = 26.43
The result of the selection step is then LabTest1 , which has
an expected cost of 15.86.

Second iteration.
Let us suppose that the outcome of LabTest1 is negative

(i.e., LabTest1Neg). Then, the algorithm performs a further
iteration with

Γ := Γ1 = {{Disease1 .1}, {Disease2}, {Disease3}}
The options, now, are the tasks {T1.1, T2, T3} and the

observation LabTest2 . The expected costs are as follows:

c(LabTest2 ) = 21.4

c(T1 .1 ) = 17
c(T2 ) = 17.8
c(T3 ) = 25.4

Note that the smallest expected cost does not decrease wrt
the previous iteration, because the observation eliminated
Disease1 .2 which was relatively cheap to treat - had the re-
sult of the observation been LabTest1Pos , which had prob-
ability 2

7 , the remaining expected cost would have been 6.
This time T1 .1 is selected; we suppose that it solves the
problem, i.e. it makes Symptom1 become absent and the
process stops.

Conclusions
In this paper, which generalizes (Torta, Theseider Dupré,
and Anselma 2008), we proposed an approach to selecting
the next step in an abductive problem solving loop which
extends previous work on measurement selection in Model-
Based Reasoning and on decision-theoretic troubleshooting.
In fact, our work is based on a representation with abstrac-
tions where both abstract hypotheses and abstract tasks are
taken into account. We present a general abductive problem
solving loop where, depending on the costs of observations
and the costs of actions to be taken, a further observation
may be chosen for discriminating or refining current candi-
dates, or an action can be taken based on the current can-
didate(s). Costs of observations and actions may be very
different at different levels of abstraction: there is a trade-
off between paying the cost of more observations (or more
precise observations) and the one of performing unneces-
sary actions, or unnecessarily general actions. Given that in
practical cases computing an optimal choice is not feasible,



we adopt a greedy, approximate approach from model-based
diagnosis and decision-theoretic troubleshooting, basing the
choice on expected costs. We expect that abstractions con-
tribute to making the approach feasible, with a small number
of abstract alternatives to be evaluated at each step.

The approach is aimed at being general, because its mo-
tivations can be found in several tasks and domains includ-
ing technical and medical diagnosis as well as interpreta-
tion tasks such as plan recognition. Different instances may
be derived with specific approaches for representing domain
knowledge and for generating and updating candidate expla-
nations based on observations.
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