
University of Turin
Department of Computer Science

RESEARCH DOCTORATE IN COMPUTER SCIENCE
XXXV Cycle

Embracing Complexity for Integrative

Multi-Omics Approaches in Life Sciences

Nicola Licheri

Tutor:
Prof. Marco Beccuti
Prof. Francesca Cordero

Supervisor of the Doctoral Program:
Prof. Viviana Patti

Academic Year: 2022/2023

Scientific Disciplinary Sector: INF/01

i

Acknowledgments

Ringrazio la gang dell’ufficio 24 e il Qbio Group tutto (Beatrice, Giulio, Laura,

Simone, Riccardo, Irene, Daniele, Giulia, Elena, Sandro Gepiro, Daniela,

Dora, Marco e la Prof.ssa Roberta Sirovich) per avermi accompagnato du-

rante il mio percorso di dottorato, e coi quali ho condiviso gioie e dolori.

Un ringraziamento speciale va al Prof. Marco Beccuti e alla Prof.ssa

Francesca Cordero per i loro preziosi consigli e insegnamenti, e per aver cre-

duto in me e spesso più di me.

Grazie alla mia famiglia che mi ha sempre supportato in ogni scelta e

decisione, permettendomi di conseguire questo risultato. Infine, ringrazio una

persona a me molto cara, Federica, per essermi stata accanto e avermi dato

forza lungo questo percorso tosto ma appassionante.

ii

Abstract

Living systems are regulated by a myriad of complex reactions involv-

ing a plethora of biological actors, such as genes, transcripts, epigenetic

modifications, non-coding RNAs, the microbiota community, and many

others. With the advent of next-generation sequencing (NGS) technolo-

gies in 2005, Life Science research started to benefit from omics data,

namely molecular snapshots of specific biological layers at fine-grained

resolution, by reporting thousands of features per sample. The availabil-

ity of omics data opened up a new era of computational challenges to

deal with the volume, heterogeneity and complexity of the data, the lack

of knowledge, and the missing parameters. In the literature, several ap-

proaches were proposed according to the questions addressed during the

analysis. Most of these approaches might be classified into two groups,

tabular and graph dataset, depending on the formalism exploited to rep-

resent the data. In the tabular dataset, samples are described by vectors

of omics features, obtained by NGS data analysis workflow. Samples

can be characterized on multiple omics layers, which, together with clin-

ical information, enable multi-omics integration and offer a holistic point

of view. Data-driven methods such as machine learning are crucial for

dealing with these issues, but their workflow is not a straight line and

often requires a trial-and-error approach. Differently, graph formalism is

used to study the system by considering different levels of abstraction

and by modeling the interactions characterizing the system under study

through edges connecting labeled vertices, which are the elements of the

domain under study. In these contexts, the identification of substructures

(subgraph isomorphism problem) is a frequent but challenging task and

requires advanced heuristics and indexing techniques to make it efficient.

The choice of indexing data structure, as well as the type of topological

features, are crucial for the development of efficient subgraph searching

solutions. In the literature, there exist very efficient solutions in terms of

running time, however, a relatively high amount of memory is required

to store the index, compared to the other state-of-the-art approaches.

In this thesis, we face the challenges of both data analysis techniques.

In particular, for multi-omics tabular representation, we propose an ap-

proach for multivariate filter feature selection defined as an optimization

problem on a graph representation of the initial dataset. Alternatively,

in the context of graph data, we proposed the use of decision diagrams,

a family of graph-based data structures that allows compact encoding

of large sets of structured data by exploiting their regularities and sym-

metries to reduce memory occupation. However, the efficiency of deci-

iii

sion diagrams is strictly related to the development of domain-dependent

heuristics to identify good variable orderings.

These theoretical results were then implemented into (i) a general frame-

work for multi-omics integration via automated machine learning, called

FeatSEE, and (ii) index-driven subgraph searching algorithm based on

decision diagrams, called GrapesDD.

The novelties and strengths of the FeatSEE framework can be summa-

rized into four points: (i) it is implemented in Python 3 and based on

well-known libraries for data science, (ii) the implementation of high-level

end-to-end containerized modules (e.g. graph-based feature selection)

providing a friendly interface to the machine learning workflows (data

preprocessing, feature selection and extraction, model selection and eval-

uation), (iii) a high level of portability and reproducibility granted by the

containerization of the whole framework; (iv) a well-defined schema and

related infrastructure to allow users to integrate their analysis workflow

in the framework easily.

Its effectiveness was shown in different complex systems, such as the

identification of a miRNA signature for Colorectal Cancer, a fluxomics

application derived from Flux Balance Analysis on transcriptomics data,

and an in vitro fertilization dataset reporting embryos’ morphokinetics

features.

In GrapesDD, decision diagrams have been investigated as indexing

data structures for reducing the index’s memory occupation without

degrading the running time of the overall algorithm. The trie of the

state-of-the-art tool software for parallel searching on biological graphs

GRAPES, has been replaced with a decision diagram. It represents a

new way of facing the graph indexing problem by exploiting the ad-

vanced manipulation algorithms offered by decision diagrams. Moreover,

an entropy-based variable reordering heuristics has been proposed to fur-

ther optimize the memory occupation of the index itself.

The effectiveness of these approaches was shown on real and artificial

biological graph datasets.

List of publications

International journals

1. S. Canosa†, N. Licheri†, L. Bergandi, G. Gennarelli, C. Paschero,

M. Beccuti, D. Cimadomo, G. Coticchio, L. Rienzi, C. Benedetto, F.

Cordero‡, and A. Revelli‡. “A novel machine-learning framework based

on time-lapse early embryo morphokinetics identifies an embryonic sig-

nature associated with day 5 expanded blastocyst development”. In:

Journal of Ovarian Research. 17.1 (2024): 63.

2. Barbara Pardini†, Giulio Ferrero†, Sonia Tarallo†, Gaetano Gallo, An-

tonio Francavilla, Nicola Licheri, Mario Trompetto, Giuseppe Clerico,

Carlo Senore, Sergio Peyre, Veronika Vymetalkova, Ludmila Vodickova,

Vaclav Liska, Ondrej Vycital, Miroslav Levy, Peter Macinga, Tomas

Hucl, Eva Budinska, Pavel Vodicka, Francesca Cordero‡, and Alessio

Naccarati‡. “A fecal miRNA signature by small RNA sequencing ac-

curately distinguishes colorectal cancers: results from a multicentric

study”. In: Gastroenterology (2023)

3. Nicola Licheri, Vincenzo Bonnici, Marco Beccuti, and Rosalba Giugno.

“GRAPES-DD: exploiting decision diagrams for index-driven search in

biological graph databases”. In: BMC bioinformatics 22 (2021), pp.

1–24

4. Luca Alessandri, Francesca Cordero, Marco Beccuti, Nicola Licheri,

Maddalena Arigoni, Martina Olivero, Maria Flavia Di Renzo, Anna

iv

v

Sapino, and Raffaele Calogero. “Sparsely-connected autoencoder (SCA)

for single cell RNAseq data mining”. In: NPJ systems biology and ap-

plications 7.1 (2021), p. 1

5. Luca Alessandri, Francesca Cordero, Marco Beccuti, Maddalena Arigoni,

Martina Olivero, Greta Romano, Sergio Rabellino, Nicola Licheri,

Gennaro De Libero, Luigia Pace, et al. “rCASC: reproducible classi-

fication analysis of single-cell sequencing data”. In: Gigascience 8.9

(2019), giz105

6. Giulio Ferrero†, Nicola Licheri†, Lucia Coscujuela Tarrero, Carlo De

Intinis, Valentina Miano, Raffaele Adolfo Calogero, Francesca Cordero,

Michele De Bortoli, and Marco Beccuti. “Docker4Circ: a framework for

the reproducible characterization of circRNAs from RNA-Seq data”. In:

International Journal of Molecular Sciences 21.1 (2019), p. 293

Book chapters

1. Giulio Ferrero,Nicola Licheri, Michele De Bortoli, Raffaele A Calogero,

Marco Beccuti, and Francesca Cordero. “Computational Analysis of cir-

cRNA Expression Data”. In: RNA Bioinformatics (2021), pp. 181–192

Publications on proceedings of scientific conferences

1. Riccardo Aucello, Nicola Licheri, Elena Rosso, Giulio Ferrero, Sandro

Gepiro Contaldo, Simone Pernice, Pietro Liò, Francesca Cordero, and

Marco Beccuti. “Functional data integration approach combining mech-

anistic models and multiphase feature selection methodologies”. In: 18th

conference on Computational Intelligence Methods for Bioinformatics &

Biostatistics (CIBB 2023). September 1-5, 2023, Padova, Italy. 2023

2. Carlo Alberto Barbano, Marco Beccuti, Francesca Cordero, Desislav

Nikolaev Ivanov, Nicola Licheri, Simone Pernice, Alberto Presta, Ric-

cardo Renzulli, and Marco Grangetto. “Artificial intelligence methods

for biomedical imaging and omics data”. In: Ital-IA 2023: 3rd National

Conference on Artificial Intelligence, organized by CINI, May 29–31,

2023, Pisa, Italy (2022)

vi

3. Nicola Licheri, Elvio Amparone, Vincenzo Bonnici, Rosalba Giugno,

and Marco Beccuti. “An Entropy Heuristic to Optimize Decision Di-

agrams for Index-driven Search in Biological Graph Databases.” In:

CIKM Workshops. 2021

4. Giulia Piaggeschi†, Nicola Licheri†, Greta Romano, Simone Pernice,

Laura Follia, and Giulio Ferrero. “MethylFASTQ: a tool simulating

bisulfite sequencing data”. In: 2019 27th Euromicro International Con-

ference on Parallel, Distributed and Network-Based Processing (PDP).

IEEE. 2019, pp. 334–339

Contents

List of Publications iv

Contents vii

1 Introduction 1

I Background 7

2 Machine learning for multi-omics integration 8

2.1 Omics data . 9

2.1.1 Biomarkers . 9

2.1.2 History of sequencing 10

2.1.3 Types of omics data . 12

2.1.4 Workflow of analysis in bioinformatics 14

2.1.5 The reproducibility crisis 15

2.2 Machine learning . 20

2.2.1 Definition . 21

2.2.2 The workflow . 26

2.2.3 The curse of dimensionality 29

2.3 Multi-omics data integration 32

2.3.1 Challenges . 34

3 Graph Indexing 36

vii

CONTENTS viii

3.1 Formalisation . 38

3.2 Filter-and-verification methods 38

3.2.1 Index construction . 39

3.2.2 Filtering . 39

3.2.3 Verification . 40

3.3 State of the Art . 40

3.3.1 GRAPES algorithm . 42

4 Decision diagrams 45

4.1 General definition . 46

4.1.1 Notion of ordering . 47

4.1.2 Reduction rules . 47

4.2 Classes of decision diagrams . 48

4.2.1 Binary Decision Diagrams 49

4.2.2 Multi-valued decision diagrams 49

4.2.3 Multi-terminal decision diagrams 49

4.2.4 Edge-valued decision diagrams 50

4.3 Decision diagram implementation 51

II Theoretical results 53

5 Graph-based feature selection for multi-omics integration 54

5.1 Feature graph formalisation . 54

5.1.1 Definition . 55

5.2 Optimization problem for mRMR on graph 55

5.2.1 A metric for mRMR over the feature graph 56

5.2.2 Evolutionary and genetic algorithms 57

5.3 Feature selection via genetic algorithm 58

5.3.1 Chromosome encoding 58

5.3.2 Selection mechanism . 60

5.3.3 Reproduction mechanisms 61

6 Decision diagrams applied to graph indexing 63

6.1 Decision diagrams for indexing 63

6.1.1 Problem variables . 64

6.2 Encoding the problem . 65

CONTENTS ix

6.2.1 Using multi-terminal . 65

6.2.2 Using multi-way decision diagram 67

6.3 Index construction . 68

6.4 Index filtering . 71

6.4.1 Indexing the query graph 71

6.4.2 Feature extraction from the index MTMDD 73

6.4.3 Constraints verification 73

6.5 Variable ordering . 74

6.5.1 An entropy-based metrics 74

6.5.2 The heuristic algorithm 75

IIIApplications and tool implementation 78

7 FeatSEE 79

7.1 The Framework . 80

7.2 Python module . 81

7.2.1 Data representation . 81

7.2.2 Feature graph . 83

7.2.3 Machine-learning models 85

7.3 FeatSEE end-to-end modules 87

7.3.1 Data preparation module 88

7.3.2 Evaluation module . 90

7.3.3 Ensemble feature selection module 92

7.3.4 Filter-based feature selection module 93

7.3.5 Explainable feature extraction module 97

8 GRAPES-DD 100

8.1 Overview . 101

8.2 Indexing stage . 101

8.2.1 Index preparation . 102

8.2.2 Index construction . 102

8.3 Filtering stage . 105

8.3.1 Query preprocessing phase 105

8.3.2 Feature extraction phase 105

8.3.3 Constraints verification phase 107

8.4 Entropy-based variable ordering 108

CONTENTS x

8.4.1 Label variables reordering 108

9 Applications 112

9.1 Biomarker discovery for colorectal cancer 112

9.1.1 Introduction . 113

9.1.2 Material and methods 116

9.1.3 Results . 121

9.1.4 Discussion . 130

9.2 An application combining mechanistic and data-driven approaches137

9.2.1 Introduction . 137

9.2.2 Material and methods 138

9.2.3 Results . 142

9.2.4 Discussion . 144

9.3 Explaining early embryonic development via time-lapse features 146

9.3.1 Context . 146

9.3.2 Material and methods 147

9.3.3 Results . 149

9.3.4 Discussion . 152

9.4 Index-driven subgraph search exploiting decision diagrams . . . 155

9.4.1 Datasets description . 155

9.4.2 Experimental setup and output 158

9.4.3 Discussion . 168

10 Conclusion and future work 170

Bibliography 176

Chapter 1

Introduction

Living organisms are complex and difficult to understand and to be explained.

They obey the laws of physics, but these laws are not enough to explain their

behaviour. Components of a complex system participate in many different

interactions, generating unpredictable emergent properties [1]. For instance,

the gut microbiota, which consists of a community of millions of microbes, has

recently been considered an organ due to the plethora of interactions with the

host and its importance in health and disease [2]. Biology has done well in

breaking down a complex system into its parts and understanding the purpose

of each of these components. However, holistic approaches are needed to

study a combination of the system’s components, because the crucial emergent

properties are not predictable by studying the single components in isolation,

to reduce the system’s complexity to an ordered sequence of transformation

of information between the several layers of biological information.

The development of high-throughput Next-Generation Sequencing (NGS)

has enabled the production of massive quantities of multi-omics data, pro-

foundly impacting biomedical research by providing a more comprehensive

understanding of biological systems and the underlying molecular mechanisms

driving life and disease progression. Omics data are the layers of biological

knowledge (e.g. genomics, transcriptomics, proteomics, metabolomics, etc.),

and it follows that each of these layers is deeply connected to the others in

1

one or multiple directions.

Multi-omics data provides a window into the inner workings of the human

body, allowing us to understand its complexities and how it functions in health

and disease. By analyzing multi-omics data, we can gain insights into the

molecular mechanisms that underlie human biology, including how genes are

expressed, proteins are produced, and metabolites are regulated, and these

insights can lead to novel discoveries about disease prevention, diagnosis, and

treatment. Furthermore, multi-omics data can be used to model and simulate

human physiology, which can help us understand how the body responds to

different stimuli and interventions. This information can be used to develop

personalized medicine approaches that are tailored to individual patients.

Multi-omics data are a concentration of knowledge and multiple approaches

can be used to either extract or represent such a piece of knowledge. The choice

of representation format is dictated by the specific research question and the

type of analysis being performed. Researchers often employ a combination of

formats to gain a comprehensive understanding of the biological system under

investigation.

• Capturing and storing knowledge Ontologies and databases provide

a structured foundation and centralized repositories enabling researchers

to access and manipulate information easily, and a formal representation

of knowledge in a specific domain, enabling the definition of concepts,

relationships, and properties of the domain that provides a structured

and consistent way to represent and share knowledge, enabling reason-

ing, inference, and knowledge discovery, respectively.

• Data-driven methods for unveiling underlying patterns Statis-

tical models and machine learning algorithms empower researchers to

extract meaningful insights from multi-omics data. Statistical mod-

els, rooted in probability and statistics, identify hidden correlations be-

tween different omic layers and disease phenotypes, revealing potential

biomarkers, therapeutic targets, and risk factors. Machine learning al-

gorithms, harness the power of data-driven modeling, predict disease

outcomes, classify biological samples, and identify drug targets, paving

the way for personalized medicine and accelerated drug discovery.

• Expressing relationships with graphs Graphs are mathematical

structures widely used for expressing complex relationships among ele-

2

ments when representing different types of omics data, as well as biomed-

ical and biological information. On top of these representations, several

analyses are performed. These interconnected nodes and edges, rep-

resenting biological entities and their interactions, reveal patterns and

relationships that would remain hidden in raw data, shedding light on

regulatory processes, signaling pathways, and disease mechanisms.

In this thesis, our attention is directed towards two distinct yet closely

interconnected subjects, namely data-driven methods for biomarker discovery

in multi-omics contexts, and the utilization of graph-based representations,

including subgraph searching within collections of graphs. Although data are

represented using different formalisms, the overarching goals can be similar,

as both endeavours aim to identify patterns, be they biomarkers or subgraphs,

in large and heterogeneous collections of biological data.

In the context of data-driven methods, we consider multi-omics data as

they are obtained from bioinformatics workflows of analysis processing raw

data produced by NGS technologies. The output of NGS data analysis is

composed of large matrices describing each sequenced sample using a quite

large number of molecular measurements known as features, such as transcript

quantification (transcriptomics, miRNomics), DNAmethylation (methylomics),

and copy number variations (CNVs) or the presence of mutations (genomics).

Machine learning, as the study of algorithms that allow computer programs

to automatically improve through experience, allows us to exploit the large

amount of available data to infer logic and patterns by exploiting general learn-

ing algorithms without the need to develop an ad-hoc solution as in traditional

programming. However, the application of machine learning techniques is not

trivial and several challenges have to be taken into consideration. One of the

main challenges is related to the high dimensionality of the data, known as the

curse of dimensionality, which is strictly related to the high number of features

respecting the number of available samples, which is generally quite low. This

phenomenon brings several problems such as noisiness and error-pronesses of

the data, as well as the abundance of redundant and irrelevant information.

Differently, in the context of graphs for knowledge representation, a com-

mon task is the search for one substructure within one graph, called target.

The problem is referred to as one-to-one subgraph search, and it is known to be

NP-complete. Heuristics and indexing techniques can be applied to facilitate

3

the search. Indexing techniques are also exploited in the context of searching

in a collection of target graphs, referred to as one-to-many subgraph problem.

Filter-and-verification methods that use indexing approaches provide a fast

pruning of target graphs or parts of them that do not contain the query. The

expensive verification phase is then performed only on the subset of promising

targets. Indexing strategies extract graph features at a sufficient granularity

level for performing a powerful filtering step. Features are memorized in data

structures allowing efficient access. The choice of the data structure and the

type of features to be stored within the index are crucial, and determining the

indexing size, querying time and filtering power, which are key points for the

development of efficient subgraph searching solutions.

In the plethora of available data structures, we consider decision diagrams

(DDs), which are a relatively niche but powerful tool that can be used to solve

a wide variety of problems. Decision diagrams are symbolic data structures

represented as directed acyclic graphs (DAGs) that allow us to represent and

manipulate multivariate functions whose variables have structured domains.

They have been extensively used in industrial hardware verification and model

checking, due to their ability to symbolically encode complex boolean func-

tions having a huge number of input variables, and to exploit the structure

and regularity of the data for an efficient representation in the DAG. How-

ever, the size of the DD representing a given function depends critically on

the variable ordering¸and the identification of the optimal variable ordering is

NP-complete. As a consequence, the efficiency of the applications based on de-

cision diagrams are strongly dependent on the development of domain-specific

heuristics to select a good ordering.

Finally, this thesis is organized into three parts:

1. Background

In this first part, the main topics and notation used in the rest of the

thesis are introduced.

In Chapter 2, a thorough introduction to omics data is presented, high-

lighting the challenges associated with their acquisition through the ap-

plication of bioinformatics workflows. The chapter also delves into the

difficulties related to ensuring the computational reproducibility of these

analyses. Subsequently, a comprehensive overview of machine learning

is provided, addressing its main challenges and introducing feature engi-

4

neering approaches, encompassing both feature selection and feature ex-

traction techniques. Finally, this chapter illustrates the state-of-the-art

integration strategies for multi-omics data driven by machine learning.

Chapter 3 introduced the use of graphs in life science and the challenge of

subgraph searching, as well as the different approaches for graph index-

ing and the state of the art in the literature. Finally, a state-of-the-art

tool called GRAPES, which has been shown to have good performance

in terms of speed-up for both one-to-one and one-to-many cases is il-

lustrated in detail. Finally, Chapter 4 provides a general overview of

decision diagrams, a family of graph-based data structures that effi-

ciently allow us to represent large sets of structured data by exploiting

representation based on directed acyclic graphs. In particular, decision

diagrams represent functions having many variables and possibly differ-

ent domains, and these functions can be efficiently manipulated through

specific operators.

2. Theoretical results

In the second part, Chapter 5 focuses on the introduction of a new

graph-based formalism called the feature graph, to represent feature re-

dundancies in a multi-omics dataset, together with feature importances

concerning a given target to be predicted. Exploiting such a formal-

ism, we define a metric for evaluating generic sets of feature based on

the graph topology, which is then exploited to define a feature selection

algorithm as an optimization problem to maximize the defined metric.

Chapter 6 is dedicated to the application of decision diagrams for graph

indexing. In particular, there are proposed different ways to represent

the index using different types of decision diagrams, and a strategy to

efficiently filter the index given a query graph, by applying operators be-

tween decision diagrams. Finally, we presented an entropy-based heuris-

tics for variable reordering intending to identify a quasi-optimal variable

ordering that allows to reduce the memory occupation of the index.

3. Tools and applications

In the last part, we introduced the implementations of the above the-

oretical results (Chapters 7-8), and some case studies faced with such

implementations (Chapter 9).

5

Specifically, in Chapter 7, the graph-based feature selection algorithm

has been implemented and included as a standalone module in the Feat-

SEE framework, which allows non-expert people to build user-defined

workflow of analysis exploiting machine learning techniques without the

need for advanced skills. Then, Chapter 9 provides three case studies

faced using FeatSEE: biomarker discovery in Colorectal Cancer (CRC)

miRNome data (Section 9.1), functional data integration with fluxomics

data (Section 9.2), and explainable data analysis of an in-vitro fertiliza-

tion dataset (Section 9.3).

On the other part, Chapter 8 introduces GRAPES-DD, a modified ver-

sion of the GRAPES tool in which a decision diagram has been applied

as the core indexing data structure. Moreover, since the order of the vari-

ables within the decision diagram is crucial for its efficiency, a heuristic

variable reordering algorithm based on entropy estimation is presented.

Then, in Chapter 9, experimentation results are presented: indexing

and filtering stages using both real and synthetic collections of graphs,

as well as the application of the variable reordering heuristic algorithm

on real graph collections (Section 9.4).

6

Part I

Background

7

Chapter 2

Machine learning for

multi-omics integration

The big data era in which we are all living is characterized by the ever-

increasing volume, velocity, and variety of data that is being generated. In the

biological and clinical fields, such a paradigm shift is carried on by the large-

scale generation of omics data, which are created by measuring the abundance

of different biological macromolecules (e.g. DNA, transcripts, metabolites) ex-

ploiting high-throughput and next-generation sequencing technologies. This

data can be effectively used to gain insights into the complex interactions

among biological molecules within the cell, predict disease risk, and develop

personalized treatments. However, the sheer volume and complexity of multi-

omics data make it difficult to analyze using traditional methods. Machine

learning techniques offer a solution to this problem since such algorithms can

actually learn from omics datasets to identify patterns and make predictions.

This allows researchers to make better decisions based on data, and to auto-

mate tasks that would otherwise be more time-consuming and error-prone.

This chapter is composed of three sections. The first section provides a

general overview of different classes of omics data, which describe different

layers of biological knowledge, and the sequencing technologies and software

workflows to produce such kind of data starting from raw biological materi-

8

2.1. Omics data

als. The second section introduces machine learning techniques, by providing

an overview of its three basic ingredients, namely the experience, the task

and the performance evaluation. Then, the classical workflow for machine

learning applications and the challenges to face and possible strategies are il-

lustrated. Finally, the third section provides an overview of machine-learning-

driven multi-omics integration strategies and of the main challenges to cope

with.

2.1 Omics data

Life sciences encompasses a wide range of topics, from the structure and func-

tion of cells to the evolution of organisms. As the basic unit of life, cells are

the smallest units that can live on their own and that make up all living or-

ganisms. The biology of the cell is a complex and dynamic system. Cells are

made up of many different molecules, organelles, and proteins that interact

with each other in a complex way. To understand how cells work and coop-

erate, we need to be able to measure and analyze these macromolecules and

their interactions.

Deep sequencing technologies have made it possible to obtain a huge num-

ber of molecular measurements within a tissue or cell. These technologies

can be applied to a biological system of interest to obtain a snapshot of

the underlying biology at a resolution that has never before been possible.

Broadly speaking, the scientific fields associated with measuring such biolog-

ical molecules in a high-throughput way are called omics [3]. Computational

methods such as bioinformatics and systems biology allow researchers to de-

velop a new understanding of the molecular and genetic basis of physiological

and pathological conditions. By measuring, in each patient sample, thousands

of biological characteristics, which are generally called biomarkers, scientists

are identifying previously unknown, molecularly defined disease states and

searching for complex biomarker signatures that predict responses to therapy

and disease outcomes.

2.1.1 Biomarkers

Definition 1 (Biomarker). A biomarker is a measurable biological character-

istic that can indicate the presence, or progression of a disease, or predict an

9

2.1. Omics data

individual’s response to treatment. Biomarkers may be detected and analyzed

in tissue and surrogate tissues (i.e. blood, urine, stool, saliva, sputum, etc.).

Definition 2 (Biomarker signature). A group of biomarkers that are used

together to provide a more comprehensive assessment of a disease or condition

is called biomarker signature.

In particular, for the bioinformatics context, biomarkers are typically molec-

ular measurements obtained from deep sequencing technologies. Biomarkers

can be used in a variety of settings, including clinical trials, diagnostic test-

ing, and disease monitoring. In particular, they belong to one or more of the

following categories:

• diagnostic biomarkers determine the presence and type of a specific dis-

ease or condition (e.g. cancer);

• prognostic biomarkers give information on the patient’s overall disease

outcome with or without treatment;

• predictive biomarkers help to identify which treatment the patient is

most likely to respond to or benefit from [4].

2.1.2 History of sequencing

The modern history of DNA sequencing began in 1977, when Sanger reported

his method to identify the order of nucleotides of DNA fragments [5]. However,

this technique is a low-throughput sequencing method that processes one frag-

ment at a time. It is based on the synthesis of complementary DNA fragments

of starting genetic material, which was then read using gel electrophoresis.

In the next decade, there were new improvements in the Sanger method,

and, in 1987, Applied Biosystem developed the first automated DNA se-

quencer [6].

In 1990, the ambitious Human Genome Project[7] began in the United

States, under the direction of the National Institute of Health and the U.S.

Department of Energy, with a 15-year and $3 billion plan to complete the

genome sequence. The goal of this project was to determine the complete

sequence of the human genome in order to understand human evolution, the

causation of diseases and so on[6].

10

2.1. Omics data

In 1998, Applied Biosystem developed an automated high-throughput capil-

lary DNA sequencer based on the Sanger method. This device, along with

whole-genome random shotgun method, has been used to perform human

genome sequencing. The sequenced fragments were then assembled using

dedicated assembly algorithms. Human genome sequencing was initiated in

September 1999 and completed in June 2000; the first assembly was completed

in October 2000 [6].

The automated Sanger method has dominated the sequencing world for

almost two decades. Despite many technical improvements, its own limitations

showed a need for new and better technologies for sequencing large genomes.

NGS became available in 2005. The major advance of NGS is the abil-

ity to produce an enormous volume of data, cheaply and in a short amount

of time. In particular, the sequencing of a genomic region multiple times,

sometimes hundreds or even thousands of times is known as deep sequencing.

Deep sequencing is fundamental for the detection of rare clonal types, cells,

or microbes comprising as little as 1% of the original sample. It is useful for

studies in cancer, microbiology, and other research involving the analysis of

rare cell populations.

The availability of multiple instruments, produced by different manufac-

turers, represented a paradigm shift from the past, where a single instrument

produced by Applied Biosystem dominated the market. Many of these in-

novative approaches were initially developed for the 1000 Genome Project[8],

whose purpose was to provide a global description of common human Single

Nucleotide Polymorphism (SNP)s by applying genome and exome sequencing

to many individuals from 26 different populations.

This so-called ‘massively parallel’ sequencing technology differs signifi-

cantly from the Sanger method. Although each manufacturer has its own

technology, all devices share a set of attributes. First, the initial preparatory

steps are fewer and easier to perform than Sanger sequencing. NGS procedures

begin with the construction of a library formed by ligating platform-specific

synthetic DNAs (adapters) onto the ends of the fragments to be sequenced.

The adapters allow the fragments to be attached on a solid surface during

amplification and sequencing. Second, library fragments are amplified by a

polymerase-mediated reaction that produces thousands of copies of each frag-

ment; this step is required so that the sequencing reaction produces a signal

detectable by the instrument’s optical system. Amplification also provides a

11

2.1. Omics data

source of sequencing error because polymerases are not 100% accurate. Third,

these instruments perform the sequencing of all fragments at the same time,

through a series of repeating steps that are performed and detected automat-

ically.

2.1.3 Types of omics data

The field of omics is rapidly growing, and new omics disciplines are being

developed all the time. As these new disciplines emerge, they will provide us

with even more insights into the complex workings of biological systems.

Omics data can be directly derived either from (i) deep sequencing exper-

iments through a dedicated workflow, such as transcriptomic, epigenomics,

metabolomics, and metagenomics, or from (ii) pre-existing omics by exploit-

ing ad-hoc prediction tools and public databases, such as fluxomics, and in-

teractomics.

Transcriptomics

RNA-seq is the NGS method that sequences the transcriptome, that is, all

the RNA transcript sets expressed by the genome in cells, tissues, and organs

at different stages of an organism’s life cycle [9, 10, 11]. RNA-seq provides

technical reliability and sensitivity and unambiguous maps of the transcribed

regions of the genome with high accuracy in quantitative expression levels,

identification of tissue-specific transcript variants and isoforms (SNPs and

mutations), transcription boundaries and splicing events, transcription fac-

tors, and small and long noncoding RNAs (ncRNA) involved in the regulation

of gene expression (circRNAs, miRNAs, lncRNAs, etc.) [12].

Epigenomics

Epigenomics is the study of the heritable chemical modifications of the DNA

that affect how genes are expressed without changing the DNA sequence it-

self. Even though almost each cell in an organism shares an identical genotype,

organismal development generates a multitude of cell types with distinct pro-

files of gene expression, and thus different functions. Cellular differentiation

may be considered an epigenetic phenomenon, governed by a multitude of

molecular mechanisms, among DNA methylation, histone modification and

others [13].

12

2.1. Omics data

Methylomics Methylomics is the genome-wide analysis of DNA methyla-

tions and their effects on gene expression and heredity [28]. Methyl-seq uses

NGS to analyze and map DNA cytosine methylation at single-base resolution

usually by employing bisulfite DNA sequencing [24, 25].

Metagenomics

Beyond genomics, there is metagenomics, namely the study of the total ge-

nomic content of a microbial community. The total DNA and/or RNA is iso-

lated from a microbial population without prior cultivation, sequenced, and

compared with previously known sequences to identify known species or to

discover previously unknown species. Metagenomics enable the characteriza-

tion of the microbes colonize the human body (i.e. microbiome) in numbers

that are estimated to outnumber human genes and somatic cells by more than

100-fold. These microbes (viruses, prokaryotes, and eukaryotic microbes) oc-

cupy various anatomical habitats including gut, skin, vagina, and oral mu-

cosa and are believed to markedly influence human physiology, nutrition, and

health [14, 15].

Metabolomics

Metabolomics is the study of an organism’s total metabolic response to an

environmental stimulus or a genetic modification [16]. Metabolomics data

also provide biochemical and physiological snapshots of processes that are

obtained from cellular and tissue experimental studies

Fluxomics

Constraint-based approaches are mathematical modeling approaches based on

the definition and manipulation of stoichiometric matrices, commonly used

with optimization techniques, such as using linear and mixed-integer pro-

gramming to maximize an objective function under specific constraints. In

particular, the Flux Balance Analysis (FBA) [17] computes the distribution of

reaction fluxes in a metabolic system at the equilibrium and finds the feasible

fluxes under given constraints and an objective function to maximize/mini-

mize [18].

13

2.1. Omics data

The use of constraint-based methods such as the FBA to design models

of metabolite flow in microbes has connected “omic” to phenotypes in the

science of Fluxomics [19].

Interactomics

Transcriptomic and other complex functional genomics data sets that arise

from high-throughput experimental biology benefit from analysis in the con-

text of known cellular networks, which provide a holistic framework for in-

terpretation. Although far from complete, large-scale networks have been

determined for numerous organisms, including humans and other model or-

ganisms [20, 21, 22, 23, 24]. These networks, or interactomes, are commonly

represented as graphs, in which nodes correspond to biological components

(for example, genes, RNAs, proteins or metabolites), and edges correspond to

known interactions among them (for example, physical, regulatory or genetic).

Integrative interactomics analyses are typically premised on modularity, which

is a key organizational property of cellular networks in which molecules that

work together to carry out a specific biological process are enriched in inter-

actions among themselves [25].

2.1.4 Workflow of analysis in bioinformatics

NGS technologies can be applied to different biological materials, such as

DNA, RNA or proteins. The output of NGS experiments is composed of

FASTQ files, which is a text-based format for representing either nucleotide

sequences (DNA/RNA) or amino acid (protein) sequences, which are com-

monly called reads.

Generally, the NGS data analysis comprehends (i) data cleaning and qual-

ity control, (ii) data alignment against some reference, and (iii) data quantifi-

cation. However, the particular workflow of analysis, and the tools to be used,

depend on the specific NGS data under analysis. In any case, the analysis of

NGS data is a complex and challenging process that requires expertise and

different specialized software.

Despite the availability of a vast set of computational tools and methods for

data analysis, it is still challenging for a researcher to organize these tools, in-

tegrate them into workable pipelines, find accessible computational platforms,

configure the computing environment, and perform the actual analysis.

14

2.1. Omics data

The difficulties in creating these complicated computational pipelines, in-

stalling and maintaining software packages, and obtaining sufficient compu-

tational resources tend to overwhelm bench biologists and prevent them from

attempting to analyze their data.

2.1.5 The reproducibility crisis

The reproducibility of research is a key element in modern science. It rep-

resents the ability to replicate an experiment independently by the location

and the operator. Therefore, a study can be considered reproducible only if

all used data are available and the exploited computational analysis workflow

is clearly described. However, for reproducing a bioinformatics analysis, the

raw data and the list of tools used could not be enough to guarantee the

reproducibility of the results [26].

Issues

Bioinformatics data analysis pipelines usually consist of several third-party

software packages. Each tool has many implicit dependencies on other pro-

grams and libraries required by the chosen environment. As a consequence, a

workflow built in a specific environment has little chance of running correctly

in a different environment without significant effort. Furthermore, software

updates might lead to sneaky deployment and reproducibility issues.

The first barrier to computational reproducibility in science has nothing

to do with the technological aspects discussed here but rather a reluctance to

publish the code used to obtain the results. Many researchers assume that

summary algorithm descriptions or pseudo-codes are sufficient to understand

methods used in data processing and analysis.

As regards the technical aspects, the common issues that pose barriers to

reproducing the original results are the following ones.

Dependency hell Often a software package depends on libraries or other

software to work properly. Dependency hell occurs when software works ab-

normally, and displays errors and bugs. These phenomena can be due to

incorrect dependencies integration, conflicting programs or other causes.

Imprecise documentation Documentation on how to build and/or install

the software is a frequent barrier to replication, particularly for not practical

15

2.1. Omics data

Figure 2.1: Containers and Virtual Machines. Containers and virtual
machines have similar resource isolation and allocation benefits but function
differently. Containers share the operating system with the host machine.
Virtual machines perform hardware virtualization through a hypervisor soft-
ware. Hypervisor allows running one or more operating systems on top of it
as if they run on a physical machine. Adapted from [27].

users in such kind of activities. Superficial documentation of tool parameters

is another obstacle to reproducing specific studies.

Code rot Software dependencies are not static units but receive updates

that may fix bugs, add new features and deprecate the old ones. Any update

can potentially change the software behaviour, and so the results generated

by the dependent tool.

Barriers to adoption and re-use Typically in scientific computing, the

coordination among multiple tools is managed via Makefiles and various scripts.

As more and more functionality is added, the difficulty of coordinating multi-

ple tools continues to increase. As a consequence, it increases also the main-

tenance effort of the entire software architecture.

Virtualization technologies

Virtualization technologies were proposed to mitigate the issues listed so far,

even if they cannot completely solve the issues without additional efforts.

Virtualization technologies provide a way of abstracting hardware resources

(e.g. CPUs, memory, storage, networks, etc) from the applications that use

them. There are two main types of virtualization technologies, namely Virtual

16

2.1. Omics data

Machine (VM) approaches, and containerization technologies. On one hand,

VMs create an isolated operating system environment. This means that each

VM can run its own operating system, and the applications running on one

VM cannot see or interact with the applications running on another VM. On

the other hand, containerization technologies allow us to package an appli-

cation and all its dependencies into a single entity (i.e. image) that can be

run sharing the host machine’s kernel. Despite the differences between the two

approaches, virtualization is a powerful technology that offers several improve-

ments regarding resource efficiency, scalability, security, and manageability of

software and workflows.

Virtual machines A VM is essentially emulating a real computer (guest

machine) that executes programs like a real computer. VMs run on top of

a physical machine (host machine) using a hypervisor, a piece of software

that performs hardware virtualization. The guest machine contains a copy of

the OS files, all the packages and libraries needed to run the application and

a virtualized hardware stack. As a result, the size of the image of a VM is

generally quite heavy. Moreover, this approach is a kind of black box and thus

ill-suited for reproducibility, because they are not systematically described or

accessible with a standard tool or protocol. As a consequence, other research

cannot easily extend the virtual machine in a consistent and scalable way [28].

OS-level virtualization OS-level virtualization technology was recently

proposed in the area of bioinformatics as an efficient solution to simplify the

distribution, usage and maintenance of bioinformatics software [29]. OS-level

virtualization exploits the kernel of an operating system of the host to cre-

ate isolated execution environments, which are called containers and can be

used to run different applications on the same physical hardware. A popular

implementation of OS-level virtualization technology is the Linux Container

project (LXC), from which both Docker and Singularity [30] are based.

OS-level virtualization is more lightweight than the VM-based approaches,

which use a hypervisor to handle the communication between the VM itself

and the physical hardware. This is because containers share the kernel of

the host operating system, which means that they do not need to have their

copy of the OS. This makes containers more lightweight, efficient and easier

to manage. Containerization technologies allow us to run applications in an

17

2.1. Omics data

isolated environment and to efficiently distribute the package, in the form of

images, in a portable manner across different platforms. In a similar way to

VMs, such images provide that all the required software is already installed,

configured and tested.

In conclusion, VMs and OS-level virtualization are similar in their goals,

since they both provide (i) analysis portability, isolating an application into

a self-contained unit that can run anywhere, and (ii) analysis reproducibil-

ity, freezing the version of tools and library used. The main difference between

the two approaches is that the VM must include a full copy of the operating

system, whereas OS-level virtualization share the host machine’s kernel with

other containers (Fig. 2.1). OS-level virtualization provides an abstraction at

the app layer, whereas VMs are a physical hardware abstraction. As a result,

the former is much more lightweight and with higher performance than virtual

machines, even though VMs are more flexible and isolated, and hence, secure.

Docker Among the container platforms proposed in the literature, Docker

(http://www.docker.com) is getting the standard environment to quickly

build, deploy, scale and manage containerized applications under Linux sys-

tems. In summary, Docker’s strengths are its high level of portability, which

allows users to easily register and share containers over different hosts, and

to achieve more effective resource use and a faster deployment compared with

other similar software. It is an open-source project based on LXC, that allows

OS-level virtualization, portable deployment of containers across platforms,

and git-like versioning, among others.

Docker images can be created interactively, but this approach makes the

image opaque. The correct way to proceed is through a Dockerfile, a plain-

text file similar to a Makefile, which adheres to a specific syntax and uses a

specific set of instructions to build a given Docker image. The Dockerfile is

processed by the Docker daemon to automatically build the image. A Docker

image is composed of multiple layers stacked on top of each other, where each

layer generally corresponds to an instruction in the Dockerfile. Such layers are

cached to be reused during future builds and shared among different images.

Adopting Dockerfiles has many advantages:

• Images can be very large, whereas a Dockerfile is just a small plain text

file that can be easily stored and shared.

18

http://www.docker.com

2.1. Omics data

• Text files are suited for use with a version management system such as

git, which can track the evolution of the Dockerfile.

• It provides human-readable support for all the requirements to execute

the tool. It includes also all software dependencies down to the level of

the OS.

• It is very easy for other users to extend or customize the image by editing

the Dockerfile.

Changes in the dependencies can be reduced because Docker defines the

software environment to a particular Linux distribution. It prevents potential

problems, but this cannot completely avoid the challenge of code-rot. To deal

with it, Docker allows us to archive a binary copy of the working image. It is

portable and can be read by other Docker installations, providing a way to run

the exact versions of all software involved. To simplify the sharing process,

Docker provides a cloud platform, Docker Hub, in which pre-built images can

be stored and downloaded by other users. It also supports image versioning

by attaching tags to the image. Docker Hub is a free service and its code is

open source, so that one can run its own private version on its own server.

The most obvious advantage of this approach is to replace the tedious

installation of numerous pieces of software, with complex dependencies, by

simply downloading a single pre-built ready-to-run image containing all the

software already configured. Another advantage of Docker is that each run of

an image is executed in an isolated container, created starting from the im-

mutable image. This prevents possible conflicts with other installed programs

and guarantees that each process runs in a predictable system configuration

that cannot change over time.

Multiple containers can run on the same machine at the same time, sharing

the OS kernel with other containers. Containers take up much less space

than VMs, so the system can handle more applications with fewer resources.

Studies show that Docker containers introduce a negligible overhead for CPU

and memory performance and that applications running in a container perform

equally or better when compared to traditional virtual machine technology[28].

19

2.2. Machine learning

Enhancing computational reproducibility

As said before, virtualization technologies are very helpful but are not suffi-

cient to completely resolve the issues of reproducibility in bioinformatics. In

2013, Sandve et al. propose 10 simple rules for enhancing the reproducibility

in computational research, including (i) keep track of intermediate results and

of how results are produced, (ii) avoid manual data manipulations in favour

of automated scripts, (iii) version control of those scripts, (iv) take note of

random seeds and (v) provide public access to data, metadata and code [31].

Sandve’s rules are the foundations of the Reproducible Bioinformatics Project

(RBP) [32], whose aim is to achieve a framework for developing reproducible

workflows of analysis by means of (i) a set of Docker images wrapping all the

tools needed and (ii) a R library.

To further enhance the development of workflows of analysis, software so-

lutions known as Workflow Management Systems (WfMS) definitely help to

automate and manage the flow of work within pipelines and workflows, by

(i) validating input and intermediate results, (ii) handling conditional step

executions, (iii) applying parallelization whenever is possible, (iv) handling

error, and many others. There exists a vast plethora of more than 150 dif-

ferent WfMSs that differs among them through their interface (e.g. local or

remote), the IT skills required to be used, and the platform and system require-

ments among others. An example of such software is NextFlow, a workflow

management system that uses Docker technology for the multi-scale handling

of containerized computation to allow users to write self-contained and truly

reproducible computational pipelines [33].

2.2 Machine learning

Machine learning is the branch of artificial intelligence (AI) focused on the

development of systems able to solve a task without being explicitly pro-

grammed. In recent years, machine learning techniques have become essential

and pervasive tools in both academic and industry contexts, due to the avail-

ability of (i) large datasets and (ii) high-performance systems, and (iii) the

development of more sophisticated algorithms.

This section is composed of three parts that provide a brief introduction to

the main themes related to the broad field of machine learning. The first part

provides a brief introduction to the fundamental concepts. The second part is

20

2.2. Machine learning

devoted to the main challenge in machine learning that is known as curse of

dimensionality, namely the approaches to cope with high-dimensional data.

The third part describes the typical workflow of machine learning applications.

2.2.1 Definition

In [34], Mitchell provided a general definition of what machine learning is:

A computer program A is said to learn from experience E con-

cerning some task T and performance measure P if its performance

P at task T improves with experience E.

The Experience

The concept of experience, namely the knowledge source from which machine

learning algorithms learn, is known as dataset : a collection of n examples, also

known as samples of instances, which are described by a set of m features, one

of the building blocks of machine learning. Generally speaking, a dataset

D = (X ,M) is composed of (i) the feature matrix X ∈ Rn×m representing

examples on rows and features on columns, and (ii) M the collection of the

dataset’s metadata (e.g. feature names, feature types, samples’ ID, and other

samples metadata).

Features refer to individual measurable properties or characteristics of

the objects or entities belonging to the dataset D. Let Fi indicates a generic

feature and let Xi be the domain of such a feature. Since features can repre-

sent almost anything that is measurable, these can be categorized with respect

to their semantics, which influence the characteristics of the feature domains.

Features can be distinguished as (i) quantitative, (ii) ordinal and (iii) cate-

gorical (also known as nominal), with respect to the measures of the central

tendency they support among the mean, median and mode.

• Quantitative features have a meaningful numerical scale and admit the

calculation of all three measures of central tendency.

• Ordinal features represent categories that have an order but not scale.

They can be used to compute the median and mode, but not the mean.

• Categorical features describe discrete properties (e.g. gender) that have

neither order nor scale. Only the mode can be estimated from them.

21

2.2. Machine learning

Formally, let D = (X ,M) be an (unlabeled) dataset composed of a n×m

feature matrix X reporting n examples described by m features F1, . . . , Fm,

and the collection of dataset metadata M, comprehending features’ names,

types, domains, etc.

The feature matrix X ∈ Rn×m reports the examples {x1, . . . , xn} in the

form of m-length feature vectors xi = ⟨x1, . . . , xm⟩ for i = 1, . . . ,m. Let

xji ∈ Xi be the value of feature Fj belonging to the example xi, which is

defined of the feature domain Xi, which is a generic subset of R. Let denote

X = X1 × · · · × Xm as the instance space, that represent the set of structured

data X in a (possibly very) high-dimensional space.

Finally, we distinguish between unlabeled and labeled datasets. In the

unlabeled dataset DU = (X ,M), examples xi are “simply” described by fea-

tures, and they are exploited by unsupervised learning algorithms to discover

hidden patterns in the data.

Differently, the labeled dataset DL = (X ,Y,M) includes the target vector

Y ∈ Rn, which builds a mapping f : X → Y from examples xi to a desired

output (i.e. target) yi for all i = 1 . . . , n. Supervised learning algorithms take

advantage of labeled datasets to learn an approximation of the underlying

relationship f̂ : X → Ŷ between the features and the targets.

Task

Tasks refer to specific problems that machine learning algorithms aim to solve.

A task defines the goal the algorithm aims to achieve using the provided data

and training process. Tasks are addressed by models, which are the outputs

of a particular learning algorithm applied to a training dataset.

Tasks can be categorized as predictive and descriptive. The goal of predic-

tive tasks is to take advantage of historical data to build a model able to make

predictions about future events. This is achieved by learning salient patterns

and relationships in the data, which are then used to make predictions on

new and unseen data. On the other hand, the descriptive tasks’ goal is to ex-

plain the data rather than make predictions. They focus on summarizing and

interpreting data to gain insights and understand patterns and relationships

within the data.

There exist a variety of tasks. In the following, there are presented some of

them, which are grouped with respect to the type of dataset they experience.

22

2.2. Machine learning

1. Unsupervised tasks identify properties and interesting patterns in-

trinsic in unlabeled datasets.

• Clustering is the task of grouping similar examples based on the

similarities within the features, in order to discover the underlying

structure of the data without prior knowledge.

• Anomaly detection consists in the identification of anomalies in the

data, namely instances that considerably differs from the norm or

expected patterns.

2. Supervised tasks exploit the labeled dataset to learn some mapping

f : X → Y from the features to some targets.

• In regression tasks, the goal is to learn a mapping from instances

to a continuous target.

• In classification tasks, the goal is to learn a mapping from instances

to one of Nc categories C. In particular, one can distinguish be-

tween binary and multiclass classification tasks, which hold Nc = 2

and Nc > 2, respectively.

As said before, a task is addressed by a model, which is created from

a learning algorithm given a dataset. Fixed the kind of task T , there are

several different learning algorithms to create as many models that allow us

to achieve T . Moreover, models can be broadly grouped into three non-

mutually exclusive categories, concerning the mathematical interpretation of

the corresponding learning algorithms.

1. Geometric models represent instances as points in a high-dimensional

Euclidean space and exploit spatial concepts (e.g. distances, lines, planes)

to make decisions.

2. Probabilistic models assume there is an underlying random process mod-

elling the relationship between the data x and the target variable y, and

try to model it using probability distributions.

3. Rule-based models partition the instance space into instance space seg-

ments through a set of logical rules, using either a list or a tree-based

structure.

23

2.2. Machine learning

Moreover, multiple individual models can be combined through different

techniques into an ensemble model, in order to improve overall performance

and robustness [35]. Of course, there are multiple approaches to combining

multiple models in an ensemble.

• Bagging, which stands for bootstrap aggregation, involves training mul-

tiple models independently on bootstrap replicates of the dataset (i.e.

random samples with replacement from the original training set) [36].

The predictions from individual models are then combined through av-

eraging (for regression) or majority voting (for classification) to obtain

the final prediction. Random Forest [37] is a popular bagging-based al-

gorithm that uses decision trees as base models.

• Boosting involves a series of weak models that are sequentially trained

to correct the errors made by the previous models. Each subsequent

model is trained to focus more on the instances that were incorrectly

predicted by the previous models [38]. Examples of boosting algorithms

include AdaBoost [39] and Gradient Boosting [40].

• Stacking combines predictions from multiple models by training a meta-

model that learns to make predictions based on the outputs of the in-

dividual models. It allows the meta-model to learn the optimal way of

combining the predictions from the base models, potentially achieving

higher performance.

Performance

There exists a vast plethora of performance measures, which are task-specific

and used to evaluate the abilities of machine learning models. The choice

of which performance metrics to consider may seem straightforward, but it

strongly depends on the specific goal of the application under consideration.

For instance, the goal of classification tasks is to discriminate among nc ≥
2 classes. The confusion matrix is used to summarize the performance of

classifiers by means of a nc × nc matrix such that rows describe the actual

labels and columns represent the predicted labels. Then, the element (i, j)

counts how many times the model classifies as cj the examples labeled as ci.

For example, the generic confusion matrix for binary classification is shown

in Table 2.1. True positives (TP) and true negatives (TN) are correctly labeled

24

2.2. Machine learning

by the model, as positive and negative, respectively. In contrast, false positives

(FP) are the examples that belong to the negative class but are recognized as

positive, and false negatives (FN) are examples belonging to the positive class

but incorrectly classified as negatives.

Predicted Class
Positive Negative

Actual Class
Positive TP FN
Negative FP TN

Table 2.1: Confusion matrix for binary classification task

The confusion matrix enables the estimation of a series of performance

metrics, as well as the class distribution of the data. Let Pos = TP + FN

and Neg = TN +FP be the number of actual positive and negative examples

in the dataset.

Accuracy Is the proportion of examples for which the model predicts the

correct output.

accuracy =
TP + TN

Pos+Neg

Precision and recall The recall and precision metrics provide insights into

a model’s ability to correctly identify positive instances (recall) and the accu-

racy of its positive predictions (precision), respectively. They are defined as

follows:

recall =
TP

TP + FN
=

TP

Pos
= tpr

precision =
TP

TP + FP

It is worth noting that recall and precision are often inversely related:

increasing one metric may result in a decrease in the other. Achieving a

balance between recall and precision is a common challenge in classification

tasks, and the harmonic mean of these metrics, known as the F1-score, is often

used to assess the overall performance of a model.

25

2.2. Machine learning

F1− score =
2 · precision · recall
precision+ recall

Area under the ROC curve A widely employed performance metric for

binary classification that allows us to condense the confusion matrix is the

AUC-ROC, which stands for Area Under the Receiver Operating Character-

istic Curve. The ROC curve is a probability curve plotting TPR (i.e. true

positive rates) on y- axis against FPR (i.e. false positive rates) on the x-axis

and provides a performance measure across all possible classification thresh-

olds. The AUC value is interpretable as the probability that the model ranks

a random positive example more highly than a random negative example. A

higher AUC indicates better performance: an AUC equal to one means a

perfect classifier, whereas a random classifier has an AUC of 0.5.

2.2.2 The workflow

The machine learning workflow involves a series of steps for developing and

deploying machine learning models. It typically begins with data collection

and preparation, followed by feature engineering and model selection. The

selected model is then trained and evaluated using appropriate performance

metrics. Finally, the trained model is deployed into a production environment,

where it can make predictions on new, unseen data. The workflow often

includes iterations and fine-tuning to improve model performance and ensure

the desired outcomes are achieved.

Problem definition

Defining a problem involves clearly understanding the task at hand and de-

termining how machine learning can be applied to solve it. The fundamental

steps to define a problem in machine learning are to (i) identify the objectives,

(ii) define the task type and (iii) identify input and output data.

Data collection

Gather the relevant data required for the ML task. This may involve collecting

data from various sources, such as databases, APIs, or external datasets.

26

2.2. Machine learning

Data preparation

The primary objective of data preparation is to transform the raw data into

a clean, structured, and consistent format that is suitable for the subsequent

steps in the machine learning pipeline, such as feature engineering, model

training, and evaluation.

Feature engineering

Feature engineering involves the process of selecting, transforming, and gen-

erating new features from the given data to improve the performance and

effectiveness of machine learning models. This also involves dimensionality

reduction and feature transformation techniques to fulfil the requirement of

specific learning algorithms.

Model selection

The choice of the appropriate model that is suitable for the problem at hand

depends on different factors, such as the type of task, the nature of the data

and the available data and computational resources. A vast plethora of avail-

able machine learning algorithms exist. The choice of the most suitable de-

pends on the type of task, the nature of the data, and the available data and

computational resources.

Model training and evaluation

Usually, there is interest in evaluating how well the machine learning algorithm

performs on data that it has not seen before, as a proxy of real data used by

a model deployed in the real world. Therefore, the performance measures are

evaluated on a test set, namely a bunch of data that is separate from the data

used for training.

Cross-validation techniques Cross-validation (CV) techniques are exploited

to get the average behaviour of the model being used to resample different

training and test set pairs from the original training set.

There exist different CV techniques, of which the most common ones are

k-fold CV and leave-one-out CV (LOOCV).

27

2.2. Machine learning

• In k-fold CV, the dataset is split into k equally sized folds. A total of k

models are trained, each one using k−1 folds as the training set and the

remaining as test set. A model is trained and evaluated k times, each

time using a different fold as the validation set and the remaining k− 1

folds as the training set.

• In Leave-One-Out CV (LOOCV), a dataset composed of n examples is

split into as many folds: each example is treated as a separate valida-

tion set, and n models are trained on n − 1 samples and tested on the

remaining ones.

Once cross-validation is terminated, a set of performance metrics, one for

each fold, is obtained. By averaging the results from multiple folds of cross-

validation, you can reduce the variance of the results and get a more accurate

estimate of the model’s performance. Moreover, cross-validation can be re-

peated multiple times to increase the number of observations and obtain a

more robust final estimation. In the case of imbalanced datasets, stratifica-

tion strategies can be used to guarantee that each fold has the same class

distribution as the original dataset.

Hyperparameter tuning

Hyperparameters in machine learning algorithms are settings or configurations

that are not learned from the training data but are required to be set before

training the model. They have a significant impact on the performance of the

model and need to be carefully chosen to achieve the best results. The specific

hyperparameters can vary depending on the learning algorithm you are using,

and the process of systematically optimizing the hyperparameters of a machine

learning algorithm is known as hyperparameter tuning. Hyperparameter tun-

ing involves experimenting with different combinations of these settings to find

the best configuration that maximizes the model’s accuracy, generalization, or

other relevant performance metrics. This process typically requires running

multiple training iterations with different hyperparameter values and selecting

the combination that yields the best results on a validation dataset.

28

2.2. Machine learning

2.2.3 The curse of dimensionality

ML algorithms aim to learn the underlying patterns within the data and to

build models able to generalize. Unfortunately, this process is not so straight-

forward and two main issues may occur.

1. Overfitting. A model is said to overfit the data when it has a high

bias, and then it is not able to generalize. It happens either when (i)

the model is too complex (i.e. too many parameters), or (ii) there are

too few available data.

2. Underfitting. A model is said to underfit the data when it has a

high variance and then it is unable to capture the relationships between

features because it is too simple (i.e. not enough parameters), or because

there are not enough training data.

These issues are strictly related to the curse of dimensionality, which arises

when the number of dimensions (i.e. features) in a data set increases. Indeed,

the number of available samples is generally limited for different reasons (e.g.

costs, rare events), whilst the number of features describing each sample can

be arbitrarily large, especially in omics and multi-omics contexts.

The curse of dimensionality has important consequences in the learning

process. As the number of dimensions increases, the data points become more

and more spread out, which can lead to data sparsity. This means that there

may be very few data points in each dimension, which can make it difficult to

identify patterns in the data. Moreover, as the number of dimensions increases,

the data becomes more sensitive to noise. Then, even small amounts of noise

can have a significant impact on the data, which can lead to issues for machine

learning algorithms.

The curse of dimensionality is strictly related to the Garbage-In Garbage-

Out (GIGO) principle, which states that the quality of a trained model is only

as good as the quality of the training data. This means that if the data is not

clean and well-prepared, then the machine-learning algorithm will not be able

to produce accurate results.

To deal with the curse of dimensionality and the GIGO principle is im-

portant to make sure that the data is clean and well-prepared before being

used. Moreover, dimensionality reduction techniques, such as feature extrac-

tion and feature selection, allow for a reduction in the number of dimensions

29

2.2. Machine learning

in the dataset, which improves the interpretability of the data and reduces

the sensitivity to noise.

Feature extraction

Feature extraction techniques create a new set of representative features that

capture the underlying patterns or characteristics in the data. They are of-

ten methods based on matrix decomposition techniques, such as Principal

Component Analysis (PCA), Non-negative Matrix Factorization (NMF), and

Independent Component Analysis (ICA).

Feature selection

Feature selection is the process of identifying only the most informative fea-

tures concerning the task at hand, and removing the noisy non-informative,

irrelevant, and redundant features. This can help to reduce data sparsity and

improve the performance of machine learning algorithms, as well as reduce

model complexity (i.e. avoid overfitting) and improve interpretability (less is

more).

Given a set of m features, there are 2m possible feature sets. The exponen-

tial number of candidate solutions makes not feasible the exhaustive search.

Therefore, most approaches apply a ‘greedy’ search algorithm that never re-

considers the choices it makes. Feature selection techniques can be broadly

categorized into four main categories, as follows:

1. Filter methods are independent of the learning algorithm and per-

form a statistical analysis over the features space to select a discrim-

inative subset of features. Filter methods can be broadly categorized

into univariate and multivariate approaches. Univariate methods as-

sess feature relevance independently, utilizing a specific criterion. While

they excel at identifying irrelevant features, they struggle to eliminate

redundant ones. This is because univariate filter methods solely evalu-

ate features in isolation, and do not consider the redundancies between

them. In contrast, multivariate methods incorporate feature correlation

into their assessment process, enabling them to address both irrelevant

and redundant features. However, while multivariate methods generally

outperform univariate methods, they come at the cost of increased com-

putational complexity. A relevant approach for filter-based feature selec-

30

2.2. Machine learning

tion the so-called minimum Redundancy Maximum Relevance (mRMR)

method, which was initially proposed to cope with some relevant bioin-

formatics problems [41].

2. Wrapper methods exploit a search algorithm, either deterministic or

guided by a heuristic, that is wrapped around a classification model to

evaluate candidate feature subsets by training and testing a model. The

idea is that feature selection is ‘wrapped’ in a search procedure that

usually involves training and evaluating a model with a candidate set of

features [42].

3. Embedded methods integrate the feature selection step during the

learning procedure into a single process. During the training step, the

classifier adjusts its internal parameters and determines the appropriate

weights/importance given to each feature to produce the best classifica-

tion accuracy [43].

4. Hybrid methods firstly reduce the features through the application of

a filter method, then the reduced feature set is passed through a wrapper

or embedded method to obtain the final feature subset [44, 45].

The combinatorial nature of the feature selection problem allows us to face

this problem in several ways. An interesting high-level approach is switching

from tabular representation of the dataset to a graph-structured one, which

opens the gates to a plethora of different population-based metaheuristic ap-

proaches such as Evolutionary Algorithm (EA) and Genetic Algorithm (GA),

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)

that allow to advantage of the graph topology in the feature selection process.

In the literature, different graph-based feature selection methods have been

proposed based on filter [46, 47] and hybrid [48] approaches.

Ensemble feature selection Analogously to ensemble learning, ensemble

feature selection combines the results of multiple feature selection algorithms

to select a final set of features. This can be done in a variety of ways, but the

most common approach is to use a voting system. In a voting system, each

feature selection algorithm votes for the features that it believes are most

important. The features that receive the most votes are then included in the

final set of features.

31

2.3. Multi-omics data integration

Ensemble feature selection has several advantages over traditional feature

selection algorithms. First, it can improve the accuracy of the feature selection

process. This is because ensemble methods can help to mitigate the biases of

individual feature selection algorithms. Second, ensemble feature selection

can be more robust to noise in the data. This is because ensemble methods

can combine the results of multiple algorithms, which can help to reduce the

impact of noise on the feature selection process.

Data perturbation involves creating multiple data subsets by randomly

sampling the original dataset. Each data subset is then used to train a separate

feature selection algorithm. The features that are consistently ranked highly

across the different data subsets are then included in the final set of features.

Function perturbation involves training multiple feature selection algorithms

on the original dataset. The different feature selection algorithms can be

different types of algorithms, or they can be different parameter settings of

the same algorithm. The features that are selected by the majority of the

feature selection algorithms are then included in the final set of features.

2.3 Multi-omics data integration

Recent interest has focused on measuring multiple omics data types on a single

set of samples, in order to integrate different types of molecular measurements

into an omics-based test. Such multidimensional datasets have the potential

to provide deep insight into biological mechanisms and networks, allowing for

the development of more powerful clinical diagnostics.

1. Early Integration.

Early integration methods consider developing a model using a joint

data matrix that is obtained by combining multiple omics datasets.

Commonly, early integration does not require any pre-processing and

simply consists of the concatenation of individual omics to form a single

large matrix of multi-omics data, which is then used for supervised or

unsupervised analysis.

2. Mixed Integration.

The mixed integration strategy addresses the shortcomings of the early

integration by transforming independently each omics dataset into a

32

2.3. Multi-omics data integration

Figure 2.2: Integration strategies. Image from [49].

new representation, such as graphs or kernel matrices, which are then

combined to construct the total model. Graphs provide a formal means

to transform and portray relationships between different omics. Kernel

methods enable the transformation of data from its original space into a

higher dimensional feature space, in which simple linear models can be

trained.

3. Intermediate strategies

Intermediate integration strategies create multiple intermediate models

for the different omics data and then build a final model from various in-

termediate models. Integration approaches facilitate the understanding

of interactions amongst different omics for a certain phenotype (for ex-

ample, survival in pancreatic cancer). The final multi-dimensional joint

model can be built using an ML algorithm that uses the most relevant

variables from each omics model.

4. Late Integration

The most straightforward integration strategy is to apply machine learn-

ing models separately on each dataset and then combine their respective

predictions, namely Late integration. Its strength relies on its capacity

33

2.3. Multi-omics data integration

to use readily available tools designed specifically for each omics type,

and compared to the other strategies, it does not suffer the challenges

of trying to assemble different kinds of data. The shortcoming of such

an integration strategy is that it cannot capture inter-omics interactions

and at no point in the learning process can the different machine learn-

ing models share knowledge and utilize the complementarity information

between omics.

5. Hierarchical Integration

Hierarchical integration strategies are characterized by integrating ex-

ternal information, such as public databases and scientific literature.

2.3.1 Challenges

Many challenges arise when integrating multi-omics datasets. Some of them

are general to machine learning approaches, whereas others are specific to the

life science field.

Among the challenges related to the machine learning field (i) the presence

of missing values and (ii) imbalanced datasets.

Missing data can be addressed in different ways. If enough samples are

available, listwise deletion, namely removing samples with missing data, may

be acceptable. If not, different statistical methods can be used to impute the

missing values.

Class imbalance occurs when the distribution of classes in the training

dataset is skewed, which can be a significant problem when working on rare

events, such as an uncommon trait in a population. Several methods can be

used to resolve this problem [50], such as sampling and cost-sensitive learning.

Sampling tries to balance the dataset before the integration process, where

either the majority class is randomly under-sampled, or the minority class

is oversampled by creating new artificial observations, or a combination of

both methods [51, 52, 53]. Cost-sensitive learning is directly integrated into

the algorithm and balances the learning process by giving more weight to

misclassified minority observations.

Life science challenges are related to the noisiness and complexity of bi-

ological data, as well as their error-prone for multiple causes (e.g. batch

effect). Data heterogeneity is a major challenge in omics research that must

be handled correctly. Omics datasets can have different data distributions or

34

2.3. Multi-omics data integration

data types, as well as differ vastly in size, namely in the number of features.

The heterogeneity matter is strictly connected to the curse of dimensionality

because the high number of features is often paired with a relatively small

sample size, for economic reasons, scarcity of the phenotype of interest, lack

of volunteers, etc. Moreover, relevant patterns often involve many molecules

from different omics layers, which implicates the need to consider multiple

omics at the time [54]. The different integration strategies presented above

address those problems differently, by either reducing the number of features,

transforming the input data into a more concise representation, or integrating

them at the end of the analysis [49, 55].

35

Chapter 3

Graph Indexing

Graphs are mathematical objects used to represent items, also called vertices,

and relations between them. In the bioinformatics context, they are exploited

to express relationships at any biochemical, biological, and medical level. For

example, graphs can represent physical molecule structure by expressing chem-

ical bonds among atoms [56]. At the cellular system level, graphs are instead

applied to represent biological actors, such as genes, proteins, or RNAs, and

their relations, such as physical interactions or causal inference [57, 58, 59].

Differently, in medical applications, graphs are exploited in decision support

systems to connect patient data with disease states and treatments [60]. For

what concerns integration and analysis of multi-omics data, graphs are be-

coming popular for integrating biomedical information with data regarding

multiple omics. In such a model, items compose a heterogeneous set of biolog-

ical and meta-biological objects. Graphs of genetic interactions are enriched

by embedding their relationship with diseases, drugs, anatomic phenotypes,

biological functions, or cellular localization. Then, multi-omics data linked to

the genetic actors are integrated. The result is a knowledge base that can be

exploited for drug repurposing, for prioritizing disease-associated genes, or for

patient classification and biomarker identification [61, 62, 63].

A key computational task regarding graphs is the search for specific topolo-

gies contained within them, which is known to be NP-complete. Such task

36

is widely involved in many bioinformatic approaches as well as in the field of

computational chemistry. Subgraph searching is a preliminary step in find-

ing motifs in biological networks [64, 65, 66]. Network motifs are statisti-

cally over-represented sub-structures. They are building blocks of complex

networks[67]. Several types of motifs have been discovered [68] such as the

feed-forward loops that define patterns in gene regulatory networks [69]. De-

tection of motifs is a computationally challenging problem which requires the

exhaustive search of subgraphs within a given network. Subgraph searching is

also applied for tuning model parameters in biomolecular simulations [70]. In

this context, graph-based representation of molecules facilitates the searching

of fragments in large collections of molecules. Reliable model parameters are

estimated based on the frequency of retrieved fragments. Moreover, collec-

tions of metabolic networks are queried in order to identify conserved path-

ways [71]. Because of the complexity of the querying task, many approaches

limit the search to simple structures such as paths or small subgraphs[72].

Subgraph searching is also applied for biological network alignment, that is

a powerful instrument for predicting functionalities of newly discovered ele-

ments [73]. Alignment can exploit the search of small subgraphs, also called

seeds, within the set of networks that have to be aligned, in order to reduce

the computational time requirements [74]. Other alignment tools, such as

RINQ [75], use indexing schemes. Index-based strategy drives the alignment

process to specific portion of the graphs and avoids expensive computations.

Subgraph searching is also a baseline procedure in biomedical database sys-

tems 1 consisting of genes, compounds, diseases, symptoms, side effects and

annotations, integrated in networks. The networks are queried in order to

prioritize gene-disease associations [61] or for drug re-purposing studies [76].

However, querying biological networks is a challenging task which, in many

cases, increases its complexity with the query size [77].

In this chapter we formally introduce the subgraph isomorphism prob-

lem on labelled graphs and the index-based approaches to cope with such a

problem. Finally, a state-of-the-art software is presented.

1https://het.io/

37

https://het.io/

3.1. Formalisation

3.1 Formalisation

Let D = {G1, . . . , Gm} be a collection of connected labeled graphs. Graphs

within the collection are either directed or undirected. Directed graphs are

characterized by edges having a direction, then each edge has a source vertex

and a destination vertex. In the undirected case, the edges do not have a

direction, then each edge can be traversed in either direction. Labels are

domain-specific knowledge that is attached to the vertices of the graphs. Let

Σ = {σ1, . . . , σT } be the label alphabet of D and let us introduce the labeling

function M : V → Σ mapping a graph vertex to its label.

Definition 3 (Graph). A graph Gi is a triple (Vi, Ei, Li), where:

• Vi = {vj}, j = 1, . . . , ni is the set of vertices in Gi;

• Ei = {(vk, vj), j, k = 1, . . . , ni} is the set of edges linking vertices in Vi

• Li = {Mi(vj)∀vj ∈ Vi} is the set of labels of vertices of Gi.

Definition 4 (Graph isomorphism). Two graphs Gi = (Vi, Ei, Li) and Gj =

(Vj , Ej , Lj) are isomorphic if and only if there exists a bijective function I :

Vi → Vj mapping each vertex of Gi to a vertex of Gj such that (u, v) ∈ Ei if

and only if (I(u), I(v)) ∈ Ej, and vice versa. For labeled graphs, the constraint

of label compatibility must also be respected: M(v) = M(I(v))∀v ∈ V1.

Definition 5 (Subgraph isomorphism). A subgraph isomorphism of the query

graph Q = (Vq, Eq, Lq) in the target graph G(V,E,L) is an injective function

I : Vq → V such that (u, v) ∈ Eq if and only if (I(u), I(v)) ∈ E, M(u) =

M(I(u)), and M(v) = M(I(v)).

3.2 Filter-and-verification methods

The naive way to cope with the subgraph isomorphism problem is to check

the query graph for subgraph isomorphism against each graph in the dataset,

but the NP-completeness of the problem makes such an approach infeasible.

Different algorithms have been proposed to improve the performances

of the combinatorial search by exploiting heuristic methods for pruning the

search space, such as VF2 [78] and VF3 [79], or by changing the order in which

query vertices are matched, such as RI [80].

38

3.2. Filter-and-verification methods

However, when the number of graphs in the collection is relatively high,

or when the target graphs have relatively large sizes, this procedure often gets

too time-consuming. To this end, multiple methods based on graph indexing

have been proposed in order to reduce the set of graphs against which to test

for subgraph isomorphism.

These solutions are based on an index built on top of structural features

extracted from the graphs. Then, given a query, the index is exploited to

filter out either portion of or entire graphs that definitely do not contain the

query. The graphs that passed out the filtering phase, which are usually much

smaller in size than the whole dataset, may actually be a false positive (i.e. do

not contain the query) and are finally tested for subgraph isomorphism with

an exact approach.

The algorithms belonging following the filter-and-verification approach op-

erate in three stages: (i) index construction, (ii) filtering and (iii) verification.

3.2.1 Index construction

Structural features are extracted from the graph in the collection and stored in

an appropriate data structure, such as a hash table or a tree-based structure.

Different algorithms take into consideration different kinds of features. The

choice ranges from simple paths, trees, cycles, subgraphs, or a combination of

these. The feature extraction is based either on the exhaustive enumeration

of all features of a particular kind, or using mining-based approaches. Mining-

based approaches require a high amount of time because of the mining step,

however, they are able to build more compact indexes with respect to the

approaches based on the exhaustive enumeration. Moreover, some algorithms

attach location information (e.g. the ID of the first vertex) to the features.

Regardless of the strategy actually used, a limit is imposed on the size of the

indexed features, where the size is defined as the number of edges comprising

it. Once the index is built, it is then saved to secondary memory, from which

it will be loaded for future uses.

3.2.2 Filtering

Given a query graph, the filtering stage initially proceeds to extract from

it the features of the same form as those used to create the index. Then,

these features are then matched against the index resulting in a candidate set,

39

3.3. State of the Art

namely a set of graphs containing all the features of the query, hence possibly

matching the query itself.

3.2.3 Verification

The candidate set provided by the filtering stage may contain false positives,

since candidate graphs may contain all the features of the query graph but not

the graph itself. Therefore, the verification stage consists of the application of

an exact subgraph isomorphism algorithm against the graphs in the candidate

set returned by the filtering stage.

3.3 State of the Art

The subgraph searching problem consists in finding a query graph within a

target graph. It is a well-studied computational problem which is known to be

NP-complete [81]. A generalization of such formulation considers more than

one target graph. This is typically referred to as one-to-many in contrast

to the original formulation that is referred to as one-to-one. Techniques for

solving the one-to-one problem are mainly based on heuristics to speed-up

the searching of a mapping function. Instead, the main efforts for solving the

one-to-many problem are focused on developing a good filtering strategy for

discarding target graphs belonging to the collection that do not contain the

query graph. Performance in terms of construction time, size, querying time

and filtering power are key concepts for their development. Such a perfor-

mance is strictly related to the type of feature that is taken into account.

In details one-to-one approaches can be divided in two categories: pure sub-

graph isomorphism and assisted solvers. The first category is composed by

algorithms that are focused on improving the performances of the combinato-

rial search by exploiting heuristic methods for pruning the search space, such

as VF2 [78] and VF3 [79], or by changing the order in which query vertices

are matched, such as RI [80]. The second category comprises algorithms able

to efficiently reduce the number of target vertices that are candidate to match

with query vertices. This reduction is obtained by indexing the target graph

and by comparing the features assigned to target vertices with those of the

query vertices. Indexing means that a predefined type of features are extracted

from the graph and they are stored in a data structure in order to recognize

in which parts of the graph, or in which graphs of a collection, a given fea-

40

3.3. State of the Art

ture occurs. Once candidates are retrieved, this information is also used for

generating a quasi-optimal ordering of the query vertices. In this perspective,

GraphQL [82] uses a pseudo subgraph isomorphism test, while TurboISO [83]

exploits a tree-structured auxiliary index, and CSL [84] postpones Cartesian

products with a matching order that prioritizes the query vertices in the core

structure, similar to RI.

One-to-many approaches can be differentiated by the type of features they

take into account (e.g. paths, trees, cycles or subgraphs) and how they ex-

tract them. GraphGrep [85], GraphGrepSX [86], GRAPES [87] and SING

[88] extract paths by indexed graphs with simple enumeration procedures,

but they differ in the type of data structure and additional information they

use. Simple enumeration is also used by CT-Index [89] for extracting trees

and cycles, and by GDIndex [90] and GCode [91] for extracting subgraphs.

On the contrary, mining-based algorithms recognize frequent features with ad

hoc procedures. SwiftIndex [92] and TreePi [93] extract frequent trees, as

well as Tree+Delta [94] which also retrieves frequent substructures. Mining of

subgraph is also performed by CP-index [95], gIndex [96], FG-Index [97] and

Lindex+ [98]. Alternatively, signatures based on the pairs of vertex labels

of the graphs can be exploited [99]. Mining-based approaches require high

amount of time because of the mining step, however they are able to build

more compact indexes with respect to the approaches based on the exhaustive

enumeration.

In recent years, one-to-one approaches have reached a high performance.

In many cases, they outperform the indexing methodologies of one-to-many

approaches by simply scanning all the target graphs in a collection. However,

when the number of graphs in the collection is relatively high, or when the

target graphs have relatively large size, indexing techniques are still predomi-

nant, and hybrid approaches are investigated [100]. In [101], authors proposed

an algorithm for the one-to-many problem which exploits a technique that it is

usually embedded in one-to-one approaches, such as GraphQL, TurboIso and

CFL. The technique consists in a pre-processing step for detecting the set of

target vertices that are most probable to be matched with a given query ver-

tices by looking at their connectivity. Authors have equipped the verification

phase of GraphGrepSX, GRAPES and CT-Index with such a technique show-

ing that modified one-to-many algorithm, in particular GRAPES, sensibly

outperform GraphQL, TurboIso and CFL for the verification step. However,

41

3.3. State of the Art

such a modification is added up to the original indexing techniques of the

algorithms, thus it only helps in increasing the filtering power but it does not

solve problems linked to the size and build time of the original index. Similar

considerations can be done for cache-assisted frameworks [102, 103]. In this

perspective, compression of the index plays a central role for both one-to-one

and one-to-many approaches [104, 105].

3.3.1 GRAPES algorithm

A performance study [106] reports that index-based approaches have several

issues in building indices on large graph databases in terms of number of dis-

tinct labels, number of vertices in data graphs, density of target graphs and

number of target graphs due to their poor time and space efficiency of in-

dex construction. Among the tested algorithms, GRAPES showed the best

performance in terms of running time. However, its index requires a rela-

tively high memory amount compared to the other approaches. GRAPES is

implemented both as sequential and parallel software using symmetric mul-

tiprocessing (SMP) architectures. In addition, GRAPES was developed for

achieving good performance in the collection of graphs as well as in scanning

a query over a single large target graph.

Indexing phase

GRAPES indexes a database of labeled graphs G = {g1, . . . , gn} using la-

beled paths up to length l as features. For each path of the target graphs,

GRAPES stores the identification of its starting vertices and the number of

its occurrences in each graph.

In GRAPES labelled paths are stored in a trie, a tree structure which

compacts paths by their longest common prefixes. Given two labelled paths,

p̂ = (σp
1 , σ

p
2 , . . . , σ

p
l) and q̂ = (σq

1, σ
q
2, . . . , σ

q
l), that share the first i labels,

(σp
1 , σ

p
2 , . . . , σ

p
i) = (σq

1, σ
q
2, . . . , σ

q
i), a branch, starting from the root of the tree,

is built in order to represent the shared part of the paths. Then, the branch is

split into two different branches that represent the non-shared suffixes of the

paths, (σp
i+1, . . . , σ

p
l) and (σq

i+1, . . . , σ
q
l). Information regarding the starting

vertices, vp1 and vq1, is stored on the corresponding leaves of the branches,

as well as the number of times each path occurs in each target graph. The

internal organization of the trie is shown in Figure 3.1. If only paths of the

42

3.3. State of the Art

Figure 3.1: Each node in the GRAPES trie links to (i) the list of graphs gi
containing the feature associated with that node, (ii) the number of times the
feature occurs in each Gi, and (iii) the starting vertices vi of each such path.
Adapted from [87].

same length were extracted, the information would reside only on the leaves

of the trie. By considering paths of variable length up to a maximum length

lp, the information also resides on intermediate nodes of the trie.

Filtering phase

During querying phase, labelled paths are extracted from the query. Similarly

to the extraction of paths from target graphs, for each path the number of

times it occurs in the query graph is retrieved. Initially, all the target graphs

are candidates to contain the query graph. Query paths are searched in the

index in order to recognize the target graphs that contain the same paths of

the query. For each path, the number of occurrences within the target graph

must be equal or exceed the number of its occurrences in the query graph. By

using the starting nodes of the paths stored in the index, the initial structures

of target graphs are skimmed in order to extract only the vertices that are

the starting point of paths in the query graph. Thus, the filtering procedure

produces two different results, a list of graphs that may contain the query

(since each selected graph contains the same labelled path of the query with

43

3.3. State of the Art

the same amount), and for each selected graph the list of vertices that are

candidate to match with the query vertices.

Verification phase

The verification phase is performed with the VF2 algorithm [78] which solves

the subgraph isomorphism problem. The problem of searching a query graph

within a target graph consists in finding a mapping between the vertices of

the query and target graphs such that constraints are satisfied. Constraints

regard the compatibility of labels assigned to the vertices and the existence of

the query edges between the corresponding query-target mapped vertices.

44

Chapter 4

Decision diagrams

Decision diagrams (DDs) are a broad family of graph-based data structures

for the efficient encoding and manipulation of functions defined on discrete

structured domains, namely defined as the cross-product of finite sets.

Initially, they were proposed for industrial hardware verification due to

their ability to encode complex Boolean functions on very large domains.

Then, they were successfully applied in different research fields ranging from

network reliability analysis [107] to performance evaluation of stochastic sys-

tems [108]. A core problem in model checking is that space and time require-

ments increase exponentially with the models’ size. One method to alleviate

this problem is symbolic model checking, where sets of states are stored in

symbolic data structures, as the decision diagrams. In these contexts, they

have proven to be effective tools (i) to encode compactly structured sets by

exploiting their structure and regularity, and (ii) to manipulate entire sets of

elements at once, instead of exploring every single element explicitly.

In this chapter, we formally introduce the family of decision diagram data

structures and their most common classes, together with the supported op-

erators to their manipulation. Finally, some implementation details and a

decision diagram library are presented.

45

4.1. General definition

4.1 General definition

Generally speaking, decision diagrams are rooted directed acyclic edge-labeled

graphs representing functions from a set of L variables xL . . . , x1 to generic

values Y .

Variables xi are defined on the domains Xi; then the domain of the function

represented by the Decision Diagram (DD) is the cross-product of all the

domains Xi. In the following, there are considered ordered decision diagrams,

namely a total order is defined on its variables (i.e., xl ≻ xk ⇔ l > k) such

that every path through the DD visits nodes according to this ordering. The

nodes of a DD are organized in a level-wise fashion and are either terminal or

non-terminal. Let p be a generic node and let p.lvl ≥ 0 be the level of node

p within the DD.

• A non-terminal node m at level 1 ≤ k ≤ L is labeled with a variable

var(m) ∈ {x1, ..xK} and has exactly Nvar(m) = |INvar(m)| outgoing edges
pointing to its children nodes. We refer to the i-th child of node m as

child(m, i), with 0 ≤ i < Nvar(m).

• A terminal node m such that p.lvl = 0 has no children and is labeled

with a value val(m), which generally corresponds to one of the return

values of the function.

Moreover, non-terminal nodes represent cofactors of the function being

represented by the whole decision diagram. Let us consider a generic decision

diagram D defined over L variables (xL, . . . , x1), let Dxi=v (where v ∈ Xi) as

the decision diagram over variables (xL, . . . , xi+1, xi−1, . . . , x1) representing

the function fD(xL, . . . , xi+1, v, xi−1, . . . , x1). Then, given a constant vector

i = (iL, . . . , i1) ∈ X, we can evaluate the function encoded by the DD in

linear time by traversing it starting from the root to a terminal node.

An example of DD is reported in Figure 4.1(a). It is defined on four

variables, x4, . . . , x1 and encodes the function counting the occurrences of

an element into a multiset 1 S where each element is described by a tuple

(x4, x3, x2, x1) with x4 ∈ {0, 1, 2, 3}, x3 ∈ {0, 1, 2, 3}, x2 ∈ {0, 1, 2}, and x1 ∈
{0, 1}. Thus, the DD path from the root assuming x4 = 2, x3 = 3, x2 =

0, x1 = 1 and leading to terminal node 3 means that the element (2, 3, 0, 1)

1The multiset (or bag) extends the concept of a set allowing for multiple instances for
each of its elements.

46

4.1. General definition

has three occurrences in the multiset S. Let eval(dd, x) be the function that

given a decision diagram dd and a variable assignment x, returns the value of

the terminal node linked corresponding to variable assignment x in dd.

4.1.1 Notion of ordering

From this point on, there is the assumption of ordered decision diagrams: there

exists a bijective mapping between the variables xL . . . , x1 and the DD levels,

so that variable xi is assigned univocally to level k ≥ 1. It is important to

notice that the choice of the ordering for the variables of the DD can strongly

affect its size, i.e. its number of nodes and edges.

The high storage efficiency of DDs is strongly conditioned by the choice of a

“reasonably good” variable order, i.e. the assignment of the problem variables

to the DD levels. Finding the optimal variable ordering is known to be compu-

tationally expensive [109], and as a consequence, the efficiency of approaches

based on DDs is largely reliant on the development of domain-specific heuris-

tics to identify an appropriate ordering. Other techniques known as dynamic

variable reordering can be used to modify the ordering of an existing decision

diagram in an attempt to reduce its size. In literature, some heuristics exist

to help search at least sub-optimal orders, but these algorithms typically use

problem-specific information and it is hard to apply on different application

domains [110, 111, 112, 113].

4.1.2 Reduction rules

One of the reasons that allow decision diagrams to often provide compact

storage is that they are stored in a reduced form.

Firstly, if nodes m and m′ are identical, namely if they are labeled with

the same variable and their children are identical (i.e. var(m1) = var(m2) ∧
child(m1, i) = child(m2, i) for all i ∈ INvar(m1)), only one copy of the node is

stored. We refer to this as the sharing of nodes. Secondly, if the children of

node m are all identical, namely if child(m, i) = child(m, j) ∀ i, j ∈ INvar(m),

node m is said to be redundant because the value of the function does not

depend on the value of the variable represented by m. Then, such node is

removed and incoming edges on it are redirected to its unique child. We refer

to this as a skipped level.

47

4.2. Classes of decision diagrams

Figure 4.1: Different representation of an MTMDD encoding the function
counting the occurrences of an element into the multiset S: (a) an ordered
MTMDD; (b) a reduced ordered MTMDD; (c) a quasi-reduced ordered MT-
MDD

Two popular reduction schemes are fully reduced and quasi-reduced de-

cision diagrams A decision diagram is said to be fully reduced if it contains

neither redundant nor duplicated nodes.

A common variation of the above reduction rule is to allow redundant

nodes but no duplicate nodes. An ODD is called quasi-reduced (QRDD) if it

contains no duplicate nodes and if all paths from the root node to a terminal

node visit exactly one node for each variable.

In Figure 4.1 an MTMDD is depicted in its complete (a), fully reduced

(b) and (c) quasi-reduced representations. For the sake of clarity, decision

diagrams are common to explicitly represent only those paths ending to the

terminal nodes different from zero. Because of this, the node s and the edges

on and from it, which are represented in Figure 4.1(a), can be omitted.

In Figure 4.1(a) the nodes p and q, colored in cyan, are duplicate nodes,

while r and s are examples of redundant nodes. The corresponding reduced

version (i.e. without redundant and duplicated nodes) is instead reported in

Figure 4.1(b). In Figure 4.1(c) the quasi-reduced (i.e. without duplicated

nodes) version of the OMTMDD in Figure 4.1(a) is depicted.

4.2 Classes of decision diagrams

Various classes of decision diagrams have been defined in the literature. In

the following, there are presented some of the most common ones and the

48

4.2. Classes of decision diagrams

operations supported by them.

4.2.1 Binary Decision Diagrams

The Boolean Decision Diagram (BDD) represents a L-variable boolean func-

tion of the form f : BL → B, for some finite L ∈ N.
A non-terminal node at level L ≥ k ≥ 1 corresponds to a choice for the

value of the variable xk, and has two outgoing edges that are labeled with

0 and 1. Such edges point to child(p, 0) and child(p, 1) respectively, which

are both at levels below k. Terminal nodes correspond to constant functions

returning 0 and 1, respectively.

BDDs are manipulated using logical operators, such as the NOT operator,

which returns the complementary BDD, and the AND and OR operators,

which return the conjunction and disjunction of two BDDs, respectively.

A BDD that is ordered and reduced provides a canonical representation of

the function. Given a boolean function and a variable ordering, there exists

exactly one ROBDD representing that function.

4.2.2 Multi-valued decision diagrams

The Multi-way Decision Diagram (MDD) extend the BDD by allowing non-

terminal nodes to represent variables defined on integer domains. MDDs en-

code functions of the form f : X → B, where the domain X is the cross-product

X = XL × · · · ×X1 of L finite sets such that each Xk = {0, 1, . . . nk − 1}, for
some nk ∈ N.

Then, non-terminal nodes at level k correspond to a multi-way choice for

the argument variable xk, namely a cofactor fxk=c, for some c ∈ Xk.

MDDs are widely used to encode sets of elements, and they can be ma-

nipulated using set operators such as union, intersection and difference.

A reduced ordered MDD (ROMDD) is a canonical representation: given

any integer function and a variable ordering, there exists exactly one ROMDD

representing that function.

4.2.3 Multi-terminal decision diagrams

The Multi-Terminal Boolean Decision Diagram (MTBDD) extends the BDD

by allowing arbitrary terminal nodes in order to represent functions of the form

f : BL → R. The Multi-Terminal Multi-way Decision Diagram (MTMDD)

49

4.2. Classes of decision diagrams

Figure 4.2

naturally merge MTBDD and MDD to encode either integer or real functions

of the form f : X → R. Reduced and quasi-reduced ordered MTMDDs are

canonical representations of the function.

Multi-terminal versions of decision diagrams can be manipulated using

both arithmetic and relational operators. For instance, the application of the

multiplication operator between two MTMDDs d1 and d2 is depicted in Figure

4.2. The result of the multiplication is encoded in the terminal nodes. Given

a variable assignment x = ⟨x4, x3, x2, x1⟩, the terminal value corresponding to

this variable assignment is given by eval(dd1, x) × eval(dd2, x). It follows

that the resulting MTMDD will contain all the variable assignments that

correspond to non-zero terminals in both the input MTMDDs.

For instance, let us consider the two following variable assignments: x1 =

⟨1, 3, 2, 0⟩ and x2 = ⟨1, 3, 2, 1⟩. In dd1 they both correspond to terminal three,

whereas dd2 has a non-zero terminal only for x2, whose value is equal to one.

As shown in the Figure, the product MTMDD reports the variable assignment

x1 which is linked to terminal 1 × 3 = 3, whereas the assignment x2 is not

reported since it is not encoded in dd2.

4.2.4 Edge-valued decision diagrams

Edge-valued decision diagrams can encode functions with a non-boolean range

as multi-terminal decision diagrams, but in such a way that the function’s

return value is distributed over the edges found along a path, instead of be-

ing encoded in terminal nodes. This brings to more complex manipulation

algorithms with respect to multi-terminal versions and exponentially more

compact representations than their respective multi-terminal versions.

50

4.3. Decision diagram implementation

4.3 Decision diagram implementation

In the literature different software libraries implementing decision diagrams

were proposed, such as CUDD [114], LibDDD [115], Meddly [116], and Syl-

van [117].

All of experimental work was implemented using the Meddly (Multi-way

and Edge-valued Decision Diagram LibrarY) package, which natively supports

all the decision diagram classes presented so far. In particular, such a library

has been chosen because it offers two different user interfaces: (i) a simple

interface which provides the basic operators to easily create and manipulate

DDs, and (ii) an expert interface which allows the user to customize the exis-

tent operators and/or to define new ones.

A named collection of nodes of a particular variety of DD that are asso-

ciated with the same domain, is called a forest, namely a very large decision

diagram with multiple root nodes. All forms of DDs in Meddly require order-

ing of variables an ordered collection of k > 0 variables with specified sizes

is called a domain D ∈ Nk. Let D = (Nk, . . . ,N1) be a generic domain on k

variables, where Ni ∈ N is the size of variable xi, which can assume a value in

[0,Ni) interval.

Within a given forest, Meddly automatically eliminates duplicate nodes us-

ing a unique table, imposes forest-specific reduction rules, and handles mem-

ory management of the nodes (storing them compactly, garbage collection,

etc.) [118]. This means that nodes are not even duplicated across different de-

cision diagrams. Whenever a new node needs to be created, it is first verified

whether or not such a node already exists in the forest and, if so, reused.

The operations relevant to this thesis are provided by the simple interface,

which are described below:

• createEdge creates a new DD in the given forest by explicitly stating

a set of variable assignments and the corresponding return values. For

example, let F be a forest defined on the domain X = X3 × X2 ×
X1 and f : X → Y be a function represented by a decision diagram.

Given the variable assignments x1 = (a1, b1, c1), x2 = (a2, b2, c2), x3 =

(a3, b3, c3), and the corresponding return values y = (y1, y2, y3), the

call to createEdge(F, (x1,x2,x3), (y1, y2, y3)) creates a new decision

51

4.3. Decision diagram implementation

diagram in the forest F representing the following function:

f(x) =



y1 if x = x1

y2 if x = x2

y3 if x = x3

0 otherwise

• evaluate determines the value of the function represented by the DD

for a given assignment of its variables. Then, the call evaluate(dd, x1, . . . , xk)

returns the terminal value linked to the path x1, . . . , xk of the decision

diagram dd.

• apply is used to manipulate DD applying on it a specific DD operator.

Meddly supports both unary and binary operators and imposes that

operands of binary operators must have the same domain, but they can

live in different forests.

Meddly automatically uses and maintains a computed table to reduce the

computational cost of the apply operations. This is essentially a cache for

storing the results of operations on DDs. Before any operation is performed,

the cache is checked to see if the same operation has already been performed.

If so, the results can simply be reused. If not, the result is computed, stored

in the cache and then returned.

52

Part II

Theoretical results

53

Chapter 5

Graph-based feature selection

for multi-omics integration

In this chapter, we propose a general multivariate filter-based feature selection

algorithm based on the minimal-Redundancy Maximum-Relevance (mRMR)

criteria that is defined via an optimization problem defined over a graph rep-

resentation built from a tabular training set.

5.1 Feature graph formalisation

In the following, a knowledge representation in the form of a graph is derived

from a labeled dataset D = (X ,Y,M) built with respect to a generic super-

vised task T , either classification or regression. With the term feature graph

we refer to a graph whose vertices represent features, and edges between pairs

of vertices (i.e. features) encode feature interactions and the possible exis-

tence of some relationship or dependency between the corresponding pair of

features.

Both the vertices and edges of the feature graph are weighted. A vertex

weight encodes the relevance of the corresponding feature in the task T . An

edge weight encodes the magnitude of redundancy between a pair of features,

which indicates the degree of replacement of a feature with the other, and vice

54

5.2. Optimization problem for mRMR on graph

versa.

It is challenging to identify which specific statistical measures are more

convenient to use in the general case, and this topic is beyond the scope of such

a thesis. The main challenge is related to the possible heterogeneity of feature

types (e.g. quantitative, categorical, etc.) within a dataset, specifically when

multiple omics are considered once (e.g. early integration). However, one can

distinguish between the vertex score function and the edge weight function.

The vertex score function involves the task T , which is either a categorical or

quantitative quantity in classification and regression tasks, respectively.

5.1.1 Definition

Let us introduce two general functions for estimating the weight sets of the

graph.

1. the feature relevance function fwv : F → R estimates vertex weights by

computing a relevance score between the values of each feature and the

target values Y;

2. the interaction redundancy function fwe : F × F → R estimates the

edge weights by computing a redundancy score between the values of

each pair of features.

Let us denote as feature graph the complete undirected labeled weighted

graph G = (V,E, L,wv, we) such that (i) |V | = |F | and feature fi is repre-

sented by vertex vi that is weighted exploiting the feature relevance function as

wvi = fwv(fi), and labeled with metadata associated with feature fi, whereas

(ii) the edge (vi, vj) is weighted exploiting the interaction redundancy func-

tion, as as wei,j = fwe(fi, fj).

Given a feature graph G = (V,E, . . .) and a feature set S = {fi}, let

us define the feature subgraph GS = (V ′, E′, . . .) that is induced from G by

selecting only the vertices appearing in S, and all the edges spawning between

them.

5.2 Optimization problem for mRMR on graph

The graph formalism described above allows us to formulate an optimization

problem for discovering feature sets that satisfy the mRMR criterion.

55

5.2. Optimization problem for mRMR on graph

In particular, a value 0 < t < 1 is chosen as the threshold for the values of

pairwise feature correlations. A t-thresholded feature graph is obtained from

the complete feature graph to define the criteria for considering whether two

features are redundant. Then, the goal of feature selection is the identifica-

tion of a relatively small amount of non-redundant features that are highly

predictive with respect to the target.

5.2.1 A metric for mRMR over the feature graph

Let us define a metric for evaluating feature sets founded on the mRMR crite-

ria and based on the structure of the feature graph. The optimization problem

consists of searching for disconnected feature subgraphs gi = (V i, Ei, wi
v, w

i
e)

such that (i) the sum of their weight is maximized and (ii) the number of the

edges |Ei| is minimized. We define the Penalised Vertex Score (PVS) metric

for feature set S as:

PV S(SF) =
∑

vi∈GFS

wv(vi)

1 + deg(vi)
(5.1)

Given a feature set F = {f1, f2, . . . , fn}, the feature fj , j = 1, . . . , n is (i)

scored as its weight wi
v(fj) and (ii) penalized proportionally to the degree of

vertex vi, namely to the number of features within F that are redundant to

vi. The problem consists of the identification of solutions maximising the PVS

metric

Feature selection is an NP-hard problem. In particular, it is a combi-

natorial optimization problem, whose problem space has a huge number of

configurations and is rich in minima and maxima, namely bad and good fea-

ture sets. For N features, there exist 2N candidate solutions represented by

as many feature subgraphs. By defining an upper bound Nmax < N in the

number of selectable features, the problem space has
∑Nmax

i=1

(
N
i

)
candidate

solutions.

There is a vast plethora of algorithms for combinatorial optimization. In

particular, we pay attention to metaheuristics strategies, which provide gen-

eral algorithmic frameworks which can be exploited to solve a wide set of

different problems with relatively small modifications to make them adapted

to a specific problem. They can be broadly categorized as single-solution and

population-based. Single-solution algorithms, such as simulated annealing

and tabu search, keep only one candidate solution at a time, which is iter-

56

5.2. Optimization problem for mRMR on graph

atively refined by exploring the neighbourhood of the solution itself and ex-

ploiting strategies to escape local optima. On the contrary, population-based

approaches, such as Evolutionary Algorithms (EAs) and Swarm Intelligence

methods, maintain a population of solutions to the problem, which are refined

by interacting with each other for multiple iterations. This process eventually

leads to the population converging on a good solution to the problem.

Overall, metaheuristics algorithms can be defined as high-level strategies

to guide the search process, and their generality is founded on the distinc-

tion between the problem space X, also known as phenome, which depends

on the specific problem, and the search space G, also known as genome,

which is explored by means of a set of metaheuristics-specific search oper-

ators searchOp : Gn → Gm, which takes a fixed number n ∈ N0 of geno-

types g1, . . . , gn and returns m > 0 elements from the search space. Usually,

the problem and the search space differ and a genotype-phenotype mapping

gpm : G→ X is required to evaluate the fitness of candidate solutions.

5.2.2 Evolutionary and genetic algorithms

In the following, an approach based on a genetic algorithm (GA) is proposed,

although other population-based methods should be explored. GAs belong to

the family of Evolutionary Algorithms (EAs), whose basic algorithm is rep-

resented and described in Figure 5.1: they are based on mechanisms inspired

by Darwin’s theory of evolution (e.g. natural selection, survival of the fittest,

reproduction) to iteratively refine a set of candidate solutions [119].

The biological world also highly inspires the terminology used in EAs.

In particular, GAs are a family of EAs whose elements in the search space

g ∈ G are known as chromosomes, which are sequences of primitive elements

(i.e. bits, natural numbers) called genes. The position of the gene within the

chromosome is called a locus, and the possible values that a gene can assume

are called alleles.

The search operations exploited by GAs are the crossover and mutation

operators, which represent sexual and asexual reproduction, respectively. The

crossover operation, also known as recombination, combines two parent chro-

mosomes in new genotypes that inherit traits from both elders. The mutation

operator applies small random changes within individual chromosomes: in bi-

ology, changes in the DNA provide the genetic diversity among individuals so

57

5.3. Feature selection via genetic algorithm

Figure 5.1: Genetic algorithm in a nutshell: (i) the initial population is
created; (ii) the genotype-phenotype mapping is applied to the population;
(iii) phenotypes are evaluated through the objective function, which values
are used to (iv) assign fitness to every x ∈ X; (v) the fittest individuals are
selected for (vi) reproduction, which consists of the combination of crossover
and mutation probabilistic operators in order to create new evolving individu-
als inheriting traits from the parents. (vii) The algorithm will stop itself when
a certain termination criterion is satisfied. Image from[119].

that natural selection can act on them. Without mutations, evolution would

not be possible, both in nature and in GAs.

5.3 Feature selection via genetic algorithm

In this section, a multivariate filter feature selection approach based on the

feature graph is presented. The optimization problem based on the mRMR

criterion is faced with a genetic algorithm that exploits the topology of the

feature graph for both fitness evaluation and mutation operator.

5.3.1 Chromosome encoding

In the following, we introduce two possible chromosome encoding using either

boolean or integer genes, and the corresponding genotype-phenotype mapping

functions, which allow us to map the chromosomes g ∈ G in the corresponding

feature subgraph x ∈ X that is induced from the whole feature graph by

considering only the features encoded in the genotype g.

58

5.3. Feature selection via genetic algorithm

Let us consider a generic feature graph G = (V,E, . . .) representing rela-

tionships of m features, then m = |V | = |F |. As a toy example, let us consider

m = 11 features.

Boolean genotypes

The simplest case is provided by the boolean genotype, which consists of

chromosomes in the form of x ∈ Bm with a number of genes equal to the

number of available features m, which is often a quite large number. Let

us consider a chromosome c = (c1, . . . , cm) The gene ci at locus i have two

possible alleles:

ai =

1, then fi is included

0, then fi is excluded

Therefore, the set of features encoded by a generic boolean chromosome is

given by the locus having the allele 1.

In the example below, the feature set {2, 3, 6, 7, 10} is represented.

0

1

1

2

1

3

0

4

0

5

1

6

1

7

0

8

0

9

1

10

0

11

(5.2)

Integer genotypes

Integer genotypes allow us to define an upper bound on the number of se-

lectable features. They have the form ofm-length integer vectors (0 < k < m),

namely x ∈ Nk. Let us consider the locus i, 1 ≤ i ≤ k that corresponds to

the i-th gene. Such gene has m+ 1 alleles: 0, 1, . . . ,m. The null allele ai = 0

indicates an intron, namely a non-coding gene that represents no feature at

all. Otherwise, the allele ai = v, with 1 ≤ v ≤ m indicates that feature fv is

encoded by the i-th gene; multiple genes may encode the same features, but

they are countered only once.

10

1

2

2

3

3

7

4

0

5

6

6

59

5.3. Feature selection via genetic algorithm

Genotype-Phenotype Mapping (GPM)

The GPM function allows us to map a generic chromosome c to the corre-

sponding feature subgraph, which is induced from the whole feature graph G

by considering only the features (i.e. vertices) included in the chromosome c,

together with all the edges spawning between such vertices in G.

5.3.2 Selection mechanism

Fitness assignment

In preparation for the fitness assignment to chromosomes, which enables the

selection operator, the genotypes of the current population are translated to

their corresponding phenotypes via the gpm function, obtaining the corre-

sponding feature subgraphs of such chromosomes.The fitness of such pheno-

types is computed by means of the PVS metric, defined in Equation 5.1. Then,

the value of the objective function is obtained by normalizing the PVS value

using a normalization factor a.

Tournament selection

Once fitness values have been computed, the selection operator chooses which

chromosomes of the population pass to the reproduction step by forming the

mating pool. The selection operator chooses which chromosomes of the pop-

ulation pass to the reproduction step, in which the probabilistic operators of

crossover and mutation are applied. The k-tournament selection is applied n

times. At each application, it samples k chromosomes from the population,

which are compared against each other in a tournament. The winner, namely

the chromosome associated with the highest fitness value, enters the mating

pool.

Elitism mechanism

The elitism mechanism ensures that at least one copy of the best individual(s)

of the current generation is propagated onto the next generation, without any

application of reproduction operators.

60

5.3. Feature selection via genetic algorithm

5.3.3 Reproduction mechanisms

The reproduction operators, namely crossover and mutation, play a crucial

role in balancing the exploration and exploitation trade-off [120], which is a

fundamental challenge in optimization problems. Exploration means finding

new points in areas of the search space which have not been investigated

before, whereas exploitation is the process of improving and combining the

traits of the currently known solutions. By carefully selecting and adjusting

the parameters of these operators, the algorithm can effectively search for

better solutions without getting stuck in local optima.

In the context of EAs, the crossover operator is considered to be an opera-

tor for exploitation, whereas the mutation operator allows us to explore novel

and hopefully better solutions through exploration.

Crossover operation

The crossover operator, also known as recombination, represents sexual re-

production. Pair of chromosomes are sampled from the mating pool and are

crossover operator is applied to them with probability pc. Given two parent

chromosomes, one or more offspring chromosomes whose phenotypes inherit

from parent chromosomes are built. There is an incredibly wide variety of

crossover operators for GAs, such as Single-Point Crossover (SPX), Two-Point

Crossover (TPX), Multi-Point Crossover (k-PX) and Uniform Crossover (UX).

Mutation operator

The mutation operator applies small random changes with probability pm

to the single chromosome and represents asexual reproduction. In biology,

changes in the DNA provide the genetic diversity among individuals, so that

natural selection can act on. Without mutations, evolution would not be

possible, both in nature and in EAs. At least three different mutations can

be identified in nature:

• insertions: one or more nucleotides are added to the DNA sequence;

• deletions: one or more nucleotides are removed from the DNA sequence;

• pointwise mutation: any change in the sequence rather than insertion

and deletion.

61

5.3. Feature selection via genetic algorithm

In EAs, insertions and deletions consist of switching on an intron (i.e.

non-coding gene) with a feature and turning off a gene, respectively. Finally,

we introduce a point-wise mutation that consists of swapping a feature with

another one in its neighbourhood in the feature graph.

Similarly to the crossover, the mutation operator can be defined by dif-

ferent behaviours: (i) single-point mutations randomly modified the allele of

a gene, (ii) multi-point mutation randomly modified the alleles of 0 < n ≤
len(g) genes in the genotype g.

62

Chapter 6

Decision diagrams applied to

graph indexing

In this chapter, we introduce a solution based on DDs to cope with indexing a

collection of target graphs and the subgraph isomorphism problem by extend-

ing the index-driven approach provided by GRAPES. In particular, we show

how DDs can be exploited to efficiently encode such a problem and how they

can be manipulated to develop a systematic filter-and-verification stage.

6.1 Decision diagrams for indexing

GRAPES showed the best performance in terms of running time. However,

its index requires a relatively high memory amount compared to the other

approaches. GRAPES is implemented both as sequential and parallel software

using symmetric multiprocessing (SMP) architectures. In addition, GRAPES

was developed for achieving good performance in the collection of graphs as

well as in scanning a query over a single large target graph. For these reasons,

we decided to improve the performance of the sequential version of GRAPES

by reducing the memory required for its index. We investigated the use of

decision diagrams for reaching such a goal without degrading the running

time of the algorithm.

63

6.1. Decision diagrams for indexing

GRAPES uses a trie (i.e. prefix tree) to store the indexed graphs, since

it provides a compact representation of a set of strings by taking advantage

of their common prefixes, considerably reducing the data redundancy. Nev-

ertheless, the tree structure of a trie (i.e. only a single edge can point to

a node) makes it hard to exploit other types of symmetries present in the

indexed graphs, as for instance the sharing of the same (i) starting vertices

and/or (ii) relative occurrence number, as well as common substrings which

are not prefixes. To deal with these aspects, during my Ph.D., in [121] we

proposed to encode the indexed graphs using decision diagrams in place of

the GRAPES’ trie. Since decision diagrams are graphs, the requirement for

a tree structure is relaxed allowing multiple arcs to point to the same node.

The main advantage of this is a potentially more compact representation due

to the decision diagram’s ability to better exploit the regular structure of the

data (e.g., common substrings present in the indexed graph paths) thanks to

the reduction rules and to manipulation algorithms.

As said before, decision diagrams are a family of data structures. There-

fore, there are multiple ways to proceed, which depend both on (i) the kind of

decision diagram is used and (ii) how data are encoded in the decision diagram

structure.

Let l be the maximum feature length, and consider the graph collection

G = {g1, . . . , gn} such that Vi = {Vi,1, . . . , Vi,mi} is the set composed of mi

vertices belonging to graph gi. Then, let us define V = {V1, . . . , Vn} as the

set of vertices of the whole graph collection, which is composed of a total of

NGV
=

∑n
i=1mi different vertices.

The decision diagram had to encode all the labeled paths p up to length

l starting from each vertex vi ∈ V belonging to the collection such that vi

belongs to graph gj . For any path p, the following information has to be

attached to it:

1. the location information (gj , vi) of p, namely from which vertex vi be-

longing to which graph gj it starts;

2. the total number of occurrences np > 0 of p in each gj ;

6.1.1 Problem variables

To define the graph indexing problem, a set of variables and the corresponding

domains are identified.

64

6.2. Encoding the problem

• The maximum path length l defines as many label variables. The domain

of label variables depending of how many labels appear in the graph

collection. Given the label alphabet Σ, label variables have to represent

|Σ| + 1 different values. The additional value serves to represent the

absence of a label, in order to represent paths shorter than the maximum

length l.

• The location information is a pair (g, v) composed of (i) the graph id

variable, which can assume |G| different values, and (ii) the vertex id

variable, which can assume maximi different values in order to properly

represent all the vertices of the larger graph in the collection.

• The counters for path occurrences are natural numbers nc ∈ N+. Coun-

ters are not apriori known, differently from the quantities listed so far,

and they must be computed during index construction phase.

Once the graph database has been indexed in a decision diagram, given

a query, we have to retrieve from the index the location information (g, v)

about those graphs’ vertices satisfying the query constraints that are defined

on path occurrences. The query graph is used to build its decision diagram

representation, using the same structure as the index. The query DD is ex-

ploited to manipulate the index using appropriate operators, that depends

on the specific decision diagram in use, in order to get the desired location

information.

6.2 Encoding the problem

The problem presented above can be encoded in different ways depending

on the type of adopted decision diagram and the semantics assigned to its

variables.

6.2.1 Using multi-terminal

Among multi-terminal decision diagrams, we distinguish between MTMDD

and MTBDD, representing functions in the forms fM : N1 × · · · × Nn → N
and fB : Bn → N, respectively. Since the encoding of MTMDD is more

straightforward than MTBDD, they are presented first.

65

6.2. Encoding the problem

Multi-terminal multi-way decision diagrams

MTMDDs represent functions in the form f : Nn → N, and allow us to

represent the index in a straightforward manner. The index is a function

fI : G × V × Σl → N+ that, given a graph id g, a vertex id v and a labeled

path p, returns the number of occurrences of p in the graph g, if p starts from

vertex v, zero otherwise.

An alternative approach, that has been implemented and is in-depth de-

scribed in Chapter 8, is based on the unification of the graph id and vertex

id variables in a single variable xloc that has a pretty large domain in order

to represent a total of
∑n

i=1mi elements, corresponding to the number of ver-

tices of the whole graph collection under consideration. Let us denote such an

approach as flattened location information.

Multi-terminal binary decision diagrams

MTBDDs represent functions in the form f : Bn → N. The MTMDD-based

methods can be easily applied to MTBDD by applying a binary encoding

on the integer variables of the MTMDD. That is, for each variable xi of the

original MTMDD, which is associated with the domain Di, there are created

⌈log2(Di)⌉ boolean variables in the corresponding MTBDD.

For example, let us consider the flattened location information approach.

Given the maximum feature length l, in the MTMDD version there are l + 1

variables: l label variables, plus the location information variable.

Label variables can represent NL = |Σ| + 1 possible values. The location

information variable enumerates all the vertices in the graph collection, for a

total of NGV
=

∑n
i=1mi values.

Therefore, given the maximum path length l, the index MTBDD represents

a function f : Bn → N, where the number of variables n is calculated as follows.

n = l · ⌈log2(NL)⌉+ ⌈log2(NGV
)⌉ (6.1)

How to improve sharing among DDs

The use of a forest instead of a single decision diagram allows us to split the

index across multiple decision diagrams, which internally may share memory

thanks to the unique table.

66

6.2. Encoding the problem

For example, one could split the index in a graph-specific manner, namely

to index each graph gi in a separate MTMDD di. Then, the index I is rep-

resented by a forest composed of m decision diagrams FI = {ig0 , . . . , igm−1}.
The domain of such forest is restricted to represent only the labeled paths up

to length l, and the starting vertex of such paths.

An alternative forest-based solution is to build label-specific indexes, that

is, to use a number of MTMDD equal to the number of labels in the graph

database, and k-th MTMDD encodes all the paths starting with label σk. Let

us consider a generic graph-vertex pair (gi, vj). Since vertex vj is univocally

mapped via the labeling function to the label lk, all paths starting from vj

will fall in the k-th MTMDD. As a result, the information regarding the first

path label is redundant: this allows us to shrink the domain of the location

information variable (i.e. group vertices per label, counts group and pick the

max) and to use l − 1 variables to encode the labelled path.

6.2.2 Using multi-way decision diagram

A different approach is to use MDDs, namely a decision diagram representing

f : X → B where X = {Xn, . . . , X1}, that allows representing a set of n-

tuples. Since MDDs have only two terminal values, namely 0 and 1, the

generic n-tuple have to comprehend a variable to represents the counters of

path occurrences. It is worth noting that the domain of such a variable is not

a priori known.

To represent the whole index as a BDD there is required to use a number

of boolean variables sufficient to encode the counters of path occurrences.

However, since such a number is not a prior known, it is required to have an

already-built index.

Let us suppose the index is represented as an MTBDD Imt, which is com-

posed of k variables (the value of k is provided by Equation 6.1), and let M

be the maximum value among the terminal nodes in Imt.

A first approach is to binary encoding the terminal values of Imt using up

to log2M boolean variables so that the BDD indexing the graph collection

requires k+log2M variables, such that the (i) first term includes the variables

for the labeled paths and the location information, and (ii) the second term

corresponds to the variables for encoding the path occurrences.

A second approach that could save some variables with respect to the

previous one, is based of counting how many terminal nodes exist in Imt, let

67

6.3. Index construction

say there are Nt different values, such that Nt ≤ M . The Nt terminals can

be mapped in the interval [1,M ′] so that only log2M
′ boolean variables are

needed to store the number of occurrences in the encoded form. Such encoding

must be carefully taken into account during the filtering phase, in the sense

that the occurrence counter must be decoded before being compared against

the occurrence numbers in the query.

6.3 Index construction

From this point on, we will consider using the MTMDD approach with the

flattened location information (i.e. l + 1 variables considering paths up to

length l). However, in principle, what is written in the following is easily

adaptable also using the other approaches previously described with relatively

small efforts.

Given the maximum path length l and a graph database D = {g1, . . . , gn},
where each gi = (Vi, Ei, Li) is composed of mi vertices Vi = {vi,1, . . . , vi,mi},
let us define two mappings.

1. Graph-vertex mapping f : G × V → N , which maps graph vertices

in the range 0, . . . ,m − 1 where m =
∑n

i=1mi is the total number of

vertices within the database D,

2. Label mapping f : V ×Σ→ N , which maps labels in the range 0, . . . , |Σ|.

Let us define the index MTMDD Idd an MTMDD composed of l+ 1 vari-

ables: the location information variable xliv and l label variables xvl1 , . . . , xvll ,

such that xvli , 0 < i ≤ l is the i-th path label. Let us define the order of vari-

ables, that is:

xliv ≻ xvl1 ≻ · · · ≻ xvll

meaning that xliv stays in the root of the index DD, then the labeled path is

represented in the order it has been visited during DFS. On the terminal level,

there are stored the total number of occurrences of each path in the graphs,

that have to be computed.

Counting paths

The index construction exploits a limited DFS to exhaustively enumerate the

labeled paths up to length lp from each vertex of each graph in the database.

68

6.3. Index construction

1 2

64

5

3

7 8

1011
9

12 13

1415

1 2 3 4 5 6 7 8 9 101112131415

G1 G2 G3

Target graphs collection

Index MTMDD

1 2 3

Figure 6.1

The GRAPES’ approach for path counting is based on grouping vertices of

the same graph with respect to their labels and uses temporary tries to accu-

mulate counters of labelled paths. In the following, is described an equivalent

approach based only on decision diagrams.

Let us consider a generic graphG composed of n vertices, V = {v1, . . . , vn}.
A limited DFS is performed starting from vi in order to extract all the features

up to length lp starting it. Finally, for each feature p, the total number of

occurrences in G has to be computed, and it has to be recorded together with

the information about the starting vertex. Two temporary decision diagrams,

namely an MDD M1 and an MTMDD M2, can be exploited as accumulators

to eventually build the index MTMDD:

1. M1 is used to store l+1-uples x = ⟨vi, p1, . . . , pl⟩ composed of the feature

of length l and the id of the starting vertex;

2. M2 is used to store l-uples x = ⟨p1, . . . , pl⟩, namely the features of length

l with no location information at all.

69

6.3. Index construction

Once the graph G has been visited through limited DFS, M1 will contain

for each feature p in G, the set of vertices of G from which p starts. Similarly,

M2 will contain all the features within G and the total number of occurrences.

At this point, is sufficient to merge the information contained within the M1

and M2 in order to build the index MTMDD.

For each feature p starting from vertex v contained in M1, retrieve the

total number of occurrences no of p in G from M2 by calling eval(M2, p), so

that the final tuple to be stored in the index is:

x = (v, p1, . . . , pl), y = c

Graphical example

Figure 6.1 depicts a graph collection formed of three directed labelled graphs,

{G1, G2, G3}, which are composed of six, five, and four vertices, respectively,

for a total of 15 vertices and four labels. For sake of clarity, the labels are

represented by colors: orange, blue, green and yellow.

Such graph collection has been indexed in an MTMDD by using lp = 3 as

the maximum feature length. Then, the index MTMDD is composed of four

variables:

• the root node represents the location information variable, whose domain

ranges in {1, . . . , 15} to encode all the possible vertices in the graph

collection;

• the second, third and fourth levels of the MTMDD are assigned to label

variables devoted to representing the first, second and third label of a

feature, respectively. In this case, the domain of label variables compre-

hends five different values (depicted as the grey value), in order to allow

the representation of features shorter than three.

Finally, the terminal nodes represented the total path occurrence within

the indexed graphs, which in this case range between one and three occur-

rences.

The reader can see an example of features shorter than lp for the ones

extracted from v14 and v15 belonging to G3, which are labeled as yellow and

green. In fact, v14 is a dead end and the only feature extractable from it is

the label of v14 itself, which is the yellow one. Then, the tuple that is stored

in the MTMDD is composed as ⟨14, yellow, grey, grey⟩.

70

6.4. Index filtering

Similarly, there is only one feature that can be extracted starting from

v15, namely the path comprehending v15 followed by v14, which is a dead end.

This corresponds to the tuple ⟨15, green, yellow, grey⟩

6.4 Index filtering

Once the MTMDD index has been built from the graph collection G, it can

be exploited to perform the filtering stage given a query graph Gq.

Filtering consists of restricting the set of target graphs to those subgraphs

(i.e. connected components) potentially containing the query Gq, in order to

reduce the number of vertices on which to apply the subgraph isomorphism

algorithm. This consists of the identification of all those subgraphs (i.e. sets

of vertices) of the indexed graphs which contain all the features within the

query at least as many times the query.

As said in 4.2.3, MTMDDs can be manipulated using both arithmetic and

relational operators. Such operators allow the implementation of a filtering

strategy for the index given a query graph. Figure 6.2 showed the whole

filtering process, which is explained as follows.

6.4.1 Indexing the query graph

Firstly, the query graph is indexed in an MTMDD in a similar way as the

index. The query MTMDD contains the information on (i) which features

appear in the query graph, (ii) from which vertices they start, as well as (iii)

how many times each feature appears in the query graph.

It is worth noting that the location information of the query MTMDD,

namely the starting vertices vqi from which vertex of Gq the query features

start, are completely uncorrelated with the location information belonging

to the index MTMDD. This makes it difficult to directly exploit the query

MTMDD to solve the query. However, it is a piece of fundamental information

to match the indexed vertices against the query vertices.

A second decision diagram, the template query MTMDD is built from the

query MTMDD. It consists of storing all the query features and the relative

occurrence numbers, ignoring the location information (i.e. the starting ver-

tex). In place of it, a DONT CARE node is exploited to represent a node that

does not affect the output of the decision diagram. This means that the value

of the input to the DONT CARE node can be anything and the output of the

71

6.4. Index filtering

Query MTMDD

Index MTMDD

1 2 3 4 5 6 7 8 9 101112131415

1 3 4

Pruned MTMDD

1 2 6 7 8 9 1011

2 6 8
1 … 15

2

Query graph

G2 7

Candidate vertices

8 10 11

Graph vertex

Vertex label

Occ. count

Vertex ID

9

Figure 6.2

decision diagram will be the same. Basically, this represents a redundant node

whose definition is provided in Section 4.1.2.

The meaning of the template query MTMDD is that initially, all the target

graphs are candidates to contain the query graph.

72

6.4. Index filtering

6.4.2 Feature extraction from the index MTMDD

The template query MTMDD provides a representation of the query graph

that is defined on the same graph domain as the index MTMDD.

At this point, the aim is to extract only all the query features in order to

identify (i) which subgraphs of the indexed graphs satisfy the query constraints

and (ii) which one of the query vertices vqk they match. The multiplication

operator, which has been introduced in Section 4.2.3, allows the extraction

from the index of all and only the features (i.e. labeled paths) appearing in

the query MTMDD. This is due to the structure of the template MTMDD

and to the semantics of the multiplication operator:

• The redundant location information allows each vertex belonging to the

indexed graphs to potentially match the query.

• Since each feature that does not appear in the query is implicitly linked

to the zero terminal in the query (template) MTMDD, the result of the

multiplication operator is to delete from the index all the features except

for those of the query graph.

Let denote as pruned MTMDD the results of the application of the mul-

tiplication operator between the index and the template query MTMDD. It

encodes all the information to complete the filtering stage, namely the id of

those vertices containing at least one feature of the query.

It is worth noting a side effect of the multiplication operator, namely that

the terminal nodes of the pruned MTMDD are the actual products. Let us

consider a feature p which appears n times in the query and m1, . . . ,mk in

the graphs g1, . . . , gk. Thus, the terminal node of feature p linked to graph

gi is given by n ∗ mi. This issue has to be taken into consideration during

constraint verification.

6.4.3 Constraints verification

To conclude the filtering phase is needed to identify (i) which vertices {vj}
of the indexed graphs satisfy all the constraints of the query and (ii) which

query vertex vqi they match.

The pruned MTMDD and the original query MTMDD are exploited to

ultimate the stage. For each vertex u of the query graph Gq and a potentially

matching vertex vj in graph gi identified by the pruned MTMDD, any feature

73

6.5. Variable ordering

p starting from u should also start from vj . Otherwise, vj cannot be a match.

Moreover, p(gi) ≥ p(Gq) must hold: it is necessary to obtain the actual value

of p(gi) since the terminal value provided by the pruned MTMDD is given by

p(gi)× p(Gq). The value of p(gi) is easily retrieved from the index MTMDD.

There are discarded those graphs that either (i) have a feature with an oc-

currence number less than the occurrence number of the query or (ii) do not

contain some features of the query graph.

6.5 Variable ordering

As introduced in Section 4.1.1, the ordering for the variables of a decision

diagram can have a critical effect on the size of the DD itself, namely its

number of nodes and edges). In particular, the order considered so far is

totally arbitrary and there are no assumptions that it is a good choice for a

specific collection of graphs. To the best of our knowledge, no such heuristic

is currently available for reordering the variables of DDs encoding biological

graph databases.

The approach presented so far is based on an MTMDD composed of n

variables to index a collection of graphs using labeled paths of length up to

n−1 as features. Hence, the nMTMDD’s variables are grouped as one location

information variable and n− 1 label variables.

It is worth noting that these two types of variables are profoundly different,

both in the domain spaces (i.e. graph vertices and labels, respectively) with

largely different domain cardinalities, and in their semantics. To point out

this difference, given a fixed position xn 7→ k for the xn variable, let us define

the stratum k as the subset of variable orders {O}k sharing the fixed position

for vn.

6.5.1 An entropy-based metrics

Each variable assignment x = ⟨x1 . . . xn⟩ within the MTMDD Xcorresponds

to an associated terminal value, denoted as mult(x). In the following, we will

refer to (i) variable assignments as tuples, (ii) MTMDDs as multisets, and (iii)

terminal values as multiplicities.

Given a multiset X, let H(X) be the entropy of X, defined according to

74

6.5. Variable ordering

the standard definition [122]

H(X) = −
∑
x∈X

p(x) log2 p(x), with: p(x) =
mult(x)∑

x′∈X
mult(x′)

(6.2)

Let U ⊆ N be a subset of the problem’s variables. Let x′ = x/U be a new

tuple x′ obtained from a tuple x by removing all the variables not in U . Let

X/U be the projection of the multiset X over the sole variables U , with

mult(x′) =
∑

x∈X, x′=x/U

mult(x) (6.3)

the multiplicity of each tuple x′.

Given a variable order O = {k1 . . . kn}, we define the i-th variable subset

UO,i as the set of the first i variable indices of O. We define the SOE metric

for a variable order O as

SOE (O) =
n∑

i=1

H
(
X/UO,i

)
(6.4)

Research question R1 The size of the MTMDD (i.e. the sum of its nodes

and edges) correlates with the SOE function.

The correlation allows us to determine whether the maximization of the

SOE metric influences the size of the decision diagram, namely its number of

nodes and edges.

To test this hypothesis, we construct the MTMDD for all the variable

orders (which is factorial in the number n of variables), and compute a corre-

lation score between the value (6.4) and the final MTMDD size.

6.5.2 The heuristic algorithm

Unfortunately, finding the optimal MTMDD by constructing all the permu-

tations is not feasible in practice, except for a limited number of encoded

variables. Therefore, to make the technique broadly applicable in a real-world

context, we define a sub-optimal heuristic EntropyHeu that searches a vari-

able order O∗ by applying a greedy optimization the local entropy sum at

every projection step i.

The pseudo-code of EntropyHeu is shown in Algorithm1. The function

EntropyHeu first computes the ordering for the {v1 . . . vn−1} label variables.

75

6.5. Variable ordering

Algorithm 1 Variable ordering selection heuristic

1: function EntropyHeu
2: O ← EntropyHeuLabels()
3: minSize ←∞
4: for i← [1 . . . n] do
5: O′ ← InsertAt(O, {vn 7→ i})
6: DD′ ← BuildDD(O′)
7: if SizeDD(DD′) < minSize then
8: minSize ← SizeDD(DD′)
9: O∗ ← O′

10: return O∗

11: function EntropyHeuLabels
12: U ← {v1 . . . vn−1}
13: O ← {}
14: for i← [1 . . . n− 1] do
15: vsel ← null
16: Hsel ← −∞
17: for v′ ∈ U do:
18: U ′ ← U \ {v′}
19: H ′ ← Entropy(U ′)
20: if H ′ > Hsel then
21: vsel ← v′

22: Hsel ← H ′

23: U ← U \ {vsel}
24: O ← Append(O, {vsel 7→ i})
25: return O

Finally, it then tries to insert the identifier variable vn in all the positions,

returning the order O∗ that minimizes the final DD size.

The function EntropyHeuLabels is the core heuristic algorithm, per-

forming the greedy search. It starts by defining an empty variable order O

and by taking into account the full set of label variables U . At each outer

iteration (lines 17-28), a variable vsel ∈ U is removed and assigned to position

i in the order O. The variable vsel is chosen to be the one that maximizes the

entropy given by the remaining set of variables U \ {vsel}, namely:

vsel = argmax
v∈U

H(U \ v) (6.5)

We assume that BuildDD(O) generates the MTMDD for the projected

76

6.5. Variable ordering

variables subset with order O, and Entropy(U) computes (6.2) on the pro-

jected multiset X/U .

Research question R2 The functionEntropyHeu selects reasonably good

variable orders, comparable with the theoretical-optimal order derived by the

SOE metric.

77

Part III

Applications and tool

implementation

78

Chapter 7

FeatSEE

In this chapter, we described in detail FeatSEE, which stands for FEATure

Selection, Explanation and Evaluation a novel automated machine learning

framework for multi-omics integration that we developed during my Ph.D. In

particular, FeatSEE’s novelties and strengths can be summarized as follows:

(i) the implementation of stand-alone modules to perform high-level tasks

without the need for programming and/or advanced computational skills; (ii)

the containerization, through Docker technology, of all the implemented anal-

ysis techniques to improve the framework portability and reproducibility; (iii)

the implementation of a Python module to provide the opportunity for expert

users to write new software components using an object-oriented paradigm;

(iv) the specification of a well-defined schema and related infrastructure to

allow users to integrate their own analysis workflows in the framework.

Thus, Section 7.1 is focused on the architecture of the framework. Sec-

tion 7.2 presented the components (i.e. classes) within the FeatSEE Python

module and, then, Section 7.3 illustrates the end-to-end high-level modules

implemented so far.

The effectiveness of FeatSEE framework is shown through the following

three case studies described in the next chapter:

• Colorectal cancer (CRC) via miRNA. This work was published in [123]

and it was exploited to identify a biomarker signature to accurately

79

7.1. The Framework

distinguish between CRC and healthy samples.

• In-vitro fertilization (IVF). In this work, FeatSEE was exploited to

develop a workflow whose primary goal was to enhance the explainability

of results.

• Functional data integration. In this work, we combined theory-based

and data-driven approaches by simulating omics data from transcrip-

tomics through Flux Balance Analysis, and then, by applying a two-

phase feature selection based on fluxomics data.

7.1 The Framework

FeatSEE is intended to be a framework oriented to the definition of user-

defined workflows for multi-omics integration. It is written in Python 3 and

mainly based on scikit-learn [124], the de-facto standard machine learning li-

brary in Python, which provides peer-reviewed implementations of a variety of

common data preprocessing methods, supervised and unsupervised machine

learning algorithms, feature engineering and selection methods, hyperparam-

eter optimization procedures, and more.

FeatSEE is composed of a Python package and a series of ready-to-use

tools, called end-to-end modules as follows.

1. The Python package provides the implementations of the fundamental

entities for machine learning and data analysis, such as datasets, ML

models, score functions, which are internally used to implement end-

to-end modules. Advanced users have also the opportunity to further

extend the package by creating news end-to-end modules, or customising

the existing ones.

2. The end-to-end modules (ETEMs) provide a set of command-line tools

for solving general tasks (e.g. feature selection) starting from raw files

and a bunch of parameters.

Both the Python module and the ETEMs are containerized in a Docker

image, which allows ETEMS to be run in a containerized way by a command-

line interface. A Python 3 script with no external dependencies has been

realized to allow users to execute analyses from everywhere there is an installed

Python 3 interpreter and Docker versions.

80

7.2. Python module

7.2 Python module

Firstly, we introduce classes for representing features and datasets. Then,

we go through the implementation of the feature graph formalized in Sec-

tion 5.3, and subsequently with the machine learning algorithms available in

FeatSEE. This section concludes with the presentation of the ETEM class,

which allows the extension of the framework by implementing new end-to-end

functionalities.

7.2.1 Data representation

As introduced in Section 2.2.1, tabular datasets are made up of a n×m feature

matrix X ∈ Rn×m reporting observations, namely m-length feature vector,

for each of the n examples, and a collection of metadataM that includes the

information regarding the set of features described in the dataset. However,

there are different ways to represent both the features and the datasets. Here,

we propose two implementations of features and three datasets

Features

As introduced in Chapter 2, features represent specific pieces of information

(attributes) within the data. The individual feature F is represented as an

instance of the Feature class, whose attributes describe the name and the

type (i.e. quantitative, ordinal, categorical and binary) of the feature itself.

Let type(f) and dom(F) be the type (e.g. quantitative, categorical) and the

domain (e.g. R, interval, set of values) of the feature F , respectively. Then, a

named collection of features is represented by the FeatureSet class.

Unlabeled dataset

The simplest representation of a set of data is given by the unlabeled dataset

DU = (X ,M), which represents a set of n examples described by means of m

features. The UnlabeledDataset class is composed of a feature matrix X that

reports the feature vectors for all the samples, and of the metadata collection

M, including the feature set F = {f1, . . . , fm}. The individual feature types

are inferred by looking at the individual columns of the feature matrix, namely

the set of values of a specific feature assumed by all the samples contained in

the dataset. Feature types are exploited during missing values imputation, so

81

7.2. Python module

that the imputed value is the feature’s mode, median or mean, for categorical,

ordinal and quantitative features, respectively.

Labeled dataset

Starting from an unlabeled dataset DU = (X ,M) composed of n examples

and m features, a straightforward method allows obtaining its binary labeled

version DL = (X ,Y,M), which is described in Algorithm 1.

Beyond the unlabeled dataset DU = (X ,M) composed of n examples and

m features, the building process of the labeled dataset is also parameterized by

(i) the target feature ft ∈ FM, which can be of any type except quantitative,

and by (ii) two sets of values, s+ and s− such that s+ ∩ s− = ∅, containing
the values of feature ft forming the positive and negative classes, respectively.

Given an n× m unlabeled dataset DU and the other parameters, the output

labeled dataset DL will be composed of n′ ≤ n examples and m− 1 features.

The possibly smaller number of examples n′ with respect to the initial number

n is due to the fact that could exist examples xi such that xti /∈ s+∪s−, which
are not included in the final labeled dataset. Then, at line 3, the binary

encoding is applied on the values of the target feature ft of the remaining

examples xi to form the Y vector: yi = 1 when xti ∈ s+, and yi = 0 if xti ∈ s−.

Algorithm 1 Building process of a binary labeled dataset

1: function createLabeledDataset(D, ft, s+, s−)
2: D′ ← removeExamples(D, {i

∣∣xti /∈ s+ ∪ s−})
3: Y ← getBinaryEncodedFeature(D′, ft, s+, s−)
4: D′ ← removeFeature(D′, ft)
5: DL = (XD′ ,Y,MD′)
6: return DL

Explainable features

Moreover, for explainability purposes, we extend the concept of features by

allowing the definition of high-level boolean features in the form of logical

expressions, which are defined on a pre-existing FeatureSet F = {F1, . . . , Fm}.
Let define a logical expression e as a boolean function e : X → B that takes

as input a feature vector x = ⟨x1, . . . , xm⟩, which is defined as an inequality

e(x) = fi(x) ≷ t for any feature Fi ∈ F , comparison symbol and threshold

value t ∈ dom(Fi).

82

7.2. Python module

A logical rules r : X → B is defined either as (i) a single expression e or

(ii) a logical conjunctions of m > 1 expressions e1, . . . em. Hence, the semantic

of a rule r composed by m > 0 expressions is true whether all the logical rules

are true, or false otherwise.

r(x) =

1, if ei(x) = 1, ∀i = 1, . . . ,m

0, otherwise

The RuleSet class allows us to group multiple logical rules that are defined

on the same feature domain.

Rule-based dataset

The third kind of dataset provides a descriptive representation of a binary

labeled dataset DL = (X ,Y,M) by means of a new set of m′ dichotomous

features (i.e. boolean domain) R = {r1, . . . , rm′} in the form of logical rules

(e.g. r1 = f1 < v1 ∧ f2 > v2) defined on the original features of DL, so that

the new feature matrix is . . .Bn×,m′
. Each rule ri ∈ R is evaluated against

each example xj resulting in a new boolean feature vector bj ∈ Bm′
such that

bkj corresponds to the evaluation of rule ri against the example xj .

7.2.2 Feature graph

The feature graph formalized in Section 5.3 has been implemented using graph-

tool module [125], an efficient Python module for manipulation and statistical

analysis of graphs, whose internals are mostly written in C++ for performance,

using the Boost Graph Library [126]. Graph-tool module provides several

algorithms that operate on the Graph class that is provided by module itself.

The Graph class represents either a directed or undirected multigraph, with

optional internal edge, vertex or graph properties, which are identified by a

univocal name. They provide a mapping from vertices, edges or whole graph

to arbitrary values (i.e. strings or numeric values), which may act as labels or

weights, for instance.

The feature graph is parameterized by two sets of named functions, that are

used to estimate feature relevance (vertex weights) and pairwise redundancies

(edge weights), respectively.

• A set of ns named functions F v
1 , . . . , F

v
ns
, which are used to create as

many sets of vertex weights w1
v, . . . , w

ns
v ;

83

7.2. Python module

• A set of np named functions F e
1 , . . . , F

e
np
, which are used to create as

many sets of edge weights w1
e , . . . , w

np
e .

Moreover, vertex properties are exploited to store feature metadata, such

as the names of the features, the kind (e.g. quantitative, categorical, etc),

and the omics of belonging of each feature represented by the corresponding

vertex.

Compute graph weights

Both vertex and edge weights are computed by estimating some statistical

measures based on pairs of feature vectors. Ideally, these statistical measures

have to be chosen according to the intrinsic types of features under consid-

eration. Unfortunately, pursuing this is not so easy due to the frequent high

heterogeneity of features within multi-omics contexts.

• Pearson’s Correlation Coefficient (PCC) measures the linear rela-

tionship between two quantitative variables [127].

• Point-Biserial Correlation Coefficient (PBCC) measures the as-

sociation between a binary and a continuous variable, an extension of

PCC for one binary variable [128].

• Cramer’s V (CV) measures the association between two categorical

variables in a contingency table [129].

• Spearman Rank Correlation Coefficient (SRCC) measures the

monotonic relationship between variables, suitable for ordinal and quan-

titative features [130].

• Somer’s D (SD) measures the strength and direction of monotonic

relationships, commonly used for ordinal and categorical features [131].

• ANOVA F-Test (ANOVA) analyzes differences among group means

in a dataset, suitable for quantitative features with categorical groups

[132].

• Mutual Information (MI)measures mutual dependence between vari-

ables, suitable for quantitative, categorical, binary, and ordinal features

[133].

84

7.2. Python module

• T-Test (TT): Compares means of two groups to determine if there

is a significant difference, suitable for quantitative features with binary

groups [134].

• Matthews Correlation Coefficient (MCC), also known as phi co-

efficient (ϕ) or mean square contingency coefficient in statistics, is a

measure of association between two binary features that estimates the

quality of binary classifications, incorporating true positives, true nega-

tives, false positives, and false negatives [135]. It is similar to the PCC

in its interpretation, and a PCC estimated for two binary variables will

return the MCC [136].

• Logistic Regression (LR): Models the probability of an event as a

function of predictor variables, commonly used for binary classification

with quantitative, categorical, binary, and ordinal features [137, 138].

Table 7.1: Statistical measures for the estimation of relevance and redun-
dancy among two features

Fe
at
ur
e
T
yp
es

Q
ua
nt
it
at
iv
e

C
at
eg
or
ic
al

B
in
ar
y

O
rd
in
al

Quantitative PCC

Categorical ANOVA χ2, Cramer’s V

Binary PBCC, t-test, ANOVA, LR χ2, Cramer’s V, LR χ2, MCC, Cramer’s V

Ordinal SRCC SD PBCC SRCC

7.2.3 Machine-learning models

Models are the result of a learning algorithm applied to a dataset. The scikit-

learn library provides a wide variety of learning algorithms for different tasks

(e.g. classification, regression, clustering, dimensionality reduction, etc.), as

well as different tools for data pre-processing (e.g. feature encoding, data

scaling, feature selection, etc).

Scikit-learn makes available the estimator class to implement objects that

are able to take advantage of the provided data to achieve a certain goal. In

particular, estimators are characterized by the fit method to learn from data,

whose learning can be either supervised or unsupervised: the former takes as

85

7.2. Python module

input two parameters, namely the data matrix X and the target vector Y,

whereas the latter takes as input only the data X. Two major classes extend

the estimator one:

• predictors consists of supervised estimators, which implement the predict

method, that

• transformers, consists either of supervised or unsupervised estimators

that implement the transform method, which allows to modify or filter

the input matrix X and return it in a new form X ′ (e.g. scaler, encoder,

PCA, . . .).

Moreover, scikit-learn provides an easy way to create new estimators by

combining the available ones. A pipeline object allows the creation of or-

dered sequences of transformers with an optional final predictor, which are

automatically chained and handled by the library itself.

In the large plethora of available learning algorithms provided by scikit-

learn, FeatSEE allows us the usage of:

• k-Nearest Neighbors (kNN) is a geometric model whose prediction is

based on the majority class of their k nearest neighbors in the feature

space;

• Naive Bayes (NB) is a probabilistic model that estimates the proba-

bility of an example’s class by naively assuming that the features are

independent;

• Logistic Regression (LR) is a probabilistic model for binary classification

based on fitting the logistic function;

• Support Vector Machines (SVM) is a geometric model able to find the

optimal hyperplane to separate data into different classes while maximis-

ing the margin, which is the distance between the decision boundary and

the nearest examples from each class;

• Decision Tree (DT) is a rule-based model represented as a tree-like struc-

ture obtained by recursively splitting data based on the most significant

features, ultimately leading to the leaves which are labeled with a deci-

sion.

86

7.3. FeatSEE end-to-end modules

• Random Forest (RF) is a bagging ensemble model that combines a num-

ber of decision trees that are trained on bootstrap replicas of the original

dataset, and whose prediction results from majority voting of individual

trees;

• Gradient Boosting (GB) is a boosting ensemble model that combines a

number of decision trees, which are sequentially trained to correct errors

made by the previous ones.

Almost all such learning algorithms own a set of hyper-parameters that have

to be defined prior to using the algorithm itself, whose optimal values have to

be identified through hyperparameter optimization.

7.3 FeatSEE end-to-end modules

An end-to-end module (ETEM) is an abstract representation of the flow of a

stand-alone piece of analysis for achieving a specific task. It takes as input

a series of data and parameters, and a well-defined series of output data are

returned as output. The ETEM’s interface specifies the mandatory input data

required by every module, which are listed as follows.

1. The output folder where output results will be persisted.

2. The main dataset D, whose main purpose is to act as the training set

to build ML models.

3. A list of nt test sets T = {Di}, which are exclusively used to evaluate

the performance of ML models on unseen data.

4. A list of n feature sets F = {Fi} that are exploited to execute different

analyses by exploiting each of these sets as starting features.

Besides these default parameters, ETEMs can be characterized by a set of

additional parameters. For instance, the ETEM that solves a binary classi-

fication task may accept the names of which learning algorithms the ETEM

have to use to build the learning models, as well as the parameters to build

the labeled dataset, namely the name of the target features and the feature’s

values to define the positive and negative classes.

The working schema of ETEM is represented in Algorithm 2. Initially, the

module is initialized using the input parameters, namely the output folder,

87

7.3. FeatSEE end-to-end modules

Algorithm 2 High-level workflow of a end-to-end module

1: function EndToEndModule(Dtr, T ,F ,A, out, params)
2: Initialize E2EM internal state.
3: for F ∈ F do
4: D′ ← featureReduction(Dtr, F)
5: Let T ′ = {featureReduction(Ti, F) ∀ Ti ∈ T }
6: runAnalysis(D′, T ′,A, params)

7: Write the produced results in out folder.

the training data, the nt test data and the nf feature sets. Once initializa-

tion has been completed, the provided feature sets are exploited to choose

which features of the training and test data have to be used in the analysis

implemented by the ETEM itself. Therefore, given nf feature sets, as many

analyses will be run by the ETEM by building different copies of the train-

ing and test data, which are defined over the same samples but are described

by different features. Once all the analyses have been completed, results are

post-processed and persisted on the file system in the specified output folder.

7.3.1 Data preparation module

The end-to-end module for data preparation is devoted to the validation of

the input parameters provided by the user, the loading of input files and

the instantiating of the FeatSEE objects representing the entities, such as

datasets and feature sets.

Parameters

It takes as input data different series of files:

1. a list of one or more files is used to build the training set. Generally, the

first file contains clinical variables, whereas others are relative to omics

data. The idea is to allow the user to provide the system with different

files for different omics and then, to ease the realisation of different

multi-omics integration strategies.

2. an optionally empty list of files, each one representing an independent

dataset, namely composed of different samples from the ones appearing

in the training set;

88

7.3. FeatSEE end-to-end modules

3. an optionally empty list of files, each one representing a different feature

set identified by a unique name.

Moreover, different sets of parameters are required for the labeling proce-

dure and to perform some other operations:

4. labeling parameters for binary classification: (a) the target feature ft,

and (b) two mutually exclusive sets of values Cpos and Cneg of ft defining

the positive and negative classes.

5. feature graph construction parameters: the complete feature graph is

built based on (a) the vertex score functions and (b) the edge score

function;

6. the test set proportion size, which is a value 0 ≤ s < 1. Whether it

is non-zero, it is used to perform a train/test split, so that the existent

training set is reduced in size and a new test set is formed by the ex-

tracted samples. Let N be the number of samples in the whole training

set: N · s samples are used to build a new test set, and the remain-

ing N · (1 − s) samples are actually used to build the new training set.

The split is randomly performed in a stratified fashion to ensure that

the class proportion of the original training set is maintained in both

datasets.

Behavior description

Initially, feature sets and unlabeled dataset objects are built starting from

raw files provided as arguments. If there are no feature sets provided, all the

features of the main dataset will be considered. Otherwise, the overall feature

set, namely the union of the input feature sets, is built and the features that

are not required are removed from the provided datasets.

Then, given the target feature ft and both the positive and negative classes

Cpos and Cneg, labeled datasets are built from the unlabeled ones according

to the labeling parameters.

The main dataset is split into a training and a test set whether the test

set proportion size s > 0, otherwise the whole main dataset will be considered

as the training set.

Then, standardization is applied through z-scores to ensure the same scale

for all the features by centring the data around the mean with one standard

89

7.3. FeatSEE end-to-end modules

deviation. The training set is used to compute the mean and the standard

deviation vectors, µ and σ, respectively. Given feature i, µi and σi are the

mean and standard deviation of feature i in the training set. Then, given a

feature vector x, the standardized feature vector z is computed as z = x−µ
σ .

Lastly, the training set is used to build the feature graph, given the list of

n score functions to estimate feature importance, which results in a feature

graph having n named sets of vertex weights.

7.3.2 Evaluation module

The end-to-end module for evaluation estimates a wide series of metrics per-

formance for a given binary classification task, by using multiple learning

algorithms and feature sets.

Parameters

Besides the input data parameters concerning datasets (training and tests)

and feature sets, the evaluation module requires to know

1. which learning algorithms have to be used;

2. the learning settings, namely whether to use LOOCV or repeated strati-

fied k-fold CV. LOOCV does not require additional parameters, whereas

the k-fold CV requires (a) k, the number of folds, and (b) t, the number

of repeats of the k-fold CV procedure;

3. the number of processes to be used to parallelize the CV procedure.

Behavior description

The behaviour of the evaluation ETEM is described in Algorithm 3. It consists

of three main functions, which are explained as follows.

The function performanceEvaluation is simply devoted to split the

training set into folds based on the chosen CV technique; the split is done

once, so that all the feature evaluations are done following the same split

schema, namely using exactly the same samples for training and testing. For

each feature set provided, the function evaluateFeatureSet is called to

estimate the classification performances using the provided set of learning

algorithms.

90

7.3. FeatSEE end-to-end modules

Algorithm 3 Evaluation module

1: function registerPredictionData(model, test data)
2: y pred← predict(model, test data)
3: calcola performance tra pred and actual labels
4: salva queste cose da qualche parte

5: procedure evaluateFeatureSet(TrSet, cvSplits, TestData,AlgoSet)
6: for (tr split, test split) ∈ cvSplits do
7: TrSplit← TrSet[tr split]
8: TeSplit← TrSet[test split]
9: for a ∈ AlgoSet do

10: model← Fit(a, TrSplit)
11: registerPredictionData(model, TeSplit)
12: for t data ∈ TestData do
13: registerPredictionData(model, t data)

14: Process performance estimation data

15: function performanceEvaluation(TrSet, TestData, FSets,AlgoSet)
16: cvSplits← CrossValidation(TrSet)
17: for fset ∈ FSets do
18: TODO: create tr e test sets con features in fset!!
19: cose← evaluateFeatureSet(TrSet, cvSplits, TestData,AlgoSet)

20: return scores

Internally, the function evaluateFeatureSet iterates over training/test

split provided by the CV, which corresponds to different sub-training and -

test datasets extracted from the original training set provided as input to the

function (lines 7-). For a fixed split, all the provided algorithms A = {ai} are
trained on the training portion in order to derive a model (line 10), that is

evaluated (i) on the test portion (line 11 and (ii) on the provided independent

test sets (line 13).

Once the model has been built through the Fit(p)rimitive, it can be used

for prediction which are handled by the function registerPredictionData,

which takes as input (i) the fitted model and (ii) a named set of labeled data

on which perform a prediction and evaluate it. At line 2, the model is asked

to predict the labels of the data provided as input to the function, in order

to obtain a prediction vector. This is compared against the actual labels of

the data in order to compute the set of performance metrics presented in

Section 2.2.1, which are computed in a dataset-specific fashion.

91

7.3. FeatSEE end-to-end modules

7.3.3 Ensemble feature selection module

The end-to-end module for ensemble feature selection employs data and func-

tion perturbation techniques to identify robust and predictive feature sets.

Parameters

In addition to the input data parameters, the ensemble FS module takes as

input

1. nfmin and nfmax, which define the range [nfmin, nfmax] of the number

of features to take into consideration,

2. the data perturbation parameters, namely k and t, which are used as

arguments for a repeated stratified k-fold CV;

3. the function perturbation parameters, which is a non-empty list of fea-

ture importance rankers, called selectors hereinafter, to predict salient

features from a given set of data;

Behavior description

Algorithm 4 . . .

1: procedure storeFSet(candidates, selector, data, nf)
2: fset← fit(founds, selector, data, nf)
3: if lookup(candidates, fset) then
4: increment(candidates, fset)
5: else
6: insert(candidates, fset)

7: function DataPerturbation(data, k, n)
8: splits← RepKFoldCV(k, n)
9: Build the samplings of data

10: return The list of sampled datasets

11: procedure ensembleFeatureSelection(TrSet, TestData, selectors,AlgoSet)
12: candidates← hashtable
13: for data ∈ DataPerturbation(TrSet, . . .) do
14: for sel ∈ selectors do
15: for nf ∈ [nfmin, nfmax] do
16: storeFeatureSet(candidates, sel, data, nf)

17: stats← performanceEvaluation(TrSet, TestData, candidates,AlgoSet)
18: Postprocessing evaluation results

92

7.3. FeatSEE end-to-end modules

The pseudocode of the ensemble feature selection is provided in Algo-

rithm 4. It consists of a series of nested loops to combine the data pertur-

bation and function perturbation strategies, as well as varying the number of

features to be considered.

Feature selection phase The most-nested loop explores the feature set

search space by varying the feature set length in the interval from nfmin to

nfmax. Given a portion of data, a selector s and the number of features to

select n, the function storeFeatureSet provides to fit the selector algo-

rithm using the available data and exploit the selector to predict the n most

important features.

Whenever a feature set is identified, the number of times it has been iden-

tified is incremented, in order to take into account the number of times each

sets has been identified to evaluate the stability of each set.

Performance evaluation phase Once the feature selection is terminated,

the candidate set is evaluated in a cross-validation setting (line 17 in order

to obtain a set of metrics for each feature set. Results of the evaluation are

exploited to rank the candidate feature sets and to provide as output the ones

showing the highest classification performances on the provided test sets.

7.3.4 Filter-based feature selection module

The end-to-end module for filter-based feature selection performs a super-

vised dimensionality reduction based on the mRMR principle by exploiting

the feature graph formalism defined in Section 5.3.

Parameters

The parameters required by such a module have the purpose of setting the

configuration of the genetic algorithm, which acts on the feature graph.

1. Edge threshold value et in the complete feature graph, which is used to

cut all the edges which are below the threshold;

2. The maximum number of features to select, namely the length of the

integer chromosome;

93

7.3. FeatSEE end-to-end modules

3. Population size ps, namely the number of candidate solutions to be

simultaneously considered during each generation;

4. The minimum number of generations ngen before considering conver-

gence, and an integer value δgen to define the convergence behaviour;

5. The size of the mating pool mps, namely the fraction of the population

that is selected for reproduction;

6. The number of elitism individuals ne that ensures that the best ne in-

dividuals of the current population are directly carried to the next gen-

eration;, to avoid premature convergence and the loss of good solutions;

7. The rates for probabilistic operators of crossover and mutation, 0 ≤
pc ≤ 1 and 0 ≤ pm ≤ 1.

Behavior description

The algorithm is provided in Algorithm 5 is composed of different stages,

namely (i) the feature graph construction, (ii) the execution of the genetic

algorithm over the feature graph, and (iii) the final evaluation of the selected

features exploiting ML algorithms.

Graph building phase Initially, the feature graph is built based on the

training set data and on the provided FI and FR functions to assign vertex

and edge weights. Once the whole graph G is built, multiple weighted graphs

gi,j where i and j indicate which FI and FR, respectively, are used to set

vertex and edge weights.

Genetic algorithm phase The genetic algorithm takes as input a feature

graph gi,j weighted with respect to the (i) feature importance function Ii and

(ii) feature redundancy functions Rj , for vertices and edges, respectively.

At line 15, an empty list of candidate solutions is instantiated. It is used to

keep track of the fittest chromosomes together with their fitness value and the

generation at which that solution had been found. The algorithm starts by

creating an initial population composed of ps chromosomes through the cre-

atePopulation function, which takes as input (i) the whole feature graph

and (ii) the population size. Then, the population pop of n chromosomes are

randomly initialized.

94

7.3. FeatSEE end-to-end modules

At this point, the algorithm starts by evolving the population until the

termination criteria have not been satisfied.

1. Generations start by evaluating the individual chromosomes belonging

to the current population through the evaluatePop function at line 2.

2. From a given chromosome, the corresponding feature graph is obtained

(line 5) and it is subsequently used to compute the fitness of that chro-

mosome (line 6). The function returns the array of fitness score functions

corresponding to the chromosomes in the population.

3. The acquired fitness scores are possibly used to update the candidates

list. The function updateBestSolution verifies whether the highest

score among the available ones is superior to the last best solution found

on a previous generation. If does, it is saved in the candidates.

4. Scores are further exploited by the selection operator to perform the

k-tournament selection and build the mating pool, which is composed

of chromosomes that pass to the reproduction stage.

5. The reproduction consists of sampling with replacement of n pairs of

chromosomes to be mated from the mating pool. Then, the crossover

is applied to each pair with probability pc and eventually, the mutation

operator is applied to the results of the crossover operator.

6. The mutation operator mutates each gene of the chromosome with prob-

ability pm. Consider locus i is subject to mutation. If the corresponding

gene encodes for a feature fi, it is either swapped with one of vi’s neigh-

bours, or the gene at locus i is set as non-coding. Conversely, if the gene

to be mutated is a non-coding one, it is set to a random feature among

the available in the whole graph.

7. The algorithm executes at least ngen generation before considering con-

vergence criteria. The algorithm converges whether there are performed

δgen generations with no update solutions, and it returns the list of iden-

tified candidate solutions.

95

7.3. FeatSEE end-to-end modules

Algorithm 5 Genetic graph algorithm

1: Let ps be the population size
2: function evaluatePop(pop)
3: scores← [0, . . . , 0] ▷ list of ps elements
4: for i← [0, ps] do
5: subg ← gpm(g, pop[i])
6: scores[i]← computeObjFunction(subg)

7: return scores
8: function reproduction(pop, pc, pm)
9: newPop← []

10: for i← [0, ps− 1] do
11: [chr1, chr2]← CrossoverMutation(pop, pc, pm)
12: newPop← insert(newPop, chr1, chr2)

13: return new pop

14: function GraphGA(Graph, ps, ngen,)
15: candidates← new list
16: bestSolution← (0, 0)
17: new pop← createPopulation(Graph, ps, nf)
18: Let i← 0 be the current generation
19: while terminationCriteria(i, ngen, nno change) do
20: scores← evaluatePop(new pop)
21: updateBestSolution(pop, scores, i)
22: selected← selection(new pop, scores, k)
23: new pop← reproduction(selected, pc, pm)

24: return candidates

Algorithm 6 Crossover and mutation operators

1: function mutation(chr, pm)
2: for i← [0, |chr| − 1] do
3: if random < pm then
4: if chr[i] encodes for a feature then
5: Swap feature with neighbor in G
6: else
7: chr[i]← randomFeature

8: return chr
9: function CrossoverMutation(population, pc, pm)

10: Sample two items [chr1, chr2] from population
11: if random < pc then
12: [chr1, chr2]← tpx(chr1, chr2)

13: return [mutation(chr1),mutation(chr2)]

96

7.3. FeatSEE end-to-end modules

7.3.5 Explainable feature extraction module

The end-to-end module for explainable feature extraction is devoted to ex-

tracting a new set of binary features from a given training set, allowing us to

describe that dataset by logical rules.

Parameters

The parameters required for the feature extraction phase are

1. the data perturbation parameters, namely the CV settings (number of

folds and repeats, k and t respectively);

2. nrmin and nrmax, which define the range [nrmin, nrmax] of the number

of features (i.e. rules) to take into consideration.

Behavior description

Three different phases characterize the EFE module, namely rule extraction,

rule selection and eventually rule evaluation.

Given the training set D described by feature set F, (i) the rule extrac-

tion phase aims to generate a new feature set, denoted as a ruleset as follows,

composed of explainable features called rules that are defined on the original

feature set F. Since the number of extracted rules could be high, (ii) the second

phase is a feature selection approach to identify the most promising explain-

able features to shrink the size of the ruleset in a user-defined acceptable range.

Finally, (iii) the optional third phase concerning the rule evaluation phase ex-

ploits the evaluation ETEM that solves the original binary classification task

using the identified rulesets of incremental size.

Rule extraction phase Rule extraction phase has been implemented by

exploiting the Skope-rules python package [139], which is built on top of scikit-

learn. Skope-rules exploits ensembles of trees (i.e. decision tree classifiers

and regressors) to extract rules from data. A tree ensemble (e.g. random

forest) is fitted to learn rules from data, which are filtered based on recall and

precision thresholds, to remove low-performing rules. Then, duplicate and

similar rules are removed by performing a selection based on the diversity of

logical terms (variable + larger/smaller operator) and performance (F1-score)

of the rules [140].

97

7.3. FeatSEE end-to-end modules

Specifically, the Skope-rules functionality is used to identify two sets of

rules, describing the positive and the negative class, respectively. The rule

extraction has been performed in a cross-validation setting, in order to limit

overfitting by extracting rules from sub-samples of the training set. Finally,

the two sets of rules are merged into a single ruleset R, which is used to build

the corresponding rule-based datasets of training and test sets.

Rule selection phase In the next step, an ad-hoc feature selection for

binary features is performed to identify a set of relevant and non-redundant

rules by exploiting the MCC for the estimation of both rules’ relevance and

redundancies.

The feature graph GR = (V,E,L) is built from the rule-based training set

using the MCC for assign vertex and edge weights. We will refer to GR as rule

graph as follows. Then, redundant rules are removed by a greedy algorithm

that exploits the strong correlation edges of the graph GR, namely, such edges

whose weight is near to one in magnitude. A threshold value et is chosen and

a second rule graph G′
R = (V,E′, L) is obtained by considering only the edges

such that |we| > et. Then, for each connected component appearing G′
R, only

the highest scored vertex (i.e. rule) is kept, whereas others are discarded.

Finally, the rules discarded by the greedy algorithm are removed from both

the rule-based datasets and the rule graph GR.

Performance evaluation phase Finally, the rules are ordered with re-

spect to their MCC against the target feature, and they are evaluated in the

classification task by building rule sets of incremental lengths.

98

7.3. FeatSEE end-to-end modules

Algorithm 7 . . .

1: function ruleMining(TrSet, k, n)
2: Init empty rule list Ruleset
3: for cv split ∈ RepeatedKFold(k, n) do
4: for class ∈ {Pos,Neg} do
5: rules← SkopeRules(TrSet, cv split, class)
6: insert(rules,Ruleset)
7: return Ruleset
8: procedure featureExtraction(TrSet, TestData, Features,AlgoSet)
9: Ruleset← ruleMining(TrSet, k, n)

10: TrSetR ← RuleBasedDataset(TrSet,Ruleset)
11: Gtr ← FeatureGraph(TrSetR)
12: Gtr ← RuleDeduplication(Gtr)
13: Sort rules w.r.t. vertex weights of Gtr

14: Build rulesets R = {R2, R3, . . . , Rn}
15: performanceEvaluation(TrR, T estR,R, AlgoSet)
16: Process data

99

Chapter 8

GRAPES-DD

In this chapter, we presented the implementation details about GrapesDD,

a software based on GRAPES that exploits decision diagram data structures

for the indexing of collections of graphs and for the efficient search of specific

substructures within the indexed collections, as described in Chapter 6.

Thus, Section 8.1 provides a general overview of the tool. Then, Section 8.2

provides the algorithm for the construction of the index starting from a graph

collection. Section 8.3 describes the algorithm for the efficient filtering of the

index given a query graph. Finally, Section 8.4 showed the implementation de-

tails of the algorithm to optimize the memory efficiency of the index MTMDD

through the reordering of its variables.

The effectiveness of GrapesDD is shown in Section 9.4 using both real

and synthetic collections of graphs. In particular, the following case studies

are described:

• Graph indexing and subgraph searching. This work was published in [121]

and employes both real and synthetic collections of graphs, and the per-

formance are compared against the state-of-the-art tools.

• Memory optimization via variable reordering. The work published in

[141] is the application of the entropy-based heuristic on the MTMDDs

100

8.1. Overview

of biological graphs collections to answer the two research questions

presented in Section 6.5.

8.1 Overview

In [121] we proposed a new version of GRAPES, called GRAPES-DD, which

exploits the decision diagram (i.e MTMDD) to achieve a substantial reduction

of the memory footprint of the index graphs. The goal was reached thanks

to DD’s ability to efficiently handle the presence of similar patterns in the

indexed graph paths.

GRAPES-DD has been written in C++ and exploits the decision dia-

grams implementation provided by the Meddly Library. Moreover, the whole

tool has been containerized in a Docker[29] image to ensure the experiments’

functional and computational reproducibility. The Dockerfile to build the im-

age is provided together with the source code, and it is available at https://

github.com/qBioTurin/grapes-dd and at https://github.com/InfOmics/

grapes-dd.

The GRAPES-DD workflow is composed of three main stages, namely in-

dexing, filtering and verification, as in the original version of the GRAPES

tool. During the indexing stage, the MTMDD storing all the labeled paths up

to length l is built from the collection of target graphs. During the filtering

stage, a query MTMDD is built from the query graph and it is exploited to

extract the candidate set from the index, namely those subgraphs potentially

containing the query graph. Finally, the verification stage is applied to the

candidate set provided by the filtering phase: the GRAPES subgraph isomor-

phism algorithm, either VF2 or RI, can be executed to find all the occurrences

of the query graph.

8.2 Indexing stage

The indexing stage introduced in Section 4.3 is shown in Algorithm 8.2. The

indexing function takes two arguments: the graph collection D = {g1, . . . , gn}
to be indexed, and the maximum feature length l > 0.

The algorithm is composed of two phases. In the former phase, the data

structures required for the indexing process are properly initialized, whilst

101

https://github.com/qBioTurin/grapes-dd
https://github.com/qBioTurin/grapes-dd
https://github.com/InfOmics/grapes-dd
https://github.com/InfOmics/grapes-dd

8.2. Indexing stage

the second phase consists of storing all the graph features, together with the

additional information, in the index MTMDD.

8.2.1 Index preparation

As introduced in Section 4.3, to create a forest of decision diagrams, the

Meddly library requires to know the domain bounds for the required variables,

namely a k-length vector xbounds = ⟨b1, . . . , bk such that (i) k is the number

of variables, and the i-th elements indicates that the admissible values for

variable xi ranges between 0 and bi − 1.

GrapesDD is based on the MTMDD using the flattened location infor-

mation introduced in Section 6.2. Thus, given the maximum feature length l,

the MTMDD domain is composed of l+1 variables: the location information

variable xliv and l location variables xlbl1 , . . . , xlbll .

The default variable order is O = xliv ≻ xlbl1 ≻ · · · ≻ xlbll , meaning the

root node is labeled with variable xliv, the level below the root node is assigned

to xlbl1 and so on. The non-terminal level at the bottom of the DD is assigned

to xlbll .

The domain bounds for variables are estimated by looking at the graph

collection D: let NV and NL be the total number of vertices and of labels

within D, respectively. Two encoders are defined: (i) the label encoder EL :

Σ→ N+ and (ii) the vertex encoder EV : G× V → N.
The vertex encoder EV maps specific vertices within the graph collection

D in the range [0, . . . , NV − 1]. The label encoder EL maps the labels in the

range [0, NL]; in particular, labels are encoded in the range [1, NL], whereas

the null value encodes for no label.

Considering the default variable ordering defined above, the corresponding

domain bounds is ⟨NV , NL + 1, . . . , NL + 1⟩.
Once the domain bounds have been defined, the forest F is instantiated

by specifying (i) the range of terminal nodes among boolean, integer and real,

and (ii) which kind of decision diagram among multi-terminal and edge-valued

types. To obtain an MTMDD forest we specified (i) integer as the range of

terminals, and (ii) multi-terminal as the second option.

8.2.2 Index construction

Initially, an empty MTMDD I is created from forest F .

102

8.2. Indexing stage

Figure 8.1: . . .

103

8.2. Indexing stage

Algorithm 8 Graph indexing algorithm

1: Let F be the Meddly forest
2: Let B = (Bx, By) be the buffer
3: Let EV and EL be the encoding functions

4: procedure flushToDD(B, index)
5: tmp← createEdge(F , Bx, By) ▷ Get data from B
6: apply(+, index, tmp, index) ▷ Merge tmp with the index
7: setAsEmpty(B)
8: procedure flushToBuffer(g, trie, index)
9: for each p = (σ1, . . . , σl) ∈ trie do

10: nocc ← getFeatureCount(trie, p)
11: for each v ∈ getFeatureVertices(trie, p) do
12: tuple← ⟨Ev(g, v), EL(σ1), . . . , EL(σl)⟩
13: insert(B, tuple, nocc)
14: if isFull(B) then
15: flushToDD(B, index)
16: function createIndex(D, l)
17: Create index MTMDD I from forest F
18: Initialize empty buffer B = (bx, by)
19: for g ∈ D do
20: V LabelSet← groupByLabel(g) ▷ A set of sets
21: for V Set ∈ V LabelSet do
22: Initialize empty trie
23: for node ∈ V Set do
24: DFS(g, node, trie)

25: flushToBuffer(g, trie, B, I)
26: if not isEmpty(B) then
27: flushToDD(B, I)
28: return I

Then, a buffer object B is initialized. Its purpose is to accumulate the

tuples (and the corresponding return values) to be stored in the index I.
The buffer is used to have a large capacity to reduce the number of insertion

operations. Such a buffer object is internally composed of two buffers, bx

and by, having the same length. The former is designed to store the variable

assignments that will define the non-terminal nodes, whereas the latter is

devoted to storing the terminal values corresponding to the tuples in bx.

The actual indexing phase, which is depicted in Figure 8.1, is performed

one graph at a time, by grouping its vertices with respect to their labels to

104

8.3. Filtering stage

ease counting the occurrences of the extracted features within the whole graph.

Then, each group of vertices are indexed separately by relying on auxiliary

tries to accumulate path occurrences. Once all the vertices belonging to a

group are indexed, the content of the trie is transferred to the buffer.

Whenever the buffer is full, it is flushed in the index MTMDD. The flush-

ing procedure consists of creating a temporary MTMDD from F , where the

buffer’s content is stored by calling createEdge(bx, by), namely by stating

a set of variable assignments and the corresponding return values. The MT-

MDD produced by such a process is then merged in the index by performing

an addition operation between the index and the temporary MTMDDs, whose

result became the new index MTMDD.

8.3 Filtering stage

The implementation of the filtering stage introduced in Section 6.4 is shown in

Algorithm 9. The filtering function takes two arguments: the index MTMDD

I, and a query graph GQ = (VQ, EQ, LQ) to be searched in the graph collection

indexed by I.
The algorithm starts by initializing a series of Meddly empty edges, Q,T

and P , which are used for different purposes during the filtering stage. In

particular, (i) Q is used to index the query graph using features up to the

same length as those in I, (ii) T encodes the template query graph, and (iii)

P encodes the pruned index.

8.3.1 Query preprocessing phase

Firstly, a similar indexing procedure to the one used to build I is applied to

the query graph GQ: all the features are extracted from GQ and stored in the

MTMDD Q. Query vertices are enumerated in [0, . . . , |VQ|), and such values

are used for the location information variable in the MTMDD Q.

8.3.2 Feature extraction phase

It is worth noting that the location information of the query MTMDD Q is in-

compatible with the one of the index I, since they represent different vertices

sets. In fact, the former refers to the vertices of the query graph, whereas the

latter is about the vertices of the indexed graphs. To solve such compatibility

105

8.3. Filtering stage

Algorithm 9 Filtering algorithm

1: Let F be the Meddly forest
2: function queryFiltering(I, GQ)
3: Let Q,T, P be new Meddly edges
4: IndexQuery(GQ, Q)
5: BuildQueryTemplate(Q,T)
6: Apply(×, I, T, P)
7: cset← QueryConstraintsVerification(P,Q)
8: return cset
9: function checkQueryConstraints(P,Q)

10: initGraphMatchDataStructure(Q)
11: e← getMeddlyEnumerator(P)
12: repeat
13: tuple← getVarAssignment(e)
14: loc← getLocationInfoValue(tuple)
15: q supp← getQuerySupportsInfo(e, loc)
16: for (vq, s) ∈ q supp do
17: vpaths← getFeaturesFromQueryVertex(vq)
18: if s >= len(vpaths) then
19: matched← true
20: for p ∈ vpaths do
21: occq ← evaluate(Q, ⟨vq, p1, . . . , pl⟩)
22: occv ← evaluate(I, ⟨loc, p1, . . . , pl⟩)
23: if occv < occq then
24: matched← false
25: break
26: if matched is true then
27: setGraphMatch(loc, vq)

28: until isValid(e)
29: return getCompleteMatches()

issues, and especially to allow us to match a vertex query against vertices be-

longing to the index, at line 5 the buildQueryTemplate() function creates

the template query MTMDD T from MTMDD Q by replacing the location

information variable with a single DONT CARE node.

Then, at line 6, the multiplication operator is applied between the index

I and the template query T , whose product is stored in the pruned MTMDD

P . All the features which appear in the query are extracted from the index

I, together with (i) the correct location information regarding the graphs in

the collection D, and (ii) the occurrences counters. Practically, the pruned

106

8.3. Filtering stage

MTMDD P encodes for a set of subgraphs of the original graphs indexed in

I. Each subgraph is composed of a subset of the vertices of one of the indexed

graphs such that each vertex (i) has a label l ∈ LQ and (ii) from which starts

at least one feature (i.e. labeled path) in common with the query Q.

8.3.3 Constraints verification phase

Subsequently, the queryConstraintsVerification() function identify which

subgraphs (i.e. sets of vertices) encoded in the pruned index P satisfy the

query constraints, and the candidate set, namely the set of subgraphs con-

taining all the query features, is returned as output.

The constraints verification strategy is based on the enumerator class pro-

vided by the non-expert interface of the Meddly library, which allows us to

iterate over the DD one variable assignment at a time.

Then, given a variable assignment x = ⟨x1, . . . , xn⟩ describing a feature p

starting from a certain graph vertex, the location information of the current

x is decoded to get the graph and vertex identifiers, gid and vid, relative to

the feature p. At line 15, since each graph vertex (gid, vid) can potentially

match multiple query vertices, all the paths starting from the current vertex

are retrieved from the query: for each of these paths, we obtain the query

vertices from which they start.

At this point, the for loop in lines 16-27 verifies whether the current vertex

is matchable against one or more query vertices, and in case, on which query

vertices does it match. The conditional statement at line 18 filters out the

current graph vertex if an insufficient number of features start from it. If the

vertex (g, v) passes the filter, the actual query constraints are checked:

• for each feature p starting from a query vertex vq, all other features p′

starting from vq must also start from (g, v);

• the number of occurrences of each feature in g must be at least equal to

the number of occurrences of the same feature in the query graph

If both the above conditions hold, the current vertex is set as a candidate to

match the current query vertex vq. Once the whole pruned MTMDD P has

been visited, the match vector is examined in order to retrieve the graphs for

which there exists a complete match, namely a graph g = (V,E,L) where

every query vertex is fully matched against at least one vertex v ∈ g.

107

8.4. Entropy-based variable ordering

Finally, for each vertex of the query, the algorithm reports the list of the

matchable vertices of the indexed graphs passing the filtering phase. The

overall effect is that the algorithm extracts from the graph collection all the

maximally connected components composed only by the vertices involved in

the query graph. Over these components, a subgraph isomorphism algorithm

can be executed to find all the occurrences of the query graph.

8.4 Entropy-based variable ordering

The variable ordering selection heuristic described in Algorithm 1 has been

implemented in C++ using the Meddly library. The implementation details

of EntropyHeu() are shown in Algorithm 2. The goal of the algorithm is to

identify an ordering of the variables of the index MTMDD I that reduces the

size of the index, which is measured as the total number of nodes and edges

that compose the DD. Considering an index MTMDD I using features up to

length l, the variable set of the index MTMDD is composed of l+ 1 items: I
is {xliv, xlbl1 , xlbl2 , . . . , xlbll}

The algorithm is composed of two steps. The first step is implemented by

the EntropyHeuLabels() function, which builds a partial ordering consid-

ering label variables {xlbli} only, whereas the second step is provided by the

entropyHeu() function that completes of the partial ordering by positioning

the location information variable xliv.

8.4.1 Label variables reordering

The creation of the partial order composed by the label variables is accom-

plished by the function EntropyHeuLabels(), a greedy algorithm to maxi-

mize the SOE metric introduced in Section 6.5.1. The metric computation is

listed in Algorithm 3. It is based on the estimation of the entropy of a multi-

set, which is represented by an MTMDD obtained by projecting the index I
on a specific set of variables.

The label variable reordering algorithm is based on constructing a series

of decision diagrams composed of an incremental number of variables. For

such a reason, at line 14 a pointer to a Meddly forest is declared. In the next

two lines, the unbounded variable set U and the partial order vector O are

defined. The former is initialized as the whole set of available label variables

108

8.4. Entropy-based variable ordering

Algorithm 2 Variable ordering selection heuristic

1: function EntropyHeu(I)
2: O ← EntropyHeuLabels(I) ▷ Build partial ordering
3: O∗ ← getCurrentVariableOrdering(I)
4: minSize← getNodesEdgesSum(I)
5: for i← [1 . . . n] do
6: O′ ← InsertAt(O, {vn 7→ i}) ▷ Insert xliv at index i
7: I ′ ← reorderDDVariables(I, O′)
8: size← getNodesEdgesSum(I ′)
9: if size < minSize then

10: minSize ← size
11: O∗ ← O′

12: return O∗

13: function EntropyHeuLabels(I)
14: Let F ← null be a pointer to a Meddly forest
15: U ← {v1 . . . vn−1}
16: O ← {}
17: while |U| > 1 do
18: nv ← initForest(I,F , O)
19: initState(null,−∞)
20: for v′ ∈ U do:
21: I ′ ← projection(F,O + v′, I)
22: H ′ ← computeEntropy(I ′)
23: if H ′ > Hsel then
24: updateState(v′, H ′)

25: vsel ← getSelectedVariable()
26: U ← U \ {vsel}
27: O ← append(O, vsel)
28: clearForest(F)
29: Append the last variable of U in O
30: return O

within the index MTMDD I, whose number is equal to the maximum feature

length used to build the index, whilst the latter is initialized as empty.

The loop in lines 17-28 chooses at each iteration the unbounded variable

that, jointly with the current partial order maximises the entropy estimation.

The iteration starts by initializing a Meddly forest defined on a domain of

nv = |O| + 1 variables. Then, the variables to perform the greedy choice

are initialized and the inner loop in lines 20-24 iterates over the unbounded

109

8.4. Entropy-based variable ordering

variables in v′ ∈ U . At each inner iteration, the function computeMetric()

estimates the entropy-based metric on the decision diagrams built by consid-

ering the variables currently in the partial order O and the current unbounded

variable v′, and such values (i.e. the entropy value and the selected variable

v′) are saved if the current entropy value greedily improves the current results.

Once the inner loop terminates, the selected variable vsel is removed from the

set of unbounded variables and it is added to the partial order O. Finally, the
forest pointer is freed in the last line of the outer loop.

The computeMetric() function performs the entropy estimation for a

given set of variables. It takes as input (i) the index MTMDD defined over

l + 1 variables, which l are label variables, (ii) a Meddly forest defined on

k < l label variables, and (iii) a set of k label variables. To actually perform

the entropy estimation, the index has to be projected over the provided set

of k variables. To do so, at line 3, a new decision diagram dd is created

from the current forest. Similarly to the indexing phase, a buffer B is used to

accumulate the tuples pending to be inserted in dd. Tuples are represented

by buffer slots, which consist of arrays of length k.

The projection of the index I over the provided variables is performed by

traversing I using a Meddly enumerator, and by saving the assignments of

the variables of interest in the buffer slots. At line 7, tuples are pushed in

the buffer: the y value is set to one in order to count how many times each

tuple occurs. Whenever the buffer is filled, it is flushed in the current DD by

means of the flushToDD() function, which has been previously defined in

Algorithm 8.2. Once the construction phase has been completed, the decision

diagram obtained in such a way is exploited by the computeEntropy()

function to compute the Equation 6.2. It is worth noting that the quantity

returned by such a function is always negative, because of the missing minus

sign, in order to treat the problem as a maximization one.

Placing the location information variable

Once the partial ordering of label variables has been identified by the entropy-

guided heuristic, a simple brute-force method is applied to identify the best

position for the location information variable. Given the ordered set of the

l label variables O, the EntropyHeu() function empirically evaluates the

memory occupation of the index I for the l + 1 possible variables orderings.

110

8.4. Entropy-based variable ordering

Algorithm 3 Algorithm for entropy estimation of target MTMDD

1: function projection(I,F ,V)
2: Let B = (Bx, By) be a buffer
3: D ← newEdge(F)
4: e← getMeddlyEnumerator(I)
5: repeat
6: prjtuple← getVarAssignment(e) \ V
7: insert(B, prjtuple, 1)
8: if isFull(B) then
9: flushToDD(B,D)

10: until isValid(e)
11: flushToDD(B,D)
12: return D

13: function computeEntropy(D)
14: Let c and den be integer variables initialized to zero
15: c← apply(CARDINALITY,D)
16: v : array(c) ▷ Allocate c-size array
17: e← getMeddlyEnumerator(D)
18: for i ∈ [0, . . . , c) do
19: v[i]← getTerminal(e)
20: den← den+ v[i]
21: nextElement(e)

22: return
∑

t∈v
t

den log2(
t

den)

The location information variable is inserted at each available position of the

ordering O.
Given a ordering O, at line 7 the index’s variables are reordered with

respect to O, and the size of I can be estimated as the sum of the number of

nodes and edges composing that DD. Internally, the variables are reordered

by calling the method F .reorderVariables(O) imposes the ordering O on

forest F , and then, on all the decision diagrams within forest F . At the end,

the algorithm returns the variable ordering associated with minimum size,

among the tested ones.

111

Chapter 9

Applications

In this chapter, we show different case studies successfully investigated using

either FeatSEE or GrapesDD tools.

In detail, the first three sections describe different omics-related real-world

case studies we faced exploiting personalized workflow of analysis composed of

FeatSEE modules. Differently, the fourth section describes the experimental

results obtained with the GrapesDD tool involving the indexing, filter-and-

verification phases, and the variable reordering heuristic.

In detail, experiments involving the FeatSEE framework prove the

9.1 Biomarker discovery for colorectal cancer

Fecal tests currently used for colorectal cancer (CRC) screening show limited

accuracy in detecting early tumors or precancerous lesions. In this respect,

we comprehensively evaluated stool microRNA (miRNA) profiles as biomark-

ers for noninvasive CRC diagnosis. A total of 1273 small RNA sequencing

experiments were performed in multiple biospecimens. In a cross-sectional

study, miRNA profiles were investigated in fecal samples from an Italian and

a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141

colonoscopy-negative controls). A predictive miRNA signature for cancer de-

tection was defined by a machine learning strategy and tested in additional

112

9.1. Biomarker discovery for colorectal cancer

fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA pro-

files were compared with those of 132 tumors/adenomas paired with adjacent

mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochem-

ical test leftover samples. Twenty-five miRNAs showed altered levels in the

stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA sig-

nature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-

6777-5p, distinguished patients from control individuals (area under the curve

[AUC], 0.86; 95% confidence interval [CI], 0.79–0.94) and was validated in an

independent cohort (AUC, 0.96; 95% CI, 0.92–1.00). The signature classified

control individuals from patients with low-/high-stage tumors and advanced

adenomas (AUC, 0.82; 95% CI, 0.71–0.97). Tissue miRNA profiles mirrored

those of stool samples, and fecal profiles of different gastrointestinal diseases

highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal

immunochemical test leftover samples showed good correlation with those of

stool collected in preservative buffer, and their alterations could be detected

in adenoma or CRC patients. Our comprehensive fecal miRNome analysis

identified a signature accurately discriminating cancer aimed at improving

noninvasive diagnosis and screening strategies.

Valildation on an independent cohort

(141 CRC, 80 controls)

RT-qPCR validation

StrategiesStudy subjects

Biospecimens

Explainable

machine learning

25 DEmiRNAs in

overlap

5-miRNA

signature

miRNome characterization

IT-cohort

(n=317)
CZ-cohort

(n=162)

Validation-cohort

(n=221)

Fecal miRNome profiling

and biomarker discovery

Fecal DEmiRNA characterization

in different sample types and

diseases
FIT-cohort

(n=185)

Differential expression

analysis

small RNA-Seq

Plasma EVs

Stool

FIT leftover

CRC or adenoma matched with adjacent mucosa

IT-cohort (89, CRC, 105 controls)

CZ-cohort (66 CRC, 36 controls) Tumor vs. adjacent mucosa

Adenoma vs. adjacent mucosa

CRC vs. controls

Patients with adenomas or

other GI disorders vs controls

Colonic tissue (n=264)

Plasma EVs (n=210)

Stool samples (n=183)

Screening setting evaluation
FIT buffer leftover (n=185)

Figure 9.1: Representation of the study design.

9.1.1 Introduction

In the last 30 years, we have witnessed a dramatic increase in understand-

ing the epidemiology, etiology, molecular biology, and various clinical aspects

113

9.1. Biomarker discovery for colorectal cancer

of colorectal cancer (CRC) [142]. However, approximately 1.8 million new

cases are annually diagnosed worldwide, posing CRC as the third most com-

mon incident cancer. Moreover, although early-stage tumors can be efficiently

treated, CRC is still the second-leading cause of cancer-related death, with

900,000 deaths in 2018 [143, 144]. Hence, the early detection of preclinical

cancers or precursor lesions is a desirable objective, because it may strongly

increase the chances for successful treatment and cure. Most European coun-

tries have implemented CRC screening programs based on noninvasive stool

tests for detecting fecal occult blood, mainly the fecal immunochemical test

(FIT) [145, 146]. FIT selects individuals showing a higher prevalence of CRC

and advanced benign neoplasia but has limited sensitivity to recognize ad-

vanced colorectal adenomas (AAs) [147]. Colonoscopy is also used in an op-

portunistic screening setting and detects both cancer and premalignant lesions

but is bothersome and invasive, as well as costly for the health system [148].

Despite the fact that FIT-based screening programs are undeniably efficient

in detecting premalignant growths and providing an earlier diagnosis, success-

fully reducing CRC burden, only approximately 5% of individuals who re-

ceive a colonoscopy based on FIT results will end up with a significant lesion

(CRC or AA). Stool tests show a relatively low specificity, resulting in a high

number of false positives and a considerable number of unnecessary colono-

scopies [149]. Complementing traditional screening stool tests with other non-

invasively detectable fecal molecular biomarkers could improve the triage of

individual for colonoscopy, reducing the costs for the health systems in terms

of the number of examinations and decreasing the risks and discomfort for

patients [150, 151]. Identifying reliable biomarkers is not trivial, given the

ensemble of hidden interactions between molecules and patient-specific clini-

cal/anamnestic characteristics. However, machine learning (ML) algorithms

have been defined to reveal significant features able to accurately discriminate

groups of individuals. In particular, explainable ML approaches allow the

identification of novel molecular biomarker signatures to improve early CRC

diagnosis, as recently demonstrated for fecal microbial species [152] and uri-

nary proteins [153]. The analysis of small noncoding RNAs in fecal samples

has attracted interest with an excellent biological and analytic rationale for its

application in large-scale clinical investigations [154]. Tumor-secreted small

noncoding RNAs are directly and continuously released into the intestinal lu-

men, and their profiles may be altered in concomitance with the presence of

114

9.1. Biomarker discovery for colorectal cancer

CRC and precancerous lesions. Moreover, small noncoding RNAs, such as mi-

croRNAs (miRNAs), are remarkably stable, enabling their accurate detection

in stool without the need for special stabilization or logistic requirements [155].

miRNAs are suitable biomarkers in surrogate tissues and biofluids because

their levels are altered in specific pathologic states [156], in the presence of

precursor lesions [157], and in CRC development [158, 159, 160]. In addition,

specific fecal miRNA alterations have been associated with the gut microbiome

composition [161] and proposed as noninvasive CRC biomarkers [162]. So far,

comprehensive miRNA profiling by small RNA sequencing (small RNA-seq)

has been mainly performed on tumor tissues or plasma [162, 163]. In contrast,

studies on fecal samples investigated few miRNAs in relation to CRC, typically

in small cohorts and without taking into account their demographic character-

istics [164]. In this respect, studies on the whole fecal miRNome showed that

different lifestyles and dietary habits might critically affect specific miRNA

levels [165, 166]. In addition, limited evidence is available on stool miRNA

profiles in relation to patient clinicopathologic characteristics, such as spe-

cific CRC stages, precancerous lesions or other gastrointestinal (GI) diseases,

except for the reported pleiotropic dysregulation of miR-21-5p in several dis-

eases [167]. Therefore, a miRNA signature for CRC detection derived from

a comprehensive fecal miRNome analysis across multiple populations is cur-

rently lacking. This multicenter study aimed to explore, by deep sequencing,

the miRNA profiles in stool samples that best characterize CRC patients from

control individuals and distinguish colorectal adenomas or other GI diseases.

The analyses were performed in different independent cohorts adopting the

same protocol for participant recruitment, sample collection, and small RNA-

seq experiments/analyses. An integrated explainable ML strategy identified a

fecal miRNA signature distinguishing CRC patients from control individuals,

and the results were validated in an additional cohort. Finally, altered miR-

NAs in stool were also investigated in FIT-positive leftover samples collected

within a population-based CRC screening program.

115

9.1. Biomarker discovery for colorectal cancer

9.1.2 Material and methods

Stool Study Cohorts

log2FC CRC vs Controls (IT-cohort)

CZ-cohort

log10(Average stool levels − Controls)log10(Average stool levels − Controls)

IT-cohort

lo
g

1
0

(A
v
e

ra
g

e
 s

to
o

l l
e

v
e

ls
 −

C
R

C
)

−log10(Adj. P) log2FC

0 5 10 15 20 -4 -2 0 2 4

log2FC

 2 4 6 -4 -2 0 2 4

lo
g

2
F

C
 C

R
C

 v
s
 C

o
n

tr
o

ls
 (

C
Z

-c
o

h
o

rt
)

Z−score

−4

−2

0

2

4
Stage

I
II
III
IV

Grade

G1
G1−G2
G2
G2−G3
G3

pT

T1
T2
T3
T4

Localization

Colon
Rectum

Class

CRC

 Controls

pN

N0
N1
N2

pM

M0
M1

Cohort

CZ-cohort
IT-cohort

A

C

B

Number of features

AUC (CRC vs Controls)

Test set (30% of IT and CZ-cohort)Feature selection Validation-cohort

0 5 10 20 25 0.0 0.2 0.4 0.6 0.8 1.0

0.9

0.8

0.7

0.6

1.0

0.8

0.6

0.4

0.2

0.0

A
U

C
 -

 C
R

C
 v

s
 C

o
n

tr
o

ls

Logistic regression

Random forest

Gradient boosting

15

Logistic regression: 0.83 ± 0.01

Random forest: 0.86 ± 0.01

Gradient boosting: 0.85 ± 0.01

T
ru

e
 p

o
s
it
iv

e
 r

a
te

1.0

0.8

0.6

0.4

0.2

0.0

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

AUC (CRC vs Controls)

Logistic regression: 0.96 ± 0.01

Random forest: 0.96 ± 0.01

Gradient boosting: 0.95 ± 0.01

D

F GE

miR-1246
miR-4488
miR-149-3p
miR-6777-5p
miR-607-5p

Sta
ge

 (I
II−

IV
 v
s
I−

II)

G
ra

de
 (3

 v
s
1-

2)

pT
 (T

3−
T4

vs
 T

1−
T2)

pN
 (N

1-
N
2

vs
 N

0)

pM
 (M

1
vs

 M
0)

R
ec

tu
m

 v
s
C
ol
on

-log10(P)

0 1 2 3 4

miR-26a-5p

miR-4508

miR-149-3p

miR-4323-5p

miR-200b-3p
let-7f-5p

let-7a-5p

let-7b-5p

miR-4492

miR-1246

miR-12114

miR-1181

miR-194-5p

miR-320-3p

let-7i-5p
miR-1290

miR-607-5p

miR-6076
miR-9899

miR-6777-5p

miR-148a-3p

miR-21-5p

-2 0 2 4 6

3

2

1

0

-1

miR-922-5p

miR-4488

miR-6131

Spearman Rho = 0.75

P < .0001

4

3

2

1

0

4

3

2

1

0

miR-607-5p
miR-922-5p
miR-6777-5p
miR-6076
miR-9899
miR-12114
miR-4492
miR-4488
miR-149-3p
miR-4508
miR-1181
miR-1246
miR-1290
miR-4323-5p
miR-194-5p
miR-200b-3p
let-7a-5p
let-7f-5p
let-7i-5p
let-7b-5p
miR-148a-3p
miR-21-5p
miR-26a-5p
miR-320a-3p
miR-6131

miR-607-5p
miR-922-5p
miR-6777-5p
miR-6076
miR-9899
miR-12114
miR-4492
miR-4488
miR-149-3p
miR-4508
miR-1181
miR-1246
miR-1290
miR-4323-5p
miR-194-5p
miR-200b-3p
let-7a-5p
let-7f-5p
let-7i-5p
let-7b-5p
miR-148a-3p
miR-21-5p
miR-26a-5p
miR-320a-3p
miR-6131

VF42
3

VF08
5

VF06
5

P15
4

VF39
8

VF38
5

VF36
0

VF43
9

VF46
5

VF45
5

VF44
0

VF46
2

VF39
2

VF39
0

VF20
1

VF34
8

VF46
1

VF12
0

VF44
3

VF46
7

C
R
C
66

4

VF07
1

VF14
2

VF42
5

VF34
7

VF44
8

VF40
2

VF33
9

VF12
5

VF07
8

VF07
3

VF45
0

VF28
2

VF10
6

VF45
2

VF10
7

VF46
6

VF15
5

VF17
6

VF46
9

VF41
2

VF42
1

VF32
2

VF27
4

VF45
3

VF45
6

VF16
6

VF37
9

VF29
6

VF39
1

VF40
4

VF24
0

VF20
8

C
R
C
70

7

P11
9

P17
7

P15
5

C
R
C
63

8

C
R
C
67

3

P12
2

C
R
C
71

0

VF37
8

IK
02

7

VF32
8

VF39
9

VF40
0

VF37
7

VF31
8

VF09
5

VF36
3

VF39
4

TU
R
-2

78
9F

E

VF21
2

C
R
C
63

6

VF27
3

VF27
0

VF33
4

VF29
8

P15
0

IK
10

8

P12
6

C
R
C
66

9

VF10
3

VF15
4

VF32
6

VF11
0

IK
10

3

VF30
4

P13
3

VF13
8

C
R
C
63

4

VF21
6

VF21
7

VF23
4

VF27
7

VF09
1

C
R
C
70

3

P15
8

P14
5

P16
2

VF36
5

VF31
3

IK
07

6

VF44
5

C
R
C
63

5

VF35
1

VF24
3

IK
08

6

C
R
C
62

7

C
R
C
75

7

P16
0

P14
8

P14
9

C
R
C
70

6

P12
3

VF14
5

IK
04

5

C
R
C
64

5

VF28
7

VF01
3

C
R
C
75

2

TU
R
-1

65
9F

E

TU
R
-1

20
4F

E

C
R
C
69

1

P12
0

P13
8

VF23
2

VF20
7

TU
R
-0

66
5F

E

VF26
4

TU
R
-1

03
3F

E

VF16
7

VF25
9

VF26
1

VF25
1

VF40
6

P13
0

P13
7

C
R
C
76

1

P14
0

VF28
1

VF03
9

C
R
C
70

8

C
R
C
63

3

VF09
4

C
R
C
69

3

VF25
7

C
R
C
76

0

VF08
2

G
F01

4

C
R
C
63

9

P12
8

VF44
6

VF30
6

C
R
C
69

5

G
F01

5

IK
08

1

VF00
TL

TU
R
-1

19
3F

E

TU
R
-0

69
0F

E

VF27
9

VF20
6

VF26
2

VF26
3

VF38
0

VF01
0

VF17
4

G
F00

1

G
F00

2

IK
08

0

VF04
0

IK
01

9

IK
02

5

TU
R
-0

98
9F

E

TU
R
-1

09
5F

E

C
R
C
64

2

VF18
9

IK
00

5

TU
R
-0

50
5F

E

G
F00

8

VF14
0

TU
R
-2

40
2F

E

TU
R
-1

36
1F

E

TU
R
-1

53
6F

E

IK
02

8

VF33
5

VF38
2

VF11
4

P16
6

TU
R
-1

18
4F

E

TU
R
-0

99
1F

E

VF04
1

VF17
1

P16
1

IK
01

3

IK
01

0

G
F00

6

VF10
4

C
R
C
67

1

VF07
7

TU
R
-1

33
9F

E

C
R
C
69

4

VF33
7

VF29
0

VF29
2

C
R
C
64

1

C
R
C
75

9

P15
1

VF08
4

VF26
5

VF00
5

IK
10

6

IK
05

7

VF30
3

TU
R
-3

12
8F

E

VF20
3

VF02
9

VF02
8

G
F00

3

IK
01

7

P13
4

IK
00

2

VF03
4

C
R
C
63

7

IK
06

7

VF10
0

P14
3

IK
07

5

C
R
C
65

2

VF11
1

VF22
2

G
F01

9

VF12
8

IK
05

4

VF00
1

TU
R
-0

98
4F

E

VF03
1

IK
03

3

TU
R
-1

35
2F

E

IK
06

5

VF25
4

IK
11

1

IK
11

2

IK
05

2

IK
02

2

VF08
1

IK
08

2

VF01
2

G
F00

4

VF04
3

VF28
3

IK
04

0

VF17
0

VF21
0

VF07
4

VF29
3

C
R
C
69

2

TU
R
-0

58
0F

E

VF30
0

VF31
5

VF18
5

TU
R
-0

39
7F

E

IK
07

3

IK
07

2

IK
06

4

TU
R
-2

27
1F

E
P12

1

VF31
1

IK
05

5

TU
R
-1

02
2F

E

VF37
0

VF00
6

IK
11

0

P16
3

VF25
5

VF01
4

IK
10

5

IK
10

7

VF01
8

VF07
6

TU
R
-0

95
8F

E
P13

2

TU
R
-3

26
6F

E

TU
R
-3

23
2F

E
P11

8

P18
1

C
R
C
69

8

VF23
6

VF22
6

VF26
8

VF07
5

P12
7

P12
5

VF44
2

P13
9

VF21
3

Stage
Grade
pM
pN
pT
Localization
Cohort
Class

0 1 2 3 4

(Caption on next page.)

Italian cohort Stool specimens and clinical and demographic data were col-

lected from 317 subjects recruited in a hospital-based study at Vercelli, Italy.

116

9.1. Biomarker discovery for colorectal cancer

Figure 9.2: (A) Scatterplot reporting the stool miRNA average levels in CRC
patients (y-axis) or control individuals (x-axis) from the IT cohort (left) or CZ
cohort (right). The dot color represents the log2 fold change (log2FC) from
the differential expression analyses between CRC and healthy individuals, and
the size is proportional to the age, sex, and multiple-testing adjusted P val-
ues. (B) Scatterplot reporting the correlations of log2FC of the 25 DEmiRNAs
from the comparison between CRC and control individuals and in common
between the IT cohort (x-axis) and the CZ cohort (y-axis). The up-regulated
and downregulated miRNAs are reported in red and blue, respectively. (C)
Heatmap of stool DEmiRNA levels in CRC and control individuals of both
cohorts. For each participant, the CRC stage and grade based on the Amer-
ican Joint Committee on Cancer system, presence of metastasis, lymph node
invasion status (pN), tumor size (pT), tumor localization, cohort of origin,
and disease status (CRC or control) are reported. (D) DEmiRNA levels com-
paring CRC patients stratified for clinical data. The dot color represents the
log2FC, and the dot size is proportional to the statistical significance. Black
borders represent tests with P < .05. (E) Line plot reporting the ability
of different combinations of feature selection methods and classifiers to per-
form the classification of CRC and control individuals. Each dot represents
an AUC obtained using a different number of fecal DEmiRNAs in input. (F)
Receiver operating characteristic curves obtained for the classification of CRC
and control individuals using the identified miRNA signature. Data are re-
ported for the 30% of participants excluded from the training set (left) and
for the validation cohort (right). Adj., adjusted.

Based on results of complete colonoscopy examination, participants were clas-

sified into (i) 89 sporadic CRC patients; (ii) 74 polyp patients (6 hyperplastic

polyps, 20 non-advanced adenomas (nAA), and 48 AA; serrated lesions were

excluded since too few); (iii) 49 subjects with a GI disease (6 Crohn’s disease,

9 ulcerative colitis, 14 diverticulitis, 7 diverticulosis, 13 hemorrhoidal disease);

and (iv) 105 colonoscopy-negative control subjects. AAs were defined based on

the presence of high-grade dysplasia, villous component, or lesion size > 1 cm

as defined by [168]. Of this cohort, 93 stool samples (from 29 CRC patients, 27

polyps, 13 subjects with a GI disease, and 24 colonoscopy-negative controls)

have been employed and described previously in other studies [169, 170, 171].

Czech cohort Stool specimens and clinical and demographic data were col-

lected from 162 Czech individuals recruited from two hospitals in Prague and

one in Plzen, Czech Republic.Based on colonoscopy results, subjects were di-

vided in (i) 66 CRC patients, (ii) 28 polyp patients (9 hyperplastic polyps, 13

117

9.1. Biomarker discovery for colorectal cancer

nAA, 6 AA; no serrated lesions were collected); (iii) 32 patients with other

GI diseases (3 Crohn’s disease, 11 ulcerative colitis, 17 diverticulosis, 1 un-

classified inflammatory bowel disease, IBD); and (iv) 36 colonoscopy-negative

subjects.

Validation cohort Stool specimens from 141 CRC patients recruited in

a hospital in Brno, Czech Republic and 80 stool samples of healthy volun-

teers contributing to science were included. These subjects were previously

described in other works: the CRC population is described in [172], but here

sequenced for the first time for small RNA-seq; healthy volunteers are a part of

the cohorts described and sequenced for small non-coding RNAs in [165, 166].

Fecal immunochemical test cohort FIT buffer leftover samples from 185

subjects with a positive test were collected within the CRC screening for the

Piedmont Region (Italy). Based on colonoscopy results, subjects were classi-

fied as controls (n=53), AA (n=80), nAA (n=30), or CRC (n=22). Among

them, 57 subjects also provided stool samples before undergoing colonoscopy.

Other Analyzed Biospecimens

For 132 patients having surgery at the Vercelli hospital, primary tissues (102

CRC and 30 adenomas) paired with adjacent colonic mucosa were collected.

Blood samples were collected from 210 out of 317 Italian (IT) cohort partici-

pants, stratified into patients with CRC (n = 52), AAs (n = 19), nAAs (n =

15), hyperplastic polyps (n = 6), and other GI diseases (n = 39), and control

individuals (n = 79).

Sample Collection

Naturally evacuated fecal samples were obtained from participants previously

instructed to self-collect the specimen at home. Samples were collected in nu-

cleic acid collection and transport tubes with RNA stabilizing solution (Nor-

gen Biotek Corp). Stool aliquots (200 µL) were stored at –80C until RNA

extraction [173]. For the validation cohort of CRC patients from Brno, stool

samples were collected from untreated patients before the scheduled surgery

with DNA-free swabs (Deltalab). Patients performed the collection at home

and returned the samples to the hospital, where they were immediately frozen

at –80C until further processing.

118

9.1. Biomarker discovery for colorectal cancer

For the FIT cohort, leftovers from FIT tubes (w1.2 mL) used for auto-

mated tests (OC-sensor, Eiken Chemical Co) for hemoglobin quantification

were stored at –80C until use. Plasma samples were obtained from 8 mL

of blood centrifuged for 10 minutes at 1000 revolutions/minute, and aliquots

were stored at –80C until use. Plasma extracellular vesicles (EVs) were pre-

cipitated from 200 mL of plasma using ExoQuick (System Biosciences) accord-

ing to Sabo et al.32 Paired tumor/adenoma tissue and adjacent nonmalignant

mucosa (at least 20 cm distant) were obtained from CRC and adenoma pa-

tients during surgical resection and immediately immersed in RNAlater solu-

tion (Ambion). All samples were stored at –80C until use.

Total RNA Extraction, Small RNA-Sequencing Library

Preparation, and Quantitative Real-Time Polymerase Chain

Reaction

Total RNA from stool and FIT leftover samples was extracted using the Stool

Total RNA Purification Kit (Norgen Biotek Corp) as previously described.20

Total RNA from plasma EVs was extracted as described in Sabo et al.32 For

tissue samples, total RNA was extracted using QIAzol (Qiagen) according to

the manufacturer’s instructions. Small RNAs were converted into barcoded

complementary DNA libraries for Illumina single-end sequencing (75 cycles on

HiSeq4000 or NextSeq500, Illumina Inc) as previously described.24 Candidate

miRNA biomarkers were replicated in stool samples using the miRCURY LNA

miRNA PCR Assays (Qiagen). Reverse transcription (RT) was performed us-

ing the miRCURY LNA RT kit (Qiagen) according to the manufacturer’s

instructions. All reactions were run on an ABI Prism 7900 Sequence Detec-

tion System (Applied Biosystems). Analyses were performed as described by

Moisoiu et al [174].

Computational and Statistical Analysis

Small RNA-seq analyses were performed as described by Tarallo et al. [173],

considering a curated miRNA reference based on miRBase v22 and includ-

ing a characterization of novel miRNAs. Differential expression analyses were

performed using DESeq2 v1.22.2 [175]. Functional enrichment analysis was

performed with RBiomirGS v0.2.12 [176], considering the validated miRNA-

target interactions. A generalized linear model was defined by considering the

119

9.1. Biomarker discovery for colorectal cancer

miRNA levels as the dependent variable and participant age, sex, body mass

index (BMI), smoking habit, and cohort as independent variables. An ML

strategy was implemented to identify the optimal fecal miRNA signature to

accurately classify CRC patients from control individuals. The ML approach

is composed of 3 phases: data preparation, feature selection, and classifica-

tion. The signature was determined by considering an increasing number of

miRNAs prioritized by filter and classifier-embedded methods applied to the

training set (70% of the IT/Czech [CZ] cohorts). The optimal set of miRNAs

providing the highest area under the curve (AUC) was selected and further

tested by 100 stratified 10-fold cross-validations, first on the remaining 30% of

the IT/CZ cohorts excluded from the training set and then on the validation

cohort. The training and test sets were defined by a stratified selection to

maintain the same proportion of participants characterized by specific covari-

ates (i.e., age, sex, cohort, disease status, and tumor staging). Other statistical

tests were performed using the WilcoxonMann-Whitney and Kruskal-Wallis

(continuous variables) or chi-square (categorical variables) methods. The Ben-

jaminiHochberg method was used for multiple-testing correction. Results were

considered significant at P < .05.

Study Design

This study was designed to define and characterize a fecal miRNA signa-

ture that accurately distinguishes CRC patients from control individuals (Fig-

ure 9.1). The applied analysis strategy included the following phases.

Fecal miRNome profiling and biomarker discovery.

• Detection of stool miRNAs with altered levels in CRC: miRNA profiles

from small RNA-seq and metadata were used for a differential expression

analysis between CRC patients and control individuals of both the IT

cohort and CZ cohort, independently. The overlapping differentially

expressed miRNAs (DEmiRNAs) from both cohorts were the input of

the next step.

• Feature selection and definition of an miRNA predictive signature: An

ML strategy identified an miRNA signature composed of the minimal

set of DEmiRNAs that better distinguished CRC patients from control

individuals by a stratified cross-validation procedure.

120

9.1. Biomarker discovery for colorectal cancer

Analysis Details Precision F1-score

Comparison Test Set AUC (mean±SD) 95% CI Accuracy Sensitivity Specificity Disease Healthy Disease Healthy

CRC vs Healthy Discovery 0.86 ± 0.01 0.79–0.94 0.78 0.78 0.78 0.82 0.74 0.80 0.76
CRC vs Healthy Validation 0.96 ± 0.01 0.92–1.00 0.89 0.90 0.88 0.93 0.83 0.91 0.85
CRC I-II vs Healthy Discovery 0.86 ± 0.01 0.76–0.96 0.81 0.65 0.90 0.79 0.82 0.71 0.86
CRC I-II vs Healthy Validation 0.95 ± 0.01 0.90–1.00 0.86 0.82 0.91 0.90 0.83 0.86 0.87
CRC III-IV vs Healthy Discovery 0.88 ± 0.01 0.78–0.98 0.83 0.66 0.92 0.82 0.83 0.73 0.88
CRC III-IV vs Healthy Validation 0.96 ± 0.01 0.91–1.00 0.85 0.75 0.94 0.91 0.82 0.82 0.88
CRC+AA vs Healthy Discovery 0.84 ± 0.01 0.77–0.91 0.77 0.83 0.67 0.81 0.70 0.81 0.69
AA vs Healthy Discovery 0.82 ± 0.01 0.71–0.97 0.79 0.61 0.86 0.62 0.85 0.62 0.85
AA+nAA vs Healthy Discovery 0.77 ± 0.02 0.65–0.89 0.73 0.62 0.81 0.67 0.77 0.64 0.79
nAA vs Healthy Discovery 0.80 ± 0.01 0.63–0.97 0.82 0.13 0.99 0.79 0.82 0.22 0.90
CRC vs AA Discovery 0.68 ± 0.02 0.54–0.82 0.76 0.92 0.25 0.80 0.49 0.85 0.33

Table 9.1: Performance of the 5-miRNA Predictive Signature in the Different
Comparisons. The analysis includes age and sex covariates. Thirty percent
of samples were excluded from the training and matched by age, sex, cohort,
and CRC stage.

• Validation of the miRNA predictive signature. The signature perfor-

mance was estimated in the validation cohort by a stratified cross-

validation procedure.

Fecal differentially expressed microRNA characterization in differ-

ent sample types and diseases.

• Assessment of DEmiRNA profiles in different biospecimens and clini-

cal situations: DEmiRNA levels were evaluated in (1) tumor/adenoma

tissue and adjacent mucosa, (2) plasma EVs of CRC patients and con-

trol individual, and (3) fecal samples from patients with a GI disease or

precancerous lesions to identify CRC-specific or commonly altered miR-

NAs. In particular, the miRNA signature from (1) was also tested in

the discrimination of patients with precancerous lesions (AA or nAA),

alone or in combination with CRC, from control individuals.

• Testing the DEmiRNA levels in samples from a CRC screening program:

DEmiRNA profiles were explored in parallel in FIT buffer leftovers and

in stool collected in tubes with RNA stabilizing solution. Subsequently,

stool DEmiRNA levels were analyzed in the leftover samples of the FIT

cohort by stratifying participants based on the colonoscopy results.

9.1.3 Results

Stool miRNA profiles are altered in CRC patients: Evidence From

Two European Populations

In agreement with previous studies [161, 165, 172], an average of 479 (range,

86–1516) miRNAs were detected in each stool sample by small RNA-seq.

121

9.1. Biomarker discovery for colorectal cancer

AA
nA

A

C
R
C
 S

ta
ge

I-I
I

C
R
C
 S

ta
ge

 II
I-I

V

H
em

or
rh

oi
da

l d
is
ea

se

H
yp

er
pl
as

tic
 p

ol
yp

s

D
iv
er

tic
ul
iti
s

C
ro

hn
's

di
se

as
e

U
lc
er

at
iv
e

co
lit
is

D

A B CDEmiRNA levels in tumor/adenoma

and comparison with adjacent mucosa

DEmiRNA levels in stool of distinct GI disease

with respect to control subjects

DEmiRNA levels in FIT positive buffer

leftover samples

D
iv
er

tic
ul
os

is

Fraction of

samples

nAA AA CRC

0.0 0.2 0.4

Correlation

coefficient

(Rho)

miR-21-5p

miR-148a-3p

miR-26a-5p

miR-200b-3p

let-7f-5p

let-7i-5p

let-7a-5p

miR-194-5p

let-7b-5p

miR-320a-3p

miR-1246

miR-12114

miR-4488

miR-1181

miR-6131

miR-4508

miR-1290

miR-4492

miR-4323-5p

miR-149-3p

miR-9899

miR-6777-5p

miR-922-5p

miR-607-5p

miR-6076

miR-1246 miR-607-5p

Stool (IT-cohort) Stool (CZ-cohort) Validation Tissue FIT buffer leftover

C
on

tro
ls

nA
A

AA
C
R
C

nA
A

AA
C
R
C

C
on

tro
ls

C
R
C

C
on

tro
ls

Ade
no

m
a

ad
ja
ce

nt

Ade
no

m
a

C
R
C
 a

dj
ac

en
t

C
R
C

nA
A

AA
C
R
C

C
on

tro
ls

lo
g

1
0

(E
x
p

re
s
s
io

n
 l
e

v
e

ls
)

Stool (IT-cohort) Stool (CZ-cohort) Validation Tissue FIT buffer leftover

2

4

6

0

1

2

3

4

lo
g

1
0

(E
xp

re
ss

io
n
 le

ve
ls

)
log2(FC)

-2 -1 0 1 2

log2FC

-8 -4 0 4 8

log2FC

-1-0.5 0 0.5 1

miR-21-5p

miR-148a-3p

miR-26a-5p

miR-200b-3p

let-7f-5p

let-7i-5p

let-7a-5p

miR-194-5p

let-7b-5p

miR-320a-3p

miR-1246

miR-12114

miR-4488

miR-1181

miR-6131

miR-4508

miR-1290

miR-4492

miR-4323-5p

miR-149-3p

miR-9899

miR-6777-5p

miR-922-5p

miR-607-5p

miR-6076

miR-21-5p

miR-148a-3p

miR-26a-5p

miR-200b-3p

let-7f-5p

let-7i-5p

let-7a-5p

miR-194-5p

let-7b-5p

miR-320a-3p

miR-1246

miR-12114

miR-4488

miR-1181

miR-6131

miR-4508

miR-1290

miR-4492

miR-4323-5p

miR-149-3p

miR-9899

miR-6777-5p

miR-922-5p

miR-607-5p

miR-6076

log10(miRNA levels)

0 2 4 6 0 2 4 6 0 2 4 6

*** *** ***

**
*

*

**

*** *** ***

* *
*

Disease

**

**

**

**

*

*

*

*

*

*

Comparison with stoolDetection and diff. exp. analysis

0.0 0.5 1.0 CRC vs

controls

C
on

tro
ls

nA
A

AA
C
R
C

nA
A

AA
C
R
C

C
on

tro
ls

C
R
C

C
on

tro
ls

Ade
no

m
a

ad
ja
ce

nt

Ade
no

m
a

C
R
C
 a

dj
ac

en
t

C
R
C

nA
A

AA
C
R
C

C
on

tro
ls

Figure 9.3: Characterization of the 25 fecal DEmiRNAs in different sam-
ple types. (A) Bar plot reporting the median levels in tumor, AA, and
nAA tissues. The color code represents the log2 fold change (log2FC) from
the paired differential expression analysis between CRC/adenoma tissues and
matched adjacent mucosa. ∗ ∗ ∗AdjustedP < .001, ∗ ∗ adjustedP < .01,
∗adjustedP < .05. (B) Comparison of miRNA levels in the stool of patients
with CRC, colorectal adenomas, hyperplastic polyps, or other GI disorders
with respect to control individuals. The dot color represents the log2FC, and
the dot size is proportional to the analysis significance. Black borders repre-
sent results with an adjusted P < .05. (C) DEmiRNA analysis in FIT leftover
samples from CRC screening. (Left) The fraction of FIT cohort samples in
which each miRNA was detected and (center) results of the differential ex-
pression analysis between FIT-positive patients with CRC diagnosis based on
colonoscopy outcome and those with a negative one. The dot color represents
the log2FC, and the dot size is proportional to the analysis significance. Black
borders represent a DESeq2 Benjamini-Hochberg adjustedP < .05. (Right)
Correlation coefficients between miRNA levels in stool and FIT buffer leftover
samples from the same individuals (∗ ∗ ∗P < .001, ∗P < .05). (D) Box plots
reporting miR-1246 and miR-607-5p levels in all study cohorts and biospeci-
mens.

122

9.1. Biomarker discovery for colorectal cancer

The age- and sex-adjusted differential expression analysis between CRC pa-

tients and control individuals was performed independently on both the IT

cohort and CZ cohort identifying, respectively, 250 and 29 DEmiRNAs (me-

dian expression, > 20reads; adjusted P < .05) (Figure 9.1.2A). Twenty-five

stool DEmiRNAs were in common between both cohorts (Figure 9.1.2B), all

with a coherent expression trend (20 up- regulated and 5 down-regulated;

rho = 0.75; P < 0.001) (Figure 9.1.2B). The alteration of these fecal miRNA

levels in relation to CRC was further supported by a generalized linear model

analysis adjusted for cohort, age, sex, BMI, and smoking habits: 22 out of

the 25 DEmiRNAs remained significantly associated (P < .05). DEmiRNA

profiles were further explored in relation to CRC patient clinical data (Fig-

ure 9.1.2C and D). The levels of 3 down-regulated miRNAs (miR-607-5p,

miR-677-5p, and miR-922-5p) significantly decreased with increasing tumor

size (Figure 9.1.2D). miR-922-5p also significantly decreased in patients with

advanced disease stages or lymph node invasion (Figure 9.1.2D). Conversely,

increasing levels of 19 out of the 20 up- regulated miRNAs in CRC were ob-

served along with tumor size, with miR-1246, miR-1290, miR-148-3p, and

miR-194-5p significantly related to this parameter. The levels of 11 CRC–up-

regulated miRNAs significantly increased in patients with lymph node inva-

sion. In addition, the levels of 11 miRNAs were significantly higher in samples

from patients with rectal compared to colon cancers (Figure 9.1.2D). Func-

tional analysis of DEmiRNA target genes showed their involvement in cancer-

related processes, including cell cycle regulation and DNA repair, particularly

for up-regulated miRNA targets.

A Fecal MicroRNA Signature Distinguishes Colorectal Cancer

Patients From Control Individuals

An explainable ML strategy was implemented to identify the minimal set of

miRNAs as a signature for CRC detection (Figure 9.4. The pipeline was ap-

plied on the 25 DEmiRNA profiles and considering 70% of the IT cohort and

CZ cohort as the training set. The best miRNA signature distinguishing CRC

patients from control individuals included miR-607-5p, miR-6777-5p, miR-

4488, miR-149-3p, and miR-1246 (AUC, 0.87 ± 0.01) (Figure 9.1.2E). This

set of 5 miRNAs represented the best combination of noncorrelated molecules

with the highest discriminative power. Moreover, they showed a good per-

formance in the classification of the 30% of participants excluded from the

123

9.1. Biomarker discovery for colorectal cancer

Phase 1: Data Preparation Phase 2: Feature selection

Phase 3: Classification

miRNA count
matr ix

clinical and
demographic

data

Stratification of
the original

dataset

Feature set performance
evaluation by various classifiers:

Test Set
(~30%)

Training Set
(~70%)

Identification of k-best
features (k=1…nmax)
exploiting filter and
embedded strategies

Feature sets
associated with
performance

metrics

Trade-off between the best
AUC and the optimal
number of features

Gradient boosting
Logistic regression
Random Forest

Relevant
and non-

redundant
feature sets

Validation on
independent

datasets

miRNA
signature

Figure 9.4: Schematic representation of the 3-phase explainable ML ap-
proach. An miRNA count matrix and the clinical/demographic data are the
input data, and the best-performing miRNA signature is the output.

training set (AUC 0.81 ± 0.01) (Figure 9.1.2F). The classification improved

after the inclusion of sex and age in the model (AUC 0.86± 0.01) (Table 9.1).

The performance of the signature was again tested in the validation cohort,

where it remained fairly similar, irrespective (AUC 0.91± 0.01) or not (AUC

0.96± 0.01) of age and sex (Figure 9.1.2F and Table 9.1). By stratifying pa-

tients for CRC stage, the same 5-miRNA signature accurately distinguished

patients with stages III–IV CRC (validation cohort: AUC, 0.96 ± 0.01 and

0.94 ± 0.01, respectively, including or not age and sex), or CRC stages I–II

from control individuals (validation cohort: AUC, 0.95±0.01 and 0.87±0.01,

respectively, including or not age and sex) (Table 9.1). The panel of 5 miR-

NAs of the signature identified by sequencing was tested by RT quantitative

polymerase chain reaction (qPCR) in RNA isolated from a subset of 96 stool

samples equally distributed among IT and CZ cohort participants, with a bal-

anced number of CRC patients and control individuals (Figure 9.5A). The 5

miRNAs were detected in all samples, also using this second method. The nor-

malized levels from RT-qPCR showed patterns comparable to those provided

by sequencing, except for miR-4488 (Figure 9.5A). In particular, miR-1246

and miR-149-3p levels were significantly increased in patient samples. The

124

9.1. Biomarker discovery for colorectal cancer

*** ** ***

miR-1246 miR-1246miR-149-5p miR-4488 miR-607-5p miR-6777-5p

C
on

tro
ls

C
R
C

C
on

tro
ls

C
R
C

0

5

10

15

Class

N
o

rm
a

liz
e

d
 l
e

v
e

ls

2 3 4 5 6

0.0

2.5

5.0

7.5

10.0

12.5

log10(Normalized levels, sRNA-Seq)

N
o

rm
a

liz
e

d
 l
e

v
e

ls
 (

R
T

-q
P

C
R

)

rho = 0.63

P < .001

CRC

Controls

C
on

tro
ls

C
R
C

C
on

tro
ls

C
R
C

C
on

tro
ls

C
R
C

A B

C

0.00

0.25

0.50

0.75

1.00

Fraction of samples

m
miR-3125-3p

miR-3125-3p

miR-6075-5p

miR-6075-5p

miR-320e

miR-1246

miR-1246

Stool FIT buffer leftover

0 1 2 3 0 1 2 3

0.50

0.75

1.00

1.25

1.50

log10(Median levels)

M
A

D
 /
 M

e
d

ia
n

Figure 9.5: (A) Box plot showing the RT-qPCR normalized levels of the 5
miRNAs of the stool signature. P value by Wilcoxon rank sum test. ∗ ∗ ∗P <
.001, ∗ ∗ P < .01. (B) Scatterplot comparing the stool levels of miR-1246
measured by small RNA-seq (x-axis) and RT-qPCR (y-axis). The coefficient
and significance of the Spearman correlation analysis is also reported. (C)
Scatterplot reporting the median levels (x-axis) and the expression variability
(as the ratio between median absolute deviation [MAD] and median, y-axis)
of miRNAs measured in stool samples (left plot) or FIT buffer leftover (right
plot) from the same subjects.

same method was used to test the 5 miRNA levels in RNA from 8 FIT left-

over samples of participants with a positive FIT result at the CRC screening:

all miRNAs were also detected in this biospecimen (data not shown). For 4 sig-

nature miRNAs, a concordant expression pattern was observed between small

RNA-seq and RT-qPCR normalized levels, particularly for miR-1246 (rho =

0.63, P < .001) and miR-149-3p (rho = 0.26, P < .05) (Figure (Figure 9.5B).

125

9.1. Biomarker discovery for colorectal cancer

Only the levels of miR-4488 were characterized by a negative correlation (rho

= –0.48, P < .001) in CRC patients only.

Stool Differentially Expressed MicroRNA Profiles Mirror Those of

Primary Colorectal Cancer and Adenoma Tissues

A paired differential expression analysis was performed between tumor tissues

and matched adjacent mucosa collected from 102 CRC patients. Among the 25

stool DEmiRNAs, 14 were differentially expressed (adjusted P < .05) in this

comparison (Figure 9.3A), with 7 miRNAs (miR-21-5p, miR-1246, miR1290,

miR-148a-3p, miR-4488, miR-149-3p, miR-12114) up-regulated in tumor tis-

sues coherently with their increase in CRC patient stool. Among them, 3

(miR-1246, miR-4488, miR-149-3p) were included in our miRNA signature.

The 5 miRNAs significantly down-regulated in CRC patient stool (miR-607-

5p, miR-6777-5p, included in the 5-miRNA signature; miR-6076; miR-922-5p;

and miR-9899) were poorly expressed (normalized reads, < 20) in both tu-

mor and adjacent tissues.The differential analysis performed on 30 adenoma

tissues matched with adjacent mucosa showed miR-21-5p, miR-1290, miR-

148a-3p, and miR-200b-3p as significantly up-regulated in adenoma tissues

(adjusted P < .001), whereas let-7i-5p and miR-4508 were down-regulated

(Figure 9.3A).

Few MicroRNA Levels Are Dysregulated in Circulating

Extracellular Vesicles of Colorectal Cancer Patients

Small RNA-seq was performed on RNA isolated from plasma EVs collected

from 210 participants in the IT cohort, detecting an average of 309 (range,

252–1213) miRNAs in these samples.Among the 25 DEmiRNAs identified in

stool samples of CRC patients, both miR-1246 and miR-4488 emerged as

coherently significantly dysregulated in plasma EVs, although the latter was

associated with low levels (normalized reads < 20).Another miRNA (miR-150-

5p) was differentially expressed between CRC patients and control individuals.

126

9.1. Biomarker discovery for colorectal cancer

A

B

0.37 0.08

0.06

-0.2

-0.17

0.32

-0.27

-0.29

-0.09

0.25

-0.22

-0.2

-0.12

0.32

0.38

-0.2

-0.28

0.31

0.21

0.29

0.17

-0.26

-0.16

0

0.12

0.32

0.17

0.27

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IT CZ Validation Tissue FIT

m
iR

-1
2

4
6

m
iR

-1
4

9
-3

p
m

iR
-4

4
8

8
m

iR
-6

0
7

-5
p

m
iR

-6
7

7
7

-5
p

m
iR

-2
1

-5
p

C
on

tro
ls

nA
A AA

C
R
C

C
on

tro
ls

C
R
C

AA a
dj
ac

en
t

AA

C
R
C
 a

dj
ac

en
t

C
R
C

C
on

ro
ls

nA
A AA

C
R
C

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

lo
g

1
0

(N
o

rm
a

liz
e

d
 le

v
e

ls
)

C
on

tro
ls

nA
A AA

C
R
C

m
iR
−1

24
6

Bac
te

ro
id
es

 fr
ag

ilis

Esc
he

ric
hi
a

co
li

m
iR
−6

77
7−

5p

m
iR
−1

49
−3

p

m
iR
−4

48
8

Fus
ob

ac
te

riu
m

 n
uc

le
at

um

miR−1246

miR−4488

Bacteroides fragilis

miR−607-5p

miR−6777−5p

miR−149−3p

*

* **

*

* *

*

*

**

** **

Escherichia coli

Figure 9.6: (A) Box plots reporting, for each study cohort, the normalized
levels of the 5 stool miRNAs belonging to our CRC-predictive signature. At
the bottom, the levels of miR-21-5p are also reported. The red dashed lines
refer to the median miRNA level measured in control individuals of the IT
cohort. (B) Correlation plot representing the results of the Spearman corre-
lation analysis between the levels of the 5 fecal miRNAs and F nucleatum, E
coli, and B fragilis abundances by the reanalysis of data from [169]. The size
of the dot is proportional to the absolute correlation coefficient. ∗∗∗P < .001;
∗ ∗ P < .01; ∗P < .05.

127

9.1. Biomarker discovery for colorectal cancer

A Subset of Stool Differentially Expressed MicroRNAs Is

Specifically Dysregulated in Colorectal Cancer Patients but Not in

Those With Other GI Diseases

The CRC DEmiRNAs were further compared with those from patients with

GI disorders and other precancerous lesions in both the IT and CZ cohorts.

The age-, sex-, and cohort-adjusted differential expression analysis between

each disease category and control individuals showed that the levels of 21

out of the 25 CRC DEmiRNAs were significantly altered in at least another

GI disease (Figure 9.3B). Notably, in patients with ulcerative colitis, diver-

ticulitis, nAA, or AA, 60% of the CRC DEmiRNAs were also dysregulated

(Figure 9.3B). The lowest number of dysregulated miRNAs was observed in pa-

tients with Crohn’s disease (2 miRNAs) or diverticulosis (5 miRNAs), whereas

no DEmiRNAs were found in patients with hyperplastic polyps. Considering

the 5 miRNAs constituting our predictive signature to distinguish CRC pa-

tients from control individuals, miR-6777-5p was not differentially expressed

(compared to control individuals) in any other GI disease, miR-149-3p was

significantly up-regulated only in patients with AA, and miR-607-5p was sig-

nificantly down-regulated in patients with AA or ulcerative colitis compared

to control individuals (Figure 9.3B).Conversely, miR-4488 and miR-1246 stool

levels significantly increased in patients with diverticulosis, ulcerative colitis,

diverticulitis, or AA, with the latter miRNA also increased in Crohn’s disease

patients. The identified signature was also used to classify AA and nAA pa-

tients from control individuals. Specifically, the miRNA signature was able to

distinguish AA from control participants, both including (AUC, 0.82 ± 0.01)

or not (AUC, 0.77± 0.02) age and sex in the analysis, as well as nAA (AUC,

0.80±0.03 and 0.77±0.02, respectively, including or not age and sex). Finally,

patients with either CRC or AA were accurately distinguished from control

individuals (including or not age and sex: AUC, 0.84±0.01 and 0.81±0.01, re-
spectively) but not between them (CRC vs AA: AUC, 0.68±0.02) (Table 9.1).

MicroRNAs Are Detectable in Fecal Immunochemical Test

Leftover Samples by Small RNA Sequencing

The sequencing analysis was extended to 185 available leftover samples of the

FIT cohort, still detecting an average of 618 miRNAs in each sample.All of

the 25 stool DEmiRNAs were detected in this type of sample. Considering the

128

9.1. Biomarker discovery for colorectal cancer

threshold adopted by our pipeline (i.e., a minimum of 20 reads), 4 (miR-607-

5p, miR-1246, let7a-3p, miR-922) were detected in all samples, and 18 were

detected in more than half (Figure 9.3C).Three miRNAs included in our sig-

nature (miR607-5p, miR-1246, miR-6777-5p) were detected in more than 95%

of samples (Figure 9.3C), whereas miR-149-3p and miR-4488 were detected

in 112 (57.4%) and 57 (30.8%) samples, respectively. Then, miRNA levels in

FIT cohort samples were explored by stratifying participants according to the

colonoscopy results. Comparing the levels of the 25 stool DEmiRNAs between

46 participants with a negative colonoscopy result (excluding 7 participants

with high hemoglobin levels) and 22 patients with CRC, 8 (let-7a-5p, let-7i-

5p, miR-148a-3p, let-7b-5p, miR-320a-3p, miR-12114, miR-21-5p, miR-607-

5p) were significantly different (adjusted P < .05) (Figure 9.3C). Correlating

the miRNA levels in FIT leftovers with the hemoglobin levels, only let-7b-5p

showed a significant but limited correlation (rho = 0.16, P ¡ .05).Interestingly,

miR-1246 and miR-607-5p were characterized, respectively, by increasing and

decreasing levels, from colonoscopy-negative participants to CRC patients, as

observed in the stool of the 3 case-control cohorts initially investigated for the

miRNA signature identification (Figure 9.3D). Comparable miRNA expres-

sion levels and variability were observed between paired FIT leftover/stool

samples from 57 individuals analyzed by small RNA-seq (rho = 0.70, Fig-

ure 9.3 and Figure 9.5C). Considering the levels of 468 miRNAs detected

in at least half of FIT leftover samples, 99.6% were coherent with those in

stool, with 282 miRNAs significantly correlated (average rho = 0.39, P < .05)

(Figure 9.3C, Figure 9.5C)In both sample types, miR-3125-3p, miR-6075-5p,

and miR1246 were characterized by the highest levels, and miR3125-3p was

detected in all samples and associated with the lowest expression variability,

in agreement with our previous findings in stool samples of 335 control in-

dividuals [166] (Figure 9.3A).The levels of all 25 stool DEmiRNAs positively

correlated between the 2 specimens, with 13 of them reaching statistical sig-

nificance (including miR-607-5p, miR1246, miR-149-3p, and miR-4488 from

the 5-miRNA signature; P < .05) (Figure 9.3C). The 5-miRNA signature

analyzed in FIT buffer leftovers was finally tested for the classification of pa-

tients with CRC from control individuals considering the signature alone or in

combination with patient age, sex, and FIT hemoglobin levels. The 5-miRNA

signature alone showed comparable classification performance (AUC, 0.85) as

using age, sex, and hemoglobin levels (AUC, 0.87), and the combination of

129

9.1. Biomarker discovery for colorectal cancer

both data provided the best classification results (AUC, 0.93).

9.1.4 Discussion

In the present study, to our knowledge, we performed the first large-scale

profiling of the stool miRNome by deep sequencing of samples from patients

with CRC, colorectal polyps, or other GI diseases and control individuals.

Given the pervasive detection across multiple cohorts, we confirmed previous

findings about fecal miRNA potential use as noninvasive molecular biomark-

ers [164] (Figure 9.3A). We also reported novel evidence on specific markers

across different disease conditions. Notably, a fecal miRNA signature was

able to accurately distinguish CRC patients from control individuals: both

its ability to distinguish AA and its detection in FIT leftovers support future

investigations for a use in CRC screening implementation.

In CRC patients, 25 fecal miRNAs emerged coherently altered in 2 inde-

pendent cohorts. The profile of these miRNAs in stool reflected their altered

expression in tumor tissue or adjacent colonic mucosa. More than half of

such DEmiRNAs were already reported as altered in CRC, either in tissue

or in various biofluids, including the up-regulated miR-21-5p, miR-148a-3p,

miR-149-3p, miR-194-5p, miR200b-3p, and miR-320a-3p [164, 177]. Other

miRNAs were associated with a disease for the first time by us; thus, fur-

ther in vitro studies are needed to characterize the functional activity of these

molecules and their involvement in CRC. Moreover, 3 DEmiRNAs identified

in our study (miR-4323-5p, miR-607-5p, and miR-922-5p) are not currently

annotated in the miRbase but were quantified based on the read mapping

position within the miRNA hairpin. This is consistent with the need for con-

tinuous refinement of miRBase annotations [178] and with evidence of new

miRNAs reported by different groups [179, 180].

Consistent with their overall higher/lower levels in the stool of CRC pa-

tients with respect to that of control individuals, the 25 DEmiRNA levels

also increased/decreased with tumor size and stage. On the other hand, they

were characterized by coherent altered levels when patients were stratified

by tumor localization (proximal, distal, rectum). This further supports the

importance of these miRNAs in relationship with the disease, as confirmed

by the overrepresentation of cancer-related processes involving their validated

target genes.

130

9.1. Biomarker discovery for colorectal cancer

Based on this initial evidence, we implemented an integrated explainable

ML strategy to explore, among the 25 DEmiRNAs, the minimal set of stool

miRNAs able to accurately discriminate CRC patients from control individ-

uals. Our approach generated a signature composed of 5 miRNAs (namely,

miR-1246, miR-607-5p, miR-6777-5p, miR-4488, miR-149-3p) that was clin-

ically validated in an additional independent cohort of cases compared to

healthy volunteers and technically validated by another methodology (i.e.,

RTqPCR). The accurate discrimination of both participants in early and late

cancer stages from control individuals confirmed the robustness of these 5

miRNAs for CRC detection. Although based on a small sample set, the sig-

nature could also accurately discriminate participants with AA from control

individuals (AUC, 0.86), and in all analyses, high performances were obtained,

irrespectively, by adjusting or not for sex and age, 2 relevant risk factors for

this cancer [181]. To the best of our knowledge, this is the first signature

based on fecal miRNAs whose efficiency was proven in populations from 2

countries characterized by different lifestyle and dietary habits [182] and CRC

incidence [183]. Notably, such populations also show different trends in early-

onset CRC [184], the incidence of which is linked to unhealthy individual

habits, such as a sedentary lifestyle [185].

Similar to the functional analysis of all 25 DEmiRNAs, focused research on

the 5-signature miRNA target genes evidenced a prevalence of genes involved

in cancer-related processes, including regulation of the cell cycle, programmed

cell death, and DNA damage response. Interestingly, functional analysis of

predicted target genes of miR607-5p highlighted terms/processes related to

nuclear cell cycle DNA replication and showed TRIM66, HIPK2, GRIN2B,

and WTIP as the targets with the highest number of miR607-5p binding

sites.

Among all the miRNAs of the signature, miR-1246 has been previously

widely studied in CRC. Altered levels of this miRNA have been found in cir-

culating exosomes in relation to cancer metastasis and prognosis [186, 187].

Exosomal miR-1246 levels were induced by Fusobacterium nucleatum in in

vitro and in vivo CRC models with an increase of tumor cell metastatic po-

tential [188]. These results align with more recent observations on the rela-

tionship between intratumor levels of F nucleatum and the aggressiveness of

colon and breast cancers [189]. An intratumor increase in this well-known

CRC-related bacteria might induce the release of exosomal miR-1246 in the

131

9.1. Biomarker discovery for colorectal cancer

gut lumen, with the subsequent detection of this miRNA in stool samples.

Similar considerations could be drawn from another study investigating a

model of enterotoxigenic Bacteroides fragilis that induced up-regulation of

exosomal miR-1246 in CRC cell lines [190]. Interestingly, in the same study,

this microbial species reduced the exosomal levels of another fecal miRNA

included in our signature, miR-149-3p, that was demonstrated to regulate

tumor-infiltrating CD4 T-helper type 17 differentiation [190].

Similar findings were observed when analyzing the fecal miRNome and gut

metagenome data from a previous study by our group in which we investigated

the miRNAmicrobiota relationships in stool samples [173]. Specifically, by re-

analyzing the data from that study, miR-1246 levels emerged as significantly

related to both F nucleatum and B fragilis abundances, whereas miR-149-3p

was inversely related to B fragilis abundances (Figure 9.6B).This pervasive

relationship between in vitro exosomal miRNA levels and microbial infections

suggests that the most informative stool biomarkers for CRC might reflect

the dysregulated interactions between colonic tissue and the gut microbiota.

Interestingly, in the miRNA-microbiota correlation analysis, 2 down-regulated

fecal miRNAs (miR-607- 5p and miR-6777-5p), included in the predictive sig-

nature and so far scantly investigated in the literature, were inversely related

not only to F nucleatum and B fragilis abundances but also to Escherichia

coli, another species related to CRC onset [191] (Figure 9.6B)

To further explore the stool results, we tested DEmiRNA patterns in tumor

and adenoma tissues paired with nonmalignant adjacent mucosa from patients

of the IT cohort. Stool generally mirrored the altered miRNA expression lev-

els of these tissues. Only the levels of miR-21-5p and miR-148a-3p increased

in both CRC and adenoma compared to matched adjacent mucosa, whereas

the other DEmiRNAs (including miR1246, miR-4488, and miR-149-3p of the

signature) showed a CRC-specific dysregulation. miR-607-5p and miR-6777-

5p, decreasing in patients’ fecal samples, were characterized by low expression

levels in both tumor/adenoma and adjacent mucosa, suggesting their deletion

or epigenetic silencing. In The Cancer Genome Atlas [192], both miRNAs

are frequently deleted in CRC,supporting the down-regulation in stool and

tumor tissues observed by us. In agreement with our findings, previous stud-

ies have demonstrated that the down-regulation of miRNAs seems to be a

premature step in the development of several cancers [193, 194]. Surprisingly,

miR320a, let-7b-5p, and let-7a-3p, more abundant in stool of CRC patients,

132

9.1. Biomarker discovery for colorectal cancer

were more expressed in adjacent mucosa than in tumor tissue. miR-320a has

been widely reported as downregulated in CRC [195], whereas its circulating

levels increased in relation to gut inflammation in IBD patients [196], coherent

with our data in stool samples. Interestingly, miR-320a has been described

as a key regulator of intestinal barrier formation [197]. Similarly, the expres-

sion of let-7 family members has been observed in the healthy gut epithelium,

whereas their genetic depletion induced tumorigenesis in CRC mouse mod-

els [198]. Thus, the analysis of stool miRNAs is relevant to identify not only

markers of the tumor small noncoding transcriptome but may also unveil an

intestinal response of the stromal component to the presence of a tumor mass.

We also explored the miRNome of plasma EVs from a subset of the study

population using the same experimental approach as in stool and tissue sam-

ples. However, in this circulating biospecimen, only a few miRNAs showed

similar trends as in feces. For instance, among the miRNAs of the signature,

miR-1246 and miR-4488 levels significantly increased in plasma EVs of CRC

patients compared with control individuals. These results are consistent with

previous findings reported by us, supporting stool miRNAs as more sensitive

than plasma miRNAs in reflecting intestinal changes driven by a long-term

dietary pattern [165]. Although more data are needed to compare the stool

and plasma EV miRNome, given the reported relationships between miR-1246

levels in EVs and CRC metastasis [186], these circulating molecules may be

more informative for advanced stages of the disease, which is beyond the scope

of our investigation.

In this study, we sought to compare the stool DEmiRNA profiles of CRC

patients with those of patients with other bowel inflammatory diseases of dif-

ferent severity confirmed by colonoscopy. Besides different polyp types, we in-

cluded samples from several GI diseases, like different types of IBDs and diver-

ticulitis. Notably, although the CRC-specific miRNAs were down-regulated,

most of the altered miRNAs in common with adenomas and inflammatory dis-

eases were up-regulated: miR-21-5p was the clearest example, confirming the

literature [167]. As an exception, miR-607-5p was down-regulated in the stool

miRNA profiles of patients with AA and ulcerative colitis. Accordingly, recent

studies showed altered miRNA profiles in the fecal samples of patients with

inflammation [199, 200], even in relation to microbiota [201]. We can there-

fore conclude that altered stool miRNA profiles reflect either the intestinal

response to an inflammatory process or the transcriptional alterations related

133

9.1. Biomarker discovery for colorectal cancer

specifically to CRC development. Importantly, we clearly demonstrated that

well-known CRC-related miRNAs, such as miR-21-5p, show dysregulated fe-

cal levels in several disease contexts, suggesting that other miRNAs, such as

miR-6777-5p and miR-149-3p, should be investigated to design CRC-specific

molecular signatures. This is the first evidence from a large-scale analysis

of individuals with different gastrointestinal diseases of stool miRNAs specif-

ically altered in CRC. It also highlights an extensive reflection of the gut

inflammation on the fecal miRNA levels.

The fact that specific dysregulated fecal miRNAs could distinguish indi-

viduals with CRC or precursor lesions from control individuals and that, at

least for cancer, data were confirmed in different cohorts, encouraging their

use to complement the existing noninvasive screening tests. In this respect,

we also investigated whether miRNAs can be detected in buffer-diluted stool

leftovers from FIT tubes used in a context of a population-based screening

program, and we found a remarkable similarity between the profiles detected

in the stool samples collected in nucleic acid preservative medium tubes from

the same participants. Despite data on a larger cohort being needed, this pi-

lot small RNA-seq–based quantification of miRNAs in FIT buffer leftovers is

consistent with previous evidence measuring miRNAs in this sample type by

RT-qPCR [163], as well as by us. By exploring miRNA profiles within FIT-

positive patients, we observed a subset of miRNAs differentially expressed

between individuals with a positive or a negative colonoscopy outcome. In

addition, miR-1246 and miR-607-5p from the 5-miRNA signature deserve fur-

ther investigation because they were detected in most of the samples, and their

levels respectively increased and decreased progressively, going from individ-

uals with negative colonoscopy results, to those with adenomas of different

severity, to CRC patients. Although these data confirm that miRNAs can be

widely detected in FIT leftovers, the comparative results between individuals

must be carefully considered given the small group size analyzed so far; the

lack of samples from FIT-negative individuals; and the fact that we cannot

rule out the role of confounding factors, including subclinical diseases in the

colonoscopy-negative patients.

Most likely, by including hemoglobin levels evaluated by FIT, the dis-

crimination capability of the present stool miRNA predictive signature would

be further improved, as already reported in the past (FIT/FOBT + micro-

biome [152, 202], FIT + miRNAs [162], and FIT + methylation markers [203]).

134

9.1. Biomarker discovery for colorectal cancer

The sensitivity and specificity of our 5-miRNA signature suggests that it could

show a similar diagnostic performance as the multitarget stool DNA test [204]

when used as a screening test in average-risk populations. Duran-Sanchon

et al [162] proposed a 2-stool miRNA-based classification signature (namely,

miR-27a-3p and miR421) combined with hemoglobin levels, age, and sex of

FIT-positive individuals. The signature accurately classified CRC (AUC, 0.93)

from control individuals but was less efficient when AA patients were included

(AUC, 0.70) [203]. Different from us, the researchers initially selected miR-

NAs based on their differential expression between tumor tissue and adjacent

mucosa and included in all models sex and age, 2 important risk factors for

CRC. Hereby, we demonstrated the robustness of our signature because its

performance remained similar even without the inclusion of age and sex co-

variates. In addition, despite the study not being designed for identifying stool

biomarkers for adenomas, the 5-miRNA signature was able to accurately dis-

tinguish AA alone or in combination with CRC (AUC, 0.84), suggesting its

use to detect precancer lesions at risk. In our study, miR-27a-3p and miR-

421 were detected in tissue samples but not in stool, where only the former

miRNA was measurable. In search of reproducible fecal molecular biomarkers

for the noninvasive diagnosis of CRC and adenomas [152], a hypothesis-free

miRNome-wide approach, such as the small RNA-seq analysis in stool per-

formed in multiple independent populations, overcomes these issues.

The present study has several strengths: (1) the inclusion of independent

cohorts from 2 countries with different diet and lifestyle habits as well as

CRC rates; (2) the fact that the cohorts were different for CRC clinical char-

acteristics, allowing the identification of accurate biomarkers independent of

the disease stage; (3) the adoption of the same protocol for the collection of

stool in both training cohorts; (4) the validation of the signature on a co-

hort with a different stool collection protocol, showing its robustness; (5) the

miRNome-wide approach in different biospecimens and different GI disease

contexts, which has allowed us to discriminate miRNAs specifically dysregu-

lated in the stool of CRC patients; 6) the implementation of an explainable

ML approach able to provide an unbiased method for identifying the minimal

set of predictive biomarkers.

However, we are also aware of several limitations. Although there was

a similar study design for recruitment, the 2 cohorts were heterogeneous for

individual cancer categories. This heterogeneity could be responsible for the

135

9.1. Biomarker discovery for colorectal cancer

observed differences in the median stool miRNA levels and expression differ-

ences between the 2 cohorts. Given the difference in the clinical characteristics

of CRC patients, the main driver of such a difference may be the higher pro-

portion of low-grade and low-stage tumors in the CZ cohort. However, the

fact that the results are reproducible between cohorts further supports the

robustness of the signature identified in this study.

Despite the large number of analyzed samples, the variegated spectrum

of CRC, adenomas, and other precancerous lesions needs to be more exhaus-

tively represented and deserves further investigation. For example, we did not

investigate serrated lesions or deeply explore the alterations in CRC stratified

based on molecular or clinical data. In addition, even though the observed

DEmiRNAs were not reported to be modulated by dietary habits [165], the

lack of dietary/lifestyle information of analyzed individuals may represent a

limitation of the study. Follow-up studies with additional cohorts represent-

ing patients with different ethnicities, dietary patterns, and lifestyle habits are

required, but this is beyond the scope of this study, which, to our knowledge,

represents the largest sequencing-based analysis of stool miRNAs so far. In

conclusion, this multicenter and international study based on small RNA-seq

allowed us to comprehensively detect in stool several miRNAs differentially

expressed in CRC. Furthermore, the implemented ML approach identified a

minimal number of miRNAs whose combined profiles showed a good discrim-

inating power for the presence of a tumor or AA, independent of age and

sex. This may represent a fecal signature for improving the effectiveness of

current noninvasive screening programs, potentially increasing sensitivity and

maintaining high specificity, and applicable on a large scale, with a reasonable

cost/time required.

In this respect, for FIT implementation, in the near future miRNA profiles

will be investigated in additional cohorts, possibly from different countries,

increasing the number/ types of precancer lesions and also including FIT-

negative samples, with the chance to explore the role of diet and lifestyle habits

on an adequate scale. Furthermore, the inclusion of FIT-negative samples will

allow the possibility to prospectively test miRNA profiles in subsequent rounds

of CRC screening, collecting multiple samples per individual. In parallel, the

analysis of the microbiome composition of stool/ leftover FIT samples will

help deepen the research on guthost crosstalk with small noncoding RNAs.

Finally, even if small RNA-seq and RT-qPCR currently represent the most

136

9.2. An application combining mechanistic and data-driven approaches

commonly used approaches for miRNA analyses, we must consider that more

rapid, practical, but reliable approaches, such as biosensors, may provide an

alternative for testing the miRNA signature in a large clinical setting.

9.2 An application combining mechanistic and

data-driven approaches

Biological phenomena are based on the precise and accurate cooperation of

a non-random combination of molecules implicated in several pathways and

networks. In the view of precision medicine, the plethora of omics data accrued

sheds light on the comprehension of molecules cooperation. However, these

data bring noise and redundancy that it is necessary to take into consideration

during the data analysis. A combination of a mechanistic model on omics data

and a multiphase feature selection is proposed. With this approach, we are

able to select the relevant features as well as the potential functional role of

them, and also the underlying biological mechanisms at the basis of the system

under study.

9.2.1 Introduction

In recent years, multi-omics datasets are becoming increasingly common in bi-

ological research leading to obtaining an overview of the complex interactions

beyond the biological systems. As a consequence, computational approaches

for data integration become popular in order to extract hidden relationships

insight from these several layers of information. We aim to deal with data anal-

ysis strategies to integrate diverse measures of biological information. Among

the available strategies, the methodology should be chosen with respect to the

biological question and the computational context used to translate enormous

amounts of data and information into clinical and biological understanding.

One limitation of these strategies is the explainability of the results obtained.

Specifically, even though state-of-the-art algorithms are used in order to per-

form the data integration, a deep understanding from the biological functional

point of view is not easy to obtain. To pursue this direction, we would like

to integrate fluxomics and transcriptomics providing a more comprehensive

understanding of cellular processes under clinical conditions.

137

9.2. An application combining mechanistic and data-driven approaches

Indeed, fluxomics corresponds to the global analysis of fluxes in the metabolic

network of a cell, which can measure and evaluate the rates of reaction (i.e.

fluxes) for a metabolic network. It represents an innovative omics research

field, where the fluxome (the total set of fluxes in the metabolic network)

depicts the integrative information on several cellular processes.

Its integration with transcriptomics can help identify the genes responsi-

ble for changes in metabolic fluxes and can be implemented by FBA, which

is a mathematical modeling technique [205] that uses stoichiometric mod-

els of metabolic networks to predict metabolic fluxes (i.e., velocities at which

metabolites are produced and consumed) under different environmental condi-

tions by minimizing/maximizing an objective function (e.g., biomass growth).

FBA can complement a novel workflow to integrate multi-omics data simul-

taneously or incorporate it with other FBA-derived tools [206].

In this way, integrating fluxomics data simulated from transcriptomic data

can provide a more comprehensive picture of cellular metabolism and help

identify the genes and pathways distinctive for a given condition.

In this work, we propose a new approach to characterize metabolic pheno-

types from gene expression data. Specifically, we integrate the gene expression

profiles in the FBA network and then the most influenced fluxes correlated

to the increase of the cell biomass were identified by multiphase feature selec-

tion techniques. The application of our functional data integration approach

was applied to the identification of glycolysis-associated clusters in colorectal

cancer profiles [207]. The analysis supports cancer sample classification by

metabolic phenotype, and results aimed to identify multi-omic profiles across

cancer types with estimated variably in metabolic fluxes.

9.2.2 Material and methods

The data

Gene Expression profiles from 429 colorectal cancer (CRC) tissues were ob-

tained from COAD cohort of The Cancer Genome Atlas. Data were retrieved

using the TCGAbiolinks R package v2.28.1 considering the STAR-counts as

the GDC workflow type. The CRC metabolic subtypes were obtained from

[207]. We used the most comprehensive human Genome-scale metabolic model

(GEM) to date; the community-curated Recon3D human metabolic recon-

struction (8399 metabolites, 13543 reactions, 3698 genes) [208], to build tissue-

138

9.2. An application combining mechanistic and data-driven approaches

specific models.

Flux Balance Analysis

The first works [209] regarding the FBA date back to the early 1980s, and

showed the possibility of deriving from a system of metabolic reactions the

stoichiometric equations describing the relations among different products and

biomass, and how to exploit linear programming for deriving the fluxes of such

relations.

The principal aim of the FBA models is to simulate genome-scale reconstruc-

tions of metabolic networks that are characterized by a large number of reac-

tions and metabolites by assuming the steady state of the system, which sup-

poses that there is no net surplus or deficit of any metabolite. In particular,

the fluxes distribution of the model is estimated considering inferior and su-

perior boundaries for each flux, and an objective function to maximize, which

plays a role as a surrogate for the most plausible physiological state among

the states of the system. Mathematically, the FBA modeling m metabolites

and r reactions can be translated as a linear programming problem (LPP) as

follow:

maximize f(v)

subject to S · v = 0 (9.1)

and vLowi ≤ vi ≤ vUp
i ∀i = 1, . . . , r

where v ∈ Rr is the flux vector describing the activity of all the r reactions,

S ∈ Zr×m is the stochiometric matrix, f : Rm → R is the objective function

to maximize, vLowi ∈ (−∞, 0] and vUp
i ∈ [0,∞) are respectively the known

upper and lower bound of the rates for the i− th flux.

Hereinafter, the integration of gene expression data can contribute to obtain-

ing a biologically relevant and context-specific flux distribution so that the

resulting model can predict active metabolic pathways from RNA-seq data

and reconstruct a tissue-specific metabolic network. Specifically, RNA-Seq

data were used to specify the activity of genes in each sample, and accord-

ingly, reaction rates were quantitatively constrained to obtain flux distribu-

tions consistent with the available data and ascribe the impact of changes

in gene expression to phenotypes according to [210]. This approach allows

mapping the RNA-seq data for each reaction into a specific condition of the

139

9.2. An application combining mechanistic and data-driven approaches

model. First of all, each model’s reaction i depends on the expression of a set

of genes which can be represented by a logical formalism including gene names

and boolean operators AND and OR. The formulation is then converted into

expression level for a gene set of reaction i from the expression of individual

genes following two scenarios:

• When two genes are connected with an AND operator, the gene set

expression i for reaction i is the minimum of the individual gene making

the gene set.

• When two genes are connected by an OR operator, the gene set expres-

sion i for reaction i is the sum of the individual gene making the gene

set.

This gene-reaction map provides compatibility with a boolean on-off ap-

proach, as it approaches zero when the expression level approaches zero. More-

over, we defined the multiplicative factor for the flux bounds given the gene

set expression GSEi as follows:

vLowi h(GSEi) ≤ vi ≤ vUp
i h(GSEi), (9.2)

where

h(GSEi) =

(1 + |log(GSEi)|)
GSEi−1

|GSEi−1| if GSEi ∈ R+ \ {1}
1 if GSEi = 1

(9.3)

Based on the direct integration of the gene expression information into the

flux bounds, we set fluxes to zero if the expression of their associated genes

was low and the maximum allowable flux value as a function of measured gene

expression. Finally, the metabolic model fluxes are units of mmol/gDW ∗ h,
where gDW is the dry weight of cell mass in grams, and h is the reaction

time in hours. Human metabolism reconstruction Recon3D can be queried

and downloaded from http://bigg.ucsd.edu/ or http://vmh.life. Several

models, including Recon3D, were initially deposited with default bounds set.

Then, constraints were applied based on the recalculation of default bounds.

140

http://bigg.ucsd.edu/
http://vmh.life

9.2. An application combining mechanistic and data-driven approaches

Figure 9.7: The workflow of analysis built exploiting FeatSEE end-to-end
modules.

Data-driven approach

A graphical representation of the workflow exploited for the analysis is repre-

sented in Figure 9.7, and it is composed of four FeatSEE modules, namely

data preparation, filter-based feature selection, ensemble feature selection and

finally, model evaluation.

The first phase is devoted to data preparation, the fluxomics dataset is loaded

141

9.2. An application combining mechanistic and data-driven approaches

from files, and the labeled dataset is built given the labeling parameters. Then,

it is split into training and test sets with a 70/30 proportion, and the resulting

training test is used to build the feature graph, given the list of score functions

to assign vertex weights, whereas the PCC is used to compute edge weights.

The second phase consists of a supervised dimensionality reduction exploiting

the feature graph, to shrink the number of useful features by removing redun-

dant and irrelevant ones.

The third phase consists of the ensemble feature selection exploiting multiple

selectors, namely filter and embedded methods for feature ranking based on

their relative importance.

The fourth phase evaluates the feature sets in a binary classification task by

exploiting multiple learning models, which are fitted over the training set in

a CV procedure. Performance metrics are estimated by evaluating classifiers’

predictions both on (i) the CV fold not used for training and (ii) the indepen-

dent test set.

9.2.3 Results

By combing the transcriptomics data and the FBA model, we would like to

offer a functional explanation of the three glycolysis profiles identified in [211].

In detail, the glycolysis-associated clusters (GAC) identified distinct clinical

genomic and tumor environment properties. Here, we focus our attention on

the expansion of the description of the glycolysis profiles adding a new layer of

stratification and classification. Then, for each CRC subject, was generated

the corresponding FBA model mapping the transcription profile on the set of

reaction boundaries (Eq. 9.2) leading to a personalization of the metabolic

model. The reliability of the model was increased, and a fluxes distribution

for each CRC subject by the maximization of biomass was obtained.

The flux profiles of each CRC subject were given as input for the multi-

phase features selection methodology. Specifically, three binary classification

tasks have been designed: GAC1 vs GAC2, GAC1 vs GAC3, and GAC2 vs

GAC3, denoted as GAC12, GAC13, and GAC23 hereinafter. The resulting

datasets have been split into training and test sets with a 70/30 proportion.

For each comparison group, the GA is run three times using three different

feature score functions (i.e. Pearson correlation coefficient, ANOVA F-test,

and mutual information), and imposing 30 as the maximum number of se-

lected features. Features sets selected by the GA are evaluated against the

142

9.2. An application combining mechanistic and data-driven approaches

test set exploiting a leave-one-out setting and six classification algorithms.

For each comparison group, the sets associated with the highest Area Under

the Curve (AUC) values in at least five out of six classifiers are merged into

a single set that became the feature pool for the ensemble FS: 57, 84, and 87

features for GAC12, GAC13 and GAC23, respectively. The ensemble FS is

applied to such pools to identify the proper trade-off between the number of

features and the achieved performance (Figure 9.8). The resulting sets, which

have no overlap among the features, contain 11 (GAC12), 7 (GAC13), and

9 (GAC23) GAC-related reactions that achieve an AUC performance on the

test set of 0.98, 0.93, and 0.98, respectively.

GAC1_GAC2 GAC1_GAC3 GAC2_GAC3

0 10 20 30 0 10 20 30 0 10 20 30

0.80

0.85

0.90

0.95

number of features

A
U

C

classifier

Gaussian Naive Bayes

K−Nearest Neighbors

Logistic Regression

Random Forest

Support Vector Machines

Figure 9.8: Performances on the test set in terms of AUC using the lists of
features identified by the ensemble FS. For each comparison group (namely
GAC1 GAC2 for GAC1 vs GAC2 and so on), we show the list arising the
maximum AUC given the number of features desired and a classifier. The
final sets are selected considering those with the minimum number of features
associated with an AUCset−selected where AUCmax−0.01 < AUCset−selected <
AUCmax

These GAC-related reactions are linked to 9 GAC1-, 8 GAC2-, 12 GAC3-

related genes retrieved from the gene-reaction annotations incorporated by

Recon3D. Through the KEGG pathway representation, we found pathways

characterized by the network of enzyme–enzyme relations associated with the

selected GAC-related genes. GAC-related metabolic pathways (Fig. 9.9A)

were presented using AnnotationDbi which provides an interface for connect-

ing and querying the KEGG annotation database. Additionally, for GAC-

related genes signature we found their involvement in various metabolic sub-

systems (Fig. 9.9B). A metabolic subsystem corresponds to a set of reactions

sharing a similar metabolic function. GAC1 attributes to pathways connected

143

9.2. An application combining mechanistic and data-driven approaches

26.7%

26.7%

23.3%

6.7%

3.3%

6.7%

6.7%

GAC1_GAC2

KEGG Pathways

19.2%

30.8%

7.7%

7.7%

3.8%

23.1%

7.7%

GAC1_GAC3

9.1%

22.7%

13.6%

4.5% 9.1%

18.2%

22.7%

GAC2_GAC3

9.1%

9.1%

18.2%

45.5%

18.2%

Recon3D Subsystems

28.6%

14.3%

57.1%

11.1%

11.1%

11.1%

11.1%

11.1%

44.4%

Metabolism of cofactors and vitamins
Nucleotide metabolism
Amino acids metabolism
Carbohydrate metabolism
Fatty acid metabolism
Lipid metabolism
Others
Signaling
Transporters

C5−branched dibasic acid metabolism

Valine, leucine, and isoleucine metabolism

Fatty acid oxidation

Nucleotide interconversion

Drug metabolism

Eicosanoid metabolism

Miscellaneous

Steroid metabolism

Transport, endoplasmic reticular

Transport, extracellular

A

B

Figure 9.9: Metabolic characterization of genes linked to the signatures
identified by the ensemble FS within each comparison GACs groups (namely
GAC1 GAC2 for GAC1 vs GAC2 and so on): (A) relative abundance of path-
ways annotated with KEGG modules, (B) relative abundance of reactions in
various Recon3D metabolic subsystems.

to nucleotide metabolism. This characteristic was revealed by both annota-

tion processes. GAC2 associates with the transport across the endoplasmic

reticulum, the compartment reserved for the biogenesis of secretory proteins.

Also, intermediate products of protein biogenesis as amino acids are connected

to GAC2. GAC3 tended to be enriched with pathways related to steroid hor-

mones and fatty acid metabolism.

9.2.4 Discussion

Functional data integration could be a new breakout in the bioinformatics

approaches.

This work represents a first step in demonstrating how combining mecha-

nistic models integrating omic-data with multiphase feature selection method-

ologies can deciphering the complexity at the basis of the biological systems.

As proof of concept, we used our approach to integrate transcriptomics into

human genome-scale mechanistic models comparing glycolysis-related molec-

ular subtypes and identify the different metabolic markers of GACs through

feature selection of fluxes followed by annotation.

Our workflow aims to provide sample-specific maps of cancer metabolism

for enhanced data analysis planning. Notably, the ensemble feature selection

144

9.2. An application combining mechanistic and data-driven approaches

characterizes heterogeneity in the metabolism of GAC subtypes, returning

non-overlapping feature sets and achieving an AUC performance on the test

set of 0.98, 0.93, and 0.98 for (GAC12), (GAC13), and (GAC23). The im-

portance of the hybrid approach is highlighted through our metabolic process

characterization, which revealed that different GAC groups are associated with

different metabolic pathways.

There are limitations to the results presented in this work. First and fore-

most, while Recon3D is the most updated human metabolic reconstruction, it

has default bounds of (-1000, 1000). These default bounds could be problem-

atic for reactions that were not constrained by gene expression profile integra-

tion, such as constraints representing the availability of metabolic sources in

the environment. Indeed, there is a type of reaction in metabolic modelling

called boundary reactions, which usually describe the exchange of metabolites

between the internal cell and the external environment. Recon3D contains

13,543 reactions, 1,892 of which are devoid of gene-to-reaction associations

because they are boundary reactions. If one uses default bounds to constrain

reactions, there must be a check on the solution flux distribution to see if any

of the fluxes are 1000 or -1000, and a warning should be given in such cases.

We note that while the uniform model for metabolic sources in the environ-

ment was not as accurate, it could provide an initial prediction for metabolic

characterization methods. Thus, the metabolic modelling framework was used

as an initial prediction for metabolic fluxes, but more data is certainly needed

to supply higher-quality data for feature selection. Sample-specific FBA best

accuracy will be achieved through multi-omics integration FBA models. FBA

has significant potential for embracing increasingly available metabolomic data

[212]. Hence, advances in metabolomics and transcriptomics hold promise for

synergistic outcomes by incorporating such data into the FBA framework. In

future work, we also intend to study frameworks for estimating the sensitivity

coefficients of reaction boundaries in constraint-based models.

145

9.3. Explaining early embryonic development via time-lapse features

9.3 Explaining early embryonic development via

time-lapse features

9.3.1 Context

To date, an objective method to evaluate human embryo competence is still

lacking, as conventional morphology is highly subjective, being performed

using a wide range of grading systems affected by inter and intra-observer

variability [213]. Indeed consistency and reproducibility of embryo evalua-

tion are still not guaranteed among different in-vitro fertilization (IVF) lab-

oratories [214]. In addition, standard grading only provides a brief view of

embryonic morphology at a specific time point, while developmental changes

over multiple time points may provide a more robust impression of embryo

potential [215].

Quite recently, Time-Lapse Technology (TLT) has been introduced as a

non-invasive method for real-time, dynamic observation of pre-implantation

embryo development. Morphokinetic events can be monitored at the ex-

act time of occurrence, providing new insights into several steps of in vitro

growth and, ultimately, suggesting objective data with potential clinical rele-

vance [216]. Some authors claimed time-lapse technology to improve embryo

selection and IVF outcomes [215, 217, 218]. However, its efficacy is still a mat-

ter of debate [219, 220, 221, 222], being mainly ascribed to unperturbed culture

conditions (temperature, atmosphere), rather than to the identification of reli-

able morphokinetic biomarkers of embryo competence [220, 223]. Indeed, the

real-time observation of crucial events occurring during in-vitro growth has

revealed a number of new parameters that have been associated to embryo

development potential [216]. Looking forward, significant improvements of

the technologies associated to TLT will drive a more detailed knowledge and

understanding of the early developmental kinetics of human embryos [224].

In recent years, Artificial Intelligence (AI) has rapidly developed in various

fields, including human embryology [225, 226]. Artificial intelligence (AI) may

be used as a tool to assist embryologists in daily activities (e.g. morpholog-

ical selection of embryos to transfer or cryopreserve), as it is able to analyse

a huge number of heterogeneous data, such as those relating to embryo de-

velopment in TLT systems [227, 228]. Machine Learning (ML) algorithms

allow the identification of the most relevant variables included in a bulk set

146

9.3. Explaining early embryonic development via time-lapse features

of data, and may be used to develop complex prediction models of embryo

growth [229, 230]. Among the above-mentioned models, no one was able to

identify clear and clinically relevant cut-offs for morphodynamic variables to

provide an objective tool to assist embryologists during embryo development

assessment.

9.3.2 Material and methods

Data

The study was carried out in accordance with the Declaration of Helsinki and

was authorized as a retrospective observational study by the local Ethical

Committee (authorization number: 0056908). A signed informed consent was

obtained from all patients.

The analysis included 575 embryos obtained from 80 women undergoing

IVF and receiving the transfer in uterus of a single fresh blastocyst on day 5

between March 2018 and March 2020. These patients had mean age 35.3±3.5

years (range 25-42), body mass index 24.2±4.8 (range 18–25), ovarian re-

serve markers suggesting normal responsiveness to FSH stimulation (serum

day 3 FSH ¡12 IU/l, antral follicle count 8-18, anti-mullerian hormone 2.5-4

ng/ml), and received the transfer in uterus of a single, fresh blastocyst on

day 5. Patients with polycystic ovary syndrome (PCOS), ovarian endometrio-

sis and/or unfavourable biomarkers leading to an expected poor/sub-optimal

responsiveness to FSH [231] were excluded. Patients’ clinical characteristics

and variables related to IVF cycle were recorded, including the total dose

of exogenous gonadotropins, the number of retrieved COCs (cumulus-oocyte

complexes), the ovarian sensitivity index (OSI = retrieved COCs × 1000 /total

gonadotropin dose) [232], the fertilization, cleavage, and blastocyst formation

rates, the clinical pregnancy rate per embryo transfer (CPR/ET).

Embryos were cultured in the Geri plus ®TLS (Genea Biomed, Germany),

that is equipped with an integrated embryo monitoring system to observe one

zygote/microwell, as previously described [233]. The dish format allowed the

observation of each embryo individually, even if all embryos shared a common

80−µ l medium drop. Up to day 3, embryos were cultured in pre-equilibrated

Cleavage medium (Cook, Ireland) overlaid with mineral oil; then, a change of

medium was performed, and the new one (Blastocyst medium, Cook, Ireland)

was kept until the blastocyst stage. Bright-field images were captured by Geri

147

9.3. Explaining early embryonic development via time-lapse features

plus ®system every 5 minutes from the time of fertilization until the time of

embryo transfer (ET) (day 5), cryopreservation (day 5 or 6), or discharge (day

5 or 6). Embryo morphological evaluation was first performed on day 2 using

the Integrated Morphology Cleavage Score (IMCS) [234], and then repeated

on day 5 and 6 according to standardized criteria [213]. All videos collected

by Geri plus ®were analyzed by the same senior embryologist, and follow-

ing ESHRE recommendations [216] the following morphokinetic parameters

(times) were considered manually annotated: pronuclear appearance (tPNa),

pronuclear fading (tPNf), completion of cleavage to two, three, four, and eight

cells (t2, t3, t4, and t8, respectively), time intervals tPNf-tPNa, t2-tPNf, t3-

t2, t4-t3, t4-t2, and t8-t4. Blastocyst formation was assessed at the same

time interval (116±2 h post-insemination) for all embryos. Embryos reach-

ing the expanded blastocyst stage on day 5 (score 3 according to [213] were

included in the Blastocyst Group (BL Group, n = 210), whereas those ar-

rested or progressed to a stage earlier than expanded blastocyst were included

in the Not-expanded Blastocyst Group (nBL Group, n = 365), as previously

described [235].

Features

A total of thirty variables among those currently recorded during clinical

routine were considered for each embryo and divided into three categories:

(i) woman-related (n=6): age, BMI, day 3 FSH, AMH, antral follicle count

(AFC), years of infertility; (ii) COS-related (n=10): total exogenous FSH,

peak E2, OSI, number of retrieved oocytes, number of mature oocytes, matu-

ration rate, number of fertilized oocytes, fertilization rate, number of cleaved

embryos, cleavage rate; (iii) embryo-related (n=14): insemination technique,

IMCS score on day 2, tPNa (only for embryos obtained by ICSI), tPNf, t2, t3,

t4, t8, tPNf-tPNa (only for embryos obtained by ICSI), t2-tPNf, t3-t2, t4-t3,

t4-t2, t8-t4.

Machine learning workflow

The workflow of analysis is composed of four phases, namely (i) feature selec-

tion, (ii) rules extraction, (iii) rules selection and, (iv) rules evaluation, that

have been implemented by applying the FeatSEE modules of feature selection

and explainable feature extraction.

148

9.3. Explaining early embryonic development via time-lapse features

A

63%

37%

BL

nBL

B

C

BL
nBL

BL
nBL

Figure 9.10: (A) Pie chart showing the distribution of the 575 embryos:
embryos progressed to the expanded blastocyst stage on day 5 (BL, blue) or
not (nBL, orange). (B) Scatter plot obtained from PCA considering all 575
embryos and all variables. The color of the embryos identifies those grown to
the expanded blastocyst stage on day 5 (BL, blue) or not (nBL, orange). (C)
Violin plots distribution of the z-score of the value of all features distinguishing
embryos grown to the expanded blastocyst stage on day 5 (BL, blue) or not
(nBL, orange).

9.3.3 Results

Correlation between the considered features

Table 9.2 summarizes the clinical characteristics of the 80 patients included

into the Training dataset and the outcome of their IVF cycles.

Overall, 575 embryos were obtained, of which 210 (36.5%) progressed to

the expanded blastocyst stage on day 5 (BL group) whereas 365 (63.5%) did

not (nBL Group) (Figure 9.10A). At first, all embryos were considered to-

gether for a preliminary analysis applying the Principal Component Analysis

(PCA) to generate a labelled scatter plot according to the clustering cate-

gory of the embryos (BL or nBL). Although there was not a clear separation

of the two embryo populations (Figure 9.10B), different density curves could

149

9.3. Explaining early embryonic development via time-lapse features

w
om

an
-r
el
at
ed

C
O
S-
re
la
te
d

em
br
yo
-r
el
at
ed

Figure 9.11: On the left: scatter plots computed through PCA for each set
of variables, independently. On the right: heatmap plot showing the Pearson
correlation value among all variables.

t8-t4 <= 34.795 and imcs > 6.250 and tpnf <= 23.960
osi > 3.380 and imcs > 6.150 and t4 <= 39.125
t4-t3 <= 2.165 and afc > 11.500 and tpnf <= 26.415
osi > 3.300 and tpnf <= 26.040 and t4 <= 39.125
osi > 3.380 and t4-t3 <= 1.375 and tpnf <= 26.455
age <= 36.500 and tpnf <= 26.250 and t4 <= 39.125

0 1 2 3 4 5 6

woman

COS

embryo

A B

C

A
U

C

Number of Rules

D

t4 <= 36.540

osi > 2.890 and t4 <= 39.415

tpnf <= 26.455 and t4 <= 36.540

t4-t3 <= 2.165 and afc > 11.500 and tpnf <= 26.415

t8-t4 <= 16.040 and t4 <= 39.165

age <= 36.500 and t4 <= 39.532

t4-t3 <= 1.335 and tpnf <= 23.960

fertilization rate <= 89.500 and tpnf <= 23.795 and t4 <= 36.540

tpnf <= 23.960

afc > 13.500 and imcs > 6.250 and tpnf <= 25.415

age <= 36.500 and tpnf <= 26.250 and t4 <= 39.125

t8-t4 <= 34.795 and imcs > 6.250 and tpnf <= 23.960

osi > 3.380 and t4-t3 <= 1.375 and tpnf <= 26.455

osi > 3.380 and imcs > 6.150 and t4 <= 39.125

imcs > 6.250 and t4 <= 39.125

osi > 3.300 and tpnf <= 26.040 and t4 <= 39.125

osi <= 20.875 and t4 > 37.375

imcs <= 9.700 and t4 > 37.415

t4 > 36.540
t8-t4 > 15.960afc > 5.500 and t4 > 37.415

maturation rate > 53.500 and t4 > 36.540

t4-t3 <= 5.750 and t4 > 37.415

Figure 9.12: Correlation graph of the selected rules. Vertices represent
the rules and arcs are reported only for a correlation value > 0.8 computed
by Matthews Correlation Coefficient (MCC). (B) Line plot representing the
ability of different combinations of classifiers to classify the expanded or not
expanded blastocyst stage. Each dot corresponds to the AUC computed using
a different number of rules in input. (C) Set of 6 rules of the embryo-signature
with (D) their composition in terms of variable category.

150

9.3. Explaining early embryonic development via time-lapse features

Table 9.2: Patients’ clinical characteristics and IVF outcome. The training
and validation cohorts are composed of 80 and 10 women, respectively. Data
are shown as mean ± standard deviation, or as a percentage.

Feature Training cohort Validation cohort
Age (years) 35.3± 3.5 35.5± 3.1
Duration of Infertility (years) 2.9± 1.5 2.4± 1
Body Mass Index (kg/m2) 24.2± 4.8 24, 6± 2.6
Day 3 FSH (IU/l) 7.3± 3.9 7.3± 2.4
AMH (ng/ml) 5.4± 4.2 5.2± 3.9
Antral follicle count (n) 17.5± 8.3 16.7± 9.4
Total FSH dose (IU) 2137.1± 900 2121.8± 930
Ovarian sensitivity index (OSI) 6.8± 4.7 6.4± 5.1
Retrieved COCs (n) 12.1± 5.3 12.0± 5.6
Mature (MII) oocytes (%) 85.9± 14.9 82.8± 11.7
Fertilization rate (%) 73.7± 17.7 75.5± 16.7
Cleavege rate (%) 98.6± 4.9 98.9± 5.3
Blastulation rate/2PN (%) 53.8± 4.7 55.4± 6.1

be noted after comparing the range of values of BL with those of nBL, as

shown in Figure 9.10C. The inter-variables correlation analysis revealed two

major clusters, the first between woman-related and COS-related variables,

the second within embryo-related variables, as depicted in the heat map (Fig-

ure 9.11). Interestingly, the insemination technique showed either weak or no

correlation with the other variables (Figure 9.11). In addition, a clear cluster

was not detectable considering each set of variables to discriminate the BL

and nBL embryo groups by scatter plots (Figure 9.11).

Selection of rules associated with blastocyst development

The first phase of EmbryoMLSelection framework application consisted in the

identification of the most predictive features. This process exploits multiple

selection algorithms (e.g. filter and embedded methods) to explore the ideal

set composed of the balanced cut-off between the number of features and the

power of their association with embryo development. The selection strategy

was performed on the training set (70% of the total number of embryos), and

the identified set of features was tested on a classification task using stratified

10-fold cross-validation repeated 100 times against the test set (the remaining

30% of the embryos). A total number of 12 variables composed the optimal set

that provided the highest area under the curve (AUC) (data not shown). In a

second phase, these variables were managed to define the set of rules (combi-

nation of features) able to discriminate embryos of BL and nBL groups. The

Rules extraction module was applied to generate 71 rules from the training set.

151

9.3. Explaining early embryonic development via time-lapse features

To explore the association of the extracted rules within each other and with

blastocyst development, a visualization module was displayed in which the

rules were represented as nodes and the edge between two nodes represented

a correlation value for those rules higher than 0.8 (computed by Matthews

Correlation Coefficient (MCC). Applying the second and third modules of the

EmbryoMLSelection framework, the extracted rules underwent a further se-

lection process to remove those unpredictive or redundant, leading to a new

set of 23 selected rules. The correlation graph drawn on the selected rules

showed that 8 rules were isolated vertices (Figure 9.12A, red nodes on the

right) highlighting their low (i.e. minor than 0.8) functional dependency from

the others but, at the same time, their high relevance with the primary out-

come (blastocyst development). By inspecting the plot reporting the AUC

value (Figure 9.12B), a final set of 6 rules involving 9 variables (70% of which

were embryo-related) was obtained (Figure 9.12C and 9.12D). This set of rules

defined the embryo-signature and represented the combination of rules with

the highest discrimination power.

Validation of the selected rules on an independent dataset

The performance of the 6 selected rules was tested by five classification al-

gorithms on an independent validation cohort of 81 embryos obtained from

other 10 patients with clinical characteristics comparable to the women in-

cluded in the study (Supplementary Table 1). Overall, the rules composting

the embryo-signature showed a predictive performance with AUC =0.842 and

accuracy =0.81.

9.3.4 Discussion

Artificial Intelligence is one of the most promising, objective methodologies

aimed at standardizing embryo assessment in human IVF. An intriguing appli-

cation of AI within the IVF laboratory is providing new knowledge on cellular

profiles regulating embryo in vitro growth and embryo competence [226]. The

rather recent introduction of TLT offers the possibility to obtain a vast bulk

of data on the kinetic of human embryo growth, producing a much more de-

tailed timeline of dynamic events as well as showing previously unrecognizable

phenomena [236]. In the present study, we describe the performance of the

novel EmbryoMLSelection framework in identifying a set of rules associated to

152

9.3. Explaining early embryonic development via time-lapse features

timely embryo development to the expanded blastocyst stage on day 5, called

embryo-signature. The rationale behind a two-step process of features selec-

tion, rule extraction and rule selection from a large number of variables/em-

bryo (n=30) was the identification of a set of rules (from an initial number of

71 to the final 6) identifying an embryo-signature composed of relevant fea-

tures (n=9), describing cleavage stage embryos able to timely (within day 5)

progress to the expanded blastocyst stage. As lower implantation and clinical

pregnancy rates were reported in case of transfer of slow-growing blastocysts

vs. fully expanded day 5 blastocysts [237, 238], probably due both to poor

embryo competence and the loss of embryonic-endometrial synchrony [239], we

considered the fully expanded blastocyst on day 5 as the optimal development

stage, that confers the highest probability of embryo implantation. Embryo

selection models developed using morphokinetic parameters were previously

shown to predict blastocyst development [240, 241]. Furthermore, the applica-

tion of machine-learning technology provided an algorithm able to predict clin-

ical pregnancy and live birth rate by analysing embryo morphokinetics [242].

Giscard d’Estaing [230] used a machine-learning system in order to build up

a score for blastocyst formation with a prediction power having AUC =0.634.

In another study, the prediction accuracy of embryo

assessment performed by experienced embryologists with morphokinetic

grading methods added to conventional static morphology was shown to range

between 60% and 70%, with AUC 0.63 - 0.70 [243]. Herein, we provide ev-

idence that the novel EmbryoMLSelection framework allowed to perform a

more precise evaluation of embryo dynamic growth with a performance de-

scribed by AUC =0.84 and accuracy 81%. Notably, the Rules Selection step

ensured such an increased performance providing a concomitant reduction

of the rules and variables used (n=6 and 9, respectively). Importantly, the

EmbryoMLSelection framework developed here was registered in the Docker

image and therefore its application is globally accessible online. Of note, the

rules associated with the ability of reaching the stage of expanded blastocyst

on day 5 include early embryo-related variables, such as embryo morpholog-

ical score on day 2, and some cytokinesis times occurring in the first three

days of development (tPNf, t4, t4-t3, t8-t4). So far, only one study coupled

TLT annotation with morphological embryo assessment performed with the

evidence-based score named IMCS [244]. IMCS was based on the evidence of

implantation and clinical pregnancy after double ET on day 2, and was incor-

153

9.3. Explaining early embryonic development via time-lapse features

porated into a complex prediction model for IVF outcome, recently shown to

predict live birth with a remarkably good precision [245]. According to our

results, good quality embryos having static morphological score > 6.0 on day 2

are more likely to reach the expanded blastocyst stage on day 5. In addition,

the relevance of timings describing early embryo development is confirmed

by previous studies reporting that a timely blastocyst development on day

5 can be predicted looking at the first three days of development [235, 246].

Moreover, morphokinetic data of cleavage stage embryos were found to be

associated to both blastulation rate and blastocyst quality [247]. Indeed, em-

bryos with quicker cleavage time from the 2-cells to the 8-cells stage have the

highest potential to timely become blastocysts with good morphological score,

and with the ability to expand and implant [248, 249]. In this context, the

pivotal clinical significance of our framework would be to indicate on day 3

which embryos are more likely to develop into viable blastocysts, giving the

potential advantage to select the most competent embryos on day 3 without

the need to extend culture till day 5, thus saving time and resources. For the

sake of convenience, the EmbryoMLSelection framework was also applied in

a setting in which the variables were not previously selected. Specifically, all

variables were used together in order to obtain at first 131 extracted rules,

showing a high functional dependency highlighted by the high number of arcs

(Supplementary Figure 2A). From a subset of 30 selected rules, 17 were finally

derived based on the AUC in order to choose the best combination of rules with

the highest discrimination power (Supplementary Figure 2B). However, these

rules reached lower values in terms of both AUC (0.79) and accuracy (0.70) in

the validation cohort with respect to the previously identified embryo signa-

ture. Finally, when considering only the embryo-related variables, 146 rules

were extracted with high functional dependency (Supplementary Figure 3A).

A subset of 30 selected rules allowed to identify in the validation cohort a final

number of 21 rules reaching an AUC value =0.74 and an accuracy value =0.68

(Supplementary Figure 3B). This performance suggests that embryo-related

variables alone are not enough to accurately describe blastocyst development,

and that it is necessary to consider the overall set of variables while designing

the framework. In fact, other clinical variables, such as age, AFC and OSI,

were associated to the timely progression to the blastocysts stage. Indeed,

female age defined as advanced (AMA ¿ 35 year) was extensively associated

with a decline in oocyte yield, fertilization, and overall oocyte/embryo devel-

154

9.4. Index-driven subgraph search exploiting decision diagrams

opmental competence, mainly due to an increased incidence of aneuploidies

and a decreased mitochondrial activity [250, 251]. Studies reporting embryo

morphokinetics from the fertilization to the pre-implantation period in women

of AMA remain limited; our findings suggest a link between morphokinetic

patterns and maternal age. Maternal age seems to have a relevant impact

on the regulation of cell polarity during compaction, as well as on blastocoel

cavity expansion, suggesting that AMA may affect embryo competence irre-

spective of the well-known consequences of oocyte meiotic errors [252]. On the

other hand, AFC and OSI are markers of ovarian reserve and responsiveness

to COS, and are associated not only with female age, but also with circulat-

ing AMH levels, oocyte yield and, ultimately, clinical pregnancy [253, 254].

Interestingly enough, the insemination technique (conventional IVF or ICSI)

was not included as relevant variable in the selected rules, confirming previ-

ous evidence showing only minor morphokinetic differences between the two

procedures [255]. The present study has the following limitations: (i) only

couples undergoing single blastocyst transfer were considered in this study;

(ii) the overall number of considered embryos was limited (n=575) but it con-

stituted the entire time-lapse database available in our centre; (ii) embryo

developmental timings were manually annotated, with unavoidable intra- and

inter-operator variability [256]; (iv) a timely blastocyst formation has a limited

association coefficient with embryo ploidy and implantation chance [257].

9.4 Index-driven subgraph search exploiting

decision diagrams

9.4.1 Datasets description

For this study, we considered six different types of graphs. Four of them are

real graphs widely used as a benchmarks in the fields of bioinformatics and

computational chemistry, the others are synthetically generated by means of

the Barabasi-Albert’s and the Forest-Fire models. The choice of such two syn-

thetic models has been taken according to their properties of the topologies to

be similar the graphs used in biological databases. Differently from collections

of real graphs, synthetic topologies allow us to investigate the performance of

compared methods in relation to the parameters of such models, and thus to

the properties of the produced topologies [258].

155

9.4. Index-driven subgraph search exploiting decision diagrams

Biochemical structures

The collection of biochemical graphs was initially used for evaluating the per-

formance of one-to-one subgraph isomorphism algorithms [259], and, nowa-

days, it is a well-established benchmark for graph theory problems linked to

the subgraph isomorphism [260]. These four datasets that compose the col-

lection are now described.

AIDS is the standard database for Antiviral Screen [261], and it consists

of 40k chemical structures representing small molecules. Vertices are atoms

and edge are the chemical bounds linking them. Vertices are labelled by the

atomic element they represent, and there are a total of 62 distinct elements.

The average number of vertices per graph is 44.98, and the average degree is

4.17.

PDBS is a benchmark composed of 600 target graphs representing the

topological structure of proteins [262, 263]. Vertices are the atoms and edges

are chemio-physical bounds between them. These graphs have up to 16,431

vertices and 33,562 edges, with an average degree over the whole dataset equal

to 4.27. There are a total of 10 unique labels, corresponding to the atomic

types.

PCM is composed of three-dimensional structures of protein, called protein

contact maps [264]. Vertices represent the amino acids of a protein and edges

informs about the spatial proximity of amino acids. The dataset contains 200

target graphs having up to 883 vertices and 18,832 edges, with an average of

376 vertices per graph and 44.78 edges per vertex. There are a total of 21

labels of which 18 appears on average in each graph.

PPI is a dataset of 20 protein-protein interaction target graphs of 5 dif-

ferent species: Caenorhabditis elegants, Drosophila melanogaster, Mus mus-

culus, Saccaromyces cerevisae and Homo sapiens [265]. Protein interactoms

are a widely used approach for investigation biological phenomena, since they

reports the known physical interactions between proteins of a given living

species. They are often embedded in graph-based multi-omics knowledge

bases, and contribute to a form a predominant part of such graphs. For this

reason, we decided to focus the attention on PPI network, with the future per-

spective of analysing more complete multi-omics graphs. Vertices are proteins

and edges are predicted physical interactions between them. For each species,

different thresholds on the accurateness of the prediction were applied, rang-

ing from 0.4, 0.5, 0.6 to 0.7. Vertices are labelled according to their functional

156

9.4. Index-driven subgraph search exploiting decision diagrams

category, for a total of 45 distinct categories. The dataset contains graphs

up to 10,186 vertices and 179,348 edges, an average degree of 18.46 and an

average number of distinct labels per graph equal to 28.45.

For all of the biochemical datasets, queries were extracted from the target

graphs by fixing the desired number of edges, from 4, 8, 18 to 32, and such

that the topological structure of the extracted graph reflects the properties of

the graph of origin.

Synthetic graphs

The Barabasi-Albert’s model is able to reproduce a graph with an observed

stationary scale-free distribution, which reflects many of the structures that

can be encountered in nature [266]. Starting from an initial set of vertices,

m0, the model inserts one vertex at time to the graph. At each insertion,

new edges are added in order to connect the new vertex with existing ones.

The probability of an edge with vertex i is pi = kαi , where k is the vertex

degree and α is a user defined parameter. The benchmark contains 384 target

graphs which were generated by fixing a desired number of vertices and average

degree. Generated graphs have 200, 500, 1k, 5k, 10k and 20k vertices. In

addition, three copies of each generated network are made in order to provide

a labelled version of the initial structure with three different percentages of

distinct labels, 0.1%, 1% and 10%. Labels are assigned randomly to vertices

according to a uniform distribution.

The second type of synthetic graphs were generated according to the

Forest-Fire model [267], that is inspired by forest growing behaviours, and

which imposes a geometric distribution with mean p/(1− p) which is used for

randomly extract links between two distinct vertices. This benchmark con-

tains 160 target graphs having the same number of vertices of the Barabasi-

Albert benchmark, and they were labelled in the same way of the previous

model. Moreover, the graphs were generated by varying the value of the model

parameter p as 0.1, 0.3, 0.5, 0.7 and 0.9.

For both synthetic benchmarks, query graphs were extracted from the

generated target graphs. The extraction was performed by fixing the number

of desired vertices, ranging from 4, 8, 24, 32 to 64, and by extracting all edges

among the selected vertices.

157

9.4. Index-driven subgraph search exploiting decision diagrams

9.4.2 Experimental setup and output

We evaluated the performance of GRAPES-DD, with respect to its prede-

cessor GRAPES, by taking into account both space and time requirements.

In particular, we focused on the amount of primary memory that the two ap-

proaches require during the execution, reported as memory peak, as well as the

space needed to store the built index in the hard disk, reported as index size.

In addition, we compared the running time required by the two approaches

for building the index. The analysis was mainly focused on the index con-

struction phase because it is the main difference between the two approaches.

They share the same methodology for what concerns the matching phase. In

addition, the filtering time can be considered negligible with respect to the

total querying time.

Both GRAPES-DD and GRAPES have been containerized in a Docker[29]

image in order to ensure both functional and computational reproducibility

of the experiments. The Dockerfile to build the image is provided together

with the source code, and it is available at https://github.com/qBioTurin/

grapes-dd or at https://github.com/InfOmics/grapes-dd. Both the tools

were implemented in C++ and compiled with gcc 6.3.0. Then, the experiments

have been carried out on a server equipped with four processors AMD Opteron

6167 2.20 GHz and 502 GB of RAM. Since GRAPES is a natively parallel soft-

ware while GRAPES-DD is sequential, the experiments were executed using

GRAPES with a single-thread.

Indexing

Figures 9.13 and 9.14 show memory peak and index size on the synthetic

datasets obtained by indexing one target graph at time. Values are calculated

taking into account three different grouping strategies that reflect the way

in which the datasets are generated. Plots were generated via the Pandas

framework available for Python 1. In details, datasets were grouped by (i)

percentage of distinct labels with respect to the total number of vertices of

the graph, (ii) number of vertices and (iii) value of the Barabasi-Albert model

parameter α or Forest-Fire parameter p.

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.boxplot.html

158

https://github.com/qBioTurin/grapes-dd
https://github.com/qBioTurin/grapes-dd
https://github.com/InfOmics/grapes-dd
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html

9.4. Index-driven subgraph search exploiting decision diagrams

Results show that, independently from the label percentage and model

parameters, the performance of GRAPES-DD improves as the number of ver-

tices of the indexed graph increases. In fact, for graphs having less than 5k

vertices, the memory peak required by GRAPES-DD is higher than the peak

of GRAPES, resulting in a ratio between the two values less than 1. The

out-performance of GRAPES-DD can reach two/three orders of magnitude

with respect to GRAPES, for graphs with 20k vertices, which means that the

memory requirement of GRAPES-DD is one hundredth that of GRAPES.

Similar trends are observed for the size of the index when it is stored into

the hard disk. In this case, the ratio can achieve five orders of magnitude

as it is shown for the Forest-Fire graphs with 20k vertices. In general, best

ratios are obtained for the Forest-Fire graphs with a high number of vertices,

however, this behaviour is counterbalanced by the fact that on average Forest-

Fire graphs with less than 5k vertices are also those with the lowest ratios.

For what concerns the memory peak, we can observe that the label per-

centage is a more crucial factor for the Barabasi-Albert model rather than

for the Forest-fire model. More in general, a low label percentage is to the

advantage of the trie structure of GRAPES because the extracted paths share

and relatively high number of labels. Opposite trends are observed for what

concerns the storing of the index.

As for the label percentage, model parameters produce less variation com-

pared to the number of vertices. The Barabasi-Albert model produces scale-

free networks where the distribution of the degrees of the vertices follows a

power law. A value greater than 1 increases the skewness of the resultant

distribution, while a value less than 1 flattens the distribution. Thus higher

values trend to produce a more sparse graph. Results in Figure 9.13 show that

GRAPES-DD performs better for dense graphs, namely for low values of the

α parameter. The trend is confirmed by the results regarding the Forest-fire

models (Figure 9.14), where higher values of the p parameters produce more

dense graphs.

GRAPES-DD reaches an average indexing compression ratio of 11.16 with

respect to GRAPES when Barabasi-Albert networks are indexed. Instead, an

average ratio of 9.46 is reached over the Forest-Fire collection. The better

ratio obtained by GRAPES-DD highlights that the application of MTMDDs

is advantageous for any of the two types of random graphs, however, it is

more suitable for Barabasi-Albert networks that are considered more similar

159

9.4. Index-driven subgraph search exploiting decision diagrams

to biological networks.

Subsequently, we evaluated the performance of exploiting the MTMDD struc-

ture for indexing 14 collections of synthetic graphs (see Table 9.3). The first

three collections are obtained by grouping Barabasi-Albert graphs by the la-

bel percentage, such that graphs having the same percentage are contained

in the same collection. Similarly, Forest-Fire graphs were grouped into three

further collections. The grouping procedure was also performed by taking

into account the α and p model parameters. As for the previous analysis,

the ratio is computed by dividing the values measured for the trie structure

of GRAPES with those registered for the MTMDD of GRAPES-DD. As it

has been shown for the single-graph analysis, the percentage of distinct labels

with respect to the total number of vertices in the graphs) is a discriminant

factor for the compression gain obtained by the MTMDD structure. Also the

trends relative to the parameters of the models are confirmed. In general, the

MTMDD structure is on average more convenient on the Forest-Fire graphs

for what concerns the memory peak. Barabasi-Albert graphs with α = 0.5

are an exception to this trend, since they reach the maximum registered ratio

equal to 45. In contrast to the single-graph analysis, the space required for

storing the index into the hard disk does not provide the same advantage to

the MTMDD structure. In fact, in the single-graph analysis the ratio reaches

a value of 105 that is two order of magnitude higher of the ratios obtained for

the memory peak. On the contrary, these experiments show an inversion of

the ratio such that the MTMDD structure reaches best results for the memory

peak. It is notable to report that, while the trie structure requires a maximum

of 94Gb of memory, the process for building the MTMDD-based index does

not reaches the 9Gb of requirement, making it suitable for common personal

computers.

Table 9.3 also shows the running time of the two approaches for building

the index and for storing it. The MTMDD structure requires more time for its

construction, the compression capability of the MTMDD must come with an

unavoidable additional cost. However, the growth time is only a few minutes

and the construction of the index is performed in a preprocessing phase, only

once and reused for each query search.

Table 9.4 reports the complete set of experiments that were performed

on the biochemical graphs. The experiments regard the indexing of the four

different collections of real graphs. For this benchmark, ratios are less promi-

160

9.4. Index-driven subgraph search exploiting decision diagrams

Table 9.3: Indexing comparison of GRAPES and GRAPES-DD of synthetic
graphs in terms of RAM requirement, Storage requirement, and Building time.

RAM req. (MB) Storage req. (MB) Build time (s)
DD trie ratio DD trie ratio DD trie

B
a
ra
b
a
si
-A

.

l
0.1% 3,649 7,935 2.2 305 3,493 11.5 470 109
1% 8,229 66,838 8.1 1,543 28,772 18.6 646 214

10% 7,876 81,552 10.4 10,071 34,368 3.4 668 265

α
0.5 2,103 94,654 45.0 24,915 40,281 1.6 516 330
1 8,351 58,519 7.0 16,602 25,145 1.5 766 213

1.5 1,447 3,068 2.1 1,246 1,219 1.0 144 26

F
o
re
st
-F

ir
e

l
0.1% 834 3,929 4.7 121 1,689 13.9 63 29
1% 1,308 21,255 16.2 738 9,229 12.5 77 66

10% 1,167 24,936 21.4 5,351 10,650 2.0 62 70

p

0.1 147 1,426 9.7 2,882 585 0.2 10 7
0.3 188 2,451 13.1 3,358 1,024 0.3 14 9
0.5 281 4,966 17.7 3,922 2,109 0.5 26 16
0.7 487 11,694 24.0 4,535 5,020 1.1 57 37
0.9 988 29,565 29.9 5,386 12,840 2.4 139 88

Table 9.4: Indexing comparison of GRAPES and GRAPES-DD of biochemi-
cal datasets in terms of RAM requirement, Storage requirement, and Building
time

RAM req. (MB) Storage req. (MB) Build time (s)
DD trie ratio DD trie ratio DD trie

AIDS 5,304 1,064 0.20 164 39 0.24 170.12 16
PDBS 532 556 1.04 22 17 0.78 176.00 10.07
PCM 512 7,057 13.77 253 1,392 5.51 617.24 754.56
PPI 629 1,698 2.70 166 665 4.00 2,514.18 2,906.65

nent compared to synthetic graphs, however many of them are higher than 1,

confirming a gain in using the MTMDD structure rather than the trie. The

trend for which paths extracted from more dense and more uniform graphs

are better compacted by the MTMDD structure is confirmed. In fact, the

best ratio is obtained for the PCM collection that contains the most dense

graphs. However, the PCM collection is also the one with the lowest number

of labels and a relatively small number of vertices. Thus, it seems that the

density of the graphs is the key factor for the good performance of GRAPES-

DD in biochemical graphs. In addition, in contrast with the results on the

synthetic graphs, the running time of GRAPES-DD for the construction of

index is generally faster than the time required by GRAPES. In these cases,

the compression capability of the MTMDD comes without additional cost.

Filtering

Collections of biochemical graphs were also used for evaluating the perfor-

mance of GRAPES-DD during the querying phase in comparison with exiting

161

9.4. Index-driven subgraph search exploiting decision diagrams

Table 9.5: Indexing comparison of GRAPES and GRAPES-DD of single PPI
network in terms of RAM requirement, Storage requirement, and Building
time

RAM req. (MB) Storage req. (MB) Build time (s)
Species |V | |E| DD trie ratio DD trie ratio DD trie

S. cerevisiae

4,709 40,284 38.1 91.1 2.39 10.5 26.2 2.49 60.93 63.49
5,230 53,699 56.3 136.3 2.42 11.7 42.4 3.63 604.47 630.92
5,762 76,482 61.1 150.9 2.47 12.7 47.5 3.73 846.24 879.90
5,936 89,674 46.5 121.2 2.61 12.9 36.8 2.86 128.52 135.01

C. elegans

1,557 2,472 7.1 5.7 0.80 0.2 0.3 1.45 0.24 0.20
2,421 3,981 7.8 7.9 1.02 0.5 1.0 2.06 0.52 0.44
3,664 7,005 10.4 14.6 1.40 1.0 2.8 2.65 1.33 1.13
6,173 26,184 25.1 58.5 2.33 4.3 16.0 3.75 34.16 34.19

D. melanogaster

1,185 2,008 8.0 12.1 1.51 0.6 1.5 2.30 0.31 0.26
2,488 6,151 12.1 32.1 2.65 1.9 6.6 3.47 3.28 3.21
2,729 7,235 13.3 36.2 2.73 2.3 7.9 3.37 4.30 4.22
7,928 37,542 52.3 198.7 3.80 13.1 64.3 4.90 144.05 156.07

M. musculus

1,810 2,413 8.0 13.1 1.64 0.7 2.2 2.94 0.42 0.36
3,255 5,424 11.0 31.0 2.81 1.9 7.1 3.68 2.52 2.50
3,758 6,853 13.1 43.6 3.33 2.6 11.2 4.30 4.47 4.61
6,875 23,779 41.1 193.6 4.71 12.4 62.1 5.02 76.64 81.56

H. sapiens

4,638 10,665 17.3 55.0 3.18 3.6 14.6 4.07 5.60 5.36
8,728 31,164 53.5 215.4 4.02 13.1 70.8 5.42 65.14 68.26
9,826 48,835 87.5 351.4 4.02 21.5 120.1 5.59 213.95 230.16
10,186 51,484 89.2 391.8 4.39 22.0 134.1 6.10 191.63 209.63

approaches VF2 [78] and CT-Index [89]. VF2 is a non-indexed approach used

by GRAPES and GRAPES-DD in the verification phase. The comparison

with it allows us to evaluate the effectiveness of using indexing in graph search-

ing applications. CT-Index is a index-based graph searching solution that uses

paths as indexing features. Biochemical graphs have already been used for in-

vestigating the performance of GRAPES, VF2 and CT-Index [87, 106]. Here,

we propose those comparisons by adding GRAPES-DD. GRAPES-DD is com-

pared with GRAPES, two configurations of CT-Index and the pure subgraph

isomorphism algorithm VF2. All the compared methods enumerate all the

matches. CT-Index was run with default parameters (CT-index def), such

that paths, cycles and trees are indexed. Moreover, a configuration (CT-index

4) which only includes paths of length 4 was taken into account. We were not

able to run CT-Index on the PCM and PPI datasets due to excessive memory

usage of the tool.

Figure 9.15 shows the cumulative time (in seconds) for executing 100

queries. Running times of GRAPES, GRAPES-DD and CT-index include

the time to read graphs from the input files, filtering time and verification

time. The time required by the methods for reading the pre-built index is

considered only once and it is included in the running time of the first exe-

162

9.4. Index-driven subgraph search exploiting decision diagrams

0.1 1.0 10.0
Labels percentage

100

101

102

200 500 1000 5000 10000 20000
Number of vertices

100

101

102

RAM requirement ratio

0.5 1.0 1.5

100

101

102

0.1 1.0 10.0
Labels percentage

100

101

200 500 1000 5000 10000 20000
Number of vertices

100

101

Storage requirement ratio

0.5 1.0 1.5

100

101

Figure 9.13: GRAPES/GRAPES-DD ratios of memory peak (as a RAM
requirement) and index size (as a storage requirement), obtained by indexing
Barabasi-Albert graphs. The chart was made by using the boxplot function of
the Python3 Pandas module.

cuted query. Since no index is built by VF2, its total execution time is taken

into account. CT-index takes 461 seconds for building the index of the AIDS

datasets with default parameters and 82 seconds for indexing only paths of

length 4. Moreover, it requires 4,400 for indexing the PDBS collection with

default parameters and 40 seconds when only paths of length 4 are taken into

account. In all experiments, CT-index is outperformed by the other three

approaches.

On AIDS collection (see Figure 9.15 (a)), GRAPES-DD is not able to

outperform GRAPES; its running time is close to the one of VF2. As shown

in Table 9.4, this type of biochemical structures are too small and not suitable

for being indexed and queried via MTMDDs. The overhead for reading the

index and for extracting candidate graphs according to the query structure

is not amortized during the verification phase, indeed, GRAPES-DD requires

15 seconds for reading the index and an average of 12 seconds for the filtering

phase. On the contrary, GRAPES requires only 3.5 seconds for loading the

index and an average of 3 seconds for the filtering.

163

9.4. Index-driven subgraph search exploiting decision diagrams

0.1 1.0 10.0
Labels percentage

10 1

100

101

102

103

200 500 1000 5000 1000020000
Number of vertices

10 1

100

101

102

103
RAM requirement ratio

0.1 0.3 0.5 0.7 0.9
p

10 1

100

101

102

103

0.1 1.0 10.0
Labels percentage

10 3

10 1

101

103

105

200 500 1000 5000 1000020000
Number of vertices

10 3

10 1

101

103

105

Storage requirement ratio

0.1 0.3 0.5 0.7 0.9
p

10 3

10 1

101

103

105

Figure 9.14: GRAPES/GRAPES-DD ratios of memory peak (as a RAM
requirement) and index size (as a storage requirement), obtained by indexing
Forest-Fire graphs. The chart was made by using the boxplot function of the
Python3 Pandas module.

The VF2 algorithm is outperformed by GRAPES-DD in the PDBS, PCM

and PPI collections (see Figure 9.15 (b), (c) and (d)). Moreover, VF2 is out-

performed by GRAPES also in AIDS dataset. Thus, the index-based method-

ology used by GRAPES and GRAPES-DD is generally helpful in reducing the

time required for the verification phase.

Regarding the PDBS collection (see Figure 9.15 (b)), GRAPES-DD re-

quires 2.3 seconds for loading the index and an average of 6 seconds for fil-

tering the collection. GRAPES requires 0.12 seconds for the index load and

20 seconds for the filtering phase. Since GRAPES-DD and GRAPES produce

the same set of candidate graphs, GRAPES-DD outperforms GRAPES thank

to its performance in the filtering phase.

Considering the PCM collection (see Figure 9.15 (c)), GRAPES-DD re-

quires 20 seconds for loading the index and an average of 14 seconds for fil-

tering the collection. GRAPES requires 30 seconds for the load and 2 seconds

for the filtering. Thus, GRAPES-DD builds a more succinct index that allows

a fast loading time, however it is not sufficient for outperforming GRAPES in

164

9.4. Index-driven subgraph search exploiting decision diagrams

filtering time.

On the PPI collection (see Figure 9.15 (d)), GRAPES-DD and GRAPES

have comparable running times. GRAPES-DD requires 13 seconds to load the

index, in contrast to 2 seconds required by GRAPES. However, GRAPES-DD

spends on average 0.05 seconds for the filtering phase, while GRAPES requires

on average 11 seconds.

Lastly, Table 9.5 reports the results regarding the PPI networks obtained

by indexing one PPI at time, since PPI networks are often analysed stand-

alone. Similarly to the synthetic networks, the increase of the graph size, i.e.

number of vertices |V | and number of edges |E|, results in a better performance

of GRAPES-DD with respect to GRAPES. However, comparing the ratios

obtained for M. musculus and H. sapiens we can deduce that as expected

there is not a fixed correlation between the graph size and the performance.

Therefore, the intrinsic nature of the graph is also responsible for these results.

PPI networks are also the targets for which running times of GRAPES-DD

are comparable to those of GRAPES, and some times they are even better.

The GRAPES-DD building approach includes the construction of partial tries

but without merging them. The cost for traversing a single whole trie may

limit GRAPES.

Variable ordering

We empirically tested our two research questions R1 and R2, initially in-

troduced in Section 6.5, on a subset of the well-known biological bench-

marks previously described, namely the PPI (i.e. protein-protein interac-

tion) networks of 5 different species, and the standard database for Antiviral

Screen(AIDS) [261].

We conducted a set of experiments over the graph databases described

above. We indexed each database using labeled paths up to length 4, so that

each index MTMDD is defined over 5 variables. Then, for each collection, we

obtain the size of the index MTMDD for all possible variable orders.

For each collection, we first obtain the measurements on the index MT-

MDD by testing all 120 possible variable orderings, namely the factorial of

the number of variables.

Figure 9.16 reports the results for the R1 question on the 6 benchmarks.

Each dot represents one of the 120 possible variable orders. Dots are coloured

by their respective stratification induced by the level of the identifier vari-

165

9.4. Index-driven subgraph search exploiting decision diagrams

Figure 9.15: Cumulative time for running 100 queries over the four collec-
tions of biochemical graphs. The chart was made by using the plot function
of the Python3 Pandas module.

able. In each stratum, a dashed line represents the trend of the relation

between the SOE metric and the final DD size. The number indicates the

value of Spearman’s correlation coefficient. We can observe that the metric

has medium-to-strong anticorrelation values in all strata except for the one

where the identifier is positioned at the bottom, whose sizes are almost insen-

sible to the reordering of the label variables. The figure shows a very positive

result, because it shows that a heuristic that maximizes the SOE metric has a

high chance of selecting a good order that minimizes the DD size. Moreover,

the cross on each stratum identifies the ordering that would be selected by

the proposed heuristic EntropyHeu when fixing the position of the identi-

fier variable, while the star indicates the final order chosen by such heuristic

without fixing the position of the identifier variable.

Figure 9.17 shows the results for theR2 question on the effectiveness of the

EntropyHeu heuristic on the 6 benchmarks. Relative DD sizes are shown

on the y-axis, while the x-axis has no meaning (it is only used for visualization

purposes to separate the dots). The green cross identifies the relative DD size

166

9.4. Index-driven subgraph search exploiting decision diagrams

1.0 1.5

DD nodes + edges

×106

60

65

70

75

80

85

90

S
O

E

0.388

-0.778

-0.597

-0.671

-0.392

CE

2.5 5.0 7.5

DD nodes + edges

×106

65

70

75

80

85

90

95

0.447

-0.545

-0.524

-0.509

-0.317

DROSOFILA

1.0 1.5

DD nodes + edges

×107

70

75

80

85

90

95

100

105

0.394

-0.781

-0.582

-0.623

-0.391

HOMO

2.5 5.0

DD nodes + edges

×106

70

75

80

85

90

95

0.374

-0.640

-0.695

-0.655

-0.404

MUS

lvl(vn) = 1 lvl(vn) = 2 lvl(vn) = 3 lvl(vn) = 4 lvl(vn) = 5

1 2 3

DD nodes + edges

×107

65

70

75

80

85

90

95

100

105

0.292

-0.810

-0.434

-0.522

-0.247

YEAST

0.75 1.00 1.25

DD nodes + edges

×107

60

70

80

90

100

110
0.901

-0.606

-0.837

-0.577

-0.712

AIDS

Figure 9.16: Spearman’s correlation and trend lines of the SOE metric value
w.r.t. the DD sizes, divided by sample strata. The black symbol on each strata
identifies the order that is selected by EntropyHeu. In particular, the black
star identifies the final order chosen by the heuristic.

of the final order selected by EntropyHeu, while the blue bar identifies the

average size that would be obtained by randomly taking an order among the

possible 120 orders. We can observe that the greedy heuristic that follows

the metric SOE is actually capable of selecting almost-optimal orders in all

the tested cases, showing the effectiveness of the proposed information-based

strategy.

Looking at the star symbols in Figure 9.16 we can observe some character-

istics of the final variable order chosen in each dataset. For CE, DROSOFILA,

HOMO and MUS datasets, our heuristic EntropyHeu choose the same order

O1 = {v1, v5, v4, v2, v3} located in the second stratum. Differently, in the last

PPI network (i.e. YEAST) the variable order {v1, v2, v5, v4, v3} located in the

third stratum was selected. Despite it is different from O1, we observe some

similarities: they both start and end with v1 and v3 variables, respectively.

Finally, the order found for AIDS dataset, which is {v4, v3, v1, v2, v5}, places
the identifier variable as the root of the MTMDD. In conclusion, as expected,

we observed that similar graph characteristics have led to similar efficient vari-

able order (see PPI results). Of course, future investigations will be needed to

better identify such connections between graph features and the effectiveness

of particular variable orders.

167

9.4. Index-driven subgraph search exploiting decision diagrams

CE DROSOFILA HOMO MUS YEAST AIDS

0

20

40

60

80

100

D
D

n
o

d
es

+
ed

ge
s

(%
)

Figure 9.17: Relative position of the variable order selected by Entropy-
Heu among all the other possible orders.

9.4.3 Discussion

In this study, we deal with the problem of reducing the indexing size of bio-

chemical and biological graph searching systems to make them effective with

the increasing size of the structures. We show that the indexing of labelled

graphs can take the advantages of newly adapted data structures based on

decision diagrams. These techniques allow already existing methodologies to

increase their compression power, in terms of memory consumption, without

significantly increasing the searching time requirement.

We examined synthetic graphs because they offer a more systematic way

of investigating performance of indexing using decision diagrams. Since the

type of the generated graphs reflects the structures that are found in nature,

their analysis can be exploited for inferring performance behaviour of real bio-

chemical and biological structures. The results showed that relevant indexing

compression ratio can be obtained in relation with the size and the topological

structure of the graphs and the distribution of labels within them. Moreover,

the larger are the indexed graphs, the higher is the advantage of using Decision

Diagram data structure.

A well-established benchmark was also used for evaluating the performance

on real graphs. The size of the considered graphs are relatively small, com-

pared with the synthetically generated ones, however trends of gain ratio are

confirmed. This must be considered in the perspective of future applications of

168

9.4. Index-driven subgraph search exploiting decision diagrams

the proposed indexing technique, because the continuous development of new

technologies for extraction biological information leads to the construction of

biological relational systems that constantly increase in size. In addition to

the gain in compression ratio, GRAPES-DD outperforms GRAPES in terms

of build times while maintaining comparable query times. Furthermore, our

analyse show that graph search approaches based on indexing, in graphs of

some complexity, can amortize the overhead of building indexing data struc-

tures at query time.

Moreover, we extended the approach initially proposed and published

in [121] by investigating how the MTMDD variable order may affect the per-

formance of such an approach in terms of memory consumption. To achieve

this task we first proposed the new metric SOE based on the Shannon en-

tropy which experimentally showed a medium-to-strong anticorrelation with

respect to the DD size encoding the graph indexing. Then we developed the

sub-optimal heuristic EntropyHeu inspired to the information gain which

is able to derive a variable order comparable with the theoretical-optimal or-

der derived by the SOE metric. As a future extension, we will apply the

EntropyHeu heuristic on a bigger set of benchmarks coming from different

research fields and we will evaluate its performance by increasing the length

of labeled paths. In addition, we will also investigate how the graph char-

acteristics (e.g. graph sizes, number of labels, sparseness, communities, . . .)

could affect the internal structure of the index and the choice of the optimal

variable order.

169

Chapter 10

Conclusion and future work

In this thesis, two original contributions were presented, concerning (i) the

definition of new high-level formalisms for biological knowledge representation,

and (ii) the development of general and efficient analysis techniques for dealing

with massive and heterogeneous omics data. These theoretical results are

then implemented into two software components, namely (i) a new general

modular framework for multi-omics integration via machine learning, which

can be exploited even by researchers without advanced mathematical and

computational skills, and (ii) an index-driven subgraph searching algorithm

exploiting decision diagrams as the indexing data structure.

In detail, the first contribution regards the definition of a novel multi-

variate filter-based feature selection method handling both high-dimensional

datasets and small sample sizes. The feature graph formalism provides a com-

pact search space for the feature selection approach by modeling both features’

importances and redundancies, and it is introduced in Chapter 5. On top of

this representation, (i) an mRMR-based metric on feature subgraph and (ii)

a genetic algorithm optimizing the metric have been defined. We tested this

approach on a fluxomics dataset composed of 430 samples and over 7000 fea-

tures (i.e. rates of metabolic reactions) for biomarker discovery of glycolysis-

associated clusters in colorectal cancer profiles. In particular, the shifting from

the tabular dataset to a graph representation enables a concise but meaning-

170

ful representation of the salient relationships among features. Considering

this formalism, in future works we will investigate (i) how to handle hetero-

geneous feature types (i.e. quantitative, categorical, ordinal, etc), and (ii)

exploiting other bio-inspired optimization algorithms rather than genetic al-

gorithms, such as swarm intelligence optimization methods (e.g. Ant-Colony,

Particle-Swarm, . . .). Moreover, we will apply this new approach for model-

ing a multi-omics real case study, such as CRC data exploiting miRNomics,

metabolomics and metagenomics data on Italian and Czech cohorts.

The above theoretical result has been included in FeatSEE, a general and

modular framework for multi-omics integration via machine learning that is

presented in Chapter 7. The novelties and strengths of the proposed frame-

work can be summarized as follows: (i) the high level of abstraction to com-

pose user-defined workflows of analysis by combining end-to-end modules, (ii)

a high parameterization of end-to-end modules,(iii) framework portability and

reproducibility of the results granted by Docker technology, (iv) the possibility

to be used by both expert and non-expert users: the former can implement

new end-to-end modules, whilst the latter can exploit the high-level func-

tionalities without worries about the underlying source code. The high-level

implemented functionalities can be grouped into five classes: (i) data pre-

processing building what is needed by the system from raw files, (ii) model

evaluation estimating performance metrics in a given task (i.e. binary classifi-

cation), (iii) feature selection identifying feature sets that are predictive with

respect to the target, (iv) feature extraction creating new features exploiting

the current datasets, and (v) model tuning (hyperparameter optimization),

namely the identification of the best values of the hyperparameters of a given

learning algorithm, which is then trained with the best parameters and saved

on a file for future reuse.

The effectiveness of this framework and the theoretical results are shown

through three different case studies in which we investigated i) biomarker

discovery for the identification of a miRNA signature for colorectal cancer in

multiple cohorts (Section 9.1), ii) a functional data integration approach on

fluxomics obtained by gene expression data through Flux Balance Analysis

(Section 9.2), and iii) an explainable feature extraction approach of in-vitro

fertilization data to investigate when embryos reach expanded blastocyst on

day 5 (Section 9.3). In particular, by using the FeatSEE functions, in all

these case studies we are able 1) to easily define and execute the machine

171

learning workflow with all its underlying intermediate steps, 2) to analyse the

given datasets for different aims, and 3) to easily simulate different scenarios.

In future works, we will extend the framework to other supervised tasks, such

as regression and multi-class classification. Moreover, we are working on a

web-based GUI for ease of the definition of the workflow of analysis, the set-

ting of modules’ parameters, to control the execution of the modules and, in

particular, for output visualization. Another future branch is the integration

of a workflow management system (e.g. Nextflow) for (i) the automation of

the execution of the workflow composed as a sequence of end-to-end modules,

and in particular, (ii) for scaling performances on high-performance computing

systems, since the WFMSs provide key capabilities enabling efficient resource

allocation, job scheduling and monitoring.

The second contribution is a novel application of symbolic data struc-

tures in the context of index-driven subgraph searching, and it consists of

three computational techniques based on decision diagrams. We consider the

state-of-the-art tool GRAPES as the starting point, and then we relaxed the

constraints of having a tree-based data structure by exploiting a family of

graph-based data structures in place of the GRAPES’ trie. The first technique

is presented in Section 6.3 and describes how different decision diagrams can

be exploited for computing and storing the graphs’ features together with the

additional information.

The second technique is described in Section 6.4, in which we showed how

an MTMDD index can be easily manipulated for the definition of a filtering

strategy. In future work, we will investigate the definition of an ad-hoc al-

gorithm for performing a one-way filtering step, namely to verify the query

constraints during index manipulation, instead of extracting a portion of the

index that has to be further inspected.

Finally, in Section 6.5 we presented the third technique, which is a variable re-

ordering heuristic algorithm to cope with the issue of decision diagrams whose

memory efficiency is strictly dependent on the order imposed on its variables.

Here, future work is to investigate other heuristics, such as conditional en-

tropy for estimating the entropy of variable n-uples instead of single variables

at each time.

These theoretical results were implemented in GrapesDD (Chapter 8), a

novel index-driven subgraph searching tool derived from GRAPES of Giugno

et al. by replacing the index trie with a MTMDD and in which the theoretical

172

results proposed on decision diagrams have been implemented. The novelties

and strength of the proposed approach are the usage of a little-known sym-

bolic data structure that allows efficient storage and advanced manipulation

operators. The effectiveness of this methodology and the theoretical results

are shown through different case studies involving both real and synthetic

well-known datasets. Future works involve (i) designing an efficient thread-

based indexing phase as the original GRAPES does, and (ii) removing the

intermediate tries used to count feature occurrences. Another future direction

consists of analyzing the internal structure of the index MTMDD on different

graph collections, such as the number of nodes per layer, as well as studying

how the characteristics of the graph collections (e.g. number of labels, density,

etc.) impact to the memory occupation of the decision diagram. This could

help in the design of a variable ordering heuristic algorithm, whose aim is the

identification of a possibly good variable ordering before indexing. This will

be done by exploiting the expert interface of the Meddly library that allows

direct access to DD nodes, among other things.

Lastly, as a novel research direction, we will condense index-driven sub-

graph search and feature graph formalism for experiments with index-driven

feature selection in multi-omics datasets, where the omics layers will define

the label alphabet of the graph collection. A way to go is by exploiting the

reverse labeled feature graph such that an edge means that the feature end-

points are independent, and where the label alphabet comprehends the omics

layers appearing in the starting tabular dataset. Candidate biomarkers can

be represented as relatively small graphs, such as labeled cliques, and exhaus-

tively identified within the graph collection. Then, a hybrid-based feature

selection can be easily defined by evaluating the feature sets matching the

query constraints using one or more learning algorithms, optionally exploiting

a relevance-based heuristic metric for filtering unpromising candidate feature

sets. Eventually, bootstrap sampling can be exploited to build bootstrap repli-

cas of the initial dataset and obtain a graph collection, which enables a sort

of majority voting for the identification of stable feature sets.

173

Abbreviations

ACO Ant Colony Optimization. 31

BDD Boolean Decision Diagram. 49

CRC Colorectal Cancer. 6

DD Decision Diagram. 46, 47

DT Decision Tree. 86

EA Evolutionary Algorithm. 31

FBA Flux Balance Analysis. 13, 14, 138, 142

GA Genetic Algorithm. 31

GB Gradient Boosting. 87

GIGO Garbage-In Garbage-Out. 29

ICA Independent Component Analysis. 30

kNN k-Nearest Neighbors. 86

LR Logistic Regression. 86

LXC Linux Container project. 17, 18

174

Abbreviations

MCC Matthews Correlation Coefficient. 85, 98

MDD Multi-way Decision Diagram. 49

MI Mutual Information. 84

mRMR minimum Redundancy Maximum Relevance. 31, 58

MTBDD Multi-Terminal Boolean Decision Diagram. 49

MTMDD Multi-Terminal Multi-way Decision Diagram. 49, 172

NB Naive Bayes. 86

NGS Next-Generation Sequencing. 1, 3, 11, 12, 14

NMF Non-negative Matrix Factorization. 30

PBCC Point-Biserial Correlation Coefficient. 84, 85

PCA Principal Component Analysis. 30

PCC Pearson’s Correlation Coefficient. 84, 85, 142

PSO Particle Swarm Optimization. 31

RBP Reproducible Bioinformatics Project. 20

RF Random Forest. 87

SD Somer’s D. 84, 85

SNP Single Nucleotide Polymorphism. 11

SRCC Spearman Rank Correlation Coefficient. 84, 85

SVM Support Vector Machines. 86

VM Virtual Machine. 16–19

WfMS Workflow Management Systems. 20

175

Bibliography

[1] Irun R Cohen and David Harel. Explaining a complex living system:

dynamics, multi-scaling and emergence. Journal of the Royal Society

interface, 4(13):175–182, 2007.

[2] Muhammad Afzaal, Farhan Saeed, Yasir Abbas Shah, Muzzamal Hus-

sain, Roshina Rabail, Claudia Terezia Socol, Abdo Hassoun, Mirian

Pateiro, José M Lorenzo, Alexandru Vasile Rusu, et al. Human gut mi-

crobiota in health and disease: Unveiling the relationship. Frontiers in

microbiology, 13:999001, 2022.

[3] Gilbert S Omenn, Sharly J Nass, Christine M Micheel, et al. Evolution

of translational omics: lessons learned and the path forward. 2012.

[4] Jason Y.H. Chang and Sylvain Ladame. Chapter 1.1 - diagnostic, prog-

nostic, and predictive biomarkers for cancer. In Sylvain Ladame and Ja-

son Y.H. Chang, editors, Bioengineering Innovative Solutions for Can-

cer, pages 3–21. Academic Press, 2020.

[5] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-

terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74(12):5463–5467,

Dec 1977.

[6] J. C. Venter et al. The Sequence of the Human Genome. Science,

291(5507):1304–1351, 2001.

[7] International Human Genome Sequencing Consortium. Initial sequenc-

ing and analysis of the human genome. Nature, 409(6822):860–921, feb

2001.

[8] The 1000 Genomes Project Consortium et al. A global reference for

human genetic variation. Nature, 526:68 EP –, Sep 2015. Article.

176

Bibliography

[9] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolu-

tionary tool for transcriptomics. Nature reviews genetics, 10(1):57–63,

2009.

[10] Fatih Ozsolak and Patrice M Milos. Rna sequencing: advances, chal-

lenges and opportunities. Nature reviews genetics, 12(2):87–98, 2011.

[11] Wendy Weijia Soon, Manoj Hariharan, and Michael P Snyder. High-

throughput sequencing for biology and medicine. Molecular systems

biology, 9(1):640, 2013.

[12] Ali Mortazavi, Brian AWilliams, Kenneth McCue, Lorian Schaeffer, and

Barbara Wold. Mapping and quantifying mammalian transcriptomes by

rna-seq. Nature methods, 5(7):621–628, 2008.

[13] A. D. Goldberg, C. D. Allis, and E. Bernstein. Epigenetics: A Landscape

Takes Shape. Cell, 128(4):635–638, feb 2007.

[14] George M Weinstock. Genomic approaches to studying the human mi-

crobiota. Nature, 489(7415):250–256, 2012.

[15] Luke K Ursell, Jessica L Metcalf, Laura Wegener Parfrey, and

Rob Knight. Defining the human microbiome. Nutrition reviews,

70(suppl 1):S38–S44, 2012.

[16] Jean-François Hocquette, Isabelle Cassar-Malek, Augustin Scalbert, and

F Guillou. Contribution of genomics to the understanding of physiolog-

ical functions. J Physiol Pharmacol, 60(Suppl 3):5–16, 2009.

[17] Christophe H Schilling, Jeremy S Edwards, David Letscher, and Bern-

hard Ø Palsson. Combining pathway analysis with flux balance analysis

for the comprehensive study of metabolic systems. Biotechnology and

bioengineering, 71(4):286–306, 2000.

[18] Pernice Simone, Follia Laura, Balbo Gianfranco, Milanesi Luciano, Sar-

tini Giulia, Totis Niccoló, Lió Pietro, Merelli Ivan, Cordero Francesca,

and Beccuti Marco. Integrating petri nets and flux balance methods

in computational biology models: a methodological and computational

practice. Fundamenta Informaticae, 171(1-4):367–392, 2020.

177

Bibliography

[19] Gal Winter and Jens O Krömer. Fluxomics–connecting ‘omics analysis

and phenotypes. Environmental microbiology, 15(7):1901–1916, 2013.

[20] Andrea Franceschini, Damian Szklarczyk, Sune Frankild, Michael Kuhn,

Milan Simonovic, Alexander Roth, Jianyi Lin, Pablo Minguez, Peer

Bork, Christian Von Mering, et al. String v9. 1: protein-protein in-

teraction networks, with increased coverage and integration. Nucleic

acids research, 41(D1):D808–D815, 2012.

[21] David Croft, Gavin O’kelly, Guanming Wu, Robin Haw, Marc Gillespie,

Lisa Matthews, Michael Caudy, Phani Garapati, Gopal Gopinath, Bijay

Jassal, et al. Reactome: a database of reactions, pathways and biological

processes. Nucleic acids research, 39(suppl 1):D691–D697, 2010.

[22] Andrew Chatr-Aryamontri, Rose Oughtred, Lorrie Boucher, Jennifer

Rust, Christie Chang, Nadine K Kolas, Lara O’Donnell, Sara Oster,

Chandra Theesfeld, Adnane Sellam, et al. The biogrid interaction

database: 2017 update. Nucleic acids research, 45(D1):D369–D379,

2017.

[23] Mark B Gerstein, Anshul Kundaje, Manoj Hariharan, Stephen G Landt,

Koon-Kiu Yan, Chao Cheng, Xinmeng Jasmine Mu, Ekta Khurana, Joel

Rozowsky, Roger Alexander, et al. Architecture of the human regulatory

network derived from encode data. Nature, 489(7414):91–100, 2012.

[24] Aaron K Wong, Christopher Y Park, Casey S Greene, Lars A Bongo,

Yuanfang Guan, and Olga G Troyanskaya. Imp: a multi-species func-

tional genomics portal for integration, visualization and prediction of

protein functions and networks. Nucleic acids research, 40(W1):W484–

W490, 2012.

[25] Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions

for omics data. Nature reviews genetics, 14(5):333–346, 2013.

[26] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature,

533(7604), 2016.

[27] Docker. What is a container? https://www.docker.com/resources/

what-container/. Accessed: 2023-09-22.

178

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/

Bibliography

[28] C. Boettiger. An introduction to Docker for reproducible research. ACM

SIGOPS Operating Systems Review, 49(1):71–79, January 2015.

[29] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent De-

velopment and Deployment. Linux J., 2014(239), March 2014.

[30] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity:

Scientific containers for mobility of compute. PloS one, 12(5):e0177459,

2017.

[31] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig.

Ten simple rules for reproducible computational research. PLoS compu-

tational biology, 9(10):e1003285, 2013.

[32] Neha Kulkarni, Luca Alessandr̀ı, Riccardo Panero, Maddalena Arigoni,

Martina Olivero, Giulio Ferrero, Francesca Cordero, Marco Beccuti, and

Raffaele A Calogero. Reproducible bioinformatics project: a community

for reproducible bioinformatics analysis pipelines. BMC bioinformatics,

19(10):5–13, 2018.

[33] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto

Barja, Emilio Palumbo, and Cedric Notredame. Nextflow enables repro-

ducible computational workflows. Nature biotechnology, 35(4):316–319,

2017.

[34] Tom M Mitchell. Does machine learning really work? AI magazine,

18(3):11–11, 1997.

[35] Thomas G Dietterich. Ensemble methods in machine learning. In Inter-

national workshop on multiple classifier systems, pages 1–15. Springer,

2000.

[36] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140,

1996.

[37] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[38] Robert E Schapire et al. A brief introduction to boosting. In Ijcai,

volume 99, pages 1401–1406. Citeseer, 1999.

179

Bibliography

[39] Yoav Freund and Robert E Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. Journal of computer

and system sciences, 55(1):119–139, 1997.

[40] Jerome H Friedman. Greedy function approximation: a gradient boost-

ing machine. Annals of statistics, pages 1189–1232, 2001.

[41] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based

on mutual information criteria of max-dependency, max-relevance, and

min-redundancy. IEEE Transactions on pattern analysis and machine

intelligence, 27(8):1226–1238, 2005.

[42] Avrim L Blum and Pat Langley. Selection of relevant features and

examples in machine learning. Artificial intelligence, 97(1-2):245–271,

1997.

[43] Isabelle Guyon and André Elisseeff. An introduction to variable and

feature selection. Journal of machine learning research, 3(Mar):1157–

1182, 2003.

[44] Nicholas Pudjihartono, Tayaza Fadason, Andreas W Kempa-Liehr, and

Justin M O’Sullivan. A review of feature selection methods for ma-

chine learning-based disease risk prediction. Frontiers in Bioinformatics,

2:927312, 2022.

[45] Hui-Huang Hsu, Cheng-Wei Hsieh, and Ming-Da Lu. Hybrid feature

selection by combining filters and wrappers. Expert Systems with Ap-

plications, 38(7):8144–8150, 2011.

[46] Parham Moradi and Mehrdad Rostami. Integration of graph clustering

with ant colony optimization for feature selection. Knowledge-Based

Systems, 84:144–161, 2015.

[47] Giorgio Roffo, Simone Melzi, Umberto Castellani, Alessandro Vincia-

relli, and Marco Cristani. Infinite feature selection: a graph-based fea-

ture filtering approach. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 43(12):4396–4410, 2020.

[48] Mehrdad Rostami, Kamal Berahmand, and Saman Forouzandeh. A

novel community detection based genetic algorithm for feature selection.

Journal of Big Data, 8(1):2, 2021.

180

Bibliography

[49] Milan Picard, Marie-Pier Scott-Boyer, Antoine Bodein, Olivier Périn,

and Arnaud Droit. Integration strategies of multi-omics data for machine

learning analysis. Computational and Structural Biotechnology Journal,

19:3735–3746, 2021.

[50] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina

Monard. A study of the behavior of several methods for balancing ma-

chine learning training data. SIGKDD Explor. Newsl., 6(1):20–29, jun

2004.

[51] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-

nal of artificial intelligence research, 16:321–357, 2002.

[52] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a

new over-sampling method in imbalanced data sets learning. In Inter-

national conference on intelligent computing, pages 878–887. Springer,

2005.

[53] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adap-

tive synthetic sampling approach for imbalanced learning. In 2008 IEEE

international joint conference on neural networks (IEEE world congress

on computational intelligence), pages 1322–1328. Ieee, 2008.

[54] Michal Krassowski, Vivek Das, Sangram K Sahu, and Biswapriya B

Misra. State of the field in multi-omics research: from computational

needs to data mining and sharing. Frontiers in Genetics, 11:610798,

2020.

[55] Sina Tabakhi, Mohammod Naimul Islam Suvon, Pegah Ahadian, and

Haiping Lu. Multimodal learning for multi-omics: A survey. World

Scientific Annual Review of Artificial Intelligence, 1:2250004, 2023.

[56] Nenad Trinajstic. Chemical graph theory. Routledge, 2018.

[57] Luke Hakes, John W Pinney, David L Robertson, and Simon C Lovell.

Protein-protein interaction networks and biology-what’s the connection?

Nature biotechnology, 26(1):69–72, 2008.

[58] Eric Davidson and Michael Levin. Gene regulatory networks. Proceed-

ings of the National Academy of Sciences, 102(14):4935–4935, 2005.

181

Bibliography

[59] Vincenzo Bonnici, Giorgio De Caro, Giorgio Constantino, Sabino Li-

uni, Domenica D’Elia, Nicola Bombieri, Flavio Licciulli, and Rosalba

Giugno. Arena-Idb: a platform to build human non-coding RNA inter-

action networks. BMC bioinformatics, 19(10):350, 2018.

[60] Xiayu Xiang, Zhongru Wang, Yan Jia, and Binxing Fang. Knowledge

graph-based clinical decision support system reasoning: a survey. In

2019 IEEE Fourth International Conference on Data Science in Cy-

berspace (DSC), pages 373–380. IEEE, 2019.

[61] Daniel S Himmelstein and Sergio E Baranzini. Heterogeneous net-

work edge prediction: a data integration approach to prioritize disease-

associated genes. PLoS Comput Biol, 11(7):e1004259, 2015.

[62] Jiansong Fang, Qihui Wu, Fei Ye, Chuipu Cai, Lvjie Xu, Yong Gu,

Qi Wang, Ai-lin Liu, Wenjie Tan, and Guan-hua Du. Network-based

identification and experimental validation of drug candidates toward

sars-cov-2 via targeting virus–host interactome. Frontiers in Genetics,

12:1590, 2021.

[63] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zheng-

ming Ding, and Kun Huang. Mogonet integrates multi-omics data

using graph convolutional networks allowing patient classification and

biomarker identification. Nature Communications, 12(1):1–13, 2021.

[64] Joshua A Grochow and Manolis Kellis. Network motif discovery using

subgraph enumeration and symmetry-breaking. In Annual International

Conference on Research in Computational Molecular Biology, pages 92–

106. Springer, 2007.

[65] Fabio Rinnone, Giovanni Micale, Vincenzo Bonnici, Gary D Bader,

Dennis Shasha, Alfredo Ferro, Alfredo Pulvirenti, and Rosalba

Giugno. NetMatchStar: an enhanced Cytoscape network querying app.

F1000Research, 4, 2015.

[66] Mehdi Sadeghi, Bryce Ordway, Ilyia Rafiei, Punit Borad, Bin Fang,

John L Koomen, Chaomei Zhang, Sean Yoder, Joseph Johnson, and

Mehdi Damaghi. Integrative analysis of breast cancer cells reveals an

epithelial-mesenchymal transition role in adaptation to acidic microen-

vironment. Frontiers in Oncology, 10:304, 2020.

182

Bibliography

[67] Ngoc Tam L Tran, Sominder Mohan, Zhuoqing Xu, and Chun-Hsi

Huang. Current innovations and future challenges of network motif

detection. Briefings in bioinformatics, 16(3):497–525, 2015.

[68] Elisabeth Wong, Brittany Baur, Saad Quader, and Chun-Hsi Huang.

Biological network motif detection: principles and practice. Briefings in

bioinformatics, 13(2):202–215, 2012.

[69] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network

motifs in the transcriptional regulation network of Escherichia coli. Na-

ture genetics, 31(1):64–68, 2002.

[70] Jane Rosemary Allison and Ivan D Welsh. CherryPicker: An Algorithm

for the Automated Parameterisation of Large Biomolecules for Molecu-

lar Simulation. Frontiers in chemistry, 7:400, 2019.

[71] Brian P Kelley, Bingbing Yuan, Fran Lewitter, Roded Sharan, Brent R

Stockwell, and Trey Ideker. PathBLAST: a tool for alignment of protein

interaction networks. Nucleic acids research, 32(suppl 2):W83–W88,

2004.

[72] Qingwu Yang and Sing-Hoi Sze. Path matching and graph matching

in biological networks. Journal of Computational Biology, 14(1):56–67,

2007.

[73] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction

of protein function. Molecular systems biology, 3(1):88, 2007.

[74] Giovanni Micale, Alfredo Pulvirenti, Rosalba Giugno, and Alfredo Ferro.

GASOLINE: a greedy and stochastic algorithm for optimal local multi-

ple alignment of interaction networks. PloS one, 9(6):e98750, 2014.

[75] Günhan Gülsoy and Tamer Kahveci. RINQ: Reference-based indexing

for network queries. Bioinformatics, 27(13):i149–i158, 2011.

[76] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo

Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya

Khankhanian, and Sergio E Baranzini. Systematic integration of

biomedical knowledge prioritizes drugs for repurposing. Elife, 6:e26726,

2017.

183

Bibliography

[77] Valeria Fionda and Luigi Palopoli. Biological network querying tech-

niques: analysis and comparison. Journal of Computational Biology,

18(4):595–625, 2011.

[78] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento.

An improved algorithm for matching large graphs. In 3rd IAPR-TC15

workshop on graph-based representations in pattern recognition, pages

149–159, 2001.

[79] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento.

Introducing VF3: A new algorithm for subgraph isomorphism. In Inter-

national Workshop on Graph-Based Representations in Pattern Recog-

nition, pages 128–139. Springer, 2017.

[80] Vincenzo Bonnici and Rosalba Giugno. On the variable ordering in

subgraph isomorphism algorithms. IEEE/ACM transactions on compu-

tational biology and bioinformatics, 14(1):193–203, 2016.

[81] Stephen A Cook. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of comput-

ing, pages 151–158, 1971.

[82] Huahai He and Ambuj K Singh. Graphs-at-a-time: query language and

access methods for graph databases. In Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, pages 405–

418, 2008.

[83] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: to-

wards ultrafast and robust subgraph isomorphism search in large graph

databases. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, pages 337–348, 2013.

[84] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient

subgraph matching by postponing cartesian products. In Proceedings

of the 2016 International Conference on Management of Data, pages

1199–1214, 2016.

[85] Rosalba Giugno and Dennis Shasha. Graphgrep: A fast and universal

method for querying graphs. In Object recognition supported by user

interaction for service robots, volume 2, pages 112–115. IEEE, 2002.

184

Bibliography

[86] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti,

and Dennis Shasha. Enhancing graph database indexing by suffix tree

structure. In IAPR International Conference on Pattern Recognition in

Bioinformatics, pages 195–203. Springer, 2010.

[87] Rosalba Giugno, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti,

Alfredo Ferro, and Dennis Shasha. Grapes: A software for parallel

searching on biological graphs targeting multi-core architectures. PloS

one, 8(10), 2013.

[88] Raffaele Di Natale, Alfredo Ferro, Rosalba Giugno, Misael Mongiov̀ı,

Alfredo Pulvirenti, and Dennis Shasha. Sing: Subgraph search in non-

homogeneous graphs. BMC bioinformatics, 11(1):96, 2010.

[89] Karsten Klein, Nils Kriege, and Petra Mutzel. CT-index: Fingerprint-

based graph indexing combining cycles and trees. In 2011 IEEE 27th

International Conference on Data Engineering, pages 1115–1126. IEEE,

2011.

[90] David W Williams, Jun Huan, and Wei Wang. Graph database indexing

using structured graph decomposition. In 2007 IEEE 23rd International

Conference on Data Engineering, pages 976–985. IEEE, 2007.

[91] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. A novel spec-

tral coding in a large graph database. In Proceedings of the 11th in-

ternational conference on Extending database technology: Advances in

database technology, pages 181–192, 2008.

[92] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming

verification hardness: an efficient algorithm for testing subgraph isomor-

phism. Proceedings of the VLDB Endowment, 1(1):364–375, 2008.

[93] Shijie Zhang, Meng Hu, and Jiong Yang. Treepi: A novel graph in-

dexing method. In 2007 IEEE 23rd International Conference on Data

Engineering, pages 966–975. IEEE, 2007.

[94] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. Graph indexing: Tree+

Delta¿= Graph. In VLDB, volume 7, pages 938–949, 2007.

185

Bibliography

[95] Yan Xie and Philip S Yu. CP-index: on the efficient indexing of large

graphs. In Proceedings of the 20th ACM international conference on

Information and knowledge management, pages 1795–1804, 2011.

[96] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent

structure-based approach. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, pages 335–346, 2004.

[97] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards

verification-free query processing on graph databases. In Proceedings of

the 2007 ACM SIGMOD international conference on Management of

data, pages 857–872, 2007.

[98] Dayu Yuan and Prasenjit Mitra. Lindex: a lattice-based index for graph

databases. The VLDB Journal, 22(2):229–252, 2013.

[99] Dipali Pal, Praveen Rao, Vasil Slavov, and Anas Katib. Fast processing

of graph queries on a large database of small and medium-sized data

graphs. Journal of Computer and System Sciences, 82(6):1112–1143,

2016.

[100] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. Hybrid algo-

rithms for subgraph pattern queries in graph databases. In 2017 IEEE

International Conference on Big Data (Big Data), pages 656–665. IEEE,

2017.

[101] Shixuan Sun and Qiong Luo. Scaling Up Subgraph Query Processing

with Efficient Subgraph Matching. In 2019 IEEE 35th International

Conference on Data Engineering (ICDE), pages 220–231. IEEE, 2019.

[102] Jing Wang, Nikos Ntarmos, and Peter Triantafillou. Indexing query

graphs to speed up graph query processing. Proceedings of the 19th

International Conference on Extending Database Technology (EDBT),

2016.

[103] Jing Wang, Nikos Ntarmos, and Peter Triantafillou. GraphCache: a

caching system for graph queries. Proceedings of the 20th International

Conference on Extending Database Technology (EDBT), 2017.

[104] Karam Gouda and Mosab Hassaan. Compressed feature-based filtering

and verification approach for subgraph search. In Proceedings of the 16th

186

Bibliography

International Conference on Extending Database Technology, pages 287–

298, 2013.

[105] David Luaces, José RR Viqueira, Tomás F Pena, and José Manuel Cotos.

Leveraging Bitmap Indexing for Subgraph Searching. In EDBT, pages

49–60, 2019.

[106] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. Performance

and scalability of indexed subgraph query processing methods. Proceed-

ings of the VLDB Endowment, 8(12):1566–1577, 2015.

[107] Malathi Veeraraghavan and Kishor S Trivedi. An improved algorithm

for the symbolic reliability analysis of networks. In Proceedings Ninth

Symposium on Reliable Distributed Systems, pages 34–43. IEEE, 1990.

[108] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Ten years of satura-

tion: A Petri net perspective. In Transactions on Petri Nets and Other

Models of Concurrency V, pages 51–95. Springer, 2012.

[109] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is

NP-complete. IEEE Transactions on computers, 45(9):993–1002, 1996.

[110] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable

ordering of binary decision diagrams for the application of multi-level

logic synthesis. In Proceedings of the European Conference on Design

Automation., pages 50–54. IEEE, 1991.

[111] Masahiro Fujita, Hisanori Fujisawa, and Yusuke Matsunaga. Variable

ordering algorithms for ordered binary decision diagrams and their eval-

uation. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(1):6–12, 1993.

[112] Elvio Gilberto Amparore, Susanna Donatelli, Marco Beccuti, Giulio

Garbi, Andrew Miner, et al. Decision diagrams for petri nets: which

variable ordering? In CEUR WORKSHOP PROCEEDINGS, volume

1846, pages 31–50. CEUR, 2017.

[113] Elvio Gilberto Amparore, Susanna Donatelli, Marco Beccuti, Giulio

Garbi, and Andrew Miner. Decision diagrams for petri nets: a com-

parison of variable ordering algorithms. Transactions on Petri Nets and

Other Models of Concurrency XIII, pages 73–92, 2018.

187

Bibliography

[114] Fabio Somenzi. CUDD: CU decision diagram package release 2.3. 0.

University of Colorado at Boulder, 1998.

[115] Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and Fabrice

Kordon. Hierarchical Set Decision Diagrams and Regular Models. In

Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms

for the Construction and Analysis of Systems, pages 1–15, Berlin, Hei-

delberg, 2009. Springer Berlin Heidelberg.

[116] Junaid Babar and Andrew Miner. Meddly: Multi-terminal and edge-

valued decision diagram library. In 2010 Seventh International Confer-

ence on the Quantitative Evaluation of Systems, pages 195–196. IEEE,

2010.

[117] Tom Van Dijk and Jaco Van de Pol. Sylvan: multi-core framework for

decision diagrams. International Journal on Software Tools for Tech-

nology Transfer, 19:675–696, 2017.

[118] Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient imple-

mentation of a BDD package. In 27th ACM/IEEE design automation

conference, pages 40–45. IEEE, 1990.

[119] Thomas Weise. Global optimization algorithms-theory and application.

Self-Published Thomas Weise, 361, 2009.

[120] John H Holland. Adaptation in natural and artificial systems: an in-

troductory analysis with applications to biology, control, and artificial

intelligence. MIT press, 1992.

[121] Nicola Licheri, Vincenzo Bonnici, Marco Beccuti, and Rosalba Giugno.

GRAPES-DD: exploiting decision diagrams for index-driven search in

biological graph databases. BMC bioinformatics, 22(1):1–24, 2021.

[122] Claude Elwood Shannon. A mathematical theory of communica-

tion. ACM SIGMOBILE mobile computing and communications review,

5(1):3–55, 2001.

[123] Barbara Pardini, Giulio Ferrero, Sonia Tarallo, Gaetano Gallo, Antonio

Francavilla, Nicola Licheri, Mario Trompetto, Giuseppe Clerico, Carlo

188

Bibliography

Senore, Sergio Peyre, et al. A fecal mirna signature by small rna sequenc-

ing accurately distinguishes colorectal cancers: results from a multicen-

tric study. Gastroenterology, 2023.

[124] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-

tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine

learning in python. the Journal of machine Learning research, 12:2825–

2830, 2011.

[125] Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

[126] The Boost Graph Library: User Guide and Reference Manual. Addison-

Wesley Longman Publishing Co., Inc., USA, 2002.

[127] David Freedman, Robert Pisani, and Roger Purves. Statistics (inter-

national student edition). Pisani, R. Purves, 4th edn. WW Norton &

Company, New York, 2007.

[128] S Das Gupta. Point biserial correlation coefficient and its generalization.

Psychometrika, 25(4):393–408, 1960.

[129] Harald Cramér. Mathematical methods of statistics, volume 43. Prince-

ton university press, 1999.

[130] Wayne W Daniel. The spearman rank correlation coefficient. Biostatis-

tics: A Foundation for Analysis in the Health Sciences, 1987.

[131] Roger B Newson et al. Somers’ d: A common currency for associations.

In United Kingdom Stata Users’ Group Meetings, number 01, 2015.

[132] Henry Scheffe. The analysis of variance, volume 72. John Wiley & Sons,

1999.

[133] Joy A Thomas and TM Cover. Elements of information theory. John

Wiley & Sons, Inc., New York. Toni, T., Welch, D., Strelkowa, N.,

Ipsen, A., and Stumpf, MPH (2009),“Approximate Bayesian computa-

tion scheme for parameter inference and model selection in dynamical

systems,” Journal of the Royal Society Interface, 6:187–202, 1991.

[134] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

189

Bibliography

[135] Davide Chicco and Giuseppe Jurman. The advantages of the Matthews

correlation coefficient (MCC) over F1 score and accuracy in binary clas-

sification evaluation. BMC genomics, 21(1):1–13, 2020.

[136] Joy Paul Guilford. Psychometric methods. 1954.

[137] Jan Salomon Cramer. The origins of logistic regression. 2002.

[138] David R Cox. The regression analysis of binary sequences. Journal of

the Royal Statistical Society: Series B (Methodological), 20(2):215–232,

1958.

[139] Ronan Gautier, Gregoire Jaffre, and Bibi Ndiaye. Skope Rules: Machine

Learning with Logical Rules in Python, 2017.

[140] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[141] Nicola Licheri, Elvio Amparone, Vincenzo Bonnici, Rosalba Giugno, and

Marco Beccuti. An entropy heuristic to optimize decision diagrams for

index-driven search in biological graph databases. In CIKM Workshops,

2021.

[142] NaNa Keum and Edward Giovannucci. Global burden of colorectal can-

cer: emerging trends, risk factors and prevention strategies. Nature

reviews Gastroenterology & hepatology, 16(12):713–732, 2019.

[143] D Maxwell Parkin. Global cancer statistics in the year 2000. The lancet

oncology, 2(9):533–543, 2001.

[144] Jacques Ferlay, Murielle Colombet, Isabelle Soerjomataram, Colin

Mathers, Donald M Parkin, Marlon Piñeros, Ariana Znaor, and Fred-

die Bray. Estimating the global cancer incidence and mortality in

2018: Globocan sources and methods. International journal of cancer,

144(8):1941–1953, 2019.

[145] J Kral, V Kojecky, M Stepan, M Vladarova, O Zela, J Knot, M Jakovl-

jevic, Z Kralova, R Buresova, T Grega, et al. The experience with

colorectal cancer screening in the czech republic: the detection at ear-

lier stages and improved clinical outcomes. Public health, 185:153–158,

2020.

190

Bibliography

[146] Béatrice Lauby-Secretan, Nadia Vilahur, Franca Bianchini, Neela Guha,

and Kurt Straif. The iarc perspective on colorectal cancer screening. New

England Journal of Medicine, 378(18):1734–1740, 2018.

[147] Carlo Senore, Partha Basu, Ahti Anttila, Antonio Ponti, Mariano Toma-

tis, Diama Bhadra Vale, Gugliemo Ronco, Isabelle Soerjomataram,

Maja Primic-Žakelj, Emilia Riggi, et al. Performance of colorectal cancer

screening in the european union member states: data from the second

european screening report. Gut, 68(7):1232–1244, 2019.

[148] Linda Rabeneck, Han-Mo Chiu, and Carlo Senore. International per-

spective on the burden of colorectal cancer and public health effects.

Gastroenterology, 158(2):447–452, 2020.

[149] Douglas J Robertson, Jeffrey K Lee, C Richard Boland, Jason A Do-

minitz, Francis M Giardiello, David A Johnson, Tonya Kaltenbach,

David Lieberman, Theodore R Levin, and Douglas K Rex. Recom-

mendations on fecal immunochemical testing to screen for colorectal

neoplasia: a consensus statement by the us multi-society task force on

colorectal cancer. Gastroenterology, 152(5):1217–1237, 2017.

[150] Alexandre Loktionov. Biomarkers for detecting colorectal cancer non-

invasively: Dna, rna or proteins? World journal of gastrointestinal

oncology, 12(2):124, 2020.

[151] Mingjiao Weng, Di Wu, Chao Yang, Haisheng Peng, Guangyu Wang,

Tianzhen Wang, and Xiaobo Li. Noncoding rnas in the development,

diagnosis, and prognosis of colorectal cancer. Translational Research,

181:108–120, 2017.

[152] Andrew Maltez Thomas, Paolo Manghi, Francesco Asnicar, Edoardo

Pasolli, Federica Armanini, Moreno Zolfo, Francesco Beghini, Serena

Manara, Nicolai Karcher, Chiara Pozzi, et al. Metagenomic analysis

of colorectal cancer datasets identifies cross-cohort microbial diagnos-

tic signatures and a link with choline degradation. Nature medicine,

25(4):667–678, 2019.

[153] Yulin Sun, Zhengguang Guo, Xiaoyan Liu, Lijun Yang, Zongpan Jing,

Meng Cai, Zhaoxu Zheng, Chen Shao, Yefan Zhang, Haidan Sun, et al.

191

Bibliography

Noninvasive urinary protein signatures associated with colorectal cancer

diagnosis and metastasis. Nature communications, 13(1):2757, 2022.

[154] Antonio Francavilla, Szimonetta Turoczi, Sonia Tarallo, Pavel Vodicka,

Barbara Pardini, and Alessio Naccarati. Exosomal microRNAs and

other non-coding RNAs as colorectal cancer biomarkers: a review. Mu-

tagenesis, 35(3):243–260, 2020.

[155] Sonja Hombach and Markus Kretz. Non-coding rnas: classification,

biology and functioning. Non-coding RNAs in colorectal cancer, pages

3–17, 2016.

[156] Gianpiero Di Leva and Carlo M Croce. mirna profiling of cancer. Current

opinion in genetics & development, 23(1):3–11, 2013.

[157] Abdullah Moridikia, Hamed Mirzaei, Amirhossein Sahebkar, and Jafar

Salimian. Micrornas: Potential candidates for diagnosis and treatment

of colorectal cancer. Journal of cellular physiology, 233(2):901–913, 2018.

[158] Mihnea Paul Dragomir, Scott Kopetz, Jaffer A Ajani, and

George Adrian Calin. Non-coding rnas in gi cancers: from cancer hall-

marks to clinical utility. Gut, 69(4):748–763, 2020.

[159] Barbara Pardini, Alexandru Anton Sabo, Giovanni Birolo, and

George Adrian Calin. Noncoding rnas in extracellular fluids as can-

cer biomarkers: the new frontier of liquid biopsies. Cancers, 11(8):1170,

2019.

[160] Klara Cervena, Vendula Novosadova, Barbara Pardini, Alessio Nac-

carati, Alena Opattova, Josef Horak, Sona Vodenkova, Tomas Buchler,

Pavel Skrobanek, Miroslav Levy, et al. Analysis of microrna expression

changes during the course of therapy in rectal cancer patients. Frontiers

in oncology, 11:702258, 2021.

[161] Sonia Tarallo, Giulio Ferrero, Gaetano Gallo, Antonio Francavilla,

Giuseppe Clerico, Alberto Realis Luc, Paolo Manghi, Andrew Maltez

Thomas, Paolo Vineis, Nicola Segata, et al. Altered fecal small RNA

profiles in colorectal cancer reflect gut microbiome composition in stool

samples. Msystems, 4(5):10–1128, 2019.

192

Bibliography

[162] Saray Duran-Sanchon, Lorena Moreno, Josep M Augé, Miquel Serra-

Burriel, Mı́riam Cuatrecasas, Leticia Moreira, Agatha Mart́ın, Anna

Serradesanferm, Àngels Pozo, Rosa Costa, et al. Identification and val-

idation of microrna profiles in fecal samples for detection of colorectal

cancer. Gastroenterology, 158(4):947–957, 2020.

[163] Zitong Zhao, Anna Zhu, Megha Bhardwaj, Petra Schrotz-King, and Her-

mann Brenner. Fecal micrornas, fecal microrna panels, or combinations

of fecal micrornas with fecal hemoglobin for early detection of colorectal

cancer and its precursors: A systematic review. Cancers, 14(1):65, 2021.

[164] Antonio Francavilla, Sonia Tarallo, Barbara Pardini, and Alessio Nac-

carati. Fecal microRNAs as non-invasive biomarkers for the detection of

colorectal cancer: A systematic review. Minerva Biotecnologica, 31(1):3–

10, 2019.

[165] Sonia Tarallo, Giulio Ferrero, Francesca De Filippis, Antonio Fran-

cavilla, Edoardo Pasolli, Valentina Panero, Francesca Cordero, Nicola

Segata, Sara Grioni, Ruggero Gaetano Pensa, et al. Stool microrna

profiles reflect different dietary and gut microbiome patterns in healthy

individuals. Gut, 71(7):1302–1314, 2022.

[166] Antonio Francavilla, Amedeo Gagliardi, Giulia Piaggeschi, Sonia

Tarallo, Francesca Cordero, Ruggero G Pensa, Alessia Impeduglia,

Gian Paolo Caviglia, Davide Giuseppe Ribaldone, Gaetano Gallo, et al.

Faecal mirna profiles associated with age, sex, bmi, and lifestyle habits

in healthy individuals. Scientific Reports, 11(1):20645, 2021.

[167] Ana E Jenike and Marc K Halushka. mir-21: a non-specific biomarker

of all maladies. Biomarker research, 9(1):1–7, 2021.

[168] Thomas M Zarchy and Daniel Ershoff. Do characteristics of adenomas on

flexible sigmoidoscopy predict advanced lesions on baseline colonoscopy?

Gastroenterology, 106(6):1501–1504, 1994.

[169] Andrew Maltez Thomas, Paolo Manghi, Francesco Asnicar, Edoardo

Pasolli, Federica Armanini, Moreno Zolfo, Francesco Beghini, Serena

Manara, Nicolai Karcher, Chiara Pozzi, et al. Metagenomic analysis

193

Bibliography

of colorectal cancer datasets identifies cross-cohort microbial diagnos-

tic signatures and a link with choline degradation. Nature medicine,

25(4):667–678, 2019.

[170] Jakob Wirbel, Paul Theodor Pyl, Ece Kartal, Konrad Zych, Alireza

Kashani, Alessio Milanese, Jonas S Fleck, Anita Y Voigt, Albert Palleja,

Ruby Ponnudurai, et al. Meta-analysis of fecal metagenomes reveals

global microbial signatures that are specific for colorectal cancer. Nature

medicine, 25(4):679–689, 2019.

[171] Barbora Zwinsová, Vyacheslav A Petrov, Martina Hrivňáková, Stanislav

Smatana, Lenka Micenková, Natálie Kazdová, Vlad Popovici, Roman

Hrstka, Roman Šefr, Beatrix Bencsiková, et al. Colorectal tumour mu-

cosa microbiome is enriched in oral pathogens and defines three sub-

types that correlate with markers of tumour progression. Cancers,

13(19):4799, 2021.

[172] Antonio Francavilla, Giulio Ferrero, Barbara Pardini, Sonia Tarallo,

Laura Zanatto, Gian Paolo Caviglia, Sabina Sieri, Sara Grioni, Giu-

lia Francescato, Francesco Stalla, et al. Gluten-free diet affects fecal

small non-coding rna profiles and microbiome composition in celiac

disease supporting a host-gut microbiota crosstalk. Gut Microbes,

15(1):2172955, 2023.

[173] Sonia Tarallo, Giulio Ferrero, Gaetano Gallo, Antonio Francavilla,

Giuseppe Clerico, Alberto Realis Luc, Paolo Manghi, Andrew Maltez

Thomas, Paolo Vineis, Nicola Segata, et al. Altered fecal small rna

profiles in colorectal cancer reflect gut microbiome composition in stool

samples. Msystems, 4(5):10–1128, 2019.

[174] Tudor Moisoiu, Mihnea P Dragomir, Stefania D Iancu, Simon Schallen-

berg, Giovanni Birolo, Giulio Ferrero, Dan Burghelea, Andrei Stefancu,

Ramona G Cozan, Emilia Licarete, et al. Combined mirna and sers urine

liquid biopsy for the point-of-care diagnosis and molecular stratification

of bladder cancer. Molecular Medicine, 28(1):39, 2022.

[175] Huber Love and W Huber. Anders (2014). moderated estimation of fold

change and dispersion for rna-seq data with deseq2. Genome biology,

15(12):550.

194

Bibliography

[176] Jing Zhang and Kenneth B Storey. Rbiomirgs: an all-in-one mirna

gene set analysis solution featuring target mrna mapping and expression

profile integration. PeerJ, 6:e4262, 2018.

[177] Ondrej Slaby. Non-coding RNAs as biomarkers for colorectal cancer

screening and early detection. Springer, 2016.

[178] Julia Alles, Tobias Fehlmann, Ulrike Fischer, Christina Backes,

Valentina Galata, Marie Minet, Martin Hart, Masood Abu-Halima,

Friedrich A Grässer, Hans-Peter Lenhof, et al. An estimate of the total

number of true human mirnas. Nucleic acids research, 47(7):3353–3364,

2019.

[179] Dereje D Jima, Jenny Zhang, Cassandra Jacobs, Kristy L Richards,

Cherie H Dunphy, William WL Choi, Wing Yan Au, Gopesh Srivas-

tava, Magdalena B Czader, David A Rizzieri, et al. Deep sequencing

of the small rna transcriptome of normal and malignant human b cells

identifies hundreds of novel micrornas. Blood, The Journal of the Amer-

ican Society of Hematology, 116(23):e118–e127, 2010.

[180] Marc R Friedländer, Esther Lizano, Anna JS Houben, Daniela Bezdan,

Mónica Báñez-Coronel, Grzegorz Kudla, Elisabet Mateu-Huertas, Birgit

Kagerbauer, Justo González, Kevin C Chen, et al. Evidence for the

biogenesis of more than 1,000 novel human micrornas. Genome biology,

15:1–17, 2014.

[181] Esther K Wei, Edward Giovannucci, Kana Wu, Bernard Rosner,

Charles S Fuchs, Walter C Willett, and Graham A Colditz. Compari-

son of risk factors for colon and rectal cancer. International journal of

cancer, 108(3):433–442, 2004.

[182] Fumiaki Imamura, Renata Micha, Shahab Khatibzadeh, Saman Fahimi,

Peilin Shi, John Powles, and Dariush Mozaffarian. Dietary quality

among men and women in 187 countries in 1990 and 2010: a systematic

assessment. The lancet global health, 3(3):e132–e142, 2015.

[183] Martin CS Wong, Junjie Huang, Veeleah Lok, Jingxuan Wang, Franklin

Fung, Hanyue Ding, and Zhi-Jie Zheng. Differences in incidence and

mortality trends of colorectal cancer worldwide based on sex, age, and

195

Bibliography

anatomic location. Clinical Gastroenterology and Hepatology, 19(5):955–

966, 2021.

[184] Fanny ER Vuik, Stella AV Nieuwenburg, Marc Bardou, Iris Lansdorp-

Vogelaar, Mário Dinis-Ribeiro, Maria J Bento, Vesna Zadnik, Maŕıa

Pellisé, Laura Esteban, Michal F Kaminski, et al. Increasing incidence

of colorectal cancer in young adults in europe over the last 25 years.

Gut, 68(10):1820–1826, 2019.

[185] Swati G Patel, Jordan J Karlitz, Timothy Yen, Christopher H Lieu,

and C Richard Boland. The rising tide of early-onset colorectal cancer:

a comprehensive review of epidemiology, clinical features, biology, risk

factors, prevention, and early detection. The lancet Gastroenterology &

hepatology, 7(3):262–274, 2022.

[186] Brendan J Desmond, Elizabeth R Dennett, and Kirsty M Danielson.

Circulating extracellular vesicle microrna as diagnostic biomarkers in

early colorectal cancer—a review. Cancers, 12(1):52, 2019.

[187] Tomer Cooks, Ioannis S Pateras, Lisa M Jenkins, Keval M Patel, Ana I

Robles, James Morris, Tim Forshew, Ettore Appella, Vassilis G Gor-

goulis, and Curtis C Harris. Mutant p53 cancers reprogram macrophages

to tumor supporting macrophages via exosomal mir-1246. Nature com-

munications, 9(1):771, 2018.

[188] Songhe Guo, Jun Chen, Fangfang Chen, Qiuyao Zeng, Wan-Li Liu, and

Ge Zhang. Exosomes derived from fusobacterium nucleatum-infected

colorectal cancer cells facilitate tumour metastasis by selectively carry-

ing mir-1246/92b-3p/27a-3p and cxcl16. Gut, 70(8):1507–1519, 2021.

[189] Aikun Fu, Bingqing Yao, Tingting Dong, and Shang Cai. Emerging roles

of intratumor microbiota in cancer metastasis. Trends in Cell Biology,

2022.

[190] Yingying Cao, Zhenhua Wang, Yuqing Yan, Linhua Ji, Jie He, Baoqin

Xuan, Chaoqin Shen, Yanru Ma, Shanshan Jiang, Dan Ma, et al. En-

terotoxigenic bacteroides fragilis promotes intestinal inflammation and

malignancy by inhibiting exosome-packaged mir-149-3p. Gastroenterol-

ogy, 161(5):1552–1566, 2021.

196

Bibliography

[191] Slater L Clay, Diogo Fonseca-Pereira, Wendy S Garrett, et al. Colorectal

cancer: the facts in the case of the microbiota. The Journal of Clinical

Investigation, 132(4), 2022.

[192] TCGA Network, MN Bainbridge, K Chang, HH Dinh, JA Drummond,

G Fowler, et al. Comprehensive molecular characterization of human

colon and rectal cancer. nat 2012 4877407, 2012.

[193] Aurora Esquela-Kerscher and Frank J Slack. Oncomirs—micrornas with

a role in cancer. Nature reviews cancer, 6(4):259–269, 2006.

[194] Elena Vila-Navarro, Maria Vila-Casadesús, Leticia Moreira, Saray

Duran-Sanchon, Rupal Sinha, Àngels Ginés, Glòria Fernández-

Esparrach, Rosa Miquel, Miriam Cuatrecasas, Antoni Castells, et al.

Micrornas for detection of pancreatic neoplasia: biomarker discovery

by next-generation sequencing and validation in 2 independent cohorts.

Annals of surgery, 265(6):1226, 2017.

[195] Yuanyuan Liang, Shun Li, and Liling Tang. Microrna 320, an anti-

oncogene target mirna for cancer therapy. Biomedicines, 9(6):591, 2021.

[196] Friederike Cordes, Claudia Demmig, Arne Bokemeyer, Markus

Brückner, Frank Lenze, Philipp Lenz, Tobias Nowacki, Phil Tepasse,

Hartmut H Schmidt, M Alexander Schmidt, et al. Microrna-320a moni-

tors intestinal disease activity in patients with inflammatory bowel dis-

ease. Clinical and Translational Gastroenterology, 11(3), 2020.

[197] Stephanie Muenchau, Rosalie Deutsch, Ines J de Castro, Thomas

Hielscher, Nora Heber, Beate Niesler, Marina Lusic, Megan L Stanifer,

and Steeve Boulant. Hypoxic environment promotes barrier formation

in human intestinal epithelial cells through regulation of microrna 320a

expression. Molecular and cellular biology, 39(14):e00553–18, 2019.

[198] Blair B Madison, Arjun N Jeganathan, Rei Mizuno, Monte M Winslow,

Antoni Castells, Miriam Cuatrecasas, and Anil K Rustgi. Let-7 represses

carcinogenesis and a stem cell phenotype in the intestine via regulation

of hmga2. PLoS genetics, 11(8):e1005408, 2015.

[199] Christian T Wohnhaas, Ramona Schmid, Marcel Rolser, Eric Kaaru,

Dominik Langgartner, Kathrin Rieber, Benjamin Strobel, Claudia

197

Bibliography

Eisele, Franziska Wiech, Ines Jakob, et al. Fecal micrornas show

promise as noninvasive crohn’s disease biomarkers. Crohn’s & colitis

360, 2(1):otaa003, 2020.

[200] Julien Verdier, Irene Raphaela Breunig, Margarete Clara Ohse, Silvia

Roubrocks, Sandra Kleinfeld, Sanchari Roy, Konrad Streetz, Christian

Trautwein, Christoph Roderburg, and Gernot Sellge. Faecal micro-

rnas in inflammatory bowel diseases. Journal of Crohn’s and Colitis,

14(1):110–117, 2020.

[201] Filip Ambrozkiewicz, Jakub Karczmarski, Maria Kulecka, Ag-

nieszka Paziewska, Magdalena Niemira, Natalia Zeber-Lubecka, Edyta

Zagorowicz, Adam Kretowski, and Jerzy Ostrowski. In search for inter-

play between stool micrornas, microbiota and short chain fatty acids in

crohn’s disease-a preliminary study. BMC gastroenterology, 20(1):1–18,

2020.

[202] Yuan-Hong Xie, Qin-Yan Gao, Guo-Xiang Cai, Xiao-Ming Sun, Tian-

Hui Zou, Hui-Min Chen, Si-Yi Yu, Yi-Wen Qiu, Wei-Qi Gu, Xiao-Yu

Chen, et al. Fecal clostridium symbiosum for noninvasive detection

of early and advanced colorectal cancer: test and validation studies.

EBioMedicine, 25:32–40, 2017.

[203] Linda JW Bosch, Frank A Oort, Maarten Neerincx, Carolina AJ Khalid-

de Bakker, Jochim S Terhaar sive Droste, Veerle Melotte, Daisy MAE

Jonkers, Ad AM Masclee, Sandra Mongera, Madeleine Grooteclaes,

et al. Dna methylation of phosphatase and actin regulator 3 detects

colorectal cancer in stool and complements fit. Cancer prevention re-

search, 5(3):464–472, 2012.

[204] Thomas F Imperiale, David F Ransohoff, Steven H Itzkowitz,

Theodore R Levin, Philip Lavin, Graham P Lidgard, David A Ahlquist,

and Barry M Berger. Multitarget stool dna testing for colorectal-cancer

screening. New England Journal of Medicine, 370(14):1287–1297, 2014.

[205] Christophe H Schilling et al. Combining pathway analysis with flux bal-

ance analysis for the comprehensive study of metabolic systems. Biotech-

nology and bioengineering, 71(4):286–306, 2000.

198

Bibliography

[206] Weihua Guo and Xueyang Feng. Om-fba: integrate transcriptomics data

with flux balance analysis to decipher the cell metabolism. PloS one,

11(4):e0154188, 2016.

[207] Meng Zhang et al. Metabolism-associated molecular classification of

colorectal cancer. Frontiers in Oncology, 10:602498, 2020.

[208] Elizabeth Brunk et al. Recon3D enables a three-dimensional view of

gene variation in human metabolism. Nature biotechnology, 36(3):272–

281, 2018.

[209] M. R. Watson. Metabolic maps for the Apple II. Biochemical Society

Transactions, 12(6):1093–1094, 12 1984.

[210] Sara Saheb Kashaf et al. Making life difficult for clostridium difficile:

augmenting the pathogen’s metabolic model with transcriptomic and

codon usage data for better therapeutic target characterization. BMC

systems biology, 11(1):1–13, 2017.

[211] Zhenling Wang et al. Machine learning-based glycolysis-associated

molecular classification reveals differences in prognosis, TME, and im-

munotherapy for colorectal cancer patients. Frontiers in Immunology,

14, 05 2023.

[212] Jong Min Lee et al. Flux balance analysis in the era of metabolomics.

Briefings in Bioinformatics, 7(2):140–150, 04 2006.

[213] The Istanbul consensus workshop on embryo assessment: proceedings of

an expert meeting. Human reproduction, 26(6):1270–1283, 2011.

[214] Ashleigh Storr, Christos A Venetis, Simon Cooke, Suha Kilani, and

William Ledger. Inter-observer and intra-observer agreement between

embryologists during selection of a single day 5 embryo for transfer: a

multicenter study. Human Reproduction, 32(2):307–314, 2017.

[215] Connie C Wong, Kevin E Loewke, Nancy L Bossert, Barry Behr,

Christopher J De Jonge, Thomas M Baer, and Renee A Reijo Pera.

Non-invasive imaging of human embryos before embryonic genome acti-

vation predicts development to the blastocyst stage. Nature biotechnol-

ogy, 28(10):1115–1121, 2010.

199

Bibliography

[216] ESHRE Working Group on Time-Lapse Technology, Susanna Apter,

Thomas Ebner, Thomas Freour, Yves Guns, Borut Kovacic, Nathalie

Le Clef, Monica Marques, Marcos Meseguer, Debbie Montjean, et al.

Good practice recommendations for the use of time-lapse technology.

Human Reproduction Open, 2020(2):hoaa008, 2020.

[217] Csaba Pribenszky, Anna-Maria Nilselid, and Markus Montag. Time-

lapse culture with morphokinetic embryo selection improves pregnancy

and live birth chances and reduces early pregnancy loss: a meta-analysis.

Reproductive biomedicine online, 35(5):511–520, 2017.

[218] Marcos Meseguer, Javier Herrero, Alberto Tejera, Karen Marie Hilligsøe,

Niels Birger Ramsing, and Jose Remoh́ı. The use of morphokinetics as

a predictor of embryo implantation. Human reproduction, 26(10):2658–

2671, 2011.

[219] Lukasz T Polanski, MA Coelho Neto, Carolina O Nastri, Paula A

Navarro, Rui Alberto Ferriani, Nick Raine-Fenning, and Wellington P

Martins. Time-lapse embryo imaging for improving reproductive out-

comes: systematic review and meta-analysis. Ultrasound in Obstetrics

& Gynecology, 44(4):394–401, 2014.

[220] Sarah Armstrong, Priya Bhide, Vanessa Jordan, Allan Pacey, Jane Mar-

joribanks, and Cindy Farquhar. Time-lapse systems for embryo incu-

bation and assessment in assisted reproduction. Cochrane Database of

Systematic Reviews, (5), 2019.

[221] Catherine Racowsky, Peter Kovacs, and Wellington P Martins. A critical

appraisal of time-lapse imaging for embryo selection: where are we and

where do we need to go? Journal of assisted reproduction and genetics,

32:1025–1030, 2015.

[222] Minghao Chen, Shiyou Wei, Junyan Hu, Jing Yuan, and Fenghua Liu.

Does time-lapse imaging have favorable results for embryo incubation

and selection compared with conventional methods in clinical in vitro

fertilization? a meta-analysis and systematic review of randomized con-

trolled trials. PloS one, 12(6):e0178720, 2017.

200

Bibliography

[223] Jason E Swain. Controversies in art: considerations and risks for uninter-

rupted embryo culture. Reproductive BioMedicine Online, 39(1):19–26,

2019.

[224] Nikica Zaninovic, Mohamad Irani, and Marcos Meseguer. Assessment

of embryo morphology and developmental dynamics by time-lapse mi-

croscopy: is there a relation to implantation and ploidy? Fertility and

Sterility, 108(5):722–729, 2017.

[225] Renjie Wang, Wei Pan, Lei Jin, Yuehan Li, Yudi Geng, Chun Gao, Gang

Chen, Hui Wang, Ding Ma, and Shujie Liao. Artificial intelligence in

reproductive medicine. Reproduction, 158(4):R139–R154, 2019.

[226] Nikica Zaninovic and Zev Rosenwaks. Artificial intelligence in human

in vitro fertilization and embryology. Fertility and Sterility, 114(5):914–

920, 2020.

[227] Claudio Manna, Loris Nanni, Alessandra Lumini, and Sebastiana Pap-

palardo. Artificial intelligence techniques for embryo and oocyte classi-

fication. Reproductive biomedicine online, 26(1):42–49, 2013.

[228] Irene Dimitriadis, Nikica Zaninovic, Alejandro Chavez Badiola, and

Charles L Bormann. Artificial intelligence in the embryology labora-

tory: a review. Reproductive biomedicine online, 44(3):435–448, 2022.

[229] Behnaz Raef and Reza Ferdousi. A review of machine learning ap-

proaches in assisted reproductive technologies. Acta Informatica Medica,

27(3):205, 2019.

[230] Sandrine Giscard d’Estaing, Elsa Labrune, Maxence Forcellini, Cecile

Edel, Bruno Salle, Jacqueline Lornage, and Mehdi Benchaib. A machine

learning system with reinforcement capacity for predicting the fate of

an art embryo. Systems Biology in Reproductive Medicine, 67(1):64–78,

2021.

[231] Alberto Revelli, Valentina Rovei, Paola Dalmasso, Gianluca Gennarelli,

C Racca, Francesca Evangelista, and C Benedetto. Large randomized

trial comparing transabdominal ultrasound-guided embryo transfer with

a technique based on uterine length measurement before embryo trans-

fer, 2016.

201

Bibliography

[232] Malin Huber, Nermin Hadziosmanovic, Lars Berglund, and Jan Holte.

Using the ovarian sensitivity index to define poor, normal, and

high response after controlled ovarian hyperstimulation in the long

gonadotropin-releasing hormone-agonist protocol: suggestions for a new

principle to solve an old problem. Fertility and sterility, 100(5):1270–

1276, 2013.

[233] Stefano Canosa, Carlotta Paschero, Andrea Carosso, Sara Leoncini,

Noemi Mercaldo, Gianluca Gennarelli, Chiara Benedetto, and Alberto

Revelli. Effect of a combination of myo-inositol, alpha-lipoic acid, and

folic acid on oocyte morphology and embryo morphokinetics in non-pcos

overweight/obese patients undergoing ivf: a pilot, prospective, random-

ized study. Journal of Clinical Medicine, 9(9):2949, 2020.

[234] Jan Holte, Lars Berglund, K Milton, C Garello, Gianluca Gennarelli,

Alberto Revelli, and Torbjörn Bergh. Construction of an evidence-based

integrated morphology cleavage embryo score for implantation potential

of embryos scored and transferred on day 2 after oocyte retrieval. Human

Reproduction, 22(2):548–557, 2007.

[235] Stefano Canosa, Loredana Bergandi, Chiara Macr̀ı, Lorena Charrier,

Carlotta Paschero, Andrea Carosso, Noemi Di Segni, Francesca Sil-

vagno, Gianluca Gennarelli, Chiara Benedetto, et al. Morphokinetic

analysis of cleavage stage embryos and assessment of specific gene ex-

pression in cumulus cells independently predict human embryo develop-

ment to expanded blastocyst: a preliminary study. Journal of Assisted

Reproduction and Genetics, 37:1409–1420, 2020.

[236] H Nadir Ciray, Alison Campbell, Inge Errebo Agerholm, Jesus Aguilar,

Sandrine Chamayou, Marga Esbert, and Shabana Sayed. Proposed

guidelines on the nomenclature and annotation of dynamic human em-

bryo monitoring by a time-lapse user group. Human reproduction,

29(12):2650–2660, 2014.

[237] Bruce S Shapiro, Kevin S Richter, Dee C Harris, and Said T Danesh-

mand. A comparison of day 5 and day 6 blastocyst transfers. Fertility

and sterility, 75(6):1126–1130, 2001.

202

Bibliography

[238] Gorka Barrenetxea, Arantza López de Larruzea, Teresa Ganzabal,

Rosario Jiménez, Koldo Carbonero, and Miren Mandiola. Blastocyst

culture after repeated failure of cleavage-stage embryo transfers: a com-

parison of day 5 and day 6 transfers. Fertility and sterility, 83(1):49–53,

2005.

[239] Jason M Franasiak, Eric J Forman, George Patounakis, Kathleen H

Hong, Marie D Werner, Kathleen M Upham, Nathan R Treff, and

Richard T Scott Jr. Investigating the impact of the timing of blastu-

lation on implantation: management of embryo-endometrial synchrony

improves outcomes. Human reproduction open, 2018(4):hoy022, 2018.

[240] Joe Conaghan, Alice A Chen, Susan P Willman, Kristen Ivani, Philip E

Chenette, Robert Boostanfar, Valerie L Baker, G David Adamson,

Mary E Abusief, Marina Gvakharia, et al. Improving embryo selection

using a computer-automated time-lapse image analysis test plus day 3

morphology: results from a prospective multicenter trial. Fertility and

sterility, 100(2):412–419, 2013.

[241] Yamileth Motato, Maŕıa José de los Santos, Maŕıa José Escriba,

Belén Aparicio Ruiz, José Remoh́ı, and Marcos Meseguer. Morphoki-

netic analysis and embryonic prediction for blastocyst formation through

an integrated time-lapse system. Fertility and sterility, 105(2):376–384,

2016.

[242] Liubin Yang, Mary Peavey, Khalied Kaskar, Neil Chappell, Lynn Zhu,

Darius Devlin, Cecilia Valdes, Amy Schutt, Terri Woodard, Paul Zarut-

skie, et al. Development of a dynamic machine learning algorithm to

predict clinical pregnancy and live birth rate with embryo morphokinet-

ics. F&S Reports, 3(2):116–123, 2022.

[243] M VerMilyea, JMM Hall, SM Diakiw, A Johnston, T Nguyen, D Pe-

rugini, A Miller, A Picou, AP Murphy, and M Perugini. Development

of an artificial intelligence-based assessment model for prediction of em-

bryo viability using static images captured by optical light microscopy

during ivf. Human Reproduction, 35(4):770–784, 2020.

[244] Alberto Revelli, Stefano Canosa, Andrea Carosso, Claudia Filippini,

Carlotta Paschero, Gianluca Gennarelli, Luisa Delle Piane, and Chiara

203

Bibliography

Benedetto. Impact of the addition of early embryo viability assessment

to morphological evaluation on the accuracy of embryo selection on day 3

or day 5: a retrospective analysis. Journal of Ovarian Research, 12:1–7,

2019.

[245] Katarina Kebbon Vaegter, Tatevik Ghukasyan Lakic, Matts Olovsson,

Lars Berglund, Thomas Brodin, and Jan Holte. Which factors are most

predictive for live birth after in vitro fertilization and intracytoplas-

mic sperm injection (ivf/icsi) treatments? analysis of 100 prospectively

recorded variables in 8,400 ivf/icsi single-embryo transfers. Fertility and

sterility, 107(3):641–648, 2017.

[246] C Scarica, D Cimadomo, L Dovere, A Giancani, M Stoppa, A Capalbo,

FM Ubaldi, L Rienzi, and R Canipari. An integrated investigation of

oocyte developmental competence: expression of key genes in human

cumulus cells, morphokinetics of early divisions, blastulation, and eu-

ploidy. Journal of assisted reproduction and genetics, 36:875–887, 2019.

[247] Kirstine Kirkegaard, US Kesmodel, JJ Hindkjaer, and HJ Ingerslev.

Time-lapse parameters as predictors of blastocyst development and

pregnancy outcome in embryos from good prognosis patients: a prospec-

tive cohort study. Human Reproduction, 28(10):2643–2651, 2013.

[248] Mariabeatrice Dal Canto, Giovanni Coticchio, Mario Mignini Renzini,

Elena De Ponti, Paola Vittoria Novara, Fausta Brambillasca, Ruggero

Comi, and Rubens Fadini. Cleavage kinetics analysis of human em-

bryos predicts development to blastocyst and implantation. Reproduc-

tive biomedicine online, 25(5):474–480, 2012.

[249] Giovanni Coticchio, Kenji Ezoe, Cristina Lagalla, Carlotta Zacà, Andrea

Borini, and Keiichi Kato. The destinies of human embryos reaching

blastocyst stage between day 4 and day 7 diverge as early as fertilization.

Human Reproduction, page dead136, 2023.

[250] Danilo Cimadomo, Gemma Fabozzi, Alberto Vaiarelli, Nicolò Ubaldi,

Filippo Maria Ubaldi, and Laura Rienzi. Impact of maternal age on

oocyte and embryo competence. Frontiers in endocrinology, 9:327, 2018.

[251] Filippo Maria Ubaldi, Danilo Cimadomo, Alberto Vaiarelli, Gemma

Fabozzi, Roberta Venturella, Roberta Maggiulli, Rossella Mazzilli, Su-

204

Bibliography

sanna Ferrero, Antonio Palagiano, and Laura Rienzi. Advanced ma-

ternal age in ivf: still a challenge? the present and the future of its

treatment. Frontiers in endocrinology, 10:94, 2019.

[252] Kenji Ezoe, Tetsuya Miki, Hikari Akaike, Kiyoe Shimazaki, Tsubasa

Takahashi, Yuko Tanimura, Ayumi Amagai, Ayano Sawado, Mai Mogi,

Shigeru Kaneko, et al. Maternal age affects pronuclear and chromatin

dynamics, morula compaction and cell polarity, and blastulation of hu-

man embryos. Human Reproduction, 38(3):387–399, 2023.

[253] Valentina Biasoni, Ambra Patriarca, Paola Dalmasso, Angela Bertagna,

Chiara Manieri, Chiara Benedetto, and Alberto Revelli. Ovarian sensi-

tivity index is strongly related to circulating amh and may be used to

predict ovarian response to exogenous gonadotropins in ivf. Reproductive

Biology and Endocrinology, 9(1):1–5, 2011.

[254] Andrea Roberto Carosso, Rik van Eekelen, Alberto Revelli, Stefano

Canosa, Noemi Mercaldo, Chiara Benedetto, and Gianluca Gennarelli.

Women in advanced reproductive age: are the follicular output rate, the

follicle-oocyte index and the ovarian sensitivity index predictors of live

birth in an ivf cycle? Journal of Clinical Medicine, 11(3):859, 2022.

[255] Neelke De Munck, Aşina Bayram, Ibrahim Elkhatib, Andrea Abdala,

Ahmed El-Damen, Ana Arnanz, Laura Melado, Barbara Lawrenz, and

Human Mousavi Fatemi. Marginal differences in preimplantation mor-

phokinetics between conventional ivf and icsi in patients with preimplan-

tation genetic testing for aneuploidy (pgt-a): A sibling oocyte study.

PloS one, 17(4):e0267241, 2022.

[256] Linda Sundvall, Hans Jakob Ingerslev, Ulla Breth Knudsen, and Kirs-

tine Kirkegaard. Inter-and intra-observer variability of time-lapse anno-

tations. Human Reproduction, 28(12):3215–3221, 2013.

[257] Danilo Cimadomo, Laura Rienzi, Alessandro Conforti, Eric Forman,

Stefano Canosa, Federica Innocenti, Maurizio Poli, Jenna Hynes, Laura

Gemmell, Alberto Vaiarelli, et al. O-193 opening the black box: why

do euploid blastocysts fail to implant? a systematic review and meta-

analysis. Human Reproduction, 38(Supplement 1):dead093–234, 2023.

205

Bibliography

[258] Antonino Aparo, Vincenzo Bonnici, Giovanni Micale, Alfredo Ferro,

Dennis Shasha, Alfredo Pulvirenti, and Rosalba Giugno. Fast Subgraph

Matching Strategies Based on Pattern-Only Heuristics. Interdisciplinary

Sciences: Computational Life Sciences, 11(1):21–32, 2019.

[259] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha,

and Alfredo Ferro. A subgraph isomorphism algorithm and its applica-

tion to biochemical data. BMC bioinformatics, 14(S7):S13, 2013.

[260] Vincenzo Carletti, Pasquale Foggia, and Mario Vento. Performance com-

parison of five exact graph matching algorithms on biological databases.

In International Conference on Image Analysis and Processing, pages

409–417. Springer, 2013.

[261] National cancer institute. National cancer institute. Accessed: 2021

september 21.

[262] Helen M Berman, Tammy Battistuz, Talapady N Bhat, Wolfgang F

Bluhm, Philip E Bourne, Kyle Burkhardt, Zukang Feng, Gary L

Gilliland, Lisa Iype, Shri Jain, et al. The protein data bank. Acta

Crystallographica Section D: Biological Crystallography, 58(6):899–907,

2002.

[263] Rolf Huehne and Juergen Suehnel. The Jena Library of Biological

Macromolecules-JenaLib. Nature Precedings, pages 1–1, 2009.

[264] Corinna Vehlow, Henning Stehr, Matthias Winkelmann, José M Duarte,

Lars Petzold, Juliane Dinse, and Michael Lappe. CMView: interactive

contact map visualization and analysis. Bioinformatics, 27(11):1573–

1574, 2011.

[265] Damian Szklarczyk, Andrea Franceschini, Michael Kuhn, Milan Si-

monovic, Alexander Roth, Pablo Minguez, Tobias Doerks, Manuel

Stark, Jean Muller, Peer Bork, et al. The STRING database in 2011:

functional interaction networks of proteins, globally integrated and

scored. Nucleic acids research, 39(suppl 1):D561–D568, 2010.

[266] Albert-László Barabási and Réka Albert. Emergence of scaling in ran-

dom networks. science, 286(5439):509–512, 1999.

206

Bibliography

[267] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over

time: densification laws, shrinking diameters and possible explanations.

In Proceedings of the eleventh ACM SIGKDD international conference

on Knowledge discovery in data mining, pages 177–187, 2005.

207

	List of Publications
	Contents
	Introduction
	Background
	Machine learning for multi-omics integration
	Omics data
	Biomarkers
	History of sequencing
	Types of omics data
	Workflow of analysis in bioinformatics
	The reproducibility crisis

	Machine learning
	Definition
	The workflow
	The curse of dimensionality

	Multi-omics data integration
	Challenges

	Graph Indexing
	Formalisation
	Filter-and-verification methods
	Index construction
	Filtering
	Verification

	State of the Art
	GRAPES algorithm

	Decision diagrams
	General definition
	Notion of ordering
	Reduction rules

	Classes of decision diagrams
	Binary Decision Diagrams
	Multi-valued decision diagrams
	Multi-terminal decision diagrams
	Edge-valued decision diagrams

	Decision diagram implementation

	Theoretical results
	Graph-based feature selection for multi-omics integration
	Feature graph formalisation
	Definition

	Optimization problem for mRMR on graph
	A metric for mRMR over the feature graph
	Evolutionary and genetic algorithms

	Feature selection via genetic algorithm
	Chromosome encoding
	Selection mechanism
	Reproduction mechanisms

	Decision diagrams applied to graph indexing
	Decision diagrams for indexing
	Problem variables

	Encoding the problem
	Using multi-terminal
	Using multi-way decision diagram

	Index construction
	Index filtering
	Indexing the query graph
	Feature extraction from the index MTMDD
	Constraints verification

	Variable ordering
	An entropy-based metrics
	The heuristic algorithm

	Applications and tool implementation
	FeatSEE
	The Framework
	Python module
	Data representation
	Feature graph
	Machine-learning models

	FeatSEE end-to-end modules
	Data preparation module
	Evaluation module
	Ensemble feature selection module
	Filter-based feature selection module
	Explainable feature extraction module

	GRAPES-DD
	Overview
	Indexing stage
	Index preparation
	Index construction

	Filtering stage
	Query preprocessing phase
	Feature extraction phase
	Constraints verification phase

	Entropy-based variable ordering
	Label variables reordering

	Applications
	Biomarker discovery for colorectal cancer
	Introduction
	Material and methods
	Results
	Discussion

	An application combining mechanistic and data-driven approaches
	Introduction
	Material and methods
	Results
	Discussion

	Explaining early embryonic development via time-lapse features
	Context
	Material and methods
	Results
	Discussion

	Index-driven subgraph search exploiting decision diagrams
	Datasets description
	Experimental setup and output
	Discussion

	Conclusion and future work
	Bibliography

