

Recent Developments in Pharmaceutical Analysis

Comprehensive two-dimensional gas chromatography a *gestalt* technique in food metabolomics

Chiara Cordero¹

Simone Squara;¹ Andrea Caratti;¹ Angelica Fina;¹ Erica Liberto;¹ Stephen E. Reichenbach;^{2,3} Carlo Bicchi¹

1: Dept. of Drug Science and Technology, University of Turin, Turin, Italy

2: GC Image LLC (Lincoln NE, USA)

3: Dept. of Computer Science and Engineering, University of Nebraska, (Lincoln NE, USA)

Foreword

Do we need <u>more powerful approaches to 1D-GC</u> separations in food investigations? Does comprehensive multidimensional chromatography <u>open</u> <u>new opportunities</u> to food metabolomics?

Gestalt: something that is made of many parts and yet is somehow more than or different from the combination of its parts

Key-concepts

- ✓ Analytical dimensions of a GC×GC platform
- ✓ Investigation strategies: a change of perspective from 1D -> 2D
 - <u>Pattern recognition</u> -> chromatographic fingerprinting
 - <u>Computer vision</u>
 - <u>Artificial Intelligence smelling</u> based on sensomics

Shelling nuts: an *omics* approach to unravel hazelnut quality and flavor by advanced chromatographic fingerprinting

Conclusive remarks

...the boundaries between chemistry and biology are vanishing...

Prof. Thomas Hofmann J. Agric. Food Chem. 2015, 63, 32, 7095–7096

Data mining machine learning unsupervised/supervised

Data processing targeted/untargeted profiling/fingerprinting

Analytical platform

Columns combination Modulation technology Detection:

- (HR)-Mass Spectrometry
- Olfactometry
- Parallel detection

REVIEW ARTICLE

Comprehensive two-dimensional gas chromatography as a boosting technology in food-omic investigations

Federico Stilo¹ | Carlo Bicchi¹ | Stephen E. Reichenbach^{2,3} | Chiara Cordero¹

Food metabolomics Chemical composition of food *vs*.

✓ crop botanical origin
 ✓ harvesting area
 ✓ climate impact
 ✓ post-harvest
 ✓ storage conditions

Sensomics Food hedonic profile

✓ potent odorants
 ✓ chemical odor code
 ✓ volatiles patterns
 ✓ odor activity value

SEPARATION SCIENCE

Nutrimetabolomics Human metabolome by

✓ dietary patterns
✓ specific foods
✓ nutrients
✓ micro-organisms
✓ bioactives

Food volatilomics

- ✓ spoilage
 ✓ sensory profile
- ✓ botanical tracers
- ✓ technological
- indicators
- ✓ authenticity

Is ...something that is made of many parts and yet is somehow more than or different from the combination of its parts¹... useful

Does comprehensive multidimensional chromatography <u>offer new opportunities in food</u> <u>components profiling and fingerprinting</u>?

Does it <u>facilitate the access to higher level</u> <u>information</u>?

[1] Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/gestalt. Accessed 5 Apr. 2022

Comprehensive 2D GC

- Separation power (peak capacity) is given by the product of the two chromatographic dimensions (GC×GC)¹
- ✓ Independent (almost) displacement in both dimensions produces rational retention patterns for homologue series¹
- Band compression (in space for thermal modulators) produces signal-to-noise ratio enhancement - sensitivity
- ✓ Bi-dimensional peak patterns exploits a 3D space where fingerprinting could be more accurate that in a 2D space (as for 1D-GC profiles)

[1] Giddings, J.C. (1987), Concepts and comparisons in multidimensional separation. J. High Resol. Chromatogr., 10: 319-323.

Conventional 1D GC

Profiling¹ detailed analysis of the chemical pattern

Target(ed) analysis²

GC-MS metadata (retention and spectra) analytes <u>identity</u> and <u>amount</u>

Chromatographic fingerprinting^{1,3} general and rapid high-throughput screening -> discriminate/classify samples

Limits

high chemical dimensionality⁴ complexity of food samples

isomers/isobars might co-elute and analytes discrimination becomes challenging

Need of multiple dimensions (separation / detection) to explore compositional complexity⁴

[1] Harrigan G., Goodacre R. (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers: Boston [2] S.E. Reichenbach et al. J. Chromatogr. A 1226 (2012) 140–148

[3] Stilo, F., Bicchi, C., Jimenez-Carvelo, A.M., Cuadros-Rodriguez, L., Reichenbach, S.E., Cordero, C. TrAC Trends Anal. Chem. 134 (2021) 116133 [4] Giddings, J. C. (1995) J. Chromatogr. A. 703, 3–15.

accurate quantitative profiling

2D/3D Chromatographic fingerprinting¹ pattern recognition (forensics) comprehensive sample comparison

[1] Stilo, F., Bicchi, C., Jimenez-Carvelo, A. M., Cuadros-Rodriguez, L., Reichenbach, S. E., & Cordero, C. (2021).

[1] J.C. Giddings J. Chromatogr. A 703(1995) 3-15.

Rational information space

Raw hazelnut volatiles - Rancid sample Origin Turkey HS-SPME (CAR/PDMS/DVB) - 125 mg - 50°C/50 min

¹D - polarity/volatility separation (PEG / Carbowax)

About 700 detectable features (2D peaks) over 20 S/N Of them 250 reliably identified by 70 eV spectrum and I^T coherence Various chemical classes highly correlated with autoxidation processes, enzymatic peroxidation, aroma compounds and potent odorants

Raw hazelnut volatiles - Rancid sample Origin Turkey HS-SPME (CAR/PDMS/DVB) - 125 mg - 50°C/50 min

A **fingerprint** is the pattern of ridges and valleys on the surface of a fingertip -> Everyone has unique fingerprints

Untargeted - Targeted

UT - extended investigation

Untargeted/Targeted Fingerprinting¹⁻⁴ - comprehensive mapping

Blob Properties Labels Compound Library Group Libra Octanal Compound Library Group Libra Odorants II Constellation Name Constellation Name	Analysis CLIC (aCLIC) Qualifier CLIC (qCLIC) Reference MS Reference Peak	Qualifier/Quantifier Ions 00.0) & (RMatch(" <m: 334.0,550.0;339.0,34</m: 	s s>") >= 700.0 ~ H0.0;349.0,860.0; ~
Hit List	OK and View Spectrum	m OK	Cancel

Magagna, F., Valverde-Som, L., Ruíz-Samblás, C., Cuadros-Rodríguez, L., Reichenbach, S. E., Bicchi, C., & Cordero, C. (2016). Analytica Chimica Acta, 936, 245–258.
 Reichenbach, S. E., Tian, X., Tao, Q., Ledford, E. B., Wu, Z., & Fiehn, O. (2011). Talanta, 83(4), 1279–1288

[3] Reichenbach, S. E., Zini, C. A., Nicolli, K. P., Welke, J. E., Cordero, C., & Tao, Q. (2019). Journal of Chromatography A, 1595, 158–167

[4] Cordero, C., Guglielmetti, A., Bicchi, C., Liberto, E., Baroux, L., Merle, P., ... Reichenbach, S. E. (2019). Journal of Chromatography A, 1597, 132–141

Untargeted/Targeted Fingerprinting - comprehensive mapping

Cancel

Cancel

X

 \sim

Targeted and **untargeted** peak(-region) features are cross-aligned between all samples and metadata collected for further processing.

Compound Name	Count	Retention I										
		Mean	Stdev	RSD	Pairwise M	One-vs-All	F Value	Mean(KO)	Mean(OK)	Stdev(KO)	Stdev(OK)	
Diethyl Phthalate (70)	9	52.5195	0.0505	0.0010	0.0587	0.0587	0.2415	52.5118	52.5293	0.0639	0.0337	7
Methyl 2-octynoate (3)	12	32.0348	0.1240	0.0039	0.6942	0.6942	2.7350	31.9959	32.1126	0.1359	0.0337	7
Octanoic acid (36)	4	44.5668	9.4116E-6	2.1118E-7	0.6522	0.6522	1.3044	44.5668	44.5668	1.2186E-5	3.5122E-6	6
1-Octanol (5)	12	28.8265	0.1336	0.0046	0.9051	0.9051	3.5288	28.7803	28.9188	0.1427	0.0292	2
Hexanal (74)	8	11.0761	0.2865	0.0259	0.7693	0.7693	1.5710	11.0056	11.2876	0.2967	0.1237	7
Heptanoic acid (53)	3	41.5140	0.0337	0.0008	0.5000	0.5000	0.3333	41.5043	41.5334	0.0413	0.000	0
(E)-2-Decenal (64)	10	31.9201	0.1192	0.0037	1.2013	1.2013	2.1968	31.8938	32.0251	0.1198	3.5122E-6	6
(E)-2-Octenal (30)	5	24.4418	8.4176E-6	3.4439E-7	1.1779	1.1779	2.2827	24.4418	24.4418	8.6202E-6	3.5122E-6	6
Pentanal (109)	11	8.0289	0.1794	0.0223	0.8548	0.8548	2.9010	7.9772	8.1668	0.1784	0.1010	0
1-Octanol (94)	4	24.4855	0.0292	0.0012	0.5006	0.5006	1.0013	24.4709	24.5001	0.0412	3.5122E-6	6
(E)-2-Nonenal (41)	5	28.2218	0.1908	0.0068	0.4770	0.4770	0.8715	28.1556	28.3209	0.2358	0.0412	2
2(3H)-Furanone, 5-butyldihydro- (16)	11	40.3774	0.0573	0.0014	1.2888	1.2888	3.6153	40.3595	40.4251	0.0578	2.7121E-6	6
(E)-2-Undecenal (25)	6	35.5154	0.1070	0.0030	0.7207	0.7207	1.2813	35.4813	35.5834	0.1203	3.5122E-6	6
2(3H)-Furanone, dihydro-5-pentyl- (29)	10	43.6393	0.0580	0.0013	0.4441	0.4441	1.4639	43.6251	43.6723	0.0624	0.0337	7
Acetone (52)	11	5.1069	0.0840	0.0164	0.3613	0.3613	1.5951	5.0834	5.1480	0.0918	0.0558	8
Butyl Butanoate (32)	11	16.3175	0.2623	0.0161	0.6909	0.6909	2.8268	16.2251	16.4793	0.2846	0.1117	7
Butyl benzoate (15)	12	38.9133	0.0723	0.0019	1.1144	1.1144	4.2454	38.8865	38.9668	0.0760	9.2700E-6	6
2(3H)-Furanone, dihydro-5-propyl- (57)	9	36.9575	0.0880	0.0024	1.0164	1.0164	3.0708	36.9251	37.0223	0.0904	0.0337	7
(60)	10	32.3284	0.1160	0.0036	0.9506	0.9506	2.7961	32.2918	32.4140	0.1208	0.0337	7
2(3H)-Furanone, 5-ethyldihydro- (45)	11	33.6955	0.1115	0.0033	1.2164	1.2164	4.3344	33.6584	33.7945	0.1034	0.0674	4
Ethyl benzoate (72)	10	32.6551	0.1058	0.0032	0.5205	0.5205	2.0412	32.6181	32.7105	0.1247	0.0292	2
Acetonitrile (14)	12	8.6577	0.1869	0.0216	1.3439	1.3439	5.4946	8.5824	8.8084	0.1830	0.0674	4
(49)	10	23.7651	0.2320	0.0098	1.2887	1.2887	2.3565	23.7126	23.9751	0.2312	3.5122E-6	6
Benzaldehyde (17)	12	27.6161	0.1621	0.0059	0.7737	0.7737	3.1145	27.5626	27.7230	0.1736	0.0559	9
4-Hydroxybutyric acid (7)	12	31.2181	0.1288	0.0041	1.3631	1.3631	6.0196	31.1647	31.3251	0.1198	0.0674	4
Toluene (37)	5	9.7768	0.2244	0.0230	0.1619	0.1619	0.1295	9.7563	9.8584	0.2537	0.0000	0
Dichloremethane (108)	10	6.8951	0.1284	0.0186	1.9287	1.9287	7.8551	6.8251	7.0001	0.1167	0.0476	6

Raw ingredient for confectionery products Turkey is the leading producer (about 75% of world production) Italy follows as second in the ranking

 Industrial partner world leader in the production of confectionery products based on hazeInuts

Need for <u>objective</u>
 <u>evaluation</u> of <u>quality</u>

Quality assessment at industrial level focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

Corylus avellana L.

Step-ahead in quality assessment *molecular resolution* probes:

- ✓ <u>qualification</u> (oxidation status, shelf-life storage effectiveness, bacterial and mold grow)
- ✓ <u>identitation¹</u> (cultivar, origin, harvest area)
- ✓ definition of *aroma potential*²

AI decision makers

- 1. Computer Vision in defected hazelnuts VOCs patterns
- Smelling machine aroma blueprint
- 3. Aroma precursors pattern

 Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. *Anal. Chim. Acta* 2016, *909*, 9–23.
 Cialiè Rosso, M.; Mazzucotelli, M.; Bicchi, C.; Charron, M.; Manini, F.; Menta, R.; Fontana, M.; Reichenbach, S. E.; Cordero, C. J. Chromatogr. A 2020, *1614* (460739)

Volatiles < 0.001%

- Hydrocarbons
- Terpenoids
- Alcohols (linear and branched)
- Carbonyl derivatives
- Carboxylic acids
- Esters
- Lactones

Encrypts a lot of information

- geographical origin
- phenotyping and chemotyping
- multitrophic interactions (plantsinsects)
- presence of bacteria and moulds
- scent and odorous compounds
- distinctive aroma blueprint

Computer Vision

Quality assessment at industrial level focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

"... is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images.... and take actions or make recommendations based on that information.

If AI enables computers to think, <u>computer vision</u> <u>enables them to see</u>, <u>observe and understand</u>."³

16.0 18.0 20.0 22.0 24.0

26.0 28.0

AI decision-makers Computer Vision in defected hazelnuts volatilome patterns

Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Angew. Chemie - Int. Ed. 53 (28) (2014) 7124–7143.
 Nicolotti, L.; Mall, V.; Schieberle, P. J. Agric. Food Chem., 67 (2019) 4011–4022
 https://www.ibm.com/topics/computer-vision

An effective chromatographic fingerprinting workflow based on comprehensive two-dimensional gas chromatography – Mass spectrometry to establish volatiles patterns discriminative of spoiled hazelnuts (*Corylus avellana* L.)

Federico Stilo⁶, Erica Liberto⁵, Nicola Spigolon⁶, Giuseppe Genova⁶, Ginevra Rosso⁶, Mauro Fontana⁶, Stephen E. Reichenbach^{5,4}, Carlo Bicchi⁸, Chiara Cordero^{5,4}

32233388	Contents lists available at ScienceDirect	1
	Journal of Chromatography A	
ELSEVIER	journal homepage: www.alsevier.com/locate/chroma	

Augmented visualization by computer vision and chromatographic fingerprinting on comprehensive two-dimensional gas chromatographic patterns: Unraveling diagnostic signatures in food volatilome

Andrea Caratti^{3,1}, Simone Squara^{4,1}, Carlo Bicchi⁴, Qingping Tao^b, Daniel Geschwender^b, Stephen E. Reichenbach^{5,4}, Francesco Ferrero⁴, Giorgio Borreani⁴, Chiara Cordero^{4,*}

Untargeted/Targeted (UT) fingerprinting on single chromatograms

Generation of composite class-images from samples groups - one for each sensory defect ✓ patterns re-alignment by reliable 2D peaks and raw data summation (composite image)

Cumulative class-image "Mould"

The effect of dominant variables (origin, harvest year, cultivar, shelf-life etc..) is minimized while the "signature" of *mold* sensory defect emphasized - easier detection

Composite class-images from samples groups - one for each sensory defect

C	Shelling nuts	
	Contents line available at ScienceDreet Journal of Chromatography A Journal forecast and	
ugmented visu ingerprinting or hromatographic olatilome ndrea Caratti ⁸⁴ , Sir tephen E. Reichenb	alization by computer vision and chromatographic n comprehensive two-dimensional gas : patterns: Unraveling diagnostic signatures in food none Squara ⁴³ , Carlo Bicchi ⁴ , Qingping Tao ⁹ , Daniel Geschwender ⁸ , ch ³⁶ , Francesco Ferrero ⁴ , Giorgio Borreani ⁴ , Chiara Cordero ⁴ *	
SEVIER	Connects line available at SourceOnnect Food Chemistry Journal homepage: www.elsevier.com/iocale/foodchem	R FOOD CHEMISTRY
n effective chron omprehensive two establish volati <i>vellana</i> L.) derico Stilo ^s , Erica I auro Fontana ^b , Stepl	natographic fingerprinting workflow based on <i>vo</i> -dimensional gas chromatography – Mass spectrometry les patterns discriminative of spoiled hazelnuts (<i>Corylus</i> Libeto [*] , Nicola Spigolon [*] , Giusepp Genova [*] , Ginevra Rosso [*] , sen E. Reichenbach ^{**} , Carlo Bicchi [*] , Chiara Cordero ^{**}	

Datapoint features fingerprinting combined to peak-regions UT fingerprinting

Computer vision and chemical patterns

Artificial Intelligence smelling

Quality assessment at industrial level focuses on morphological aspects, presence of damaged kernels, perceivable sensory defects (mould, rancid, *cimiciato*, stale etc..)

AI decision makers *AI Smelling machine* - aroma blueprint

Artificial Intelligence decision-making tools based on comprehensive two-dimensional gas chromatography data: the challenge of quantitative volatilomics in food quality assessment

Simone Squara^a, Andrea Caratti^a, Angelica Fina^a, Erica Liberto^a, Nicola Spigolon^b, Giuseppe Genova^b, Giuseppe Castello^b, Irene Cincera^b, Carlo Bicchi^a, Chiara Cordero^{a,*}

UNIVERSITÀ DI TORINO

Angewandte Reviews

T. Hofmann et al.

Chemistry of Smell

DOI: 10.1002/anie.201309508

Sensomics¹

AI Smelling

Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology

Andreas Dunkel, Martin Steinhaus, Matthias Kotthoff, Bettina Nowak, Dietmar Krautwurst, Peter Schieberle, and Thomas Hofmann*

Artificial Intelligence smelling machine

Context: Sensomics¹

Principle: <u>key-odorants and odorants patterns evoke specific smells/aroma</u> <u>qualities while contributing to define the overall flavor perception of a food</u> - identity

Methods: <u>extract</u>, <u>isolate</u>, <u>quantify potent odorants by reliable and robust</u> <u>methodologies</u>

Outcome: Sensomics-Based Expert System² (SEBES) that predicts key-aroma signatures of food without using human olfaction.

Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Angew. Chemie - Int. Ed. 53 (28) (2014) 7124–7143.
 Nicolotti, L.; Mall, V.; Schieberle, P. J. Agric. Food Chem., 67 (2019) 4011–4022

Develop a sensomics-based expert system acting as AI *smelling machine*

Aroma profile of raw hazelnuts from different cultivar/origin¹

Key-aroma compounds - raw hazelnuts odorants occurring in amounts that exceed the OT (Odor Activity Value > 1). Their omission in aroma recombinates does not reproduce the flavour blueperint of the original product.

	'Tonda Romana'	'Tonda Gentile'	Akçakoca
hexanal	3	<1	8
3-methyl-4-heptanone	141	126	93
5-methyl-(E)-2-hepten-4-one	2	2	2
2-acetyl-1-pyrroline	24	24	24
dimethyl trisulfide	1	1	1
2-propionyl-1-pyrroline	22	22	22
2-furfuryl mercaptan	8	8	8
3-(methylthio)propionaldehyde	15	15	15
3,5-dimethyl-2-ethylpyrazine	1	1	1
2,3-diethyl-5-methylpyrazine	9	9	9
3,7-dimethylocta-1,6-dien-3-ol	12	12	12
2-acetyl-1,4,5,6-tetrahydropyridine	46	46	46
2-acetyl-3,4,5,6-tetrahydropridine	36	36	36
3-methylbutanoic acid	2	1	1
(E,E)-2,4-nonadienal	6	3	29

Storage quality markers 1-heptanol (green, chemical), 2-octanol (metal, burnt), 1-octen-3-ol (mushroom), (E)-2-heptenal (fatty, almond), hexanal (leaf-like, green), heptanal (fatty), octanal (fatty) and nonanal (tallowy, fruity).

Key-aroma compounds

Spoiled hazelnuts markers

octanoic acid positively correlated to mould; y-nonalactone, y-hexalactone, acetone, and 1-nonanol are decisive to classify OK and rancid samples; heptanoic and hexanoic acids and y-octalactone are present in high abundance rancid-solvent and rancid-stale samples.

Strategy

Multiple Headspace SPME Accurate quantification / ESTD and RF

Differential-flow modulator parallel detection qMS/FID

Aroma blueprint of spoiled hazelnuts OAVs >1

Thank you for your attention

- Prof. Carlo Bicchi Prof. Stephen E. Reichenbach
- Dr. Qingping Tao

GC Image

Software for Multidimensional Chromatography

Dr. Andrea Caratti

Dr. Angelica Fina

