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Polynomials with prescribed vanishing at roots of unity.

Francesco Amoroso

Sommario.

Dati due interi positivi r < N , consideriamo lo spazio vettoriale V(r,N) dei polinomi

a coefficienti razionali di grado < N e molteplicità in x = 1 almeno r. In questo lavoro si

studia il comportamento asintotico di

min
G∈V(r,N)

G 6=0

h(G)

(h(G)=altezza logaritmica di G) quando N, r → +∞ e r/N → 0, migliorando stime

precedenti di M. Mignotte e di E. Bommbieri - J. Vaaler.



Polynomials with prescribed vanishing at roots of unity. *

Francesco Amoroso

§1 Introduction.

Let N , r be two integers with 0 < r < N and let V(r,N) be the vector space of poly-

nomials with rational coefficients, having degree < N and vanishing at 1 with multiplicity

at least r. We are interested in lower and upper bounds for the minimal logarithmic height

of nontrivial polynomials G ∈ V(r,N). This problem was first considered by M. Mignotte

(see [M]), who found

1

4
· r

2

N
− logN ≤ min

G∈V(r,N)
G6=0

h(G) ≤ 1

2
· r(r + 1)

N − r
logN +

r log 4

N − r
.

The upper bound in the previous formula was obtained by an ingenious use of Siegel’s

lemma, while the lower bound was a consequence of an old theorem of Schmidt and Schur

about the number of real zeros of polynomials. We are interested in the asymptotic for the

above minimum as N, r → +∞ and r/N → 0. Therefore it is worth rewriting Mignotte’s

results as

1

4
(r/N)2

(
1 + o(1)

)
≤ 1

N
min

G∈V(r,N)
G6=0

≤ 1

2
(r/N)2 log(N/r)

(
1 + o(1)

)
(0)

where o(1) is a function of r and N satisfying

o(1)→ 0, for N, r → +∞, and r/N → 0.

In 1984, Bombieri and Vaaler (see [BV]) considered this problem again, finding similar

bounds but with different methods. They found Mignotte’s upper bound as a consequence

of a new version of Siegel’s lemma which uses as its main tool the geometry of numbers

instead of the box-principle. This does not only give a polynomial G ∈ V(r,N) with

* Research supported by NSF grant DMS-9100383
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Polynomials with prescribed vanishing at roots of unity.

small height, but also a family G1, . . . , GN−r of linearly independent polynomials with∑
h(Gl) bounded from above by essentially the same quantity that occurs in the right

side of Mignotte’s estimate. For the lower bound, the main idea of Bombieri and Vaaler

is the following “automatic vanishing” principle: if a polynomial G ∈ V(r,N) has small

height it must vanish also at p-th roots of unity for small primes.

In this paper we exploit Bombieri and Vaaler’s method to give somewhat sharper

bounds. More precisely, we have the following theorems:

Theorem 1.

For any nontrivial polynomial G ∈ V(r,N) and for any ε > 0, we have

N−1h(G) ≥ c− ε
2

(r/n)2 ·
(
1 + oε(1)

)
where

c =
+∞∑
s=1

s!

(2s− 1)!
= 1.38844...

and oε(1) tends to zero when N, r → +∞ so that

r/N → 0 and

√
N logN

r
→ 0.

Theorem 2.

There exists a nontrivial polynomial G ∈ V(r,N) satisfying

N−1h(G) ≤ 1

4
(r/N)2 log(N/r) ·

(
1 + o(1)

)
where o(1) tends to zero when N, r → +∞ so that

r/N → 0 and

√
N/ logN

r
→ 0.
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As explained before, the main tool of Bombieri and Vaaler’s lower bound is the auto-

matic vanishing principle. This essentially depends on the fact that the norm of a primitive

p-th root of unity is large, so we cannnot apply this method directly to roots of unity with

composite module. However, it is easy to see that for every prime number p the resultant

of the n-th and the np-th cyclotomic polynomials is still large. This suggests the following

idea: if a polynomial with integer coefficients and low height vanishes to a high multiplicity

at n-th roots of unity, it must behave similarly at np-th roots of unity for small primes p.

In this way we are able to take into account n-th roots of unity for composite modules as

well, and we arrive at a general version of the automatic vanishing principle (proposition

1 below). More precisely, there are two kinds of influence concerning the vanishing of a

polynomial at primitive n-th roots. In fact, vanishing at n-th roots implies vanishing both

at np-th roots for small primes p and vanishing at n/p-th roots for small primes p dividing

n. This gives a system of inequalities which must be satisfied for all G ∈ V(r, n), and

we have to find the minimum of h(G) when G satisfies such a system. Unfortunately, the

contribution up-to-down (from n-th roots to n/p-th roots) is hard to take into account,

and we are only able to solve our minimum problem forgetting this contribution. In any

case,this gives an improvement in the constant in the right hand side of (0), and we believe

that a more accurate analysis of these inequalities can give better results. For the mo-

ment, using the general form of our inequalities, we can prove that this system is actually

a system of approximate equalities when the height of G is small.

Our lower bounds can also be used to improve the right hand side of (0). Let r < N

be two positive integers; using Siegel’s lemma in the more elaborate form of [BV] we find a

family of n = N − e linearly independent polynomials G1, . . . , Gn with integer coefficients

and degree < N , vanishing at 1 with order at least r and satisfying
n∑
s=1

h(Gs) ≤ N2(r/N)2 log(N/r)
(
1 + o(1)

)
.

Since the Gi are linearly independent, at least one of them, say G1, does not vanish at −1

and so 2r ≤ |G1(−1)| ≤ NH(G1) gives a lower bound for h(G1). Among the remaining

3
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n − 1 polynomials, at least two, say G2 and G3, do not vanish at cubic roots of unity

and therefore their heights are not too small. With the aid of a combinatorial lemma we

arrive in this way at a lower bound for the sum of the heights of the first m polynomials

among the Gi, where m < n is a parameter at our disposal. Taking into account the above

upper bound for
∑
h(Gi), we deduce that at least one of the polynomials Gm+1, . . . , Gn

has relatively low height.

For simplicity we have applied this method only at a “first level”, i.e. taking only into

account the contributions of p-th roots. A more elaborate use of the arithmetic information

related to the vanishing at generic roots of unity will give other numerical improvements

for the constant.

The plan of the paper is as follows. In §2 we state our general version of the automatic

vanishing principle, which takes the form of a system of inequalities. In §3 we show that

this is actually a system of approximate inequalities, at least for polynomials with small

height. In §4 we apply the vanishing principle to obtain a new lower bound for the minimal

height of non-zero polynomials G ∈ V(r,N). Finally, in the last paragraph, using simple

considerations from the geometry of numbers, we show the existence of polynomials with

prescribed vanishing at 1 having relatively low height and degree.

Acknowledgement. I am grateful to Prof. Bombieri for the discussions we had about

this problem. I am also indebted to Olivier Ramaré who pointed out to me some techniques

and results from analytic number theory.

§2 Lower bounds for the height.

Our first aim is to give a lower bound for the height of polynomials with integer

coefficients vanishing at primitive n-th roots of unity with prescribed multiplicity. We

begin with two classical lemmas concerning the resultants of cyclotomic polynomials. In

the following the letter p will be reserved for prime numbers.
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Lemma 1.

Let m < n be two integers. Then the resultant Res(Fm, Fn) of the n-th and the m-th

cyclotomic polynomials satisfies

|Res(Fm, Fn)| =
{
pφ(m), if n = plm;
1, otherwise.

Lemma 2.

For any integer n the discriminant of the n-th cyclotomic polynomial satisfies

|Disc(Fn)| = nφ(n)
(∏
p|n

p
1
p−1

)−φ(n)
.

There are several proofs of the previous lemmas. For instance, see [A], [L] and [S1].

Now, we state our vanishing principle (see also [S2]).

Proposition 1.

Let G ∈ Z[x] be a polynomial with integer coefficients and degree d < N vanishing at

primitive n-th roots of 1 with multiplicity rn. Then for any integer n we have

∑
k|n

rn/kφ(n/k)Λ(k) +
∑
k

rnkφ(n)Λ(k) + rnφ(n)

(
log n−

∑
p|n

log p

p− 1

)

≤ φ(n)h(G) + φ(n) log

(
N

rn + 1

)
. (1)

Proof.

We write G = F rnn R where R is a polynomial with integer coefficients not divisible

by Fn, vanishing at primitive m-th roots of 1 with multiplicity rm for any m 6= n. Let us

consider the polynomial

Gn(x) =
1

rn!

( d
dx

)rn
G(x) ∈ Z[x].

5
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The congruence Gn(x) ≡
(
F ′n
)rn

R(x)
(
modFn

)
joints with lemma 1 and lemma 2 yields

the lower bound

log |Res(Gn, Fn)| ≥
∑
m 6=n

rm log |Res(Fm, Fn)|+ rn log |Disc(Fn)|

≥
∑
k|n

rn/kφ(n/k)Λ(k) +
∑
k

rnkφ(n)Λ(k)

+ rnφ(n)

(
log n−

∑
p|n

log p

p− 1

)
.

(2)

On the other hand, if G(x) =
N−1∑
l=0

glx
l, we have for any primitive n-th root of unity ω

|Gn(ω)| ≤
N−1∑
l=rn

|gl|
(
h

rn

)
≤

(
N−1∑
l=rn

(
l

rn

))
max
l
|gl| =

(
N

rn + 1

)
exp

(
h(G)

)
.

Therefore

log |Res(Gn, Fn)| ≤ φ(n)h(G) + φ(n) log

(
N

rn + 1

)
. (3)

Combining (2) and (3) we obtain (1).

Q.E.D.

§3 Rigidity.

Let G, N , rn as before and let x be a positive real number. We define

δn,x(G) = φ(n)−1

{∑
k|n

rn/kφ(n/k)Λ(k) +
∑
k≤x/n

rnkφ(n)Λ(k)

+ rnφ(n)

(
log n−

∑
p|n

log p

p− 1

)
− φ(n) log

(
N

rn + 1

)}

for a positive integer n ≤ x. From proposition 1, we have

δn,x(G) ≤ h(G).
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We claim that if h(G) and x are small, then δn,x(G) are small too. Since φ(n/k)Λ(k) ≥

φ(n)Λ(k)/k and log
(
N
M

)
≤M log(εN/M), we deduce that

δn,x(G) ≥
∑
k|n

rn/k
Λ(k)

k
+
∑
k≤x/n

rnkΛ(k)− (rn + 1) log

{
eN

n(rn + 1)

∏
p|n

p1/(p−1)

}
− log n.

Lemma 3. ∑
n≤x

1

n

∏
p|n

p
1
p−1.c log x

where

c =
∏
p

(
1 +

p
1
p−1 − 1

p

)
= 2.4061....

Proof.

Let s > 1. Using Rankin’s trick we get

∑
n≤x

1

n

∏
p|n

p
1
p−1 ≤ xs−1

∞∑
n=1

1

ns

∏
p|n

p
1
p−1

= xs−1
∏
p

(
1 +

1

ps−1/(p−1)
+

1

p2s−1/(p−1)
+ · · ·

)

= xs−1
∏
p

1 + p−s
(
p

1
p−1 − 1

)
1− p−s

= xs−1ζ(s)f(s)

where

f(s) =
∏
p

(
1 + p−s

(
p−1/(p−1) − 1

))
→ c, for s→ 1.

Now we chose s = 1 + (log x)−1.

Q.E.D.

We are now able to find a lower bound for
∑
δn,x(G).

Proposition 2.

∑
n≤x

δn,x(G) ≥ −ceγN log x

x

(
1 + o(1)

)
where c is as in lemma 3 and o(1)→ 0 for x→ +∞ and x2/N → 0.
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Proof.

We have

∑
m≤x

rm
∑

k≤x/m

Λ(k)

k
+
∑
m≤x

rm
∑
k|m

Λ(k)

≤
∑
n≤x

dn +
∑
n≤x

(rn + 1) log

{
eN

n(rn + 1)

∏
p|n

p1/(p−1)

}
. (4)

Let I =
∑
n≤x

rn. Since t→ t log 1/t is concave, we easily see that

∑
n≤x

(rn + 1) log

{
eN

n(rn + 1)

∏
p|n

p1/(p−1)

}
≤ (I + x) log

eNS

I + x
(5)

where

S =
∑
n≤x

1

n

∏
p|n

p1/(p−1).c log x (6)

by lemma 3. On the other hand, taking into account∑
k≤T

Λ(k)

k
∼ log T − γ + o(1)

∑
k|m

Λ(k) = logm

and
∑
φ(n)rn < N , we find

∑
m≤x

rm
∑

k≤x/m

Λ(k)

k
+
∑
m≤x

rm
∑
k|m

Λ(k) =
(

log x− γ + o(1)
)
I +O

(N log log x

x

)
. (7)

Substitution of (5), (6) and (7) into (4) yields(
log x− γ + o(1)

)
I +O

(N log log x

x

)
≤
(∑
n≤x

δn,x(G)
)

+ (I + x) log
ceN(log x)

(
1 + o(1)

)
I + x

+ x log x

or

(I + x)

(
− γ + o(1) + log

x(I + x)

ceN(log x)
(
1 + o(1)

))+O
(N log log x

x

)
≤
(∑
n≤x

δn,x(G)
)
x
(

log x+ γ + o(1)
)
.

8
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Since the minimum of

t 7→ t

(
− γ + o(1) + log

xt

ceN(log x)
(
1 + o(1)

)), t ≥ x

is ∼ ceγx−1 log x, the last displayed line yields

∑
n≤x

δn,x(G) ≥ −ceγN log x

x

(
1 +o(1)

)
+O

(
x log x+

N log log x

x

)
= −ceγN log x

x

(
1 +o(1)

)
.

Q.E.D.

We have the following corallaries:

Corollary 1.

For any x ≥ 1 and for any positive integer n ≤ x we have

|δn,x(G)| ≤ xh(G) + ceγ
N log x

x

(
1 + o(1)

)
.

Corollary 2.

Let us assume that N → +∞ so that

h(G) = o(N),
logN/h(G)

h(G)
→ 0.

Then for any

x ≤

√
ceγ

2
N/h(G) log

N

h(G)

and for any n ≤ x we have

|δn,x(G)|.N

√
2ceγ

h(G)

N
log

N

h(G)

9
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§4 Proof of theorem 1.

For a non-negative integer s and for a real x ≥ 1, let Ts(x) be the set of positive square-

free integers n having s prime factors and satisfying the inequality φ(n) ≤ x
∏
p|n

log p. Let

f be a multiplicative function; in what follows we repeatedly use

∑
n∈Ts(x)

f(n) =
1

s

∑
p∈T1(x)

f(p)
∑

m∈Ts−1(xp/ log p)

f(m).

Lemma 4.

For x→ +∞ we have

∑
n∈Ts(x)

1 ∼ x(log x)s−1

s!2
;

∑
n∈Ts(x)

∏
p|n

log p ∼ x(log x)2s−1

s!(2s− 1)!
;

∑
n∈Ts(x)

φ(n) ∼ x2(log x)2s−1

2s!(2s− 1)!
.

Proof.

If s = 1 our claim follows from the Prime Number Theorem. Let us assume s > 1 and

the formulas held for s− 1. Then

∑
n∈Ts(x)

1 ∼ 1

s

∑
p∈T1(x)

x log p
p (log x− log p)s−2

(s− 1)!2

∼ x

(s− 1)!s!

s−2∑
h=0

(
s− 2

h

)
(−1)h(log x)s−2−h

∑
p/ log p≤x

(log p)h+1

p
.

Using again the Prime Number Theorem we obtain

∑
n∈Ts(x)

1 ∼ x(log x)s−1

s!2

s−1∑
h=0

(
s

h+ 1

)
(−1)h =

x(log x)s−1

s!2
.

10
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Similarly,∑
n∈Ts(x)

∏
p|n

log p ∼ 1

s

∑
p∈T1(x)

(log p) ·
x log p

p (log x− log p)2s−3

(s− 1)!(2s− 3)!

∼ x

s!(2s− 3)!

2s−3∑
h=0

(
2s− 3

h

)
(−1)h(log x)2s−3−h

∑
p/ log p≤x

(log p)h+2

p

∼ x(log x)2s−1

s!(2s− 3)!

2s−3∑
h=0

(
2s− 3

h

)
(−1)h

h+ 2
=
x(log x)2s−1

s!(2s− 1)!
.

The last asymptotic equality is proved similarly.

Q.E.D.

Proof of theorem 1.

Let 0 < r < N be two integers which tend to +∞ so that

r/N → 0,

√
N logN

r
→ 0.

Let also G ∈ Z[x] of degree < N and height h = h(G), vanishing at 1 with multiplicity

r1 ≥ r = εN and at primitive n-th roots of unity with multiplicity rn = Nθn/φ(n). Then

we have
∑
θn ≤ 1 and

ε,
log 1/ε

Nr2
→ 0.

Taking into account log
(
N
M

)
≤M log(eN/M) and

∑
p|n

(log p)/(p− 1) ≤ log(2 log n) (n > 1)

we obtain from proposition 1∑
p|n

θn/p log p ≤ φ(n)
h(g)

N
+ (θn + n/N) log

6 log n

θn + n/N
, n > 1. (8)

We take the sum of these inequalites over the set Ts(x), where x� ε−1(log 1/ε)1−s tends

to ∞ and s is a fixed positive integer. Taking into account the asymptotic equalities of

lemma 4, we obtain∑
n∈Ts(x)

∑
p|n

θn/p log p.
x2(log x)2s−1

s!(2s)!

h

N

+

( ∑
n∈Ts(x)

(θn + n/N) log
6 log n

θn + n/N

)
+O

(
x2(log x)2s/N

)
.

11
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Since x 7→ x log 1/x is concave for x > 0, the sum on the right gives the following contri-

bution∑
n∈Ts(x)

(θn + n/N) log
6 log n

θn + n/N

≤
(
As(x) +O(x2(log x)2s−1/N

)
log

6x(logx)s

As(x) +O(x2(log x)2s−1/N)

where As(x) =
∑

n∈Ts(x)

θn. Therefore, from

∑
n∈Ts(x)

∑
p|n

θn/p log p =
∑

p∈T1(x)

(log p)As−1

(x log p

p− 1

)

we obtain

∑
p∈T1(x)

(log p)As−1

(x log p

p− 1

)
≤ x2(log x)2s−1

s!(2s)!

h

N

+
(
As(x) +O(x2(log x)2s−1/N

)
log

6x(log x)s

As(x) +O(x2(log x)2s−1/N)
+ o(1). (9)

From now on we assume h = o(Nr2 log 1/r). We claim that

s!ε

(log 1/ε)s

∑
n∈Ts(x)

∏
p|n

log p.As(x) (10)

provided that x� ε−1(log 1/ε)−s. Since A0(x) = θ0 ≥ ε, the previous assertion holds for

s = 0. Let s > 1 and assume that (10) holds for s− 1. Then, if x� ε−1(log 1/ε)−s,

s!ε

(log 1/ε)s−1

∑
n∈Ts(x)

∏
p|n

log p.
∑

p∈T1(x)

(log p)As−1

(
x

log p

p− 1

)
.

Substituting in (9) we get

s!ε

(log 1/ε)s−1

∑
n∈Ts(x)

∏
p|n

log p

.
{
As(x) + o

(
(log 1/ε)−1

)}
log

7(log 1/ε)s

ε
{
As(x) + o

(
(log 1/ε)−1

)} + o(1).

12
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The left hand side of the last line is O(1) by lemma 4, therefore we find

s!ε

(log 1/ε)s−1

∑
n∈Ts(x)

∏
p|n

log p.As(x) log 1/ε

and (10) follows. Let now xs = csε
−1(log 1/ε)1−s where cs is a constant which will be

chosen later. The lower bound (10) for As−1 gives

∑
p∈T1(xs)

(log p)As−1

(xs log p

p− 1

)
&

(s− 1)!ε

(log 1/ε)s−1

∑
p∈T1(xs)

(log p)
∑

n∈Ts−1

(
(xs log p)/(p−1)

)∏
q|n

log q

=
s!ε

(log 1/ε)s−1

∑
n∈Ts(xs)

∏
p|n

log p

∼ cs
(2s− 1)!

log 1/ε.

Substituting this into (9) we obtain

cs
(2s− 1)!

log 1/ε

.
c2s

2 · s!(2s− 1)!
· h log 1/ε

Nε2
+
(
As(xs) + o(1)

)
log

7(log 1/ε)s

ε
(
As(xs) + o(1)

) + o(1).

We sum the last inequality over the set of positive integers s ≤ k, where k is fixed. Since

t 7→ t log 1/t is concave and
∑
As(xs) < 1, we find

( k∑
s=1

cs
(2s− 1)!

)
log 1/ε.

( k∑
s=1

c2s
2 · s!(2s− 1)!

)
· h log 1/ε

Nε2
+ log 1/ε

and

h&Nε2
{( k∑

s=1

cs
(2s− 1)!

)
− 1

}/( k∑
s=1

c2s
2 · s!(2s− 1)!

)
Putting

cs = 2s!

{ k∑
s=1

s!

(2s− 1)!

}−1
we obtain our assertion.

Q.E.D.

13
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Remark.

Forgetting error terms, the inequalities (8) can be rewritten as

N−1h(G) ≥ φ(n)−1
{∑

p|n

θn/p log p− θn log 1/θn

}
, n ≥ 1.

Let S be the set of sequences (θn)n≥1 of non-negative real numbers, satisfying θn = 0 for

all sufficiently large n and
∑
θn ≤ 1. Let F :S → R defined by

F
(
(θn)

)
= max

n

1

φ(n)

{∑
p|n

θn/p log p− θn log 1/θn

}
.

We shall show that for any sufficiently large k ∈ N there exists εk > 0 such that

inf
(θn)∈S
θ1≥ε

F ≤
{ k∑
s=1

s!

(2s− 1)!

}
ε2, ∀ε ≤ εk.

i.e. the lower bound obtained from (8) for h(G) is the best possible one.

Let k ≥ 2 such that

ck =
k∑
s=1

s!

(2s− 1)!
> 1.

Let also θ1 = ε and θn = s!ε
(log 1/ε)s

∏
p|n

log p− ck
ε2

log 1/ε
φ(n), if n ∈ Ts(xs) for some s ≤ k − 1;

0, otherwise

where

xs =
s!(log 1/ε)1−s

εck
.

Then 0 ≤ tn ≤ ε (the last inequality can be checked by direct computation; indeed the

function

(t1, . . . , ts) 7→
s!ε

(log 1/ε)s

s∏
h=1

log th − ck
ε2

log 1/ε

s∏
h=1

(th − 1), th ≥ 2

has a maximum which is ≤ ε if ε is sufficiently small and if ck > 1 or s > 1). Using lemma

4, ∑
n∈Ts

θn =
s!ε

(log 1/ε)s

∑
p∈Ts(xs)

∑
p|n

log p− ckε
2

log 1/ε

∑
p∈Ts(xs)

φ(n)

∼ s!

(2s− 1)!ck
− s!

2(2s− 1)!ck
∼ 1

ck
· s!

2(2s− 1)!

14



Polynomials with prescribed vanishing at roots of unity.

and so
∑
n

θn ≤ 1, if ε is sufficiently small. Therefore (θn) ∈ S. Assume now n ∈ Ts(xs)

for some s ≤ k − 1; then:∑
p|n

θn/p log p− θn log 1/θn ≤
∑
p|n

(s− 1)!ε

(log 1/ε)s−1

(∏
q|np

log q
)

log p

− s!ε

(log 1/ε)s−1

∏
p|n

log p+ ckε
2φ(n) = ckε

2φ(n).

If, instead, n is square-free with s distinct factor, but n 6∈ Ts(xs),∑
p|n

θn/p log p− θn log 1/θn ≤
∑
p|n

(s− 1)!ε

(log 1/ε)s−1

(∏
q|np

log q
)

log p

=
s!ε

(log 1/ε)s−1

∏
p|n

log p

≤ s!ε

xs(log 1/ε)s−1
φ(n) = ckε

2φ(n).

Therefore, in any case F
(
(θn)

)
≤ ckε2.

§5 Proof of theorem 2.

We shall use our lower bounds for the heights proved in proposition 1 to obtain a good

upper bound. The keys are the two following lemmas.

Lemma 5.

Let V be a vector space of finite dimension n spanned by v1, . . . , vn and let h be an

arbitrary real function defined on V \{0}. Let also

V = V0 ⊃ V1 ⊃ · · · ⊃ Vk 6= {0}

a family of decreasing subspaces. Put di = dimVi−1 − dimVi and

hi = inf
V \Vi

h.

Then

min
s=1,...,n

h(Gs) ≤
1

dimVk

{
n∑
s=1

h(vs)−
k∑
i=1

dihi

}
.

15
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Proof.

Comparing dimensions, we can assume the vectors vs arranged so that vs 6∈ Vi for

i = 1, . . . , k and d1 + · · · + di−1 < s ≤ d1 + · · · + di. Therefore for any s in the previous

range we have h(vs) ≥ hi. This gives

d1+···+dk∑
s=1

h(vs) ≥ d1h1 + · · ·+ dkhk

and our claim follows since n− (d1 + · · ·+ dk) = dimVk.

Q.E.D.

Let now D > d ≥ 0 be two integers and let F0 ∈ Q[x] be a polynomial of degree d.

We consider the vector space V of dimension n = D − d defined by

V = {G ∈ Q[x], degG < D, F0|G}.

Then, for any polynomial H of degree < n and co-prime with F , the subspace

W = {G ∈ V, H|G}

has dimension n − degH. As before, we fix a basis G1, . . . , Gn of V and we consider an

arbitrary real function h defined on V\{0}.

Lemma 6.

Let l be a non-negative integer and let F1, . . . , Fl ∈ Q[x] be polynomials of degrees

d1, . . . , dl and assume F0, . . . , Fl pairwise co-prime. Let also e1, . . . , el be positive integers

such that m = e1d1 + · · ·+ eldl < n = dimV and let

φi: {1, . . . , ei} → R, i = 1, . . . , l

be decreasing real functions satisfying

min
G∈V, F e−1

i
||G
h(G) ≥ φi(e), e = 1, . . . , ei; i = 1, . . . , l.

16
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Then we have

h(Gs) ≤
1

n−m

{
n∑
s=1

h(Gs)−
l∑
i=1

ei∑
e=1

diφi(e)

}
.

Proof.

We introduce a total order ≺ on the set

Λ = {(i, e) ∈ N×N, e = 1, . . . , ei, i = 1, . . . , l}

of cardinality k = e1 + · · ·+ el putting

(i, e) ≺ (j, f)⇐⇒ φi(e) > φj(f)

Let ψ be the increasing bijection ψ: Λ → [1, k]; since φi is decreasing, ψ(i, ·) is increasing

for any i. For i ∈ {1, . . . , l} and s ∈ {1, . . . , k} we define x(i, s) as the last integer e ≤ ei

for which ψ(i, e) ≤ s †. We remark that ψ(i, x(i, s)) ≤ s. Let p = π ◦ ψ−1: [1, k] → [1, l],

where π: Λ → [1, l] is the projection. Then x(i, s) = x(i, s − 1) if i 6= p(s). If, instead,

i = p(i, s),

ψ(i, x(i, s)) = s > s− 1 ≥ ψ(i, x(i, s− 1)),

and we have x(i, s) ≥ x(i, s− 1) + 1. On the other hand ψ(i, x(i, s)− 1) < ψ(i, x(i, s)) = s,

hence ψ(i, x(i, s)− 1) ≤ s− 1 and so x(i, s− 1) ≥ x(i, s)− 1. We have proved

x(i, s) =

{
x(i, s− 1) , if i 6= is;
x(i, s− 1) + 1 , if i = is.

Let us define a family of subspaces (Vs)s=1,...,k of V putting

Vs =

{
G ∈ V,

l∏
i=0

F
x(i,s)
i |G

}
.

By our last remark, we have

V = V0 ⊃ V1 ⊃ · · · ⊃ Vk 6= {0}

† x(i, s) = 0 if ψ(i, e) > s for any s ≤ ei

17



Polynomials with prescribed vanishing at roots of unity.

and dimVs−1 − dimVs = degFp(s) = dp(s). Let G ∈ V\Vs; then there exist i ∈

{1, . . . , u} and e ≤ x(i, s) such that F e−1i ||G. Therefore, h(G) ≥ φi(e) ≥ φi(x(i, s)).

Since ψ(i, x(i, s)) ≤ s and ψ is order-preserving, (i, x(i, s)) � ψ−1(s) and, by definition,

φi(x(i, s)) ≥ φp(s)
(
π2 ◦ ψ−1(s)

)
, where π2 is the projection on the e-axis. This gives

h(G) ≥ φp(s)
(
π2 ◦ ψ−1(s)

)
. Now we apply lemma 5, taking into account

k∑
s=1

dp(s)φp(s)
(
π2 ◦ ψ−1(s)

)
=

l∑
i=1

ei∑
e=1

diφi(e).

Q.E.D.

Proof of theorem 2.

Let 0 < r < N be two integers which tend to +∞ so that

r/N → 0,

√
N logN

r
→ 0.

As a corollary of the main theorem of [BV], we can find n = N − r linearly independent

polynomials G1, . . . , Gn of degrees ≤ N and multiplicity at 1 at least r, such that

n∑
h=1

h(Gs) ≤ N2(r/N)2 log(N/r)
(
1 + o(1)

)
. (11)

Let ε = r/N , X = 1/(ε log 1/ε) and, for any prime p ≤ X, let rp be the integer part of

ε(log p)N

p log 1/ε
.

Our assumption on r and N implies

rp ≥
ε

log 1/ε
· logX

X
N − 1 ≥ ε2(log 1/ε)N − 1→ +∞.

We apply the last lemma with h = logarithmic height, l = π(X), Fi = Fp, di = dp = p−1,

ei = rpi (where pi is the sequence of primes) and

φi(e) = φp(e) = r
log p

p− 1
− e log

N

pe
− 2e− log p.

18
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Since the functions φp(e) are decreasing on 1, . . . , rp, lemma 3 gives an index l ∈ {1, . . . , n}

such that the corresponding polynomial G = Gl satisfies

h(G) ≤
(
n−

∑
p≤X

prp

)−1{ n∑
h=1

h(Gs)−
∑
p≤X

rp∑
e=1

(
r log p−pe log

N

pe
−2ep−p log p

)}
. (12)

Taking into account

x∑
i=1

i log i = (1/2)x2 log x+O(x2) for x→ +∞ and the Prime Number

Theorem, it follows that

∑
p≤X

rp∑
e=1

(
r log p− pe log

N

pe
− 2ep− p log p

)

=
∑
p≤X

{
rrp log p− 1

2
pr2p log

N

prp
+O

(
prp(rp + log p+ logN)

)}

≤
∑
p≤X

{
ε2

log 1/ε
· (log p)2

p
N2 − ε2

2(log 1/ε)2
· (log p)2

p

(
log 1/ε+ log log 1/ε

)
N2

+O

(
ε2

(log 1/ε)2
· (log p)2

p
N2 +

ε

log 1/ε
(log p)2N +

ε

log 1/ε
(log p)N logN

)}

=
ε2N2

2 log 1/ε

∑
p≤X

(log p)2

p
+R =

1

4
e2 log 1/ε

(
1 + o(1)

)
N2 +R (13)

where

R = O

(
ε2(log log 1/ε)N2

(log 1/ε)2

∑
p≤X

(log p)2

p
+

εN

log 1/ε

∑
p≤X

(log p)2 +
εN logN

log 1/ε

∑
p≤X

log p

)
.

Using Chebyshev inequalities and our assumptions on r and N we find

|R| � ε2(log log 1/ε)N2

(log 1/ε)2

∑
p≤X

(log p)2

p
+

εN

log 1/ε

∑
p≤X

(log p)2 +
εN logN

log 1/ε

∑
p≤X

log p

� ε2(log log 1/ε)N2 +N +
N logN

log 1/ε
= o
(
ε2(log 1/ε)N2

)
(14)

and

n−
∑
p≤X

prp = N − εN − εN

log 1/ε

∑
p≤X

log p = N
(
1− o(1)

)
. (15)

Combining (11), (12), (13), (14) and (15) we obtain our claim.

Q.E.D.
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