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Abstract
We analyze the implications of infectious diseases and social distancing in an extended SIS
framework to allow for the presence of stochastic shocks with state dependent probabilities.
Random shocks give rise to the diffusion of a new strain of the disease which affects both
the number of infectives and the average biological characteristics of the pathogen causing
the disease. The probability of such shock realizations changes with the level of disease
prevalence and we analyze how the properties of the state-dependent probability function
affect the long run epidemiological outcomewhich is characterized by an invariant probability
distribution supported on a range of positive prevalence levels.We show that social distancing
reduces the size of the support of the steady state distribution decreasing thus the variability
of disease prevalence, but in so doing it also shifts the support rightward allowing eventually
for more infectives than in an uncontrolled framework. Nevertheless, social distancing is an
effective control measure since it concentrates most of the mass of the distribution toward
the lower extreme of its support.
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1 Introduction

The dramatic effects of the ongoing COVID-19 pandemic have increased the awareness
among policymakers that infectious diseases may generate devastating economic, social and
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health consequences not only in developing countries but also in industrialized economies.
This has strongly revived the economic epidemiology literature which aims to understand the
workingmechanismsof disease containment policies, in the formof prevention and treatment,
and to assess which policy measure may be most effective in limiting disease spreading and
supporting economic activity (Philipson, 2000; Gersovitz & Hammer, 2004; Goenka & Liu,
2012; La Torre et al., 2020). In the aftermath of the COVID-19 pandemic an extensive
number of works has discussed the health-economic trade-off involved in social distancing,
which represents the most commonly used policy tool in the fight of the disease, in order to
determine its optimal intensity from a normative perspective (Acemoglu et al., 2021; Alvarez
et al., 2021; Eichenbaum et al., 2021; La Torre et al., 2021). Despite the unpredictability
that has characterized the evolution and diffusion of COVID-19, very limited have been
though the attempts to account for the implications of uncertainty of the effectiveness of
different disease control strategies (Federico & Ferrari, 2021; Hong et al., 2021; Shevchenko
et al., 2022; La Torre et al., 2023). Among these, only (La Torre et al., 2023) explore the
consequences of state-dependent probabilities, that is the possibility that the probability of
shock realizations depends on the level of disease prevalence. In particular, they assume that
shocks give rise to the diffusion of a new disease strain which affects both the number of
infectives and the growth rate of infection, showing that containment policies in the form
of treatment allows to effectively shift leftward the support of the steady state distribution
of disease prevalence improving thus long run epidemiological outcomes. However, they
focus on a very peculiar framework which cannot be directly compared to those traditionally
discussed in mathematical and economic epidemiology, since they abstract completely from
the compartmental framework typically employed in literature. Our goal in this paper is thus
to reassess (La Torre et al., 2023) conclusions in a standard mathematical epidemiological
context in which containment policy takes the form of social distancing, clarifying thus its
relation with the state-dependency of shock realizations and epidemiological outcomes.

We consider a susceptibles-infectives-susceptibles (SIS) framework in which individuals
contract the disease by socially interacting with others and in which recovery from infection
does not provide any sort of immunity (Kermack&McKendrick, 1927; Hethcote, 2000). This
setup is traditionally employed to describe the spread of a number of diseases such as the
seasonal flu and the common cold, but by abstracting from issues associated with temporary
immunity it can also be used to characterize in a simplistic and intuitive way other diseases
such as COVID-19 (La Torre et al., 2021). Typical SIS dynamics are affected by random
shocks which as in La Torre et al. (2023) determine the diffusion of a new strain of the disease
affecting the evolution of infectives both additively (i.e., the number of infectives increase
without passing through the social interactions channel) andmultiplicatively (i.e., the average
biological characteristics of the pathogen causing the disease change, and in particular the
overall infectivity rate increases while the recovery rate decreases). We analyze the long run
epidemiological outcomewhich is characterized by a stochastic steady state represented by an
invariant distribution of disease prevalence supported on positive levels of infections. In this
context we analyze how social distancing implemented in a feedback form to automatically
respond to changes in the number of infectives affects the shape and spread of the steady
state distribution over its support (Gori et al., 2022).We show that social distancing may have
a priori ambiguous long run effects on epidemiological outcomes, since on the one hand it
reduces the variability of disease prevalence by shrinking the size of the support of its steady
state distribution, and on the other hand it allows for more infections by shifting its support
rightward. Nevertheless, social distancing is an effective control measure since it increases
the probability of lower disease prevalence levels by concentrating most of the mass of the
distribution toward the lower extreme of its support.
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Our paper relates to two different branches of the economics literature. We contribute
to the field of economic epidemiology by analyzing the effectiveness of automatic social
distancing in stochastic compartmental SIS framework in which the probability of shock
occurrence is endogenous and state-dependent, showing its implications on the steady
state prevalence distribution (Goldman and Lightwood, 2002; Chakraborty et al., 2010;
Goenka et al., 2014). Indeed, social distancing has been extensively discussed in deter-
ministic compartmental models and stochasticity has been considered in non-compartmental
settings, while the role of social distancing in stochastic compartmental contexts has not
been investigated yet. Methodologically, we contribute to the literature employing iter-
ated functions systems (IFS) in economics applications by analyzing a nonlinear IFS with
state-dependent probabilities (SDP), characterizing a nonlinear IFSSDP (Montrucchio &
Privileggi, 1999; Mitra et al., 2003; Mitra & Privileggi, 2009; La Torre et al., 2015). To
the best of our knowledge, all IFS explored thus far, both with and without state-dependent
probabilities, take an affine form and nonlinearities in the IFS along with the complica-
tions that they give rise to have never been specifically explored. Clearly, the paper most
closely related to ours is La Torre et al. (2023)’s which focuses on the role of treatment
in an affine IFSDP considering how the monotonicity properties of the state-dependent
probability function affect the invariant distribution. We distinguish from them since we
analyze the implications of social distancing in a nonlinear IFSSDP and we explore how
non-monotonicity properties of the state-dependent probability function affect long run
epidemiological outcomes.

The paper proceeds as follows. Section2 briefly recalls some basic concepts from the IFS
theory that are useful in our later analysis. Section3 discusses our purely epidemiological
model without disease containment policies in order to clarify the impact of state-dependent
probabilities on the steady state outcome. Section4 introduces social distancing in our
benchmark framework to assess the effects of containment measures on the support and
the characteristics of the invariant distribution. Section5 numerically compares the steady
state distribution of disease prevalence without and with social distancing to clarify the
implications of the state-dependency of the shocks probability. Section6 presents conclud-
ing remarks and proposes directions for future research. The proofs of our Technical results
are instead postponed to Appendix A.

2 Fractal transforms

In recent years a lot of work has been done in the area of Fractal Transforms (FT) and their
application to mathematical modeling in different domains. In general the action of a fractal
transform T on an element u of the complete metric space (X , d) can be summarized in
the following steps: (i) It first produces a set of spatially-contracted copies of u, (ii) It then
modifies the values of these copies bymeans of suitable mappings, (iii) Finally, it recombines
these altered copies by means of an operator to produce the image element.

One well known family of fractal transforms is the definition of Iterated Function System
(IFS). The notion of IFSwas firstly introduced by Barnsley et al. 1988 andHutchinson (1981)
and then extended in different contexts (see (Kunze et al., 2012), and the references therein).

Given a compact metric space (X , d), an N -map Iterated Function System (IFS) on X ,
w = {w1, . . . , wN }, is a set of N contractionmappings on X , i.e.,wi : X → X , i = 1, . . . , N ,
with contraction factors ci ∈ [0, 1). It can be proved that under these assumptions the
following set-valued mapping ŵ defined on the space H (X) of nonempty compact subsets
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of X :

ŵ (S) :=
N⋃

i=1

wi (S) , S ∈ H (X) .

is a contraction on the complete metric space H (X) endowed with the classical Hausdorff
distance h defined as:

h (A, B) = max

{
sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}
.

This result implies the existence and uniqueness of a fixed point A such that ŵ (A) = A.
Moreover, A is self-similar, that is, it is the union of distorted copies of itself and it is also
attracting, that is, for any B ∈ H (X), h

(
A, ŵt B

) → 0 as t → ∞.
Another well known definition of fractal transform is the one defined by means of iterated

function system with (constant) probabilities (w,p). It is composed by an N -map IFSwwith
associated probabilities p = {p1, . . . , pN }, ∑N

i=1 pi = 1. It can be proved that the Markov
operator defined by ν(S) = (Mμ)(S):

ν (S) = (Mμ) (S) =
N∑

i=1

piμ
(
w−1

i (S)
)

.

is a contractionmapping on the spaceM (X) composed by all probabilitymeasures on (Borel
subsets of) X with respect to the Monge-Kantorovich distance defined as follows: For any
pair of probability measures μ, ν ∈ M (X), we have

dM K (μ, ν) = sup
f ∈Lip1(X)

[∫
f dμ −

∫
f dν

]
,

where Lip1 (X) = { f : X → R : | f (x) − f (y)| ≤ d (x, y)}. These assumptions imply the
existence of a unique attracting measure μ̄ ∈ M (X).

The definition of IFS with state-dependent probabilities is also a fractal transform which
extends the above definitions. Within this framework, the probabilities pi are no longer
constant but they are are state-dependent, i.e., pi : X → [0, 1] such that:

N∑

i=1

pi (x) = 1, for all x ∈ X .

The result is an N -map IFS with state-dependent probabilities (IFSSDP). The Markov
operator M : M (X) → M (X) associated with an N -map IFSSDP, (w,p), is defined as:

ν (S) = Mμ (S) =
∑

i

∫

w−1
i (S)

pi (x) dμ (x) , (1)

where μ ∈ M(X) and S ⊂ X is a Borel set.
It can be proved that the operator M as defined in Eq. (1) maps M (X) to itself. Under

appropriate conditions, the above Markov operator can be contractive with respect to the
Monge-Kantorovich metric (see also La Torre et al., 2018a).

Theorem 1 [Elton, 1987; Barnsley et al., 1988] Suppose that there is a δ > 0 so that
pi (x) > δ for all x ∈ X and i = 1, 2, . . . , N and suppose further that the moduli of
continuity of the pi s satisfy Dini’s condition (see Elton, 1987; and Barnsley et al., 1988).
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Then there is a unique stationary distribution μ̄ for the Markov operator. Furthermore, for
each continuous function f : X → R,

1

t + 1

t∑

i=0

f (xi ) →
∫

X
f (x) dμ̄ (x) .

Theorem 1 can be used to show the following result.

Corollary 1 Suppose that the IFSSDP {w, pi } satisfies the hypothesis of Theorem 1. Then the
support of the invariant measure μ̄ of the N-map IFSSDP (w,p) is the attractor A of the
IFS w, i.e.,

supp μ̄ = A.

Therefore the invariant measure μ satisfies the following equation

μ (S) =
∑

i

∫

w−1
i (S)

pi (x) dμ (x) ,

for any subset S of X . This equation shows how the invariant measure can be obtained by
combining different distorted copies of itself. This justifieswhy the invariantmeasure is a self-
similar object. These basic concepts related to the theory of IFSSDPwill be useful to derive the
steady state equilibrium and understand its characteristics in our economic-epidemiological
model.

3 The benchmarkmodel

We present first the epidemiological framework abstracting from containment policies in
order to clarify the implications of our modeling approach, while the role of containment
policies in the form of social distancing will be discussed in the next section. We extend a
basic SIS setting to allow for random shocks to give rise to the diffusion of a new disease
strain characterized by different biological characteristics with respect to the extant pathogen.
The diffusion of a new disease strain generates thus two effects: on the one hand it yields new
infections without passing through the social interactions channel, and on the other hand it
changes the average biological characteristics of the pathogens responsible for the disease.

According to a standard single-strain SIS epidemiological model (Kermack & McK-
endrick, 1927), at any point in time the constant population (normalized to unity for the sake
of simplicity), N ≡ 1, is composed by infectives, It , and susceptibles, St : 1 = St + It .
Susceptible individuals may become infected through contacts with infectives, while infec-
tives naturally recover from the disease and become susceptibles again. The dynamics of the
two groups is determined by the speed of recovery, δ > 0, and the rate of contact, ϑt > 0,
where the contacts between infectives and susceptibles occur randomly through the follow-
ing matching function: ϑt = αSt It , where α > 0 measures the average number of contacts
required for infection to effectively take place (i.e., the infectivity rate). Therefore, the disease
dynamics can be summarized as follows:

St+1 = St + δ It − αSt It

It+1 = It + αSt It − δ It

We now consider the effects of random shocks which determine the diffusion of a new
disease strain, whose occurrence is subject to state-dependent probabilities. Consistent with
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the recent COVID-19 experience which has shown that when the disease is widely circulating
within the population itmay not be possible to keep track of the number of individuals infected
by different disease strains but we can only track the overall number of infectives, we add
together in the same infectives group all individuals infected by different strains (La Torre et
al., 2023). The shock term zt , can take one of two values, 0 or r > 0 with probability p(It ) or
1− p(It ) respectively, that is disease prevalence determines the likelihood of the realization
of the shock. The diffusion of a new disease strain affects the epidemiological dynamics as
follows:

St+1 = St + (1 − γ zt ) δ It − (1 + βzt ) αSt It − θ zt St

It+1 = It + (1 + βzt ) αSt It − (1 − γ zt ) δ It + θ zt St

The discovery of a new disease strain has two major effects. (i) It generates some infections
without passing through social contacts channel, that is some susceptibles become infectives
even if they do not get in contact with individuals infected by the extant strain. (ii) It also
modifies (on average) the biological properties of disease, and in particular we assume that
it increases its infectivity rate and decreases its recovery rate. The parameters θ > 0, β ≥ 0
and γ ≥ 0 measure the extent to which the shock affects susceptibles, infectivity and recov-
ery, respectively. Therefore, random shocks affect epidemiological dynamics both additively
(through the θ zt term) and multiplicatively (through the βzt and γ zt terms).

By exploiting the fact that 1 = St + It , we can analyze the dynamics of one group only,
say infectives, which is given by the following expression:

It+1 = [
1 − (1 − γ zt ) δ

]
It + (1 + βzt ) α (1 − It ) It + θ zt (1 − It )

= − (1 + βzt ) α I 2t + [
1 − (1 − γ zt ) δ + (1 + βzt ) α − θ zt

]
It + θ zt , (2)

where {zt }∞t=0 is a Bernoulli process such that, at each date t , zt = 0 with probability p (It )

and zt = r with probability 1 − p (It ). Note that, if β = 0, the new disease strain does not
affect the infectivity rate, which remains entirely deterministic. If γ = 0, it is the speed of
recovery which remains deterministic, while if γ = 1

r the new strain generates permanent
infections (i.e., infectives never recover from it and thus never return being susceptibles).

By borrowing from the IFS literature (Kunze et al., 2012), it is possible to characterize
the random dynamics in (2) in terms of an IFSSDP as follows:

It+1 =
⎧
⎨

⎩

w1 (It ) = −α I 2t + (1 − δ + α) It w. prob. p (It )

w2 (It ) = − (1 + βr) α I 2t + [
1 − (1 − γ r) δ

+ (1 + βr) α − θr ] It + θr
w. prob. 1 − p (It ) .

(3)

Note that the range of the lower mapw1 for I ∈ [0, 1] is the interval [0, 1 − δ], which, having
0 as its lower endpoint, in principle allows for the elimination of the infection. Instead, the
lower endpoint of the range of the upper map w2 for I ∈ [0, 1] is θr > 0, so that repeated
(stochastic) occurrences of novel strains of the disease renders the infection endemic.

Tedious algebra allows us to prove the following result, which determines the parameter
conditions required for the model to be well behaved and for the epidemic dynamics to
converge to a long run attractor. Specifically, according to Theorem 1 and Corollary 1, for (3)
to have a unique compact attractor on which an invariant limiting distribution is supported,
the two maps w1 (I )and w2 (I ) must be strictly monotone and contractive, while the state-
dependent probabilites p (I ) an 1− p (I ) must be Lipschitz and bounded away from 0, i.e.,
0 < p (I ) < 1 must hold for all 0 ≤ I ≤ 1. For the sake of simplicity, in the following
Proposition 1 (and similarly in Proposition 2 under social distancing) we will seek conditions
for the attractor to be contained in the interval [0, 1].
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Proposition 1 Assume that

0 < α < min {δ, 1 − δ} , and (4)

0 < γ <
αβ + θ

δ
. (5)

Then, both maps wi in the IFS (3) are strictly increasing, contractive, and the attractor of the
system is a subset of the space X = [0, 1] provided that either one of the following conditions
holds:

αβ + γ δ ≤ θ and 0 < r ≤ min

{
1

γ
,

1 − δ − α

αβ − γ δ + θ

}
or (6)

αβ + γ δ > θ and 0 < r ≤ min

{
1

γ
,

1 − δ − α

αβ − γ δ + θ
,

δ − α

αβ + γ δ − θ

}
. (7)

If r = 1
γ

, the largest fixed point of the higher map w2 in (3) turns out to be I st
2 = 1; as

the largest fixed point of the lower map w1 in (3) is I st
1 = 0, in this case the trapping region

of the system becomes the full interval [0, 1].
If, in place of (5), it holds γ = 0, conditions (4) and (5) boil down to

αβ ≤ θ and 0 < r ≤ 1 − δ − α

αβ + θ
or (8)

αβ > θ and 0 < r ≤ min

{
1 − δ − α

αβ + θ
,

δ − α

αβ − θ

}
. (9)

The proof of Proposition 1 is presented in Appendix A. Note that the second inequality
in all conditions (6), (7), (8) and (9) are nontrivial, as, together with conditions (4) and (5),
or if γ = 0, allow for positive values of r . It is also worth noticing that when r = 1

γ
, the

coefficient − (1 − γ r) δ in the expression of the higher map w2 in (3) cancels out, so that the
speed of recovery under the shock zt = r becomes zero; in this case, the fixed point of the
higher map w2 turns out to be I st

2 = 1 and the trapping region of the system becomes the full
interval [0, 1], allowing for the full population to be infected (see the proof of Proposition 1
in Appendix A).

Unfortunately, in general the nonlinearity of our IFSSFPmakes it not possible to explicitly
characterize in a meaningful way the support of the invariant measure and thus we cannot
determine analytically the range or any other measure of variability of the steady state dis-
tribution, thus we will need to rely on numerical analysis to understand the relation between
state-dependent probabilities and the invariant measure (see Sect. 5). However, it may be
useful to consider a special case in which this can be done. Indeed, whenever r = 1

γ
the

support of the invariant measure is the the full interval [0, 1], from which it is clear that the
uncontrolled epidemic dynamics may result in a prevalence distribution allowing for both
the extreme full eradication and full endemicity outcomes, along with intermediate outcomes
characterized by partial endemicity.

4 The role of social distancing

We now analyze the effectiveness of containment policies in reducing the spread of the
infectious disease. We focus on social distancing (i.e, lockdown, physical distancing, travel
bans)which by limiting contacts between individuals allows to reduce the effective infectivity
rate, α̃. Specifically, we consider a situation in which the intensity of social distancing is
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automatically changed according to the level of disease prevalence, thus public policy takes
a feedback form responding directly to the change in the number of infectives. A similar
setup has been recently employed to describe from a positive perspective the implementation
of lockdown measures during the first COVID-19 wave in a number of countries (Gori et al.,
2022). Consistent with real world experiences, we assume that social distancing becomes
stronger when disease prevalence increases, such as the effective infectivity rate decreases
with the number of infectives, α̃ (It ) with α̃′ < 0. For the sake of analytical tractability we
consider the following functional form: α̃ (It ) = α

It
, which leads to the following dynamics

for disease prevalence:

It+1 = [
1 − (1 − γ zt ) δ

]
It + (1 + βzt )

α

It
(1 − It ) It + θ zt (1 − It )

= [
1 − (1 − γ zt ) δ − (1 + βzt ) α − θ zt

]
It + (1 + βzt ) α + θ zt ,

which suggests that, different from our benchmarkmodel in which disease incidence depends
on the interactions between susceptibles and infectives, St It = (1 − It ) It , the implemented
policy measures make disease incidence depend only on the number of susceptibles, St =
1 − It . Therefore, by automatically responding to the level of disease prevalence, social
distancing allows to limit the epidemic spreading through its effects on disease incidence,
which does not grow any longer more than proportionally with prevalence (as in the case of
an uncontrolled epidemic) but it grows proportionally with it.

In this context under social distancing, both maps in the IFSSDP become affine:

It+1 =
⎧
⎨

⎩

w1 (It ) = (1 − δ − α) It + α w. prob. p (It )

w2 (It ) = [
1 − (1 − γ r) δ − (1 + βr) α − θr

]
It

+ (1 + βr) α + θr
w. prob. 1 − p (It ) .

(10)

Note that the range of the lower map w1 for I ∈ [0, 1] now is a smaller subset than the range
[0, 1 − δ] of w1 in the IFSSDP (3) without containment policies: now it is [α, 1 − δ], that
is, its lower endpoint is strictly bounded away from 0. Similarly, the lower endpoint of the
range of the upper map w2 for I ∈ [0, 1] now is larger than the lower endpoint of the same
range for w2 in the IFSSDP (3): in fact, (1 + βr) α + θr > θr .

The following proposition states that the IFSSDP (10) works fine for our purposes under
substantially the same conditions used in Proposition 1 for the spontaneous (without social
distancing measures) epidemic dynamics; this is a useful property when it comes to compar-
isons between dynamics in the scenarios without and with containment measures. In fact,
only the weak inequalities in some of the conditions in Proposition 1 need to become strict
in order for the maps w1 and w2 in (10) to be strictly increasing.

Proposition 2 Assume that

0 < α < min {δ, 1 − δ} . (11)

If, moreover,

0 < γ <
αβ + θ

δ
, 0 < r ≤ 1

γ
and r <

1 − δ − α

αβ − γ δ + θ
, (12)

then, both maps wi in the IFS (3) are strictly increasing, contractive, and the attractor of the
system is a proper subset of the space X = [0, 1]; specifically, it is contained in the trapping
region

[
I st
1 , I st

2

] =
[

α

α + δ
,

α + (αβ + θ) r

α + δ + (αβ − γ δ + θ) r

]
, (13)
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where I st
1 , I st

2 are the fixed points of the maps w1 and w2 in the IFSSDP (10) respectively.
The interval in (13) is nontrivial as I st

1 < I st
2 . Moreover, the lower map w1 is always steeper

than the upper map w2, w′
1 (I ) > w′

2 (I ) for all I ∈ [
I st
1 , I st

2

]
.

If r = 1
γ

, the largest fixed point of the higher map w2 in (10) turns out to be I st
2 = 1; in

this case the trapping region of the system becomes the interval
[
I st
1 , I st

2

] =
[

α
α+δ

, 1
]
.

If γ = 0, the three conditions in (12) boil down to the unique inequality

0 < r <
1 − δ − α

αβ + θ
, (14)

and the trapping region of the system becomes

[
I st
1 , I st

2

] =
[

α

α + δ
,

α + (αβ + θ) r

α + δ + (αβ + θ) r

]
. (15)

The proof of Proposition 2 is presented in Appendix A. Again, also under the containment
policy, if r = 1

γ
the coefficient − (1 − γ r) δ in the expression of the higher map w2 in (10)

cancels out, so that the speed of recovery under the shock zt = r becomes zero; therefore,
as it is clear from the expression of I st

2 in (13), also under the containment policy, the fixed
point of the higher map w2 becomes I st

2 = 1 and the trapping region of the system is
[
I st
1 , I st

2

] =
[

α
α+δ

, 1
]
, allowing for the full population to be infected.

Since under social distancing our IFSSDP is affine, in Proposition 2 we can explicitly
determine the support of the invariant measure but unfortunately the absence of a corre-
sponding result in Proposition 1 makes it not possible to compare the two outcomes. We can
though make an explicit comparison in the special case r = 1

γ
, where we have seen that the

steady state distribution has support on the full interval [0, 1] without social distancing and

support on its subset
[

α
α+δ

, 1
]
under social distancing. Social distancing thus allows to reduce

the size of the support reducing thus the variability of disease prevalence, but in so doing it
also shifts the support rightward suggesting that the steady state may be characterized by a
larger number of infectives compared to the purely uncontrolled epidemiological scenario.
However, in order to understand whether social distancing effectively helps in improving the
long run epidemiological outcome we need to analyze also where most of the mass of the
distribution is locatedwithin the support, and this is exactly the goal of our numerical analysis
in the next section. Note that despite the fact that these conclusions have been derived from a
peculiar case of our general model, they are well illustrative of the results that we will present
through our numerical simulations.

5 Numerical simulations

In this section we apply a Maple algorithm1 that approximates successive iterations of the
Markov operator (1), based on Algorithm 1 in La Torre et al. (2019), always starting from
the uniform density μ0 (I ) ≡ 1

I st
2 −I st

1
, in order to perform some numerical simulations with

the purpose of comparing how the (approximations of the) invariant distributions generated
by our IFSSDPs differ without [for the IFSSDP (3)] and with [for the IFSSDP (10)] social
distancing under the same set of parameters’ values. We shall keep the same values

α = 0.1, δ = 0.4, β = 1, γ = 1, θ = 1 and r = 0.614 (16)

1 The detailed code is available upon request.
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Fig. 1 Initial uniform density over
[
I st
1 , I st

2
]
(left), 1st (mid) and 6th (right) iterations of our Algorithm to

approximate the Markov operator (1) associated to the IFSSDP (3) (top) or (10) (bottom) for θ = 1, α = 0.1,
δ = 0.4, β = 1, γ = 1 and r = 0.614 when p (I ) = 0.8I + 0.1

in all simulations while we shall consider different state-dependent probabilities associated
to the IFS. Note that the parameters’ values in (16) satisfy conditions (4), (11) and (5) of
Propositions 1 and 2, as well as all inequalities in conditions (6) and (12), with r strictly less

than min
{
1
γ
, 1−δ−α

αβ−γ δ+θ

}
= 1−δ−α

αβ−γ δ+θ
= 0.714. It turns out that the fixed point of w2 in the

IFSSDP (3) is I st
2 = 0.829, so that its trapping region is the interval [0, 0.829], while the

fixed point of w2 in the IFSSDP (10) is I st
2 = 0.834, so that its trapping region is the interval[

α
α+δ

,
α+(αβ+θ)r

α+δ+(αβ−γ δ+θ)r

]
= [0.2, 0.834]. This confirms what we have earlier discussed by

focusing on the peculiar r = 1
γ
case. As in both IFSSDPs the images of w1 and w2 do not

overlap, in both cases the supports of the invariant measure are Cantor-like sets.
In Fig. 1we assume that the state-dependent probability is affine and increasing: p (I ) =

0.8I + 0.1. Figure1a,b and c show the initial uniform density, μ0 (I ) ≡ 1
I st
2 −I st

1
= 1

0.829 =
1.206, the first and the sixth iterations of operator (1) associated to IFSSDP (3), when no
containment policy is implemented, respectively. Similarly, Fig. 1d,e andf show the initial
uniform density, μ0 (I ) ≡ 1

I st
2 −I st

1
= 1

0.834−0.2 = 1
0.634 = 1.577, the first and the sixth

iterations of operator (1) associated to IFSSDP (10), when the feedback containment policy
is implemented, respectively. By comparing the top and bottom right panels, we can conclude
that despite the fact that the support of distribution is rightward shifted under social distancing,
most of its mass is concentrated toward lower disease prevalence levels than the uncontrolled
epidemiological framework. Therefore, social distancing as a disease containment measure
works by reducing the variability of prevalence and concentrating its distribution in lower
levels.

In Fig. 2we assume that the state-dependent probability is affine and decreasing: p (I ) =
−0.8I +0.9. Figure2a, b and c show the initial uniform density, μ0 (I ) ≡ 1

I st
2 −I st

1
= 1

0.829 =
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Fig. 2 Initial uniform density over
[
I st
1 , I st

2
]
(left), 1st (mid) and 6th (right) iterations of our Algorithm to

approximate the Markov operator (1) associated to the IFSSDP (3) (top) or (10) (bottom) for θ = 1, α = 0.1,
δ = 0.4, β = 1, γ = 1 and r = 0.614 when p (I ) =-0.8I + 0.9

1.206, the first and the sixth iterations of operator (1) associated to IFSSDP (3), when no
containment policy is implemented, respectively. Similarly, Fig. 2d, e and f show the initial
uniform density, μ0 (I ) ≡ 1

I st
2 −I st

1
= 1

0.834−0.2 = 1
0.634 = 1.577, the first and the sixth

iterations of operator (1) associated to IFSSDP (10), when the feedback containment policy is
implemented, respectively. Comments similar to those discussed for the previous figure apply,
suggesting that the effects of social distancing in the context of increasing and decreasing
state-dependent probabilities do not substantially differ.

In Fig. 3 we assume that the state-dependent probability is hyperbolic and increasing:

p (I ) = 100I 2+0.001
100I 2+1

. Figure3a, b and c show the initial uniform density, μ0 (I ) ≡ 1
I st
2 −I st

1
=

1
0.829 = 1.206, the first and the sixth iterations of operator (1) associated to IFSSDP (3),
when no containment policy is implemented, respectively. Similarly, Fig. 3d,e and f show the
initial uniform density, μ0 (I ) ≡ 1

I st
2 −I st

1
= 1

0.834−0.2 = 1
0.634 = 1.577, the first and the sixth

iterations of operator (1) associated to IFSSDP (10), when the feedback containment policy
is implemented, respectively. Qualitatively speaking, our previous comments still apply, thus
the effects of social distancing do not change even accordingly to the linearity or nonlinearity
of the state-dependent probability function.

In Fig. 4we assume that the state-dependent probability is neither increasing nor decreas-
ing: it is oscillating according to p (I ) = 0.5 − 0.49 sin (1.809π I ); specifically, it is
decreasing for 0 ≤ I ≤ 0.276 while it is increasing for 0.276 < I ≤ I st

2 . Figure4a, b
and c show the initial uniform density, μ0 (I ) ≡ 1

I st
2 −I st

1
= 1

0.829 = 1.206, the first and

the sixth iterations of operator (1) associated to IFSSDP (3), when no containment policy
is implemented, respectively. Similarly, Figs. 4d, e and f show the initial uniform density,
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Fig. 3 Initial uniform density over
[
I st
1 , I st

2
]
(left), 1st (mid) and 6th (right) iterations of our Algorithm to

approximate the Markov operator (1) associated to the IFSSDP (3) (top) or (10) (bottom) for θ = 1, α = 0.1,

δ = 0.4, β = 1, γ = 1 and r = 0.614 when p (I ) = 100I2+0.001
100I2+1

Fig. 4 Initial uniform density over
[
I st
1 , I st

2
]
(left), 1st (mid) and 6th (top right)—or 5th (bottom right)—

iterations of our Algorithm to approximate the Markov operator (1) associated to the IFSSDP (3) (top) or (10)
(bottom) for θ = 1, α = 0.1, δ = 0.4, β = 1, γ = 1 and r = 0.614 when p (I ) = 0.5 − 0.49 sin (1.809π I )
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μ0 (I ) ≡ 1
I st
2 −I st

1
= 1

0.834−0.2 = 1
0.634 = 1.577, the first and the fifth2 iterations of opera-

tor (1) associated to IFSSDP (10), when the feedback containment policy is implemented,
respectively. Also in this case our previous comments apply, suggesting that our conclusions
are robust even to the monotonicity property of of the state-dependent probability function.

All our numerical examples support the conclusion that social distancing is an effec-
tive disease containment measure since it concentrates most of the mass of the steady state
distribution of disease prevalence toward lower levels. This is true independent of the charac-
teristics of the state-dependent probabilities, and if the state-dependent probability function is
increasing or decreasing, linear or nonlinear, monotonic or non-monotonic, the same conclu-
sion applies. It is also possible to show that this result is robust to different parametrizations,
thus we can safely confirm the importance and validity of social distancing as a disease
containment strategy.

6 Conclusions

Following theCOVID-19 pandemic a growing need to understand how to control the spread of
infectious diseases has emerged. Several works have contributed to this debate from different
perspectives but the attempts to analyze the role of random shocks in this context have been
limited, often abstracting from the traditional compartmental framework typically employed
in literature. Our paper aims to fill this gap by discussing how shocks associated with the
diffusion of a new disease strain affect epidemiological dynamics and the effectiveness of
social distancingmeasureswhenever the probability of shocks realization depends on the level
of disease prevalence. In particular, we analyze how the properties of the state-dependent
probability function affect the long run epidemiological outcomewhich is characterized by an
invariant probability distribution supported on a range of positive prevalence levels. We show
that social distancing reduces the size of the support of the steady state distribution decreasing
thus the variability of disease prevalence, but in so doing it also shifts the support rightward
allowing eventually for more infectives than in an uncontrolled framework. Nevertheless,
social distancing is an effective control measure since it concentrates most of the mass of the
distribution toward the lower extreme of its support.

To the best of our knowledge, this is the first paper analyzing how the features of the state-
dependent probability function affect long run epidemiological outcomes in a traditional
SIS-type compartmental framework. In order to discuss the implications of social distancing
in intuitive terms we have assumed that its policy intensity is automatically determined to
respond to changes in disease prevalence. Clearly, this setup has precluded us from the pos-
sibility to analyze from a normative perspective the optimality of social distancing measures,
which is instead a critical point to effectively support policymaking. Extending the analysis
along this direction is left for future research.

2 In this specific example we stopped the algorithm at the fifth iteration as afterward it yielded unreliable
results. Specifically, as, after each iteration, the algorithm concentrates most of the mass on too few, too small
intervals in the pre-fractal—especially around 0.5—while keeping the measure a density (it does not handle
singular atomic probabilities), in the sixth iteration it fails to record the highest peak, which should be (much)
higher than the one clearly visible in Fig. 4f.
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Appendix A Proofs

Proof of Proposition 1 Wefirst show that under condition (4) both inequalities 0 < w′
1 (I ) < 1

and 0 ≤ w1 (I ) ≤ 1 hold for all 0 ≤ I ≤ 1. First,w′
1 (I ) > 0 ⇐⇒ −2α I +1−δ+α > 0, and,

as I ≤ 1, a sufficient condition is that−2α+1−δ+α > 0 ⇐⇒ 1−δ−α > 0 ⇐⇒ α < 1−δ.
Next, w′

1 (I ) < 1 ⇐⇒ −2α I + 1 − δ + α < 1 ⇐⇒ −2α I − δ + α < 0, and, as I ≥ 0,
a sufficient condition is that −δ + α < 0 ⇐⇒ α < δ. Having just established that w1 (I )
is strictly increasing for all 0 ≤ I ≤ 1, w1 (I ) ≥ w1 (0) = 0 clearly holds whenever for all
0 ≤ I ≤ 1, while, similarly, w1 (I ) ≤ w1 (1) = −α + 1 − δ + α = 1 − δ < 1 holds as
well for all 0 ≤ I ≤ 1. Hence, condition (4) is sufficient for w1 (I ) to be strictly increasing,
contractive, and with values in the interval [0, 1 − δ] ⊂ [0, 1], which is a proper subset of
the interval [0, 1].

In order to allow the shock value r to be the largest possible, note that, as the upper map
w2 in the IFSSDP (3) is quadratic, it can have derivative either w′

2 (I ) = 0 or w′
2 (I ) = 1 at

most on one single point respectively; therefore, the two weak inequalities 0 ≤ w′
2 (I ) ≤ 1

are enough to establish that w2 is both strictly increasing and strictly contractive over the
whole interval [0, 1]. Thus, we now show that, if condition (5) holds as well, conditions (6)
or (7) are sufficient for 0 ≤ w′

2 (I ) ≤ 1 and 0 ≤ w2 (I ) ≤ 1 to hold for all 0 ≤ I ≤ 1. First,
w′
2 (I ) ≥ 0 ⇐⇒ −2 (1 + βr) α I + 1− (1 − γ r) δ + (1 + βr) α − rθ ≥ 0, and, as I ≤ 1, a

sufficient condition is that

−2 (1 + βr) α + 1 − (1 − γ r) δ + (1 + βr) α − rθ ≥ 0

⇐⇒ − (1 + βr) α + 1 − (1 − γ r) δ − rθ ≥ 0

⇐⇒ (αβ − γ δ + θ) r ≤ 1 − δ − α ⇐⇒ r ≤ 1 − δ − α

αβ − γ δ + θ
,

where in the last step we used condition (5) that guarantees that αβ − γ δ + θ > 0.
Next, w′

2 (I ) ≤ 1 ⇐⇒ −2 (1 + βr) α I + 1 − (1 − γ r) δ + (1 + βr) α − rθ ≤ 1 ⇐⇒
−2 (1 + βr) α I − (1 − γ r) δ + (1 + βr) α − rθ ≤ 0, and, as I ≥ 0, a sufficient condi-
tion is that − (1 − γ r) δ + (1 + βr) α − rθ ≤ 0 ⇐⇒ (αβ + γ δ − θ) r ≤ δ − α. Now,
if αβ + γ δ ≤ θ ⇐⇒ αβ + γ δ − θ ≤ 0, as r > 0 the last inequality is satisfied under
condition (4), which is equivalent to δ −α ≥ 0, so that the latter, together with both inequal-
ities in (6), are sufficient to guarantee that 0 ≤ w′

2 (I ) ≤ 1. Conversely, if αβ + γ δ > θ ,
(αβ + γ δ − θ) r < δ − α ⇐⇒ r < δ−α

αβ+γ δ−θ
must hold as well, so that, condition (7)

becomes sufficient for 0 ≤ w′
2 (I ) ≤ 1 to hold.

Having just established that w2 (I ) is strictly increasing for all 0 ≤ I ≤ 1, w2 (I ) ≥
w2 (0) = rθ > 0 for all 0 ≤ I ≤ 1, while, similarly, w2 (I ) ≤ w2 (1) = − (1 + βr) α + 1−
(1 − γ r) δ + (1 + βr) α − rθ + rθ = 1 − (1 − γ r) δ ≤ 1 holds as well for all 0 ≤ I ≤ 1
whenever 1 − γ r ≥ 0, that is, when r ≤ 1

γ
, which is the first term in curly brackets of the

last inequalities in both conditions (6) and (7). Hence, conditions (4) and (5), together with
either conditions (6) or (7), are sufficient forw2 (I ) to be strictly increasing, contractive, and,
as w2 (0) = rθ > 0, it has values in the interval

[
rθ, I st

2

] ⊂ [0, 1], where I st
2 ≤ 1 is the

largest fixed point of the higher map w2. If r = 1
γ
, it holds that w2 (1) = − (1 + βr) α +

1 − (1 − γ r) δ + (1 + βr) α − rθ + rθ = − (1 + βr) α + 1 + (1 + βr) α − rθ + rθ = 1,
that is, the largest (and only positive) fixed point of the higher map w2 becomes I st

2 = 1.
Thus, as w1 (0) = 0 is the largest (and only positive) fixed point of the lower map w1, when
r = 1

γ
the trapping region—containing the whole support of the invariant measure—of the

entire IFSSDP (3) turns out to be the full interval [0, 1].
If γ = 0, steps similar to those above yield conditions (8) and (9). �
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Proof of Proposition 2 Under condition (11)w′
1 (I ) = 1−δ−α > 0 certainly holds, while, as

α and δ are both positive,w′
1 (I ) = 1−δ−α < 1 holds aswell. Solving I = (1 − δ − α) I +α

immediately yields the fixed point of the lower map I st
1 = α

α+δ
; clearly, 0 < I st

1 < 1.
w′
2 (I ) > 0 because w′

2 (I ) = 1 − (1 − γ r) δ − (1 + βr) α − θr > 0 ⇐⇒ 1 − δ +
γ δr − α − βαr − θr > 0 ⇐⇒ 1 − δ − α > (αβ + θ − γ δ) r , where the last inequality
is equivalent to the third inequality in condition (12), which, in turn, allow for positive
values of r under conditions (11) and the first inequality in (12). w′

2 (I ) = 1− (1 − γ r) δ −
(1 + βr) α − θr < 1 ⇐⇒ − (1 − γ r) δ − (1 + βr) α − θr < 0 ⇐⇒ − (1 − γ r) δ −
(1 + βr) α − θr < 0, where the last inequality holds as, by the second inequality in (12),
− (1 − γ r) ≤ 0, and the other two terms in the LHS are strictly negative, so that w′

2 (I ) < 1.
Solving I = [

1 − (1 − γ r) δ − (1 + βr) α − θr
]

I + (1 + βr) α + θr one easily gets I st
2 =

α+(αβ+θ)r
α+δ+(αβ−γ δ+θ)r . To show that I st

2 = α+(αβ+θ)r
α+δ+(αβ−γ δ+θ)r > α

α+δ
= I st

1 , note that

α + (αβ + θ) r

α + δ + (αβ − γ δ + θ) r
>

α

α + δ

⇐⇒ α (α + δ) + (α + δ) (αβ + θ) r > α (α + δ) + α (αβ − γ δ + θ) r

⇐⇒ α (αβ + θ) r + δ (αβ + θ) r > α (αβ + θ) r − γ δr ⇐⇒ δ (αβ + θ) r > −γ δr ,

where the last inequality is definitely true. Moreover,

α + (αβ + θ) r

α + δ + (αβ − γ δ + θ) r
≤ 1 ⇐⇒ α + (αβ + θ) r ≤ α + δ + (αβ − γ δ + θ) r

⇐⇒ δ − γ δr = (1 − γ r) δ ≥ 0,

where the last inequality holds according to the second inequality in (12). Specifically, if
r = 1

γ
then I st

2 = 1. Therefore, 0 < I st
1 < I st

2 ≤ 1, with I st
2 = 1 when r = 1

γ
. �
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