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ABSTRACT Tourists spend a lot of effort in planning itineraries when organizing a trip. This is a complex
activity that involves selecting the places to visit and dealing with a number of temporal issues to generate a
schedule for the visit. In the paper we propose an architecture for a recommender that suggests personalized
tourist itineraries and a personalized time schedule. The approach takes into account (i) user preferences
for the places to be included in the itinerary and (ii) several temporal dimensions concerning both temporal
information and constraints (e.g., opening hours, time for visiting each place, time to move among places)
and time-related user preferences (e.g., number of days of the visit, preferring a dense schedule vs having
a lot of free time, the variety of the types of attractions during a day of visit). The approach is based on a
combination of genetic algorithms and temporal reasoning. It focuses on generating temporally annotated
itineraries starting from a ranked list of places to be included. Thus, our solution is designed as a module
that can be coupled with any system recommending places to visit. The design started from a user study
we carried out to analyze the temporal dimensions to take into account, and to find relationships between
such dimensions and users’ personality traits, and led to the development and evaluation of a prototypical
implementation that generates personalized itineraries for the city of Turin.

INDEX TERMS Itinerary recommendation, recommender system, temporal information.

I. INTRODUCTION
Tourists spend a lot of effort in planning itineraries when
organizing a trip, starting from the selection of the places
they would like to visit and then scheduling the visits based
on a variety of temporal constraints and preferences such as
the opening times of the places, the visiting time for each
attraction, the time needed to move among places, the time
to rest and have meals.

Nowadays, there is a plethora of information available
on websites, travel guides and magazines concerning tourist
attractions. This massive volume of information makes it a
challenging and cumbersome task for tourists to process all
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potential options. Thus, developing solutions that enhance
the use of such information and help users make decisions
based on their personal interests and constraints has become
essential [1].

Recommender Systems ‘‘produce individualized recom-
mendations as output or have the effect of guiding the user
in a personalized way to interesting or useful objects in
a large space of possible options’’ [2]. They have been
used to support people in decision-making processes in
different domains (e-commerce, movies, books, tourism).
In the context of tourism, to provide effective support,
a recommender system has to manage a large amount of
information about users, places and context, as well as to
take into account all the different aspects that can impact the
decision-making processes.
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More specifically, tourist recommenders should be able
to offer solutions for the itinerary planning problem [3],
which refers to the planning tasks for tourists interested in
visiting multiple points of interest (PoI in the rest of the
paper) with the objective of maximizing tourist profit. This
task is especially complex and challenging due to: (i) the
need to identify a set of attractions that are also aligned
with the traveller’s interests; (ii) the need to organize these
attractions as an itinerary compliant with the constraints to
move among places and limited time for touring; and (iii) the
need to plan for travelling, visiting and queuing times at the
attractions, where queuing times are dependent on the time of
the attraction visit. In particular, considering crowded hours
is crucial: neglecting to consider possible queuing times can
create a frustrating experience for travellers as they spend
a long time queuing instead of enjoying the attractions, and
possibly miss attraction visits in their itineraries due to these
queuing times exceeding their available touring time [4].

Hence, time is a crucial aspect to be managed in
recommenders for tourism, especially in the case of itinerary
recommendations [5], [6], [7]. In this case, to provide an
optimal user experience, it is crucial to consider also the user
preferences about all the temporal-related features a trip can
have. These features include travelling time, preference for
having a dense schedule or a lot of free time, preference
for visiting many places quickly or, at the opposite, visiting
fewer places in depth, preference for alternating the type
of places (e.g., museums, parks, . . . ), etc. However, time is
usually considered only as a constraint rather than an object
of user preference, thus not considering that the peculiar
needs of a person that can be very different from those of
another one. To our knowledge, very few works consider user
preferences on specific temporal dimensions: [8], [9] take
into account user preferences for the travelled distance, and
[10], [11] consider individual preferences for visit duration.
User preferences for all the temporal-related features of a trip
have not been considered in itinerary recommender systems
so far.

The aim of this paper is to fill this gap by proposing an
innovative approach and architecture to tackle the problem of
recommending personalized itineraries, taking into account
user preferences for all the temporal dimensions mentioned
above.

In particular, in order to cope with temporal informa-
tion and all the user constraints and preferences together,
we decided to design an approach that integrates genetic
algorithms and temporal reasoning: the former is in charge
of building candidate personalized itineraries which consider
the user preferences on temporal features, while the latter is
in charge of checking the temporal constraints in the itinerary
producing a detailed time schedule.

Genetic algorithms (GAs) are very suitable for the
problem we are facing, which can be seen as a constrained
optimization one. Recently, the adoption of evolutionary
algorithms has been considered in a number of works to deal
with the problem of generating and recommending touristic

itineraries [3], [12], [13], [14], [15]. A peculiarity of our
approach is that the temporal preference dimension will play
an essential role in the evaluation function of the genetic
algorithm and constraint satisfaction will be used to prune
itineraries that violate them and thus are not temporally
consistent.

In particular, we chose to adopt an approach based on
GA for two main reasons. First, it can deal in a simple,
natural and integrated way with the combinatorial nature
of the problem we are facing. Moreover, by varying the
fitness measure, it allows to experiment different ways of
combining temporally related user preferences. Second, the
approach is any-time, and thus it can generate some sort
of temporal recommendation even in a very short time and
with limited computational resources, being suitable for
assembling itineraries on the fly.

In the paper, we describe the architecture of the itinerary
recommender, its application in the design of a prototype, and
the evaluation of our approach. The main contributions of this
work can be summarized as follows:

• We propose a modular architecture that can be coupled
with any recommender that produces a ranked list
of places that are best suited for a given user. The
advantages of this choice as regards both the design and
evaluation of the approach will be discussed in detail.

• We take into account the temporal dimension in a
thorough manner, considering all the facets where time
can play a relevant role, both from an objective (time
related to places and routes, such as distances, opening
hours) and subjective point of view (user preferences
for a specific facet, i.e. preferences for specific opening
hours).

• Temporal information and reasoning is used in two
ways: on the one hand to check the temporal consistency
of itineraries and thus produce realistic time schedules;
on the other hand, to evaluate the suitability of an
itinerary for a user to provide personalized recommen-
dations.

• We performed a thorough user study to assess the
advantages produced by personalized temporal itinerary
recommendations.

A preliminary description of the work has been provided
in [16]; that paper, however, included a very preliminary test
with users and did not include the experiment discussed in
this paper.Moreover, the algorithm itself has been revised and
refined given the results of the preliminary evaluation of the
prototype. Section VI includes more detailed specifications
regarding this modification.

The paper is structured as follows. In the next Section,
we provide an overview of the relevant state-of-the-art
work. Section III includes an introduction to the proposed
recommender system, whose information requirements are
detailed in Section IV. We illustrate the design and imple-
mentation of our solution in Sections V and VI. Then,
Section VII introduces the prototype we developed and
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Section VIII provides information on the recommender
system evaluation. Finally, in the last part of this article,
we discuss the limitations of the work and possible directions
of improvement.

II. RELATED WORK
A. ITINERARY RECOMMENDER SYSTEMS
Several approaches in the literature recommend not only
single PoI but also a complete combination of a set of PoIs.
This can be done taking into account several features of the
path, such as efficiency (length and speed) [17], [18], but also
pleasantness [19], accessibility [20] and safety [21].
Many works on itinerary recommendation have the main

objective of recommending an itinerary that maximizes a
global profit/reward and can be completed within a specific
budget [22], [23], [24].

In recent years, many works have incorporated user
interests and/or specific preferences to personalize the
construction of itinerary [1], [3], [4], [25], [26], [27],
[28], [29], [30], [31]. Other works aim to recommend
itineraries that consider personalized requirements such as a
specific attraction visit sequence [32], mandatory attraction
categories [10] or group interest satisfaction [33], [34].
Managing time is very important in itinerary recom-

menders [5], but it is often seen as a constraint rather than
as an object of user preference, such as where they want to
stay or what time they want to go.

Of course, determining the proper visiting time of each
place and the proper transit time from one place to another
is fundamental for defining route goodness functions [35].
Techniques based on signal processing are proposed for
including time dimension in context-aware recommendation
tasks [36], [37], [38]. Other works, such as [39] and [40], aim
to first identify a set of interesting and popular attractions,
then construct an itinerary that comprises these attractions
using a variant of the Travelling Salesman Problem [41].
However, very few works consider user preferences on

temporal dimensions. We can cite for example [8] and [9],
that construct personalized itineraries optimizing attraction
popularity and user interests relative to the travelled distance,
and [10], [11] that recommend popular attractions tailoring
the visit duration based on user interest.

Apart from how time can be managed by the recom-
mendation algorithm, time itself can be considered as a
multidimensional aspect, with different facets as presented
in [42].

In the following, we describe which temporal dimensions
have been considered by some of the most relevant itinerary
recommenders in the literature.

Di Bitonto et al. [31] propose a method for generating
tourist itineraries in knowledge-based recommender systems.
The method is based on a theoretical model that defines
space-time relations among items of intangible cultural
heritage (called events) and on transitive closure computation
of the relations, that is able to construct chains of events.

The output is a sequence of attractions or spots to be visited,
filtered according to the tourist’s constraints (day of visit,
cost, and so on) specified in the request.

Yoon et al. [43] explicitly model both the available time
of the user and the staying time for each PoI included in the
itinerary.

Refanidis et al. [25] present an intelligent web-based
system aiming at making recommendations based on several
place-related features (like location, cost, availability, dura-
tion range, visiting time) and user-selected criteria, such as
visit duration and timing, geographical areas of interest and
visit profiling.

Lim et al. [10] propose an algorithm for recommending
personalized tours using PoI popularity and user interest
preferences, which are automatically derived from real-life
travel sequences based on geotagged photos. They consider
user trip constraints such as time limits. In our work, we also
reflect levels of user interest based on visit durations.

Fogli et al. [28] present a recommendation engine that
considers the user profile, the context of use, and the features
of the PoIs extracted from linked open data (LOD) sources,
and, in relation to time, total available time, travel time,
visiting time, opening time and distance between PoIs.

Cai et al. [29] propose an itinerary recommender system
with semantic trajectory pattern mining from geo-tagged
photos by discovering sequential PoIs with temporal infor-
mation (travel time, opening time) from other users’ visiting
sequences and preferences.

Taylor et al. [1] propose and formulate the TourMustSee
problem ( based on a variant of the Orienteering problem),
which incorporates a set of must-see PoIs into travel
itineraries, along with considerations of a starting/ending
PoIs and travel times between PoIs and visit durations at PoIs.

Zou et al. [44] propose a recommendation system that,
according to the requirements specified by its users, is capa-
ble of generating a few travel itineraries of distinct features
(e.g. the most appealing itinerary, the shortest itinerary or the
itinerary with the highest performance/price ratio).

Tenemaza et al. [3] consider several aspects in the recom-
mendations: the context of a tourist destination visited, lack
of updated information about PoIs, transport information,
weather forecast, available time, travel time and visiting time.
They present a mobile recommender system based on Tourist
Trip Design Problem (TTDP) (Time Depending Orienteering
Problem with Time Windows), which analyzes in real time
the constraints related to users and PoIs, and implements a
genetic algorithm.

Chen et al. [26] propose a framework to infer the user
interests and recommend personalized itinerary consisting of
PoIs, visit durations, visit sequence and total available time.

Ji et al. [45] address the problem of considering the
attractions’ spacial heterogeneity when creating personalized
trips. In their heuristic-based approach, an improved artificial
bee colony algorithm and a differential evolution algorithm
are adopted to generate itineraries, optimized according to the
visiting time duration.
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Erbil et al. [46] split the problem of creating multi-day trips
into two parts: the list of PoIs to be visited each day is first
created using agglomerative clustering, and then the lists are
ordered using a greeding approximation algorithm avoiding
PoIs from the same category to be placed next to each other.
In addition to the user preference for PoI categories, this
solution also considers the traveller’s pace and visiting effort.

Halder et al. [47] propose to use the Monte Carlo Tree
Search algorithm to design itineraries considering the user
interest, attraction popularity, visiting time and queuing at the
PoIs. To avoid non-optimal itineraries and reduce the solution
space, they also introduce a pruning technique.

Our solution differs from these existing works since it
produces personalised tourist itineraries taking into account
a wide range of time-related constraints (total available
time, free time, lunch breaks, transfer times, PoIs’ opening
hours, duration of the visits, busy hour avoidance) as well
as other user preferences (mandatory PoIs, variety of PoIs,
PoIs’ ranking, quantity of PoIs). According to our analysis,
no other work takes all these time-related features into
account altogether.

B. GENETIC-BASED RECOMMENDER SYSTEMS
Recently, the adoption of genetic algorithms has been
considered in a number of works to deal with the problem
of generating and recommending tourist itineraries. The
solutions proposed so far differ from each other in terms of
optimization objectives, parameter settings of the algorithm
used, and adoption of modules other than the genetic
algorithm.

One of the first works in which a genetic approach has
been used to solve the itinerary planning problem is that of
Chen et al. [12]. In their system, a list of recommended POIs
is produced through the item-based collaborative filtering
method, and then a genetic algorithm is adopted to find an
ordered set of tourism places given the total time available
and travel budget restrictions.

Karbowska-Chilinska and Zabielski [48] introduce time
windows in a genetic algorithm for route generation, ensuring
that visit schedules take into account the POIs’ opening and
closing times. Their approach maximizes the sum of the
profits associated to each location in the route.

Changdar et al. [49] adapt a generative algorithm to address
the Travelling Salesman Problem, which involves finding the
shortest path to visit a set of cities exactly once, starting
and ending the tour at the same place. Fuzzy total travel
time and cost are considered in their work. In [50], the same
authors address again this problem, extending it to multiple
salesmen by combining a genetic algorithm with the ant
colony optimization technique.

Wibowo and Handayani [14] include restaurant selection
in a genetic-based travel itinerary recommender. While their
algorithm overlooks user preferences, such as the desired
duration of the itineraries, it considers POIs’ opening hours,
scheduling selected restaurants at lunch and dinner time.

Yochum et al. [15] personalize tourist itineraries using
an adaptive GA based on the quantity of POIs present in
the solution, their popularity, overall rating, cost, and type
(mandatory or not). Similar to our work, they consider user
preference for multiple factors. However, POIs’ opening
hours and other time-related constraints (e.g., lunch breaks)
that could heavily impact the user’s ability to adhere to the
itinerary are not taken into consideration.

Qomariyah and Kazakov [51] use a GA, but only to
identify the set of destinations that best fit the travel duration
constraint and the user budget. A separate layer based on
Google Optimization Tools is employed to connect the
selected destinations into a single itinerary.

Some works accompany genetic algorithms with other
techniques. For example, Zheng et al. [13] combine a GA
with a different evolution algorithm to generate single-
day itineraries. In their system, tourist aesthetic fatigue,
associated to the POI visiting duration, and the sightseeing
value of attractions are both considered.

Tenemaza et al. [3] separate the itinerary recommendation
problem in two parts. In their work, a k-means algorithm
is first used to clusterize POIs depending on the number
of available visiting days, and then a genetic algorithm is
adopted to minimize the difference between the visiting
time and the total available time. The evaluation of feasible
itineraries also takes into account the violation of POIs’
opening hours, modeled as penalties.

Ghobadi et al. [52] also explore the concept of integrating
genetic algorithms with other techniques. They adapt a
hybrid algorithm, previously introduced by [53], to tackle the
multi-day trip planning problem. Their approach combines
a genetic algorithm and a variable neighborhood descent
algorithm to generate itineraries, focusing on preserving
diversity among the recommended POIs.

With respect to related works using genetic-based
approaches, we generate and evaluate itineraries while taking
into account both user preferences for a wide number
of contextual aspects and the imposition of time-related
constraints, such as the opening hours of POIs or the visit
durations, through a dedicated validation module. In our
algorithm the maximization or minimization of specific
time-related factors is not standardized. Instead, it adapts
based on user preferences, exerting differing levels of
influence on the resulting itinerary. Furthermore, when
recommending multi-day itineraries, we propose to consider
balance across the days, prioritizing itineraries that offer
a satisfying and attractive experience each day, without
favoring any day over the others.

III. ASSEMBLING A TEMPORAL ITINERARY
As we noted in the introduction, we propose to decouple
and serialize two aspects of the problem of generating
personalized itineraries:

1) Selecting items to be recommended. Generating
a-temporal recommendations, i.e., producing a ranked
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list of suggested PoIs that are most suitable for a given
user.

2) Itinerary construction. Building a temporal itinerary,
starting from the results of the previous phase.

We claim that this approach can have significant advantages.
First of all, it allows us to decouple two complex problems

that indeed rely on different information (knowledge) sources
and that in this way can be dealt with independently.

A second advantage is that in this way our itinerary
construction module can be coupled with any recommender,
based on any technology. The module, in fact, will only
assume that a ranked list of items is produced as an effect of
the first step, regardless of the fact that this list is generated
using collaborative or content-based filtering, knowledge-
based recommendations or other approaches.

A third advantage is that we can evaluate the approach that
generates the itineraries per se, independently of the selection
of the items that are of interest for the user. In our evaluation,
in particular, we will assume to have this list directly from
users, as some sort of ‘‘ground truth’’ which we do not expect
to play a confounding role in the evaluation of recommended
itineraries. Thus we can assess the ‘‘actual’’ advantages of the
approach.

Finally, the decoupling will allow us to exploit a number
of results and approaches from the literature on temporal
reasoning and temporal constraint solving.

IV. THE TEMPORAL KNOWLEDGE BASE
In this section we discuss the temporal dimensions that we
take into account in the generation of itineraries and we
analyze the structure of the temporal knowledge base. This
involves two different aspects, (i) temporal information about
the PoIs that will constitute the temporal knowledge base and
(ii) temporal information and preferences concerning the user
that will constitute the temporal user model.

A. TEMPORAL KNOWLEDGE ABOUT THE POINTS OF
INTERESTS
In this section, we discuss the information about PoIs which
is needed for generating the itineraries, analyzing how these
pieces of information can be made available and represented.

• Spatial coordinates of the PoI. Although this piece
of information is not strictly temporal, it is necessary
to compute the temporal distances between the PoIs.
Coordinates and temporal distances are easily available
using any of the map applications on the Internet.
They can provide different types of temporal distances
(walking, by bike, by car, by public transport). The
temporal distance between two PoIs can be represented
either as a precise numeric value t or as a pair [tmin, tmax]
representing the minimum and maximum distance.
We can also consider multiple temporal distances in
case the transfer between the point is performed on foot,
by car or by public transport.

• Opening hours for each PoI, for each day of the week.
Also, this piece of information is commonly available
on the Internet. In case it is not available, assumptions
can be made based on the type of PoI and the location
(e.g., typically museums in Italy are open 9-18 every
day but Mondays). Opening and closing times are then
expressed as points topen and tclose on the timeline.

• Crowdingmoment estimation across time and days. This
piece of information is not strictly necessary, as we shall
see, but can be used to optimize the itinerary, especially
in case a user prefers to avoid visiting places when there
are toomany people. Crowding estimations are available
on the Web for many PoIs. We consider three qualitative
values {low,medium, high} for crowding and then for
each day of the week we divide the opening time into
intervals for which crowding is low, medium or high.

• The time for visiting the PoI, expressed either as an aver-
age duration or as an interval [tmin, tmax] distinguishing
between minimum time for a quick view to a maximum
time for an extensive visit. Alternatively, the average
time visitors spend could be used, if available. Also in
this case the information is available for some PoIs or
can be estimated.

• Availability of services that may be important at some
times of the day (e.g., cafes, restaurants, . . .) and their
opening times.

• Moreover, each PoI is annotated with the type,
or category, of attraction (e.g., museum, park, historic
building, . . .).

B. TEMPORAL INFORMATION ABOUT THE USER AND
USER TEMPORAL PREFERENCES
Let us analyze now the pieces of temporal information that
we expect from the user for whom the recommendation
(itinerary) has to be generated. The pieces of information
below will constitute the temporal user model that will
be exploited by the algorithm for generating and ranking
itineraries and thus for providing personalized itinerary
recommendations.

• Time available for visiting the location for which
recommendations (itinerary) have to be generated.
We expect that the user provides information about the
day and time of arrival tstart and the day and time of
departure tend fromwhich we can determine the duration
of the visit (in hours, days, . . . ).

• User desire to carve out some free time during the trip,
if available. Indeed, a tourist may want to spend some
time in activities other than visiting PoIs (e.g., shopping,
relaxing). In this case, some free time will be introduced
in the recommended itinerary.

• User preference for the amount of time to be devoted
to the visit of each PoI. Some people may be interested
in visiting as many places as possible, devoting little
time to each visit, while others may prefer to visit fewer
PoIs but devote time to a detailed visit of each of them.
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This preference could also distinguish between different
types of PoIs and, for example, a user could express the
preference for a thorough visit of museums and a quick
visit to natural sites such as parks.

• User interest in visiting heterogeneous PoIs. If this
information is provided by the individual, the recom-
mender system will include different types of PoIs in
the itinerary (e.g., natural parks, historical museums,
religious places, etc.).

• User preferences about the minimization of transfer
times. Some people may prefer to spend as little time
as possible travelling from one place to another, while
for others it may not be so important, preferring, for
example, to travel long distances if a place is particularly
interesting.

• User preferences about crowding, if available. In partic-
ular, it could be interesting and important to have this
piece of information for users who suffer from staying in
crowded places. If not available, the planner will prefer
less crowded times of visit over crowded ones and it
will anyway warn the user in case an itinerary includes
visiting crowded PoIs.

V. CHARACTERIZING TEMPORAL ITINERARIES AND
THEIR GENERATION
In this section we discuss the algorithm that generates a
ranked list of itineraries that are most suitable for a given user.
The approach relies on a genetic algorithm which exploits
constraint satisfaction in the evaluation process, as we will
clarify in the following section. Constraints, in particular,
are expressed as bounds on differences [54] which is thus
the formalism we adopted to represent all the temporal
information associated with an itinerary.

The input of the process is:
1) A ranked list

REC_ITEM = {⟨Item1,V1⟩, ⟨Item2,V2⟩, . . . ,

⟨Itemn,Vn⟩} of the PoIs as suggested by the recommen-
dation component, where:

• Each Itemi is a PoI;
• Vi ∈ [0, 1] is an evaluation of the suitability of
Itemi for the current user (anyhow it is produced).

The user can also specify a list of must see PoIs that
should be included in all the itineraries.

2) The starting tstart and ending point tend (date and time)
of the itinerary to be planned.

3) Temporal information about the PoIs, as discussed in
Section IV-B.

4) Temporal user information and possibly preferences,
as discussed in Section IV-B.

The genetic algorithm maintains a population formed by a
(ranked) set of valid itineraries:
Definition 1: A Population P is a ranked set:
P = {⟨It1, f (It1)⟩, ⟨It2, f (It2)⟩, . . . ⟨Itn, f (Itn)⟩, where:
• each Iti is a valid itinerary
• f (Iti) is its numeric evaluation

where an itinerary It is defined as follows:

Definition 2: An itinerary It a sequence of items:
It = ⟨⟨Item1, ts1, tf 1⟩, ⟨Item2, ts2, tf 2⟩, . . .

⟨Itemm, tsm, tfm⟩⟩ where
• each Itemx is a Place of Interest (PoI)
• tsx and tfx are the starting and ending time points of the
visit of Itemx .

Only the itineraries that are consistent with the temporal
knowledge base are maintained. In particular,
Definition 3: An itinerary
It = ⟨⟨Item1, ts1, tf 1⟩, ⟨Item2, ts2, tf 2⟩, . . . ⟨Itemm, tsm,

tfm⟩⟩

is valid if and only if it is temporally consistent, i.e., the
set of constraints at the following items are consistent:

• The visit of each item must be during the opening times
of the item itself
topen(Itemx) ≤ tsx
tfx ≤ tclose(Itemx)

• visit time for each Itemx is within the minimum and
maximum time specified by the temporal knowledge
base
min_visit_time(Itemx) ≤ tfx −

tsx ≤ max_visit_time(Itemx)
• time to move between consecutive items Itemi and Itemj
is greater than the transfer time
tsj − tfi ≥ time_distance(Itemi, Itemj)

• the starting time of the visit of the first item is greater
than the starting point of the itinerary
ts1 ≥ tstart

• the end time of the visit of the last item is less than the
ending point of the itinerary
tfm ≤ tend

This means that the time interval [tsx , tfx] allocated to
each itemx must be consistent with its opening times and
with the time needed to visit it, and that for each pair of
consecutive items the time to move from one to the following
must be consistent with transfer times. These constraints can
be expressed as bounds on differences on the variables tsi,
tfi; thus validity can be checked with any temporal solver
working on bounds on differences. In this way the solver can
also produce consistency intervals for each variable and thus
a schedule for the visit tsi, tfi of each item. The approach in
[55] allows us to perform this check in a very efficient way.

For each valid itinerary It the evaluation fIt is computed
taking into account the two following aspects:

• the evaluation of the items included in the itinerary, as it
is produced by the recommender and thus tailored to the
individual user;

• the user temporal preferences.
This is part of the genetic algorithm and will be discussed in
detail in the following section.

VI. A GENETIC ALGORITHM FOR ITINERARY
CONSTRUCTION
Genetic algorithms are a subclass of evolutionary algorithms,
inspired by natural evolution theories and biological genetic.
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The idea of evolution in GAs is actualized through the
adoption of generations that follow each other until a desired
solution is found. Each generation - or population - is
composed by both individuals (solutions) of the previous
generation and offsprings. Indeed, members of a generation
can reproduce to obtain a new individual which is the result
of two individuals merged together [56].
Our genetic algorithm:

• Starts with an initial population of candidate valid
itineraries generated in a random way with an element
from REC_ITEM . Each itinerary includes a number of
days, based on the information provided by the user on
the duration of the visit. The itineraries are ranked.

• Iterates making the population evolve across genera-
tions. A new population is generated by computing
descendants of the current one (crossover) and intro-
ducing mutations. The itineraries that are not valid are
removed.

• Stops when the evaluation of the best-ranked itineraries
stabilizes (or after a maximum preset number of
generations).

The set of complete valid itineraries that are produced can be
presented to the user as an ordered set of suggestions.

Depending on the available information on the user, differ-
ent factors are taken into account by the algorithm, affecting
the evaluation of individuals. Hence, our algorithm’s output
is an itinerary which is personalized according to user
preferences. The adoption of a genetic algorithm makes
our recommender system flexible, since it allows to select,
combine together and balance multiple user preferences
instead of optimizing one factor a time.

In order to determine what characteristics the desired
solution should have, each factor is assigned a score Upref
in the range [0, 1] that represents the user preference for that
specific feature. If no information is available for a certain
factor, its value is automatically set to 0 unless specified
differently, implying that the factor will not influence the
algorithm output.

The user model concerning temporal preferences is thus
characterized by the five dimensions mentioned above,
each one with an associated value Uprefi ∈ [0, 1]:
preferences for (i) dense vs sparse itineraries (number of
PoIs in the itinerary, Upref1), (ii) having free time (Upref2),
(iii) avoiding visiting PoIs during crowded times (Upref3),
(iv) heterogeneous itineraries (Upref4) and (v) minimizing
transfer times (Upref5). In the prototype we directly elicited
such values from the user. Alternatively, it is possible to
derive them from related information the recommender might
already have. For example, we carried out a user study that
showed how preferences for temporal dimensions can be
determined based on users’ personality traits [42].
Let us now summarize how our system works, introducing

the various steps that compose the genetic algorithm and its
interaction with constraint solving.

First, the system receives information on the user’s date
and time of arrival and departure. For each visiting day,

some unavailable intervals are generated, including those for
nights, lunch breaks and free time, if the user prefers to have
some. In the latter case, the starting time and the duration of
free time intervals are chosen randomly, in order to ensure
variety between individuals in the initial population.

A. INITIALIZATION
The first generation is produced randomly to ensure sufficient
diversity and, thus, to avoid premature convergence to a
local optimum. Whenever a new individual (itinerary) has
to be produced, the algorithm picks up PoIs from the list
REC_ITEM taking into account their evaluation, i.e., PoIs
that have a better evaluation have a higher probability of
being selected: starting from the first one, the algorithm tries
to place each attraction on the timeline in the first available
interval. If the user explicitly chooses some PoIs that s/he
wants to visit (must see PoIs), these are added to the top of the
list, so that their probability of being inserted in the itinerary
is higher. When no more attractions can be appended to the
itinerary, the itinerary is considered complete.

At this point (i) temporal constraint checking is performed
and (ii) if an itinerary is valid, it enters the first generation
and its fitness is evaluated.

B. FITNESS EVALUATION
In order to quantify their goodness, each individual It in a
population is assigned a fitness value:
f (It) = fPoI (It) + fTpref (It)

which is the sum of two parts referring respectively to the
PoIs included in It (fPoI (It)) and to the evaluation of temporal
preferences on It (fTpref (It)).

• The evaluation fPoI (It) of the PoIs in the itinerary
according to the ranking in the list REC_ITEM . In this
way, an itinerary containing PoIs that have a higher
ranking receives a better evaluation. In particular,
we consider two factors: (i) the average of the evaluation
of the PoIs in the itinerary and (ii) the percentage ofmust
see PoIs in the itinerary:

fPoI (It) = average(Vitem1 ,VItem2 , . . .VItemm )

∗
number of must see PoIs in It
number of must see PoIs

(1)

where Vitemi is the evaluation of the PoI Itemi.
Initially, the evaluation of the POIs in the itinerary
did not include must see POIs, which were integrated
after a preliminary evaluation of the algorithm presented
in [16]. Indeed, feedback from several participants in
the user tests, provided through open-ended responses,
highlighted that various POIs they had designated
as highly interesting to visit were not included in
the recommended itineraries. Consequently, we placed
greater emphasis on their preferences for favourite POIs
by introducing the selection ratio ofmust see POIs in the
evaluation function fPoI (It).
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We also considered the possibility of pruning the
itineraries whose evaluation fPoI (It) is below a threshold.

• The evaluation fTpref (It) of the itinerary according to the
user temporal preferences. Each type of preference is
weighed depending on how important it is for the user.
Each type of preference is considered separately and
thus
fTpref (It) = 65

i=1(fTprefi (It) ∗ Uprefi) where each
fTprefi (It) corresponds to a temporal preference and
is computed (using a number of heuristic evaluation
criteria discussed below) as in the following five sub-
items, and Uprefi is the corresponding user model value
for that temporal preference, represented on a scale
[0, 1].

– The itineraries are ranked according to the number
of PoIs they contain; this ranking contributes
positively to the evaluation of an itinerary if the
user expressed a preference for maximizing the
number of PoIs during the visit.
fTpref1 (It) =

number of PoIs in It
total number of PoIs

– Similarly, itineraries are ranked as regards the
amount of free time and also in this case the
ranking can contribute positively or negatively
based on the user preference.
fTpref2 (It) =

sum of duration of free time intervals in It
duration of It

– The allocation of PoI visits to busy hours can
negatively impact the evaluation if the user prefers
to avoid crowding.
fTpref3 (It)=

number of PoIs visted during crowded times in It
number ofPoIs in It

– The heterogeneity of PoIs contributes positively if
the user prefers this type of itinerary, negatively
otherwise.
fTpref4 (It)= number of different types of PoIs in It

– Furthermore, transfer time is taken into account
and if the user prefers its minimization, the
itineraries are assigned different ranking values
based on the sum of transfer times.
fTpref5 (It) =

sum of transfer times in It
duration of It

Notice that this corresponds to a global analysis of
transfer time during the whole itinerary and does
not necessarily imply the minimization of each
transfer.

Finally, in case the visit includes multiple days, we avoid
fitness imbalances between the different days, calculat-
ing the fitness of the individual fIt as follows:

f (It) = tf −

√
6N
i=1(fi−µ)2

N where tf is the initial total
fitness of the whole individual, fi are the fitness values
of the single days of the itinerary, µ represents their
average and N is the number of days.

C. TEMPORAL CONSTRAINT CHECKING
Each time a new event is added to an individual or an
individual is modified, a validation module is used by the
system to check the validity of the temporal constraints.

An itinerary is temporally consistent if PoIs are open during
the whole duration of the planned visit, the duration itself
is within the minimum and maximum estimated visit time,
and the time to transfer from a PoI to the next one is greater
than the minimum transfer time. More precisely, a set of
constraints (bounds on differences between time points) is
created according to definition 3 based on the temporal
knowledge base and checked. This can be done efficiently
starting from the preprocessing of the constraints in the
temporal knowledge base exploiting the results in [55].

If the individual is valid, the constraint propagation
algorithm produces validity intervals for each time point in
the itinerary (starting and ending point of each item in the
itinerary). Thus when an itinerary is presented as a solution,
it carries on detailed temporal information (expressed as a
time interval on the timeline) on when the visit of each item
is scheduled.

D. ITERATION: PRODUCING A NEW GENERATION
The algorithm iterates producing subsequent generations
of the population of itineraries. Itineraries in the current
generation are selected and combined (crossover). Mutations
are introduced periodically. Let us analyze these steps inmore
detail.

1) SELECTION
After fitness values are computed for all the itineraries, the
system is ready to identify what individuals will be used to
generate the next population. Amating pool is produced using
the Roulette-wheel Selection Method that allows to obtain a
fitness proportionate selection of individuals. According to
this method, the probability p of selection for each individual
It of a population P results from the following formula:
pIt =

fIt
6N
j=1fj

where N is the number of individuals in the

existing population.

2) CROSSOVER
Two parents It1 and It2 are randomly selected from the
mating pool and, according to the probability defined by
the crossover rate, parents are copied in the next generation
or are merged to generate an offspring It3. This process
is repeated until a new complete population is obtained.
Temporal propagation and checking is performed on It3,
which enters the new population only if it is valid.

Crossover can be performed using various techniques,
differing in the way each individual is split and mated.
Different splits of It1 and It2 can be considered (e.g., split in
two parts, multiple split of each day at half, multiple split at
the end of each day, . . .) and consequently different strategies
for recomposing the parts in I3.
Two types of crossover have been tested to determine what

is the best for the proposed solution: a one-point crossover,
whose crossover point is represented by a single event at the
middle of the itinerary, and, for multi-day itineraries, also an
N-point crossover in which a crossover point for each day is
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selected. In our study, better results have been observed using
the one-point crossover.

3) MUTATION
Each new candidate itinerary can be subject to a mutation,
with a probability dictated by a mutation rate value. When
mutation if performed, a PoI is randomly selected from the
individual and is replaced by another PoI that has not yet
been included in the itinerary. Mutation covers an important
role in the generation of near-optimal solutions because it is
used to maintain genetic diversity in the population and thus
to avoid local minima [57]. Mutated individuals must pass the
temporal consistency check to enter the population.

After mutations are performed, fitness values are calcu-
lated for the itineraries in the new population and all the
steps of the genetic algorithm (except for Initialization) are
performed again until termination conditions are reached.

E. TERMINATION AND SOLUTIONS
The algorithm proceeds by producing subsequent gener-
ations. Two alternative strategies can be considered for
terminating the iterative production of new generations:
(i) deciding a-priori the number of iterations (generations)
to be produced, possibly tuning this number after some
experiments and (ii) iterating until the evaluation of the
best ranked itineraries in the population does not change
significantly from one iteration to the next one. In our
prototype we selected the first strategy.

At this point, a solution is presented to the user in the form
of a ranked list of the itineraries with best fitness.

F. TUNING
Alternative strategies can be adopted in various parts of
the algorithm: the optimal values for the crossover rate
and the mutation rate usually need to be determined by
trial and error. The choice of these parameters is essential
for the effectiveness of GAs [58]. Also the size of the
initial population and the number of iterations are factors
to be determined in advance. We performed this tuning
exploiting the prototype that will be described in the next
sections: several tests have been conducted to identify the
parameter values that best suit our system’s characteristics.
After executing the GA for over 20000 times, the following
optimal parameter setting was found (including also the type
of crossover, as explained in Section VI-D):

• crossover rate: 0.8
• mutation rate: 0.6
• number of iterations: 20
• first population’s size: 30
• crossover: one-point crossover for both single-day and
multi-day itineraries.

We do not claim these settings are optimal in general,
since further tests on other applications should be performed;
however, they represent useful guidelines for the further
development of our approach.

During the tuning process we also made a few experiments
with the heuristics for evaluating the temporal suitability of
itineraries and we chose those described in Section VI-B.

VII. PROTOTYPE
In order to evaluate our approach, we developed a prototype
which provides personalized itinerary recommendations for
the town of Turin through a web interface. The prototype
has been developed with two goals in mind: (i) making
experiments with alternative strategies and tuning the genetic
algorithm (see the discussion above) and (ii) performing an
overall evaluation of the approach (see Section VIII).

In order to populate the prototype with content, we devel-
oped a knowledge base with 30 PoIs in Turin, including
a variety of attractions (museums, parks, churches, historic
buildings, historic squares . . .).
We then collected all pieces of temporal information about

the PoIs producing a graph with the temporal distances
between each pair of PoIs. Walking distance was calculated
when both PoIs were in the city centre, while the average
transfer time by public transport was used in case of longer
distances. We then produced a temporal knowledge base with
the opening times, minimum and maximum visiting time for
each PoI, and a qualitative description (‘‘low’’, ‘‘medium’’,
‘‘high’’) of the average crowding for each PoI on each day of
the week. Finally, we associated with each PoI information
on the services available on site (coffee shop, restaurant, . . . ).
For the sake of simplicity, as well as to avoid possible bias due
to the specific method used to infer user preferences, in our
prototype the preference values for the temporal dimensions
are explicitly provided by users themselves (see Section VIII
for details).

The algorithm has been run on this knowledge base using
stereotypical users with different temporal preferences. The
only aim of this test was the tuning of the algorithm. In partic-
ular, the test allowed us to make choices regarding the initial
population and crossover and mutation strategies. Moreover,
thanks to this test we observed that after 20 iterations the
quality of the population (i.e., the evaluation of the best-
ranked itineraries) tended to stabilize.

After the tuning, the prototype was exploited for the user
evaluation that will be described in the next section.
Implementation details. Our genetic algorithm was imple-

mented using Python. Thus, we chose Flask, together with
Jinja2 template engine and standard Web technologies such
as HTML5 and CSS3, for the implementation of the web
interface.1

VIII. EVALUATION
With our evaluation, we aimed at empirically assessing
our idea that users prefer itinerary recommendations which
take into account their preferences on temporal dimensions
(namely: minimization of transfer times, maximization of

1The prototype (in Italian) is available at http://fabianavernero.eu.
pythonanywhere.com/.
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the number of PoIs per itinerary, maximization of the
heterogeneity among PoIs in a certain itinerary, inclusion
of free time slots, busy hours avoidance), in addition to
those regarding PoIs (including users’ preference for the
maximization of the number of must see PoIs per itinerary).
To this end, we decided to carry out user-centric research,
one of the three main types of general paradigms traditionally
used in the evaluation of recommender systems [59]. In line
with the idea that the ultimate goal of recommenders is to help
users make good choices [60], user-centric research allows to
gather insights about user needs and perceptions (as done for
example by [3] and [19]), and is often used also to compare
against baselines or alternative versions of a system (as done
for example by [1] and [22]). More specifically, we compared
three lists of recommendations, one generated based on the
aforementioned criteria, namely:

• PP+TP: user preferences for PoIs and temporal
dimensions.

and the other two generated through baseline approaches
which take into account different criteria, namely:

• PP: only user preferences for PoIs,
• PP+TS: user preferences for PoIs and a standard
distribution of interests for temporal dimensions.

For each recommended itinerary, we asked users to assess
several aspects, namely: organisation, selection of included
PoIs, and availability of free time, as well as to express an
overall rating and to state how likely they would be to follow
the proposed itinerary (acceptance).

Our approach assumes that user preferences for temporal
dimensions and PoIs are available to the recommendation
algorithm. For the purpose of our evaluation, we explicitly
collected such information from users. In particular, since the
automatic computation of user preferences for specific PoIs,
suitable to be included in recommended itineraries, is out
of the scope of this work, we decided to contextualize our
evaluation in the city of Turin, which we expected to be well
known to most of the people we could invite to participate
in the study, and to have users directly express their liking
for a selection of PoIs located in that city. Similarly, users
had to explicitly express their preferences for temporal
dimensions.

The evaluation was conducted online. Ethical approval for
this study was obtained from the bioethical committee of the
University of Turin on December 13th, 2022, with approval
protocol number: 0631962, issued on December 30th, 2022.

A. METHODOLOGY
1) HYPOTHESES
We hypothesize that itinerary recommendations which
take into account user preferences for contextual factors
(i.e., PP+TP) receive significantly higher evaluations than
itinerary recommendations which only include preferences
for PoIs (i.e., PP) or non-personalized contextual factors (i.e.,
PP+TS), as far as the overall rating, acceptance, organisation
and availability of free time aspects are concerned (H1).

On the other hand, we do not expect to observe significant
differences regarding the selection of PoIs, since this aspect
does not depend on the inclusion of preferences for contextual
factors (H2).

2) DESIGN
We adopted a within-subjects design, where the independent
variable is the recommendation type, with three possible
levels (PP, PP+TS, PP+TP). Thus, all participants received
recommendations of all three types. Notice that, for avoiding
order effects, we randomized recommendation types for each
participant.

3) PARTICIPANTS
Participants were recruited using snowball sampling, a non-
probability sampling technique2 which began with a con-
venience sample of a few participants selected among the
acquaintances of the authors. An invitation to take part
in the evaluation was distributed online, through social
media, mailing lists and personal messaging applications.
The invitation also contained the request to forward the
message to one’s own contacts, so as to help the authors in
finding other participants. Participants had to satisfy three
criteria:

• being aged 18 or more;
• being familiar with the city of Turin;
• having read and accepted an informed consent form,
through which they expressed their willingness to
participate in the evaluation.

Thanks to power analysis, we determined that 119 is the
minimum number of participants needed for statistically
significant results with α = 0.05, power = 0.90, and effect
size = 0.3. Our invitation was accepted by 144 people.
However, only 124 of them (hence, still a large enough
sample), aged from 20 to over 60 (54% in the 20-29 age range,
21% in the 30-39 age range, 14,5% in the 40-49 age range,
4,8% in the 50-59 age range and 5,6% in the 60 and over
age range), 53% females, completed the whole experimental
procedure.

4) APPARATUS AND MATERIAL
To collect information about the participants and to dis-
play recommended itineraries, we used the web prototype
introduced in Section VII. The prototype guides participants
through a step-by-step procedure (see Section VIII-A5),
where each page has a specific and distinct goal, such
as collecting data on a particular topic (e.g., participants’
demographics) or presenting and assessing a certain recom-
mendation approach (i.e., PP, PP+TS, or PP+TP) of itinerary
recommendations. The prototype is available online and can

2Even though random sampling is the best way to obtain a representative
sample, these strategies require a great deal of time and money. Non-
probabilistic sampling is considered acceptable in HCI research [61], as well
as in the user-centric evaluation of recommender systems [59].
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be accessed through any browser connected to the Internet.
All data were collected and stored anonymously, by assigning
participants a random identifier.

5) PROCEDURE
When they accessed our online prototype, participants were
presented with a welcome page which introduced the context
and goals of our evaluation and gave them an overview
of the steps they would go through if they agreed to
participate. After having filled out the informed consent
form, participants were asked to provide information on the
following aspects:

• Demographics. Participants declared their age, gender
and level of familiarity with the city of Turin and its PoIs.

• Preferences for PoIs. Participants explicitly expressed
their preferences about the PoIs in our knowledge base,
using a Likert-like scale ranging from 1 (‘‘I’d prefer to
avoid this PoI’’) to 5 (‘‘I must see this PoI’’). Notice
that PoIs were randomized for each participant, to avoid
order effects.

• Preferences for the selection of PoIs. Participants
expressed their level of agreement towards the following
statement, using a Likert-like scale ranging from 1
(‘‘Strongly disagree’’) to 5 (‘‘Strongly agree’’): ‘‘When
I plan an itinerary, I find it important to maximize the
number of must see PoIs’’.

• Preferences for temporal dimensions. Participants
expressed their level of agreement towards a series of
statements, each of them concerning a different temporal
dimension, using a Likert-like scale ranging from 1
(‘‘Strongly disagree’’) to 5 (‘‘Strongly agree’’). All
statements started with: ‘‘When I plan an itinerary,
I find it important to. . . ’’, while temporal dimensions
were described as follows: ‘‘minimize transfer times’’,
‘‘maximize the number of PoIs to visit’’, ‘‘maximize the
heterogeneity among PoIs’’, ‘‘include free time slots,
with no pre-planned activities’’, ‘‘avoid to visit very
crowded PoIs’’).

Notice that having users explicitly provide their preferences
for specific PoIs, for PoI selection and for temporal
dimensions allowed us to avoid making predictions about
their possible ratings for such preferences, an aspect which
is out of the scope of our research and which might have
influenced users’ evaluations of the recommended itineraries.
Instead, since all preferences are provided by participants
themselves, they represent some sort of ‘‘ground truth’’
which we do not expect to play a confounding role in
the evaluation of recommended itineraries. Preferences for
PoIs and for temporal dimensions, which were originally
expressed on a [1, 5] scale, were rescaled so that they
ended up in the [0, 1] range, as explained in Section VI.
Then, the genetic algorithm was run three times for each
participant, once excluding temporal dimensions (PP), once
taking such dimensions into account, but with predefined

TABLE 1. Participants’ evaluations (average and standard deviation) of
five different aspects (overall, acceptance, organisation, POIs, free time)
of itinerary recommendations.

weights (PP+TS), equal for all participants,3 and, finally,
once considering participants’ preferences over the temporal
dimensions (PP+TP). As a following step, participants were
presented with three alternative itinerary recommendations
(each one displayed on a separate page and randomized to
avoid order effects) and were asked to assess each of them
according to different aspects (see Section VIII-A6). Finally,
participants were asked to provide any free comments they
might like to share with us to better express their opinions
about the recommendations they received; after that, they
were thanked for their participation in the experiment.

6) MEASURES
For each recommended itinerary, we collected participants’
evaluations on the following aspects:

• overall evaluation (i.e., how good the recommended
itinerary is overall),

• acceptance (i.e., how likely it is that the recommendation
is actually accepted),

• organisation (i.e., how good the recommended itinerary
is considering transfer times, number of PoIs, hetero-
geneity among PoIs, busy hours avoidance),

• PoIs (i.e., how good the recommended itinerary is as for
the choice of PoIs to visit)

• free time (i.e., how good the recommended itinerary is
as for the quantity of free time).

All evaluations were expressed using a Likert-like scale
ranging from 1 (minimum) to 5 (maximum).

B. RESULTS
Descriptive statistics for all our dependent variables are
reported in Table 1.4 We can observe that recommendations
generated taking into account both participants’ preferences
for PoIs and temporal dimensions (PP+TP) were assessed
more positively than the other two types of recommendations,

3Preferences for most temporal dimensions, i.e, quantity of PoIs, variety
of PoIs and busy hour avoidance, were set to an intermediate score, 0.5,
while preferences for transfer times and PoI’s ranking were assigned the
highest possible score, 1, since they are taken into account by most itinerary
recommender systems. Preferences for free time were not considered (i.e.,
they were set to 0).

4The dataset resulting from our evaluation is publicly available at the
following link: https://shorturl.at/rJLY2
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TABLE 2. Comparison of participants’ evaluations of five different
aspects (overall, acceptance, organisation, POIs, free time) between
PP+TP recommendations and baseline (PP, PP+PS) recommendations -
Wilcoxon test.

as far as all aspects are concerned. PP+TS recommendations
also scored slightly better than PP, apart for the ‘‘free
time’’ aspect, where they obtained the lowest score. Notice
that both PP and PP+TS recommendations did not include
any free time slots; however, PP recommendations were
judged more positively than PP+TS about this aspect, with
56% participants declaring to be satisfied in the former
condition (a result quite close to that obtained by PP+TP
recommendations, i.e., 63%), and only 20% in the latter case.

Overall, these results are in line with those we obtained in
the preliminary study described in [16], where we assessed
the same three types of itineraries with a small sample of
20 users. In fact, we also found that PP+TP recommendations
were evaluated more positively, and obtained an average
score of 3.4 (st. dev: 0.94) for the ‘‘overall evaluation’’
aspect, which was higher than the scores obtained by
PP+TS (avg: 3.1, st. dev: 1.07) and PP (avg: 3.2, st. dev:
0.89) recommendations. Differently from the current study,
however, we did not assess more specific aspects on that
occasion.

In order to validate our hypotheses (see Section VIII-A1),
we compared participants’ ratings for PP+TP recommenda-
tions with ratings for PP+PS and PP recommendations, so as
to ascertain whether the observed differences are statistically
significant. Since the Kolmogorov-Smirnov test showed
that all dependent variables were not normally distributed,
we chose to apply the Wilcoxon test5 to carry out pairwise
comparisons. Results are reported in Table 2.

1) H1: OVERALL ASSESSMENT AND CONTEXT-RELATED
ASPECTS
As for the ‘‘overall evaluation’’ aspect, the ratings partici-
pants assigned to PP+TP recommendations (avg: 3.379) are
significantly higher than the scores obtained by PP (avg:
3.073, W = 1027.5, p < .05, n = 79) and PP+PS (avg:
3.145, W = 1167.5, p < .05, n = 79) recommendations, with
a medium and a small effect size, respectively, according to
Cohen’s classification.

5The Wilcoxon test is a nonparametric measure which evaluates the
difference between two conditions in a within-subjects design.

Similarly, the differences in participants’ evaluations are
significant also for the ‘‘acceptance’’ aspect, with the ratings
assigned to PP+TP recommendations (avg: 3.129) being
significantly better than those assigned to both PP (avg:
2.855,W= 1605.5, p< .05, n= 92) and PP+TS (avg: 2.887,
W= 1120.5, p< .05, n= 78), with a small effect size in both
cases.

On the contrary, as for the ‘‘organisation’’ aspect, the
observed differences in participants’ ratings are too small
to be significant, which is a bit surprising, since this facet
is connected to several contextual dimensions and, as such,
should better match participants’ preferences when these are
explicitly taken into account, as in PP+TP recommendations.
To better understand this unexpected finding, we adopted
a qualitative approach, inspired by thematic analysis [62],
to examine the free comments provided by participants at
the end of the test. After a first read-through of participants’
answers, where we tried to identify potential categories
for them based on emerging and recurrent topics in their
description of issues with the recommended itineraries,
we systematically re-examined all the comments, pulling out
key points and labelling them with the previously defined
categories. Out of 57 comments, only 4 were completely
positive or non relevant, while the others were found to deal
with problems related to one or more of the categories listed
in Table 3. Interestingly, the most popular category regards
transfers (21 comments) and, in particular, transfer distances
(15 comments): in fact, several participants pointed out that
transfers between consecutive PoIs were not efficient, since
recommended itineraries suggested to visit PoIs which are far
from each other one after the other (P1486: ‘‘Points of interest
are not always close to each other. When I’m on holiday,
I prefer to see as many things as possible without having to
move too much.’’), to move back and forth between different
areas (P107: ‘‘There are often long transfers: for example,
from Turin to Venaria7 and then back to the city center,
near the starting point’’; P148: ‘‘Going back and forth is
annoying’’; P154: ‘‘I’d prefer to visit tourist attractions in the
outskirts in a dedicated morning or afternoon, thus moving
from/to Turin only once’’ ) or to visit nearby PoIs on different
days (P125: ‘‘Places very close to each other were scheduled
on different days or at different times, which is not very
efficient’’). This is probably due to the fact that the genetic
algorithm was programmed to optimize temporal dimensions
globally (i.e., considering the itinerary as a whole) and not
locally (i.e., considering every single transfer between two
consecutive PoIs), as explained in Section VI-B. Based on
participants’ comments, however, this approach does not
seem to completely satisfy user needs, and/or to be in line
with their expectations, which can probably explain the
lower than expected ratings on the ‘‘organisation’’ aspect.
In addition, a few participants (6 comments) also complained

6Participants will be identified through their anonymous codes.
7Venaria Reale is a municipality located about 8 kilometres northwest of

Turin.
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TABLE 3. Categories (i.e., recurring topics) identified during the the
qualitative analysis of free comments, with their respective comment
count.

about estimated transfer times, which they deemed to be
unrealistic (P111: ‘‘Transfer times to get to places situated
in the outskirts are too short’’; P145: ‘‘Estimated transfer
times should be longer: tourists might want to window
shop or quietly amble down the streets. Moreover, streets
might be crowded, for example on the weekends.’’), for
example because they failed to take into account the time
needed to hunt for parking spaces (P168: ‘‘I don’t think
transfer times consider the time needed to park in the city
center.’’). Differently from the previous comments on transfer
distances, these complaints draw attention to an issue with the
input data, rather than with the recommendation algorithm,
and underline the importance of accurate knowledge bases.

Finally, as for the ‘‘free time’’ aspect, PP+TP recom-
mendations (avg: 3.435) obtained significantly higher ratings
only in comparison with PP+TS (avg: 2.879, W = 547.5,
p <.05, n = 72). Notice that ratings for PP (avg: 3.25) were
unexpectedly high, and they were even significantly higher
than those for PP+TS recommendations (avg: 2.879, W =

747, p < .05, n = 73), which is quite surprising, considering
that both these types included no free time slots, as mentioned
before. One possible explanation is that a few participants
who have received PP as the first type of recommendations
to evaluate might have considered the fact that itineraries end
quite early around dinner time (a feature which is the same
for all types of recommendations) when assessing the amount
of free time, only to notice at later steps that free time slots,
when available, are scheduled during the itinerary and are
explicitly labelled as such. Considering that this presentation
choice was mentioned in the instructions to participants, but
the absence of free time slots was not highlighted on a per-
itinerary basis, we are prone to interpret this unexpected
result as the consequence of our design choices, which
might have confused a few participants, rather than as the
expression of real preferences towards PP versus PP+TS
recommendations.

To sum up, these results allow us to partially confirm
our first hypothesis (H1): in fact, itinerary recommendations
which take into account user preferences for contextual
factors are more appreciated than the other two types of
recommendations as far as the overall rating and acceptance
aspects are concerned. However, we found no (or only partial)
significant differences as for the organisation and availability
of free time aspects, which calls for further tuning of both our
genetic algorithm and the prototype interface.

2) H2: SELECTION OF POIS
As for the ‘‘PoI’’ aspect, which aimed at measuring how
good the recommended itinerary is as for the choice of
suggested PoIs, we found no significant differences, neither
between PP+TP and PP, nor between PP+TP and PP+TS
recommendations. This result is in line with our expectations
since the procedure for the selection of PoIs does not vary
across the three recommendation types. Hence, we can
confirm our second hypothesis (H2).

IX. LIMITATIONS
Our work has some limitations.

As for our experimental evaluation, we acknowledge that,
while our sample is well-balanced gender-wise and covers a
wide range of ages (20->60), it does not accurately reflect
the features of the whole population. For example, most
participants fall in the 20-29 age range, and they are all
already familiar with the city of Turin (a requirement set to
make the initial evaluation of PoIs easier for them). A more
diverse sample would help to improve the external validity
of our study. In addition, we are aware that participants in
a controlled experiment can in general have different goals
and motivations if compared with real users, which may have
impacted the perception of the recommendations provided in
our evaluation.

Moreover, our approach takes into account only positive
user preferences, both as regards the PoIs to visit and as
regards temporal preferences. It is very important to consider
also negative preferences, which can play an important role
in the recommendation process [63], [64] and are particularly
relevant in the tourist domain (e.g., for specifying PoIs to be
avoided or negative temporal preferences such as avoiding
long transfers between PoIs). In future work, we plan to
extend it to take into account also negative preferences in the
generation of the itinerary.

Also, we considered only a few heuristics for evaluat-
ing itineraries concerning their five temporal dimensions.
We chose those that are simpler to compute and that seemed
to provide better results during the tuning phase. However,
it could be interesting to use a wider set of heuristics. In future
work, we could also experiment with a different variety of
heuristics.

Finally, as of now our approach for generating an itinerary
is static and does not take into account the possibility of
dynamically changing the itinerary on the fly. Tourists may
change their preferences during the different phases of their
trip. Thus, another possible future direction of the work is to
consider the possibility of dynamically changing the itinerary
on the fly.

X. CONCLUSION
In this paper we proposed an approach for generating
personalized itineraries that take into account a variety of
user preferences, focusing in particular on temporal ones.
We chose to design and implement the system as a service
that can be coupled with any recommender suggesting a
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tourist the PoIs that are of interest for her/him. Indeed our
system requires a ranked list of PoIs as its input. This decision
had a tremendous impact in the evaluation process since it
allowed us to evaluate the itinerary planner independently
of the problem of recommending PoIs; in particular in the
evaluation we assumed that the ranked list of PoIs is provided
by users themselves and thus the results we obtained in the
evaluation of the suitability of the proposed itineraries is
independent of that list (and of the criteria and approach to
generate it).

In our approach, we took into account time in a thorough
way, considering both objective (such as time distances
between PoIs, time for each visit, . . . ) and subjective temporal
information (user temporal preferences). This is a significant
difference and improvement with respect to the literature.

Genetic algorithms proved to be an interesting solution for
our optimization problem, where user temporal preferences
play a peculiar role in the evaluation of the fitness of an
itinerary. The algorithm we adopted deals in a natural way
with the combinatorial nature of the problem allowing a sort
of parallel exploration of alternative itineraries. In this sense
we claim that, for this type of problem, genetic algorithms
are easier to adopt than other traditional approaches to
temporal planning [65]. Moreover they have the advantage of
being any-time. The genetic algorithm has then been coupled
with constraint satisfaction to check objective temporal
constraints.

Two evaluation processes have been carried out: the first,
with stereotypical users, to tune the algorithm, and the
second, with actual users, to evaluate the suitability of the
itineraries being proposed. The latter evaluation provided
interesting results and also insights on potential extensions
of the approach. First of all tuning has been performed on
a single application and should be further investigated using
other applications. Tuning led us to make some choices in the
genetic algorithm (concerning, e.g., crossover and mutation),
selecting those that led to the best performance. Many other
approaches to perform crossover and mutations could be
considered and compared to the one we chose.

Furthermore, since travelling is a group activity, it is
important to consider how to generate group recommenda-
tions [66], with particular attention to children. In fact, when
organising activities, one must always take into account the
possible presence of children, whose needs and preferences
influence the travel experience.
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