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1.1 Introduction

In clinical studies, the effect of a new medical therapy is often determined
by comparing the treatment group to the control group with respect to some
outcome measurements. These outcomes are called clinical endpoints. For
example, in most cancer trials, the survival time is a gold standard endpoint.
A new drug is considered effective if the survival time of patients in the
new treatment group is significantly longer than in the control group. To
demonstrate treatment effects, trials based on the clinical endpoints usually
require a large number of subjects and extended follow up period, which
might be impractical or even unethical in certain circumstances. Therefore,
there is a need to identify alternative outcome measurements that can provide
cost effective ways of assessing therapeutic effects. Later in this chapter,
we will call these outcomes surrogate endpoints and explain more about
advantages of using them as a replacement for the clinical endpoint.
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1.2 Clinical Trials

Clinical trials are research experiments on volunteer patients (humans) that
investigate whether new drugs, therapies and medical devices are safe and
beneficial for humans or not. In clinical studies, drugs, therapies and medical
devices are called interventions (treatments). Clinical trials may be used to
compare the current intervention with the new one and to explore which one
works best for specific group of patients. In general, results from clinical
trials aim to improve medical knowledge and health care services. For more
details see ClinicalTrials.gov (2017).

1.3 Clinical Endpoints

Outcome measures in clinical trials to determine directly whether the treat-
ment being studied is beneficial, are called clinical or true endpoints, see e.g.
AIDSinfo (2017).

In other words, a true endpoint is a charactristic or a variable that reflects
how a patient feels, functions or survive. Some examples of true endpoints
are survival time, relief of symptoms and stroke. For more examples on
clinical endpoints see e.g. Bushe et al. (2010), Neaton et al. (1994) and
Troughton et al. (2000). We will use clinical endpoint and true endpoint
interchangeably in this thesis.

In practice, measuring clinical endpoints is not usually an easy task. For
example, recording survival times usually requires a long follow up of patients
and occurrence of some clinical endpoints might be rare among patients. As
a consequence, a new drug or therapy needs to stay out of market for a long
time until readouts of the relevant trials become available. For this reason,
there is a need to search for reliable alternatives to replace true endpoints in
order to perform the study faster and easier.

1.4 Biomarkers

According to Downing (2000), a biological marker also known as a biomarker
is defined as a characteristic that is objectively measured and evaluated as
an indication of normal biologic processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention.
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Aronson (2005) summarized the main advantages of biomarkers in clinical
studies for drug development and clinical decision making as follows:

• It is usually cheaper and easier to measure Biomarkers rather than
true endpoints. For example, it is easier to measure a patient’s systolic
blood pressure (SBP) rather than using echocardiography to determine
left ventricular function, and it is much easier to do echocardiography
than to measure occurrence of stroke and finally mortality in the long
term.

• Biomarkes can be measured prior to a true endpoint. Usually, it can
take several years to measure a true endpoint, while biomarkers can
be measured much faster than the true endpoint. For example, it may
take many years that a patient would experience stroke. However,
measuring blood pressure can be done much faster and easier.

• Smaller sample size is another benefit of using biomarkers in clinical
studies instead of true endpoints. For example, to measure the effect
of a new drug on blood pressure, a sample of size 100 or 200 may be
enough to do the study. However, to determine the effect of a new drug
on the prevention of death from stroke a much larger sample should be
taken to proceed with the study.

• Sometimes, measuring true endpoints may be involved with ethical
problems. For example, in paracetamol overdose it is unethical to wait
for evidence of liver damage before deciding whether or not to treat a
patient. Instead a pharmacological biomarker, the plasma paracetamol
concentration, is used to predict whether treatment is required.

Biomarkers have the potential to enhance the research and development
process of new treatments by providing new approaches to measure disease
activity. They maybe used to diagnose a disease, monitor progression of a
disease, and to show how the body is responding towards a new given treat-
ment. Any change in biomarkers during treatment period, may be used to
predict clinical benefit (harm) from the treatment. Therefore, they are in-
creasingly used in medicine, and many potential biomarkers are proposed
every year. More details on biomarkers and their influence on drug devel-
opment can be found in Katz (2004) and U.S. Department of Health and
Human Services Food and Drug Administration Center for Drug Evaluation
and Research (CDER) (2014).
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1.5 Surrogate Endpoints

A surrogate endpoint is defined by U.S. Department of Health and Human
Services Food and Drug Administration Center for Drug Evaluation and
Research (CDER) (2014), as a biomarker intended to substitute for a clinical
meaningful endpoint. Given an intervention to a patient, useful surrogate
endpoints are expected to predict the effect of the intervention on a clinical
endpoint. In other words, a surrogate endpoint is an intermediate laboratory
measure or physical sign that is not direct measure of the clinical benefit,
however it reflects the outcome of interest.

It is important to note that, not all biomarkers are surrogate endpoints.
In fact, surrogate endpoints are a small subset of well defined biomarkers that
very well evaluates clinical relevance. For a biomarker to be considered as a
surrogate endpoint, it must be able to predict clinical benefit (or harm or lack
of benefit or harm) consistently and accurately. One could use the guidelines
suggested by Austin Bradford Hill for choosing biomarkers that could be
considered as good candidates for surrogate endpoints, see Hill (1965) and
Legator and Morris (2003) for more details.

In clinical studies, when a clinical endpoint is inaccessible due to cost,
time, or difficulty of measurement, clinical researchers favor a surrogate end-
point. A useful surrogate endpoint has to bear some nice properties. Pianta-
dosi (2005) summarized some characteristics for a useful surrogate endpoint,
as follows:

• It can be measured simply, with less cost and before the true endpoint,
Ellenberg and Hamilton (1989).

• It will result in the same inference about the disease and intervention
as the true endpoint.

• It is responsive to interventions.

• It has to be correlated with the true endpoint. However, note that the
correlation alone in not sufficient, Fleming and DeMets (1996).

• It has to lie on the causal pathway for the true endpoint. Figure 1.1
shows possible relations between disease, an intervention, a candidate
biomarker as a surrogate endpoint for the true endpoint, and the true

9



Figure 1.1: Possible relations between disease, intervention, surrogate and
true endpoint.

endpoint. Figure 1.1: part (a), displays the ideal setting for surro-
gacy. According to Fleming and DeMets (1996), a biomarker has full
surrogate value if “it is in the only causal pathway of the disease pro-
cess, and the intervention’s entire effect on the true clinical outcome
is mediated through its effect on the surrogate”. Figure 1.1: part (b),
shows that some effect of the intervention on the clinical endpoint is
mediated through the biomarker. This implies that the biomarker has
partial surrogate value for the true endpoint. Eventually, figure 1.1:
part (c), indicates that the biomarker has no surrogate value for the
true endpoint, since the intervention effect on the clinical endpoint is
independent of the intervention effect on the biomarker.

To use a surrogate endpoint as a replacement for a true endpoint, the
surrogate endpoint first has to be validated, so that conditions a) in figure
1.1 can be fulfilled. For example, in cardiovascular disease, blood pressure is
a valid surrogate endpoint for stroke. Table 1.1 shows more examples on valid
surrogate endpoints, frequently used in clinical trials, along with associated
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true endpoints. An important advantage of a validated surrogate endpoint is
that to predict the clinical efficacy of a drug more rapidly. This is the basis
for accelerated approval of a drug (therapy), Gellad and Kesselheim (2003).

Table 1.1: Examples of surrogate endpoints, along with associated diseases
and true endpoints.

Disease Surrogate Endpoint True Endpoint
HIV infection Viral load AIDS (or death)
Cancer Tumor size Mortality
Osteoporosis Bone density Fractures
Prostate cancer Disease progression PSA level
Diabetes mellitus HbA1c in blood Overall survival (OS)

In the next section, we will briefly review methods and techniques that
are currently used for the validation of surrogate biomarkers.

1.6 Validation of Surrogate Endpoints in Clin-

ical Trials

To validate a surrogate endpoint, it has to be shown that the effect of an
intervention on a true endpoint can be explained fairly well by the effect of the
intervention on a surrogate. Proving the existence of such a relation between
the surrogate and the true endpoint is of interest for clinical researchers.

Prentice (1989) proposed a definition for a surrogate endpoint along with
the operational criteria for the validation of surrogate endpoints, known as
Prentice’s definition and criteria. He then motivated using of Prentice’s cri-
teria for evaluation of surrogate endpoints by examples from cancer, ophthal-
mologic and cardiovascular clinical studies.

Following Prentice, numerous statistical methodologies for the validation
of surrogate endpoints have been developed, that were influenced by his
work. Freedman et al. (1992) studied scenarios where surrogate and true
endpoints are both binary random variables. He further suggested an esti-
mator for the proportion of treatment effect explained by a surrogate (PTE).
Fleming (1992) discussed benefits and problmes that stem from using surro-
gate endpoints. Validation of binary and normal endpoints in a single and

11



multiple trials were explored extensively by Buyse and Molenberghs (1998),
Burzykowski et al. (2005), Buyse et al. (2016). Buyse and Molenberghs
(1998) also introduced two quantitative measures. First, the relative effect
(RE) that stands for the effect of an intervention on a true endpoint relative
to the effect of the intervention on a surrogate endpoint. Second, the ad-
justed association that represents the association between the surrogate and
true endpoints after accounting for the intervention effect. Further quantita-
tive measures to measure the strength of surrogacy for a candidate surrogate
are likelihood reduction factor (LRF) and proportion of information gain
(PIG). The likelihood reduction factor was suggested by Alonso et al. (2004)
and is based on Kent (1983) idea about the generalized correlation, and Qu
and Case (2007) introduced the proportion of information gain base on the
Kullback-Leibler information gain.

Most existing approaches for the validation of surrogate endpoints, in
abovementioned studies, are based on parametric models, called parametric
approaches. The model we choose to validate a surrogate endpoint depends
highly on the type of variables we deal with i.e. if the surrogate and true
endpoints are discrete or continuous random variables. Further, if these
variables are truncated or not. Table 1.2 shows different type of endpoints
(either clinical or surrogate) that are used in clinical studies.

Table 1.2: Examples of different types of endpoints in clinical studies.

Variable Type Example
Continuous measurements Blood pressures, and tumor size.
Time to event Time to recurrence of cancer, and time

to death.
Counts Number of skin lesions, and number of

uses of rescue inhaler for asthma.
Binary or dichotomous endpoints Failure/ success, and cured/ not cured.
Ordered categories (Ordinal) Pain levels: absent, mild, severe, and

Cholesterol levels: low, normal, high.
Unordered categories Categories of adverse experiences. For

example cardiac adverse events (includ-
ing hypertension, heart failure, left ven-
tricular systolic dysfunction, and QT
prolongation.)
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Failing to choose a correct model for surrogate and true endpoints or to
fulfill the assumptions underlying the chosen model, could cause poor esti-
mates and consequently incorrect inferences about the surrogacy of biomark-
ers. This is known as a drawback of using parametric models to evaluate
surrogate endpoint.

Miao et al. (2012) suggested a non-parametric approach to validate sur-
rogate endpoints that exploits the Kullback-Leibler divergence and permuta-
tion test. In Miao’s approach, surrogate and true endpoints could come from
any distribution. Therefore, Miao’s approach very well affords to overcome
limitations of using the parametric models to validate surrogate endpoint.

The aim in most of the methods and studies we mentioned earlier are to
find out whether the surrogate is a valid replacement for the clinical endpoint.
However, there has been a little or no discussion on methods that search for
surrogacy interval/region (the region where the surrogate is valid on it.). The
method to find such a region will be introduced in 5.

1.7 Structure of the thesis

The current thesis develops a novel approach using the notion of equivalence
test for the validation of binary surrogate endpoints and to construct a sur-
rogacy region, in a single trial setting. However, it should be stressed that
our methodology is generic in the sense that it can be applied to other types
of endpoints rather than binary endpoints.

This thesis consists of nine chapters and is aimed at researchers from dif-
ferent disciplines with different backgrounds. Therefore, Chapter 2 is mainly
designed to introduce a reader to some useful statistical concepts. Chapter
3 lays out the theoretical basis for the validation of surrogate endpoints in a
single trial. In Chapter 4, we will briefly talk about asthma as a common res-
piratory disease. Then, we will introduce three asthma trials along with the
true and proposed surrogate endpoints. Finally we will apply the validation
techniques we introduced in Chapter 3 to validate the surrogate endpoint in
asthma trials. Chapter 5 introduces the concept of equivalence test. The
application of equivalence test in surrogacy evaluation and construction of
a surrogacy region is completely new, and will be covered in Chapter 5.
Chapter 6 is devoted to further discussion and some possible future works.
Chapters 7, 8 and 9 contains the related scripts in R that generate tables,
plots and figures in the earlier chapters.
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CHAPTER 2

Definitions, Theorems, Notations
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2.1 Introduction

Chapter 2 provides essential statistical notions that will be useful in under-
standing the subsequent chapters. Hence, a reader with a solid background
knowledge in statistics may skip sections 2.2 and 2.3 and jump to section 2.4,
where we will introduce necessary notations that will be used throughout this
study.
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2.2 Definitions

2.2.1 Bonferroni Correction

Consider performing several hypotheses tests simultaneously. The first guess
is to test each hypothesis at some level of significance α separately. The level
of significance α is also known as type I error or false positive rate, which is
defined as the error of rejecting a null hypothesis (H0) when H0 is actually
true. In the hypothesis testing, the interest is to keep this error as low as
possible.

Assume we want to test 10 independent hypotheses, where α = 0.05 in
each test. Then, the false positive rate for 10 multiple tests is as follows:

P (reject H0 in at least one test |H0 is true)

= 1− P (not reject H0 in all tests |H0 is true)

= 1− (1− 0.05)10 ≈ 0.4 (2.1)

Therefore, we have approximately 40% chance of rejecting the true null
hypothesis by mistake, having considered 10 tests simultaneously. As the
number of tests increases, the probability of rejecting the true null hypothesis
gets larger, which is not desirable. To deal with this problem, there are
methods that adjust for α when the number of tests n increases, so that
the false positive rate in n simultaneous tests remains below the desired
significance level α.

The Bonferroni correction sets the significant cut-off at α/n for each test.
In the above example the significant cut-off is 0.005. As a result the false
positive rate for 10 multiple independent tests can be calculated as follows:

P (reject H0 in at least one test |H0 is true) = 1− (1− 0.005)10

≈ 0.048
(2.2)

Therefore, the false positive rate for 10 simultaneous hypotheses fell below the
desired α = 0.05. For more details on Bonferroni method see Bender (2001)
and the references therein. For cases when the tests are not independent we
can still use Bonferroni method, see Sidak (1967) and Games (1977) for more
details.
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2.2.2 Confusion Matrix

Consider a classification problem with two available classes Y = {P,N}
where P stands for positive and N for negative class labels. Therefore, in
any given sample each observation is mapped to only one of the available
classes. A classifier is a model that predicts classes for observations of a
given sample.

Consider Ypred = {P,N} for the class predictions produced by the clas-
sifier. Now given any classifier and observations of a given sample, we can
construct a two-way contingency table which is called two-by-two confusion
matrix that show the dispositions of the observations.

Table 2.1 shows the confusion matrix for a sample of size n, where n1 is
the total negatives, n2 is the total positives and n = n1 + n2. True positive
(TP) is an observation truly positive and correctly classified as positive, and
false negative (FN) is an observation truly positive but incorrectly classified
as negative. If an observation is truly negative and it is correctly classified
as negative, it is called true negative (TN), and if it is truly negative but is
incorrectly classified as positive, it is named false positive (FP).

Table 2.1: Confusion matrix
Classifier

Predicted Class, Ypred

True Classes, Y
P (Positive) N (Negative)

P True Positives (TP) False Positives (FP)

N False Negatives (FN) True Negatives (TN)

Total sample size, n n1 n2

The following measurements can be derived from the confusion matrix:

TPR =
TP

n1

(2.3)

FPR =
FP

n2

(2.4)

Precision =
TP

TP + FP
(2.5)

Accuracy =
TP + TN

n1 + n2

(2.6)
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where TPR and FPR stand for true positive and false positive rates respec-
tively which are sample analogous to power of the test 1 − β and type I
error α, in statistical hypothesis testing. Alternative names to true positive
rate (TPR) is sample sensitivity, recall and statistical power. Another mea-
surement that can be derived from confusion matrix is specificity which is
1− FPR.

TNR = Specificity =
TN

n2

(2.7)

2.2.3 Distance (Dissimilarity) Functions

In science and mathematics, distance or dissimilarity is defined as the nu-
merical or quantitative degree of how far away two or more objects are from
each other. The opposite to distance function is called similarity function
that quantifies how close two elements are. In physics and mathematics two
objects may represent two points and the distance between these two points
is the physical length of the line that connected the points together. For
more details distance and similarity functions see e.g. Deza and Deza (2016)
and McCune et al. (2002).

Distance functions and their applications are widely used in different dis-
ciplines. These functions have been developed in different fields such as
chemistry, physics, mathematics, computer science and statistics due to their
needs. However we could divide them in two major categories as follows.

A distance function d : X × X → [0,∞) that satisfies three conditions
for any x, y, z ∈ X:

• d(x, y) > 0

• d(x, y) = 0⇔ x = y

• d(x, y) = d(y, x)

• d(x, y) ≤ d(x, z) + d(z, y)

is a distance metric (measure), see e.g. Goshtasby (2012) for more details on
distance measures. Distance functions that do not satisfy all metric prop-
erties are usually called divergence measures as an alternative to distance
metrics.
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Measuring the distance between objects are widely used in statistics,
probability and information theory to quantify distance between random
variables, probability or sample distributions and two or more individual
sample points. Kullback and Leibler (1951) proposed Kullback-Leibler (KL)
divergence to measure the difference between two probability distributions
over the same variable X. Nowadays, Kullback-Leibler divergence is widely
used in statistics and computer science. In the following section we will
discuss about KL divergence in more details.

2.2.4 Kullback-Leibler (KL) Divergence

Consider two probability distributions P and Q for a random variable X
with the same support set W . Then the Kullback-Leibler divergence of Q
from P , is a measure of information lost when Q is used to approximate P ,
which is denoted as follows:

dKL(P ||Q) = EP

[
log

dP

dQ

]
(2.8)

Typically P represents the true probability distribution of observations, data
or population and Q represents an approximation or estimation of P .

dKL(P ||Q) is always greater or equal to 0, and it is equal to 0 if and only
if P = Q. Another alternative notation for dKL(P ||Q) is dKL(P,Q) which
we will use throughout this study.

In the discrete case, where P and Q are probability distributions of a
discrete random variable X, KL divergence can be written as follows:

dKL(P,Q) =
∑
x∈W

p(x) log
p(x)

q(x)
(2.9)

where p(.) and q(.) represent probability mass fictions. And when X is a
continuous random variable, KL divergence is represented as follows:

dKL(P,Q) =

∫
W

p(x) log
p(x)

q(x)
dx (2.10)

where p(.) and q(.) are probability density functions.
As mentioned earlier, not all functions that quantify distance are metrics.

The Kullback-Leibler divergence measures the distance between two distri-
butions, however it is not distance metric. The reason is that KL divergence
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is not symmetric dKL(P,Q) 6= dKL(Q,P ). Moreover, it does not satisfies the
triangular inequality in distance metric definition. For more details on KL
divergence see e.g. Kullback and Leibler (1951), MacKay (2005) and Bishop
(2006).

Example 1. Consider two normal distributions with probability distribution
functions fX(x;µ1, 1) and fX(x;µ2, 1), with different means and the same
variance. To calculate the Kullback-Leibler divergence, we can proceed by
calculating the log-ratio as follows:

log

(
fX(x;µ1)

fX(x;µ2)

)
= log fX(x;µ1)− log fX(x;µ2)

= (− log
√

2π − x2

2
− µ2

1

2
+ xµ1)− (− log

√
2π − x2

2
− µ2

2

2
+ xµ2)

=
µ2

2 − µ2
1

2
+ x(µ1 − µ2)

(2.11)

Then, the KL divergence is the expectation of the log-ratio in equation (2.11)
with respect to X, where X ∼ N(µ1, 1).

dKL(fµ1 , fµ2) = Efµ1

(
µ2

2 − µ2
1

2
+X(µ1 − µ2)

)
= −(µ2

1 − µ2
2)

2
+ µ1(µ1 − µ2)

=
(µ1 − µ2)2

2

(2.12)

Example 2. Let X as a Bernoulli random variable. Assume two different
probability mass functions fX(x; p) and fX(x; q) for, X with different means
p and q. Then the log-ratio can be calculated as follows:

log

(
fX(x; p)

fX(x; q)

)
= x log p+ (1− x) log(1− p)− x log q − (1− x) log(1− q)

(2.13)

Eventually, the KL divergence can be calculated as the expected value of the
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log-ratio with respect to X, where X ∼ Bern(p)

dKL(fp, fq) = Efp

[
log

(
fX(x; p)

fX(x; q)

)]
= p log

p

q
+ (1− p) log

(
1− p
1− q

) (2.14)

2.2.5 Likelihood Ratio Test

Likelihood ratio test is an approach to compare two different models. Com-
monly the comparison is between the unrestricted model and a simpler one.
The unrestricted model is usually called a saturated model and the simpler
one is called the reduced model.

Let fX(x; θ) be the probability density or mass function of X, where θ rep-
resents one or more unknown parameters. Further, assume x = (x1, ..., xn)
be a random sample from fX(x, θ). We also denote the whole parameter
space as Θ = Θ0 ∪Θ1 such that Θ0 ∩Θ1 = ∅, which is the set of all possible
values for θ. Now consider the following hypothesis:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, (2.15)

at significance level α.
Then, we can construct the likelihood ratio test based on the sample x =
(x1, ..., xn) as follows:

• Calculate the supremum of the likelihood function L(θ;x) = f(x; θ),
with respect to θ, where θ ∈ Θ0. Then, we denote it as L(θ̂H0), such
that θ̂H0 = arg maxθ∈Θ0

L(θ;x).

• Calculate the supremum of the likelihood function L(θ;x), with respect
to θ, where θ ∈ Θ. We denote it as L(θ̂H0∪H1), such that θ̂H0∪H1 =
arg maxθ∈Θ0∪Θ1

L(θ;x).

• Then the likelihood ratio is obtained as follows:

Λ(x
¯
) =

sup{L(θ;x), θ ∈ Θ0}
sup{L(θ;x), θ ∈ Θ}

=
L(θ̂H0)

L(θ̂H0∪H1)
(2.16)
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The less likely the null hypothesis is, the smaller Λ(x) will be. Thefore,
to test H0 against H1, the critical region for the likelihood ratio test is
as follows:

C = {x : Λ(x) ≤ k1} (2.17)

where k1 is always between 0 and 1.

Consider the following transformation on Λ

G2(x) = −2 log Λ(x) (2.18)

where G2(x) is called the likelihood ratio statistic and is an increasing func-
tion in x. Then the critical region can be rewritten as

C = {x : G2(x) ≥ k2} (2.19)

For a large sample size n, it can be proved that the likelihood ratio statis-
tics is asymptotically Chi-Square with k degrees of freedom:

G2(X)
D−→ χ2

k as n −→∞, (2.20)

where k is the difference between the number of parameters in two different
models under H0 ∪H1 and H0 hypothesis.

Therefore, the critical region based on the asymptotic distribution of
G2(X) is

C = {x : G2(x) ≥ χ2
k(1− α)} (2.21)

Example 3. Let Xi for i = 1, ..., n be a random sample from a Poisson
distribution with a parameter θ. We want to test H0 : θ = θ0 against
H1 : θ 6= θ0 at significance level 0.05.
The p.m.f for Xi is

p(x; θ) =
e−θθx

x!
, x = 0, 1, ... (2.22)

Then, the log-likelihood function is as follows:

l(θ;x) = −nθ +
n∑
i=1

xi log θ − log
n∏
i=1

xi! (2.23)
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Therefore, solving
∂l(θ;x)

∂θ
= 0 for θ will result in θ̂ = x̄, and the likelihood

ratio statistics is

G2(x) = 2n

[
θ0 − x̄+ x̄ log

(
x̄

θ0

)]
(2.24)

The distribution of G2(X) under H0 is approximately Chi-square with one
degree of freedom, and χ2

1(0.95) = 3.84. Therefore, the critical region of the
test can be constructed as follows:

C =

{
x : 2n

[
θ0 − x̄+ x̄ log

(
x̄

θ0

)]
≥ 3.84

}
(2.25)

For more details on likelihood ratio test see Casella and Berger (2002).

2.2.6 Logistic Regression Models for Binary Responses

In problems where the response variable takes one of only two values that
representing the presence or absence of an attribute of interest, logistic regres-
sion models are suitable tools to deal with the situation. In such problems,
the response or dependent variable is a Bernoulli or Binomial random vari-
able, and the predictors or explanatory variables could be either discrete or
continuous random variables or a mixture of both.

Consider we observe independent binary responses, and we aim to draw
inferences about the probability of an event in the population. Suppose that,
the probability of an event occurs for each individual, in the population, is
equal to pi. Let n denotes the number of observations in the sample, and
y1,...yn as realizations of independent random variables Y1,...Yn, that take
the values 0 and 1, such that Yi = 1 indicates that an event occurs for the
ith subject, otherwise, Yi = 0. Then, we have E(Yi) = pi, and the joint
probability (likelihood function) of the data can be written as follows:

L(p) =
n∏
i=1

pyii (1− pi)1−yi = p
∑n
i=1 yi

i (1− pi)n−
∑n
i=1 yi (2.26)

applying the log transform on the likelihood function (2.26) we get

l(p) = log(L) =
n∑
i=1

yilog

(
pi

1− pi

)
+ n

n∑
i=1

log(1− pi) (2.27)
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that is called the log-likelihood function.
Now consider the vector of predictors as xixixi = (x1, ..., xp) for i = 1, .., n.

We would like to have the probabilities pi depend on a vector of observed
predictors xixixi. The logistic regression model equates the logit transform of pi
as the linear function of predictors as follows:

logit(pi) = β0 + β1xi1 + ...+ βpxip = x
′

ix
′

ix
′

iβββ (2.28)

where βββ is a vector of regression coefficients. Therefore,

E(Yi) =
ex
′
ix
′
ix
′
iβββ

1 + ex
′
ix
′
ix
′
iβββ

(2.29)

Then, the log-likelihood for n observations can be rewritten as follows:

l(β) =
n∑
i=1

yix
′

ix
′

ix
′

iβββ − n
n∑
i=1

log(1 + ex
′
ix
′
ix
′
iβββ) (2.30)

The likelihood equations result from setting d l(βββ)/dβββ = 0. Since

d l(βββ)

dβj
=

n∑
i=1

yixij − n
n∑
i=1

xij
ex
′
ix
′
ix
′
iβββ

1 + ex
′
ix
′
ix
′
iβββ

(2.31)

the likelihood equations are

n∑
i=1

yixij − n
n∑
i=1

p̂ixij = 0 j = 0, 1, ..., p (2.32)

where p̂i =
ex
′
ix
′
ix
′
iβ̂̂β̂β

1 + ex
′
ix
′
ix
′
iβ̂̂β̂β

.

Setting the equations in Eq. (2.32) to zero results in a system of p + 1
nonlinear equations each with p+ 1 unknown variables. The solution to the
system is a vector with elements, β̂j for j = 0, 1, ..., p, for which the observed
data have the highest probability of occurrence, and are called the maximum
likelihood estimates (MLEs) for βj for j = 0, 1, ..., p. This nonlinear system
of equations cannot be solved analytically. It is common to use a numerical
algorithm, such as Newton-Raphson algorithm to obtain the MLEs. More
details on the estimation of βj, for j = 0, 1, ..., p and their variances can be
found in Agresti (2013, Chapter 5).
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Finally, we can plug in the estimated values of βj for j = 0, 1, ..., p in

p̂i =
ex
′
ix
′
ix
′
iβ̂̂β̂β

1 + ex
′
ix
′
ix
′
iβ̂̂β̂β

, and gets p̂i, for i = 1, ..., n.

To test the hypothesis of the form H0 : βj = 0 vs. H1 : βj 6= 0 for a
single logistic regression coefficient, we can use the Wald statistic as follows:

z =
β̂j − βj|H0

ˆvar(β̂j)
(2.33)

This statistic has approximately a standard normal distribution in large sam-
ples.

Eventually, using the Wald statistic in Eq. (2.33), the 100(1− α)% con-
fidence interval for βj can be calculated as follows:

β̂j ± z1−α/2

√
ˆvar(β̂j) (2.34)

where z1−α/2 is the normal critical value for a two-sided test of size α, and

ˆvar(β̂j) is the estimated variance of β̂j.

2.2.7 Permutation Test

A permutation test has been widely used for a long time to construct the
correct distribution of a test statistic under a null hypothesis. It is a non-
parametric method that generates the sampling distribution of a test statis-
tic by re-sampling the observed data without replacement. If the data are
permuted over all possible arrangements of the data, it is called an exact
permutation test. However, it is called approximate permutation test if the
data are permuted over only a subset of all possible arrangements of the data.
See Berry et al. (2011) for more details.

When it is not easy to compute the distribution of the test statistics, the
permutation test can be helpful. Results of permutation tests are valid how-
ever, they are computationally intensive compare to the standard parametric
(analytic) methods. In the following, the permutation test to compare the
mean in two different groups is explained in details. Let n be the total sample
size.

1. Compute the mean for each group and calculate the difference in means,
difobs.
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2. Permute (shuffle) randomly the n observations between the two groups.

3. For the permuted sample, calculate the mean in each group and the
difference in means, difperm

4. Repeat steps 2 and 3 for L times.

5. Then the p− value permutation is

p− valueperm =
number of|difperm| ≥ |difobs|

L
(2.35)

Note that in practice, scientists normally use approximate permutation test,
since generating all possible permuted samples are computationally inten-
sive and costly. The procedure we described in steps 1 to 5 above is an
approximate permutation test.

Example 4. Let n = 500 be the total sample size. we consider two groups,
0 and 1. Then, we generate observations from two different scenarios. In
each group:

1. First scenario: Generate observations from the normal distribution with
the same mean and the same variance equal to 1.

group<−rep ( c ( 0 , 1 ) , c (200 ,300) )
S1<−rnorm (500)

2. Second scenario: Generate observations from the normal distributions
with different means and the same variance equal to 1.

S2<−rnorm (500 , mean=group /2)

Our aim is to compare the means of two different groups (0, 1), in these
two scenarios, using the t−test and the permutation test. Table 2.2 and
figure 2.1 show results of performing t−test and permutation test on S1
and S2, where OMG0 and OMG1 are the observed mean in group 0 and 1,
respectively. The number of permuted samples in each scenario is L = 1000.

Table 2.2: Results of t−test and permutation test to compare group means
in two different scenarios.

Data OMG0 OMG1 t−value df p−valuet−test p−valueperm
S1 −0.043 0.046 −0.960 498 0.338 0.351
S2 0.086 0.490 −3.312 498 0.001 0.00001
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Figure 2.1: Histograms of difference in means generated from L = 1000
permutations of S1 and S2.

Histogram of difference in means for the first scenario
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Histogram of difference in means for the second secnario
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Figure 2.1 shows the approximate (estimate) distributions of difference
in means generated from L = 1000 number of permutations, for the first
and second scenarios. The vertical line represent the observed difference in
means for each scenario. According to Figure 2.1, means are not different in
the first scenario however, they are different in the second scenario. We can
also see in table 2.2 that, the results from t−test and permutation test are
consistent in both scenarios. Full scripts that generate figure 2.1 and table
2.2 can be found in Ch. 7.

2.2.8 The Support of a Random Variable

The support of a continuous random variable X is defined as the set of all
values that probability density function (pdf) is strictly positive, symbolically
supp(X) = {x ∈ R : fX(x) > 0}.
Example 5. Assume X is a continuous uniform random variable with the
following density function.

fX(x) =

{
1 x ∈ [0, 1]

0 o.w.
(2.36)
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Then, the support of X is denoted as supp(X) = [0, 1].
In a discrete case, the support of a random variable X is defined as

supp(X) = {x ∈ R : pX(x) > 0}, where pX(.) is the probability mass
function (pmf) of the random variable X.

Example 6. Assume X is a discrete uniform random variable with the fol-
lowing probability mass function.

pX(x) =


1/2 x = 0

1/2 x = 1

0 o.w.

(2.37)

Then, the support of X is supp(X) = {0, 1}. More details on the support of
a random variable can be found in Folland (1999).
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2.3 Theorems

2.3.1 Fieller’s Theorem

Fieller’s theorem Fieller (1940) is used to construct confidence sets (limits)
for a ratio of normal means, see for example Casella and Berger (2002, Chap-
ter 9).

Consider (X1, Y1), ..., (Xn, Yn) as a random sample from a bivariate nor-
mal distribution as follows:

(
Xi

Yi

)
∼ N2

[(
µX
µY

)
,

(
σ2
X σXY

σXY σ2
Y

)]
for i = 1, ..., n (2.38)

Then, a confidence set for θ =
µX
µY

can be constructed as follows:

• Let Zθi = Yi − θXi for i = 1, ..., n and therefore, Z̄θ = Ȳ − θX̄. Then,
it can be shown that Z̄θ is a normally distributed random variable with
mean 0 and variance

Vθ =
σ2
Y − 2θρσY σX + θ2σ2

X

n
(2.39)

where ρ =
σXY
σXσY

• Then, V̂θ is the estimate for Vθ that can be calculated as

V̂θ =

∑n
i=1(Zθi − Z̄θ)2

n(n− 1)
(2.40)

=
S2
Y − 2θSXSY + θ2S2

X

n− 1
.

where

S2
Y =

∑n
i=1(Yi − Ȳ )2

n
for i = 1, ..., n

S2
X =

∑n
i=1(Xi − X̄)2

n
for i = 1, ..., n

SXY =

∑
i=1 n(Yi − Ȳ )(Xi − X̄)

n
for i = 1, ..., n

(2.41)
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• Finally, it can be shown that E(V̂θ) = Vθ, V̂θ and Z̄θ are independent

of each other, and (n − 1)V̂θ/Vθ ∼ χ2
n−1. Therefore, Z̄θ/

√
V̂θ ∼ tn−1.

Then, the confidence set for θ can be defined as follows:{
θ :

z̄2
θ

v̂θ
≤ t2n−1,α/2

}
(2.42)

that can be rewritten as:{
θ :

(
x̄2 −

t2n−1,α/2

n− 1
S2
x

)
θ2 − 2θ

(
x̄ȳ −

t2n−1,α/2

n− 1
Sxy

)
+

(
ȳ2 −

t2n−1,α/2

n− 1
S2
y

)
≤ 0

}
(2.43)

This set characterizes a parabola in θ, and solving this quadratic equa-
tion for θ will result in the endpoints of the confidence set.
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2.4 Notations

In this thesis, we will use Z, T and S as abbreviations for treatment, true
and surrogate endpoints respectively, where Z, T and S are random vari-
ables. Surrogate and true endpoints are random variables since it is not
possible to exactly predict their values for each patients. We also think of
a treatment Z as a random variable since we are dealing with a randomized
clinical trial. In a randomized clinical trial, subjects participating in the trial
are randomly assigned to the new treatment or to the group receiving the
standard treatment as a control group.

We let fS(s) for s ∈ A denotes the probability distribution of the random
variable S. Further, fT (t) represents the probability distribution of the ran-
dom variable T , for t ∈ B, and fZ(z) indicates the probability distribution
of the random variable Z, for z ∈ C. Note that A,B and C are the supports
of random variables S, T and Z respectively.

In the same way, fS|Z(s|z) indicates the probability distribution of S
conditional on Z = z, for s ∈ A and any given z ∈ C, fT |Z(t|z) indicates the
probability distribution of T conditional on values of Z, for t ∈ B and any
given z ∈ C, fT |S(t|s) indicates the probability distribution of T conditional
on S = s, for t ∈ B and any given s ∈ A, and fT |S,Z(t|s, z) is the probability
distribution of T conditional on values of S and Z, for t ∈ B and any given
s ∈ A and z ∈ C.

Moreover, fT,S,Z(t, s, z) indicates the joint probability distribution of a
triplet (T, S, Z), for T ∈ B, S ∈ A and Z ∈ C. Throughout this thesis, we
will follow the same rule to derive further notations corresponding T , S and
Z.

In a given sample of size n, S1, ..., Sn represent surrogate endpoints as
random variables, that are independent and identically distributed. More-
over, s1, ..., sn indicate observed values of the surrogate endpoints S1, ..., Sn.
In the same fashion, T1, ..., Tn and Z1, ..., Zn stand for true endpoints and
treatments as independent and identically distributed random variables re-
spectively. Further, t1, ..., tn and z1, ..., zn correspond to observed values of
T1, ..., Tn and Z1, ..., Zn. Note that, the same notations, as we introduced
earlier for marginal, joint and conditional probability distributions of S, T
and Z, are applied to Si, Ti, Zi, for i = 1, ..., n.
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CHAPTER 3

Evaluation of Surrogate Endpoints
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3.1 Introduction

Candidate surrogate endpoints are generally suggested based on biological
considerations however, their validation depends on statistical methods. In
the past two decades, there is fast-growing literature on statistical approaches
for the evaluation of surrogate markers. These approaches fall into two major
frameworks: one is developed for the evaluation of surrogate markers using
data from a single large clinical (a single trial setting) and the other is based
on meta-analysis of multiple clinical trials (a multiple trial setting). This
current thesis concentrates on statistical evaluation of surrogate endpoints
in a single trial setting. The statistical evaluation of surrogate markers in a
single setting was effectuated by Prentice (1989).

In the current chapter, we will explain the Prentice (1989) definition of
surrogacy along with four operational criteria to validate candidate surrogate
endpoints. Then, we will discuss parametric and non-parametric methods in
a single trial setting to verify the operational criteria.
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3.2 Prentice’s Definition and Operational Cri-

teria of Surrogacy

Prentice (1989) defined a surrogate endpoint as “a response variable, for
which a test of the null hypothesis of no relationship to the treatment groups
under comparison is also a valid test of the corresponding null hypothesis
based on the true endpoint” Prentice (1989). Symbolically, S should satisfy:

fS|Z(s|z) = fS(s)⇔ fT |Z(t|z) = fT (t), (3.1)

Prentice’s definition itself cannot be used in practice to evaluate a surro-
gate endpoint. To verify the Prentice’s definition (3.1) directly, we deal with
equivalence of two statistical tests. Large number of trials are needed in
order to show that a triplet (T, S, Z) satisfies (3.1). However, we still might
not be able to prove (3.1) for all the trials due to the lack of sensitivity.

Therefore, Prentice suggested that a biomarker S is regarded as a valid
surrogate for a clinical endpoint T if the triplet (T, S, Z) satisfy the following
conditions:

fS|Z(s|z) 6= fS(s), (3.2)

fT |Z(t|z) 6= fT (t), (3.3)

fT |S(t|s) 6= fT (t), (3.4)

fT |S,Z(t|s, z) = fT |S(t|s), (3.5)

The first and second criteria imply that the treatment has prognostic
relevance for the surrogate and the true endpoints. The third criterion states
that the surrogate endpoint has a significant impact on the true endpoint.
Thus, the true endpoint cannot be independent of the surrogate. Note that,
in order to consider a biomarker as a candidate for a surrogate endpoint the
first three Prentice’s criteria have to be verified in the first place.

Eventually, the last Prentice’s criterion implies that the full effect of the
treatment upon the true endpoint is captured by the surrogate. The last
Prentice’s criterion bears the essential concept of surrogacy, in the sense
that, once we have information available about the surrogate, knowing about
the treatment does not give us any new information for predicting the true
endpoint, Buyse et al. (2000). This implies the importance role of the last
Prentice’s criterion for the validation of the surrogate endpoint.
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Lemma 1. Buyse and Molenberghs (1998) showed that Prentice’s criteria
(3.4)-(3.5) are sufficient conditions for Prentice’s definition (3.1), in the case
of binary endpoints.

Proof. First assume fS|Z(s|z) = fS(s) is correct, then need to show ⇒ holds
in (3.1). By definition, we have

fT |Z(t|z) =
∑
s

fT,S|Z(t, s|z) =
∑
s

fT |S,Z(t|s, z)fS|Z(s|z). (3.6)

We can now replace fS|Z(s|z) by fS(s). And if (3.5) holds, then (3.6) can be
written as follows:

fT |Z(t|z) =
∑
s

fT |S(t|s)fS(s) = fT (t). (3.7)

So far we showed ⇒ holds in (3.1).
Now consider fT |Z(t|z) = fT (t) is correct, and we are going to show that

⇐ holds in (3.1). If (3.5) holds, then we have

fT |Z(t|z) =
∑
s

fT |S,Z(t|s, z)fS|Z(s|z) =
∑
s

fT |S(t|s)fS|Z(s|z). (3.8)

On the other hand we have

fT (t) =
∑
s

fT |S(t|s)fS(s). (3.9)

As we assumed fT |Z(t|z) = fT (t), the left hand sides of (3.8) and (3.9) are
equal. Consequently we can write the right hand sides of (3.8) and (3.9)
equal, which yields to:∑

s

fT |S(t|s)[fS|Z(s|z)− fS(s)] = 0. (3.10)

For a binary surrogate endpoint, (3.10) can be written as follows:

[fS|Z(S = 1|z)− fS(S = 1)][fT |S(t|S = 1)− fT |S(t|S = 0)] = 0. (3.11)

If fT |S(t|S = 1)− fT |S(t|S = 0) 6= 0, which is equivalent to fT |S(t|s) 6= fT (t)
in (3.4) holds, we could conclude that fS|Z(s|z) = fS(s). Thus we proved ⇐
holds in (3.1).
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As a result, to evaluate a binary surrogate endpoint, it is sufficient to
show that Prentice’s criteria (3.4)-(3.5) are satisfied. For endpoints other
than binary, Burzykowski et al. (2005) and Buyse et al. (2000) noted that
Prentice’s criteria (3.2)-(3.5) are informative conditions and tend to be veri-
fied for valid surrogate endpoints, however “they should not be regarded as
strict criteria.” We will introduce other measures like proportion treatment
explained (PE) later in this chapter, which can be used as complements to
conditions (3.2)-(3.5).

In the following sections, we will present different methods that try to
verify Prentice’s criteria for the validation of a surrogate endpoint in a single
trial.

3.3 Parametric Methods for Surrogacy Eval-

uation in a Single Trial

One approach to verify Prentice’s criteria for the validation of a surrogate
endpoint is using certain parametric models. For example, Burzykowski et al.
(2005) discus the case where both endpoints are normal variables, and lin-
ear regression can be used to model relationships between S, T and Z. For
example the relationship between S and Z in fS|Z(S|Z) can be modeled as
a linear regression, where S is a response variable and Z is an explanatory
variable. Then validating Equation (3.2) is equivalent to test for the signif-
icance of regression coefficient of Z in the linear regression between S and
Z. However, choosing proper models to represent relationships between S,
T and Z depends on the type of variables.

In general, surrogate S and true endpoint T could be any type of variables.
They are not necessarily normal variables. Thus, validating the existence of
relationship between variables cannot be done only by applying simple regres-
sion models. Therefore, one possibility would be to extend the relationship
to generalized linear models to incorporate non-normal variables. To read
more on generalized linear model see de Jong and Heller (2008).

The translation of Prentice’s criteria to the generalized linear models can
be explained through the following models and Table 3.1:
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g(E(Si|Zi = zi)) = µS|Z + αzi (3.12)

g(E(Ti|Zi = zi)) = µT |Z + βzi (3.13)

g(E(Ti|Si = si)) = µT |S + γsi (3.14)

g(E(Ti|Zi = zi, Si = si)) = µT |Z,S + βSzi + γZsi (3.15)

g(E(Ti|Zi = zi, Si = si)) = µT |Z,S + βSzi + γZsi + δzisi (3.16)

where g is a link function and E indicates the expectation. Let a triplet
(Ti, Si, Zi) represents a random vector, and (ti, si, zi) represents its observed
value, for ith observation in the sample, for i = 1, ..., n. If based on some
prior information, we would know that there exists no interaction between
S and Z, then we may use model without interaction term (3.15) instead of
model (3.16).

Table 3.1: Prentice’s criteria translation to generalized linear models

Prentice’s criterion Quantity Null hypothesis 1

fS|Z(s|z) 6= fS(s) Effect of Z on S α = 0
fT |Z(t|z) 6= fT (t) Effect of Z on T β = 0
fT |S(t|s) 6= fT (t) Effect of S on T γ = 0
fT |Z,S(t|z, s) = fT |S(t|s) Effect of Z on T , given S βS = δ = 0

Prentice’s criteria and surrogacy can be validated through tests of hy-
potheses for the parameters of the models 3.12 to 3.16. See Buyse and
Molenberghs (1998) for more details on the verification of Prentices crite-
ria using generalized linear models. Specifically, the first, second and third
Prentice’s criteria can be verified by showing that the hypothesis tests of
α = 0, β = 0 and γ = 0 are significant. To test for the significance of the
effect of Z on T given S, we need to test for the significance of βS and δ at
the same time. To make sure that the false positive rate for multiple testing
βS = δ = 0 is controlled at the 0.05 level, we need to use Bonferroni cor-
rection to control the false positive rates of each individual test, βS = 0 and
δ = 0.

We will set the false positive rates for each test in Table 3.1 to 0.05, unless
otherwise stated. The false positive rate for testing the null hypotheses in

1Null hypothesis for testing significance of coefficients in the general linear models.
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Table 3.1 are as follows:

P (Reject the null hypothesis|α = 0) (3.17)

P (Reject the null hypothesis|β = 0) (3.18)

P (Reject the null hypothesis|γ = 0) (3.19)

P (Reject the null hypothesis|βS = δ = 0) (3.20)

We test the hypotheses in the same order as in Table 3.1. If we find no
evidence to reject α = 0, we would not proceed with the other hypotheses.
Under these circumstance, we must look for another potential candidate as a
surrogate endpoint. Clearly Z should have a significant effect on T otherwise,
the process of searching for a surrogate to replace the true endpoint does not
make any sense.

Note that, in order to validate the fourth Prentice’s criterion using the
general linear model, we need to show that the null hypothesis of the form
βS = δ = 0 is true. However, what we actually showed here is that the null
hypothesis of the form βS = δ = 0 cannot be rejected. In a regular hypothesis
test framework, we usually collect evidence to reject the null hypothesis, and
failing to reject the null hypothesis is not equivalent to conclude that the
null hypothesis is true. In here, we face the situation where we are interested
to prove the null hypothesis rather than to reject it, which is much common
in the (bio)-equivalence setting. Therefore, using the usual hypothesis test
framework is not the correct way of verifying the fourth Prentice’s criterion.
We will discuss a possible solution to this problem thoroughly in Chapter 5.

3.3.1 Logistic Regression for the Validation of Pren-
tice’s Criteria in a Single Trial with Binary End-
points

When we deal with binary variables, validation of Prentice’s criteria using
generalized linear models boils down to the use of Logistic regression, if the
link function η = logit is used. Logistic regression can be used as a tool to
model relationship of binary variable as an outcome to explanatory features,
see e.g. Agresti (2013).

In equations (3.12) to (3.16) assume Ti and Si are binary endpoints. Then
we can express the effect of Z on T through the following logistic model:

ln

(
P (Si = 1|Zi = zi)

P (Si = 0|Zi = zi)

)
= µS|Z + αzi, (3.21)
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where we are interested in the test of hypothesis for α = 0. In order to verify
the first Prentice’s criterion α needs to deviate from 0.

In a similar way, we could use logistic regression to model the relation
between Z and T , and S and T as follows:

ln

(
P (Ti = 1|Zi = zi)

P (Ti = 0|Zi = zi)

)
= µT |Z + βzi, (3.22)

ln

(
P (Ti = 1|Si = si)

P (Ti = 0|Si = si)

)
= µT |S + γsi. (3.23)

Therefore, in order to (3.3) and (3.4) are satisfied, β and γ need to deviate
from 0.

Finally, the effect of Z and S on T in (3.5) could be represented through
the following logistic model.

ln

(
P (Ti = 1|Zi = zi, Si = si)

P (Ti = 0|Zi = zi, Si = si)

)
= µT |Z,S + βSZi + γzsi + δzisi, (3.24)

where βS is the effect of Z on T adjusted for S, γZ is the effect of S on T
adjusted for Z, and δ is the interaction effect of S and Z on T . The last
Prentice’s criterion in equation (3.5) implies that the full effect of Z on T is
captured by S. This is equivalent to show that βS = δ = 0 in (3.24).

It was suggested by Freedman et al. (1992) to do the hypotheses test of
βS = 0 and δ = 0 sequentially. Thus, to verify (3.5) we first need to test for
δ; if not significant, model (3.24) reduces to:

ln

(
P (Ti = 1|Zi = zi, Si = si)

P (Ti = 0|Zi = zi, Si = si)

)
= µT |Z,S + βSzi + γZsi, (3.25)

thereafter we need to test model (3.25) versus model (3.23) .

3.3.2 Odds Ratio for Surrogacy Evaluation in a Single
Trial with Binary Endpoints

The odds ratio (OR) is a measure of association between an exposure and
a binary outcome. It is most commonly used in case control studies which
allows to compare the intervention group of a study relative to the compara-
tor drug or placebo group. An odds ratio indicates the odds of an outcome
occurring given a particular exposure, compared to the odds of the outcome
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occurring in the absence of that exposure. In logistic regression, the expo-
nential function of the coefficient of the model is the odds ratio associated
with a one unit increase in the exposure (explanatory variable). See e.g.
Agresti (2013) for more details on odds ratios.

Therefore, testing for the significance of coefficients α, β and γ in the
logistic models (3.21), (3.22) and (3.23) is equivalent to test for the signifi-
cance of odds ratios ORSZ 6= 1, ORTZ 6= 1 and ORST 6= 1, in the marginal
contingency tables for (S,Z), (T, Z) and (T, S) . Finally, showing that δ = 0
and βS = 0 in the models (3.24) and (3.25) is equivalent to show that,
ORTZ|S=0 = ORTZ|S=1 = 1 in the three way contingency table of (T, S, Z).

So far, we reviewed the parametric models to verify Prentice’s criteria.
However there are limitations to the parametric model based approach, e.g.

• The results highly depend on choosing the correct parametric models.

• Verification of the fourth Prentice’s criterion by testing for the param-
eters of parametric models is not a direct test of equality of the two
conditional distributions.

• To validate the fourth Prentice’s criterion showing that the null hypoth-
esis is true, using the evidence we collected to reject the null hypothesis,
raises a conceptual problem. Hence, the last criterion is useful to reject
a poor surrogate endpoint however, it is inadequate to validate a good
surrogate endpoint. Moreover, the non-significance of the test does not
mean that the full effect of Z on T can be explained S.

3.3.3 Freedman’s Proportion Treatment Explained, PE

The fact that the hypothesis tests for βs and δ, in the logistic model (3.24), are
not statistically significant indicates that, some treatment effect Z on the true
endpoint T is explained by the surrogate S. However it cannot be proven that
the full effect of Z on T is captured by S. Therefore, Freedman et al. (1992)
proposed a quantitative measure called the proportion of treatment explained
(PE) to measure the proportion of a treatment effect on a clinical endpoint
that can be explained by a surrogate. PE can be used as a complement to
the fourth Prentice’s criterion, when Prentice’s fourth criterion is fulfilled.

The proportion of treatment explained can be mathematically expressed
as follows:

PE = 1− βS
β
, (3.26)
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where β and βS are the parameters in the models (3.13) and (3.15). If there
is any evidence on the existence of an interaction effect between S and Z,
one might need to replace model (3.15) by model (3.16). In both cases, if
a surrogate completely explains treatment effect on true endpoint, βS = 0
and as a consequence PE = 1. If PE < 1, a surrogate explains only part
of the treatment effect on the true endpoin, thus the surrogate is called an
incomplete surogate.

Since PE is the ratio of two parameters, the confidence limits for PE can
be constructed using the Fieller’s theorem, as explained in Section 2.3.1:

Lower limit =
f1 −

√
D

f2

, Upper limit =
f1 +

√
D

f2

, (3.27)

where

f0 = β̂S
2
− z2

1−α/2 ˆvar(β̂S) (3.28)

f1 = β̂Sβ̂ − z2
1−α/2 ˆcov(β̂S, β̂) (3.29)

f2 = β̂2 − z2
1−α/2 ˆvar(β̂) (3.30)

D = f 2
1 − f0f2 (3.31)

and z1−α/2 is the (1−α/2)th quantile of the normal distribution. Note that, if
the number of observations n were not large enough z1−α/2 should be replaced
by Student’s t-distribution with n− 1 degrees of freedom, t1−α/2(n− 1).

According to Freedman et al. (1992), a large proportion of the treatment
effect on the true endpoint is explained by the surrogate if the lower confi-
dence limit of PE is larger than some proportion, say 0.5 or 0.75. However,
there are some limitations to the proportion treatment explained:

• Defining PE as a proportion would cause some conceptual problems
where βS and β take different signs, and as a consequence PE could
take values greater than one. Thus, PE is not restricted to the unit
interval which makes interpretation of PE difficult. See e.g. Choi et al.
(1993) and Volberding et al. (1990) for more details.

• PE confidence limit could be wide, see e.g. Lin et al. (1997). Taking
large sample sizes and having strong effect of Z on T may overcome
this issue. However note that usually having strong effect of Z on T is
actually a rare situation to happen in real problems.
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3.4 Non-Parametric Methods for Surrogacy

Evaluation in a Single Trial

3.4.1 An Entropy Based Non-Parametric Method for
Surrogacy Evaluation

Miao et al. (2012) proposed a new approach to validate surrogate endpoints
based on the Kullback-Leibler divergence measure and the permutation test.
This method directly verifies the fourth Prentice’s criterion. It does not make
any distributional assumptions on the endpoints, and it is robust to model
misspecification. In the following we will describe the method.

Consider the following hypotheses:

H0 : fT |S,Z(t|s, z) = fT |S(t|s) vs. H1 : fT |S,Z(t|s, z) 6= fT |S(t|s), (3.32)

The Kullback-Leibler divergence quantifies the difference between fT |S,Z(t|s, z)
and fT |S(t|s) as follows:

dKL(fT,S,Z|H0(t, s, z), fT,S,Z|H1(t, s, z)) =

∫
(t,s,z)

log

(
fT,S,Z(t, s, z)fS(s)

fS,Z(s, z)fT,S(t, s)

)
dFT,S,Z(t, s, z),

(3.33)
where dFT,S,Z(t, s, z) = fT,S,Z(t, s, z) d(t, s, z), and fT,S,Z|H0(t, s, z) and fT,S,Z|H1(t, s, z)
are the joint probability density functions of (T, S, Z) under the null and al-
ternative hypotheses in equation (3.32).

Therefore, testing the hypotheses in equation (3.32) is equivalent to test
the following hypotheses:

H0 : dKL = 0 vs. H1 : dKL 6= 0, (3.34)

where dKL is the right hand side of the equality sign in equation (3.33).
We can estimate the KL divergence by replacing the true probability

density functions in equation (3.33) with their empirical estimates from the
sample.

d̂KL =
1

n

n∑
i=1

log

(
f̂T,S,Z(ti, si, zi)f̂S(si)

f̂S,Z(si, zi)f̂T,S(ti, si)

)
(3.35)

where (ti, si, zi) shows the observed clinical endpoint, surrogate endpoint and
treatment for the ith patient, n is the sample size and d̂KL is called a test
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statistics. In equation (3.35), f̂T,S,Z(ti, si, zi) represent the estimated joint

density function of (Ti, Si, Zi) at (ti, si, zi), f̂S(si) shows estimated marginal
density of Si at si, f̂S,Z(si, zi) is the estimated joint density of (S,Z) at

(si, zi), and f̂T,S(ti, si) is the joint density function of (Ti, Si) at (ti, si). The

chance of S being a good surrogate for T increases as d̂KL gets closer to 0.
To calculate the p − value for this test, we estimate the sampling dis-

tribution of d̂KL under the null hypothesis using the permutation test. We
permute the observations (ti, si, zi), for i = 1, ..., n, in a way that agrees
with the null hypothesis. The null hypothesis states that, given S = s, the
probability distribution of T is the same for all values of Z. That is to say,
given the information about the surrogate, whether the patient received new
drug or active control, has no effect on the outcome of the clinical endpoint.
Thus to generate a permuted sample of the form (ti, si, z

∗
i ) from the original

sample (ti, si, zi), for i = 1, ..., n, we proceed as follows:

• We fix ti and si, for each patient i where i = 1, ..., n.

• Then in each level (value) of the surrogate S, we resample zi, for i =
1, ..., n, without replacement.

For each permuted sample with observed values (ti, si, z
∗
i ), for i = 1, ..., n,

we can calculate d̂∗KL as follows:

d̂∗KL =
1

n

n∑
i=1

log

(
f̂T,S,Z∗(ti, si, z

∗
i )f̂S(si)

f̂S,Z∗(si, z∗i )f̂T,S(ti, si)

)
(3.36)

Note that the possible number of different permutations and consequently
permuted samples are huge. However, following Pesarin (2001), Westfall
and Young (1993) and Bickel and Van Zwet (1987), we limit the number of
permutations to L random permuted samples. Then, we compute d̂∗KL for

each sample and construct the approximate distribution of d̂KL under H0.
Then the p − value for the test, based on L permuted samples, can be

constructed as follows:

p− valueperm =
1 +

∑L
l=1 I(d̂∗KL,l ≥ d̂KL)

1 + L
, (3.37)

where I denotes the indicator function, d̂∗KL,l is the estimate of KL divergence

using the ith permuted sample, and d̂KL is the estimate of KL divergence
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using the original sample (ti, si, zi) for i = 1, ..., n. Then, we reject the null
hypothesis if p− valueperm < α, where α is the pre-specified and fixed false
positive rate for the test, α = P (dKL 6= 0|dKL = 0). Note that adding 1 unit
to the numerator and denominator guarantees that the p− valueperm differs
from 0.

In the case of binary endpoints, simply replace the probability density
functions with probability mass functions, and the integral with the sum
over total number of observations in equations (3.33), (3.35) and (3.36). The
rest of the procedure remains the same for binary endpoints.

3.4.2 Asymptotic Distribution of KL Divergence Esti-
mator for Categorical Endpoints, Based on the
Original Data

Another approach that Miao et al. (2012) introduced to validate the fourth
Prentice’s criterion, where surrogate endpoints are count or binary, poisson
or multinomial random variables, is to use the asymptotic distribution of d̂KL
in (3.35).

Consider a sample of n patients. For each patient i, for i = 1, ..., n, we
collected the information on (Ti, Si, Zi) variables, so that (ti, si, zi) represents
the observed value of (Ti, Si, Zi) for the ith patient. Also assume T , S and
Z are discrete (categorical) random variables with 1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤
k ≤ 2 categories respectively. We can now construct a three way contingency
table for the variables (T, S, Z), based on the total number of n observations
in the sample.

Let phjk = P (T = th, S = sj, Z = zk) denote the joint probability of
(T, S, Z), where (th, sj, zk) are the values of (T, S, Z) at the hth, jth and kth
levels of T , S and Z respectively. Then the number of observations in the cell
corresponds to the hth, jth and kth levels of T , S and Z in the contingency
table is a binomial random variable, represented as follows:

nhjk ∼ Bin(n, phjk) (3.38)

Therefore, the joint probability distribution of the number of observations
for all cells, in the contingency table, follows the multinomial distribution:

{nhjk : 1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ 2} ∼ Mult(n, {phjk : 1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ 2}),
(3.39)

44



where
∑

h

∑
j

∑
k nhjk = n and

∑
h

∑
j

∑
k phjk = 1.

Under this set up, d̂KL in (3.35) can be constructed as follows:

d̂KL =
2∑

k=1

b∑
j=1

a∑
h=1

p̂hjk log

(
p̂hjk p̂.j.
p̂.jk p̂hj.

)

=
1

n
log

( 2∏
k=1

b∏
j=1

a∏
h=1

(
p̂hjk p̂.j.
p̂.jk p̂hj.

)nhjk)

=
1

n
log

( ∏2
k=1

∏b
j=1

∏a
h=1(

nhjk
n

)nhjk

∏2
k=1

∏b
j=1

∏a
h=1

( n.jk
n

nhj.
n

n.j.
n

)nhjk

)
. (3.40)

Then

2nd̂KL = −2 log

(∏2
k=1

∏b
j=1

∏a
h=1

( n.jk
n

nhj.
n

n.j.
n

)nhjk

∏2
k=1

∏b
j=1

∏a
h=1(

nhjk
n

)nhjk

)
(3.41)

= −2 log
L0

L1

.

In equation (3.41), L0 is the maximum value of the joint probability
of observations nhjk, for all the cells, in the contingency table of (T, S, Z),

under the null hypothesis in (3.32), where ˆphjk =

n.jk
n

nhj.
n

n.j.
n

is the restricted

maximum likelihood estimate (MLE) for phjk, for 1 ≤ h ≤ a, 1 ≤ j ≤ b,
1 ≤ k ≤ 2. L1 is the maximum value of the joint probability of nhjk,

under an alternative hypothesis in equation (3.32), where p̂hjk =
nhjk
n

is the

unrestricted MLE, for 1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ 2.
Therefore, 2nd̂KL is the likelihood ratio statistic, and approximately chi-

square distributed with degrees of freedom (df) equal to the degrees of free-
dom under the alternative hypothesis df|H1 minus the degrees of freedom
under the null hypothesis df|H0 .

45



Under the alternative hypothesis we have a total of 2ab parameters and a
constraint

∑2
k=1

∑b
j=1

∑a
h=1 phjk = 1. Thus, the total number of independent

(free) parameters are df = 2ab − 1. By free parameter we mean those phjk,
for 1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ 2, that have to be estimated.

Under the null hypothesis, we have phjk =
phj. p.jk
p.j.

, that means phjk can

be determined through the marginal probabilities of phj., p.jk and p.j., for
1 ≤ h ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ 2. The total number of parameters phj., for

1 ≤ h ≤ a, 1 ≤ j ≤ b, are ab, and we have one constraint
∑b

j=1

∑a
h=1 phj. = 1.

Thus, the number of free parameters are equal to ab − 1. Having all p.jk,
for 1 ≤ h ≤ a, j ≤ b, 1 ≤ k ≤ 2, we can simply sum over k for 1 ≤ k ≤ 2
and get p.j., for 1 ≤ j ≤ b. The total number of p.jk, for 1 ≤ j ≤ b and
1 ≤ k ≤ 2, are 2b, where b of them can be determined through p.j., for
1 ≤ j ≤ b. Consequently, only (2b − b) out of 2b parameters are free and
should be estimated. Thus, the total number of free parameters under the
null hypothesis is df|H0 = ab− 1 + b.

The asymptotic distribution of 2n ˆdKL is chi-square with (2ab−1)− (ab−
1 + b) degrees of freedom, symbolically represented as follows:

2nd̂KL
d−→ χ2

b(a−1) (3.42)

As a result, the p−value to test the hypotheses in equation (3.34), based
on the asymptotic distribution of 2nd̂KL, can be calculated as follows:

p− valueasymptotic = P (χ2
b(a−1) > 2nd̂KLobs) (3.43)

where d̂KLobs is the observed value of a random variable ˆdKL from the sample.
Therefore, we reject the null hypothesis in equation (3.34) if p−valueasymptotic

is less than the false positive rate for testing the hypotheses in equation (3.34).
Consequently, we reject the null hypothesis in equation (3.32), if we re-

ject the null hypothesis in equation (3.34), leading to the conclusion that
fT |S,Z(t|s, z) 6= fT |S(t|s)

In Chapter 4, we will introduce three asthma trials. Validation of the sug-
gested surrogate endpoint in these trials using parametric and non-parametric
methods introduced earlier, is the major concentration of this chapter.
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CHAPTER 4

Surrogate Endpoint in Respiratory
Clinical Trials
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4.1 Introduction

Respiratory diseases are common type of illnesses that influence the lungs and
other parts of the respiratory system. They affect tens of millions of people
and are causing significant numbers of death globally. They may be caused
by infection, by smoking tobacco, or by breathing in secondhand tobacco
smoke, radon, asbestos, or other forms of air pollution. In this chapter,
we will present asthma as one of the most common respiratory diseases.
Then, we introduce three asthma trials along with the suggested candidate
as a surrogate endpoint in these trials. The rest of Chapter 4 is devoted to
validate the proposed candidate surrogate marker for the true endpoint, by
applying different methods introduced in Chapter 3.
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4.2 Asthma

Asthma is a chronic reversible inflammatory disorder of the airways which
is characterized by recurrent attacks of breathlessness, wheezing, coughing,
chest tightness or pain that inflames and narrows the airways. These symp-
toms mostly happen at night and early in the morning and the level of severity
is not the same for all patients. Asthma may happen in people of all ages but
it most often appears for the first time during childhood. For more details
see e.g. Reddel et al. (2009)

According to the U.S. Department of Health & Human Services (2000),
the airways are tubes that carry air into and out of lungs. Asthma patients
have very sensitive and inflamed airways. In asthma patients, the airways
may over-react to certain inhaled substances. This strong response could
cause the muscles around the airways become to tighten. Tightening of the
muscles around the airways makes the airways narrower which reduces the
flow of air into and out of the lungs. Moreover, the strong reaction of airways
could make the cells in the airways to produce more mucus than usual, which
may narrow the airways in long term. Mucus is a sticky, thick liquid that
keeps the airways moist and further traps any dust and dirt in the inhaled
air. Eventually asthma symptoms could appear every time the airways are
provoked by certain inhaled substances.

There are many different factors that makes asthma symptoms appear or
amplify them. Doctors can determine these factors by running some tests on
asthma patients. Some of these factors are as follows:

• Allergens like pets’ dander, dust, and pollen from trees, grasses and
flowers.

• Stress.

• Physical activity.

• Viral upper respiratory infections such as cold and flu.

• Certain foods and medicines.

• Extreme weather condition like cold air or extremely dry, wet or windy
weather.
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• Irritants in the air like smoke, air pollution, chemical fumes and strong
odors.

Global Asthma Network (2014), reported that the estimated number of
people with asthma in the world may be as many as 334 million based on the
best data available. Asthma cannot be cured but the symptoms can be con-
trolled by correct and regular treatments. Even when a patient looks asthma
free, the disease still exists and could appear anytime. If an asthma patient
does not receive necessary and adequate medication to control the disease
properly, the symptoms may get worse and there is high risk of asthma at-
tack, hospitalization and death. Therefore, it is very important for an asthma
patient to keep record of asthma symptoms in a diary to see how well treat-
ments are controlling the disease, consulting with a doctor and taking proper
and effective medicines regularly to control the disease. Moreover, there is
high demands for a cheaper and faster production therapy compared to the
current ones that could hopefully prevent the progression of the symptoms
in asthma. Many studies has been done on different Biomarkers for asthma
with a hope of finding a potential surrogate endpoints that could be use
as a replacement for true endpoints. For example, Zissler et al. (2016) in-
troduce some of the current and futures biomarkes in allergic asthma, and
Verrills et al. (2011) identify diagnostic biomarkers for asthma and chronic
obstructive pulmonary disease (COPD).

4.3 Research Questions

In the previous sections we introduced asthma as a chronic lung disease
and the importance of searching for potential surrogate endpoints among
available biomarkers for Asthma. We still need to go through two more
definitions, severe exacerbation and diary events variable, before we introduce
our candidate as a surrogate endpoint and the true endpoint in Asthma study,
and discuss possible research questions.

Severe exacerbation is defined as a sudden worsening of disease symptoms
that require urgent action to prevent a serious outcome, such as hospitaliza-
tion or death. As for the diary event variable, in our study, doctors defined
diary events variable by threshold and slope criteria using the following di-
ary variables: lung function, rescue medication, asthma symptoms score (0-3)
and night-time awakenings. See Fuhlbrigge et al. (2017) for more details on
diary events variable and exacerbation.
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Now consider three trials on asthma patients: STEAM Rabe et al. (2006),
of size n1 = 608, STEP Scicchitano et al. (2004), of size n2 = 1793 and STAY
O’Byrne et al. (2005), of size n3 = 1447 patients. In each trial, treatment Z
is 1 for the new drug or 0 for active control (current drug):

Z =

{
0 Pulmicort+Bricanyl.

1 Symbicort SMART.
(4.1)

Then, we define a pair of true and surrogate endpoints (T, S), as follows:

T =

{
0 no severe exacerbation occurs during the trial.

1 one or more severe exacerbation occurs.
(4.2)

S =

{
0 no diary events occurs during the trial.

1 one or more diary events occurs.
(4.3)

We now have all the necessary ingredients to develop our research ques-
tions. The most important questions are as follows:

• How much of the treatment effect on severe exacerbation can be cap-
tured by the treatment effect on diary events variable?

• Can diary events variable be a legitimate replacement for severe exac-
erbation?

• Can we use the treatment effect on diary events variable to predict
the treatment effect on severe exacerbation, where the data on sever
exacerbation is missing or not yet observed?

These are some of the questions someone could ask regarding surrogate
and true endpoints. In the remaining chapters we will intend to answer these
questions.

4.4 Logistic Regression and Likelihood Ratio

Test (LRT) for the Validation of Pren-

tice’s Criteria in the Asthma Trials

The data of the STEAM trial are shown in Table 4.1.
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Table 4.1: Three way contingency table for data from the STEAM asthma
trial.

Z
T S 0 1
0 0 194 252

1 74 42
1 0 5 5

1 28 8

Results from validation of Prentice’s criteria using logistic regression in
the STEAM trial are shown in Tables 4.2 and 4.3.

In table 4.2 results from testing the coefficients of logistic regression mod-
els (3.21), (3.22) and (3.23) show that, α, β and γ are significant, implying
that the first three Prentices criteria are satisfied.

As for the verification of the last Prentice’s criterion, table 4.3 shows there
is no evidence on the significance of δ and βS in the model, provides evidence
that some effect of Z on T is mediated through S.

Another approach to check for the validity of the fourth Prentice’s crite-
rion is the likelihood ratio test. Table 4.4 presents the results of LRT that
checks for the validity of the last Prentice’s criterion in the first trial. As
we see the results agree with the one from testing the coefficients in the
corresponding logistic models.

Table 4.2: Results of using logistic regression to validate first three Prentice’s
criteria in the STEAM asthma trial.

Coefficient Estimate Std. error p− value
µS|Z −0.67 0.12 < 0.001
α −0.97 0.20 < 0.001
µT |Z −2.09 0.18 < 0.001
β −1.02 0.34 0.002
µT |S −3.80 0.32 < 0.001
γ 2.63 2.63 < 0.001
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Table 4.3: Results of using logistic regression to validate fourth Prentice’s
criterion in the STEAM asthma trial.

Coefficient Estimate Std. error p− value
µT |Z,S −3.66 0.45 < 0.001
γZ 2.69 0.50 < 0.001
βS −0.26 0.64 0.68
δ −0.42 0.78 0.59
µT |Z,S −3.52 0.36 < 0.001
γZ 2.52 0.38 < 0.001
βS −0.55 0.36 0.13

Table 4.4: Result of using LRT to validate fourth Prentice’s criterion in the
STEAM trial.

Model Comparison df. p− value
Model with interaction (3.24) vs
Model without interaction term
(3.25)

1 0.58

Model without interaction (3.25)
vs model without Z (3.23)

1 0.12

Note that, we could use different methods to compare parametric models,
and the results of using these different methods agreed with each other in
our problem.

In the same way, results from applying logistic regression on the STEP
and STAY trials both imply that the first three Prentices criteria are satisfied,
but not the fourth criterion. Tables 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12
show the data and results in the STEP and STAY trials.

Table 4.5: Three way contingency table for data from the STEP asthma trial.

Z
T S 0 1
0 0 469 572

1 215 189
1 0 55 45

1 154 94
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Table 4.6: Results of using logistic regression to validate first three Prentice’s
criteria in the STEP asthma trial.

Coefficient Estimate Std. error p− value
µS|Z −0.35 0.07 < 0.001
α −0.43 0.10 < 0.001
µT |Z −1.18 0.08 < 0.001
β −0.51 0.12 < 0.001
µT |S −2.34 0.10 < 0.001
γ 1.85 0.13 < 0.001

Table 4.7: Results of using logistic regression to validate fourth Prentice’s
criterion in the STEP asthma trial.

Coefficient Estimate Std. error p− value
µT |Z,S −2.14 0.14 < 0.001
γZ 1.81 0.18 < 0.001
βS −0.40 0.21 0.06
δ 0.03 0.27 0.90
µT |Z,S −2.15 0.12 < 0.001
γZ 1.82 0.13 < 0.001
βS −0.38 0.13 0.003

Table 4.8: Result of using LRT to validate fourth Prentice’s criterion in the
STEP trial.

Model Comparison df. p− value
Model with interaction (3.24) vs
Model without interaction term
(3.25)

1 0.90

Model without interaction (3.25)
vs model without Z (3.23)

1 0.003
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Table 4.9: Three way contingency table for data from the STAY asthma trial.

Z
T S 0 1
0 0 380 483

1 198 136
1 0 42 35

1 113 60

Table 4.10: Results of using logistic regression to validate first three Pren-
tice’s criteria in the STAY asthma trial.

Coefficient Estimate Std. error p− value
µS|Z −0.30 0.07 < 0.001
α −0.66 0.11 < 0.001
µT |Z −1.32 0.09 < 0.001
β −0.56 0.14 < 0.001
µT |S −2.42 0.12 < 0.001
γ 1.76 0.15 < 0.001

Table 4.11: Results of using logistic regression to validate fourth Prentice’s
criterion in the STAY asthma trial.

Coefficient Estimate Std. error p− value
µT |Z,S −2.20 0.16 < 0.001
γZ 1.64 0.20 < 0.001
βS −0.42 0.24 0.07
δ −0.16 0.31 0.59
µT |Z,S −2.25 0.14 < 0.001
γZ 1.71 0.15 < 0.001
βS −0.32 0.15 0.03
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Table 4.12: Result of using LRT to validate fourth Prentice’s criterion in the
STAY trial.

Model Comparison df. p− value
Model with interaction (3.24) vs
Model without interaction term
(3.25)

1 0.59

Model without interaction (3.25)
vs model without Z (3.23)

1 0.032

4.5 Odds Ratio for the Validation of Pren-

tice’s Criteria in the Asthma Trials

Tables 4.14 and 4.15 show the result of testing for the odds ratios in the first
trial. Table 4.14 represents the odds ratios, their confidence intervals and
the corresponding p− values for the test of independence.

Table 4.13: Marginal contingency tables for data from the STEAM trial.

Z S
0 1 0 1

T
0 268 294 446 116
1 33 13 10 36

S
0 199 257
1 102 50

Results from tables 4.14 and 4.15 indicate that all Prentice’s criteria are
satisfied which is in consistent with the results we got from testing the pa-
rameters in the logistic regression models.
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Table 4.14: Estimates of odds ratios to validate the first three Prentice’s
criteria in the STEAM trial.

Odds ratio Estimate C.I.
ORSZ 0.38 (0.26, 0.56)
ORTZ 0.36 (0.18, 0.70)
ORTS 13.84 (6.67, 28.71)

Table 4.15: Estimates of odds ratios to validate the fourth Prentice’s criterion
in the first asthma trial.

Odds ratio Estimate 95% confidence interval
ORTZ|S=0 0.77 (0.22, 2.70)
ORTZ|S=1 0.50 (0.21, 1.20)

In the similar way, using odds ratios in the STEP and STAY trials to vali-
date Prentice’s criteria, we observed that the first, second and third Prentice’s
criteria are fulfilled but not the last one. The results for the STEP and STAY
trials are shown in tables 4.16, 4.17, 4.18 and 4.19.

Table 4.16: Estimates of odds ratios to validate the first three Prentice’s
criteria in the STEP trial.

Odds ratio Estimate C.I.
ORSZ 0.65 (0.54, 0.79)
ORTZ 0.60 (0.47, 0.76)
ORTS 6.39 (4.93, 8.27)

Table 4.17: Estimates of odds ratios to validate the fourth Prentice’s criterion
in the STEP asthma trial.

Odds ratio Estimate 95% confidence interval
ORTZ|S=0 0.67 (0.44, 1.01)
ORTZ|S=1 0.69 (0.50, 0.96)
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Table 4.18: Estimates of odds ratios to validate the first three Prentice’s
criteria in the STAY trial.

Odds ratio Estimate C.I.
ORSZ 0.51 (0.41, 0.64)
ORTZ 0.57 (0.43, 0.76)
ORTS 5.80 (4.31, 7.81)

Table 4.19: Estimates of odds ratios to validate the fourth Prentice’s criterion
in the STAY asthma trial.

Odds ratio Estimate 95% confidence interval
ORTZ|S=0 0.65 (0.41, 1.05)
ORTZ|S=1 0.77 (0.53, 1.13)

4.6 Proportion Treatment Explained (PE) for

the Asthma Trials

Proportion treatment explained along with their confidence sets for the STEAM,
STEP and STAY trials are shown in table (4.20). Confidence limits are cal-
culated using Fieller’s theorem explained in Sections 2.3.1 and 3.3.3.

Table 4.20: Estimates of PE in the STEAM, STEP and STAY asthma trials

Trial Estimate CI
STEAM 0.46 (0.19, 1.40)
STEP 0.26 (0.09, 0.59)
STAY 0.42 (0.21, 0.91)

As we mentioned in Sec 3.3.3, there are some limitation in using PE
for the validation of surrogate endpoints. In the STEAM and STAY trials
the confidence intervals for PE are wide and the lower limits are less than
0.5. Moreover the confidence upper limit for PE in the first trial exceeds 1.
Therefore, PE and its confidence interval are not informative measures for
the validation of surrogate endpoints in the STEAM and STAY trials.
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The confidence interval for PE in the STEP trial is not wide. If we use
this confidence interval along with the result of using logistic regression and
odds ratio for the validation of surrogate endpoint in the STEP trial, we can
conclude that the surrogate poorly explains the effect of the treatment on
the clinical endpoint.

4.7 Non-Parametric Methods for Validation

of Prentice Fourth Criterion in the Asthma

Trials

Table 4.21 shows p − valueasympt and p − valueperm for the STEAM, STEP
and STAY asthma trials. Note that n is the total sample size in each trial.
Moreover, we fixed the total number of permutations to L = 1000. The
χ2

2(0.95) = 5.99.

Table 4.21: Results for 2nd̂KL, p− valueasympt and p− valueperm
Trial n 2nd̂KL p− valueasympt p− valueperm
STEAM 608 2.72 0.26 0.29
STEP 1793 8.58 0.01 0.01
STAY 1447 4.90 0.09 0.10

In the STEAM trial, results of p − valueasympt and p − valueperm do
not imply any significant evidence to reject the null hypothesis of the form
fT |S,Z(t|s, z) = fT |S(t|s). For the STEP trial, we can conclude the existence
of significant difference between two distributions fT |S,Z(t|s, z) and fT |S(t|s),
based on p − values. For the STAY trial, based on the p − values, we
found no significant difference between two distributions fT |S,Z(t|s, z) and
fT |S(t|s). Earlier in sections 4.4 and 4.5, the result from logistic regression
and odds ratio did not give us enough evidence to verify the fourth Prentice’s
criterion. However, results from using asymptotic distribution of 2nd̂KL and
permutation test to approximate the distribution of d̂KL both verify the
fourth Prentice’s criterion. This is actually an interesting result. We may
conclude, it is possible that the reason that the logistic regression and odds
ratio could not validate the Prentice’s fourth criterion is due to the model
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misspecification. The related scripts that generate the results in this chapter
can be found in Chapter 8.
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CHAPTER 5

The Equivalence Test and its
Application in Surrogacy Evaluation
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5.1 Introduction

In the previous chapters, we explored evaluation of surrogate endpoints in
single trial studies, using parametric methods and an entropy based non-
parametric method. However, there are weaknesses to both approaches that
we are going to discuss in the following.

In the parametric approach, the results highly depend on choosing correct
parametric models. Moreover, validating the fourth Prentice’s criterion is
equivalent to proving the null hypothesis in testing parameters of the chosen
model. Proving the null hypothesis is not what we usually look for in the
common hypothesis testing framework.

An entropy based non-parametric approach solves the problem of choosing
a correct parametric model, since it does not consider any distributional
assumption on the endpoints. However, the second limitation on proving the
null hypothesis, still stands.

In reality, perfect surrogacy is difficult to achieve. Therefore, it is of
interest to find a region (bound) where the surrogate is valid on it.

The randomized clinical trial where the goal is to determine one treatment
is superior to one another is called superiority test (trial), and the standard
hypothesis test can be applied to show the superiority of the treatment.
Often researchers inappropriately use a non-significant standard hypothesis
test for superiority as proof of no difference between the two treatments.
The correct approach to demonstrate that the two treatments are more likely
the same in efficacy is to design an equivalence test. The equivalence test
aims to show that two treatments (items) are not much different from each
other. In this chapter, we will introduce equivalence tests along with relevant
procedures to design and analyze them. Further, we introduce the notion of
surrogacy region and the application of equivalence test in surrogacy context.
To this end, we will reformulate the Prentice’s fourth criterion, and apply
equivalence test to show that the coefficient in the logistic model is not much
far from zero. By using equivalence test instead of standard hypothesis test,
we correctly treat scenarios where we cannot reject the null hypothesis in
surrogacy context.
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5.2 Equivalence Test

At the present, it is getting more difficult to develop a new treatment with
higher efficacy compared to the ones that are currently existing in the market.
Therefore, the concentration of clinical studies is to develop treatments that
are equivalent in efficacies with the ones currently in use, and pose much
benefits in terms of less side effects, less cost, easy in application, and less
drug interactions.

In the standard hypothesis testing framework for example t-test, the bur-
den of proof rests on that the two treatments are different. Then, if we do
not find enough evidence to support the difference of two treatments, the
equality cannot be rejected.

To show the equivalence between two treatments, it is tempting to simply
perform the standard t-test. Then, if the difference is statistically significant,
it seems clear that the two treatments are not equivalent. And if the differ-
ence is not statistically significant, it seems to make sense to conclude that
the two treatments are equivalent. However, this approach is incorrect, and
leads to invalid conclusions. To better grasp the issue, consider the court-
room, where a person analyzing data is the judge. The hypothesis test is the
trial, the alternative hypothesis is like the prosecution, and the null hypoth-
esis is the defendant. If the evidence presented by the prosecution cannot
prove that the defendant is guilty beyond the reasonable doubt (say, with
95% certainty), the prosecution has not still proved that the defendant is
innocent. However, based on the evidence in hand, the prosecution cannot
reject the possibility of the defendant being innocent. Therefore, the judge
announces the verdict as not guilty. It does not mean that the defendant
is innocent, since that has not been proven. It means that the prosecution
failed to convince the judge to disregard the assumption of innocence.

In equivalence studies the goal is to show equivalency. Thus, the burden
of proof lies on that the two treatments are equivalent. Then, if the evi-
dence in favor of equivalence is not strong enough, nonequivalence cannot
be rejected. Essentially, the null and alternative (research) hypothesis in
equivalent studies are reversed from those in the standard t-test.

The equivalence testing is widely used within the pharmaceutical re-
searches to demonstrate the equivalence between two drug formulations,
therapies or treatments. The most common approach for equivalence testing
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under a two-arm parallel design 1 is the two one sided test (TOST), proposed
by Westlake (1981) and Schuirmann (1981). TOST is not the uniformly most
powerful (UMP) test, however it is the most common used method by reg-
ularity agencies like FDA, to demonstrate equivalence. The UMP test for
equivalence was addressed comprehensively by Wellek (2002). More refer-
ences on different methods for equivalence testing can be found in Hauschke
et al. (2007), Meyners (2012) and Chu and Liu (2008).

Unfortunately, in some fields of research, it is common to use the tra-
ditional t-test to demonstrate the equivalence, see for example Allan and
Cribbie (2013). According to Rogers et al. (1993) and Blackwelder (1982)
the results from the equivalence test and the traditional t-test to show no
difference between two items are not necessarily in agreement or opposed to
each other. If both performed, three scenarios are possible: 1) equivalence
of two items will be rejected by both methods, 2) or will not be rejected by
either of them, 3) or will be rejected by one and will not be rejected by the
other. As a result, failing to reject a no difference between two items (the
null hypothesis in hypotheses testing framework) using the traditional t-test
approach does not necessarily implies equivalence.

Like any other experiment, the statistical power calculations and sample
size determinations has vital role in design and analysis of equivalence testing.
Relevant literatures on sample size determination and the statistical power
calculation for equivalence testing, can be found in Bristol (1993), Chow
et al. (2002), Chow and Wang (2001), Diletti et al. (1991), Liu and Chow
(1992), Muller-Cohrs (1990), Phillips (1990), Schuirmann (1987), Siqueira
et al. (2005) and Wang and Chow (2002).

Finally, the concept of equivalent is not only limited to the pharmaceutical
studies. It can be used likewise in other field of researches to demonstrate the
resemblance of the means (proportions) for product measurements or process
measurements.

1In clinical studies, parallel design is used to compare two or more treatments, like
T1, T2,..., Tk. Participants are assigned to one and only one of these k groups randomly,
treatments are administered, and then the results are compared. Note that the key element
of the parallel design is randomization. Randomization guarantees that the results have
a lower risk of being biased. Parallel design is also known as between patient design and
non-crossover design. For more details see for example Ofori-Asenso and Adom Agyeman
(2015).
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5.2.1 Two One Sided Test (TOST) Procedure

Consider the common hypothesis test where we are comparing two popula-
tions by comparing their means.

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2, (5.1)

Further, assume we are interested in the case where the null hypothesis is
not rejected.

Now the important question is when we cannot reject the null hypothesis,
what can be said about the population means?! We usually consider these
populations similar. But this is under the idea that we are looking for the
evidence to show that they are different. However, if we want to show that
the means of two populations are similar, the correct approach is that we first
assume they are different, and then try to gather evidence to the contrary.
Therefore the equivalence test set up will be as follows:

H0 : µ1 6= µ2 vs. H1 : µ1 = µ2, (5.2)

We are now on the right track and thus the important question is how close
is close enough to be considered the same?! So the equivalence test set up
can be rewritten as follows:

H0 : |µ1 − µ2| > d vs. H1 : |µ1 − µ2| < d (5.3)

In equivalence testing, the null hypothesis (H0) is a difference of d or
more, that can be restated as follows:

H0 : µ1 − µ2 < −d or µ1 − µ2 > d (5.4)

This leads to the most famous form of equivalence testing approach named
the two-one sided test (TOST). We assumes that the two populations are
normally distributed and independent of each other. Moreover, the variances
of both populations are known and equal to σ. Then the two one-sided test
statistics can be constructed as follows:

Ȳ1 − Ȳ2 + d√
σ2

n1
+ σ2

n2

,
Ȳ1 − Ȳ2 − d√

σ2

n1
+ σ2

n2

(5.5)

where n1 and n2 are sample sizes and

Ȳk =

∑nk
i=1 Yki
nk

for k = 1, 2 (5.6)
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Then, we conclude that the two population means are equivalent at the
level of α, if and only if, both the following inequalities can be rejected.

ȳ1 − ȳ2 + d

σ
√

1
n1

+ 1
n2

> z1−α ,
ȳ1 − ȳ2 − d

σ
√

1
n1

+ 1
n2

< −z1−α (5.7)

where ȳ1 and ȳ2 are observed values for Ȳ1 and Ȳ2 from the samples, and
P (Z ≤ z1−α) = 1 − α where Z is a random variable from normal standard
distribution.

Likewise the standard hypothesis testing for the mean difference where
two populations are normally distributed, we can assume that 1) the vari-
ances are known and different in each population, 2) the variances are un-
known and the same, 3) the variances are unknown and different from each
other.

To deal with the first scenario, we only need to replace σ2/n1 and σ2/n2

by σ2
1/n1 and σ2

2/n2 in equation (5.7) respectively, and proceed the procedure.
In the second scenario, we reject the non-equivalence at the level of α, if

and only if, the following inequalities can be rejected simultaneously.

ȳ1 − ȳ2 + d

Sp
√

1
n1

+ 1
n2

> t1−α,n1+n2−2 ,
ȳ1 − ȳ2 − d

Sp
√

1
n1

+ 1
n2

< −t1−α,n1+n2−2 (5.8)

where S2
p is the pooled sample variance and an unbiased estimator of the

common variance σ2:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(5.9)

and

S2
k =

∑nk
i=1(Yki − Ȳk)2

nk − 1
for k = 1, 2 (5.10)

Further, P (T ≤ t1−α,n1+n2−2) = 1 − α, where T is a random variable from
Student’s t-distribution with n1 + n2 − 2 degrees of freedom.

Finally, in the third scenario, we conclude equivalence if both the following
inequalities can be rejected at the level of α:

ȳ1 − ȳ2 + d√
S2
1

n1
+

S2
2

n2

> t1−α,r ,
ȳ1 − ȳ2 − d√

S2
1

n1
+

S2
2

n2

< −t1−α,r (5.11)
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where

r =

(
S2

1

n1

+
S2

2

n2

)2

(S2
1/n1)2

n1 − 1
+

(S2
2/n2)2

n2 − 1

(5.12)

and S2
1 and S2

2 can be calculated using equation (5.10). Moreover, P (T ≤
t1−α,r) = 1 − α, where T is a random variable from Student’s t-distribution
with degrees of freedom equal to r.

5.2.2 Confidence Interval (CI) Procedure

We first construct (1 − 2α)% confidence interval for the mean difference as
follows:

ȳ1 − ȳ2 ± z1−α

√
σ2

n1

+
σ2

n2

(5.13)

Then, if both one-sided tests are rejected jointly, the (1 − 2α)% confi-
dence interval is completely included in the (−d,+d) interval. Therefore,
if (−d,+d) fully covers the (1 − 2α)% confidence interval, then the equiv-
alence can be concluded. Thus, we can declare that the mean difference is
very likely to be zero. Likewise the previous section, we could consider three
more scenarios for the variances of two normal distributions, and construct
the corresponding confidence intervals.

Lastly, note that testing equivalence between two items using the TOST
and confidence interval procedures is not only limited to test the means.
It can also be achieved through testing other parameters like proportions,
odds ratios, hazard ratios and etc. We can also establish equivalence test
for interested parameters when we deal with one sample or more than two
samples.

Example 7. Consider two independent populations that are normally dis-
tributed. Further assume that the variances are unknown and not equal.
Samples of size n1 = 95 and n2 = 89 were taken from the first and second
population respectively. The mean and standard deviation of these two sam-
ples were recorded as x̄1 = 5.25, s1 = 0.95 and x̄2 = 5.22, s2 = 0.83. We
want to know if we could declare that the two populations are equivalent
in terms of their means. The equivalence limit was set to d = 0.48. More
details on the example can be found in Lakens (2017a) and Lakens (2017b).
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The following code lines perform the equivalent test using the TOSTER
Lakens (2017b) package in R:

##
i n s t a l l . packages (”TOSTER”)
l i b r a r y (”TOSTER”)
TOSTtwo . raw (m1=5.25 ,m2=5.22 , sd1 =0.95 , sd2 =0.83 , n1=95,
n2=89, low eqbound =−0.48 , high eqbound =0.48 ,
alpha = 0 . 05 )
##

that gives us the following output and plot:

##
Using alpha = 0.05 Welch ’ s t−t e s t was non−s i g n i f i c a n t ,
t (181 .1344) = 0.2284794 , p = 0.8195313

Using alpha = 0.05 the equ iva l ence t e s t based on
Welch ’ s t−t e s t was s i g n i f i c a n t ,
t (181 .1344) = −3.42719 , p = 0.0003773807
TOST r e s u l t s :
t−value 1 p−value 1 t−value 2 p−value 2

df
1 3 .884149 7.190772 e−05 −3.42719 0.0003773807 181.1344

Equivalence bounds ( raw s c o r e s ) :
low bound raw high bound raw
1 −0.48 0 .48

TOST con f idence i n t e r v a l :
Lower Limit 90% CI raw Upper Limit 90% CI raw
1 −0.1870843 0.2470843
##

The equivalence limits is shown with vertical dashed lines on points −0.48
and +0.48 in figure 5.1. As we can see, the 90% CI (the solid horizontal line)
is included in the equivalence region (bounds) (−0.48,+0.48), therefore we
can declare the equivalence.
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Figure 5.1: Equivalence region (bound) for mean difference

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Mean Difference

Equivalence bounds −0.48 and 0.48
Mean difference = 0.03 

 TOST: 90% CI [−0.187;0.247] significant 
 NHST: 95% CI [−0.229;0.289] non−significant

5.2.3 Equivalence Limit d

Results of an equivalence test is influenced by the choice of d. A small value
of d could result in a tighter equivalence region (−d,+d), that makes it much
harder to demonstrate equivalence. Therefore, determining the equivalence
limit d, before collecting any data, is an important task.

According to Walker and Nowacki (2011) “An equivalence study should
be designed to minimize the possibility that a new therapy that is found to
be equivalent to the current therapy can be nonsuperior to a placebo.” To
this end, we could choose d based on the limit of superiority of the current
therapy against the placebo, using previous studies.

Determining the equivalence limit is not the aim of the current thesis.
Therefore, the concentration of the rest of this chapter is on establishing
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equivalence test and its application in surrogacy evaluation context. Thus,
we will assume that d is given, and then construct TOST and confidence
interval to explore equivalence.

Moreover note that, the equivalence region (−d,+d) is not necessarily
symmetric around zero. The more general form to the equivalence region is
(d1, d2), where |d1| and |d2| could be different and d1 and d2 could be both
negative or positive, or may have different signs.

5.3 The Surrogacy Region

As we mentioned earlier, the last Prentice’s criterion plays an important
role in the validation of surrogate endpoint. However, proving the validity
of this condition is not straight forward. The condition holds if we could
somehow prove that fT |S,Z(t|s, z) = fT |S(t|s). A common approach is to
perform a statistical hypothesis testing where the fourth Prentice’s criterion
is considered as a null hypothesis. However, proving no difference using
a common statistical hypothesis testing is not an appropriate approach of
dealing with such an issue. Therefore, testing such a null hypothesis is not
a proper procedure to validate a good (valid or perfect) surrogate. However,
it very well can be used to reject a poor surrogate.

Hence, we will get assist from the equivalence method in order to tackle
this problem properly. We will also introduce the notion of the surrogacy
region in which the candidate surrogate S is still a valid surrogate for the
true endpoint T , in the presence of the treatment Z. Advantages of using
equivalence procedure are as follows:

• It is the correct approach to demonstrate that the difference between
fT |S,Z(t|s, z) and fT |S(t|s) is not significant.

• It determines the surrogacy region properly.

Now consider the fourth Prentice’s criterion as follows:

fT |S,Z(t|s, z)− fT |S(t|s) = 0 (5.14)

which can be reformulated as

d
(
fT |S,Z(t|s, z)− fT |S(t|s)

)
= 0 (5.15)
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where d represents any distance (divergence) function that measures the dif-
ference between two given items. for example d(., .) could be the Kullback
Leibler measure of divergence. Following the equivalence framework to show
that the difference between fT |S,Z(t|s, z) and fT |S(t|s) is not significant, we
have:

H0 : d
(
fT |S,Z(t|s, z)−fT |S(t|s)

)
> d vs. H1 : d

(
fT |S,Z(t|s, z)−fT |S(t|s)

)
< d

(5.16)
In the following, will show the application of this concept for the valida-

tion of the fourth Prentice’s criterion, fT |S,Z(t|s, z) = fT |S(t|s).

5.3.1 Equivalence Test for the Parameters of Logistic
Models (3.15) and (3.16)

In Chapter 3, to validate the fourth Prentice’s criterion we showed that the
null hypotheses of βS = 0 and βS = δ = 0, the parameters of the models
(3.15) and (3.16), shall not be rejected.

In the first scenario assume that model (3.15) is correct, and there ex-
ist no interaction term between S and Z based on some prior information.
Then, consider βS in model (3.15) and assume that the research hypothesis
investigates whether βS is close enough to zero, and therefore it forms the
alternative hypothesis. Thus, in equivalence framework we want to test the
following hypotheses:

H0 : |βS| > δ vs. H1 : |βS| < d (5.17)

Then, following the TOST procedure we have:

β̂S + d√
ˆvar(β̂S)

,
β̂S − d√

ˆvar(β̂S)
(5.18)

These statistics have approximately standard normal distributions in large
samples.

Then, we conclude that βS is close enough to zero, if and only if, we could
reject the following inequalities simultaneously.

β̂S + d√
ˆvar(β̂S)

> z1−α ,
β̂S − d√

ˆvar(β̂S)
< −z1−α (5.19)
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Further, (1− 2α)% confidence interval for βS can be constructed as follows:

β̂S ± z1−α

√
ˆvar(β̂S) (5.20)

If the equivalence region (−d,+d) contains the (1−2α)% confidence interval,
then we declare βS is close enough to zero.

In the second scenario we consider model (3.16), and we aim to show that
βS and δ are close enough to zero. Therefore, using the equivalence set up
we have:

H0 :

{
βS 6= 0

δ 6= 0
vs. H1 :

{
βS = 0

δ = 0

which can be represented as:

H0 :

{
|βS| > d1

|δ| > d2

vs. H1 :

{
|βS| < d1

|δ| < d2

To demonstrate that βS and δ are not simultaneously different from zero, we
construct the Bonferroni confidence intervals. Remember that, the Bonfer-
roni correction allows us to do multiple testing at the overall level of interest
α, by testing each individual hypothesis at a significance level of α/n, where
n is the number of hypotheses. Therefore, (1− 2α)% Bonferroni confidence
intervals for βS and δ can be constructed as follows:

β̂S ± z1−α/2

√
ˆvar(β̂S) , δ̂ ± z1−α/2

√
ˆvar(δ̂) (5.21)

If the equivalence regions (−d1,+d1) and (−d2,+d2) cover the Bonferroni
confidence intervals for βS and δ simultaneously, then we conclude that βS
and δ are not significantly different from zero.

In general, the length of the (1− 2α)% simultaneous confidence intervals
are wider than the length of each (1 − 2α)% individual confidence interval.
Another joint confidence intervals is called Hotelling’s T 2 confidence interval,
which gives wider region than the Bonferroni confidence interval. Thus, if
the Bonferroni confidence intervals are not fully cover by the the equivalence
regions, neither the Hotelling’s T 2 confidence interval are.
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5.3.2 Application of The Equivalence Test in Asthma
Trials

Consider now the asthma trials STEAM, STEP and STAY, that we intro-
duced in Chapter 4. The (1− 2× 0.05)% individual confidence intervals for
βS, based on model (3.15) without interaction term, and the (1− 2× 0.05)%
Bonferroni confidence intervals for βS and δ based on model (3.16) with in-
teraction term are represented in the tables 5.1, 5.2 and 5.3. Related scripts
can be found in Chapter 9.

Given the equivalence region (−d,+d) based on prior information, if
(−d,+d) contains the (1 − 2 × 0.05)% individual confidence intervals for
βS, we will conclude that βS is small enough that to be considered equivalent
to zero.

Likewise, given any equivalence regions (−d1,+d1) and (−d2,+d2) for βS
and δ, if the (1− 2× 0.05)% Bonferroni confidence intervals for βS and δ are
covered fully by the equivalence regions, we will declare that βS and δ are
not different from zero.

Table 5.1: The (1 − 2 × 0.05)% individual confidence intervals for βS, in
STEAM, STEP, STAY asthma trials.

Trial Estimate C.I.
STEAM -0.55 (−1.01,−0.09)
STEP -0.38 (−0.55,−0.21)
STAY -0.32 (−0.51,−0.13)

Table 5.2: the (1 − 2 × 0.05)% Bonferroni confidence intervals for βS, in
STEAM, STEP, STAY asthma trials.

Trial Estimate C.I.
STEAM -0.26 (−1.70, 0.86)
STEP -0.40 (−0.41, 0.47)
STAY -0.42 (−0.67, 0.35)
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Table 5.3: the (1 − 2 × 0.05)% Bonferroni confidence intervals for δ, in
STEAM, STEP, STAY asthma trials.

Trial Estimate C.I.
STEAM -0.42 (−1.31, 0.79)
STEP 0.03 (−0.74,−0.05)
STAY -0.16 (−0.81,−0.02)

Note that in equivalence testing approach, if the (1 − 2α) confidence
interval does not contain zero is not important. To show the equivalence, it
is only important to demonstrate that the equivalence region contains the
(1− 2α) confidence interval.
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CHAPTER 6

Discussion
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Ever since Prentice (1989) introduced the Prentice practical criteria for the
validation of surrogate endpoints, many researchers aimed to refine or refor-
mulate the fourth Prentice’s criterion. These attempts are based on various
statistical frameworks such as information theoretic, parametric and non-
parametric methods. However, all these methods were unable to treat the
problem of proving no difference in Forth Prentice’s criterion properly.

In the current dissertation, we came with the novel idea of applying equiv-
alence method to validate candidate surrogate endpoints. In the parametric
and non-parametric approaches presented in the earlier chapters to validate
the fourth Prentice criterion, lacking to reject the null hypothesis, somehow
result in accepting the null hypothesis. Eventually, the inferences we make
are based on the unproven null hypotheses that might not be necessarily
correct. The correct inference is that, if we could not find enough evidence
to reject fT |S,Z(t|s, z) = fT |S(t|s), it does not imply the equality of these
two distributions. Therefore, to deal with the issue of proving no difference
we proposed to take advantage of the equivalence test approach. Moreover,
we introduced the notion of surrogacy region (bound) where the candidate
surrogate is still valid on that region. Note that, the approach we introduced
is generic and can incorporate any type of endpoints.

It is our hope that the method suggested in this dissertation can be
extended for use in evaluation of surrogate endpoints, in the Bayesian frame
work. According to Wellek (2002), to construct the equivalent test in the
Bayesian setting, we first need to specify a joint prior distribution π(.) of
all unknown parameters presenting in the model underlying the data that
we aim to analyze. Then, we reject the null hypothesis (non-equivalence)
if the posterior probability of the region corresponding to the alternative
hypothesis turns out to be larger than a suitably lower bound specified 1−α
as default.

We also have an interest in determining the possible values for d, and
further explore the effect of different values of d on true positive rate (sensi-
tivity) and eventually surrogacy evaluation.

Last but not least, it is always interesting to compare the old methods
with the new proposed one. However, bear in mind that the underlying
set up (in terms of null and alternative hypotheses and related inferences)
in parametric and non-parametric approaches is different from the one in
equivalence testing approach. Hence, caution should be taken while compar-
ing them. We may vote that a candidate surrogate is valid after we could
not reject the equivalence in fT |S,Z(t|s, z) = fT |S(t|s), using parametric and
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non-parametric methods. However, is such an inference correct in the first
place?! This is an interesting question that worth further exploration in the
future.
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CHAPTER 7

Appendix I
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7.1 Example 4.

#package conta in s permutation func t i on
i n s t a l l . packages ( ’ g too l s ’ )
l i b r a r y ( g t o o l s )
#
#s e t . seed (859)
s e t . seed (9798)
group<−rep ( c ( 0 , 1 ) , c (200 ,300) )
S1<−rnorm (500)
S2<−rnorm (500 , mean=group /2)
#
#group va r i ance s are the same
t . t e s t ( S1˜group , var . equal=TRUE)
#group va r i ance s are the same
t . t e s t ( S2˜group , var . equal=TRUE)
#
S1 . d i f f<−mean( S1 [ group==1])−mean( S1 [ group==0])
S2 . d i f f<−mean( S2 [ group==1])−mean( S2 [ group==0])
#
L=1000 #number o f permutat ions
S1 . d i f f . perm=rep (NA, L)
S2 . d i f f . perm=rep (NA, L)
#
f o r ( i in 1 :L) {

S1 . perm=permute ( S1 )
S2 . perm=permute ( S2 )

#
S1 . d i f f . perm [ i ]<−mean( S1 . perm [ group==1])−

mean( S1 . perm [ group==0])
S2 . d i f f . perm [ i ]<−mean( S2 . perm [ group==1])−

mean( S2 . perm [ group==0])
}
#
x11 ( )
h i s t ( S1 . d i f f . perm , xlim =range (−0.4 ,+0.4) ,
x lab=” d i f . perm ” , main =
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paste (” Histogram of ” , ” d i f f e r e n c e in means f o r the f i r s t
s c e n a r i o ” ) )
a b l i n e ( v=S1 . d i f f , lwd=2, c o l=”purple ”)
mean( abs ( S1 . d i f f . perm ) > abs ( S1 . d i f f ) )
#
x11 ( )
h i s t ( S2 . d i f f . perm , xlim =range (−0.4 ,+0.4) ,
x lab=” d i f . perm ” , main =
paste (” Histogram of ” , ” d i f f e r e n c e in means f o r the second
s e c n a r i o ” ) )
a b l i n e ( v=S2 . d i f f , lwd=2, c o l=”purple ”)
mean( abs ( S2 . d i f f . perm ) > abs ( S2 . d i f f ) )
####################### THE END ############################

7.2 Example 7.

r e s u l t=rep (NA, 5 )
n=seq (10 ,50 , by=10)
#
f o r ( j in 1 : l ength (n ) ){

sum=0
f o r ( i in 0 : n [ j ] ) {

sum0=abs ( dpo i s ( i , 5 , l og = FALSE)−
dbinom ( i , n [ j ] , 5/n [ j ] , l og = FALSE) )
sum=sum+sum0/2

}
r e s u l t [ j ]=sum

}
r e s u l t

db <− rep (NA, n)
dp <− rep (NA, n)
f o r ( i in 0 : n){

dp [ i ]= dpoi s ( i , 5 , l og = FALSE)
db [ i ]=dbinom ( i , n , 5/n , l og = FALSE)
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}
max( abs (dp−db ) )
####################### THE END ############################
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Appendix II
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8.1 Scripts related to the results in sections

4.4 and 4.5.

rm( l i s t=l s ( ) )
i n s t a l l . packages (” glm2 ”)

# vcd i s the r equ i r ed package to apply odds−r a t i o on
#cont ingency t a b l e s
i n s t a l l . packages (” vcd ”)
l i b r a r y (MASS)
l i b r a r y ( glm2 )
l i b r a r y ( vcd )
l i b r a r y ( g r id )

############################################################
# Resu l t s here are r e l a t e d to the C r i t e r i a f o r
# the v a l i d a t i o n o f su r roga t e endpoints .
# Function Prent i c e takes datase t and check
# f o r the f i r s t , second , th i rd and four th
# Prent ice ’ s c r i t e r i a f o r a g iven datase t .
############################################################
Prent i c e=func t i on (d)
{
dtab le <− t ab l e ( d$survind , d$pfs ind , d$treat ,
dnn = c (” surv ind ” , ” p f s i nd ” , ” t r e a t ” ) )
#
#Cheking the f i r s t Prent ice ’ s c r i t e r i o n
C=margin . t ab l e ( dtable , cbind ( 2 , 3 ) )
#n(S , Z) , x tab l e marg ina l i z ed on T
oddsC=odds ra t i o (C, l og=FALSE)
conf intC=c o n f i n t ( oddsC )
#summary(C)
#or ch i sq . t e s t (C) , t e s t o f independence between S and Z i s
#not s i g n i f i c a n t
#
modC <− glm ( p f s i nd ˜ t r e a t , data = d ,
fami ly = ” binomial ”)
#summary(modC)
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#modC$coe f f i c i ent s [ 2 ]
#exp ( modC$coe f f i c i ent s [ 2 ] )= odds ra t i o (C)
#beta c o e f f i c i e n t f o r treatment in a glm model .
############################################################
#Cheking the 2nd Prent ice ’ s c r i t e r i o n
F=margin . t ab l e ( dtable , cbind ( 1 , 3 ) )
#n(T, Z) , dtab le marg ina l i z ed on S
oddsF=odds ra t i o (F , l og=FALSE)
conf intF=c o n f i n t ( oddsF )
#summary(F)
#t e s t o f independence between T and Z i s not s i g n i f i c a n t
#
modF <− glm ( surv ind ˜ t r e a t , data = d , fami ly = ” binomial ”)
#summary(modF)
#modF$coe f f i c i en t s [ 2 ]
#exp ( modF$coe f f i c i en t s [ 2 ] )= odds ra t i o (F)
############################################################
#Cheking the 3 rd Prent ice ’ s c r i t e r i o n
D=margin . t ab l e ( dtable , cbind ( 1 , 2 ) )
#n(T, S ) , dtab le marg ina l i z ed on Z
oddsD=odds ra t i o (D, l og=FALSE)
conf intD=c o n f i n t ( oddsD )
#summary(D)
#t e s t o f independence between T and S i s not s i g n i f i c a n t
#
modD<− glm ( surv ind ˜ p f s i nd , data = d , fami ly = ” binomial ”)
#summary(modD)
#ch i sq . t e s t ( margin . t ab l e ( dtable , cbind ( 1 , 2 ) ) )
############################################################
#Cheking the 4 th Prent ice ’ s c r i t e r i o n
#F i r s t check to see i f we could drop the i n t e r a c t i o n term
#( t r e a t ∗ p f s i nd ) from the l o g i s t i c model
mod1 <− glm ( surv ind ˜ p f s i nd + t r e a t +t r e a t ∗ p f s i nd
, data = d , fami ly = ” binomial ”)

#summary(mod1)
mod2 <− glm ( surv ind ˜ p f s i nd + t r e a t , data = d ,
fami ly = ” binomial ”)
#summary(mod2)
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#m o d 2 $ c o e f f i c i e n t s [ 3 ]
anov12=anova (mod2 , mod1 , t e s t=”Chisq ”)
#
#Check i f we could drop the term i n v o l v i n g
#treatment whi l e we a ju s t ed f o r p f s i nd
mod11 <− glm ( surv ind ˜ p f s i nd + t r e a t , data = d ,
fami ly = ” binomial ”)
#summary(mod11)
mod22 <− glm ( surv ind ˜ p f s i nd , data = d , fami ly = ” binomial ”)
#summary(mod22)
anov1122=anova (mod22 , mod11 , t e s t=”Chisq ”)
#
#p(T | S , Z)=p(T | S) i s equ iva l en t to show c o n d i t i o n a l
#independence o f p(T, Z | S)=p(T | S)p(Z | S ) ,
#to show i t , we need to show that the odds r a t i o
#f o r a 2∗2 tab l e at each l e v e l o f S i s equal to one .
X1=f t a b l e ( dtab le [ , 1 , ] ) #S=0
#summary( as . t ab l e (X1) )
#Gives the odds r a t i o f o r a t ab l e o f T and Z at S=0,
oddsX1=odds ra t i o (X1 , l og=FALSE)
summaryX1=summary( oddsX1 )
conf intX1=c o n f i n t ( oddsX1 )
#
X2=f t a b l e ( dtab le [ , 2 , ] ) #S=1
#summary( as . t ab l e (X2) )
#Gives the odds r a t i o f o r a t ab l e o f T and Z at S=1
oddsX2=odds ra t i o (X2 , l og=FALSE)
summaryX2=summary( oddsX2 )
conf intX2=c o n f i n t ( oddsX2 )

re turn ( l i s t ( dtab le=f t a b l e ( dtab le ) , tableC=f t a b l e (C) ,
oddsC=oddsC , conf intC=confintC ,
s t a t i s t i c C=summary(C) $ s t a t i s t i c ,
p . valueC=summary(C) $p . value ,
modC=summary(modC) , tableF=f t a b l e (F) ,
oddsF= oddsF , con f intF=conf intF ,
s t a t i s t i c F=summary(F) $ s t a t i s t i c ,
p . valueF=summary(F) $p . value ,modF=summary(modF) ,
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tableD=f t a b l e (D) ,
oddsD= oddsD , conf intD=confintD ,
s t a t i s t i c D= summary(D) $ s t a t i s t i c ,
p . valueD= summary(D) $p . value , modD=summary(modD) ,
anov12=anov12 , anov1122=anov1122 , oddsX1=summaryX1 ,
conf intX1=conf intX1 , oddsX2=summaryX2 ,
conf intX2=conf intX2 ) )
}
Prent i c e ( dfx )
Prent i c e ( dfy )
Prent i c e ( d fz )

####################### THE END ############################

8.2 Scripts related to the results in section

4.7

#rm( l i s t=l s ( ) )
i n s t a l l . packages ( ’ g too l s ’ ) #to run permutation
l i b r a r y ( g t o o l s )
#?permute
############################################################
# Resu l t s here are r e l a t e d to the An entropy−based
# nonparametric t e s t f o r the v a l i d a t i o n o f su r roga t e
# endpoints paper . # ”nonparam” i s a func t i on that take
# dataset , number o f permutat ions and degree s o f freedom
#(df ) , the r e tu rn s W observed ( $\hat{d {KL}}$ ) ,
# asymptotic t e s t s t a t i s t i c s , c h i s q u a r e value from the
# chi−square tab le , P−value permutation and P−value
# asymptotic .
############################################################
nonparam=func t i on (d , L=1000 , df =2)
{
#
Wper=rep (0 ,L) #Ing r ed i en t f o r W. per
#
sum=0
r1=0
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r2=0
r3=0
#
dtab le = tab l e ( d$survind , d$pfs ind , d$t r ea t )
A = dtab le #n(T, S , Z)
B=as . vec to r ( margin . t ab l e ( dtable , 2 ) ) #n(S)
#n(S , Z) , dtab le marg ina l i z ed on T
C=f t a b l e ( margin . t ab l e ( dtable , cbind ( 2 , 3 ) ) )
#n(T, S ) , dtab le marg ina l i z ed on Z
D=f t a b l e ( margin . t ab l e ( dtable , cbind ( 1 , 2 ) ) )
E=as . vec to r ( margin . t ab l e ( dtable , 3 ) ) #n(Z)
#n(T, Z) , dtab le marg ina l i z ed on S
F=f t a b l e ( margin . t ab l e ( dtable , cbind ( 1 , 3 ) ) )
G=as . vec to r ( margin . t ab l e ( dtable , 1 ) ) #n(T)
#
#
f o r ( i in 1 : 2 )
{

f o r ( j in 1 : 2 )
{
f o r ( k in 1 : 2 )
{
sum=sum+A[ i , j , k ]∗ l og ( (A[ i , j , k ]∗B[ j ] ) /
(C[ j , k ]∗D[ i , j ]))# Ing r ed i en t f o r W
r1=r1+A[ i , j , k ]∗ l og ( (A[ i , j , k ]∗E[ k ] ) / (C[ j , k ]∗F[ i , k ] ) )
#Ing r ed i en t f o r npLRF
r2=r2+A[ i , j , k ]∗ l og ( (A[ i , j , k ]∗ dim(d ) [ 1 ] ) /
(C[ j , k ]∗G[ i ]))# Ing r ed i en t f o r npLRF
}
# Ingr ed i en t f o r npPIG
r3=r3+D[ i , j ]∗ l og ( (D[ i , j ]∗ dim(d ) [ 1 ] ) / (B[ j ]∗G[ i ] ) )
}
}

Wobs=sum/dim(d ) [ 1 ] #Gives W. obs
Wstatobs=2∗dim(d ) [ 1 ] ∗Wobs #W. s t a t . obs
c h i 2 t a b l e=qch i sq ( 0 . 9 5 , 2 , ncp = 0 ,
lower . t a i l = TRUE, log . p = FALSE)
#
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npLRFobs=(1−exp(−2∗ r1 /dim(d ) [ 1 ] ) ) /
(1−exp(−2∗ r2 /dim(d ) [ 1 ] ) ) #Gives npLRF . obs
#
npPIGobs=r3 / r2 #Gives npPIG . obs
############################################################
#Calcu la te P−value f o r W us ing permutation
#
f o r (m in 1 :L)
{
sumper=0 #Ing r ed i en t f o r W. per

############################################################
#Permutation i n g r e d i e n t s on W
#S p l i t t i n g d to d . sub1 where S=1 and d . sub2 where S=0
dsub1 <− subset (d , d$pf s ind==1)
dsub2 <− subset (d , d$pf s ind==0)
dnew=rbind ( dsub1 , dsub2 )
#
#Permute treatment column in d . sub1 and name i t t r e a t . per1
t r e a t p e r 1=permute ( dsub1$treat )
#
#Permute treatment column in d . sub2 and name i t t r e a t . per2
t r e a t p e r 2=permute ( dsub2$treat )
#
t r e a t p e r=c ( t r eatper1 , t r e a t p e r 2 )
#
#merge t r e a t . per with dfxnew
dnew=cbind (dnew , t r e a t p e r )
#
tab l epe r = tab l e ( dnew$survind , dnew$pfsind , dnew$treatper )
Aper =tab l epe r #n(T, S , Z)
Bper=as . vec to r ( margin . t ab l e ( tab leper , 2 ) ) #n(S)
#n(S , Z) , t ab l e . per marg ina l i z ed on T
Cper=f t a b l e ( margin . t ab l e ( tab leper , cbind ( 2 , 3 ) ) )
#n(T, S ) , t ab l e . per marg ina l i z ed on Z
Dper=f t a b l e ( margin . t ab l e ( tab leper , cbind ( 1 , 2 ) ) )
Eper=as . vec to r ( margin . t ab l e ( tab leper , 3 ) ) #n(Z)
#n(T, Z) , t ab l e . per marg ina l i z ed on S
Fper=f t a b l e ( margin . t ab l e ( tab leper , cbind ( 1 , 3 ) ) )
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Gper=as . vec to r ( margin . t ab l e ( tab leper , 1 ) ) #n(T)
############################################################
f o r ( i in 1 : 2 )
{

f o r ( j in 1 : 2 )
{
f o r ( k in 1 : 2 )
{
sumper=sumper+Aper [ i , j , k ]∗ l og ( ( ( Aper [ i , j , k ]∗Bper [ j ] )
+0.000001)/( Cper [ j , k ]∗Dper [ i , j ] ) )
}
}
}

Wper [m]=sumper/dim(d ) [ 1 ] #W Permutation
}
P val perm=(1+sum(Wper >= Wobs))/(1+L) #P value Permutation
#
#P−value Asymptotic
p val asympt=pchi sq ( Wstatobs , df , ncp = 0 ,
lower . t a i l = FALSE, l og . p = FALSE)

############################################################
############## model based LRF and PIG #####################
############################################################
# Computing Ajusted l i k e l i h o o d reduct i on f a c t o r (LRF)
# f o r the f i r s t t r i a l c o n s i d e r i n g model without
# i n t e r a c t i o n term
############################################################
#GLM model Z on T
mod1 <− glm ( surv ind ˜ t r e a t , data = d , fami ly = ” binomial ”)
#
#GLM model Z and S on T
mod2 <− glm ( surv ind ˜ p f s i nd + t r e a t , data = d ,
fami ly = ” binomial ”)
#
#Gives LRT(Z+S : Z)=Res idual dev iance Z on T − Res . Dev . S , Z
# on T
AA=anova (mod1 , mod2 , t e s t=”Chisq ”) $Deviance [ 2 ]
#
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#Gives LRT(Z+S:1)= Null dev iance S , Z on T − Res . Dev . S , Z
# on T
BB=mod2$null . deviance−mod2$deviance
#
#Gives LRF based on the formula
LRF1=(1−exp(−AA/dim(d ) [ 1 ] ) ) / (1 − exp(−BB/dim(d ) [ 1 ] ) )
############################################################
# Computing proport ion o f in fo rmat ion gain (PIG)
# f o r the f i r s t t r i a l
# c o n s i d e r i n g model with i n t e r a c t i o n e f f e c t .
############################################################
#GLM model S on T
mod3 <− glm ( surv ind ˜ p f s i nd , data = d , fami ly = ” binomial ”)
#
#Gives LRT(S:1)= Null dev iance S on T − Res . Dev . S on T
CC=mod3$null . deviance−mod3$deviance
#
#Gives PIG based on the formula
PIG1=CC/BB
############################################################
# Computing Ajusted l i k e l i h o o d reduct i on f a c t o r (LRF)
# f o r the f i r s t t r i a l
# c o n s i d e r i n g model with i n t e r a c t i o n term
############################################################
#GLM model S , Z on T with i n t e r a c t i o n e f f e c t between S and Z
mod4 <− glm ( surv ind ˜ p f s i nd + t r e a t +t r e a t ∗ p f s i nd ,

data = d , fami ly = ” binomial ”)
#
#Gives LRT(Z+S : Z)=Res idual dev iance Z on T − Res . Dev . S , Z
# on T
DD=anova (mod1 , mod4 , t e s t=”Chisq ”) $Deviance [ 2 ]
#
#Gives LRT(Z+S:1)= Null dev iance S , Z on T − Res . Dev . S , Z
# on T
EE=mod4$null . deviance−mod4$deviance
#
#Gives LRF based on the formula
LRF2=(1−exp(−DD/dim(d ) [ 1 ] ) ) / (1 − exp(−EE/dim(d ) [ 1 ] ) )
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############################################################
# Computing proport ion o f in fo rmat ion gain (PIG) f o r the
# f i r s t t r i a l c o n s i d e r i n g model without i n t e r a c t i o n e f f e c t .
############################################################
#Gives PIG based on the formula
PIG2=CC/EE
############################################################
return ( i n v i s i b l e ( l i s t (Wobs=Wobs , Wstatobs=Wstatobs ,
c h i 2 t a b l e=ch i2 tab l e , P val perm=P val perm ,
p val asympt=p val asympt , npLRFobs=npLRFobs ,
npPIGobs=npPIGobs ,LRF1=LRF1,LRF2=LRF2, PIG1=PIG1 , PIG2=PIG2 ) ) )
}
############################################################
f d f x=nonparam ( dfx )
f d f y=nonparam ( dfy )
f d f z=nonparam ( dfz )
#
c (W. obs=fdfx$Wobs ,W. s t a t . obs=fdfx$Wstatobs ,
ch i2 . t ab l e=f d f x $ c h i 2 t a b l e ,
P val perm=fdfx$P val perm , p val asympt=fdfx$p val asympt ,
npLRF . obs=fdfx$npLRFobs , npPIG . obs=fdfx$npPIGobs ,
LRF1=fdfx$LRF1 ,
LRF2=fdfx$LRF2 , PIG1=fdfx$PIG1 , PIG2=fdfx$PIG2 )
#
c (W. obs=fdfy$Wobs ,W. s t a t . obs=fdfy$Wstatobs ,
ch i2 . t ab l e=f d f y $ c h i 2 t a b l e ,
P val perm=fdfy$P val perm , p val asympt=fdfy$p val asympt ,
npLRF . obs=fdfy$npLRFobs , npPIG . obs=fdfy$npPIGobs ,
LRF1=fdfy$LRF1 ,
LRF2=fdfy$LRF2 , PIG1=fdfy$PIG1 , PIG2=fdfy$PIG2 )
#
c (W. obs=fdfz$Wobs ,W. s t a t . obs=fdfz$Wstatobs ,
ch i2 . t ab l e=f d f z $ c h i 2 t a b l e ,
P val perm=fdfz$P val perm , p val asympt=fdfz$p va l asympt ,
npLRF . obs=fdfz$npLRFobs , npPIG . obs=fdfz$npPIGobs ,
LRF1=fdfz$LRF1 , LRF2=fdfz$LRF2 , PIG1=fdfz$PIG1 ,
PIG2=fdfz$PIG2 )
####################### THE END ############################
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9.1 Scripts related to the results in sections

5.3.1.

############################################################
# Function CI . b takes the e s t imat ion o f $\beta S$ and i t s
# standard er ro r , then r e tu rn s the $(1−2\alpha ) $
# i n d i v i d u a l s con f idence i n t e r v a l s f o r $\beta S$ .
############################################################
CI . b=func t i on (b , std . b)
{
z .90=qnorm ( 0 . 9 0 , mean = 0 , sd = 1 , lower . t a i l = TRUE,

log . p = FALSE)
U. b=b+z .90∗ std . b
L . b=b−z .90∗ std . b
re turn ( c (L . b ,U. b ) )
}
############################################################

############################################################
# Function bonf . CI takes the e s t imat ion o f $\beta S$ , i t s
# standard er ro r , the e s t imat ion o f $de l ta$ and i t s standard
# error , then r e tu rn s the $(1−2\alpha ) $ Bonfe r ron i
# con f idence i n t e r v a l s f o r $\beta S$ and $de l ta$ .
############################################################
bonf . CI=func t i on (b , std . b , d , std . d)
{

z .95=qnorm ( 0 . 9 5 , mean = 0 , sd = 1 , lower . t a i l = TRUE,
log . p = FALSE)

U. d=d+z .95∗ std . d
L . d=d−z .95∗ std . d
#
U. b=b+z .95∗ std . b
L . b=b−z .95∗ std . b
#
return ( l i s t ( c (L . d ,U. d ) , c (L . b ,U. b ) ) )

}
####################### THE END ############################
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