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Introduction

Nowadays, mathematical and numerical models are a fundamental tool in many physical
and engineering applications. In recent decades, an increasing number of numerical mod-
els have been developed to solve specific problems in fluid mechanics. These sophisticated
models can be used to investigate not only fluid flows in many different settings, but also
the coupling of fluid flow with complex fluid-structure interactions, biochemical reactions
or to solve optimisation problems.
The use of three-dimensional numerical models, based on standard discretization tech-
niques (e.g., Finite Difference Methods (FDM), Finite Element Methods (FEM), Finite
Volume Methods (FVM)) transforms the original set of PDEs into a very large system of
linear or non linear algebraic equations. Furthermore, one of the most delicate and time
consuming task is the generation of the computational mesh for a given geometry and the
time and effort needed for the mesh generation must be added to the already high cost of
solving the large system of equations arising from the discretization.

Solving shape optimization problems would require to perform both step at each itera-
tion of a non linear solver. Efficient algorithms avoid the mesh generation by, for example,
employing only a fixed background grid and discretizing the equations for incompressible
fluids with various strategies, among which volume of fluid [72], ghost point [23], cut-cell
[19, 68, 51] and immersed boundary [63] methods. In all these methods, the description of
the computational domain is often encoded in a level set function (see for example [80, 41]).
In particular, these techniques are very important in shape optimisation problems or in
problems where the computational domain is not fixed in time.

In the last decade, an important line of research has been devoted to the development
of models based on a reduced order methodology (ROM), i.e. simplifying the model to be
solved. The full order model is replaced by a model with a smaller size and hence a lower
computational cost. To do this, one exploits the reduction of the solution size by using an
on-line/off-line paradigm as in the Proper Orthogonal Decomposition (POD) approach or
in the Reduced Basis (RB) method, [15, 50, 96]. Other approaches instead exploit some
characteristics of the computation domain and of the problem under consideration.
In the present work, at request from the scholarship funder, we will mainly deal with
incompressible flow in elongated geometries, in which the cross-section does not present
abrupt changes. In such geometries, at the velocity of interest for the industrial application
at hand, the flow is laminar and no recirculation is expected. A full three-dimensional
solver with a refined mesh in all three spatial directions would lead to very large systems to
be solved, which seem disproportionate to the case of an essentially one-dimensional flow.
One could think of considering cross-section averages of the flow variables and seeking
for a 1D model by deriving from the incompressible Navier-Stokes equations an evolution
equation for these averages, alike the derivation of the 1D Shallow-Water equations from
the Euler equations. Such an approach does not seem viable in the account of the fact
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iv INTRODUCTION

that in a simple Poiseuille flow the pressure gradient is linked to the transversal derivatives
of the longitudinal velocity, which is an information that is completely lost in the cross-
sectional averaging process. This simple example suggests that enough information in
transversal derivatives of longitudinal velocity must be retained in a quasi-1D model.
A simple approach was proposed in [55], where the authors discuss a one-dimensional
model for a pipe with a variable cross-section that is based on assuming a constant pressure
and a parabolic Poiseuille velocity profile. Applying this approach to pipes with a generic
cross-section, for which an analytical expression of the velocity profile is not know requires,
in our opinion, to couple their model with a numerical approach that computes the velocity
profile. Therefore, by exploiting the features of the computation domain, we will develop
a quasi-one-dimensional model.

The Transversally Enriched Pipe Element Method of [58] (TEPEM) and the discretiza-
tion methods underlying the hierarchical model reduction techniques of [43], instead com-
pute a three-dimensional flow in a domain that is discretized only along the axial coor-
dinate, i.e. the discretization elements are sections of the entire pipe of length ∆x. This
favours a considerable reduction in the computational cost of creating the grid. These
models are based on a classical finite element discretization for all velocity component,
in which the FEM basis are obtained as Cartesian product of a Lagrangian basis in the
longitudinal direction and a spectral basis in the transverse ones.

Our approach, instead is closer to the one of [55] since pressure is constant on each
cross-section, the transverse velocity components are neglected and only the longitudi-
nal velocity is considered. The discretization in the longitudinal component of the fluid
motion is then performed by Discontinuous Galerkin (DG) methods on a staggered grid
arrangement, i.e. the velocity elements are dual to the main grid of pressure elements,
leading to a saddle point problem for the longitudinal velocity and pressure variables. A
similar spatial discretization turns out to be already present in the works [83, 84, 32], in
which it is exploited in a segregated solver. A rich basis with high polynomial degree in the
transversal direction allows to compute accurately the transversal derivatives of velocity
that are needed to estimate correctly the longitudinal pressure gradient.

We have also investigated the efficiency in solving the saddle point system resulting
from the discretization. Since classical solvers and iterative methods proved not to be
sufficient to optimally solve it, we have studied the characteristics and the structure of
the system, and then deduced spectral information, crucial for conditioning, convergence
analysis and for the design of efficient solvers. To do this, we will use the Generalized
Locally Toeplitz theory (GLT), [36, 35, 8], which allowed us to design a circulant block
preconditioner to solve the system in different contexts.

In order to arrive at the model described in this thesis, different strategies were previ-
ously adopted to discretize incompressible Navier-Stokes equations. One of the techniques
used made use of finite volumes and with a CWENOZ reconstruction in space. This led
to the work [78], which we have reported in Appendix C for completeness, and which
concerns an extension of the CWENOZ reconstruction, presented in [65], that aims to
enhance the accuracy near the domain boundaries.

In what follows, we include a detailed description of the content of each part of the
thesis.

In the first chapter, we briefly recall the derivation of the fundamental equations gov-
erning computational fluid dynamics are obtained from the basic principles of conservation
of mass, momentum and energy. Under the assumptions of constant density, the Navier-
Stokes equations for an incompressible fluid are then derived. A distinction is made
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between the different behaviour of fluids, which can be classified into Newtonian and non
Newtonian based on the relationship between the stress and strain tensors. Other impor-
tant characteristics of the flow are also highlighted, such as the distinction between its
laminar and turbulent behaviour.

The second chapter introduces our discretization of the Navier-Stokes equation in elon-
gated domains. The goal is to obtain a model that has a low computational cost, but at
the same time is very accurate. We will therefore start by deriving the analytical solution
of the Navier-Stokes equations in the case of a three-dimensional duct with a cylindrical
cross-section and constant radius. Thanks to this particular case it will be possible to un-
derstand which assumptions can be adopted in order to obtain an almost one-dimensional
model. In particular, the transverse components of the velocity will be neglected and only
the longitudinal component will be discretized. We will proceed with the discretization of
the obtained model using the Discontinuous Galerking method based on a staggered grid.
The viscous term will be discretized using the SIP [3, 94] technique, while a penalty term
will be introduced for the pressure in order to guarantee the continuity and stability of
the final method [49].

In the third chapter, the theoretical basis for the construction of our preconditioner
is laid; in particular we recall results on Toeplitz matrices and the Generalized Locally
Toeplitz (GLT) theory.

In the fourth chapter we perform the spectral analysis of the linear system obtained
from the discretization of the Navier-Stokes equations of the chapter two in the case of two
parallel plates, in order to obtain an efficient circulant preconditioner, based on the Schur
complement,[61]. Moreover, we will show that the preconditioner so found previously
turns out to be optimal also in the case of a slowly varying pipe radius and in the case of
a fully implicit discretization of the system, i.e. where all terms, including the convective
one are discretized implicitly, [60].

The fifth chapter is devoted to the validation of the numerical model. For this purpose
the numerical solution will be compared with some of the analytical solutions present
in the literature, considering both two-dimensional and three-dimensional ducts. This
comparison will be made both in the case of fluids with Newtonian and non Newtonian
characteristics. Some tests are also aimed at assessing how much the assumptions of our
numerical model influence the accuracy of the numerical solution.

The sixth and seventh chapters are devoted to the presentation of some of the possible
applications of the model described in chapter two. Both involve fluids with non Newtonian
characteristics with a shear-thinning behaviour that can be represented mathematically by
the Casson model. In the last chapter, an application in the biomedical field is presented,
[46]. The behaviour of blood in certain aneurysms and stenoses of the abdominal aorta
will be analysed. Solutions will be shown involving both idealized of the geometries of the
artery tract and simulations involving real geometries obtained from medical scans carried
out on some patients.

Appendix A contains the code for the symbolic calculation required in Chapter 4, while
Appendix B shows the spectral analysis for two case studies from which the general form
of the symbolic analysis in Section 4.4 was derived.
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Chapter 1

Mathematical model of
incompressible fluids

This chapter is devoted to recalling some of the central concepts of fluid dynamics, while
detailed information can be found in [85, 92] and [93]. Fluid dynamics is governed by
the conservation laws of classical physics, i.e. the conservation of mass, momentum and
energy. Partial differential equations are derived from these laws and, in appropriate
circumstances, simplified. For our discussion we assume that the fluid is a continuous
medium and we describe its behaviour in terms of macroscopic properties, such as veloc-
ity, pressure, density and temperature, thus ignoring molecular structure and molecular
motions. These properties can be described as time-dependent scalar or vector fields in
R3. In this setting, a fluid particle or point in a fluid is identified with the smallest possible
fluid element whose macroscopic properties are not affected by individual molecules.

1.1 The governing equations

The governing equations, known as Navier-Stokes equations, are nothing more than the
rewriting of conservation principles satisfied within any volume of fluid, which can be
analysed using two different approaches: the Lagrangian and the Eulerian representation.
In the first case the flow is described by specifying the physical properties of each material
particle as a function of time. The volume under examination, called the material volume,
V (t), moves with the fluid and therefore the fluid molecules inside it are always the same.
The system within V (t) does not exchange mass but only energy with the rest of the fluid.
In the second approach the domain V ∈ R3, called control volume, it is not consistent with
the fluid, but remains fixed and therefore the fluid molecules within it change over time.
In this representation, the flow is described by specifying the time history of the flow prop-
erties at each fixed point in the domain. This formulation is more accessible for analysis
and computation than the previous one and we will adopt this second representation to
derive the Navier-Stokes equations.

It is possible to pass from one formulation to another by means of the following re-
lationship: let φ(x, t) ∶ (R3,R) → R be a scalar field associated with a particle, the total
derivative, that tracks the variation of a material particle, is defined as

Dφ

Dt
= ∂φ
∂t

+ ui
∂φ

∂xi

where ui are the component of the velocity and in which we adopted the convention of

1



2 CHAPTER 1. MATHEMATICAL MODEL OF INCOMPRESSIBLE FLUIDS

implying summation when having two repeated indices, which will also be adopted in the
rest of the thesis.

Conservation of mass

The principle of conservation of mass states that, given a closed system that does not ex-
change particles with the outside world, the total amount of mass inside remains constant.

Definition 1 The total mass m contained in V at time t is

m = ∫
V
ρ(x, t)dx

where ρ(x, t) is the volumetric mass density at point x and at time t.

Since the fluid particles move at velocity u, the mass flux is ρu and thus

d

dt
∫
V
ρ(x, t)dx = −∫

∂V
ρu ⋅ n dS (1.1)

that, applying the Gauss divergence theorem, implies

∫
V
( ∂
∂t
ρ(x, t) +∇⋅(ρu))dx. (1.2)

Since the above equation is valid for every V , in the limit of V → 0, we obtain the
differential form of the equation

∂ρ

∂t
+∇⋅(ρu) = 0. (1.3)

In the above equation the first term represents the change in density over time, while the
second element indicates the net flow of mass through the boundary of a fluid element and
it is called the convective term. The eq.(1.3) is called the mass conservation law or the
continuity equation.

For incompressible homogeneous fluids, ρ is constant in space and time, and, given
that ∇⋅(ρu) = ρ∇⋅ u + ui∂iρ, it follows from the mass conservation law (1.3) that

∇⋅ u = 0. (1.4)

The (1.4) equations is called the incompressibility constraint and this is the form that the
mass conservation law takes for incompressible flow.

Conservation of linear momentum

To define the second fundamental law of dynamics we must first consider the Cauchy
stress tensor. The Euler–Cauchy stress principle states that upon any surface that divides
a body, the action of one part of the body on the other is equivalent to the system of
distributed forces and torque on the surface dividing the body and it is represented by a
field T (x,n) called the vector surface density of the forces and depends only on the point
x on the surface and on the unit normal n to the surface.
Considering x ∈ V , n = (n1, n2, n3) with ∣n∣ = 1, for the Cauchy’s stress theorem we have

T (x,n) = n ⋅ τ
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whose components are Ti = T (x, ni) = τjinj , where τ is a second-order tensor field, called
the Cauchy stress tensor.

From the second principle of dynamics, also called Newton’s second law, we have that
the time variation of the momentum of a system coincides with the resultant of the forces
external to the system and, observing that the total forces acting on a body can be written
as the sum of the external volume forces per units of volume, denoted as fe(x, t) and the
surface contact ones, the fundamental equation of continuum mechanics reads as follow

∫
V

∂ρu

∂t
dV + ∫

∂V
ρu⊗ u ⋅ n dS = ∫

∂V
T ⋅ n dS + ∫

V
fe dV (1.5)

where u ⊗ u denotes the tensor product of u with itself, while ρu ⊗ u ⋅ n, expresses the
linear momentum flux transported by the fluid particles entering or exiting the volume
V at velocity u. Since the previous equation is valid for every V , applying the Gauss
divergence theorem, in the limit of V → 0, we obtain the differential form of the equations

∂ρu

∂t
+∇⋅(ρu⊗ u) = ∇T + fe (1.6)

which is the momentum conservation equation. The left-hand side is called the inertia
term, because it comes from the inertia of the mass of fluid contained in V .

Energy balance

Definition 2 The total energy per unit mass is the sum of the kinetic energy and of the
internal energy e, thus the total energy in V is

E = ∫
V
ρ(e + 1

2
uiui)dV.

The first law of thermodynamics states that the change in internal energy of a system
is equal to the difference between the heat exchanged by the system with the external
environment and the work exerted between the system and the environment. By applying
the principle to a control volume V we have

d

dt
E =W +Q. (1.7)

W is the rate of work carried out on V , which depends on the body and surface forces
fe. Q is the heat rate, which depends on the rate q of heat per unit mass added to or
subtracted from the system and on the heat flow per unit area through the boundary of
V .
Since (1.7) holds for every V , applying the Gauss divergence theorem, in the limit of
V → 0, we have

∂

∂t
(Eρ) +∇⋅ ((ρE − T )u) = ρfe + ρ q (1.8)

where T is the temperature.

In this thesis we are interested in studying fluids on the assumption that their temper-
ature remains constant or that these materials do not conduct heat within the timeframe
simulated in the computations. Since the energy equation is used as a transport equation
for temperature, this turns out to be negligible under the hypotheses under consideration
and will no longer be considered in our discussion.
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1.2 Classification of fluids

In the fluid dynamics setting, the Cauchy tensor can be separated into an isotropic part
given by the pressure and by a deviatoric part associated to the velocity

τ = σ − pI (1.9)

where p = p(x, t) is the pressure and σ is the viscous stress tensor, which depends on the
velocity. The relation between σ and the velocity is called the constitutive relation and it
relates the stress tensor to the motion of the fluid. Based on the relationship between the
viscous stress tensor σ , and strain tensor γ , substances can be divided into Newtonian
and non Newtonian.

1.2.1 Newtonian fluid

A Newtonian viscous fluid is a fluid for which the stress tensor is a linear affine function
of the rate of strain tensor, γ = (∇u + (∇u)T ), namely

τij = 2µγij + λγkkδij − pδij (1.10)

where p = p(x, t) is the pressure and µ is the dynamic viscosity coefficient. For thermody-
namics considerations one must have µ > 0 and 3λ+2µ ≥ 0, [85]. γkk turns out to be ∇⋅ u,
so for an incompressible fluid, the relation (1.10) becomes

τij = 2µγij − pδij . (1.11)

Most low molecular weight materials exhibit flow with Newtonian characteristics for
small enough range of temperature and pressure. However, for many liquids, viscosity
decreases with temperature and increases with pressure; instead, for gases, it increases
with both temperature and pressure. In general, the greater the viscosity of a substance,
the greater the resistance it presents to flow.

1.2.2 Non Newtonian fluid

Towards the end of the 1970s, it was discovered that many substances of industrial im-
portance, especially of a multiphase nature such as foams or emulsions and polymeric
solutions of a natural or artificial nature, do not conform to the Newtonian postulate of
the linear relationship between σ and γ. Their relationship turns out to be much more
complicated, [85]. These substances are known as non Newtonian fluids. Since the flow
equations must be invariant with respect to the coordinate system, the only possible rela-
tions between the instantaneous stress tensor τ and the instantaneous strain rate tensor
γ must read

τ = h0(γI , γII , γIII)I + h1(γI , γII , γIII)γ + h2(γI , γII , γIII)γ2 − pI (1.12)

where γI , γII , γIII are the invariants of γ, namely

γI = trγ = γii
γII = 1

2[(trγ)
2 − trγ2]

γIII = detγ
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In particular, when the fluid is incompressible, the equations become

∇⋅ u = 0 (1.13a)

τ = h1(γII , γIII)γ + h2(γII , γIII)γ2 − pI (1.13b)

In a simpler way we can say that the dynamic viscosity is a function itself of the strain
rate tensor so τ = µ(γ)γ + (λ∇⋅ u − p)I.

Furthermore, the dynamic viscosity of certain materials can also depend on the kine-
matic history of the fluid element under consideration. It is possible to group such mate-
rials into three categories. The first is called time-dependent fluids for which the relation
between the stress tensor and strain rate tensor shows further dependence on the duration
of shearing and kinematic history.
Instead, when a fluid exhibits both elastic behaviour, typical of solids, in which the rela-
tionship between the stress and strain tensor is described by Hookes’ law given by

σij = −Gγij

where G is the Young’s modulus as well as viscous behaviour, i.e. where it responds to
tangential stress showing a behaviour consistent with Newton’s law, the fluid is called
visco-elastic.
The last consist of purely viscous, inelastic, time-independent or generalized Newtonian
fluids for which the value of γ at a point within the fluid is determined only by the current
value of τ at that point. We can say that such fluids have no memory of their past history.
Thus, their steady shear behaviour may be described by a relation of the form

σij = f (γij) .

This category includes fluids with shear-thinning behaviour, in which the viscosity grad-
ually decreases with strain rate, or fluids with visco-plastic behaviour, i.e. characterised
by the existence of a threshold stress, and finally shear thickening or dilating behaviour
whose apparent viscosity increases with increasing strain rate.
This classification scheme is quite arbitrary, because most real materials often show a
combination of two or even all of these types of characteristics, more details can be found
in [20].

In this work, fluids with a threshold stress called yield stress, σ0, will be considered.
Fluids with these characteristics are referred to as visco-plastic materials. At the micro-
scopic level, these substances have very rigid three-dimensional structures that do not
deform when subjected to external stresses lower than the yield stress and therefore offer
enormous resistance to flow. For stress levels above σ0, however, the structures break
down and the substance behaves like a viscous material. Fluids such as blood, yoghurt,
tomato sauce and many other fluids of interest for the food and cosmetics industry can be
described using the Casson model, which reads

γij is s.t.

⎧⎪⎪⎨⎪⎪⎩
σij = (

√
µc∣γij ∣ +

√
∣σ0∣)

2
if ∣σ∣ > ∣σ0∣

γij = 0 if ∣σ∣ < ∣σ0∣
(1.14)

where µc is the shear stress of the material and ∣γ∣ denotes the magnitude of the strain
rate

∣γ∣ = √
γ ∶ γ =

√
tr (γ γT ).
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Figure 1.1: Comparison between the stress tensor of the Casson and Papanastasiou model
for different values of m.

Note that when the applied stress is less that σ0, the fluids reacts as a rigid body.

The difficulty in applying Casson’s model in numerical schemes lies in its discontinuous
character. The stress tensor σ has a jump discontinuity in the yield stress, σ0. For such
models in simple flows, there are analytical solutions. To track down yielded/unyielded
zones in generic flow fields, numerical algorithms must be developed. Papanastasiou in
1987, instead, introduced a continuous regularization for the viscosity function [66] that
can then be used over the entire flow domain, i.e. over both yielded and unyielded regions,
in which the viscous stress tensor is approximated by

σ = [√µc +
√

σ0

∣γ∣ (1 − e−
√
m∣γ∣)]

2

γ (1.15)

where m ∈ N is a constant parameter with non-rheological meaning called stress growth
exponent. This term controls the exponential growth of the yield-stress term in regions
where the strain-rates is very small. In the limit of m = 0, the Newtonian liquid is
recovered, and the limit if m → ∞ is fully equivalent to the ideal Bingham model. In
particular, for m ≥ 100 the Papanastasiou model has a similar behaviour to the Casson
law [73], as observed in Fig. 1.1, and it is therefore a commonly accepted practice for the
numerical simulations of Casson fluid flows.

1.2.3 Laminar and turbulent flow

Flows can be classified according to their laminar or turbulent behaviour.
Laminar flow or streamline flow in pipes occurs when a fluid flows in parallel layers. There
are no cross-currents perpendicular to the main direction of flow, nor eddies or swirls of
fluids. There are no cross-currents perpendicular to the direction of flow or scrambling
and all the particles move along lines approximately parallel to the tube walls. On the
contrary, a turbulent flow is a flow regime characterized by chaotic property changes. This
includes rapid variation of pressure and flow velocity in space and time. The transition
from one state to the other does not occur suddenly, but there are parameter ranges in
which the two behaviours coexist.
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Osborne Reynolds, in the 1880s, observed that the flow regime depends on the ratio of
inertial forces to viscous forces in the fluid. This ratio is thus called the Reynolds number
and it is a dimensionless quantity.
At large Reynolds numbers, the inertial forces, which are proportional to the fluid density
and the square of the fluid velocity, are large relative to the viscous forces, and thus the
viscous forces cannot prevent the random and rapid fluctuations of the fluid. In this
situation the flow is turbulent. At small or moderate Reynolds numbers, however, the
viscous forces are large enough to overcome these fluctuations and the flow is laminar.

The Reynolds number at which the flow becomes turbulent is called the critical Reynolds
number, Recr. The point of transition from laminar to turbulent flow depends on the ge-
ometry, boundary surface roughness, flow velocity, type of fluid and other characteristics.
The value of the critical Reynolds number is then different for different geometries and flow
conditions. For example, for internal flow in a circular pipe with radius R, the Reynolds
number can be defined as

Re = ρuavg2R

µ

where ρ is the density , µ the viscosity of the fluid and uavg the average velocity. Generally,
in a circular pipe the flow is laminar for Re ≤ 2300, turbulent for Re ≥ 4000, and transitional
in between.
For a non-circular pipes, the Reynolds number is based on the hydraulic diameter Dh

defined as

Dh =
4Ac

wetted perimeter

where Ac is the cross-sectional area. For a circular pipe the Dh coincide with the diameter
of the duct.
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Chapter 2

Discretization

This chapter is devoted to the derivation of the numerical model used to approximate
incompressible flows in elongated channels, i.e. in which the diameter is much less than
the length. Our aim is to obtain a model that has a low computational cost, but is at
the same time as accurate as possible. We achieve this goal, by exploiting the elongated
geometry and using a staggered Discontinuous Galerkin (DG) finite element method. For
testing purposes we will also employ a two-dimensional model representing a flow between
two plates that are infinite in the third direction.

For decades finite difference schemes, [23, 71, 89], for incompressible Navier-Stokes
equations have dominated the computational fluid dynamics community as well as meth-
ods based on finite volumes (FV) [47, 93, 92]. These two types of methods suffer from
the fact that in order to obtain high-order methods it is necessary to consider very large
stencils with considerable difficulties near the domain boundaries.
Almost at the same time, finite element methods (FE) have been adopted [16, 57, 42],
which have advantages in the case of irregular geometries with non-uniform meshes, and
also allow greater ease in imposing appropriate boundary conditions; see [14] for a combi-
nation of FV-FEM. In these methods it is possible to discretize the velocity and pressure
field using different basis functions, but the choice is not arbitrary. For the resulting dis-
cretized system to be non singular, the Babuska-Brezzi (BB) condition must be satisfied
[44, 31].
The DG methods [83, 84, 32] have become increasingly popular in recent years due to
their ability to use higher order ansatz spaces, such as the finite elements, but still retain
the conservation properties by definition, like FV [49]. They allow accurate higher order
approximations to be obtained in both time and space by simply increasing the order of
polynomial approximation in the space-time elements and they also avoid using the sta-
bilisation approaches appeared in FEM.
The DG method was originally introduced by Reed and Hill [74] for the solution of the
neutron transport equations, and was extended to general non linear hyperbolic conserva-
tion laws by Cockburn and Shu, [21]. It can present both explicit and implicit formulation.
Explicit methods suffer from a very strong limitation of the time step, given by the CFL
condition, which guarantees the stability of the method. This limitation is all the stronger
the higher the polynomial degree employed. Using the implicit formulation of the DG
method, high order temporal discretizations can be obtained, but the resulting system
matrices are denser than those obtained with the explicit models. Moreover, these ma-
trices have a worse conditioning number than using continuous finite elements. In the
last decade, a new class of semi-implicit high-order DG schemes, with arbitrary order of

9
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accuracy in space, based on staggered grids has been introduced. The use of this type of
mesh greatly improves the stability of the method.

In this work we will use the latter approach, discretizing the computational domain
only along the axial direction of the duct, in order to obtain a one-dimensional model.
This model will be quasi-1D as the information about the velocity profiles in the transverse
directions will be included in the DG discretization space.

2.1 Navier-Stokes equations

The equations that describe the behaviour of a homogeneous and incompressible fluid are
the Navier-Stokes equations. Assuming no external forces are acting on the system, they
can be obtained substituting the relation (1.9) in the conservation momentum law (1.6)
and considering the incompressibility constrain (1.4) as follow

ρ(∂u

∂t
+∇ ⋅Fc) = −∇p +∇ ⋅ (µ γ) (2.1a)

∇ ⋅ u = 0, (2.1b)

where x = (x, y, z) is the vector of spatial coordinates, t denotes the time, p is the physical
pressure and ρ is the constant fluid density. u = (u, v,w) is the velocity vector where
(u, v,w) are the components along (x, y, z); Fc = u⊗u is the flux tensor of the non-linear
convective terms namely

Fc =
⎡⎢⎢⎢⎢⎢⎣

uu uv uw
vu vv vw
wu wv ww

⎤⎥⎥⎥⎥⎥⎦
.

The viscosity µ is a constant function if we consider a Newtonian fluid, instead it is a
function of the velocity if we consider a non Newtonian fluid.

Our goal was to obtain a fast and lightweight solver, so we chose to discretize directly
the standard 3D model (2.1), but aimed at obtaining a one-dimensional discretization
taylored to the elongated geometries we had to deal with. Obtaining analytically a one-
dimensional model is very complex and requires some assumptions on the fluid charac-
teristics, such as assigning velocity profiles within the domain, or on the computational
domain, imposing, for example, that the pipe sections have all the same shape, [55].
Another limitation of a 1D model is that there is a loss of information, especially related to
velocity. In particular, it is very difficult to correctly represent the velocity profiles in the
correct fluid flow direction when the pipe geometries have curves or changes in direction.
This is due to the fact that this type of model allows only one momentum equation to
be solved, thus having only one velocity component as an unknown, in addition to the
pressure contribution.

In order to illustrate our reduced model, let us first revise a case in which the Navier-
Stokes equations can be solved analytically, to see what assumptions can be made in order
to obtain a quasi one-dimensional model.

2.1.1 Circular straight pipe (Hagen–Poiseuille equation)

We know from the literature that it is possible to derive an analytical solution of the
Navier-Stokes equations in the case of relatively simple geometries. Let us, therefore,
consider an incompressible, Newtonian and viscous flow in a circular channel of constant
radius R, placed horizontally, in which the direction x is the longitudinal one and y and z
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the transverse ones. This case is perhaps the best known example of an exact solution, first
studied by Hagen (1839) and Poiseuille (1840). The assumptions of the equation are that
the flow is laminar through a pipe of constant circular cross-section that is substantially
longer than its diameter; and there is no acceleration of the fluid in the pipe. Poiseuille’s
equation thus describes the pressure drop due to the viscosity of the fluid.
According the definition of the domain a natural choice is to write eq. (2.1) using the
cylindrical coordinates (r, θ, x); therefore we can rewrite the equations as follows

ρ(∂ur
∂t

+ (u ⋅ ∇)ur −
u2
θ

r
) = − ∂p

∂r
+ µ [ ∂

∂r
(1

r

∂(rur)
∂r

) + 1

r2

∂2ur
∂θ2

+ ∂
2ur
∂2x

− 2

r2

∂uθ
∂θ

]

(2.2a)

ρ(∂uθ
∂t

+ (u ⋅ ∇)uθ +
uθur
r

) = − ∂p
∂θ

+ µ [ ∂
∂r

(1

r

∂(ruθ)
∂r

) + 1

r2

∂2uθ
∂θ2

+ ∂
2uθ
∂2x

+ 2

r2

∂ur
∂θ

]

(2.2b)

ρ(∂ux
∂t

+ (u ⋅ ∇)ux) = −
∂p

∂x
+ µ [1

r

∂

∂r
(r∂ux

∂r
) + 1

r2

∂2ux
∂θ2

+ ∂
2ux
∂2x

] (2.2c)

1

r

∂(rur)
∂r

+ 1

r

∂(uθ)
∂θ

+ ∂(ux)
∂x

=0 (2.2d)

where (ur, uθ, ux) are the component of the velocity u in the cylindrical coordinates system.
The symmetry of the problem leads to the assumption that there is no motion in the

transverse directions, ur = uθ = 0 and no vortex, so all derivatives with respect to the θ
component are null. Thus the remaining velocity component ux turns out to be a function
only of x and r. Substituting these assumptions into the incompressibility constraint,
equation (2.2d), we obtain that the derivatives with respect to the longitudinal direction
are null, i.e.

∂ux(x, r)
∂x

= 0 ⇒ ux = ux(r)

This is equivalent to saying that the time-averaged velocity profile remains unchanged
inside the duct, i.e. the fluid is at steady state. The longitudinal component of the
velocity is therefore a function of the transverse component r only.

Analysing the r and θ components of the momentum, equations (2.2b) ans (2.2c), we
observe that all terms are zero except the pressure gradients, forcing them to be zero as
well, so:

∂p

∂r
= ∂p
∂θ

= 0.

In other words, the pressure p is a function only of the x component: p = p(x).
Considering now the longitudinal component of the momentum, equation (2.2a), and

noting that the only non-zero component of the viscous term is
∂ux
∂r

, we have

µ

r

∂(rux)
∂r

= ∂p
∂x
. (2.3)

We can therefore observe that the pressure gradient in the longitudinal direction depends
exclusively on the derivatives in the transverse direction of the longitudinal component of
the velocity, ux .
Integrating once eq.(2.3) gives

r2

2

∂p

∂x
= µr∂ux

∂r
+ c1,
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where c1 is a constant of integration. Dividing both sides by r and integrating a second
time we obtain

ux =
r2

4µ

∂p

∂x
+ c1 log ∣r∣ + c2,

where c2 is the second constant of integration.
To determine the integration constants and obtain an expression for the velocity profile

we can use the boundary conditions. In particular, we impose a no-slip condition at the
physical edges of the domain, i.e. we assume that the longitudinal velocity, evaluated on
the domain walls, is zero. Furthermore, since the domain considered is symmetric, we can
assume that the fluid has maximum velocity on the axis of the pipe, so the derivative of
the longitudinal component of the velocity with respect to the radius, evaluated at the
centre of the pipe, r = 0, must be zero. We then impose the following boundary conditions:

dux
dr

(0) = 0 ⇒ c1 = 0 (2.4)

ux(R) = 0 ⇒ c2 =
−R2

4µ

∂p

∂x
(2.5)

Finally the axial velocity profile is

ux = −
R2

4µ
(1 − r2

R2
) ∂p

∂x
(2.6)

Therefore, considering a fully developed laminar flow in a pipe, the velocity profile is
parabolic with a maximum at the centerline

umax =
R2

4µ

∂p

∂x
.

Also, the axial velocity is positive for any r, and thus the axial pressure gradient
∂p

∂x
must

be negative, i.e., the pressure must decrease in the flow direction because of viscous effects.
In the case of a cylindrical pipe of constant radius, the main assumption is that there

is no motion in the transverse directions, so the only non-zero velocity component is in the
longitudinal direction, ux. From this it follows that the pressure gradient in the transverse
directions is null, while, observing equation (2.3), the gradient in the longitudinal direction
depends on the longitudinal component of the velocity and its derivatives in the transverse
directions.
Motivated by the previous computation, and with the aim to compute flows in elongated
channels with slowly varying cross sectional geometry, we choose to approximate u with
its longitudinal component and to neglect the transversal derivatives of the pressure, i.e.
to assume that p is constant on each cross section of the pipe.

2.2 Staggered grid

In order to discretize the equations (2.1) it is necessary to divide the computational domain
into control volumes within which the variables are computed. It is possible to choose to
define the velocity components in the same elements in which the scalar pressure field is
defined, thus using a colocated grid in which the control volumes referring to the different
variables coincide.
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Figure 2.1: colocated stencil

This choice however can lead to instabilities by a mechanism that can be easily illustrated
on the following finite difference method for Navier-Stokes equations. In this setting,
solutions can be obtained in which non-uniform pressure fields act as uniform fields in
the discretized equations of moments. Indeed, looking at the system of eq. (2.1), we
can see that velocity appears in all equations, but since density is constant, pressure has
no equation to represent it. The coupling between pressure and velocity introduces a
constraint in the solution of the flow field: if the correct pressure field is applied in the
momentum equations, the resulting velocity field should satisfy the continuity equation.
Let us consider a 2D flow where the computational domain is discretized as in Fig. 2.1. Let
C be the centre of a cell and let N , E, S, W denote the centres of neighbouring cells. We
identify with ∆x the distance between the nodes C and W and the nodes C and E, and
with ∆y the distance between the centre C and the nodes S and N . We denote instead

by the letters n, e, s, w each face of the central cell. Using the colocated grid,
∂p

∂x
at the

cell centre can be approximated in the following way

∂p

∂x
∣
C

= pe − pw
∆x

=
(pE + pC

2
) − (pW + pC

2
)

∆x
= pE − pW

2 ∆x

In a similar way we can represent the pressure gradient,
∂p

∂y
, in the second component of

moments

We observe that the pressure at the cell centre node does not appear. Thus, if p took
constant values plow (and phigh) at odd (respectively even) grid points, the pressure gradient
acting on each cell would be zero, despite possibly large oscillations of the pressure in both
directions. This type of discretization leads to strong instabilities in the numerical method,
which are called checkboard instabilities. A second issue due to the choice of colocated
grid and the use of finite differences is related to the velocity field. As the Reynolds
number increases, relative non-physical oscillations of the velocity are observed. Over the
last twenty years, a number of techniques have been developed to stabilise the spatial
discretization. These methods, applied to colocated grids, consist of introducing penalty
terms into the continuity equation. One possibility is to rewrite eq. 2.1b as

∇⋅ u = εh2∇2p
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Δx

Δx

Figure 2.2: Example of a 1D discretization in a 3D domain.

where h is the spatial mesh parameter, thus introducing a O(h2) perturbation to the orig-
inal problem, see [42] for a review of this particular technique in combination with the use
of high-order finite elements. Alternatively, it is possible to use methods that split the
operators appearing in the Navier-Stokes equation, such as the fractional step method.
Starting from a discretization of the time term, three equations are solved in succession:
the first is a Burgers’ equation involving the explicitly discretized convective term, the
second is a heat equation in which the implicitly discretized viscous term appears, and the
last is a Poissone equation for the implicitly discretized pressure term. The disadvantage
of this approach lies in the need to introduce an artificial boundaring condition for the
pressure.
As an alternative to the methods presented, to overcome this non-physical behaviour we
can use a staggered grid in which the pressure and velocity components are defined at
different points in the grid. This is the oldest and the most straightforward approach to
discretizing the Navier-Stokes equations. The method was first proposed by Harlow and
Welch [45], and is described in detail by Patankar [70]. This method consists in defining
the scalar variables such as pressure, density and temperature at ordinary nodal points
of the control volumes, while the velocity components are defined on the faces, or rather
on staggered grids centred around the cell faces. This discretization, not only avoids the
checker board instabilities, but is also appreciated since no artificial boundary conditions
are required and only the physical boundary conditions are sufficient.
The behaviour just described also occurs if one considers other methods for discretizing
the Navier-Stokes equations; in particular, using discretizations based on finite element
methods, that do not satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) condition, also
known as the inf-sup condition, results in discretizations that are unstable and give rise
to spurious oscillations. More details on the use of numerical solution strategies for the
Navier-Stokes equation can be found in the review of Langtangen, Mardal and Winther
[44]. To overcome the pressure oscillations, for our discontinuous finite element discretiza-
tion, we decided to use a staggered grid.

2.3 Discontinuous Galerkin method

To solve the incompressible Navier-Stokes equations, we used the staggered Discontinuous
Galerkin (DG) method, which allows us to obtain a high-order spatial model.
We introduce a partition of the computational domain in which each element is a section
of the channel of length ∆x, i.e. without introducing a refinement along the transverse
directions, as we can see in Fig. 2.2 for a 3D domain or Fig. 2.4 for a 2D case. This is in
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line with the fact that we approximate the velocity using only the longitudinal component
and that, as we noted earlier, the geometry is elongated.
We also use a staggered grid to avoid any problems with oscillating pressure fields, as in
[32, 83, 84] and reference therein. We then define a main grid or primary grid consisting
of n non-overlapping cells, Ωi with i = 1 . . . n, all of the same length ∆x, on which the
pressure is defined. For the velocity we instead used a staggered grid, called dual grid
consisting of n + 1 elements Ω*

i with i = 1 . . . n + 1, whose first and last elements have
lengths equal to one half of the other cells. We point out that each Ωi has a non-trivial
intersection only with Ω*

i and Ω∗
i+1 for i = 1 . . . n.

In our approach we map each physical element into the square Ωref = [0,1]2, for the
2D case, or into a unitary cube Ωref = [0,1]3, for the 3D case. In the reference element we
denote by (ξ, η, ω) the coordinate space vector, ξ a point in this space and we indicate all
elements belonging to this space with a hat.

In the reference space we consider a polynomial space Qnξ,nη ,nω = Pnξ⊗Pnη⊗Pnω defined
as the tensor product of a one-dimensional polynomial of degree nξ in the longitudinal
direction and nη and nω in the transverse ones. In each direction we consider a classical
Lagrangian basis. The choice of a tensor-product basis allows a large gain in computational
effort, especially in high spatial dimensions. Considering, for example, the longitudinal
direction, the nodes associated with basis functions are defined as ξk = k

nξ
where 0 ≤ k ≤

nξ. We can construct the standard nodal basis by imposing the Lagrange interpolation

condition ψ̂l(ξk) = δlk for the l-th basis function ψ̂l at the k-th nodal point ξk in [0,1],
where δlk denotes the classical Kronecker symbol.
For the pressure space, we choose nη = nω = 0 since the derivatives of the pressure in
the transverse directions are neglected in our quasi-one-dimensional approximation. The
polynomial space associated with the pressure becomes: Qnξ,0,0 = Pnξ ⊗ P0 ⊗ P0.

We have previously observed that the pressure depends only on the longitudinal com-
ponent; the only non-zero velocity component is always the longitudinal one, and we also
expect that the transversal derivatives of the longitudinal velocity components largely de-
termines the pressure drop. For these reasons we use polynomial degrees in the transverse
directions also much larger than the degree in the longitudinal direction, so the lack of dis-
cretization of the transverse direction is compensated by the use of a very rich polynomial
basis in that direction. We will thus choose nη and nω larger than nξ.

Since the basis functions are defined on the reference control volume, it is necessary
to establish a connection between the reference coordinates (ξ, η, ω) and the physical ones
(x, y, z), [84]. Considering the dual grid and taking a cell Ω*

i , we therefore define a map
F ∗
i ∶ Ωref → Ω*

i in the following way

x =∑
k

φ̂k(ξ, η, ω)X∗
i,k

y =∑
k

φ̂k(ξ, η, ω)Y ∗
i,k

z =∑
k

φ̂k(ξ, η, ω)Z∗
i,k

where X∗
i,k, Y

∗
i,k, Z

∗
i,k are the point in the physical velocity cells Ω*

i , and φ̂k are the basis
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defined into the reference space. The Jacobian associated to the map has the form

J(F ∗
i ) =∑

k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂φ̂k
∂ξ X

∗
i,k

∂φ̂k
∂η X

∗
i,k

∂φ̂k
∂ω X

∗
i,k

∂φ̂k
∂ξ Y

∗
i,k

∂φ̂k
∂η Y

∗
i,k

∂φ̂k
∂ω Y

∗
i,k

∂φ̂k
∂ξ Z

∗
i,k

∂φ̂k
∂η Z

∗
i,k

∂φ̂k
∂ω Z

∗
i,k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

we denote with ∣JF ∗i ∣ its determinant.
Considering for example the two-dimensional case, the points in the physical domain
correspond to the vertices, the midpoints of the sides and the midpoint of the quadrilateral
Ω∗
i . The nine basis functions φ̂, in the reference space, are defined as the tensor product

of a polynomial of order three in each direction, i.e.

φ̂3k+j(ξ, η) = ϕk(ξ)ϕj(η) ∀k, j = 0, . . . ,2

where ϕ0(t) = (1 − t)(1 − 2t), ϕ1(t) = 4t(1 − t) ϕ2(t) = t(2t − 1). In this simple case it is
easy to see that the Jacobian has the following form

J(F ∗
i ) =

2

∑
k,j=0

⎡⎢⎢⎢⎢⎣

X∗
i,3k+j

dϕk(ξ)
dξ ϕj(η) X∗

i,3k+j ϕk(ξ)
dϕk(η)
dη

Y ∗
i,3k+j

dϕj(ξ)
dξ ϕj(η) Y ∗

i,3k+j ϕk(ξ)
dϕj(η)
dη

⎤⎥⎥⎥⎥⎦
.

In order to represent more general domains we chose a Q2 map with k = 9 points in
2D and k = 27 points in 3D.
If the physical domain is not curved, the map can be constructed following a standard
sub-parametric approach with 4 points for the 2D or 8 points for the 3D case, so Fi ∈ Q1.
The Q2 representation requires more information to be stored, but allows the shape of the
elements to be generalised, especially when trying to discretize complex curved domains
with coarse grids. Since the map is not linear, to define the inverse transformation from
the physical to the reference space F ∗−1

i ∶ Ω*
i → Ωref, ∀ i = 1 . . . n + 1 we use the Newton

algorithm, [82]. In a similar way we define the map from the reference space to a physical
pressure cell Ωi, Fi ∶ Ωref → Ωi and its inverse F −1

i ∶ Ωi → Ωref. It is important to note
that the choice of map only involves the pre-processing phase, while leaving the system
resolution phase, resulting from the discretization, unaffected.

At each point within the channel, we define a triplet of versors (t̄, n̄, b̄) where t̄ indi-
cates the direction of fluid flow, while n̄ and b̄ represent the components normal to the
flow, as we can see in Fig. 2.3. By using the Jacobian of the map F ∗

i , at a point (ξ̂, η̂, ω̂)
in the reference space, the vector t is

t = lim
δ→0

F ∗
i (ξ̂ + δ, η̂, ω̂) − F ∗

i (ξ̂, η̂, ω̂)
δ

=
⎛
⎜⎜
⎝

∂x
∂ξ
∂y
∂ξ
∂z
∂ξ

⎞
⎟⎟
⎠
= JF ∗i

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
=
⎛
⎜⎜⎜
⎝

∑k ∂φ̂k∂ξ X
∗
i,k

∑k ∂φ̂k∂ξ Y
∗
i,k

∑k ∂φ̂k∂ξ Z
∗
i,k

⎞
⎟⎟⎟
⎠
. (2.7)

In a similar way we define also

n = JF ∗i
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
=
⎛
⎜⎜⎜
⎝

∑k ∂φ̂k∂η X
∗
i,k

∑k ∂φ̂k∂η Y
∗
i,k

∑k ∂φ̂k∂η Z
∗
i,k

⎞
⎟⎟⎟
⎠

b = JF ∗i
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
=
⎛
⎜⎜⎜
⎝

∑k ∂φ̂k∂ω X
∗
i,k

∑k ∂φ̂k∂ω Y
∗
i,k

∑k ∂φ̂k∂ω Z
∗
i,k

⎞
⎟⎟⎟
⎠

Therefore the versors are t̄ = t
∥t∥ , n̄ = n

∥n∥ and b̄ = b
∥b∥ .
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Ω∗
i

n̄

t̄
b̄

Ωi

F ∗
i F ∗−1

i

ψi,k

û

ψ̂i,k ∈ Pnξ ⊗ Pnη ⊗ Pnω

R[0, 1]3

η

ξ

ω

Fi F−1
i θi,k

θ̂i,k ∈ Pnξ

R
[0, 1]3

η

ξ

ω

Figure 2.3: Representation of a portion of the geometry in the physical system, in which
a dual cell referring to velocity is highlighted in blue and a red cell of the main grid in
which the pressure is discretized. Each physical element is mapped via F ∗−1

i and Fi in the
reference volume, represented in (ξ, η, ω) space. The basis functions for the pressure and
velocity spaces are also given, together with the notation used throughout the thesis. At
the centre of the face of the dual cell the triad of (t̄, n̄, b̄) verses is represented.

We now construct the discrete pressure space and the discrete velocity space as follows:

V
nξ,np
h = span{θi,β ∶ θ̂β ∈ Qnξ,np,np(Ωref), ∀β ∈ [1, np], ∀i ∈ [1, n]} (2.8a)

W
nξ,nη ,nω
h = span{ψi,α ∶ ψ̂α ∈ Qnξ,nη ,nω(Ωref), ∀α ∈ [1, nu], ∀i ∈ [1, n + 1]} (2.8b)

where nu ∶= (nξ +1)× (nη −1)× (nω −1) are the degrees of freedom for the velocity in each
cell of the dual grid, which can be reduced according to the no slip boundary conditions
adopted, (blue dots in Fig. 2.4 in 2D geometry and in Fig. 2.3 for a 3D case), while
np ∶= (nξ + 1) are the pressure degrees of freedom in each cell of the main grid (red dots
in Fig. 2.4 2D case and in Fig. 2.3 for a 3D geometry)). These are fewer in number than
the velocity ones as the pressure is constant along the transverse directions. In (2.8) ψi,α
and θi,β are the shape functions, defined in the physical domain, that are the pullback of

the basis functions, ψ̂α e θ̂β:

ψi,α(x, y, z) = ψ̂α ○ F ∗−1
i and θi,β(x, y, z) = θ̂β ○ F−1

i .

The discrete velocity in physical space can be defined as

u = û(x, y, z)t̄(x, y, z) (2.9)
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in
le

t

ou
tl

et

cells P1 × P0 of pressure

cells P1 × P3 with Dirichlet boundary
conditions at the channel walls of velocity

Figure 2.4: Illustration of the staggered grid arrangement in a nozzle for nξ = 1 and nη = 3

with û(x, y, z) ∈Wnξ,nη ,nω
h and the numerical solution is then represented as:

u(x, y, z) =
n+1

∑
i=0

nu

∑
l=0

ψ̂i,l(ξ, η, ω) ûi,l t̄ =
n+1

∑
i=0

nu

∑
l=0

ψ̂l (F ∗−1
i (x, y, z)) ûi,l t̄ (2.10a)

p(x, y, z) =
n

∑
i=0

np

∑
l=0

θ̂i,l(ξ, η, ω) p̂i,l =
n

∑
i=0

np

∑
l=0

θ̂l (Fi(x, y, z)) p̂i,l (2.10b)

Thanks to the local reference system t,n and b, we can select, at each point, the
component of the velocity directed in the fluid’s principal direction of flow. In this way
we obtain a single equation for the momentum, in which the unknown element is the
velocity component directed along axis of the channel, also for the case of curved pipes.
The numerical scheme will be obtained discretizing the following reduced version of (2.1)

ρ(∂u

∂t
+∇ ⋅Fc) ⋅ t̄ = −∇p ⋅ t̄ + (∇ ⋅ (µ γ)) ⋅ t̄ (2.11a)

∇ ⋅ u = 0 (2.11b)

2.4 Staggered DG scheme

To obtain a weak formulation, we first integrate the momentum equation (2.11a) multiplied
by a generic shape function ψi,l, for the velocity over the domain Ω*

i . We get, for every
l = 1, . . . , nu and i = 1, . . . , n + 1

∫
Ω*

i

ψi,l ρ(
∂u

∂t
+∇ ⋅Fc) ⋅ t̄ dΩ = −∫

Ω*
i

ψi,l ∇p ⋅ t̄ dΩ+∫
Ω*

i

ψi,l (∇ ⋅ (µ γ)) ⋅ t̄ dΩ . (2.12a)

We then integrate the continuity equation (2.11b), multiplied by a generic shape function
θi,l for the pressure, over the domain Ωi. We obtain, for every l = 1, . . . , np and i = 1, . . . , n

∫
Ωi

θi,l ∇ ⋅ u dΩ = 0 (2.12b)

where dΩ = dxdy dz.
In the following we describe each term in greater detail. In particular, in this paragraph
we consider the case of a Newtonian flow, i.e. in which the viscosity is constant. In the
following paragraph §2.5, the extension to a non Newtonian flow will be presented.
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2.4.1 Viscous term

Let us start by analysing the integral of the viscous term. To simplify the presentation,
let us first suppose that we have a channel with a constant cross-section and centerline
along the x-axis; therefore u ⋅ t̄ = u, i.e. the component of the velocity along the direction
of motion of the fluid coincides with the u component of the velocity. Assuming an
incompressible flow, the viscosity integral is reduced to

∫
Ω*

i

ψi,l (∇ ⋅ (µ γ)) ⋅ t̄ dΩ = ∫
Ω*

i

ψi,l (∇ ⋅ (µ ∇u)) ⋅ t̄ dΩ = ∫
Ω*

i

ψi,l ∇ ⋅ (µ ∇u) dΩ .

Integrating two times by parts, we obtain, for every l = 1 . . . nu:

∫
Ω*

i

ψi,l ∇ ⋅ (µ ∇u)dΩ = ∫
Γ*
i

ψi,l µ ∇u ⋅ n dΓ−∫
Γ*
i

∇ψi,l ⋅ n µ u dΓ+

+ ∫
Ω*

i

∇ (∇ψi,l µ) u dΩ, (2.13)

where n indicates the outward pointing unit normal vector, Γ*
i denotes the union of the

boundaries of the element Ω*
i .

We need to integrate the gradient of velocity at intercell boundaries, but, for the DG
approximation, the velocity is discontinuous on the edges. In an other way we need to
define the numerical fluxes of velocity and of its gradient in terms of the velocity itself
and of the boundary conditions, where they are necessary. The choice of the numerical
fluxes is quite delicate because it can effect the stability and the accuracy of the method,
as well the sparsity of the stiffness matrix. To do this we apply the Interior Penalty (IP)
method, a technique initially used by Bassi and Rebay in 1997, in the framework of the
discontinuous finite elements method, to discretize the diffusion term in the heat equation,
[10].
We need to introduce an appropriate functional setting. We denote with Hk(Ω) the space
of functions on Ω whose restriction to a fixed element Ω*

i belongs to the Sobolev space
Hk(Ω*

i ) and with T (Γ∗) ∶= ∏iL
2(Γ*

i ) the trace of function in Hk(Ω*
i ), where Γ∗ is the

union of the boundaries of all cells Ω*
i ⊂ Ω, with i = 1, . . . , n+1. Fixing the right boundary

of the cell Ω*
i we define the average {⋅} and the jump ⟦⋅⟧ of a scalar function q ∈ T (Γ∗) as

follows
{q} = 1

2 (qi + qi+1) , ⟦q⟧ = qi ni + qi+1 ni+1,

where ni and ni+1 are the unit normal vector pointing exterior to right boundary of Ω*
i

and the left boundary of Ω∗
i+1 respectively. In a similar way we define the same operators

for a function φ ∈ [T (Γ∗)]2

{φ} = 1
2 (φi + φi+1) , ⟦φ⟧ = φi ⋅ ni + φi+1 ⋅ ni+1.

We observe that taking a scalar function, the jump ⟦q⟧ is a vector parallel to the normal,
instead the jump of a vector function φ is a scalar quantity and they do not depend on
assigning an ordering to the elements Ω*

i . In this setting we can define the scalar numerical
flux ũ and the vector numerical flux σ̃ as linear functions

ũ ∶H1(Ω)→ T (Γ∗), σ̃ ∶H2(Ω) × [H1(Ω)]2 → [T (Γ∗)]2.

We also assume that the fluxes satisfy the consistency property

ũ(s) = s∣Γ∗ , σ̃ (s,∇s) = ∇s∣Γ∗



20 CHAPTER 2. DISCRETIZATION

whenever s is a smooth function satisfying the boundary conditions and the conservative
property because it is single-valued on Γ∗. This properties are very important for the
stability of the DG method.
Noting that ψ,µ ũ ∈ T (Γ∗) and that ∇ψ, σ̃ ∈ [T (Γ∗)]2, the eq. (2.13) can be written as

∫
Ω*

i

ψi,l ∇ ⋅ (µ ∇u)dΩ = ∫
Γ*
i

⟦ψi,l⟧ ⋅ {σ̃} dΓ+∫
Γ*
i /∂Ω

{ψi,l}⟦σ̃⟧dΓ−∫
Γ*
i

{∇ψi,l} ⋅ ⟦µ ũ⟧ dΓ

− ∫
Γ*
i /∂Ω

⟦∇ψi,l⟧ {µ ũ} dΓ+∫
Ω*

i

∇ (∇ψi,l µ)u dΩ .

By integrating the last integral by parts

∫
Ω*

i

∇ (∇ψi,l µ)u dΩ = ∫
Γ*
i

{∇ψi,l} ⋅⟦µu⟧ dΓ+∫
Γ*
i /∂Ω

⟦∇ψi,l⟧ {µu} dΓ−∫
Ω*

i

µ∇ψi,l ⋅∇u dΩ

and replacing it in the previous expression, we obtain

∫
Ω*

i

ψi,l ∇ ⋅ (µ ∇u)dΩ = −∫
Ω*

i

µ∇ψi,l ⋅ ∇u dΩ+∫
Γ*
i

⟦ψi,l⟧ ⋅ {σ̂} dΓ+∫
Γ*
i /∂Ω

{ψi,l}⟦σ̃⟧dΓ

− ∫
Γ*
i

{∇ψi,l} ⋅ ⟦µ ũ − µu⟧ dΓ−∫
Γ*
i /∂Ω

⟦∇ψi,l⟧ {µ ũ − µu} dΓ (2.14)

In our case we apply the classical IP method: for the velocity flux we choose the
average of the values at the edge of the cells, instead for the flow gradient we take the
average of the velocity gradients at the edge minus a penalty term that depends on the
velocity jumps, we obtain, for each i = 1, . . . , n + 1

ũ = { {u} on Γ*
i /∂Ω

ε⟦u⟧ on Γ*
i

σ̃ = { 0 on Γ*
i /∂Ω

{µ∇u} − α⟦µu⟧ on Γ*
i

where α is a penalty weighting function α ∶ Γi → R given by α = α0

∆x , in which α0 is a
positive number, [3].
We can therefore discretize the viscous term with the following bilinear form, called primal
form,

Bi(ψi,l, u) = −∫
Ω*

i

µ∇ψi,l ⋅ ∇u dΩ+ (1 − ε)∫
Γ*
i

{∇ψi,l} ⋅ ⟦µu⟧ dΓ+

+ ∫
Γ*
i

⟦ψi,l⟧ ⋅ {µ∇u} dΓ−∫
Γ*
i

α ⟦ψi,l⟧ ⋅ ⟦µu⟧ dΓ, (2.15)

The ε parameter allows to choose between the symmetric (SIP) [94] and the non-symmetric
(NIP) [75] Interior Penalty method. In the first case the velocity jump term multiplied
by the mean of the shape function is subtracted in the bilinear form, so ε = 2, instead in
the (NIP) method, it is added, so ε = 0. Since the numerical flux of both methods are
consistent, this implies that the primal form is consistent and the stability condition is
always satisfied

B(ψ,ψ) ≥ C ∣∣ψ∣∣2 ∀ ψ ∈Wh

with C a positive constant, [3]. The bilinear form B is also coercive ∀α0 > 0 in the NIP
case and for α0 > α̂ > 0, for some α̂ in the SIP case. The estimation of α̂ is in general a
non-trivial task, but the advantage of using the SIP method is that the resulting matrix
is symmetric and positive definite. Careful estimates for α0 are cumbersome to be carried
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out, especially in view of a non-constant cross section, but we have found that α0 = 2 and
α0 = 5, in the case of a Newtonian and non Newtonian fluid respectively, are good choices
for the stability of the method without affecting the numerical solution. Setting values
of this parameter too small may lead to solutions with spurious oscillations, while values
that are too high may affect the convergence of the method and the correctness of the
solution obtained.

Returning to the case of a generic channel, we observe that the above formulation is
valid for any velocity component, so generalising to a generic fluid direction t̄, we have

∫
Ω*

i

ψi,l (∇ ⋅ (µ ∇u)) ⋅ t̄ dΩ = −
2

∑
r=0
∫

Ω*
i

tr µ∇ur ⋅ ∇ψi,l dx−
2

∑
r=0
∫

Γ*
i

tr ⟦µur⟧ ⋅ {∇ψi,l} dΓ+

+
2

∑
r=0
∫

Γ*
i

tr {µ∇ur} ⋅ ⟦ψi,l⟧ dΓ−
2

∑
r=0
∫

Γ*
i

tr α ⟦µur⟧ ⋅ ⟦ψi,l⟧ dΓ,

where we denoted with t̄r and ur the r-th component of the versor t̄ and of the velocity
respectively.

Using the definition (2.9), we can rewrite the integral as a function of the velocity
defined in the reference cell and obtain

∫
Ω*

i

ψi,l (∇ ⋅ (µ ∇u))⋅̄tdx = −
2

∑
r=0
∫

Ω*
i

tr µ∇ (û tr)⋅∇ψi,l dΩ−
2

∑
r=0
∫

Γ*
i

tr ⟦µ û tr⟧⋅{∇ψi,l} dΓ+

+
2

∑
r=0
∫

Γ*
i

tr {µ∇ (û tr)} ⋅ ⟦ψi,l⟧ dΓ−
2

∑
r=0
∫

Γ*
i

tr α ⟦µ û tr⟧ ⋅ ⟦ψi,l⟧ dΓ, (2.16)

for l = 1 . . . nu. In the equation above, we have denoted with û tr the r-th component of
the velocity evaluated at the point F ∗−1

i (x, y, z) by the map F ∗
i associated with the i-th

cell.
In the first and third integrals, the derivatives of the vector t̄ must be computed, and this
requires the use of the second derivatives of the basis functions. To overcome this, we
proceed, inspired by the approach adopted in [27] for non linear fluxes, by linearizing the
derivatives of the vector t̄ as

∇t̄(x, y, z) ≈∑
s

t̂i,s ∇̂ψ̂i,s (F ∗−1
i (x, y, z)) ,

where t̂i,s = t̄(Ps) are the evaluations of the vector t̄ at the nodal points Ps for the basis

and ∇̂ψ̂i,s are the derivatives of ψ̂i,s with respect to (ξ, η, ω). To compute the integral, we
change the variables using the map F ∗

i defined above.
The bilinear form associated to the Laplacian term corresponds to a square matrix, which
we denote by L, of the same size of the dimension of the discrete velocity space. With
respect to the number of cells, L is a sequence of matrices of size (n+1)nu× (n+1)nu and
has block tridiagonal form with block size nu × nu. Each block is associated to a velocity
cell, so we introduce a double-index notation for its elements. In particular, the row (or
column) (i, l) refers to the l-th basis function of the i-th velocity cell. In particular, we
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consider the volume integral in eq. (2.16) and using relation (2.10a), we obtain

2

∑
r=0
∫

Ω*
i

tr µ∇ (û tr) ⋅ ∇ψi,l dΩ =

2

∑
r=0

nu

∑
k
∫

Ωref

µ (tr)2 ûi,k J
−T
F ∗i

∇̂ψ̂i,k(ξ, η, ω) ⋅ J−TF ∗i ∇̂ψ̂i,l(ξ, η, ω) ∣JF ∗i ∣d Ωref

+
2

∑
r=0

nu

∑
k
∫

Ωref

µ ûi,kψ̂i,k(ξ, η, ω) tr∑
s

t̂i,s J
−T
F ∗i
∇̂ψi,s(ξ, η, ω) ⋅ J−TF ∗i ∇̂ψi,l ∣JF ∗i ∣d Ωref

for all l = 1, . . . , nu, where J−TF ∗i
is the transpose inverse Jacobian matrix associated to the

cell Ω*
i and all the basis functions are computed in (ξ, η, ω) = F ∗−1

i (x, y, z). This quantity
contributes to the element L(i,l;i,k). Integrals above can be efficiently computed using an
appropriate Gaussian quadrature rule on the reference space.
The integrals on the edges of the cells, on the other hand, will contribute not only to the
elements of the matrix block i, but also to the columns of neighbouring blocks (i− 1) and
(i + 1). Considering the second integral in eq. (2.16), for each l = 1, . . . , nu we have

2

∑
r=0
∫

Γ*
i

tr ⟦µ û tr⟧ ⋅ {∇ψi,l} dΓ =

2

∑
r=0

nu

∑
k
∫

Γref
−

µ

2

ti,r + ti−1,r

2
(ûi−1,kψ̂i−1,k(ξ, η, ω)ti−1,r − ûi,kψ̂i,k(ξ, η, ω)ti,r) ψ̂i,l(ξ, η, ω)dΓref

+
2

∑
r=0

nu

∑
k
∫

Γref
+

µ

2

ti+1,r + ti,r
2

(ûi,kψ̂i,k(ξ, η, ω)ti,r − ûi+1,kψ̂i+1,k(ξ, η, ω)ti+1,r) ψ̂i,l(ξ, η, ω)dΓref

where Γref
− and Γref

+ are the left and the right boundary of the reference cell. The other
integrals in eq. (2.16) can be rewritten in a similar way.
We can observe that in all integrals along the boundaries of the cells, it is necessary to
evaluate the components of the versor t̄ along the edges of the cells of the dual grid. At
these points the versor is not defined, since the map F ∗

i we use is globally C0(Ω), but
only C1(Ω*

i ) within each individual cell. The jump in t̄ across a cell face is zero for pipes
that are generalized cylinders (arbitrary cross section) or nozzles with straight axis and
constant angle of convergence. Under our assumption of a slowly varying geometry along
the pipe we expect this jump to be small in general. For this reason we approximate tk at
the edge as the average of the values of the versor computed in each single cell. For the
versor t̄ we have used the double index (i, r) to indicate to which cell belongs the point
at which this element is to be evaluated. Considering, for example, the right-hand edge
of the cell Ω*

i , we have

ti,r + ti+1,r

2
= tr(F

∗
i (1, η, ω)) + tr(F ∗

i+1(0, η, ω))
2

.

2.4.2 Pressure term

Considering the integral of the pressure gradient, it can be written as the sum of the
integrals over the velocity cells. The two fields belong to different spaces, so the pressure
is thus not continuous on the velocity cells of the dual grid. If we consider the integral on
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an inner cell of the domain, Ω*
i , we have to break it down into the two half-cells referring

to the pressure and consider the jump at the interface of those cells, as follows

∫
Ω*

i

ψi,l ∇p ⋅ t̄ dΩ = ∫
Ω*

i ∩Ωi−1
ψi,l ∇p ⋅ t̄ dΩ+∫

Ω*
i ∩Ωi

ψi,l ∇p ⋅ t̄ dΩ+∫
Γi

ψi,l ⟦p⟧ dΓ

where Γi is the interface between Ωi−1 and Ωi , which is located in the middle of Ω*
i . In

this way, on each half cell, the pressure is continuous.
We can notice that the integral at the intercell does not involve the versor t̄, but only
the pressure jump. In this element, the scalar product of the pressure gradient and the t̄
direction must first be calculated and then evaluated at the cell edge. This is equivalent
to calculating the pressure gradient along the direction identified by t̄, i.e.

∇p ⋅ t̄∣Γ = lim
δ→0

p(δ) − p(−δ)
2δ

= pi − pi+1,

where ⟦p⟧ = pi − pi+1 is evaluated at the face Γi.
As we did before, to compute the integral in the reference space we make a change

of variables with the map F and using definition (2.10b) we can write the integral as a
function of the pressure basis functions and degrees of freedom

∫
Ω*

i

ψi,l ∇p⋅̄t dΩ =
np

∑
k
∫

Ωref
−

ψ̂l (F ∗−1
i (x, y, z)) p̂i−1,k J

−T
Fi−1∇̂θ̂k (F

−1
i−1(x, y, z))⋅̄t ∣JF ∗−i ∣d

−
Ωref

+
np

∑
k
∫

Ωref
+

ψ̂l (F ∗−1
i (x, y, z)) p̂i,k J−TFi ∇̂θ̂k (F

−1
i (x, y, z)) ⋅ t̄ ∣JF ∗+i ∣d

+
Ωref

+
np

∑
k
∫

Γref
+

ψ̂i,l ((p̂θ̂)i−1,k − (p̂θ̂)i,k)dΓref

+ ∫
Γref

−

ψ̂l (F ∗−1
i (x, y, z)) ((p̂θ̂)i,k − (p̂θ̂)i+1,k) dΓref (2.17)

where l = 1 . . . nu, Ωref
− = [0, 1

2] × [0,1] × [0,1] Ωref
+ = [1

2 ,1] × [0,1] × [0,1] and ∣JF ∗−i ∣ and
∣JF ∗+i ∣ are are the determinant of the Jacobian matrix computed in the left and right halves
of the cell Ω∗

i respectively. This term corresponds to an operator from pressure to velocity
space and thus to a matrix, which we denote by G, that is a tall rectangular matrix of size
(n+ 1)nu ×nnp, whose blocks have dimension nu ×np. In particular, the volume integrals
give contributions to the elements of blocks (i, i − 1) and (i, i) respectively.

Particular attention must be paid when computing these integrals, since the integrand
involve both pressure and velocity basis function which one are defined in different refer-
ence elements. Considering for example the first integral, the domain of integration turns
out to correspond to the first half velocity cell. We change variables via F ∗−1

i and compute
this term as an integral over Ωref

− for the velocity cell. This requires to evaluate the pres-
sure basis function at a quadrature nodes. In order to do this, we map each quadrature
node to physical space via F ∗

i and then back into the reference element for the pressure
space via F−1

i−1, thus completing the evaluation of the integrand at the quadrature node.
For the second integral we proceed in the same way, this time we applying a change of
variables via F ∗−1

i and compute this integral over Ωref
+ for the velocity cell. To do so, we

use F ∗
i to map each quadrature node to physical space, then F−1

i to return to the reference
element for the pressure space.

Considering instead the first and last velocity cells, we observe that the pressure is
continuous and we do not need to split the integral and add a jump contribution. This is
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Figure 2.5: Representation of the transformation required to compute the integrals of the
pressure in the velocity cell Ω∗

i . On the left is the situation of a generic cell within the
geometry, while on the right is the situation of the first cell of the dual grid referred to
the velocity.

due to the fact that, using a staggered grid, these cells are only half as long as the internal
elements of the domain of discretization, Fig. 2.5. Applying a variable change and using
always the relation (2.10b), the integral of the pressure gradient on the first cell of the
dual grid became

∫
Ω∗

1

ψ1,l ∇p ⋅ t̄ dΩ =
np

∑
k
∫

Ωref

ψ̂l (F ∗−1
1 (x, y, z)) p̂1,k J

−T
Fi ∇̂θ̂k (F

−1
1 (x, y, z)) ⋅ t̄ ∣JF ∗1 ∣dΩref

To compute this integral we use the same procedure adopted previously because the pres-
sure definition domain and the integration one are different. In particular we take a
quadrature rule in the left half of the pressure reference cell and through F ∗−1

1 ○ F1 com-
pute the corresponding point in the first reference cell for the velocity. In a similar way,
we proceed with the integral on the last velocity cell.

2.4.3 Convective term

In the convective term, the flux tensor Fc is non-linear and using the relation (2.9), it can
be divided into the product of a part depending on the velocity in the reference cell and
a matrix dependent only on the versor t̄ as follow

Fc = (û)2

⎡⎢⎢⎢⎢⎢⎣

t0t0 t0t1 t0t2
t1t0 t1t1 t1t2
t2t0 t2t1 t2t2

⎤⎥⎥⎥⎥⎥⎦
= (û)2 Ĉ.

To compute the integral we need to integrate the divergence of the flux tensor, so ∇ ⋅Fc =
∂sĈr,s, ∀r ∈ [0,2], where we have used the standard summation convention for the repeated
index. Integrating by part, we obtain

∫
Ω*

i

ψi,l (∇ ⋅Fc) ⋅ t̄ dΩ = −∫
Ω*

i

(û)2 trĈrs ∂sψi,l dΩ−∫
Ω*

i

(û)2 ψi,l Ĉrs∂str dΩ

+ ∫
Γ∗

(û)2 ψi,l trĈrsnr dΓ
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for all l = 1, . . . , nu and i = 1, . . . , n + 1. The second integral involves the derivatives of the
versor t̄, which are not calculated analytically, but we proceed as described above for the
boundary integrals of the viscous term in §2.4.1, i.e. by linearising the versor t̄.
All the terms trĈrs, Ĉrs∂str and trĈrsnr, that we call geometric, depend only on geometric
parameters, so they do not change during time evolution. They can therefore be pre-
computed and their values, at each quadrature point, are saved in specific variables.

Following the idea in [27], we linearise the square of the velocity in the reference cell
using the bases functions,

(ûi)2 ≈∑
k

(ûi,k)
2
ψik,

where (ûi,k)
2

are the square values of the velocity computed using a Rusanov flow [76]

F = 1
2 ((u+)2 + (u−)2 − β (u+ − u−))

with β = max (∣2u+∣, ∣2u−∣), which contains the maximum derivative of the square root of
the velocity. It is correspond to the maximum eigenvalue of the Jacobian matrix of the
convective transport operator Fc. u+ and u− denote the values of the velocity extrapolated
to the boundary of each cells.
Applying a change of variables by means of the map F ∗

i , associated with the dual grid,
we have

∫
Ω*

i

ψi,l (∇ ⋅Fc)⋅̄t dΩ = −
nu

∑
k
∫

Ωref

(ûi,k)
2
ψ̂k (F ∗

i (x, y, z)) tĈ J−TF ∗i ∇̂ψ̂l (F
∗
i (x, y, z)) ∣JF ∗i ∣dΩref

−
nu

∑
k
∫

Ωref

(ûi,k)
2
ψ̂l (F ∗

i (x, y, z)) Ĉ
nu

∑
s

t̂sJ
−T
F ∗i
∇̂ψ̂s (F ∗

i (x, y, z)) ∣JF ∗i ∣dΩref

+
nu

∑
k
∫

Γref

(ûi,k)
2
ψ̂k (F ∗

i (x, y, z)) ψ̂l (F ∗
i (x, y, z)) trĈrsnr dΓref (2.18)

As will be explained in the section §2.6, according to the type of discretization that is
adopted, this term can be discretized explicitly or implicitly by contributing to the known
term of the system or be assembled in a square matrix C, of dimension (n+1)nu×(n+1)nu.

2.4.4 Mass contribution

The last element in the momentum equation (2.12a), that remains to consider, is the
integral of the temporal derivative. Approximating the time derivative through Taylor
expansions ∂u

∂t =
us+1−us

∆t +O(∆t) we obtain

ρ∫
Ωi

∗

ψi,l
∂u

∂t
⋅ t̄ dΩ = ρ

∆t
∫

Ωi
∗

ψi,l us+1 ⋅ t̄ dΩ+ ρ

∆t
∫

Ωi
∗

ψi,l us ⋅ t̄ dΩ

In general, any timestepping procedure will need to compute
ρ

∆t
∫Ωi

∗ ψi,l u ⋅ t̄ dΩ for some

discrete velocity u.
Using relation (2.9), we observe that the versor t̄ makes no contribution to the two integrals
and the integral over the reference cell is

ρ

∆t
∫

Ωi
∗

ψi,l u ⋅ t̄ dΩ =
nu

∑
k=1

ρ

∆t
∫

Ωref

ψ̂l (F ∗−1
i (x, y, z)) ûk ψ̂k (F ∗−1

i (x, y, z)) ∣JF ∗i ∣dΩref

(2.19)
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The integrals are calculated by choosing a quadrature rule and, constitutes the element
(il, ik) of the square matrix M of dimension (n+ 1)nu × (n+ 1)nu whose blocks have size
nu × nu.

2.4.5 Continuity equation

We now turn to consider the continuity equation. As mentioned earlier, to obtain the
formulation (2.12b), we multiply by a test function related to the pressure field and in-
tegrate over the cells of the main grid. A difficulty similar to that encountered in the
integral of the pressure gradient is observed: the discrete velocity is discontinuous over
the integration domain. To overcome this problem, we proceed as before: once the Ωi cell
is fixed, the integral of the divergence term is split into the integral of the two half-cells
given by the intersection of the two velocity cells, Ω*

i and Ω∗
i+1, and the velocity value

contribution on the edge is added

∫
Ωi

θi,l ∇ ⋅ u dΩ = ∫
Ωi ∩Ω*

i

θi,l ∇ ⋅ u dΩ+∫
Ωi ∩Ω∗

i+1

θi,l ∇ ⋅ u dΩ+∫
Γ*
i

θi,l ⟦u⟧ dΓ,

where Γ*
i denotes the interface between Ω*

i and Ω∗
i+1.

We observe that, using the relation (2.9), the divergence of a vector field can be rewritten
in the following way: ∇ ⋅ u = ∂rur = ∂r (ûrtr). This term gives rise to geometric elements
containing the derivatives of the versor t̄

∇ ⋅ u = ∇û ⋅ t̄ + û∑
s

∇t̄s

By substituting the relation into the previous integral and using the definition (2.10a), we
obtain the weak formulation for the incompressibility constraint

∫
Ωi

θi,l ∇ ⋅ u dΩ = ∫
Ωi ∩Ω*

i

θi,l ûi,k∇ψ̂i,k ⋅ t̄ dΩ+∫
Ωi ∩Ω*

i

θi,l ûi,kψi,k ∑
s

∇t̄s dΩ

+ ∫
Ωi ∩Ω∗

i+1

θi,l ûi,k∇ψ̂i,k ⋅ t̄ dΩ+∫
Ωi ∩Ω∗

i+1

θi,l ûi,kψi,k ∑
s

∇t̄s dΩ

+ ∫
Γ*
i

θi,l ⟦û⟧ dΓ . (2.20)

To compute the integrals explicitly, it is necessary to make a change of variables using the
maps Fi and F ∗

i . Considering the first volume integral, in the previous expression, and
the integral on the boundary, they become, in the reference space (ξ, η, ω),

∫
Ωi ∩Ω*

i

θi,l ûi,k∇ψ̂i,k ⋅ t̄ dΩ =

∫
Ωref

−

θ̂l (F−1
i (x, y, z)) ûi,kJ−TFi ∇̂ψ̂k (F

∗−1
i (x, y, z)) ⋅ t̄ ∣JF ∗i ∣dΩref

∫
Γ*
i

θi,l ∑
r

⟦ûrtr⟧ dΓ = ∫
Γref

+

θ̂i,l ((ûψ̂)i,k − (ûψ̂)i+1,k)dΓref

+ ∫
Γref

−

θ̂i,l ((ûψ̂)i−1,k − (ûψ̂)i,k)dΓref

In a similar way, we can write the other integrals that contribute to forming the D matrix.
Like the pressure gradient matrix G, it is rectangular and tri-diagonal matrix of dimension
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nnp × (n + 1)nu, whose blocks have size np × nu.
In order to compute the volume integrals explicitly, one must proceed in a similar way
as with pressure integrals, as there are elements defined on different grids. In particular,
the basis functions θi,l are defined on the main grid, while velocity and the derivatives of
the versor t̄ are defined on the dual grid. Always considering the first integral, we need
to integrate on Ωi ∩Ω*

i , so we start choosing a quadrature rule in the second half of the
reference cell for the velocity, [1

2 ,1] × [0,1] × [0,1]. Using the F ∗
i map, we compute the

corresponding point in physical space and then, applying the inverse F−1
i map, we obtain

the corresponding point in the pressure reference cell. The same procedure can be applied
to the other integral, considering a quadrature rule in the first half of the velocity reference
cell.
In the integral on the boundary, despite the presence of the velocity jump term, we do
not have to add a further penalty term because this has already been introduced in the
discretization of the viscous term in the moment equation.

2.4.6 Pressure penalization

In the domain Ω we expect a solution for the pressure that is continuous, but the choice
of the DG discretization includes also discontinuous solutions that do not represent real
physical behaviours and therefore cannot be accepted as a solution to the problem under
consideration. To enforce the global continuity of the pressure it is therefore necessary
to consider an additional penalty term. Following the idea of [49], since the pressure is
defined on the main grid, we modify the continuity equation (2.12b) by adding a penalty
term proportional to the pressure jump to each cell face

∫
Γi

α ⟦θl⟧ ⟦p⟧ dΓ = ∫
Γi

α (θi,l − θi+1,l ) ((θ̂ p̂)i,k − (θ̂ p̂)i+1,k) dΓ

+ ∫
Γi

α (θi−1,l − θi,l ) ((θ̂ p̂)i−1,k − (θ̂ p̂)i,k) dΓ . (2.22)

that involves both test function jumps and pressure jumps. α is the penalty constant on
the faces Γi of the main grid cell Ωi and we choose it proportional to the length of the
main grid cells, so α = ∆x. In this way the penalty terms introduced on both pressure
and velocity are proportional and with this choice we obtain an extension of the standard
Local Discontinuous Galerkin Method (LDG), introduced by Cockburn and Shu in [21],
as a generalization of the discontinuous Galerkin method proposed by Bassi and Rebay
for the solution of the compressible Navier–Stokes equations.
As explained in [3], the introduction of this term is essential in order to guarantee the
stability of the method, since without it, spurious pressure oscillations are obtained at the
interfaces of the cells of the main grid, which increase as ∆x tends to zero. Applying a
change of variables by means of the map Fi associated with the cells of the main grid we
obtain the elements that make up a tri-diagonal square matrix of size nnp ×nnp in which
each block has dimension np × np, that denote with E.

2.5 Non Newtonian extension

The presented model can be used to treat both Newtonian and non Newtonian fluids.
This is equivalent to considering a different relation between the stress tensor and the
strain tensor, in fact, as explained in chapter §1, for a Newtonian model this relation is
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linear, i.e. σ = µγ where µ, let us remember, represents the viscosity. In non Newtonian
models, the viscosity is not constant at every point in the domain, but depends in turn
on the deformation tensor µ(γ), and hence intrinsically on the velocity, as in the case of
the Casson model (1.14) or Papanastasiou model (1.15).
This change involves only the viscous term. In eq. (2.16), rewritten below in the non
Newtonian case

∫
Ω*

i

ψi,l (∇ ⋅ (µ(γ) γ)) ⋅ t̄dx ≈
2

∑
r=0
∫

Ω*
i

tr µ(γ)∇ (û tr) ⋅ ∇ψi,l dΩ+

−
2

∑
r=0
∫

Γ*
i

tr µ(γ)⟦ û tr⟧ ⋅ {∇ψi,l} dΓ+ −
2

∑
r=0
∫

Γ*
i

tr µ(γ){∇ (û tr)} ⋅ ⟦ψi,l⟧ dΓ+

+
2

∑
r=0
∫

Γ*
i

tr αµ(γ)⟦ û tr⟧ ⋅ ⟦ψi,l⟧ dΓ, (2.23)

it is necessary to evaluate the viscosity at quadrature nodes both inside the cell and on the
cell boundary. Given the choice to discretize the velocity using DG, it is not continuous
at the edges of the computational cells, so the viscosity is not defined and also presents
jumps at these points. We therefore proceed in the same way as for the versor t̄, i.e. the
cell-edge viscosity is approximated by averaging the values computed in the individual
discretization cells. Consider for example the first integral on the edge, using the relation
(2.9) and making a change of variables using the map F ∗

i , it can be rewritten, in the
reference cell, in the following way

2

∑
r=0
∫

Γ*
i

tr µ(γ) ⟦û tr⟧ ⋅ {∇ψi,l} dΓ =

2

∑
r=0

nu

∑
k
∫

Γref
−

ti,r + ti−1,r

2

µi + µi−1

2

1

2
(ûi−1,kψ̂i−1,k(ξ, η, ω)ti−1,r − ûi,kψ̂i,k(ξ, η, ω)ti,r) ψ̂i,l(ξ, η, ω)dΓref

+
2

∑
r=0

nu

∑
k
∫

Γref
+

ti+1,r + ti,r
2

µi + µi+1

2

1

2
(ûi,kψ̂i,k(ξ, η, ω)ti,r − ûi+1,kψ̂i+1,k(ξ, η, ω)ti+1,r) ψ̂i,l(ξ, η, ω)dΓref

To actually compute the integrals, a quadrature rule is chosen and, at each point, the
velocity gradient is calculated, which is in turn used to derive the strain rate and its
modulus using the formula ∣γ∣ = √

γ ∶ γ =
√

tr (γ γT ). For example, at the left edge of
the reference cell, the pressure gradient is computed at points (1, η, ω) for cell i − 1 and
(0, η, ω) for cell i, then

µi + µi−1

2
= µ(γ(u(F ∗

i (0, η, ω)))) + µ(γ(u(F ∗
i−1(1, η, ω))))

2
.

In a similar way, we can consider the other boundary integrals. For the volume integral
it is not necessary to consider any additional element because, the pressure gradient is
defined at every point within the computation cell, so the viscosity can be calculated
directly using the map F ∗

i .

2.6 Time discretization

With reference to (2.12), we always discretize implicitly the viscosity term, §2.4.1, and the
pressure term, §2.4.2, while we have considered both explicit and implicit discretizations
for the nonlinear convective term §2.4.3.
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2.6.1 Explicit convection discretization for Newtonian fluid

By considering an explicit discretization for the nonlinear convective term, we obtain a
system for the pressure and the velocity unknowns at time tn+1 that has the following
structure

Ax = b ⇐⇒ [N G
D E

](û
p̂
) = (bû(û

n)
bp̂(ûn)

) . (2.24)

This system turns out to be linear for a Newtonian fluid because the viscosity µ is inde-
pendent of the velocity §1.2.1, moreover it is a sparse saddle point problem.
Here above, N =M+L is a square matrix formed by L and M that discretize the Laplacian
(2.16) and the mass operator (2.19). The dimension of the blocks depends on the number
cells and on the degrees of freedom chosen to discretize the velocity and the pressure. In
particular, the size of M and L is (n + 1)nu × (n + 1)nu and the elements of the matrices
are O(1) and O(∆x), respectively. G is a rectangular tall matrix of size (n + 1)nu × nnp
corresponding to the gradient operator (2.17), whose elements are O(∆t); while D, is a
rectangular long matrix coming from (2.20), which has size nnp × (n + 1)nu, whose ele-
ments are O(1). Finally, E is a square matrix of size nnp × nnp containing the penalty
term (2.22), with elements of size O(∆x).
In the right-hand side, bp(ûn) is normally zero except for the boundary conditions involv-
ing the first and last cells of the discretization, which we will discuss in more detail in the
section §2.7, while bû(û) contains the contribution of the mass term at time n, Mun and
the convective term, (2.18). In order to integrate the convective term in time, it is not
possible to use a simple explicit first-order Euler method, as this results in an unstable
scheme when used in combination with a higher-order DG method in space, [83], so we
have used a third-order Runge-Kutta TVD method, [22]. The method requires a time step
dimension limited by the following CFL restriction

∆t = CFL

2nu + 1

∆x /2
2umax

where umax is the maximum speed and CFL ≤ 0.5. The term
∆x

2
at the numerator is due

to the first and last cells of the dual velocity grid being half the size of the other ones.
To solve the system (2.24) we can actually proceed in two ways: use direct methods

or adopt iterative procedures. We know that given an invertible matrix A ∈ Cn×n and a
vector b ∈ Cn, a system Ax = b has exactly one solution x = A−1b. In our case, the resulting
matrix A has a 2 × 2 block structure and it is sparse: this suggests the use of iterative
solvers.
Formally the basic idea of the iterative methods is to construct a sequence of vectors
{x(k)}k that converges to the solution x,

x = lim
k→∞

x(k).

In practice one need to choose a minimum value k̄ such that the norm of the k̄-th error is
smaller than of a fixed tolerance η

∥ e(k̄) ∥=∥ x(k̄) − x ∥< η,

where ∥ ⋅ ∥ is a selected vector norm. However, since the exact solution is obviously not
available, it is necessary to introduce suitable stopping criteria to monitor the convergence
of the iteration. For this reason, we can introduce the k-th residual of the system

r(k) = b −Ax(k).
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and say that an iterative method continue the iterations until ∥ r(k) ∥≤ ε. ε can be related
to the error via the condition number of A, but it can also simply be considered as a
tunable parameter controlling the accuracy of the solver.

The computational cost of an iterative method is of the order of O(n) or O(n2) oper-
ations for each iteration, depending on the sparsity, while a direct method requires O(n3)
operations. Iterative methods can therefore become competitive with direct methods if
the number of iterations necessary to arrive at convergence within a prescribed tolerance
is independent of n or scales sublinearly with respect to n. Furthermore, direct methods
may be inconvenient in the case of large sparse matrices due to the dramatic fill-in, and
in this setting it is preferable to use iterative methods.

Iterative solvers for incompressible fluid dynamics can be distinguished in two broad
categories: those that alternate solutions for the velocity and the pressure subsystem until
convergence and those that apply an iterative procedure to the entire system. In this work
we adopt a monolithic approach and we solve both equations simultaneously using only
one solver. Different numerical methods can be used to solve a system which is sparse
but non symmetric, see [25, 95]. Classically in CFD, the Bi-Conjugate Gradients (BiCG)
is used [93], which is a reinterpretation of the conjugate gradient in which the property
of minimising residuals on the Krylov space is not respected. This method requires the
calculation not only of the residuals associated with the sequence constituted by the matrix
A, but also of its transpose. Another method that derives from the CG is the Conjugate
Gradient Normal Residual (CGNR). This method has all the characteristics of the CG,
but its convergence depends strongly on the square of the spectral condition number of
the matrix A. Another class of methods is that of GMRES [77], which is based on the
minimisation of residuals which must be spatially oriented at each step. This method
requires a greater number of operations at each step than the methods presented above,
but it is more robust. For these reason we decided to adopt GMRES as solver. The
preconditioner associated with the solver is based on the Schur complement technique. It
consist of eliminating interior variables to define method which focuses on solving in some
ways the system associated with the interface variables. Schur complement systems are
derived by eliminating the variable u from the first eq. of (2.24) and substituting it in the
second equation, the system (2.24) can be rewritten as

û = N−1 (−Gp̂ + bû(ûn)) (2.25)

Sp̂ = bp̂(ûn) −DN−1bû(ûn) (2.26)

with S = E−DN−1G is the Schur matrix complement of matrix A. This is an exact solver,
but applying it as a preconditioner consists in solving

Ŝp̂ = rp −DÑ−1ru (2.27a)

û = Ñ−1(ru −
1

∆t
Grp) (2.27b)

where the block vector ( rurp ) is the residual and Ŝ is the Schur complement defined as

Ŝ = E −DÑ−1G.
In the above expressions it is necessary to compute the inverse of the N block. If it were
possible to compute it exactly and then Ŝ were the exact Schur complement of A, the main
solver would of course be a direct method. Here above, instead, we denote with Ñ−1 the
application of a suitable Krylov solver, say KN , to the linear operator N and we choose
again a GMRES with a relative stopping tolerance of 1 × 10−5 and ILU(0) preconditioner
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since N is a narrow-banded matrix. With this choice, Schur’s complement is not computed
exactly, but it is approximated by

Ŝ = 1
∆t(E −DÑ−1G).

Thus, since the inverse of N is approximated by the action of the solver KN , the matrix Ŝ
can not be explicitly assembled, although its action on any vector can be computed with
a call to KN .

The solution of the system (2.27a) with matrix Ŝ, required in the preconditioner inside
the main solver, is then performed with a Krylov solver, say KŜ in which the matrix-vector
multiplication is performed as described above. Due to the unfavourable conditioning of
the Schur complement in our case, also KŜ must be endowed with a preconditioner, for

which most classical choices are unavailable since Ŝ can not be assembled. Chapters §2 and
§3 are devoted to the analysis of the linear system and the development of a preconditioner
for Ŝ.

In this setting it is possible to compute two different types of solutions: the first one
is time dependent and is obtained by varying the inlet flow in the pipe at each time step,
while the second one consists in computing steady-state solutions by iterating the system.
In the latter case, time loses its meaning, assuming instead the meaning of iteration to
convergence. The system is then iterated until ∣∣un+1 −un∣∣2 and ∣∣pn+1 − pn∣∣2 are less than
a fixed tolerance.

2.6.2 Explicit convection discretization for non Newtonian fluid

In the case of a non Newtonian fluid §1.2.2, the system (2.24) becomes non-linear since
the viscosity depends itself on the velocity, µ (û).

In the matrix A of the system, it is therefore necessary to modify the assembly proce-
dure of the block N . In particular, it is formed by the mass matrix term, M , which turns
out to be linear, and the Laplacian term, L(û), which becomes non-linear due to viscosity.
The system therefore assumes the following form

[N(û) G
D E

](û
p̂
) = (bû(û

n)
bp̂(ûn)

) . (2.28)

To avoid the computation of the non linear term, we add an external Picard [84] iteration,
involving the whole scheme at each time step as follow

A(ûn+1,k)(ûn+1,k+1

p̂n+1,k+1) = (bû(û
n, ûn+1,k)

bp̂(ûn+1,k) ) for k = 1,2, . . . (2.29)

which is initialized by ûn+1,0 = ûn and repeated until the increments of the velocity, the
pressure and the viscosity, between successive iterates are smaller than a prescribe toler-
ance.
This allows the viscosity information to be updated, preserving the chosen order of ac-
curacy at time n, even while advancing in time. The velocity is thus discretized in a
semi-implicit way and µ(x, y, z), used in the time interval [tn, tn+1], is computed via the
velocity at time tn and is kept constant throughout the step both in the case of a time-
dependent solution, and in the case of a steady-state solution. At each Picard step, each
resulting linear system is solved as in the subsection 2.6.1.
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2.6.3 Implicit convection discretization

As we mentioned before explicit methods need the CFL condition on the time step to
guarantee the convergence of the method. To overcome this condition, especially in the
computation of steady-state solutions and in complex geometries, where we do not have
good assumptions to initialize the computation, we consider a fully implicit discretization,
in which the convective term (2.18) is also implicitly discretized. This element can be
assembled into a block matrix of the same size as the mass and laplacian matrices, i.e.
(n + 1)nu × (n + 1)nu, where each block is associated with the velocity cells and, in
particular, the term (2.18) contributes to the element C(i,l;j,k).
The system then has the following form

[N(û) +C(û) G
D E

](û
p̂
) = (bû(û

n)
bp̂(ûn)

) (2.30)

in which the r.h.s depends only on quantities at time tn. In this case we employ a Newton
solver, then defining x as the vector (û, p̂) the non-linear operator associated to the system
(2.30) results to be

F (x) ∶= A(x)x − b(x) = 0

Choosing an initial guess x0, each iteration of Newton consists in solving

xk+1 = xk − J(xk)−1F (xk),

for each k = 0,1, . . . , where J(xk) is the Jacobian associated to F (xk).
We have tested two approaches:

1) forming the Jacobian with finite difference approximations;

2) considering an inexact Newton method using A of (2.24) as inexact Jacobian.

As we can see in the test of subsection 5.2, since the inexact Jacobian does not cause
a rise in the non linear iteration count and moreover the exact Jacobian causes a rise of
the linear iterations due to the loss of optimality of our preconditioner, we have adopted
the second approach in all computations.

2.7 Boundary conditions

To fully describe the motion of a fluid and to ensure the existence of a unique solution, it
is necessary to know the behaviour of physical quantities at the edges of the fluid domain,
therefore we need to impose appropriate boundary conditions. The side wall of the pipe
in which the fluid flows are impermeable and, since the fluid we are considering is viscous,
no-slip conditions can be imposed along the edges of the domain. We therefore suppose
that the fluid moves with the same speed as the walls of the channel, so we impose u = 0
at the walls.
This leads to a reduction of the velocity unknowns elements of our system; in fact, the
coefficients of the elements of the basis associated to nodes 1 on the edges of the physical
domain are null. Since we have used a nodal basis constructed as a tensor product of
elements defined in [0,1] in the transversal directions, the dimensions of the polynomial
space is reduced. As anticipated in section §2.3, in each cell there are nu ∶= (nξ+1)×(nη−1)
effective degrees of freedom for u in the 2D case or nu ∶= (nξ + 1) × (nη − 1) × (nω − 1) in
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3D case (blue dots in Fig. 2.4) and hence one should take nη ≥ 2 and also nω ≥ 2 in the
2D and 3D cases respectively.

Two different choices can be made as a condition on the inflow boundary. The first
consists in fixing a velocity profile at the inlet. The only blocks of the matrix A that are
affected by this are the blocks N and G of the system being solved. In particular, the first
rectangular block associated with G is not assembled, while the block N , relative to the
first velocity cell of dimension nu × nu, is replaced with a unitary diagonal matrix. The
velocity profile contributes to form only the right hand side of the system. In the second
case, to obtain solutions that are also accurate in the areas in front of the duct inlet, at
the inflow boundary of the domain, we do not set a velocity profile, but only impose a flow
rate. To do this we impose that the divergence of the velocity profile at time n is equal to
the divergence of the velocity profile at time n + 1, i.e. the first rectangular block in the
matrix D, associated with the divergence, is not assembled and its elements are multiplied
by the velocity profile at time n and contribute to form the known term bp(un). To ensure
that at each time instant the flow rate is the desired one, it is necessary to choose as
initial guess to solve the system a velocity profile with the desire flow rate. The initial
guess for the velocity profile must also respect the other boundary conditions. One of the
possible choices is to consider a parabolic profile in all transverse directions, present in
the geometry. We assume therefore that the velocity on the inlet face of the reference
velocity cell is obtained as the product of two square bases in the transverse directions,
ûapp = (1 − η)η(1 − ω)ω. Knowing that the flow rate is the integral of the velocity at the
pipe inlet face, we numerically solve the integral using a high-order Gaussian quadrature
rule.

Qapp = ∫
Ain

ûapp dA = ∫
Γ̂
(1 − η)η(1 − ω)ω Ain dΓ̂

where Γ̂ = [0,1] × [0,1] is the area of the input face of the reference cell. The correct
speed is simply a scaling of the selected profile, û = c (1 − η)η(1 − ω)ω and to determine
the constant it is sufficient to choose c = Q

Qapp
.

In order to overcome instabilities at higher Reynolds number (see [93]), we consider
the outflow boundary as a free surface. This allows to set up a relationship between the
normal stress component and the difference between the pressure p inside and the pressure
pout outside of the domain

p +σ ⋅ n = pout.

where n is the outward pointing unit normal vector. In other words we are setting, in
a weak way, a Dirichlet condition for the pressure, modifying the last rows of N and G
blocks of the system (2.24).
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Chapter 3

GLT theory

Trying to solve the system (2.24) we observe that the solver associated with the pressure
system, (2.27a), fails to arrive at convergence and it is therefore necessary to endow it
with a precoditioner. It is known that the convergence properties of an iterative solver,
such as preconditioned Krylov methods, strongly depend on the spectral features of the
matrices to which they are applied.

When attempting to approximate the solution of certain linear differential equations
by means of a certain numerical method, the actual computation of the numerical solution
is reduced to solving a system

Anx = bn,

where n is an index associated to the discretization (e.g. mesh size), whose size dn increases
with n and tends to infinity as n → ∞. Hence, we have not just a single system, but a
whole sequence of systems with increasing size

{Anxn = bn}n An ∈ Cdn×dn , bn ∈ Cdn . (3.1)

It often happens that the condition number of the system matrix An diverges to infin-
ity as n increases and this implies that the eigenvalues of the matrix are not clusterized
around a small number of values, Fig. 3.1. In fact, in Fig. 3.1 the eigenvalues of the
matrices obtained when refining the grid have been represented. In particular, having
fixed the approximation degrees of velocity and pressure, the dimension of the matrix is
Z = 2((n + 1)nu + nnp), where n is the number of cells. In order to represent the spec-
tral of An for different values of n in the same graph, in Fig. 3.1 we plot the data series
{( i

Z , λi (An))}i=1,...,Z
where {λi (An)}i=1,...,Z are the eigenvalues of An ordered increas-

ingly. One way to speed up the convergence rate of the method is to precondition the
sequence of systems. Thus, instead of solving the sequence (3.1), we solve

{C−1
n Anxn = C−1

n bn}n,

where the matrix Cn is called the preconditioner. It should satisfy two requirements:

� the computational cost of the solution of the system Cnyn = rn, ∀rn ∈ Cdn , must
be proportional to the computational cost of the matrix-vector product with matrix
An.

� {C−1
n An − In}n is strongly clustered at 0 or, in other words, the spectrum of C−1

n An
is bounded from above by a constant independent of n.

35
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The second condition comes from the fact that the more clustered the eigenvalues are, the
faster the convergence of the method will be.
In many cases, see [26, 38, 59, 28], it has been observed that the sequence of discretization
matrices An enjoys an asymptotic spectral distribution, which is somehow related to the
spectrum of the differential operator A associated with the differential equation. This
spectral distribution can therefore be exploited to design efficient solvers and to analyse
and predict their performance.

Figure 3.1: The spectrum of the coefficient matrix in the case of a two-dimensional constant
radius pipe taking nξ = 1, nη = 3 and nω = 0, for velocity and np = (nξ +1) = 2 for pressure.

In this chapter we collect the theoretical, some classical and some developed ad-hoc,
that will be exploited in §4 to perform the spectral analysis of the system (2.24). We
first formalize the definition of block Toeplitz and circulant sequences associated to a
matrix-valued Lebesgue integrable function (see Subsection 3.1.1 and 3.1.2). Moreover,
in Subsection 3.1.3 we introduce a class of matrix-sequences containing block Toeplitz
sequences known as the block Generalized Locally Toeplitz (GLT) class [36, 35, 8]. The
properties of block GLT sequences and few other new spectral tools introduced in Sub-
section 3.2.1 will be used to derive the spectral properties of A in (2.24) as well as of its
blocks and its Schur complement.

3.1 Square matrices

3.1.1 Toeplitz and block Toeplitz matrices

A matrix of the form

A = [ai−k]ni,k=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 . . . a1−n
a1 a0 a−1 . . . a2−n

a2
. . .

. . .
. . .

...
...

. . .
. . . a−1

an−1 an−2 . . . a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whose (i, k)−th entry depends only on the difference i−k, that is, in which the components

are constant along each diagonal, is called a Toeplitz matrix. For n ∈ N and j ∈ Z let J
(j)
n
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a n × n matrix such that

[J(j)
n ]

ik
= { 1 if i − k = j,

0 otherwise

Then the Toeplitz matrix can be written as

[ai−k]ni,k=1 =
n−1

∑
j=−(n−1)

ajJ
(j)
n .

With this notation we can give the following definition.

Definition 3 Let f ∶ [−π,π] → C belonging to L1([−π,π]) be a function and let tj be its
Fourier coefficients

tj ∶=
1

2π
∫

π

−π
f(θ)e−ijθ dθ, j ∈ Z.

Then the n-th Toeplitz matrix Tn(f) associated with f is defined as

Tn(f) = [ti−k]ni,k=1 =
n−1

∑
j=−(n−1)

tjJ
(j)
n .

The set {Tn(f)}n is called a sequence of Toeplitz matrices generated by f and f is called
the generating function of the sequence.

Some properties of the generating function can be reflected to the associated Toeplitz
matrix:

� If f is real-valued a.e., then Tn(f) is Hermitian for all n;

� If f is even, then Tn(f) is symmetric for all n;

� If f is real-valued and even, then Tn(f) is real and symmetric for all n.

The concept of a uni-level Toeplitz scalar matrix can be generalized by considering a
matrix whose elements are matrices themselves.
Let us denote by L1([−π,π], s) the space of s×s matrix-valued functions f ∶ [−π,π]→ Cs×s,
f = [fij]si,j=1 with fij ∈ L1([−π,π]), i, j = 1, . . . , s.

Definition 4 Let f ∈ L1([−π,π], s) and let tj be its Fourier coefficients

tj ∶=
1

2π
∫

π

−π
f(θ)e−ijθ dθ ∈ Cs×s,

where the integrals are computed component-wise. Then, the n-th s×s-block Toeplitz matrix
associated with f is the matrix of order n̂ = s ⋅ n given by

Tn(f) = [ti−k]ni,k=1 = ∑
∣j∣<n

J(j)
n ⊗ tj

The set {Tn(f)}n is called the families of s×s-block Toeplitz matrices generated by f and
the function f is referred to as the generating function of {Tn(f)}n.

In the case of a block-Toeplitz sequence {Tn(f)}n, the blocks have a fixed dimension, that
is, the block size does not depend on n.

The generating function f completely characterizes the asymptotic distribution of the
singular values and eigenvalues of Tn(f), for n large enough, in the sense of the following
definition.
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Definition 5 Let f ∶ [a, b]→ Cs×s be a measurable matrix-valued function with eigenvalues
λi(f) and singular values σi(f), i = 1, . . . , s. Assume that {An}n is a sequence of matrices
such that dim(An) = dn →∞, as n →∞ and with eigenvalues λj(An) and singular values
σj(An), j = 1, . . . , dn.

� We say that {An}n is distributed as f over [a, b] in the sense of the eigenvalues, and
we write {An}n ∼λ (f, [a, b]), if

lim
n→∞

1

dn

dn

∑
j=1

F (λj(An)) =
1

b − a ∫
b

a

∑si=1 F (λi(f(t)))
s

dt, (3.2)

for every continuous function F with compact support. In this case, we say that f
is the spectral symbol of {An}n.

� We say that {An}n is distributed as f over [a, b] in the sense of the singular values,
and we write {An}n ∼σ (f, [a, b]), if

lim
n→∞

1

dn

dn

∑
j=1

F (σj(An)) =
1

b − a ∫
b

a

∑si=1 F (σi(f(t)))
s

dt, (3.3)

for every continuous function F with compact support.

To ease the notation, when the domain can be easily inferred from the context, we replace
the notation {An}n ∼λ,σ (f, [a, b]) with {An}n ∼λ,σ f .

Remark 6 If f is smooth enough, an informal interpretation of the limit relation (3.2)
(resp. (3.3)) is that the eigenvalues of An can be can be subdivided into s different sub-
sets of approximately the same cardinality dn/s; and when n is sufficiently large, the
eigenvalues belonging to the i-th subset are approximately equal to the samples of the i-th
eigenvalue function λi(f) (resp. σi(f)) on a uniform equispaced grid of the domain [a, b].
For instance, if dn = ns, then assuming we have no outliers, the eigenvalues of An are
approximately equal to

λi (f (a + j b−an )) , j = 1, . . . , n i = 1, . . . , s,

for n large enough.

In particular, the spectrum of {An}n is localized by considering the range of the gen-
erating function f .

Theorem 7 Assume that f ∈ L1([a, b], s) is a Hermitian matrix-valued function, then the
eigenvalues of {Tn(f)}n lie in the interval [mf ,Mf ], where

mf = ess inf
θ∈[a,b]

min
i=1,...,s

λi (f(θ)) ,

and

Mf = ess sup
θ∈[a,b]

max
i=1,...,s

λi (f(θ)) .

When s = 1 there exists a stronger result which assures that if mf < Mf then all the
eigenvalues of Tn(f) belong to the open interval (mf ,Mf).
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For Toeplitz matrix-sequences, the following theorem due to Tilli holds, which gen-
eralizes previous researches along the last 100 years by Szegő, Widom, Avram, Parter,
Tyrtyshnikov, Zamarashkin (see [8, 13, 36, 88] and references therein).

Theorem 8 (see [86]) Let f ∈ L1([−π,π], s), then {Tn(f)}n ∼σ (f, [−π,π]). If f is a
Hermitian matrix-valued function, then {Tn(f)}n ∼λ (f, [−π,π]).

The following theorem is a useful tool for computing the spectral distribution of a
sequence of Hermitian or perturbed Hermitian matrices, obtained as a compression (or
expansion) of another sequence of matrices. For the related proof, see [59, Theorem 4.3].
Here, the conjugate transpose of the matrix X is denoted by X∗.

Theorem 9 (see [59, Theorem 4.3]) Let {An}n be a sequence of matrices, with An
Hermitian of size dn, and let {Pn}n be a sequence such that Pn ∈ Cdn×δn, P ∗

nPn = Iδn,
δn ≤ dn and δn/dn → 1 as n→∞. Then {An}n ∼λ f if and only if {P ∗

nAnPn}n ∼λ f .

The following result allows us to determine the spectral distribution of a Hermitian
matrix-sequence plus a correction, not necessarily of Hermitian nature (see [9]).

Theorem 10 (see [9, Theorem 1]) Let {Xn}n and {Yn}n be two matrix-sequences, with
Xn, Yn ∈ Cdn×dn, and assume that

(a) Xn is Hermitian for all n and {Xn}n ∼λ f ;

(b) ∥Yn∥F = o(
√
dn) as n→∞, with ∥ ⋅ ∥F the Frobenius norm.

Then, {Xn + Yn}n ∼λ f .

For a given matrix X ∈ Cm×m, and 1 ≤ p ≤ ∞ let us denote by ∥X∥p the Schatten p-
norm of X, i.e. the Schatten 1-norm ∥X∥1, also called the trace norm, is defined by
∥X∥1 ∶= ∑mj=1 σj(X), where σj(X) are the m singular values of X. The Schatten 2-norm
∥X∥2 coincides with the Frobenius norm of X. Instead, the Schatten ∞-norm ∥X∥∞ is
the largest singular value of X and coincides with the spectral norm ∣∣X ∣∣.

Corollary 11 (see [9, Corollary 2]) Let {Xn}n and {Yn}n be two matrix-sequences,
with Xn, Yn ∈ Cdn×dn, and assume that (a) in Theorem 10 is satisfied. Moreover, assume
that any of the following two conditions is met:

� ∥Yn∥1 = o(
√
dn);

� ∥Yn∥ = o(1), with ∥ ⋅ ∥ being the spectral norm.

Then, {Xn + Yn}n ∼λ f .

3.1.2 Circulant matrix

Circulant matrices are special Toeplitz matrices which the additional property that each
column vector is a circular shift of the preceding column vector, thus a matrix of the form

Cn(f) = [a(i−k)modn]
n

i,k=1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 an−1 an−2 . . . a1

a1 a0 an−1 . . . a2

a2
. . .

. . .
. . .

...
...

. . .
. . . a−1

an−1 an−2 . . . a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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is a called a circulant matrix. As with the Toeplitz matrix, it is possible to give a more
general definition.

Definition 12 Let f ∈ L1([−π,π], s) and let tj be its Fourier coefficients, the n-th s × s-
block circulant matrix associated with f is the matrix of order n̂ = s ⋅ n given by

Cn(f) = [t(i−k)modn]
n

i,k=1

The set {Cn(f)}n is called the families of s × s-block circulant matrices generated by f
and the function f is referred to as the generating function of {Cn(f)}n.

Now we report the key features of the block circulant matrices, also in connection with
the generating function. We refer to [38], but the result is quite classical and can be found
in many other references.

Theorem 13 (see [38] and references therein) Let f ∈ L1([−π,π], s) be a matrix-
valued function with s ≥ 1 and let {tj}j∈Z, tj ∈ Cs×s be its Fourier coefficients. Then, the
following (block-Schur) decomposition of Cn(f) holds:

Cn(f) = (Fn ⊗ Is)Dn(f)(Fn ⊗ Is)∗, (3.4)

where
Dn(f) = diag

0≤r≤n−1
(Sn(f) (θr)) (3.5)

is a block-diagonal matrix with Sn(f)(⋅) the n-th Fourier sum of f given by

Sn(f)(θ) =
n−1

∑
j=0

tje
ijθ. (3.6)

and

θr =
2πr

n
, Fn =

1√
n

(e−ijθr)n−1

j,r=0

Moreover, the eigenvalues of Cn(f) are given by the evaluations of λt(Sn(f)(θ)), t =
1, . . . , s, if s ≥ 2 or of Sn(f)(θ) if s = 1 at the grid points θr.

Remark 14 If f is a trigonometric polynomial of fixed degree (with respect to n), then
it is worth noticing that Sn(f)(⋅) = f(⋅) for n large enough: more precisely, n should be
larger than the double of the degree. Therefore, in such a setting, using the Fast Fourier
Transformation (FFT), for s = 1, we can write the circulant matrix generated by f as

Cn(f) = Fn diag
i∈In

(f(θ(n)i ))F ∗
n ,

where the grid points θi are 2πi
n and i belongs to the index range In = 0, . . . , n − 1; hence,

the eigenvalues of Cn(f) are either the evaluations of f at the grid points if s = 1 or the
evaluations of λt(f(⋅)), t = 1, . . . , s, at the very same grid points.

We recall that every matrix/vector operation with circulant matrices has costO(n̂ log n̂)
with moderate multiplicative constants: in particular, this is true for the matrix-vector
product, for the solution of a linear system, for the computation of the blocks Sn(f)(θr)
and consequently of the eigenvalues (see e.g. [90]).
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3.1.3 Block Generalized locally Toeplitz class

In the sequel, we introduce the block GLT class, a ∗-algebra of matrix sequences containing
block Toeplitz matrix sequences. The formal definition of block GLT matrix sequences is
rather technical and can be found in the scalar unilevel, scalar multilevel, block unilevel,
block multilevel in the following books and review papers [36, 37, 8, 7], respectively. The
construction is involved and needs a whole coherent set of definitions and mathematical
objects. However, in the writing of the books and the reviews, the authors realized that
the mathematical construction is equivalent to a set of operative axioms that can be used
conveniently, in practice, for deciding if a given matrix sequence is of GLT type and for
computing the related symbol. Therefore, we just give and briefly report and discuss
four of these axioms of the block GLT class, which are sufficient for studying the spectral
features of A as well as of its blocks and its Schur complement. The current formulation
is taken from [8].

Throughout, we use the following notation

{An}n ∼GLT κ(τ, θ), κ ∶ [0,1] × [−π,π]→ Cs×s,

to say that the sequence {An}n is a s × s-block GLT sequence with GLT symbol κ(τ, θ).
Here we list four main features of block GLT sequences.

GLT1 Let {An}n ∼GLT κ with κ ∶ G → Cs×s, G = [0,1] × [−π,π], then {An}n ∼σ (κ,G). If
the matrices An are Hermitian, then it also holds that {An}n ∼λ (κ,G).

GLT2 The set of block GLT sequences forms a ∗-algebra, i.e., it is closed under linear
combinations, products, conjugation, but also inversion when the symbol is invertible
a.e. In formulae, let {An}n ∼GLT κ1 and {Bn}n ∼GLT κ2, then

● {αAn + βBn}n ∼GLT ακ1 + βκ2, α, β ∈ C;

● {AnBn}n ∼GLT κ1κ2;

● {A∗
n}n ∼GLT κ

∗
1 ;

● {A−1
n }n ∼GLT κ

−1
1 provided that κ1 is invertible a.e.

GLT 3 Any sequence of block Toeplitz matrices {Tn(f)}n generated by a function f ∈
L1([−π,π], s) is a s × s-block GLT sequence with symbol κ(τ, θ) = f(θ).

GLT4 Let {An}n ∼σ 0 a zero-distributed matrix-sequence, where 0 is the identically zero
function. In other words, {An}n is zero-distributed if and only if

lim
n→∞

1
n

n

∑
j=1

F (σj (An)) = F (0) , ∀F ∈ Cc (R) .

Note that for any s > 1 {An}n ∼σ Os, with Os the s × s null matrix, is equivalent to
{An}n ∼σ 0. Every zero-distributed matrix-sequence is a block GLT sequence with
symbol Os and viceversa, i.e., {An}n ∼σ 0 ⇐⇒ {An}n ∼GLT Os.

Let S ⊂ C a nonempty subset and ε > 0, the symbol D(S, ε) denotes the ε-expansion
of S, which is defined as D(S, ε) = ⋃z∈SD(z, ε).

Definition 15 Let {An}n be a matrix-sequence with An of size dn.
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� We say that {An}n is strongly clustered at S (in the sense of the eigenvalues), or
equivalently that the eigenvalues of {An}n are strongly clustered at S, if, for every
ε > 0,the number of eigenvalues of An lying outside D(S, ε) is bounded by a constant
Cε independent of n; that is, for every ε > 0,

#{j ∈ {1, . . . , dn} ∶ λj (An) ∉D(S, ε)} = O(1). (3.7)

� We say that {An}n is weakly clustered at S (in the sense of the eigenvalues), or
equivalently that the eigenvalues of {An}n are weakly clustered at S, if, for every
ε > 0,

#{j ∈ {1, . . . , dn} ∶ λj (An) ∉D(S, ε)} = o(dn). (3.8)

By replacing “eigenvalues” “singular values” and λj (An) with σj (An) in (3.7)–(3.8), we
obtain the definitions of a sequence of matrices strongly or weakly clustered at a nonempty
subset of C in the sense of the singular values.

Remark 16 Since the singular values are always non-negative, any matrix-sequence is
strongly clustered at a certain S ⊆ [0,∞) in the sense of the singular values. Similarly,
any matrix-sequence formed by matrices with only real eigenvalues (e.g., by Hermitian
matrices) is strongly clustered at some S ⊆ R in the sense of the eigenvalues.

According to Definition 5, in the presence of a zero-distributed sequence the singular
values of the n-th matrix (weakly) cluster around 0. This is formalized in the following
result [36].

Proposition 17 Let {An}n be a matrix sequence with An of size dn with dn → ∞, as
n→∞. The following definitions are equivalent

1. {An}n ∼σ 0.

2. For every ε > 0,

lim
n→∞

#{j ∈ {1, . . . , n} ∶ σj (An) > ε}
n

= 0.

3. For every n exist two matrix sequences {Rn}n and {En}n such that An = Rn +En,
and

lim
n→∞

rank(Rn)
dn

= 0, lim
n→∞

∥En∥ = 0.

The matrix Rn is called rank-correction and the matrix En is called norm-correction.

Regarding the low rank-correction vs relatively low norm-correction splitting, it should
be noted that it represents an important theoretical tool for the analysis of spectral and
singular-value distributions, as emphasized by Eugene Tyrtyshnikov in a very successful
and seminal paper [87]. However, its use started for different reasons in the analysis
of efficient preconditioners, especially for structured matrices of Toeplitz type, and the
main name in this respect is that of Raymond Chan (see [18] and references therein).
Subsequently, these tools have evolved into the more sophisticated notion of approximating
class of sequences (see [36] and references therein), thanks to Tilli and to Serra-Capizzano.

With the terminology of clustering introduced before, condition 2 in Proposition 17
can be reformulated by saying that {An}n is weakly clustered at {0} in the sense of the
singular values.
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In our scheme the matrix of the linear system has the form A = An + Rn where the
presence of Rn is due to boundary conditions and it does not depend on the discretization.
As far as one is interested in asymptotic behaviour, the matrices Rn can be neglected,
since perturbations with uniformly bounded rank and norm do not affect the distribution
of singular values and eigenvalues. In other words, singular values and eigenvalues of the
sequence {An +Rn}n are distributed as those of {An}n according to (3.2) and (3.3).

3.2 Rectangular matrices

It is useful for our studies to extend the definition of block-Toeplitz sequence also to the
case where the symbol is a rectangular matrix-valued function.

Definition 18 Let f ∶ [−π,π] → Cs×q, with s ≠ q, and such that fij ∈ L1([−π,π]) for
i = 1, . . . , s and j = 1, . . . , q. Then, given n ∈ N, we denote by Tn(f) the s ⋅ n × q ⋅ n matrix
whose entries are Tn(f) = [ti−k]ni,k=1, with tj ∈ Cs×q the Fourier coefficients of f .

Since rectangular matrices always admit a singular value decomposition, equation
(3.3) can also be extended to rectangular matrix-sequences. Throughout we denote by
Am1,m2,s,q ∈ Cs⋅m1×q⋅m2 the rectangular matrix that has m1 blocks of s rows and m2 blocks
of q columns. As a special case, with [Tn(f)]m1,m2,s,q, m1,m2 ≤ n we denote the ‘leading
principal’ submatrix of Tn(f) of size s ⋅m1 × q ⋅m2. Moreover, if f ∈ Cs×q then we omit the
subscripts s, q since they are implicitly clear from the size of the symbol.

Definition 19 Given a measurable function f ∶ [a, b] → Cs×q, with s ≠ q and a matrix-
sequence {Am1,m2,s,q}n, with An ∈ Cs⋅m1×q⋅m2, m1 ∼ m2, m1,m2 → ∞ as n → ∞ then we
say that {Am1,m2,s,q}n ∼σ (f, [a, b]) iff

lim
n→∞

1

s ⋅m1 ∧ q ⋅m2

s⋅m1∧q⋅m2

∑
j=1

F (σj(Am1,m2,s,q)) =
1

b − a ∫
b

a

∑s∧qi=1 F (σi(f(t)))
s ∧ q dt,

with x ∧ y ∶= min{x, y}, for every continuous function F with compact support.

Remark 20 Based on Definition 19 the first part of Theorem 8 extends also to rectangular
block Toeplitz matrices in the sense of Definition 18 (see [86]) as well as to sequences whose
n-th matrix is Am1,m2,s,q = [Tn(f)]m1,m2, f ∈ Cs×q, with m1,m2 ≤ n, m1 ∼m2, m1,m2 →∞
as n→∞.

3.2.1 Spectral tool to treat the product of rectangular matrices

From the GLT theory we know that the symbol can only be related to square matrices
and, in order to use the theoretical tools to study a rectangular matrix B, of size n ×m,
it is necessary to represent it as a result of downsampling of larger square matrices B̃ of
size n × n, namely

B (n,m) = B̃ (m,m)H (m,n)

where H is called cutting matrix and has a special structure, depicted in (3.9), as in
[26]. The term downsampling describes a particular size reduction of a square matrix,
obtained by deleting each second column. In the same way, H can be constructed to
perform reduction block-wise and within the blocks simultaneously. To better illustrate
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the idea we present the following example. Consider the following Toeplitz matrix of size
five-by-five.

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3
5 1 3

5 1 3
5 1 3

5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
5 3

1
5 3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

By deleting every second column in B̃, we obtain the matrix B, which is the downsampled
matrix of size five-by-three. However, B can be seen as obtained by multiplying B̃ from
the right by the matrix H. If the elements of H are identity matrices, then H will perform
block-column sampling.
Finally, to obtain the symbol of the rectangular matrix we can project the square matrix
through ad hoc downsampling matrices and leverage on the results on the symbol of
projected Toeplitz matrices designed in the context of multigrid methods [79].

Since it is not easy to apply the downsampling technique, we introduce some new
spectral tools that will be very useful to treat with rectangular matrix and that are used
in the next chapter 4.
The following theorem concerns the spectral behaviour of matrix-sequences whose n-th
matrix is a product of a square block Toeplitz matrix by a rectangular one.

Theorem 21 Let f ∶ [−π,π] → Cs×s and let g ∶ [−π,π] → Cs×q, h ∶ [−π,π] → Cq×s with
q < s. Then

{Tn(f)Tn(g)}n ∼σ (f ⋅ g, [−π,π]), (3.10)

and
{Tn(h)Tn(f)}n ∼σ (h ⋅ f, [−π,π]). (3.11)

Proof. We only prove the relationship (3.10), as the same argument easily leads to (3.11)
as well .
Let us define gex ∶ [−π,π] → Cs×s obtained completing g with s − q null columns. In
this way we have two square matrices of size n̂ = n ⋅ s. By GLT2-3, we observe that
{Tn(f)Tn(gex)}n is a s × s-block GLT sequence and

{Tn(f)Tn(gex)}n ∼σ (f ⋅ gex, [−π,π]), (3.12)

that is, {Tn(f)Tn(gex)}n is distributed as f ⋅ gex in the sense of the singular values.
Let us now explicitly write (3.12) according to Definition 5

lim
n→∞

1

sn

sn

∑
j=1

F (σj(Tn(f)Tn(gex))) =
1

2π
∫

π

−π

∑si=1 F (σi(f(t)gex(t)))
s

dt.

Taking into account that the product Tn(f)Tn(gex) gives rise to a matrix with s − q
null columns and s− q null singular values, the left-hand side of the previous equation can
be rewritten as follows

lim
n→∞

1

sn

sn

∑
j=1

F (σj(Tn(f)Tn(gex))) = lim
n→∞

1

sn

⎡⎢⎢⎢⎢⎣

qn

∑
j=1

F (σj(Tn(f)Tn(gex))) +
sn

∑
qn+1

F (0)
⎤⎥⎥⎥⎥⎦

= lim
n→∞

1

sn

qn

∑
j=1

F (σj(Tn(f)Tn(g))) +
(s − q)
s

F (0).
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Applying the same considerations made previously to the right-hand side, we obtain

1

2π
∫

π

−π

∑si=1 F (σi(f(t)gex(t)))
s

dt = 1

2π
∫

π

−π

∑qi=1 F (σi(f(t)gex(t))) +∑si=q+1 F (0)
s

dt

= 1

2π
∫

π

−π

∑qi=1 F (σi(f(t)g(t))) + (s − q)F (0)
s

dt

= 1

2π
∫

π

−π

∑qi=1 F (σi(f(t)g(t)))
s

dt + (s − q)
s

F (0).

Therefore we arrive at

lim
n→∞

1

sn

qn

∑
j=1

F (σj(Tn(f)Tn(g))) =
1

2π
∫

π

−π

∑qi=1 F (σi(f(t)g(t)))
s

dt.

which proves (3.10), once multiplied by s
q . ◻

Remark 22 Theorem 21 can easily be extended to the case where also Tn(f) is a properly
sized rectangular block Toeplitz matrix. In particular, when f ⋅ g (or h ⋅ f) results in a
Hermitian square matrix-valued function then the distribution also holds in the sense of
the eigenvalues.

Along the same lines of the previous theorem the following result holds. We notice
that Theorem 21 and Theorem 23 are special cases of a more general theory which connect
GLT sequences having symbols with different matrix sizes: the considered general study
is contained in the work [?].

Theorem 23 Let g ∶ [−π,π]→ Cs×s be Hermitian positive definite almost everywhere and
let f ∶ [−π,π]→ Cq×s with q < s. Then

{Tn(f)T−1
n (g)Tn(f∗)}n ∼σ (f ⋅ g−1 ⋅ f∗, [−π,π]), (3.13)

and
{Tn(f)T−1

n (g)Tn(f∗)}n ∼λ (f ⋅ g−1 ⋅ f∗, [−π,π]). (3.14)

Proof. We define fex ∶ [−π,π] → Cs×s obtained completing f with s − q null rows. In
this way we obtain a square matrix of size n̂ = n ⋅ s. By GLT2-3, we observe that
{Tn(fex)T−1

n (g)Tn(f∗ex)}n is a (s × s)-block GLT sequence and

{Tn(fex)T−1
n (g)Tn(f∗ex)}n ∼σ (fex ⋅ g−1 ⋅ f∗ex, [−π,π]).

Let us now explicitly write the above equation according to Definition 5

lim
n→∞

1

sn

sn

∑
j=1

F (σj(Tn(fex)T−1
n (g)Tn(f∗ex))) =

1

2π
∫

π

−π

∑si=1 F (σi(fex(t)g(t)−1f∗ex(t)))
s

dt.

Taking into account that the product Tn(fex)T−1
n (g)Tn(f∗ex) gives rise to a matrix with

s − q null columns and rows and s − q null singular value, following the same reasoning of
the previous proof, we prove (3.13).
To prove (3.14), we can see that it simply follows from Hermitianity of g. ◻

The following result will be used in combination with Theorem 9 to obtain the spectral
symbol of the whole coefficient matrix sequence appearing in (2.24). The idea of computing
the symbol by similarity via a permutation transform to a Toeplitz is not new and in fact
it can be found already in [38, 26], in different and even more general contexts.
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Theorem 24 Let

An = [Tn(f11) Tn(f12)
Tn(f21) Tn(f22)

]

with f11 ∶ [−π,π] → Ck×k, f12 ∶ [−π,π] → Ck×q, f21 ∶ [−π,π] → Cq×k, f22 ∶ [−π,π] → Cq×q,
k, q ∈ N. Then there exists a permutation matrix Π such that An = ΠTn(f)ΠT with

f = [f11 f12

f21 f22
] .

Hence An and Tn(f) share the same eigenvalues and the same singular values and conse-
quently {An}n and {Tn(f)}n enjoy the same distribution features.

Proof. Let Ikn+qn be the identity matrix of size kn+qn and let us define the following
sets of indexes H = {1, . . . , kn+ qn} and J = {k+1, . . . , k+ q,2k+ q+1, . . . ,2k+2q,3k+2q+
1, . . . ,3k + 3q, . . . , nk + (n − 1)q + 1, . . . , nk + nq}.
Let Π be the (kn + qn) × (kn + qn)-matrix whose first kn rows are defined as the rows
of Ikn+qn that correspond to the indexes in H/J and the remaining as the rows of Ikn+qn
that correspond to the indexes in J . The thesis easily follows observing that Π is the
permutation matrix that relates An and Tn(f).

Thus An and Tn(f) are similar because ΠT is the inverse of Π and as consequence
both matrices An and Tn(f) share the same eigenvalues. Furthermore both Π and ΠT

are unitary and consequently by the singular value decomposition the two matrices An
and Tn(f) share the same singular values. Finally it is transparent that one of the matrix
sequences (between {An}n and {Tn(f)}n) has a distribution if and only the other has the
very same distribution. ◻



Chapter 4

Spectral analysis

With the theoretical tools introduced in the previous chapter, it is possible to proceed with
the spectral study of the matrix A of the system (2.24) together with its blocks and Schur
complement. To perform the analysis we first consider the case of a pipe with constant
width, d(x) = d; we choose at first the smallest non-trivial case which is nξ = 1 and nη = 3
(nu = (nξ + 1)(nη − 1) = 4 and np = (nξ + 1) = 2), which of course corresponds to a flow
between parallel plates; later we comment on the more general case.

4.1 Spectral study of the blocks of A

We start by spectrally analysing the four blocks that compose the matrix A. Computing
the symbol of the block of (2.24) requires to perform symbolically the integrals of §2.4 in
our special case. To this end we have employed the Python library SymPy [62, 91] for
symbolic computation. The codes are reported in Appendix §A.

Laplacian and mass operator The (1,1)-block N of A in (2.24) is a sum of two terms:
the Laplacian matrix L and the mass matrix M that are respectively obtained by testing
the PDE term ∇ ⋅ (µ ∇u) and the term ∂tu with the basis functions for velocity.

∆x

d
(
x
)

=
d

Figure 4.1: Illustration of the stencil that refers to the mass and Laplacian matrix.

The matrix L is organized in blocks of rows, each of size nu = 4, which corresponds
to the number of test functions per cell (associated with the blue degrees of freedom in
Fig. 4.1); in each row there are at most twelve nonzeros elements (associated with all the
degrees of freedom in Fig. 4.1). Using SIP in (2.15), (see algorithm A.1), we can write

Ln+1 =
27

70
dµcUn+1

47
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with

Un+1 = tridiag

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

1
16 0 0 1 −1

8 0 0 −1
2

1
16 0 0

1
16 −1

2 0 0 −1
8 1 0 0 1

16 −1
2 0 0

0 0 −1
2

1
16 0 0 1 −1

8 0 0 −1
2

1
16

0 0 1
16 −1

2 0 0 −1
8 1 0 0 1

16 −1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+O(∆x2),

where µ is the viscosity, c = ∆t
∆x , and n+1 is the number of velocity cells. In fluid dynamics,

it is natural to choose a timestep proportional to the grid size (and inversely proportional
to the fluid velocity), and thus we assume that c = O(1).

It is then clear that Ln+1 is a 4 × 4-block Toeplitz matrix of size n̂ = 4 ⋅ (n + 1). As
a consequence, we can obtain insights on its spectrum studying the symbol associated to
{Ln+1}n. With this aim, let us define

X = [
1
2 − 1

16
− 1

16
1
2

] ,

and l1, l0, l−1 as follows

l1 = [ −X 0

0 −X ] , l0 = [ 2X 0

0 2X
] , l−1 = [ −X 0

−0 −X ] .

Since we are assuming that c = O(1) the symbol associated to {Ln+1}n is the function
L ∶ [−π,π]→ C4×4 defined as

L (θ) = 27

70
dµc(l0 + l1eiθ + l−1e

−iθ) = 27

70
dµc [(2 − 2 cos θ) 0

0 (2 − 2 cos θ)]⊗X.

Recalling Theorem 8 and GLT3, we conclude that

{Ln+1}n ∼GLT,σ,λ (L , [−π,π]). (4.1)

Remark 25 We have assumed that Ln+1 does not contain the boundary conditions, but
if we let them come into play, then the spectral distribution would remain unchanged.
This is due to the fact that the edge conditions involve at most two out of n + 1 cells of
the discretization and in particular they are the first and the last, i.e. the one in the
inflow and the one in the outflow. The matrix that corresponds to the Laplacian operator
can be expressed as the sum Ln+1 +Rn+1 with Rn+1 a rank-correction. Since the boundary
conditions imply a correction in a constant number of entries and since the absolute values
of such corrections are uniformly bounded with respect to the matrix size, it easily follows
that ∥Rn+1∥ = O(1) and hence Theorem 10 can be applied.

It is easy to compute the four eigenvalue functions of L (θ), which are

27

70
dµc2(1 − cos θ) (1

2 ±
1
16

) ,

each with multiplicity 2. Note that all eigenvalue functions vanish at θ = 0 with a zero of
second order. Recalling Remark 6, we expect that a sampling of the eigenvalues of L (θ)
provides an approximation of the spectrum of the discretized Laplacian operator. This is
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(a) (b)

Figure 4.2: (a) The spectrum of Ln+1 with different number of cells vs sampling of the
eigenvalue functions of the symbol L (θ); (b) is the same picture, but in bilogarithmic
scale.

confirmed in Fig. 4.2, where we compare the Laplacian matrix, including the boundary
conditions, with an equispaced sampling of the eigenvalue functions of L (θ) in [−π,π].

The mass matrix Mn+1 is block diagonal (see algorithm A.2), and has the form

Mn+1 =
9

70
d∆xρdiag

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
8

1
2 − 1

16
−1

8 1 − 1
16

1
2

1
2 − 1

16 1 −1
8

− 1
16

1
2 −1

8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+O(∆x2).

As for Ln+1, also Mn+1 is a 4× 4-block Toeplitz of size n̂ = 4 ⋅ (n+ 1). In order to study its
symbol we look at the scaled matrix-sequence { 1

∆xMn+1}n. The reason for such scaling
is that the symbol is defined for sequences of Toeplitz matrices whose elements do not
vary with their size. In this way the elements are O(1). Technically speaking, it is worth
mentioning that, when the considered matrices have either a band or a sparsity structure
with O(1) non zero elements per row, their spectral norm and their l∞ induced matrix
norm are both bounded from above by an absolute constant independent of the matrix size
times the maximal modulus of the non zero entries. The symbol of the scaled mass-matrix
sequence { 1

∆xMn+1}n can be written as

M (θ) = 9

70
dρ [ 2 1

1 2
]⊗X

with X as in (4.1) and again by Theorem 8 and GLT3 we have

{ 1

∆x
Mn+1}

n
∼GLT,σ,λ (M , [−π,π]). (4.2)

Therefore, its eigenvalues are
9

70
dρ (2 ± 1) (1

2 ±
1
16

) .
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Figure 4.3: The eigenvalues of 1
∆xMn+1 matrix with different number of cells vs sampling

of the eigenvalue functions of M (θ).

(a) (b)

Figure 4.4: (a)The spectrum of (Mn+1 +Ln+1) with different number of cells vs sampling
of the eigenvalue functions of L (θ) associated to the only matrix Ln+1; (b) is the same
picture, but in bilogarithmic scale.

In Fig. 4.3 we compare an equispaced sampling of the eigenvalues of M (θ) with the
spectrum of the mass matrix-sequences and we see that the matching is getting better and
better as the number of cells increases.

Since the (1,1)-block of A is given by the sum of Ln+1 and Mn+1, we are interested in
the symbol of {Nn+1 = Ln+1 +Mn+1}n. Let us first note that because of the presence of
∆x in its definition, Mn+1 is a norm-correction of Ln+1 and that Nn+1 is real symmetric
when boundary conditions are excluded. Then, by using Proposition 17, equation (4.1),
and GLT1-4 we have that

{Nn+1}n ∼GLT,σ,λ (L , [−π,π]). (4.3)

Comparing the eigenvalues of Nn+1 modified by the boundary conditions (see Remark 25)
with an equispaced sampling of the eigenvalue functions of L (θ) we can see in Fig. 4.4
that, refining the grid the convergence is very slow. This is due to the fact that for coarse
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∆x

d
(
x
)

=
d

Figure 4.5: Illustration of the stencil that refers to the pressure gradient matrix Gn+1,n.

grids the mass matrix has a higher weight in the (1,1)-block of the matrix. This in fact
does not occur in Fig. 4.2 in which we compared the eigenvalues of the Laplacian block
alone with the symbol L (θ). Similar behaviour will be observed in the calculation of the
symbol of the inverse of the block N , Fig. 4.11.

Gradient operator The (1,2)-block G of A in (2.24) is organized in blocks of rows,
each of size nu = 4 (blue degrees of freedom in Fig. 4.5); in each row there are 2np = 4
nonzero elements (red degrees of freedom in Fig. 4.5), half of which are associated with
the pressure cell intersecting the velocity cell in its left (respectively right) half.

Therefore the gradient matrix is a 4(n + 1) × 2n rectangular matrix (see algorithm A.3),
and excluding boundary conditions, it can be written as

Gn+1,n =
3

64
d∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 ⋯ ⋯ ⋯ 0

g1 g0 0
...

0 g1 g0 0
...

...
. . .

. . .
. . .

. . .
...

... 0 g1 g0 0

... 0 g1 g0

0 ⋯ ⋯ ⋯ 0 g1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O(∆x ∆t)

where g0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 1
3 1
1 3
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and g1 = −g0.

Similarly to what has been done for the mass matrix-sequence, due to the presence of ∆t
in Gn+1,n, we focus on the symbol of the scaled sequence { 1

∆tGn+1,n}n. Note that 1
∆tGn+1,n

is a submatrix of a 4 × 2-block rectangular Toeplitz, precisely Gn+1,n = [Tn(G )]n+1,n with
G ∶ [−π,π]→ C4×2 defined by

G (θ) = 3

64
d (g0 + g1e

iθ) = 3

64
dg0(1 − eiθ) = −i

3

32
dg0 e

i
θ
2 sin ( θ

2
) ,

and thanks to Remark 20 we deduce

{ 1

∆t
Gn+1,n}

n
∼σ (G , [−π,π]). (4.4)
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The singular value decomposition of g0 is UΣV T where

U = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1
−1 −1 1 1
−1 1 1 −1
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

V =
√

2
2 [ −1 −1

−1 1
] Σ = 2

√
2 [ 2 0

0 1
]

and thus the singular value functions of the symbol G (θ) are

−3

8

√
2iei

θ
2 sin ( θ

2
) and − 3

16

√
2iei

θ
2 sin ( θ

2
) .

Fig. 4.6 shows the very good agreement of the spectrum of 1
∆tGn+1,n with the sampling of

the singular value functions of G (θ) for different number of cells.

Divergence operator The (2,1)-block D of the matrix A is organized in blocks of
rows each of size np = 2 (red degrees of freedom in Fig. 4.7); in each row there are 2nu = 8
nonzero elements (blue degrees of freedom in Fig. 4.7), half of which are associated with
the velocity cell intersecting the pressure cell in its left (respectively right) half.
In the particular case in which we are performing the spectral analysis, we can note that
the pressure gradient matrix G, divided by ∆t, and the velocity divergence matrix D are
the transposition of each other, except for the boundary conditions, which we recall involve
only the first and last cells of the discretization. The same situation does not arise when
the duct radius is variable, as in the case of two converging or diverging planes.

Similarly to what we did for the gradient of the pressure, we can define d0 = [ 3 3 1 1
1 1 3 3

] =

(a) (b)

Figure 4.6: (a) The singular values of 1
∆tGn+1,n matrix with different number of cells vs

sampling of the singular value functions of G (θ); (b) is the same picture, but in biloga-
rithmic scale.
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gT0 and d−1 = −d0, and (see algorithm A.4) we can write the divergence matrix as

Dn,n+1 =
3

64
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d−1 0 ⋯ ⋯ ⋯ 0

0 d0 d−1 0
...

... 0 d0 d−1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 d0 d−1 0

0 ⋯ ⋯ ⋯ 0 d0 d−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O(∆x)

Since the matrix Dn,n+1 is the transpose of 1
∆tGn+1,n, the generating function is

D(θ) = (G (θ))∗ = i
3

32
dgT0 e−i

θ
2 sin ( θ

2
)

which admits the same singular value functions of G (θ). Therefore, by Remark 20 we find

{Dn,n+1}n ∼σ (D , [−π,π]). (4.5)

A comparison of the sampling of the singular values of D(θ) with the singular values of
Dn,n+1 is shown in Fig. 4.8.

Remark 26 If we analyse the product of the symbols for Dn,n+1 and 1
∆tGn+1,n, we obtain

a C2×2-valued symbol:

D(θ)G (θ) = V ΣUTUΣV T = [ 5 3
3 5

]4 sin2 ( θ
2
)( 3

32
d)

2

= [ 5 3
3 5

]2(1 − cos θ) ( 3

32
d)

2

Its eigenvalue functions are

4(1 − cos θ) ( 3

64
d)

2

and 16(1 − cos θ) ( 3

64
d)

2

.

Notice that, since Dn,n+1 = [Tn(D)]n,n+1 and 1
∆tGn+1,n = [Tn(G )]n+1,n, then 1

∆tDn,n+1Gn+1,n

is a principal submatrix of Tn(D)Tn(G ). Therefore, thanks to Theorem 21 and Remark 22,
D(θ)G (θ) is the spectral symbol of {Tn(D)Tn(G )}n and, by Theorem 9, it is also the sym-
bol of { 1

∆tDn,n+1Gn+1,n}n. As a consequence, we expect that a sampling of the eigenvalue
functions of D(θ)G (θ) provides an approximation of the spectrum of 1

∆tDn,n+1Gn+1,n.
This is confirmed by Fig. 4.9.

∆x

d
(
x
)

=
d

Figure 4.7: Illustration of the stencil that refers to the divergence matrix Dn,n+1.



54 CHAPTER 4. SPECTRAL ANALYSIS

(a) (b)

Figure 4.8: (a) The singular values of Dn,n+1 different number of cells vs sampling of the
singular value functions of G (θ); (b) is the same picture, but in bilogarithmic scale.

(a) (b)

Figure 4.9: (a) The spectrum of the matrix product 1
∆tDn,n+1Gn+1,n with different number

of cells vs sampling of the eigenvalues of D(θ)G (θ); (b) is the same picture, but in
bilogarithmic scale.

Penalty term for pressure The (2,2)-block of matrix A is organized in blocks of rows,
each of size np = 2 and (see algorithm A.5), it has the following form

En = d∆x tridiag [ 0 1 −1 0 0 0
0 0 0 −1 1 0

] ,

where n is the number of pressure cells. The symbol associated to the scaled matrix-
sequence { 1

∆xEn}n is the function E ∶ [−π,π]→ C2×2 and can be written as

E (θ) = d [ −1 eiθ

e−iθ −1
]

and so its eigenvalues are 0 and −2d, while its eigenvectors are (e
iθ

i
) and (−e

iθ

i
) . Since

En is real symmetric, by GLT3 and GLT1 we obtain

{ 1

∆x
En}

n
∼GLT,σ,λ (E , [−π,π]). (4.6)
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Figure 4.10: The spectrum of 1
∆xEn with different number of cells vs sampling of the

eigenvalue functions of E (θ).

4.2 Spectral study of the Schur complement

We now study the spectral distribution of the Schur complement of A. The formal expres-
sion of the Schur complement involves inversion of the (1,1)-block of the matrix system
and the multiplication by the (1,2) and (2,1)-blocks that is: Sn = En−Dn,n+1N

−1
n+1Gn+1,n.

To compute the symbol of the Schur complement sequence we need to compute the symbol
of {(Ln+1 +Mn+1)−1}n. Thanks to relation (4.3) and to GLT1-2 we have

{(Ln+1 +Mn+1)−1}n ∼λ (L −1, [−π,π]) (4.7)

with

L −1(θ) = b

1 − cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

8 1 0 0
1 8 0 0
0 0 8 1
0 0 1 8

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where b = 560

1701
1
µdc . L −1 has two eigenvalue functions

9b

1 − cos θ
and

7b

1 − cos θ
,

each with multiplicity 2. Following (4.7), in Fig. 4.11 we compare the spectrum of L−1
n+1

and of (Ln+1 +Mn+1)−1 with a sampling of the eigenvalue functions of L −1(θ). In both
cases, the spectra are well described by the sampling of the symbol eigenvalue functions.

At this point we can focus on the symbol of a properly scaled Schur complement
sequence: { 1

∆tSn}n. We know that 1
∆tSn is a principal submatrix of

S̃n ∶= Tn (1

c
E ) − Tn(D)Tn(L )−1Tn(G ) +Zn,

Zn being a correction-term. Since we are assuming that c = ∆t
∆x = O(1) and since L (θ)

is an Hermitian positive definite matrix-valued function, by combining Theorem 23, and
equations (B.16), (B.23), (B.25), (4.7) it holds that

{Tn (1

c
E ) − Tn(D)Tn(L )−1Tn(G )}

n
∼σ,λ (S , [−π,π])
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(a) L−1
n+1 (b) (Ln+1 +Mn+1)−1

Figure 4.11: The spectrum of L−1
n+1 and (Ln+1 +Mn+1)−1 vs the eigenvalue functions of

L −1(θ).

where

S (θ) = 1

c
E (θ) −D(θ)L −1(θ)G (θ) = d

c
[
−1 − 5 aµ eiθ − 3 aµ
e−iθ − 3 aµ −1 − 5 aµ

]

and a = 105
2016 . This combined with Theorem 10 guarantees that

{S̃n}n ∼λ (S , [−π,π])

and consequently

{ 1

∆t
Sn}

n
∼λ (S , [−π,π]). (4.8)

The eigenvalue functions of S (θ) are

d

c
(−1 − 5 aµ ±

√
1 + 9 a

2

µ2
− 6 aµ cos θ) .

In Fig. 4.12 we compare a sampling of the eigenvalue functions of S (θ) with the spectrum
of 1

∆tSn for different grid refinements. In the left panel we show the situation where the
Schur complement is computed only considering the contribution of block L. In reality,
the (1,1)-block of the matrix A consists of both the contribution of the Laplacian and the
mass matrix, i.e. Nn+1 = Ln+1 +Mn+1. In the right panel, comparing the sampling of the
eigenvalue function of the symbol S (θ) with the spectrum of the Schur matrix, scaling by
∆t, where we have the contribution of the mass, we observe that they deviate more from
each other and the convergence of the spectrum of the eigenvalues turns out to be very
slow. Moreover, in Fig. 4.13 we compare the minimal eigenvalues of − 1

∆tSn with functions
of type c ⋅ θγ and we see that for large n the order γ is approximately 2.

Remark 27 We stress that, thanks to the newly introduced Theorem 23, computing the
symbol of the product Dn,n+1N

−1
n+1Gn+1,n immediately follows by using standard spectral

distribution tools as Theorem 10. The same result could be obtained following the much
more involved approach used in [26]. Such approach asks to first extend the rectangular
matrices Dn,n+1, Gn+1,n to proper square block Toeplitz matrices, and then use the GLT
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(a) En −Dn,n+1L
−1
n+1Gn+1,n (b) En −Dn,n+1(L +M)−1

n+1Gn+1,n

Figure 4.12: The spectrum of the matrix 1
∆tSn with different number of cells vs sampling

of the eigenvalue functions of the symbol S (θ) In (a), the (1,1) block contains only the
Ln+1 term, while in (b) the block Nn+1 contains Ln+1 +Mn+1.

Figure 4.13: Smallest eigenvalues of − 1
∆tSn and best fits with functions of the type c ⋅ θγ :

for large n the order γ is, as expected, approximately 2.
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(a) (b)

Figure 4.14: (a) The spectrum of the matrix 1
∆tSn with different number of cells vs

sampling of the eigenvalues of S ∆x(θ), (b) Visual convergence of the generating function
S ∆x(θ) (black lines) to S (θ) (red line) as ∆x→ 0.

machinery to compute the symbol of their product with N−1
n+1. Finally, the symbol of the

original product is recovered by projecting on the obtained matrix through ad hoc downsam-
pling matrices and by leveraging the results on the symbol of projected Toeplitz matrices
designed in the context of multigrid methods [79].

Aside from the symbol S (θ), having in mind to build a preconditioner for the Schur
matrix, we compute also the generating function of 1

∆tSn for a fixed n, that is for a fixed
∆x. Here we keep the contribution of the mass matrix in Nn+1, and, consequently, we
introduce the dependence on the grid size. As a result, we get

S ∆x(θ) = d
c [

−1 − (5a(θ) − 3 ∆xρ)b(θ)c eiθ − (3a(θ) − 5 ∆xρ)b(θ)c
e−iθ − (3a(θ) − 5 ∆xρ)b(θ)c −1 − (5a(θ) − 3 ∆xρ)b(θ)c] (4.9)

with a(θ) = 6 (1 − cos θ)µc + 2 ∆xρ and b(θ) = 15
16

(1−cos θ)
a(θ)2−∆x2 ρ2

. As shown in Fig. 4.14(a),

the sampling of the eigenvalue functions of S ∆x(θ) perfectly matches the spectrum of the
corresponding Schur matrix. Of course, in the limit when ∆x goes to zero, the symbol
is equal to S (θ). As a confirmation see Fig. 4.14(b). This paves the way to design a
preconditioner that instead of S (θ) involves S ∆x(θ). The aim of this procedure is to
obtain a good preconditioner, even when considering a coarse grid.

4.3 Spectral study of the coefficient matrix

The results obtained in sections 4.1-4.2 suggest to scale the coefficient matrixA by columns
through the following matrix

V = [I 0

0 1
∆tI

] ,

that is to solve the system Anx = f, with An ∶= AV in place of system (2.24). As a result of
the scaling, the blocks 1

∆tGn+1,n and 1
∆tEn of An have size O(1), similar to the size of Nn+1

and Dn,n+1, which remain unchanged. Moreover, the scaling improves the arrangement
of the eigenvalues of A since the small negative eigenvalues are shifted towards negative
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values of larger modulus, as we can see in Fig. 4.15. Indeed, excluding the boundary
conditions and due to the block-factorization

An =WDW T = [ In+1 0
Dn,n+1N

−1
n+1 In

] [Nn+1 0

0 1
∆tSn

] [In+1 N−1
n+1

1
∆tGn+1,n

0 In
] ,

by the Sylvester inertia law we can infer that the signature of An is the same of the
signature of the diagonal matrix formed by Nn+1 and 1

∆tSn =
1

∆t(En−Dn,n+1N
−1
n+1Gn+1,n),

which we know has negative eigenvalues distributed according to S (θ).
In order to obtain the symbol of {An}n, when including also the boundary conditions,

let us observe that An can be written as An = Ãn+Qn, where Qn is a correction term and
Ãn is a principal Hermitian submatrix (obtained removing the last 2 rows and the last 2
columns) of the matrix

Bn ∶ = [Tn(L ) +∆xTn(M ) Tn(G )
Tn(D) Tn(1

c E )]

= [Tn(L ) Tn(G )
Tn(D) Tn(1

c E )] +∆x [Tn(M ) O
O O

] .

Now, by Theorem 24, the two involved matrices are similar that is

Bn ∼ Tn(F ) +∆xTn(C )

with F ∶= [L G
D 1

c E
] and C ∶= [M 0

0 0
]. Therefore,

{Bn}n ∼λ (F , [−π,π]),
and this, thanks to Theorem 9, implies that

{Ãn}n ∼λ (F , [−π,π]).
Finally, by following the same argument applied in the computation of the Schur com-
plement symbol at the beginning of Section 4.2, by using again Theorem 10 we arrive
at

{An}n ∼λ (F , [−π,π]).
In conclusion, the correction term Qn does not affect the symbol of the matrix-sequence
{An} and the eigenvalues of {An}n are distributed in the same way as the eigenvalues
of {Ãn}n. Since the symbol F is a 6 × 6 matrix-valued function, retrieving an analytical
expression for its eigenvalue functions asks for some extra computation, but we can easily
give a numerical representation of them which is sufficient for our aims simply following
these three steps:

� evaluate the symbol F on an equispaced grid in [0, π];

� for each obtained 6 × 6 matrix compute the spectrum;

� take all the smallest eigenvalues as a representation of λ1(F ) and so on so forth till
the largest eigenvalues as a representation of λ6(F ).

Fig. 4.16(a) has been realized following the previous steps. Notice that two eigenvalue
functions of F show the same behavior and we suspect they indeed have the same analyti-
cal expression. Fig. 4.16(b) compares the equispaced sampling of the eigenvalue functions
with the actual eigenvalues of the coefficient matrix and highlights an improving matching
as the matrix-size increases.
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(a) original A (b) scaled AV

Figure 4.15: The spectrum of the coefficient matrix.

(a) (b)

Figure 4.16: (a) A plot of the eigenvalue functions of F (θ) made without knowing their
analytical expression, (b) The spectrum of the scaled coefficient matrix AV with different
number of cells vs the sampling of the eigenvalue functions of F (θ).

4.4 Generalization of the spectral study of a pipe with a
general profile d(x)

The analysis carried out so far concerns the special case of a 2D pipe consisting of two
parallel planes. In reality, ducts have more complex geometries. It is therefore convenient
to obtain a preconditioner even in the case of channels with a non constant diameter.
Let us now consider the case of a duct that is always symmetrical with respect to the
x-axis, the diameter of which is a generic differentiable function that we denote by d(x),
x ∈ [0, xout], with d(0) = din. As for the specific cases dealt with above, we choose the
smallest non trivial 2D case with nξ = 1 and nη = 3. The spectral analysis in this section
has been derived from the case studies in the Appendix §B.
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Laplacian and mass operator The matrix L, relating to the discretization of the
diffusive term, can be written in the following generic formulation

Ln+1 = cµ tridiag
2≤j≤n

[ l1 l0 l−1 ] +O(∆x2 α4),

with

l1 = d(xj) [
−X 0

0 −X ] , l0 = d(xj) [
2X 0

0 2X
] , l−1 = d(xj) [

−X 0

0 −X ] ,

where α denotes the Lipschitz constant of d.
In other words,

Ln+1 = ( diag
1≤j≤n+1

d(xj)⊗ I4 )Tn+1 (
L (θ)
d(0) ) +O(∆x2 α4),

where I4 is the identity matrix of size 4 × 4 and

L (θ) = 27

70
dinµc [(2 − 2 cos θ) 0

0 (2 − 2 cos θ)]⊗X,

that is it results in the product of a diagonal sampling matrix and a block Toeplitz matrix
plus a norm correction term. Therefore, by using GLT1-4 the symbol associated to the
sequence {Ln+1}n is

{Ln+1}n ∼GLT,σ,λ (d̃(t)L (θ), [0,1] × [−π,π]) ,

with

d̃(t) = d(xoutt)
d(0) . (4.10)

The mass matrix is the second element contributing to the (1,1)-block of the system
matrix A. It can be written in the following way

Mn+1 =
9

70
∆xρ diag

1≤j≤n+1
(d(xj) [

2 1
1 2

]⊗X) +O(∆x2),

or equivalently

9

70
∆xρ( diag

1≤j≤n+1
d(xj)⊗ I4 )Tn+1 (

M (θ)
d(0) ) +O(∆x2),

where

M (θ) = 9

70
ρdin [ 2 1

1 2
]⊗X.

As a consequence, again by GLT1-4 the symbol associated to the scaled sequence { 1
∆x Mn+1}n

is

{ 1

∆x
Mn+1}

n
∼GLT,σ,λ (d̃(t)M (θ), [0,1] × [−π,π]) ,

with d̃(t) as in (4.10).
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Gradient operator The (1,2)-block G of A is obtained by testing the gradient term
with the basis function of the velocity. It has dimension (n + 1)nu × nnp and is therefore
a rectangular matrix.
Defining

ĝ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1
3 −3
3 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, ĝ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −3
3 −3
1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, g̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 1
3 1
1 3
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

g̃1 = −g̃0 and excluding the boundary conditions, the block G can be written as

Gn+1,n = (G̃ + Ĝ) +O(∆t ∆xα4),

where G̃ = G̃n+1,n (diag
1≤j≤n

d(xj)⊗ I2) and Ĝ = Ĝn+1,n (diag
1≤j≤n

d(xj)d′(xj)2 ⊗ I2) with

G̃n+1,n =
3

64
∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g̃0 0 ⋯ ⋯ ⋯ 0

g̃1 g̃0 0
...

0 g̃1 g̃0 0
...

...
. . .

. . .
. . .

. . .
...

... 0 g̃1 g̃0 0

... 0 g̃1 g̃0

0 ⋯ ⋯ ⋯ 0 g̃1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.11)

and

Ĝn+1,n =
3

640
∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝ0 0 ⋯ ⋯ ⋯ 0

ĝ1 ĝ0 0
...

0 ĝ1 ĝ0 0
...

...
. . .

. . .
. . .

. . .
...

... 0 ĝ1 ĝ0 0

... 0 ĝ1 ĝ0

0 ⋯ ⋯ ⋯ 0 ĝ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.12)

while I2 is the identity matrix of size 2 × 2 and n is the size of the pressure cells.

We first observe that both G̃n+1,n and Ĝn+1,n have a block rectangular Toeplitz struc-
ture, and precisely

G̃n+1,n = ∆t [Tn ( G̃ (θ)
d(0) )]

n+1,n

, (4.13)

Ĝn+1,n = ∆t [Tn ( G̃ (θ)
d(0) )]

n+1,n

, (4.14)

with

G̃ (θ) = 3

64
din (g̃0 + g̃1e

iθ) = 3

64
din g̃0(1 − eiθ) = −i

3

32
din g̃0 e

i
θ
2 sin ( θ

2
) , (4.15)
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Ĝ (θ) = 3

640
din (ĝ0 + ĝ1e

iθ) , (4.16)

respectively. Then, thanks to Remark 20 and to the rectangular GLT machinery developed
in [6] the singular value distributions of the matrix sequences generated by G̃ and Ĝ, scaled
by ∆t, are given by

⎧⎪⎪⎨⎪⎪⎩
[Tn ( G̃ (θ)

d(0) )]
n+1,n

(diag
1≤j≤n

d(xj)⊗ I2)
⎫⎪⎪⎬⎪⎪⎭n

∼GLT,σ (d̃(t)G̃ (θ), [0,1] × [−π,π])

with d̃(t) as in (4.10), and

⎧⎪⎪⎨⎪⎪⎩
[Tn ( Ĝ (θ)

d(0) )]
n+1,n

(diag
1≤j≤n

d(xj)d′(xj)2 ⊗ I2)
⎫⎪⎪⎬⎪⎪⎭n

∼GLT,σ (d̂(t)Ĝ (θ), [0,1] × [−π,π])

where

d̂(t) = d(xoutt)d′(xoutt)2

d(0) . (4.17)

Considering the contribution of both G̃ and Ĝ as well as the norm-correction term ex-
pressed by O(∆t ∆xα4), the singular values of the scaled sequence { 1

∆tGn+1,n}n are dis-
tributed as

{ 1

∆t
Gn+1,n}

n
∼GLT,σ (d̃(t)G̃ (θ) + d̂(t)Ĝ (θ), [0,1] × [−π,π]) ,

with d̃(t) as in (4.10) and d̂(t) as in (4.17).

Divergence operator The (1,2)-block of matrix A has a similar structure to the block
of the gradient of the pressure just analyzed. In turns out to be a rectangular matrix of
size nnp × (n + 1)nu. Defining

d̂0 = [ −3 −3 3 3
−1 −1 1 1

] , d̂−1 = [ −1 −1 1 1
−3 −3 3 3

] , d̃0 = [ 3 3 1 1
1 1 3 3

] ,

d̃−1 = −d̃0, and excluding the boundaries condition, we can write the divergence matrix as

Dn,n+1 = (D̃ + D̂) +O(∆xα4),

where D̃ = (diag
1≤j≤n

d(xj)⊗ I2) D̃n,n+1 and D̂ = (diag
1≤j≤n

d(xj)d′(xj)2 ⊗ I2) D̂n,n+1 with

D̃n,n+1 =
3

64

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̃0 d̃−1 0
...

0 d̃0 d̃−1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 d̃0 d̃−1 0

... 0 d̃0 d̃−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.18)
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and

D̂n,n+1 =
3

640

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̂0 d̂−1 0
...

0 d̂0 d̂−1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 d̂0 d̂−1 0

... 0 d̂0 d̂−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.19)

with n is the size of the pressure cells.

We can observe that the matrix D̃n,n+1 turns out to be exactly the transpose of G̃n+1,n,
since d̃0 = g̃T0 and d̃−1 = g̃T1 , then

D̃n,n+1 = [Tn (D̃(θ)
d(0) )]

n,n+1

, (4.20)

with

D̃(θ) = (G̃ (θ))∗ = i
3

32
din g

T
0 e−i

θ
2 sin ( θ

2
) (4.21)

which admits the same singular value functions of G̃ (θ). On the other hand, if we consider
D̂n,n+1, we note that it is not the transposition of the respective Ĝn+1,n-block and

D̂n,n+1 = [Tn (D̂(θ)
d(0) )]

n,n+1

, (4.22)

with

D̂(θ) = 3

640
din (d̂0 + d̂−1e

−iθ) . (4.23)

Thanks to Remark 20 and to the rectangular GLT machinery developed in [6] the
singular value distribution of the matrix sequence associated to the block D̃ and D̂ is
given by

⎧⎪⎪⎨⎪⎪⎩
(diag

1≤j≤n
d(xj)⊗ I2)[Tn (D̃(θ)

d(0) )]
n,n+1

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (d̃(t)D̃(θ), [0,1] × [−π,π])

⎧⎪⎪⎨⎪⎪⎩
(diag

1≤j≤n
d(xj)d′(xj)2 ⊗ I2)[Tn (D̂(θ)

din
)]

n,n+1

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (d̂(t)D̂(θ), [0,1] × [−π,π]) .

with d̃(t) as in (4.10) and d̂(t) as in (4.17).

Considering the contribution of both D̃ and D̂ as well as the norm-correction term ex-
pressed by O(∆xα4), the singular values of the matrix sequence {Dn,n+1}n are distributed
as

{Dn,n+1}n ∼GLT,σ (d̃(t)D̃(θ) + d̂(t)D̂(θ), [0,1] × [−π,π]) ,

with d̃(t) as in (4.10) and d̂(t) as in (4.17).
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Penalty term for pressure The last element left to analyse is the pressure penalty
term. This block can be represented as follows

En = ∆x tridiag
1≤j≤n

[ 0 d(xj) −d(xj) 0 0 0
0 0 0 −d(xj) d(xj) 0

] +O(∆x2).

where n is the number of pressure cells. Each block of rows has size np = 2, as the number
of degrees of freedom of the pressure in each cell.
The matrix En is the product of a diagonal sampling and a block Toeplitz plus a norm-
correction. The block Toeplitz part is defined as

Ẽn = ∆x tridiag
1≤j≤n

[ 0 1 −1 0 0 0
0 0 0 −1 1 0

] = ∆xTn (E (θ)
d(0) )

with E ∶ [−π,π]→ C2×2 defined as

E (θ) = din [ −1 eiθ

e−iθ −1
] . (4.24)

Since Ẽn is real symmetric, by GLT3 and GLT1 we obtain

{ 1

∆x
Ẽn}

n
∼GLT,σ,λ (E , [−π,π]). (4.25)

Then we globally write En as

En = ∆x(diag
1≤j≤n

d(xj)⊗ I2)Tn (E (θ)
d(0) ) +O(∆x2) (4.26)

and by using GLT1-4 we have

{ 1

∆x
En}

n
∼GLT,σ,λ (d̃(t)E (θ), [0,1] × [−π,π])

where d̃(t) is given in (4.10).

Spectral study of the Schur complement

Schur’s complement is defined as the (2,2)-block of matrix A plus the inverse of (1,1)-
block multiplied by (2,1) and (1,2)-blocks on the left and right respectively, i.e. Sn =
En −Dn,n+1N

−1
n+1Gn+1,n. After scaling Sn by 1

∆t the related symbol S (t, θ) can be plainly
obtained mimicking the same reasoning done in §4.2 and using the results in [6]. As we
have in mind the design of a preconditioner for 1

∆tSn, rather we look for S ∆x(t, θ) that
depends on the grid size and is obtained by opportunely combining the generating function
of N−1

n+1 with the symbols of {Dn,n+1}n, { 1
∆tGn+1,n}n, and { 1

∆xEn}. More specifically,

S ∆x(t, θ) = d̃(t)E (θ) −L DN−1G(t, θ). (4.27)
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where

L DN−1G(t, θ) = γ(t) [
5a(θ) − 3 ∆xρ 3a(θ) − 5 ∆xρ
3a(θ) − 5 ∆xρ 5a(θ) − 3 ∆xρ

](5(1 − cos(θ)) + d
′(xoutt)

4
(1 − eiθ))

+ γ(t) [ −3a(θ) + 5 ∆xρ 3a(θ) − 5 ∆xρ
−5a(θ) + 3 ∆xρ 5a(θ) − 3 ∆xρ

] d
′(xoutt)

4
(1 − e−iθ)

+ γ(t)b(θ) [ −1 1
−3 3

] d
′(xoutt)

4
(1 − eiθ)(1 − d

′(xoutt)
10

)

+ γ(t)b(θ) [ −3 3
−1 1

] d
′(xoutt)

4
(1 − e−iθ)(1 + d

′(xoutt)
10

)

with a(θ) = 2 ∆xρ + 6µc (1 − cos(θ)), γ(t) = 1

16

d(xoutt)
a(θ)2 −∆x2 ρ2

and b(θ) = a(θ) +∆xρ. Of

course, by letting ∆x→ 0 we have S ∆x(t, θ)→S (t, θ).
The matrix sequence associated to the Schur complement is of course very involved. A

formal expression of its coefficients is not available and hence the standard preconditioning
techniques based on matrix algebras cannot be applied since they are essentially based
on the coefficient of the matrix to be preconditioned. Here we arrive at the spectral
distribution which is in turn a complicate expression but with a very useful and simple
structure. Indeed the GLT symbol is of the form γ(t) times a complicate matrix-valued
expression depending only on the Fourier variable θ.

Therefore this spectral information suggest that a preconditioner can be formed by
multiplying a diagonal matrix with uniform sampling of the function γ and a block circu-
lant matrix with the same symbol as the part depending only on the variable θ. Thanks to
the ∗ algebra structure of the GLT matrix sequences, the GLT axioms guarantee that the
resulting preconditioning sequence as the same symbol as 1

∆tSn and consequently, again
by the very same argument, the preconditioned matrix sequence will have symbol 1 that
is all its eigenvalues will be (weakly) clustered at 1 and this is of course an indication of
the rapid convergence of the associated (preconditioned) Krylov method.

4.5 Extension to a three-dimensional pipe

Three-dimensional pipes are treated (see §2.3) by introducing tensor product shape func-
tions in the transverse plane, using the polynomial degrees nη and nω for the velocity.
Leaving fixed nξ = 1 for the pressure variable, our theory should extend to this more
general setting and yield a symbol for the (1,1)-block of the coefficient matrix with val-
ues in C2(nη−1)(nω−1)×2(nη−1)(nω−1), symbols for (1,2)- and (2,1)-blocks in C2(nη−1)(nω−1)×2

and C2×2(nη−1)(nω−1) respectively. In any case, the symbol for (2,2)-block and the Schur
complement will still take values in C2×2 independently of nη and nω. The size 2 × 2 for
the symbol of the Schur complement is controlled by the choice of nξ = 1 for the pressure
variable, and for larger nξ the symbol of the Schur complement should take values in
C(nξ+1)×(nξ+1).

Fixing nη = 3, nω = 2 and following the same steps of §4.1, we can compute an ad hoc
block circulant preconditioner for the three-dimensional case in the case of a apipe with
constant cross-section. In this setting, for each face of our discretization, we have only two
unknown elements due to the no-slip conditions. For this special choice of nη and nω the
symbols of the various matrices involved in the discretization are matrix-valued with the
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same size as in §4.1 and §4.2, but now the generating function associated with the scaled
Schur complement 1

∆tSn shows a dependency on the cross-sectional area and is given by

S ∆x(θ) = Area(x)
c [ −1 − (5a(θ) − 3 ∆xρ)b(θ)c eiθ − (3a(θ) − 5 ∆xρ)b(θ)c

e−iθ − (3a(θ) − 5 ∆xρ)b(θ)c −1 − (5a(θ) − 3 ∆xρ)b(θ)c] , (4.28)

where a(θ) = 6 (1 − cos θ)µc+2 ∆xρ and b(θ) = 25
96

(1−cos θ)
a(θ)2−∆x2 ρ2

. This symbol is very similar

to the one of (4.9), but the different constant in the function b(θ) reflects the presence of
non trivial velocity shape functions in the z direction.

Considering a more general case, i.e. nη = 3, nω = 3 in which we increase the dimension
of the polynomial degree in z direction, we obtain the same generating function (4.28)
associated with the scaled Schur complement. As we observed before, the size of the
generating function of the resized Schur complement does not change even if we increase
the dimension of the polynomial in the transversal directions because it depends on the
size of the one in the longitudinal direction. Instead, in this case we have four unknown
elements for each face and the size of the symbols associated with the blocks N ,G and D
take values in C8×8, C8×2, C2×8 respectively.

4.6 Solution of the pressure system

Using the spectral analysis done before, we can proceed with the solution of the sys-
tem associated with the pressure field (2.27a). To do this it is necessary to introduce a
preconditioner. To ease the notation, here after we omit the subscripts for the blocks
Nn+1,Gn+1,n,Dn,n+1,En of A.

In the Toeplitz setting, one possible choice is to use a circulant preconditioner. This is
motivated by the observation that a circulant system can be solved efficiently by FFTs in
O(n log(n)) iterations. This cost is proportional to the cost of the matrix-vector product
with a Toeplitz matrix. Numerous preconditioners to solve Toeplitz systems have been pro-
posed in the literature [17], for example, Strang in 1986 proposed the first circulant precon-
ditioner. Given a Toeplitz matrix Tn(f), the Strang preconditioner CStrang = [sk−l]0≤k,l<n
is the matrix that copies the central diagonals of Tn(f) and reflects them around to com-
plete the circulant requirement. The diagonals sj are given by

sj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fj , 0 < j ≤ ⌊n2 ⌋,
fj−n, ⌊n2 ⌋ < j < n,
sn+j , 0 < −j < n.

One of the properties of this preconditioner is that it minimizes

∥ CStrang
n − Tn(f) ∥1 ∥ CStrang

n − Tn(f) ∥∞

over all Hermitian circulant matrices Cn. Another preconditioner also based on circulant
matrices appears to be that of T. Chan. The j-th diagonal of CChan = [sk−l]0≤k,l<n is equal
to

sj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(n − j)fj + jfj−n
n

, 0 ≤ j < n,
sn+j , 0 < −j < n

and it is defined in such a way as to minimize the Frobenius norm

∥ CChan
n − Tn(f) ∥F .
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More generally, circulant preconditioners can be derived either by exploiting the convo-
lution product of some kernel function or by using the symbols of the matrices for which
the preconditioner is being computed.

In the case under analysis, in the solver associated with the Schur complement, which
we denote by KŜ , the preconditioner is the block circulant preconditioner generated by the
symbol S ∆x(θ) given in (4.9) related to the Schur complement. Following the Theorem
13, this matrix can be expressed by

Cn(S ∆x) = (Fn ⊗ I2)Dn(S ∆x)(F ∗
n ⊗ I2)

with

Dn(S ∆x) = diagr=0,...,n−1(S ∆x(θr)), Fn =
1√
n

[e−ijθr]n−1

j,r=0
, θr =

2πr

n
.

More precisely, since S ∆x(θ) has a unique zero eigenvalue at θ0 = 0, we use as precondi-
tioner

Cn ∶= Cn(S ∆x) +
1

(2n)2
1T1⊗ [1 1

1 1
] (4.29)

with 1 = [1, . . . ,1] ∈ Rn, that is we introduce a circulant rank-one correction aimed at
avoiding singular matrices. We notice that {Cn}n and the sequence of the Schur comple-
ments are GLT matrix-sequences having the same symbol, i.e., S (θ). Therefore, since
S (θ) is not singular by GLT2 we infer that the sequence of the preconditioned matrices
is a GLT with symbol 1. Given the one-level structure of the involved matrices, we ex-
pect that the related preconditioned Krylov solvers converge within a constant number of
iterations independent of the matrix-size, just because the number of possible outliers is
bounded from above by a constant independent of the mesh-size. Hence the global cost is
given by O(n logn) arithmetic operations when using the standard FFT based approach
for treating the proposed block circulant preconditioner.

It is worth mentioning that the coefficient matrix, as well as all its blocks, are sparse
matrices, then matrix-vector product with the original matrix has optimal cost of O(n)
arithmetic operations. Reducing the cost of O(n logn) of each preconditioned iteration
to the optimal cost is possible by using specialized multigrid solvers designed ad hoc for
circulant structures [79].

Turning now to consider the whole system (2.24), we solve it with the help of the
PETSc [4, 5] library. In particular, in the next tests we will focus on the explicit version
of the scheme, discussed in section §2.6.1. The full solver associated with An = AV , say
KA, is Flexible GMRES, fgmres with relative tolerance of 10−8, and the preconditioner
associated with this solver turns out to be the approximate Schur complement,

Ŝ = 1
∆t(E −DÑ−1G).

The Krylov solver for Ŝ, say KŜ is of type GMRES implemented in PETSc as fieldsplit

of type schur with full factorization and when computing the action of Ŝ on a vec-
tor, Ñ−1y denotes the solution of the system Nx = y with the application of a GMRES
Krylov solver with ILU(0) preconditioner, say KN . However, since the inverse of N is
approximated by the action of the solver KN , matrix Ŝ cannot be explicitly assembled.
The standard GMRES implementation in the PETSc library by default restarts after 30
iterations. We have not changed the default behaviour since this is not affecting our
computations: 30 iterations are never reached with our preconditioner, as we can see in
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subsequent tests. The preconditioner of KŜ is the circulant preconditioner (4.29) and it
is applied by FFT through the use of the FFTW3 library [34], observing that the action
of the tensor product of a discrete Fourier matrix and I2 corresponds to the computation
of two FFT tranforms of length n on strided subvectors. To implement preconditioner of
KŜ through the PETSc library, a preconditioner of type shell was used, which allows the
user to directly access the preconditioner of a solver. In our numerical tests, a relative
stopping tolerance of 10−6 was chosen for KŜ .
It should be noted that the literature provides a quite limited theory regarding the FGM-
RES convergence associated to the main solver of the system (2.24). In particular, the
considered method may give slow convergence or break down: however, in the present
setting, the convergence behaviour in terms of iteration count and CPU timing of the
FGMRES has been very satisfactory and competitive with the more standard precondi-
tioned Krylov techniques.

For the numerical tests in the next section, a velocity profile was set as boundary
condition for the first cell. Therefore the boundary conditions modify only the blocks
related to the Laplacian and the pressure gradient without involving divergence and the
penalty term. As an initial guess instead, a velocity profile obtained as a product of two
parabolas in the transverse directions was chosen at each point of the duct. This profile
was rescaled at each point in such a way that the zero divergence condition was respected
inside the duct.

As comparison, we consider another preconditioning technique that does not require to
assemble the Schur complement, namely the Least Squares Commutators (LSC) of [81, 29].
It is based on the idea that one can approximate the inverse of the Schur complement,
without considering the contribution of the block E, by

S̄−1 = 1

∆t
̃(DG)−1DNG

̃(DG)−1.

Matrix S is never assembled, but the action of S̄−1 is computed with the above formula,

where we have indicated with
̃(DG)−1 the application of a solver for the matrix 1

∆tDG,
which we denote with KDG. In our tests, we have chosen for KDG a preconditioned conju-
gate gradient solver with relative stopping tolerance of 10−5, since, in the incompressible
framework, the product 1

∆tDG is a Laplacian. To provide a circulant preconditioner for
KDG, it is enough to consider the block circulant matrix generated by D(θ)G (θ) defined
as in Remark 26. Note that, for θ = 0, D(θ)G (θ) is the null matrix, therefore in or-
der to avoid singular matrices we introduce a rank-two correction and define the whole
preconditioner for the product 1

∆tDG as

Pn ∶= Cn(D G ) + 1

(2n)2
1T1⊗ I2 (4.30)

again with 1 = [1, . . . ,1] ∈ Rn.

4.7 Numerical experiment

Flow between parallel plates In the first test we consider a 2D domain with constant
cross-section d(x) = 0.025 m. At the inlet we impose a parabolic velocity profile with flow
rate 5 × 10−6 m2/s, while at the outlet we fix a null pressure. Of course there would be no
need to use a numerical model to compute the solution in this particular geometry, since
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an exact solution is known, but we conduct this as a test to verify the performance of our
solver. Using nξ = 1 and nη = 3 this setting is exactly the one adopted in the spectral
analysis done before.
The main solver KA converges in at most 2 iterations, while the number of iterations of
KŜ stays constant as the number of cells grows which confirms that the block circulant
preconditioner Cn in (4.29) is optimal, Table 4.1, even if the analysis and therefore the
optimality have been proved only at the asymptotic level. For this example we also check
the performances of the block circulant preconditioner Cn(S ) in KŜ . Looking again at
Table 4.1, we see that in this case the inner solver KŜ does not converge when the number
of cells increases. The discrepancy in the performances of Cn(S ) compared with those of
Cn is in line with the results in Fig. 4.14(a) that clearly show how good S ∆x matches the
spectrum of the Schur complement compared with S .

Concerning the LSC approach, the number of iterations of KDG does not grow signif-
icantly with n, indicating that the block circulant preconditioner Pn in (4.30) for 1

∆tDG
is optimal, see also Fig. 4.17(b). The full solver for An, however, needs considerably
more time to reach the required tolerance, for two reasons: 1) the number of iterations
of KŜ in our approach is lower than those of KS̄ in LSC (see Fig. 4.17(a)); 2) the LSC
approach invokes the inner solver KDG twice per each iteration of KS̄ , affecting the final
computation time.

Flow between converging plates In this second test we consider a 2D domain with
variable cross-section, where d(x) decreases linearly from 0.025 m to 0.0125 m. To perform
the simulations we impose the same boundary conditions as in the previous test and again
take nξ = 1, nη = 3. In Table 4.2 we compare the number of iterations computed by KŜ
considering as preconditioners

1. Dn(1
dCn(S ∆x) +Rn), with Dn a diagonal matrix whose entries are an equispaced

sampling of d(x) on its domain (see section 4.4), and Rn = 1
(2n)2 1T1⊗ [1 1

1 1
];

2. Cn with d = d̄, that is equal to the average of the cross-section along the pipe.

The first case corresponds to constructing the preconditioner using the symbol obtained
in the section 4.4 without the contribution of the terms involving the derivatives. In this

Cn Cn(S ) LSC with Pn
n KA KŜ time (s) KA KŜ KA KS̄ KDG time (s)

10 2 11 – 12 2.50 × 10−2 2 15 – 16 2 2 – 10 5 – 6 2.08 × 10−1

20 2 10 – 11 1.52 × 10−1 2 20 2 4 – 12 5 – 6 1.58 × 100

40 2 9 – 11 2.97 × 10−1 2 24 2 3 – 14 6 – 7 3.70 × 100

80 2 9 – 10 5.51 × 10−1 2 31 2 3 – 14 5 – 7 7.85 × 100

160 2 8 – 9 1.42 × 100 2 no conv. 2 1 – 14 4 – 8 2.06 × 101

320 2 8 – 9 7.46 × 100 2 no conv. 3 1 – 21 6 – 8 2.42 × 102

640 2 7 – 9 4.94 × 101 2 no conv. 4 7 – 24 3 – 10 2.65 × 103

1280 2 7 – 8 3.68 × 102 2 no conv. 7 9 – 28 3 – 10 4.55 × 104

Table 4.1: Iterations of the solvers in the 2D parallel plates test. KŜ refers to our approach,
while KS̄ and KDG refer to the LSC approach. The times are the total CPU time spent
in the main Krylov solver KA and its sub-solvers.
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(a) (b)

Figure 4.17: (a) The average number and the range of iterations of KŜ in blue and of KS̄
in red; (b) The average number and the range of iterations of KDG.

d(x) in KŜ d(x) = d̄ in KŜ
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ

10 6 1–2 12 – 13 6 1–2 14 – 15
20 5 1–2 11 – 12 5 1–2 15 – 16
40 3 1–2 10 – 12 3 1–2 14 – 16
80 2 1–2 9 – 11 2 1–2 13 – 16

160 2 1–2 9 – 11 2 1–2 13 – 16
320 2 1–2 9 – 11 2 1–2 13 – 16
640 2 1–2 9 – 11 2 1–2 13 – 16

1280 2 1–2 9 – 11 2 1–2 13 – 17

Table 4.2: Iterations of the solvers in the 2D converging plates test, i.e. with variable d(x).
In the left part, we use a diagonal scaling, defined through d(x), of the block circulant
preconditioner Cn; on the right, we use Cn with d = d̄, that is equal to the average of the
cross-section along the pipe.
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Figure 4.18: The average number and the range of iteration of KŜ for a 2D pipe with
variable cross-section. The blue values are obtained employing as preconditioner in KŜ a
diagonal scaling (defined through d(x)) of the block circulant preconditioner Cn; the red
values are obtained using Cn with d = d̄, that is equal to the average of the cross-section
along the pipe.

case the KŜ converges in a number of iterations that does not increase significantly with n,
showing its optimality. This is due to the fact that in the hypothesis of elongated domains
with cross-sections varying very slowly, the terms related to the derivatives of the diameter
of the pipes are very small compared to the other terms present in the preconditioner. This
means that, even without their contribution, in ducts with the characteristics listed above,
theDn(1

dCn(S ∆x)+Rn) preconditioner is optimal. Approximating the channel width with
a constant value instead, avoids the diagonal matrix multiplication in the preconditioner,
but causes a slightly faster increase of the iteration counts for KŜ , refer to Fig. 4.18.

Using higher polynomial degree in the transversal direction In this test we
analyse the efficiency of the preconditioner Cn in KŜ when considering different polynomial
degrees nη in the transversal direction for the velocity, but fixed nξ = 1 for the pressure
variable. In this setting, we expect symbols for (1,1)-block of the coefficient matrix to take
values in C2(nη−1)×2(nη−1), those for (1,2)- and (2,1)-blocks in C2(nη−1)×2 and C2×2(nη−1)

respectively, while those for the (2,2)-block and the Schur complement will still take values
in C2×2, irrespectively of nη. On such basis, we can readily apply Cn in KŜ being sure that
the sizes of all the involved matrices are consistent.

Taking again the converging plates case, we increase nη to 4,5 and 6 and report the
results in Table 4.3. We note that, despite the “looser” approximation in the precondi-
tioner, the solver KŜ still converges in an almost constant number of iterations when n
increases. The number of iterations of KA is always 2 and was thus not reported in the
table. From this example we can infer that the symbol of the preconditioner for the Schur
complement is not changing much as far as nξ stays fixed to 1.

3D square nozzle To perform a three-dimensional test, we consider a square pipe with
width decreasing linearly from 0.025 m to 0.0125 m, so that the square section area de-
creases quadratically from 6.25 × 10−4 m2 to 1.56 × 10−4 m2. At the inlet we fix a parabolic
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nη = 4 nη = 5 nη = 6
n steady

state
solver

KŜ steady
state
solver

KŜ steady
state
solver

KŜ

10 7 12 8 11 – 12 9 11 – 12
20 6 11 – 12 7 10 – 12 8 10 – 12
40 4 10 – 12 4 10 – 12 4 10 – 11
80 3 9 – 11 3 9 – 11 4 9 – 11

160 4 9 – 11 4 9 – 11 4 9 – 11
320 4 9 – 11 4 9 – 11 4 9 – 12
640 4 9 – 12 4 9 – 12 3 9 – 12

1280 3 9 – 12 3 9 – 12 3 9 – 12

Table 4.3: Range of iterations to reach the steady state solution and KŜ , in the converging
plates test, with different polynomial degree in the transversal direction for the velocity.

profile in both the transverse directions with flow rate of 5 × 10−6 m3/s. We point out that,
the product of two parabolic profiles in the y and the z directions would not be an exact
solution even in a constant cross-section case, see [54]. The solution is computed using
different combinations of transverse polynomial degrees nη and nω for the velocity, fixed
nξ = 1 for the pressure variable.

Thanks to the matrix-sizes match pointed out in remark 4.5, one could be tempted
to directly apply in KŜ the preconditioner Cn derived for the two-dimensional case also
in this three-dimensional setting. However such choice causes high iteration numbers and
sometimes stagnation of the number of iterations to reach a steady state solution.

The reason for these poor performances may be understood by noticing that the two
dimensional discretization represents a flow between infinite parallel plates at a distance
d(x). It is not surprising that using such a flow to precondition the computation in a
three dimensional pipe is not optimal. More precisely the two dimensional setting can be
understood as choosing nω = 0 in 3D. However, constant shape functions in the z direction
can not match the zero velocity boundary condition on the channel walls and only nω ≥ 2
would allow to satisfy them.

Therefore, we use as preconditioner in KŜ the block circulant matrix generated by
S ∆x(θ) defined as in (4.28) properly shifted by a rank-one block circulant matrix and
scaled by a diagonal matrix whose entries are given by a sampling of the function that
defines the cross-sectional area of the pipe.

Table 4.4 shows the range of iterations for KA and KŜ . In the left part we have
applied the 3D block circulant preconditioner to the corresponding simulation with nη = 3
and nω = 2. As in the two-dimensional cases, the number of iterations of KŜ does not
change significantly with n, in particular already with 80 cells the range of iterations
relative to the solver KŜ reaches optimality. Moreover, an higher number of iterations are
required to reach a steady state solution (compare with Table 4.2) for low n, but they
reduce fast with the increasing resolution. In the central and right part of the table we
check the performance of the 3D block circulant preconditioner based on (4.28) in the
discretizations for nη = nω = 3 and nη = nω = 4, respectively. As in the two-dimensional
examples, for nη = nω = 3, the iteration numbers remain basically unchanged, despite the
fact that the preconditioner is based on S ∆x(θ) in (4.28) which corresponds to a different
number of degrees of freedom. For nη = nω = 4 the number of iterations of KŜ are still
quite the same, but a higher number of iterations are required to reach a steady state
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nη = 3, nω = 2 nη = 3, nω = 3 nη = 4, nω = 4
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ steady
state
solver

KA KŜ

10 13 1 10 13 1–2 10 27 1–2 11 – 12
20 8 1–2 10 – 12 8 1–2 10 – 12 34 1–2 11 – 13
40 3 1–2 10 – 12 3 1–2 11 – 12 37 1–2 11 – 13
80 3 1–2 11 – 12 3 1–2 11 – 12 19 1–2 11 – 13

160 2 2 11 – 12 2 2 11 – 12 4 1–2 11 – 13
320 2 2 11 – 12 2 2 11 – 12 3 1–2 11 – 14
640 2 2 11 – 13 2 2 11 – 13 2 2 11 – 14

1280 2 2 11 – 13 2 2 11 – 13 2 2 11 – 14

Table 4.4: Range of iterations for KA and KŜ , in a 3D pipe with variable cross-section,
with different polynomial degrees in the transversal directions for the velocity.

nη = 4, nω = 4
n steady

state
solver

KA KŜ

20 36 1–2 9 – 11
40 38 1–2 9 – 10
80 26 1–2 10 – 11

160 15 1–2 10 – 12
320 10 1–2 10 – 12
640 7 2 10 – 12

1280 2 2 9 – 13

Figure 4.19: 3D pipe with generic geometry. Left: computed pressure. Right: range of
iterations for KA and KŜ .

solution if the grid is coarse, i.e. for low values of n, but the number of iterations is
reduced as the grid is refined. This is suggesting that the actual generating function of
the Schur complement for this case departs more from the one in (4.28) than for the case
nη = nω = 3.

3D pipe with generic geometry To highlight the potential of the circular precondi-
tioner and to confirm its effectiveness even in cases very different from the one in which
it was computed, both in terms of the geometry of the duct and the degree of the polyno-
mials used to represent the velocity profiles, we consider a pipe in which the height and
width vary as two out-of-phase sinusoidal functions (see Fig. 4.19), and are respectively
0.0125 + sin(3πx/L)/200 and 0.0125 − sin(3πx/L)/200. The length of the channel, as well
as the inlet flow rate, are chosen as for the previous simulations, i.e. respectively equal to
L = 0.1 m and 5 × 10−6 m3/s. We performed the simulation with nη = nω = 4 to obtain a
good representation of the velocity profile, which departs substantially from a parabolic
profile.

In the right part of Fig. 4.19 we show the range of iterations of the solvers as a function
of the number of cells. We can observe that for coarse grids, more iterations are required
to reach the steady state solution than than in the previous tests until a sufficiently fine
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resolution is reached; on the other hand, the linear solvers still appear to be optimal and
their iteration numbers are still very low.

4.8 Numerical tests for a fully implicit discretization

In this section we present two tests considering a fully implicit discretization, i.e., in which
also the convective term is discretized implicitly by going to contribute to the (1,1)-block
of the matrix A, as explained in the section §2.6.3.
As for the explicit discretization of the scheme, also the fully implicit case is solved with
the help of the PETSc library, in particular we use the SNES module. The default non
linear solver is Newton and in order to solve a system of non linear equations it is necessary
to implement a routine that computes F (x), i.e., the product of the matrix A by the vector
of unknowns from which the known term of the system is subtracted, and a second routine
that computes the Jacobian connected to F (x). The preconditioner does not taking into
account the contribution of the convective term in the (1,1)-block of the system matrix
and it turns out to be the same as the one adopted previously in the case of an explicit
discretization of the convective term.

Flow between converging plates In this test we consider the case of a 2D domain
0.24 m long with a diameter decreasing linearly between 0.06 m and 0.0526 m, i.e. the
planes converge at an angle of one degree. The fluid flowing inside the geometry has
a density of 1000 kg m−1 and a viscosity of 1 Pa. To perform the simulation we have
considered different inlet boundaries conditions from the previous tests, i.e. we have not
set a fixed velocity profile at the inlet of the duct, but only a flow rate of 1.5 × 10−3 m s−3.
This makes that the boundary conditions involve the (2,1)-block of the matrix and turn
out to be a rank correction as explained in the remark 25. At the outlet boundary we set
a pressure of 0 Pa.

We observe in Table. 4.5 that, the range of iterations of KŜ does not change significantly
with n. Furthermore, by approximating the velocity with nη = 3 in the transverse direction,
the number of iterations to reach the steady state remains unchanged as the discretization
is refined. As the degree of the polynomial increases, more iterations and more Newton
iterations are required for coarse grids to reach the steady state solution, but optimality

nη = 3 nη = 4 nη = 5
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ steady
state
solver

KA KŜ

20 2 3 – 4 9 –10 5 3 – 4 9 – 11 5 3 – 4 9 – 10
40 2 2 –3 9 –10 5 2 – 3 8 –12 5 2 – 3 9 – 11
80 2 2 9 –10 5 2 – 3 9– 10 2 2 – 3 10 – 12

160 2 1 – 2 10 –11 2 1 – 2 11 – 13 3 1 – 2 10 – 12
320 2 1 – 2 10 –12 2 1 – 2 11 – 13 3 1 – 2 10 – 13
640 2 1 – 2 10 –12 3 1 – 2 11 – 13 3 1 – 2 11 – 13

1280 2 1 10–13 3 1 11 – 14 3 1 – 2 11– 13

Table 4.5: Range of iterations for KA, KŜ and to reach the steady state solution, in a 2D
converging plates, with different polynomial degrees in the transversal direction for the
velocity.
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nη = 6, α = 1 nη = 6, α = 2 nη = 6, α = 5
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ steady
state
solver

KA KŜ

20 5 3 – 4 9 – 11 5 3 – 4 9 – 11 7 2 – 3 10 – 11
40 2 2 – 3 10 – 11 2 2 – 3 10 – 11 7 2 – 3 10 –12
80 2 1 – 2 10 – 12 2 1 – 2 10 – 12 2 2 – 3 10 – 12

160 2 1 – 2 10 – 12 2 1 – 2 10 – 12 2 1 – 2 11 – 13
320 3 2 – 3 11 – 13 3 2 – 3 11 – 13 2 1 – 2 11 – 13
640 3 1 – 2 11 – 13 3 1 – 2 11 – 13 3 1 – 2 11 – 14

1280 3 1 – 2 11 – 14 3 1 – 2 11 – 14 3 1 11 – 14

Table 4.6: Range of iterations for KA, KŜ and to reach the steady state solution, in a 2D
converging plates, varying the angle of inclination of the duct walls.

is reached already with 80 cells.
These tests are carried out considering the preconditioner implemented in section §4.6,
i.e. without the contribution of the additional terms deriving from the derivatives of the
diameter of the duct, see §4.4. This is due to the fact that for such small variations of the
cross-section these terms are negligible.

Considering instead two more convergent planes, as the angle of inclination increases,
no substantial differences are observed, Table. 4.6 and the preconditioner, in the solver
KŜ , converges in an almost constant number of iterations when n increases. Moreover in
all the cases considered optimality is reached with a grid of 80 cells.

3D circular nozzle In this second test, again related to a totally implicit discretiza-
tion, we consider a 3D domain 0.24 m long with a circular cross section, whose diameter
decreases linearly from 0.06 m to 0.0526 m, i.e. the walls of the duct shrink by one degree.
The fluid flowing inside has a density of 1000 kg m−1 and a viscosity of 2.12 Pa. As in the
previous case, a flow rate of 5 × 10−5 m s−3 is chosen at the inlet boundary, while a pres-
sure of 0 Pa is set at the outlet. The solution is computed using different combinations of
transverse polynomial degrees nη and nω for the velocity, fixed nξ for the pressure variable.

As a result, the block circulant matrix generated by S ∆x(θ) defined in (4.28) is used
as a preconditioner in KŜ , properly shifted by a rank-one block circulant matrix and scaled
by a diagonal matrix whose entries are given by a sampling of the function that defines the
cross-sectional area of the pipe. As for the two-dimensional case, the number of iterations
of KŜ does not change significantly with n, in particular already with 80 cells the range of
iterations, relative to the solver KŜ reaches optimality, see Table. 4.7. It is also observed
that as the degree of the polynomials in the transverse directions increases, for sparse grids
more iterations are required to achieve convergence than using nη = nω = 3, but the range
of iterations relative to Newton remains limited in all cases.

Let us now consider pipes whose sides narrow at angles of 1, 2 and 5 degrees, so that the
outlet sections have diameters of 51.62, 43.23 and 18 mm respectively. In each simulation
we approximated the velocity with the same degree of the polynomial equal to nη = nω = 6
and we report the results in Table. 4.8. In pipes with small inclination angles, the solver
KŜ converges in an almost constant number of iterations at grid refinement, as does the
number of iterations for the solver KA.
As the angle increases, however, the preconditioner does not seem to perform as well, since
even though the iterations relative to the main solver remain limited, the range of iterations
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nη = nω = 3 nη = nω = 4 nη = nω = 5
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ steady
state
solver

KA KŜ

20 2 2 11–12 4 1–2 12–13 4 1–2 11–12
40 2 1–2 10–12 5 1–2 12–14 4 1–2 11–13
80 2 1–2 10–11 6 1–2 12–14 4 1–2 11–13

160 2 1–2 10–12 5 1–2 12–14 2 1–2 11–14
320 2 1 10–12 2 1–2 12–14 3 1–2 11–14
640 2 1 10–12 3 1–2 12–14 3 1–2 12–14

1280 2 1–2 11–12 3 1–2 12–15 1 1 12–15

Table 4.7: Range of iterations for KA, KŜ and to reach the steady state solution, in a
3D circular nozzle, with different polynomial degrees in the transversal directions for the
velocity.

nη = nω = 6, α = 1 nη = nω = 6, α = 2 nη = nω = 6, α = 5
n steady

state
solver

KA KŜ steady
state
solver

KA KŜ steady
state
solver

KA KŜ

20 4 1–2 11–12 6 1–2 11–12 11 3 5 13–16
40 4 1–2 11–13 7 1–2 12–14 12 1 5 8–17
80 2 1–2 12–14 8 1–2 12–14 16 1–2 14–17

160 2 1–2 12–14 3 1–2 12–15 23 1–2 14–17
320 2 1–2 12–14 3 1–2 12–15 31 1–2 15 –21
640 3 1–2 12–14 3 1 13–15 36 1–2 16–38

1280 3 1–2 13–15 3 1–2 13–20 1–2 12–44

Table 4.8: Range of iterations for KA, KŜ and to reach the steady state solution, in a 3D
circular nozzle, varying the angle of inclination of the duct walls.

relative to KŜ increases as n increases. This phenomenon could be related to two factors.
The first one is given by the fact that the preconditioner has been implemented without
the contribution given by the derivative terms of the duct diameter and therefore as the
inclination of the duct walls increases, these elements assume more weight than previously
considered geometries. The second factor is related to the implicit discretization, in fact
in this case in the (1,1)-block of the system there is also the contribution of the convective
terms, which are not considered during the implementation of the preconditioner. This
loss of accuracy of the KŜ solver will be studied in more detail in [60].
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Chapter 5

Numerical tests

This chapter is dedicated to the validation of the model introduced in chapter §2. In all
the simulations in this chapter, the convective term was discretised implicitly, resulting
in a fully implicit discretisation. The resulting system has been solved as explained in
the section §2.6.3. In particular, we will compare the numerical solution with some exact
velocity profiles obtained in pipes with particular characteristics, i.e. with constant radius
in both 2D and 3D cases or in the case of two converging or diverging planes. In more
complex geometries, where it is impossible to find a solution analytically, our model will
be compared with the solution obtained using OpenFOAM an open source CFD software,
[1, 69].

5.1 Flow in ducts with constant cross section

Getting analytical solutions for viscous flows is challenging due to the complex character
of the Navier-Stokes equation. Here, we look at a few classical situations of steady, lami-
nar, viscous, and incompressible flow for which the Navier-Stokes equation can be solved
exactly.

5.1.1 Flow between parallel plates

In the first test we consider a two-dimensional domain, consisting of two parallel plates,
placed at a distance d = 6 cm. An analytical solution can be obtained in this geometry;
in particular, following the same steps as in section §2.1.1, the following velocity profile is
obtained

ux = −
R2

2µ
(1 − r2

R2
) ∂p

∂x
. (5.1)

The fluid flowing between the two plates has density ρ = 1000 kg m−3 and dynamic
viscosity µ = 2 Pa s. With this choice of parameters we obtain a Reynold number of 0.5,
i.e. the flow is completely laminar. At the inlet we set a flow rate of 1 × 10−3 m2/s, imposing
that the divergence of a parabolic profile, with the desired flow rate, is zero. At the outlet
instead we set a null pressure. For all simulations, as an initial guess, a parabolic profile,
with zero divergence in the channel, and with the desired flow rate has been imposed.

Comparing the analytical velocity profile (5.1) with the numerical one, obtained by
sectioning the channel at the outlet with a plane perpendicular to the flow direction, we
observe in Fig. 5.1(a), that the two profiles coincide, unless machine precision.

79
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(a) (b)

Figure 5.1: (a): comparison between the analytical velocity profile and the numerical one
selected at the outlet of the pipe. (b): numerical pressure trend. Both figures refer to a
duct made up of two parallel planes placed at a distance of 6 cm. The numerical simulation
was performed out by taking a grid of n = 160 and as degrees of the polynomials in the
longitudinal and transverse directions of nξ = 1 and nη = 6 respectively.

We can see that the velocity profile is the same in every point of the duct as the
distance between the plates does not vary, therefore by integrating the pressure gradient
∂p
∂x from 0 to the length of the pipe L we obtain

∂p

∂x
= Pin − Pout

L
= ∆P

L
(5.2)

where ∆P is the pressure drop. The pressure gradient in the longitudinal direction turns
out to be constant and the pressure assumes a linear trend between the values at the inlet
and outlet boundary of the duct, Fig. 5.1(b).

Given the velocity profile it is possible to derive the volume flow rate. It is defined
as the quantity of fluid passing through a cross section in the unit of time and it can be
obtained by integrating eq.(5.1) between the extremes of the domain

Q = ∫
R

−R
ux(r) dr = −

2R3

3µ

∂p

∂x
= −2R3

3µ

∆P

L

This relationship relates the volume flow rate to the pressure drop inside the duct, which
in our case is equal to 26.666 Pa. The pressure obtained with the numerical model have
a relative error of 6.3 × 10−9, due to the precision with which the system is solved relative
to the Schur complement.

The simulation was performed taking nη = 6, but the solution does not change if we
select a polynomial of lower degree in the transverse direction, because already with nη = 3
it is possible to correctly represent a parabolic profile. Furthermore, the computation grid
consisted of 160 cells, but the same results are observed even with sparser grids.

5.1.2 Flow in a circular pipe

In this second test, we consider a straight circular tube 24 cm long, with radius R = 3 cm.
The fluid inside has the same density as in the previous test, i.e. ρ = 1000 kg m−3.
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(a) (b)

Figure 5.2: Left panel: representation of the numerical velocity profile in a straight
circular tube with a constant cross section. Right panel: comparison of exact (red) and
analytical velocity profile on a quarter of the cross section. The numerical simulation was
carried out by taking as degrees of the polynomials in the transverse directions nη = 6 and
nω = 6 and discretizing the computational domain with 160 cells.

In this type of geometry there is an analytical solution for the velocity profile, which has
been obtained in the section §2.1.1 and which we report here for simplicity

ux = −
R2

4µ
(1 − r2

R2
) ∂p

∂x
(5.3)

Comparing the exact velocity profile (5.3) with the numerical solution, obtained by sec-
tioning the pipe with a plane perpendicular to the direction of flow, as the degree of the
polynomial in the transverse directions varies, it is observed that the two velocity profiles
are almost identical for values of nη > 3 and nω > 3. This is due to the fact that taking
nη = nω = 3, there is only 4 degrees of freedom within each face of the discretization cells,
due to the boundary conditions. Increasing the degree of the polynomials in the transverse
directions increases the degrees of freedom within each face, which we recall are equal to
(nη − 1) (nω − 1), so the solution turns out to be more accurate. From the simulations we
observe that the numerical velocity profiles are coincident for degrees of polynomials in
the transverse directions greater than 3.
In Fig. 5.2 we compared the theoretical profile with the numerical one obtained with
nη = nω = 6 by discretizing with a grid of n = 160 cells.

Considering a fully developed laminar flow, the velocity profile (5.3) is parabolic with
a maximum at the centerline

umax =
R2

4µ

∂p

∂x
. (5.4)

In our case, for values of nη ≥ 4 and nω ≥ 4 the maximum velocity is 3.590 cm s−1 in line
with the value of the exact profile equal to 3.586 cm s−1.

Considering, instead the pressure drops, it can be obtained in the same way as in
the previous case, using the definition of the volumetric flow rate, which in the case of a
three-dimensional duct with a constant cross-section area is

Q = ∫
2π

0
[∫

R

0
r ux(r) dr] dθ = ∂p

∂x

R2

8µ
= ∆P R2

8µL
(5.5)
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This law is known as Poiseuille’s law and provides a relationship between the pressure
drop and the volumetric flow rate and viscosity of the fluid. There are two possible inter-
pretations: if we know the pressure drop we can compute the volume flow rate in the pipe;
otherwise, if we know the volume flow rate at the inlet face we can compute the pressure
needed to sustain the flow.
In the case we are analysing, the exact value of the pressure drop is ∆P = 81.18 Pa; in-
stead, with the numerical model, for nη ≥ 4 and nω ≥ 4, we obtain ∆P = 82.06 Pa. The
error we make on the calculation of the pressure drop is 1.03%.
It should be noted that for the flow between parallel plates the exact parabolic velocity
profile lies in the DG discretization space, while in this case the composition of a polyno-
mial basis profile in [0,1]3 and the cubic mappings from [0,1] to the cylindrical elements
does not contain the exact parabolic and radially symmetric velocity profile. As in the
case of two parallel planes at the same distance, the velocity profile remains unchanged in
the longitudinal direction of the duct, so the pressure is linear.
For a convergence test when varying nη and nω, see §5.2 and Table. 5.4.

5.1.3 Flow in a rectangular pipe

Let us now consider a 3D pipe with a constant rectangular cross section. In this par-
ticular type of geometry it is not possible to derive an exact analytical solution for the
velocity profile and the volume flow rate. An expression, based on Taylor’s expansion,
was, however, derived by Joseph Boussinesq in 1868, the fundamental steps of which are
given below; more details can be found in [53], [24].
Let us take a Cartesian coordinate system (x, y, z) whose origin is at the centre of the
rectangular section, located in the y − o − z plane, where the height of the channel is 2a,
and the depth, 2b, as in Fig. 5.3. Since the dimensions of the section of the pipe do not
vary, the velocity components in the transverse directions are zero, as already observed
for the previous cases. Consequently, the pressure gradient in these directions is also zero,
i.e. the pressure is constant over the sections and is linear in the longitudinal direction.

A B

C D

2a

2b

z

y

Figure 5.3: Representation of the inlet face of a channel with a rectangular cross-section,
positioned in the y − o − z plane.

Considering a Newtonian fluid, with laminar flow and fully developed, the general
equation of motion reduces to the following Poisson equation:

∂p

∂x
= µ (∂

2u

∂y2
+ ∂

2u

∂z2
) (5.6)

where u is the velocity component in the longitudinal direction. Defining τ = − 1

2µ
∂p
∂x , the

velocity can be written as
u = χ + τ(a2 − y2),
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then, substituting the expression just found into (5.6), we obtain

∂2χ

∂y2
+ ∂

2χ

∂z2
= 0. (5.7)

At the boundaries of the duct, we always impose non-slip conditions, i.e. the velocity is
zero, therefore

u = χ + τ(a2 − y2) = 0

and

χ = 0 along AB, CD (5.8)

χ = −τ(a2 − y2) along AC, BD (5.9)

From the first condition, all terms in χ must vanish when y = ±a, i.e. this condition is
satisfied by terms having the form

γ cos
(2 i + 1)πy

2a

where γ is a function of the z only and i is an integer. Substituting χ = η cos(my) in (5.7)

∂2u

∂z2
−m2γ = 0, (5.10)

where m = (2 i+1)πx
2a , from which we have

γ = An cosh(mz) +Bn sinh(mz).

Because of the symmetry due to the choice of reference system, we have Bn = 0; hence χ
must take the form

χ =
∞
∑
i

Ai cosh
(2 i + 1)πx

2a
cos

(2 i + 1)πy
2a

. (5.11)

This term must now satisfy the second boundary condition (5.9), so for simplicity substi-
tute y = 2aθ

π in the second boundary condition, and we obtain

χ = τ4a2 (θ2 − π2

4 )
π2

(5.12)

that must agree with (5.11) when z = ±b. By expanding the last equality with respect to
θ, it is possible to derive the coefficients Ai and obtain that

χ = 32τa2

π3
{cos θ − 1

33
cos(3θ) + 1

53
cos(5θ) +⋯} .

In particular, we observe that all coefficients with even indices are zero.
Substituting all the terms obtained in the expression for velocity u, we obtain

u(y, z) = 16a2

µπ3
(−∂p
∂x

)
∞
∑

i=1,3,5,...

(−1)(i−1)/2

i3
[1 − cosh(iπz/2a)

cosh(iπb/2a) ] cos(iπy/2a). (5.13)

Furthermore, the volume flow rate is given by the integration of the velocity profile with
respect to both transverse directions. The integral is straightforward, and finally we have

Q = 4 b a3

3µ
(−∂p
∂x

)
⎡⎢⎢⎢⎢⎣
1 − 192a

π5 b

∞
∑

i=1,3,5,...

tanh(iπb/2a)
i5

⎤⎥⎥⎥⎥⎦
(5.14)
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(a) (b)

Figure 5.4: (a):Comparison of the exact and numerical three-dimensional profile ob-
tained with polynomials in the sixth degree transverse directions, i.e. nη = nω = 6.
(b):Comparison of numerical velocity profiles varying the degree of polynomials in trans-
verse directions. The simulations involve a three-dimensional channel with a square cross-
section and a grid of n = 160 cells.

Pipe with square cross section Now we consider a channel with a square cross-
section; this turns out to be a special case of the one treated in the previous paragraph. It
can be seen that, for a given area, the square is the form of rectangular cross-section that
gives the maximum flow for a given pressure difference. By imposing a = b in the equation
(5.14), we obtain

Q = −0.562
b4

µ

∂p

∂x

To perform the simulation, we choose pipe long 24 cm, with a square cross-section of
side equal to 6 cm. Setting a flow rate of 5 × 10−5 m s−3, the dynamic viscosity is selected
equal to 2 Pa s, in such a way to obtain a Reynold number equal 0.5 and a laminar flow
as in the previous tests.

Comparing the analytical and numerical velocity profiles obtained with nη = nω = 6,
no differences on the shape are observed and the maximum values, obtained at the centre
of the pipe, result to be 2.898 m s−3 and 2.912 m s−3 respectively, Fig. 5.4(a). In this
geometry the profile does not turn out to be parabolic and, using third degree polynomials
in each transverse direction does not succeed in correctly representing the profile, which
turns out to be essentially the initial guess selected in the simulation, as already observed
for the circular section duct in the three-dimensional case. For fourth- and fifth-degree
polynomials the profile is essentially correct, although the value on the pipe axis is slightly
lower than the exact one, Fig. 5.4(b).
As we expect, the accuracy with which we compute the pressure drop correlates with the
accuracy with which we compute the velocity profiles. The Table 5.1 shows the values of
the pressure at the channel inlet varying the degree of the polynomials used to approximate
the velocity. We observe that for nη = nω = 6 the pressure drop is closer to the exact value
of 52.69 Pa. Moreover, as in the previous cases, since the cross-section of the channel is
constant, the pressure assumes a linear trend, instead it is constant in each cross-section.
By keeping the degree of the polynomial fixed and instead varying the number of cells, no
differences are observed either in the velocity profiles or in the pressure drop; the numerical
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nη = nω max u p inlet

3 0.03125 53.34
4 0.02914 52.70
5 0.02914 52.70
6 0.02912 52.69

exact 0.02894 52.69

Table 5.1: Axial velocity and pressure at the inlet of a 24 cm long three-dimensional channel
with a square section of side 6 cm as the degrees of the polynomials used to discretize the
velocity change.

method allows accurate solutions to be obtained even when using coarse grids.

5.2 Flow between diverging and converging plates

Let us now consider the case of a domain consisting of two non-parallel planes in which a
fluid flows from a source or sink located at the intersection of these two planes. This type
of flow is know as Jeffery-Hammel flow. Fig. 5.5 shows a longitudinal view of the duct, in
which the angle of inclination of each plane has been indicated with α.

inlet
r

α

θ

u(x, θ)

r

α

θ

u(x, θ)

Figure 5.5: Schematic representation in cylindrical coordinates of two converging and
diverging planes.

To determine a stationary flow, we take cylindrical polar coordinates (r, θ, x), with the
x-axis along the line of intersection of the planes. The Navier Stokes equations governing
the motion of the fluid are represented by (2.2). The symmetry of the problem lead to
assume that the velocity is only in the radial direction and that it depends on r and θ, i.e.

uθ = ux = 0, ur = u(r, θ)

Under these assumptions, the steady Navier-Stokes equations (2.2) in two dimensions
becomes

ρ(∂ur
∂r

ur) = −
∂p

∂r
+ µ [1

r

∂(rur)
∂r

+ 1

r2

∂2ur
∂θ2

+ ∂
2ur
∂2r

− ur
r2

] (5.15a)

2µ

r

∂ur
∂θ

= ∂p
∂θ

(5.15b)

1

r

∂(rur)
∂r

= 0 (5.15c)
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From the last equation, we observe that r ur is a function of the angle θ only. We can
define the following function

v(θ) = rur(r, θ)

v(z) = v(αz)
vmax

with z ∈ [−1,1].

Substituting the above expressions into (5.15) and eliminating p, we can obtain an ordinary
differential equation for the normalized velocity profile v(z)

v
′′′(z) + 2αRev(z) v′(z) + 4α2 v

′(z) (5.16)

where Re is a parameter related to the Reynolds number, with the following boundary
conditions

v(0) = 1, v
′(0) = 0, v(1) = 0. (5.17)

To find an approximate solution to the differential equation obtained, different numerical
methods can be used, in particular we apply the Banach contraction method (BCM),
based on the Banach contraction principle.
We start considering

v = f +L(v) +N(v) (5.18)

where L represents a linear operator, N indicates the non linear operator, f denotes a
known function. v is the unknown function, it is the solution for this equation and it will
be given by v = limi→∞ vi.
The successive approximations vi can be defined as follows

v0 = f (5.19a)

vi = v0 +L(vi−1) +N(vi−1), for i ∈ N, i > 1. (5.19b)

The sequence is convergent if (L +N)k has a unique fixed point, so, if it is a contraction
mapping for some positive integer k.

To compute the Jeffery-Hamel flow we choose f = 1 + a
2
z2, where a = v′′(0) and L = 0.

Isolating the term v
′′′

in the equation (5.16) we can define the non linear term as follow

N(v(z)) = −2αRev(z) v′(z) + 4α2 v
′(z).

If we integrate v
′′′ = N(v(z)) three times in the interval [0, z] we obtain an expression for

the normalized velocity profile

v(z) = 1 + a
2
z2 + ∫

z

0
∫

z

0
∫

z

0
N(v(t))dtdtdt.

For simplicity, according to the rule of reducing multiple integrals, the above integral will
be reduced to the following Volterra integral equation

v(z) = 1 + a
2
z2 + 1

2
∫

z

0
(z − t)2N(v(t))dt.

According to (5.19), the successive approximations of the solution are

v0 = 1 + a
2
z2 (5.20)

vi = v0 +
1

2
∫

z

0
(z − t)2N(vi−1(t))dt. (5.21)
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i α = 1 α = 2 α = 5

1 −1.99555618 −1.99153006 −1.98191827
2 −1.99555363 −1.99152105 −1.98188163
3 −1.99555363 −1.99152104 −1.98188158
4 −1.99555362 −1.99152104 −1.98188158
5 −1.99555362 −1.99152104 −1.98188158

Table 5.2: Values of a obtained by solving vi(1) = 0 for i = 1, . . . ,5 in the case of three
converging channels with different angles of inclination α = 1, 2 and 5 degrees. The
parameter Re is set equal 1.

Consequently, we can obtain several acceptable solutions by changing the values of α and
Re in our approximate solution. Since each vi turns out to be a polynomial whose degree
increases enormously as i increases and in particular, the degree of the polynomial i, degi,
is ⎧⎪⎪⎨⎪⎪⎩

degi = 2 degi−1 + 2 i ≥ 1

deg0 = 2

we decided to stop at i = 4, since we obtain a value of a with an error lower than 10−8.
This choice is due to the fact that solving vi(1) = 0 , given by the boundary condition,
yields a convergent value of a in all the cases we will consider, as we can see in the next
example (Table. 5.2).

Non-parallel planes as the angle of inclination varies One of the assumptions
necessary to derive the model is to consider pipes whose radius varies slowly. We are
therefore interested in investigating how accurately the model is able to compute the
velocity profiles of fluids flowing between two non-parallel planes as the angle of inclination
varies. Let us consider two planes initially placed at a distance of 6 cm and converging
at an angle of 1, 2, and 5 degrees. Considering a section 24 cm long, the heights at the
exit are respectively 51.62, 43.23 and 18 mm. The fluid flowing in the geometry under
consideration has a density of 1000 kg m−3 and a viscosity of 1 Pa s−1.

In order to compute an approximation of the velocity profile using eq. 5.21, it is nec-
essary to fix a value for the parameter a, which depends not only on the α angle, but also
on the parameter Re. This is related to the Reynolds number, which depends linearly
on both the characteristic length of the analysed phenomenon and the local velocity of
the fluid. In elongated channels with a non-constant radius, it is difficult to provide a
precise local definition of the Reynolds number, which is only used to determine whether
the flow is laminar or turbulent. Since we are interested in fully laminar flows, Re = 1
has been fixed. Therefore, evaluating v4(1), for the three angles under consideration, we
obtain the following values of a −1.99555362,−1.99152104 and −1.98188158, see Table. 5.2.
The value of a is not fixed, but depends on the fluid characteristics and on the geometry.
For example, considering the parameter Re = 50 and keeping the other characteristics of
the fluid unchanged, the following values of a are obtained −1.78024267, −1.584839 and
−1.12199 as the angle of inclination of the duct increases.
Once a velocity profile has been obtained, it is possible to compute the flow rate, remem-
bering that, at each point of the duct, it is the integral of the velocity over the area of the
section, so for all three geometries we have Q = 1.334 × 10−3 m3 s−1.
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α = 1

α = 2

α = 5

Figure 5.6: The left column compares the exact (dots) and numerical (solid line) velocity
profiles, obtained by sectioning the duct with planes perpendicular to the axis, at 0, 6, 12,
18 and 24 cm from the inlet. Numerical simulation is performed by fixing nξ = 1, nη = 6 on
a grid of 320 cells. The right column shows the pressure trend on the pipe axis for both
the exact and numerical solution.
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α PIn ex PIn num error UOut center ex UOut center num error

1 22.34 22.48 0.6% 3.870 ⋅ 10−2 3.860 ⋅ 10−2 0.42%
2 29.48 29.81 1.14% 4.630 ⋅ 10−2 4.590 ⋅ 10−2 0.89%
5 128.98 132.63 2.83% 0.111 0.109 2.15%

Table 5.3: Comparison of the exact values of pressure at the inlet and velocity on the
outlet axis of the duct with those obtained using the numerical model, as the angle of
inclination of the two planes varies. The relative errors committed with the numerical
solution were also calculated for each of the two fields.

The numerical simulation was carried out on a grid with n = 320 and setting nξ = 1
and nη = 6. In addition, the flow rate obtained above was set at the inlet and a Dirichlet
condition on the pressure was set at the outlet, i.e. p = 0 Pa.
Comparing the exact solution and the numerical one, it is observed that for α = 1 the
velocity profiles obtained with the numerical model are in line with the theoretical ones
and only towards the ends of the duct there are slight differences. In particular, as the
angle increases, the error committed on the computation of the maximum speed, at the
duct exit, increase as we can see in Table 5.3. Analysing the other velocity profiles,
obtained by sectioning the duct with planes perpendicular to the axis, in equal points
spaced from the inlet, that is at 6, 12 and 18 cm, it is observed that the numerical solution
is accurate and errors are committed, which increase as the angle increases, but are still
less than 2.5% for α = 5○.

Analysing the pressure, we can see, from the graphs in the right column of Fig. 5.6,
that the numerical model correctly represents its trend, even if the estimated value at the
input of each channel presents greater errors than the calculation of the speed, as can be
seen in the Table 5.3. Also for the pressure field, as the angle of inclination of the two
planes increases, the error committed with the numerical model grows.
The theoretical pressure was calculated using Bernoulli’s principle, which states that for
every increase in drift velocity there is either a simultaneous decrease in pressure or a
change in the potential energy of the fluid, not necessarily gravitational, i.e.

p + ρu
2
r

2
+ ρg h = constant

where u is the fluid flow speed at a point on a streamline, g is the acceleration due to
gravity, p is the pressure at the chosen point, ρ is the density of the fluid and h is the
elevation of the point above a reference plane.

The solution obtained by the numerical model does not change significantly with the
number of cells, and even with coarser grids the same results are obtained. On the other
hand, we can see that as the degree of the polynomials in the transverse direction in-
creases, the numerical solution becomes more accurate. Computing average 1-norm error
committed on the velocity profile half way into the centre of the channel, obtained by
selecting 1000 equally spaced points on the duct diameter, we observe in Table. 5.4 that
it reduces as the degree of the DG polynomials increases. The same behaviour is also
observed as the angle of inclination of the two parallel planes, of which the geometry under
examination is composed, increases, as previously observed, the errors committed in the
calculation of the numerical solution grow.

When solving a non-linear system, one of the major disadvantages is that one has to
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nξ = nη α = 1 α = 2 α = 5

3 3.37 ⋅ 10−5 4.43 ⋅ 10−5 1.88 ⋅ 10−4

4 2.72 ⋅ 10−5 4.23 ⋅ 10−5 1.78 ⋅ 10−4

5 2.37 ⋅ 10−5 4.07 ⋅ 10−5 1.76 ⋅ 10−4

6 8.75 ⋅ 10−6 4.03 ⋅ 10−5 1.50 ⋅ 10−4

Table 5.4: Average 1-norm errors in the computation of the velocity profile at the centre of
the channel as the degree of the polynomial in the transverse directions used to represent
the numerical solution varies. The simulation was carried out on a grid with 320 cells.

provide the Jacobian matrix to the non linear solver (SNES) in PETSc. The actual compu-
tation of this element is quite involved due to the flux term and approximating with finite
differences would be expensive, so it was decided to approximate it using the matrix A of
the system (2.24), i.e. without the contribution of the convective term in the (1,1)-block.
We report the output of the first time step in the case of a duct with walls inclined by one
degree:
ITER 0 SNES Function norm 2.417926703664e-02

ITER 0 KA Residual norm 2.417926703664e-02

KŜ converged due to RTOL in iterations = 11

ITER 1 KA Residual norm 8.635371890961e-08

ITER 1 SNES Function norm 8.635419071593e-08

ITER 0 KA Residual norm 8.635419071593e-08

KŜ converged due to RTOL in iterations = 13

ITER 1 KA Residual norm 1.216643304120e-14

ITER 2 SNES Function norm 1.430621367940e-10

The PETSc library provides a routine, selectable from the command line using the -snes mf operator

flag, which allows the Jacobian of the given matrix to be approximated using finite dif-
ferences. In the case of a pipe with walls inclined at an angle of 1 degree, no substantial
difference is found by solving the system with the two approaches just described. In this
case, the output is
ITER 0 SNES Function norm 2.417926703664e-02

ITER 0 KA Residual norm 2.417926703664e-02

KŜ converged due to RTOL in iterations = 11

ITER 1 KA Residual norm 3.272001588186e-06

KŜ converged due to RTOL in iterations = 13

ITER 2 KA Residual norm 1.307091422135e-08

ITER 1 SNES Function norm 3.275211360771e-06

ITER 0 KA Residual norm 3.275211360771e-06

KŜ converged due to RTOL in iterations = 13

ITER 1 KA Residual norm 1.312992102604e-08

KŜ converged due to RTOL in iterations = 12

ITER 2 KA Residual norm 2.605192305951e-10

KŜ converged due to RTOL in iterations = 12

ITER 3 KA Residual norm 4.666184698128e-12

ITER 2 SNES Function norm 4.954917773113e-12

Using finite differences, the solver KA associated with the system takes more iterations to
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converge because our preconditioner for the Schur complement is not any more optimal;
the number of iterations of the solver KŜ remains unchanged.
Approximating the Jacobian by means of the matrix A without the convective term causes
the preconditioner of the system relative to the pressure to be optimal, and this makes
it possible to fall below the tolerance set at 1 × 10−6 in a single iteration. Approximating
the Jacobian by means of finite differences has the advantage of solving the system more
accurately, in fact at the second iteration of the non linear solver a residual of 1 × 10−12 is
achieved compared to the other case where the residual is 1 × 10−10.
Only the first time step has been reported, as in the following ones no differences are
observed in the two methods used, moreover, similar behaviour is also observed for dif-
ferent geometries. Solving the system with the two approaches described above does not
show any substantial differences and the approximation of the Jacobian with the matrix
A without the non-linear term is therefore optimal and reduces the computational cost
with respect to the calculation using the finite differences.

5.3 Circular 3D converging nozzle with different angles of
inclination

Let us now consider truncated conical channels 24 cm long with a circular cross section
and an entrance diameter of 6 cm. The sides of the channels narrow at angles of 1, 2 and
5 degrees, so the outlet sections have diameters of 51.62, 43.23 and 18 mm respectively.
This turns out to be the generalisation of the 2D case treated above.
In this particular configuration, the solution obtained through the numerical model will
be compared with those obtained through OpenFOAM. When generating a simulation
with this software, particular attention must be paid to the creation of the geometry and
the grid. These two aspects can greatly influence the results obtained and affect the
convergence of the solution, in particular affecting the correctness of the pressure drops
inside the ducts. Two approaches can be taken. The first is to create an unstructured
grid of tetrahedra. This can be done using external software, such as Gmsh, [39], which
allows unstructured grids to be managed. The second approach is to create a grid that
takes account of geometry and is therefore more orthogonal than the previous one. In
particular, circular channels are divided into fine different regions. In the centre, a square
region is subdivided with a structured grid consisting of 24 cells per side. In the four

Figure 5.7: Hexagonal cross-sectional mesh configuration, with an inner square and outer
circle segments to converging pipe radius of 6 cm.



92 CHAPTER 5. NUMERICAL TESTS

Figure 5.8: Comparison between the pressure on the nozzle axis for the simulation obtained
with OpenFOAM and the numerical one, obtained with a grid of n = 80 cells and with
nη = nω = 6. The relative errors obtained on the pressure value at the duct inlet as the
degrees of the polynomials vary in the transverse directions are shown on the bottom right.
The trends of the errors are shown for each of the three geometries under examination.

remaining parts a grid was constructed whose cells have two sides parallel to the radii of
the truncated cone and the other two sides curved, with the same curvature of the grid
surface, as in Fig. 5.7. Each circular section element was subdivided in the transverse
direction by 24 cells. As for the longitudinal direction of the duct, a grid consisting of 192
cells was chosen so as to obtain cells as similar as possible to cubes.

Having constructed the geometry and defined the mesh inside, to carry out the simula-
tion in OpenFOAM we set a parabolic profile at the inlet with a flow rate of 4.96 × 10−5 m3 s−1

and at the outlet of the pipe we fix a pressure of 0 Pa. These boundary conditions were
chosen to obtain a result as similar as possible to the one produced with our code as the
only difference in that at the channel inlet, we do not make any assumption on the profile,
but only set a flow rate through the divergence equation. (see §2.3) Once the simulation
was obtained with OpenFOAM, we used Paraview to visualize the result and through its
tools, we represented the pressure trend on the duct axis. We can observe that the pressure
variation obtained with the numerical model is well aligned with the values obtained with
OpenFOAM, Fig. 5.8. The numerical simulation was carried out on a grid formed by 80
cells and taking nη = nω = 6. In particular, the relative errors committed on the pressure



5.4. NON NEWTONIAN FLUID BETWEEN PARALLEL PLATES 93

Figure 5.9: Average 1-norm error trends obtained by comparing the velocity profiles at
the centre of the channel, and divided the pipe diameter in 1000 equally spaced points,
as the degree of polynomial in the transverse directions varies. The numerical simulation
was carried out with a grid consisting of n = 80 cells.

estimate at the duct inlet result to be less than 2.5% for a duct with an inclination angle
of 5 degrees. As already observed for the two-dimensional case, it can be noted that as the
angle of inclination increases, the errors committed increase. In particular, approximating
the numerical solution by means of polynomials of degrees 6 in the transverse directions
gives errors of 1.3, 1.44 and 1.9% in channels inclined by 1, 2 and 5 degrees respectively.
If lower degrees are taken for the polynomials in the transverse directions, the error com-
mitted on the numerical solution increases, as we can see in Fig. 5.8. In particular, for
nη = nω = 3, the largest errors occur.

Turning to the velocity analysis, slight differences between the maximum speed, ob-
tained on the duct axis, can be seen in the areas near the duct inlet and outlet. Again
using the ParaView tools we have compared the velocity profiles at a cross-section half-
way into the channel. Fig.5.9 reports the error of the solution computed by our code with
respect to the OpenFOAM reference. We note that, as already observed for the pressure,
they decrease as the degrees of the polynomials in the transverse directions increase, but
the trend remains unchanged as the angle of inclination of the channel varies. On the
other hand, the maximum error committed increases, and is maximum in a duct with an
angle of 5 degrees, Fig.5.9.

The same simulations presented no differences in pressure trends or speed profiles by
refining or considering coarser grids.

5.4 Non Newtonian fluid between Parallel plates

Let us now consider the case of a non Newtonian viscous incompressible fluid flowing in
a channel of constant radius. Following the same procedure adopted for the Newtonian
case in the paragraph 2.1.1, it is possible to derive the exact solution for the velocity
profile even in the case where the viscosity is not constant. Let us consider a circular
pipe of constant radius R, whose longitudinal direction coincides with the x-axis, while
the transverse directions with the axes y and z. Given the nature of the geometry, it
is convenient to rewrite the equations in cylindrical coordinates and we can assume that
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Figure 5.10: Comparison between the exact velocity profile obtained using Casson’s model
and the numerical velocity profiles obtained using the Papanastasiou approximation at the
variation of parameter m, in two parallel planes. On the right, comparison between the
pressure trend always at the variation of m. The simulation was carried out on a grid
with n = 80 cells.

the transverse components of the velocity are zero. Substituting the Casson stress tensor
(1.14), into the only moment equation that turns out to be non trivial (2.2) we get

1

r

∂

∂r
(r (

√
µc∣γrz ∣ +

√
∣σ0∣)

2
) = ∂p

∂x

solving for ux by rearranging and integrating two times respect to r with the boundary
conditions, we obtain the exact velocity profile

ux(r) =
1

4µc

∂p

∂x
(R2 − r2) + σ0

µc
(R − r) − 2

√
2σ0

3µc

√
∂p

∂x
(R3/2 − r3/2)

Defining the critical radius rc =
σ0

∂xp
= Rσ0

σw
we can rewrite the velocity profile in a more

compact form

ux(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σw
2Rµc

((R2 − r2) + 2 (R − r) rc −
8

3
(R32 − r3/2) r1/2

c ) se rc ≤ r ≤ R
ux(rc) se 0 ≤ r < rc

(5.22)

Compared to the parabolic profile obtained for the Newtonian model, the Casson
model, as well its Papanastasiou approximation, present a more blunted velocity profile.
In the central zone of the pipe there is a nearly uniform velocity, while the velocity gradients
are confined to regions close to the wall.
We observe that, computing the limit for rc → 0, the velocity profile of the Casson model
tends to the parabolic velocity profile of the Newtonian model.

Let us consider a flow between two parallel plates placed at a distance of 6 cm from
each other. We are interested in simulating the stationary state of a visco-plastic fluid,
therefore non Newtonian, whose relation between the stress and strain tensor is given by
the Casson model. In the numerical model, in order to overcome the problems related
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m PIn num error

50 144.641 2.583%
100 147.11 0.92%
150 147.884 0.398%
200 148.256 0.148%
250 148.466 6.360 ⋅ 10−3%

Figure 5.11: Left: trend of average 1-norm errors on the exact velocity profile and the
numerical profile as the parameter m varies, in two parallel planes, obtained dividing the
pipe diameter in 1000 equispaced points; right: relative errors committed on the estimate
of the pressure at the duct inlet, again as m varies.

to the discontinuity of this model, the Papanastasiou approximation was used with the
following parameters: shear stress µc = 2 Pa, the stress level σ0 = 8 Pa s and density
ρ = 1270 kg m−3. The flow rate at the inlet was set at 3.5 × 10−4 m3 s−1 and the pressure at
the outlet at 0 Pa. In Fig. 5.10 we compare the solutions obtained for different values of m
which we recall controls the exponential growth of the yield-stress in the region where the
strain-rate is small. Comparing the exact velocity profile, obtained with Casson’s relation
(5.4), and the velocity profiles obtained with the numerical model, it is observed that as
the parameter m increases, the numerical profiles turn out to better approximate the exact
solution, Fig. 5.10. In fact, the errors committed in approximating the profiles decrease as
this parameter increases, as we can see in Fig. 5.11. The numerical solution was obtained
by fixing the degree of the polynomial in the transverse direction to 6 and taking a grid
of n = 80 cells.

The estimate of the pressure is also affected by the variation of m, in fact as this
parameter increases the pressure obtained tends to the exact solution of 148.47 Pa, Fig. 5.10
and the relative errors committed on the estimate of the value at the entrance of a 24 cm
long pipe, for m greater than 200 are less than 0.15%, as can be seen in table 5.11.

As already observed for the previous tests, the numerical solution, keeping both the
degree of the polynomial nη = 6 fixed, does not differ when refining the grid, so even for a
non Newtonian fluid, with coarse grids, accurate solutions are obtained.
By keeping the number of grid cells fixed at n = 80, by choosing m = 200 and by varying the
degree of the polynomial with which the numerical solution is approximated, we observe
that as nη increases, the error committed on the speed profile decreases and the resulting
numerical solution is closer to the exact solution. In particular it can be noted in Fig. 5.12
that for nη = 3 the numerical model is not able to modify the velocity profile with respect
to the parabolic one chosen as initial guess for the simulation, since of course only two
velocity shape functions are available in the transversal direction. On the other hand, for
nη ≥ 4 the profiles tend to flatten in the central area of the pipe, in line with the exact
velocity profile.
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Figure 5.12: Left: comparison of velocity profiles as the degree of the polynomial changes
in the transverse directions. The simulations were carried out in two parallel planes using
a grid of n = 80 cells for a non Newtonian fluid. Right: Average 1-norm errors made on the
velocity profile as a function of nη, obtained dividing the pipe diameter in 1000 equispaced
points.

5.5 Straight pipe with circular and rectangular cross-section
for a non Newtonian fluid

Let us now consider the case of a non Newtonian fluid, inside a three-dimensional pipe,
24 cm long, with a circular cross section of radius 3 cm. The fluid is always visco-plastic
and the relation between tress and strain tensor is given by the Papanastasiou model with
parameters µc = 2 Pa, σ0 = 8 Pa s and density ρ of 1270 kg m−3, (see algorithm A.6). The
solution of the numerical model was compared with the one obtained using OpenFOAM.
This software includes a library of models to represent the different relationships between
the viscosity and the stress tensor. For Newtonian fluids, where µ is constant, it is sufficient
to indicate the value of µ

ρ . In the case of non Newtonian fluids, there are a number of
models to represent fluids with different rheological characteristics, including the Bird-
Carreau model, the Power Law model and also the Casson model. Furthermore, it is
possible to specify viscosity as a function of strain rate at run-time. In our specific case,
even though the Casson model is present, we decided to implement the Papanastasiou
relations directly, in order to obtain the most easily comparable results with our numerical
method.
As boundary conditions in OpenFOAM, a Dirichlet condition has been set on the outlet
pressure of the pipe, i.e. equal to 0 Pa, while at the inlet a parabolic velocity profile has
been set with a flow rate of 4.96 × 10−4 m3 s−1. In our numerical model, on the other hand,
we fixed the same condition at the outlet on the pressure, while at the inlet we have set
only the flow rate without adding constraints on the velocity profile; instead as an initial
guess we took a parabolic velocity profile, with the desired flow rate and imposed zero
divergence in the pipe.

Since the pipe has a constant radius, the pressure inside has a linear trend, as can
be observed in Fig. 5.13. In the OpenFOAM simulation, near the entrance of the pipe
the pressure has a non rectilinear trend, this is due to the fact that imposing a velocity
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Figure 5.13: In the left panel the velocity profiles in a 3D circular channel for a non
Newtonian fluid are compared. The right panel shows the pressure trend on the channel
axis for both the simulation performed with OpenFOAM and the numerical model. The
numerical simulation is obtained by taking nη = nω = 6 on a grid of 80 cells.

Figure 5.14: In the top left panel, comparison between the velocity profiles obtained in
the second half of a 3D square pipe with constant side in the case of a non Newtonian
fluid. The upper right panel shows the pressure trend on the pipe axis. In the bottom are
represented the trends of the maximum velocity at pipe centre (left) and at 0.01 mm (right)
both for the simulation with OpenFOAM and for the numerical model. The numerical
simulation was carried out by taking nη = nω = 6 on a grid of 80 cells.
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Square cross section Circular cross section

nη = nω

average
1-norm
error
on u

relative error
max velocity

average
1-norm
error
on p

average
1-norm
error
on u

relative error
max velocity

average
1-norm
error
on p

3 2.39 ⋅ 10−2 0.24 7.714 1.63 ⋅ 10−2 0.15 9.635
4 1.83 ⋅ 10−3 1.90 ⋅ 10−2 4.666 3.92 ⋅ 10−3 4.87 ⋅ 10−2 10.096
5 1.99 ⋅ 10−3 2.71 ⋅ 10−2 5.294 4.57 ⋅ 10−3 5.78 ⋅ 10−2 8.734
6 7.52 ⋅ 10−4 5.70 ⋅ 10−3 4.974 2.18 ⋅ 10−3 2.32 ⋅ 10−2 9.003

Table 5.5: Errors in the case of both circular and square ducts on the velocity profile at
pipe centre, on the maximum velocity and on the pressure at pipe centre. Note that the
exact values for pressure are in 103 Pa range (Fig. 5.14).

profile at the inlet, in this area the flow is not developed. This behaviour does not occur
in our numerical model, because at the inlet a velocity profile is not fixed, but impose only
the volume for the flow rate and, therefore, the flow is developed in every point of the
pipe. Analysing the velocity profiles, both have a zone in the centre of the pipe where the
velocity is constant. In the solution obtained with OpenFOAM this value is 0.3087 m s−1,
while in the one obtained with the numerical model this value is 2.35% higher.

As it was done in the case of a Newtonian fluid, we decided to test the numerical
model also on a pipe with a cross section different from the circular one. We therefore
considered a channel, 24 cm long, with a square cross-section of side 3 cm. The rheological
characteristics of the fluid, as well as the conditions at the boundaries, necessary to carry
out the simulation, are the same as in the previous case.
In this type of geometry the error committed by the numerical model is lower than in
the previous geometries with circular cross-section. Representing in fact the trend of the
maximum velocity, obtained on the axis of the pipe, we observe in Fig. 5.14 that, in
the section in which the flow is developed, OpenFOAM estimates a value of 0.251 m s−1

instead of 0.2533 m s−1 obtained in the numerical model, therefore the error committed is
only 0.7%. Furthermore, since the pipe has a larger cross sectional area than the circular
pipe, the maximum velocity is lower. In the third panel of Fig. 5.14 we can observe that,
in a rectangular or square section pipe, the initial area near the inlet of the pipe where
the flow is not developed and the velocity profile passes from the parabolic form to the
developed profile, is longer than in a circular section pipe. Comparing the velocity profiles,
in the second half of the pipe, where the fluid is developed, both simulations present the
classic flattened shape typical of a visco-plastic fluid, and using the numerical model it is
possible to represent this profile in an optimal way. The numerical simulation was carried
out using a grid of 80 cells and no variation in the solution is observed when using grids
with a different number of cells.
Looking at the pressure, it is linear as the pipe radius remains constant. At the inlet, the
value estimated by OpenFOAM is higher than that obtained with the number model, but
this is due to the different inlet boundary conditions in the two simulations. We can also
see that in each transverse section of the pipe the pressure is constant.

For both geometries, sixth degree polynomials were used in both transversal directions
to approximate the velocity in the numerical simulations. Refining the grid, no changes are
observed in the obtained solution, on the contrary, keeping fixed nξ = 1 in the longitudinal
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Figure 5.15: Velocity profiles, obtained by sectioning a straight pipe at the centre, varying
the degrees of the polynomials in the transverse directions. On the left in the case of a
circular pipe section, on the right for a square pipe section.

direction and varying nη and nω, it results that as the degree of the used polynomials
increases, the average errors committed both on the pressure and on the velocity profile,
selected in the centre of the pipe, decrease, Table 5.5. In particular, for nη = nω = 3 the
velocity profiles do not change with respect to the parabolic initial guess, Fig. 5.15; this is
because approximating the velocity profile with only 4 degrees of freedom is not sufficient
to represent the profile correctly. In the case of a circular duct, the errors committed on
the velocity profile are lower than those committed in a square duct. This is due to the
fact that in a circular pipe the profile is more similar to the parabolic one set as initial
guess, except for the central zone where it has a constant velocity. In this geometry the
error committed is mainly localised in this area, and the maximum velocity obtained with
the numerical model presents greater errors than in a pipe with a square cross-section.
On the other hand, when analysing the pressure errors, they do not differ significantly
depending on the geometry used and decrease as the degree of the polynomials used to
discretize the velocity increases.

5.6 Circular 3D converging nozzle with different angles of
inclination for non Newtonian fluid

Let us now consider the case of truncated cones with sides inclined by 1, 2 and 5 degrees.
The aim of this test is to investigate how accurately the numerical model is able to rep-
resent velocity profiles and pressure trends as the angle of inclination varies, even for a
non Newtonian fluid. Such an extension of the numerical model needs in fact the same
assumptions adopted for the Newtonian case, in particular the ducts must have radii that
vary very slowly.

The numerical solution has been obtained with a grid of 80 cells in the longitudinal
direction and taking polynomials of degree 6 in both transverse directions. Recall that
the numerical model does not need to discretize the geometry in these directions as well
and that each cell is therefore a portion of the pipe. The numerical solution was compared
with the one obtained using OpenFOAM. To generate the solution with this software, the
mesh described in section 5.3 was used, consisting of 24 cells in each transverse direction
of the pipe and 192 cells in the longitudinal one. The parameters in the Papanastasiou
relation (1.15), for the non Newtonian fluid, are the same as those used for the previous
tests and the flow rate at the inlet of the duct has been fixed at 5 × 10−4 m3 s−1.

In Fig. 5.16, we can observe in the central zones of the pipe for α = 1 the velocity
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Figure 5.16: In the left column we compare the numerical velocity profiles and those
obtained with OpenFOAM in truncated cones as the angle of inclination varies, in the
case of a non Newtonian fluid. These profiles were obtained by sectioning the pipe at the
centre (12 cm) and at the outlet (24 cm) by means of a straight line perpendicular to the
axis of the channels. The right column shows the pressure trend on the pipe axis, as the
angle of inclination of the channel walls varies. In all geometries the numerical solution
is obtained by approximating the velocity with sixth degree polynomials in the transverse
directions on a grid of 80 cells.
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α error outlet velocity P exact at 4 cm P numerical at 4 cm error pressure

1 2.54 1,789.68 1,815.12 1.42%
2 3.22 2,552.05 2,586.6 1.35%
5 5.52 20,481.5 20,967.2 2.34%

Table 5.6: The table shows the errors made on the velocity profile at the exit of the pipes
and on the estimate of the pressure at 4 cm from the entrance of the pipes, varying the
angle of inclination of the pipe walls.

profiles, obtained with the numerical model, are in line with the theoretical ones. These
profiles are obtained by sectioning the pipe with straight lines perpendicular to the axis
along a transverse direction.
We point out that the differences between the solution closed to the entrance are due
to the fact that the OpenFOAM solutions are computed imposing a parabolic profile at
the inlet, while our scheme imposes only a value for the inlet flux and computes a more
accurate velocity also close to the inlet.
As the angle of inclination of the pipes increases, the errors committed on the outgoing
velocity profiles increase, as can be seen in Table 5.6, while the profiles in the central area
are practically identical to the theoretical ones.
Analysing the pressure trend we notice that it results to be constant in every transverse
section of the ducts, moreover the numerical model well represents the trend on the axis,
Fig. 5.16. In the area close to the duct inlet the theoretical and numerical values present
differences due to the different boundary conditions imposed on the velocity. The table 5.6
shows the pressure values at 4 cm from the pipe inlet, i.e. in the area where the flow
is developed in all the geometries under examination, we can see that as the angle of
inclination of the pipe walls increases, the error on the pressure estimate increases, but
are still acceptable for many applications in view of the very low cost of the simulations
when compared to full 3D computations.

5.7 Curved pipe with constant radius for Newtonian and
non Newtonian fluid

After Luchini’s work [55], in ducts of slowly varing cross-section when the flows are laminar,
velocity profiles can be obtained as a correction of the Poiseuille profile in ducts of constant
radius. In the case of channels whose axis does not turn out to be straight it is not possible
to apply this technique. The numerical model developed in chapter §2 is instead able to
represent both the velocity profiles and the pressure trend, in pipes that present changes
of direction.

Let us consider a square-section pipe with a side of 3 cm, which presents an angle of
curvature of 60 degrees; the axial length of the pipe is 24 cm, therefore the radius of cur-
vature is about 22.92 cm. The simulation was carried out for both a Newtonian and a non
Newtonian fluid. In the first case the fluid has a density of 1000 kg m−3 and the viscosity
is constant at every point of the duct and is equal to µ = 2 Pa. The non Newtonian fluid
is visco-plastic with a density of 1270 kg m−3, while the parameters in Papanastasiou’s
relation (1.15) were fixed at µc = 2 Pa, σ0 = 8 Pa s and m = 200.
The numerical solution was compared with that obtained by OpenFOAM. In both cases a
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Figure 5.17: The panel on the left shows the pressure trend in a square curved duct,
in the case of a Newtonian fluid. In the panel on the right, we compared the velocity
profiles obtained with the numerical model and with OpenFOAM at the exit of a duct.
The numerical solution was performed with sixth degree polynomials in the transverse
directions on a grid of 80 cells.

Dirichlet condition on the pressure of 0 Pa was set at the pipe outlet, while at the duct in-
let, in the open source software, a parabolic profile was fixed in both transverse directions
with a flow rate of 2.5 × 10−5 m3 s−1 for the Newtonian fluid and 1.6 × 10−5 m3 s−1 in the
non Newtonian case, while in the numerical model only the flow rate was fixed without
adding constraints on the velocity profile. In figures 5.17 and 5.18, we can observe that in
both cases the profiles result to be almost identical; these profiles have been obtained by
sectioning the pipe with a straight line connecting two opposite vertices on the exit face
of the duct.
In the section of the pipe where the flow is developed, the error committed by the nu-
merical model is slightly greater than in the previous cases and the pressure obtained
is underestimated with an error of 6.5% for the Newtonian fluid and 7.4% in the non
Newtonian case.
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Figure 5.18: Comparison of the velocity profiles obtained with the numerical model and
with OpenFOAM at the outlet of a curved pipe with constant square cross section in the
case of a non Newtonian fluid. The numerical solution was carried out with sixth degree
polynomials in the transverse directions on a grid of 80 cells.
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Chapter 7

Biomedical application

Computational fluid dynamics (CFD) is an increasingly popular tool in the biomedical
field. In particular, CFD techniques have been used to analyse complex physiological
flows, such as airflow in the pulmonary system or the dynamics of blood flow. Nowadays,
there is a growing interest in applying these methods in cardiovascular medicine as they
can be very useful in understanding circulatory disorders. CFD-based techniques are used
to construct complex representations of the cardiovascular system in health and disease.
CFD modelling is a new field within cardiovascular medicine, which improves diagnos-
tic assessment, device design and clinical studies. It can predict physiological responses
to intervention and computed previously unmeasurable haemodynamic parameters, and
CFD modelling enables investigation of pressure and flow fields at a temporal and spatial
resolution unachievable by any clinical methodology.

The study of unsteady flows in blood arteries with either a blockage or dilatation is
currently an active topic of blood flow research. One of the most common abnormalities in
blood circulation is stenosis, which is a partial occlusion of an artery. It is well understood
that once a stenosis forms, blood flow is considerably altered, and fluid dynamic variables
play a key role as the stenosis progresses. This phenomenon can be caused by stiffening of
the arteries, where fatty deposits accumulate on the arterial walls, or by abnormal growth
of muscle tissue. On the other hand, aneurysm is a pathological dilatation of a blood vessel
which carries blood from our heart to the periphery and occurs when the mechanical stress
acting on the inner wall exceeds the resistance to rupture of the diseased aortic tissue. The
term pathological dilatation is used to distinguish it from physiological dilatation of the
aorta, the process whereby the size of this blood vessel increases with age, by no more
than 0.7 mm per decade of life. The abdominal aorta is defined as aneurysmal when its
calibre is 50% greater than the calibre of the aorta immediately proximal to the dilatation.

The aorta is the largest and most important arterial vessel in the human body and
has a blood-carrying capacity of approximately 4 − 5 litres per minute. It originates
directly from the left ventricle of the heart and, thanks to its countless branches, called
systemic arteries, spreads oxygenated blood to every anatomical district. In particular,
in its first section it heads upwards (ascending aorta), then backwards (aortic arch) and
then downwards (descending aorta), taking the name first of thoracic aorta and then of
abdominal aorta. It finally ends at the level of the fourth lumbar vertebra, where it forks
into the two iliac arteries. The systemic arteries, on the other hand, are the branches of
the aorta that carry blood through the collateral branches of the aorta into the chest and
abdomen and through the large arterial vessels that originate from the aorta itself into
the more peripheral parts of the body such as the head and the upper and lower limbs.
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The section we will be looking at in our analysis is the abdominal aorta, located at
the level of the umbilicus, in front of the spine. In general, the calibre of the vessel in
this section is about 2 cm and gradually decreases to about 1 cm, near the bifurcation in
the iliac arteries. An Abdominal Aortic Aneurysm (AAA) is defined as the aortic bulge
reaching at least 3 cm in diameter and an aneurysm is considered large when it reaches a
diameter of at least 5.5 cm. An abdominal aortic aneurysm is one of the major causes of
death in patients over 50 years of age. The health problems stem from the fact that, once
dilated, the vessel wall weakens and can easily rupture; if ruptured, the resulting blood
loss can be massive and in 90% of cases leads to death. In addition, even if it does not
rupture, a large aneurysm can still impair the proper blood circulation and lead to the
formation of blood clots or thrombi.
Conversely, in an abdominal stenosis, the diameter of the duct may even be halved, causing
poor blood flow to other areas of the body. This condition is very serious, especially if
large arteries are involved, as it can severely damage organs and limbs. The onset of both
diseases is favoured by several factors, such as high blood pressure, ageing, cigarette smoke
or incorrect nutrition.

When performing a blood flow simulation, it is important to consider two important
aspects: the first is the definition of the type of fluid and the second is the geometry.
Regarding the first point, due to the complexity of the phenomenon in many studies, blood
has been considered for simplicity as a Newtonian fluid [33], despite the fact that blood
is a non Newtonian fluid with a shear-thinning nature. In recent years, numerous studies
have compared the behaviour of different types of fluids with experimental data from
patients, and they have suggested that appropriate non linear viscosity models should
take an account of the key factors in hemodynamics simulations [64, 52], because they
are very important in diagnosing the onset of different circulatory disorders. Such shear
rate dependent-viscosity models have been proposed in literature, most commonly using
Carreau-Yasuda, Power law or Casson models. Regardless, blood viscosity depends on
several factors such as red blood cell content and plasma viscosity. In contrast, other
studies have suggested that the non linear effect is negligible in large arteries such as
abdominal arteries [30, 2].
We are interested in investigating the non linear effect on hemodynamics factors and to
represent as many fluid characteristics as possible and in particular, using the Casson
model, we can reproduce not only the shear thinning behaviour but also the yield stress
of the blood. The parameters used in the simulations are those in the article [40, 12]
summarised in Table 7.1.

The second factor that must be considered when proceeding with a simulation is the
type of geometry that is used. Some studies focus their attention on two-dimensional case
studies. Naturally, this type of simulation is not realistic and therefore less meaningful
in terms of the actual physiological behaviour of the human cardiovascular system. In
preliminary studies, it is therefore preferable to work with three-dimensional geometries

Parameters for the blood

density ρ = 1060 kg m−3

shear stress σ0 = 0.004 Pa
viscosity µ0 = 0.004 Pa s

m 100

Table 7.1: Parameters used in Casson’s model to represent blood.
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Figure 7.1: The numerical pressure is depicted in grey scale in the top panel, while the
streamlines are coloured according to the numerical velocity scale.

Figure 7.2: Schematic representation of an aortic aneurysm obtained by joining two sec-
tions of pipe with a constant cross-section and two nozzles that are respectively diverging
and converging. Left panel: the pressure trend is represented in the case of the numerical
model and with OpenFOAM simulation. Right panel: trend of the velocity at duct centre
is shown in both simulations.

and represent the structure of the blood vessels in an idealised manner, i.e. by means of
circular ducts with more or less constant cross-sections. Such simulations can be used as a
preliminary study for subsequent mesh generation, or to perform other simulations such as
those involving extracorporeal circulation. They can also provide an initial dataset from
which to apply Reduce Order Method (ROM) techniques.

Idealized aneurysm consisting of two nozzles In order to represent an idealized
aneurysm, we started by joining four elements, each one 3 cm long: a first element with a
constant circular section and a diameter of 1.1 cm, a second element consisting of a diver-
gent nozzle with a maximum diameter of 2.2 cm, a third section consisting of a converging
nozzle which joins a last element with a circular section and a constant radius of 1.1 cm.
To represent the viscous character of the blood we have used the relation of Papanastasiou
(1.15) with the parameters shown in the Table. (7.1). We set a flow rate of 1 × 10−6 m3 s−1

at the inlet of the duct and a pressure of 0 Pa at the outlet.
In this setting we observe in the top panel of Fig. 7.1 that no recirculation is formed in
the central zone of the duct corresponding to the union with the two nozzles, where the
geometry assumes the maximum amplitude. This phenomenon can be observed through
the streamlines, curves at each point tangent to the velocity vector, always represented in
the figure.
In order to compare the numerical solution we reproduced the same situation with Open-
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Figure 7.3: The numerical pressure is depicted in grey scale in the top panel, while the
streamlines are coloured according to the numerical velocity scale.

FOAM, in which the same blood parameters were set and the Papanastasiou relation we
implemented was used (see Algorithm Appendix §A.6). As input we set the velocity profile
obtained through the numerical model once the steady state was reached.
Comparing the numerical simulation with the one obtained by OpenFOAM, we observe
in Fig. 7.2 that the pressure, in the numerical model, at the connection points of the four
elements, presents small oscillations. On the other hand, the pressure trend on the axis of
the geometry is well represented.
As far as the velocity is concerned, the greatest differences are always observed at the con-
nection points between the various pipe sections. In particular, the axial velocity estimated
by OpenFOAM is lower than that obtained by the numerical model in the connections
between the nozzle sections and the constant radius elements, while it is slightly higher
near the central area of the duct where the maximum diameter is found, as we can seen
in Fig. 7.2.

Idealized aneurysm with smoothly varying radius In order to represent a situation
more similar to a real case we have represented an aneurysm by means of a starting and
an ending section, each one 3 cm long, with a circular section and a constant diameter
of 1.1 cm, instead the two central sections have been replaced by a section whose radius
varies sinusoidally and reaches the maximum amplitude in the middle of the duct with a
diameter of 2.2 cm.
In this new geometry, the pressure no longer fluctuates at the points where it connects
the individual sections, and its course along the duct axis continues to be in line with
that obtained in OpenFOAM, as we can see in Fig. 7.4. In order to represent this type of
geometry in OpenFOAM we have taken advantage of the possibility of defining different
types of connection between points. In particular, the curve represented by sin(x) was
approximated by a spline passing through 20 equally spaced points.
With regard to the velocity, differences are observed only in the central zone of the duct,
Fig. 7.4. The numerical model estimates a lower maximum velocity than that obtained
with the simulation carried out in OpenFOAM. In addition, in this geometry, where the
connections between the individual elements are smoother, no abrupt changes in axial
velocity are observed, compared with the previous simulation.
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Figure 7.4: An aortic aneurysm is created by combining two pieces of conduit with
a constant cross-sectional area connected by a section whose radius varies with sin(x).
Left panel: comparison of the pressure trend in the numerical numerical model and in
OpenFOAM Right panel: A central section of the duct shows the change in velocity. Above
is the solution obtained with the numerical model, below that obtained with OpenFOAM.

Idealized stenosis Similarly, we compared the simulation obtained with our numerical
model with the OpenFOAM solution in the case of an idealised stenosis. The geometry is
obtained by joining different elements in a similar way as in the previous cases. The first
and last sections, 3 cm long, are formed by two circular ducts with a constant diameter of
2.2 cm. These elements are joined by a section of circular duct twice as long which tightens
as sin(x) and reaches its minimum in the centre of the duct, forming a diameter of 1.7 cm.
The simulation was carried out by always setting the blood parameters in Table. 7.1 and
a flow rate of 1 × 10−6 m3 s−1 was set as input to the numerical model.
In order to carry out the comparison simulation with OpenFOAM, also in this case, the
numerical velocity profile was set in input at the input edge obtained once the steady
state was reached, while in output a pressure of 0 Pa was set. As for the aneurysm
cases described above, the axial pressure at the duct obtained with the numerical method
coincides with that of the simulation carried out with OpenFOAM and only some very
little differences can be seen in the first half of the pipe, Fig. 7.6.
On the other hand, there is no recirculation when analysing the streamlines, a sign that
the flow is laminar even in the case of a geometry with bottlenecks, as we can see in Fig. 7.5

Figure 7.5: The numerical pressure is depicted in grey scale in the top panel, while the
streamlines are coloured according to the numerical velocity scale.
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Figure 7.6: A stenosis is created by combining two pieces of conduit with a constant
cross-sectional area connected by a section whose radius varies with sin(x). Left panel:
comparison of the pressure trend in the numerical numerical model and in OpenFOAM
Right panel: A central section of the duct shows the change in velocity. Above is the
solution obtained with the numerical model, below that obtained with OpenFOAM.

As expected, the maximum velocity is observed in the central part of the geometry. In
this section, the two simulations show differences in the maximum velocity value; in the
numerical model, the velocity is higher than in OpenFOAM. No differences are observed
in other areas of the geometry, Fig. 7.6.

Simulation on real geometries As an alternative to considering idealised geometries,
patient-specific geometries can be used. These can be reconstructed on the basis of im-
ages obtained from examinations such as PC-MRI (Phase-Contrast Magnetic Resonance
Imaging) and CT (Computed Tomography), which show the detailed appearance of the
aorta and other arterial vessels branching off it. The main difficulties consist in obtaining
this type of geometry using medical devices. On the other hand, this simulation has the
advantage of being patient-specific.
Four examples of abdominal aortic aneurysms are shown in Fig. 7.7. The geometries were
reconstructed from medical images. Data obtained from this images were kindly provided
by research group of Prof. A. Iollo. In particular, for each case, the dataset consists of
the coordinates of a number of points in the centerline and for each point, a Frenet frame
of tangent, normal and binormal versors to the centerline, and a description of the shape
of the cross section consisting of Fourier coefficients.
In our code, we have developed a function that takes as input the dataset and returns the
geometry of the duct. For each point on the centerline a Frenet tern associated with it is
constructed, the plane perpendicular to the tangent verse is constructed and 8 equispaced
points are selected on the profile obtained from the intersection between the plane and
the geometry. The surface of the aneurysm is then represented by eight lines that join the
entry face with the exit face. The developed function reads in input the points relative to
the centerline and those selected on the edge of the geometry and reconstructs the various
elements by generating an interpolating spline using the ALGLIB library, [11]. The cen-
terline is then subdivided into the number of cells of the grid and for each discretization
cell, which in our almost uni-dimensional discretization coincides with a section of the
duct, 27 points are selected: 9 on the first face of the cell, 9 in the centre and 9 on the
final face. The small number of points in each section means that the geometries will not
coincide with those obtained from the reconstructed images. In order to obtain greater
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Figure 7.7: Representation of four aortic aneurysms.Pressure is represented by the
greyscale, while the colorbar is for velocity. It is represented by streamlines and two
velocity profiles are highlighted in yellow.
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precision, it is necessary to take a map Fi from the reference system to the physical one
which has a greater number of elements.
In each of the simulations we suppose that blood is pushed into the aorta with a flow
rate of 1 × 10−6 m3 s−1 and it we assume that the arterial walls do not move. The flow is
laminar, in fact the streamlines shown in Fig. 7.7 do not change direction. If we were to
increase the velocity we would obtain recirculation zones, but the numerical model imple-
mented is not able to represent these elements correctly.
We stress that the simulations shown in Fig. 7.7 have been computed in twenty minutes
by a serial code, with is very competitive with respect to a full 3D computation. Our quasi
1D-model can thus be considered to compute quickly solutions and create databases in
an offline pre-processing phase in order to apply ROM techniques and to be able to solve
during the online phase a new problem that contains different parameters than those used
in the previous phase.



Chapter 8

Conclusions

In this thesis we have proposed a new numerical method to solve Newtonian and non
Newtonian incompressible flows in elongated domains. In fact, the key idea of our ap-
proach is to exploit the domain characteristics to derive a quasi-one-dimensional model
thus avoiding the computational cost of a three-dimensional solution.
The geometry is discretized only along the longitudinal component of the flow and each
control volume is therefore a section, of length ∆x, of the whole channel. It is then as-
sumed that the transverse components of the velocity are null and consequently that also
the transverse derivatives of the pressure are zero. This is equivalent to saying that the
pressure is constant on each face of the computation domain and depends only on the
longitudinal coordinate.
Observing also that transversal derivatives of the longitudinal velocity determines to a
large extent the pressure drop, in order to obtain an economic numerical model we have
chosen to discretize with the Discontinuous Galerkin (DG) technique with a staggered
grid in order to have great freedom in the choice of the discretization spaces. The use of
a staggered grid follows the ideas of classical finite difference schemes for incompressible
Navier-Stokes equations, but it is not yet widespread in the DG community. However, it
allows one to obtain stable high-order schemes while having great freedom in the choice
of discretization spaces. We exploit the DG technique using polynomial degrees in the
transverse directions much larger than the degree in the longitudinal direction, so the
lack of discretization of the transverse direction is compensated by the use of a very rich
polynomial basis in that direction.
Given the discretization, the accuracy of the obtained method depends on the choice of
basis in the longitudinal component of the motion. In particular, in the present work
the model was tested using a second order basis along the longitudinal component of the
motion, but this model can also be extended to a higher order of accuracy.

In order to obtain a stable method, it is necessary to introduce penalty terms, presented
in the chapter §2, involving the viscous term and the pressure field. In particular, the first
term has been discretized using the SIP technique, while for the second term a penalty
involving pressure jumps along the edges of the discretization domain has been introduced
in order to guarantee the continuity of this element at each point of the domain.

Different techniques are proposed for solving the presented model, which differ accord-
ing to the different discretization techniques of the convective term and in the case of
Newtonian and non Newtonian fluids. It is important to note that the matrices depend
almost exclusively on the geometry and polynomial degree used and therefore, in many
cases, can be precomputed before runtime, leading to a computationally efficient scheme.
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To further improve the convergence of the iterative methods used, a preconditioner was
designed. To this end, the resulting systems were studied both in terms of the structure
and of the spectra of the associated matrix. The linear system obtained are saddle point
problems, naturally subdivides in 2× 2 blocks by separating the velocity and the pressure
degrees of freedom. Each block shows a Toeplitz type structure, band and tensor structure
at the same time or they belong more generally to the Generalized Locally Toeplitz (GLT)
class.
We have introduced a new technique to spectrally study sequences of (possibly rectangu-
lar) Toeplitz matrices and inverses of Toeplitz matrices. With the help of these theoretical
tools we were able to describe the spectrum of Schur complement matrices without re-
sorting to the technique of embedding the problem in a larger square already found in
the literature. Thanks to the spectral analysis carried out it was possible to define a
preconditioner based on a circulating matrix which was optimal in the cases considered.

The last part of the thesis is dedicated to the validation of the presented model. In
particular, it is highlighted how it is able to optimally represent solutions in different
computational domains, both rectilinear and curved, having at the same time a low com-
putational cost compared to 3D numerical models or open source software. Example cases
are shown for both Newtonian and non Newtonian flows. It is also an interesting tool in
shape optimisation processes. In fact at each step of the process, the geometry can be
easily regenerated just changing the shapes of the local cross sections, without the need
to remesh a three-dimensional domain; although the system has to be reassembled, given
the quasi-uni-dimensional discretization, this step is very competitive compared to the
application of a fully three-dimensional approach to shape optimization.

Perspectives The results presented in this thesis provide new developments and possi-
bilities for further research projects for which partial results have already been obtained.

The scheme presented in chapter §2 presents a DG discretization for both the velocity
and pressure fields. As we have seen, this requires the introduction of a penalty term on
the pressure to guarantee its continuity even on the edges of the discretization domain.
This element, in addition to helping to form the (2,2)-block of the system matrix derived
from the discretization of the Navier-Stokes equations, is involved in the construction of
the preconditioner. To overcome the introduction of this element one of the possible ideas
is to adopt a Continuous Galerkin discretization thus directly guaranteeing the continuity
of the pressure at each point of the domain, avoiding the use of the penalty term.

As far as the solution of the system is concerned, the proposed preconditioner was de-
rived in the particular case of a two-dimensional duct consisting of two parallel planes and
extended to the three-dimensional case. Preliminary results concerning a generalisation
of its use also in the case of more complex geometries are presented in the section §4.4.
It should be noted that the use of standard block circulant preconditioners (of type Strang,
optimal Frobenius etc.; see e.g. [18, 48, 67] and references therein) is not completely natu-
ral in the present setting, because the system and structures such as the Schur complement
lose their Toeplitz character. Increasing the complexity of the geometry therefore requires
more sophisticated GLT techniques based on the spectral symbol in order to design ef-
ficient preconditioners in these cases as well. Therefore, it will be investigated whether
preconditioners, originally developed for different techniques, are efficient also in the con-
sidered case and, above all, it will be tried to understand whether the preconditioner is
efficient also in the case where solvers different from the one adopted in the present work
are used.
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The numerical model presented is designed in the case of elongated ducts and for flows
with laminar characteristics. In many applications, such as the one presented in chapter §7,
the flows do not present such characteristics, but, given their rheological properties, even
for relatively low flow rates, turbulent behaviour occurs. A possible line of research consists
in extending the present quasi-1D model to non laminar flows, for example introducing
modifications in the viscous term like it is done in Bousinesque or Prandtl-Smagorinsky
models, adding a contribution related to turbulent energy.
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Appendix A

Code

We report here the Python codes used to compute the symbols of the matrices that were
reported in sections 4.1.
The function used in OpenFOAM to describe the Papanastasiou relation for a Non-
Newtonian flow is also given, (see section §5.5 and paragraph “Simulation in real ge-
ometries” in chapter §7)

A.1 Laplacian matrix

1 from sympy import *

import numpy as np

xi , eta = symbols ( ’ xi , eta ’ )
dx , dt ,mu, d= symbols ( ’dx , dt ,mu, d ’ )

#base s f u n c t i o n s
DOF = 4
ps i = ze ro s (1 ,DOF)
ps i [ 0 ] = (1− x i )* (3* eta −2)*( eta −1)* eta *Rational (9 , 2 )

11 p s i [ 1 ] = −(1− x i )* (3* eta −1)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 2 ] = x i *(3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 3 ] = −x i *(3* eta −1)*( eta −1)* eta *Rational (9 , 2 )

#d e r i v a t i v e s o f t h e ba s e s f u n c t i o n s and t h e i r e v a l u a t i o n s
dPsi = ze ro s (2 ,DOF)
f o r k in range (DOF) :

dPsi [ 0 , k ] = d i f f ( p s i [ k ] , x i )
dPsi [ 1 , k ] = d i f f ( p s i [ k ] , eta )

21 dPsi1 = ze ro s (2 ,DOF)
dPsi0 = ze ro s (2 ,DOF)
ps i 1 = ze ro s (1 ,DOF)
ps i 0 = ze ro s (1 ,DOF)
f o r k in range (DOF) :

ps i 1 [ k ] = ps i [ k ] . subs ( xi , 1 )
ps i 0 [ k ] = ps i [ k ] . subs ( xi , 0 )
dPsi1 [ 0 , k ] = dPsi [ 0 , k ] . subs ( xi , 1 )
dPsi1 [ 1 , k ] = dPsi [ 1 , k ] . subs ( xi , 1 )
dPsi0 [ 0 , k ] = dPsi [ 0 , k ] . subs ( xi , 0 )

31 dPsi0 [ 1 , k ] = dPsi [ 1 , k ] . subs ( xi , 0 )

DetJ = dx * d
InvJT = zero s (2 , 2 )
InvJT [ 0 , 0 ] = 1/dx
InvJT [ 0 , 1 ] = 0
InvJT [ 1 , 0 ] = 0
InvJT [ 1 , 1 ] = 1/d

LVol = ze ro s (DOF,DOF*3)
41 LSuMGt = ze ro s (DOF,DOF*3)

LStMGu = zero s (DOF,DOF*3)
Lpena l i zz = ze ro s (DOF,DOF*3)

f o r l in range (DOF) :
f o r k in range (DOF) :

arg = (np . array ( InvJT ) ) . dot (np . array ( dPsi ) [ : , l ] ) . dot (np . array ( InvJT ) ) . dot (np . array ( dPsi ) [ : , k ] )
LVol [ l ,DOF+k ] = LVol [ l ,DOF+k ] + in t e g r a t e ( i n t e g r a t e ( arg *DetJ , ( eta , 0 , 1 ) ) , ( xi , ( 0 , 1 ) ) )

f o r l in range (DOF) :
51 f o r k in range (DOF) :

#c e l i
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arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi0 ) [ : , k ] ) / 2
LStMGu[ l ,DOF+k ] = LStMGu[ l ,DOF+k ] + in t e g r a t e ( ps i 0 [ l ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )
#c e l i −1
arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi1 ) [ : , k ] ) / 2
LStMGu[ l , k ] = LStMGu[ l , k ] + i n t e g r a t e ( ps i 0 [ l ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )
#c e l i
arg = − (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi1 ) [ : , k ] ) / 2
LStMGu[ l ,DOF+k ] = LStMGu[ l ,DOF+k ] + in t e g r a t e ( ps i 1 [ l ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )

61 #c e l i+1
arg = − (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi0 ) [ : , k ] ) / 2
LStMGu[ l , 2*DOF+k ] = LStMGu[ l , 2*DOF+k ] + in t e g r a t e ( ps i 1 [ l ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )

f o r l in range (DOF) :
f o r k in range (DOF) :

#c e l i
arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi0 ) [ : , l ] ) / 2
LSuMGt [ l ,DOF+k ] = LSuMGt [ l ,DOF+k ] − i n t e g r a t e ( ps i 0 [ k ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )
#c e l i+1

71 arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi0 ) [ : , l ] ) / 2
LSuMGt [ l , k ] = LSuMGt [ l , k ] + i n t e g r a t e ( ps i 1 [ k ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )
#c e l i
arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi1 ) [ : , l ] ) / 2
LSuMGt [ l ,DOF+k ] = LSuMGt [ l ,DOF+k ] + in t e g r a t e ( ps i 1 [ k ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )
#c e l i+1
arg = (np . array ( InvJT [ 0 , : ] ) ) . dot (np . array ( dPsi1 ) [ : , l ] ) / 2
LSuMGt [ l , 2*DOF+k ] = LSuMGt [ l , 2*DOF+k ] − i n t e g r a t e ( ps i 0 [ k ]* arg [ 0 ] * d , ( eta , 0 , 1 ) )

f o r l in range (DOF) :
81 f o r k in range (DOF) :

#r i g h t boundary c e l i
Lpena l i zz [ l ,DOF+k ] = Lpena l i zz [ l ,DOF+k ] + in t e g r a t e ( ps i 1 [ l ]* ps i1 [ k ]*d , ( eta , 0 , 1 ) )
#r i g h t boundary c e l i+1
Lpena l i zz [ l , 2*DOF+k ] = Lpena l i zz [ l , 2*DOF+k] − i n t e g r a t e ( ps i 1 [ l ]* ps i0 [ k ]*d , ( eta , 0 , 1 ) )
#l e f t boundary c e l i
Lpena l i zz [ l ,DOF+k ] = Lpena l i zz [ l ,DOF+k ] + in t e g r a t e ( ps i 0 [ l ]* ps i0 [ k ]*d , ( eta , 0 , 1 ) )
#l e f t boundary c e l i −1
Lpena l i zz [ l , k ] = Lpena l i zz [ l , k ] − i n t e g r a t e ( ps i 0 [ l ]* ps i1 [ k ]*d , ( eta , 0 , 1 ) )

91 #Lap lac ian matr ix
L =ze ro s (DOF,DOF*3)
L = mu*dt *( LVol − LSuMGt + LStMGu + Lpena l i zz /dx )

p r e t t y p r i n t ( s imp l i f y (L) )

A.2 Mass matrix

from sympy import *

xi , eta = symbols ( ’ xi , eta ’ )
dx , y2 , y3 , d , rho = symbols ( ’dx , y2 , y3 , d , rho ’ )

5
#base s f u n c t i o n s
DOF = 4
ps i = ze ro s (1 ,DOF)
ps i [ 0 ] = (1− x i )* (3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 1 ] = −(1− x i )* (3* eta −1)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 2 ] = x i *(3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 3 ] = −x i *(3* eta −1)*( eta −1)* eta *Rational (9 , 2 )

DetJ = dx*d
15

#Mass matr ix
M =zero s (DOF,DOF)
f o r l in range (DOF) :

f o r k in range (DOF) :
M[ l , k ] = M[ l , k ] + i n t e g r a t e ( i n t e g r a t e ( p s i [ l ]* ps i [ k ]*DetJ* rho , ( eta , 0 , 1 ) ) , ( xi , ( 0 , 1 ) ) )

p r e t t y p r i n t ( s imp l i f y (M))

A.3 Pressure gradient matrix

from sympy import *

import numpy as np

xi , eta= symbols ( ’ xi , eta ’ )
dx , dt ,mu, d= symbols ( ’dx , dt ,mu, d ’ )

#base s f u n c t i o n s
8 DOFp = 2

theta = ze ro s (1 ,DOFp)
theta [ 0 ] = 1− x i
theta [ 1 ] = x i

theta1 = ze ro s (1 ,DOFp)
theta0 = ze ro s (1 ,DOFp)
dtheta = ze ro s (2 ,DOFp)
f o r k in range (DOFp) :

theta1 [ k ] = theta [ k ] . subs ( xi , 1 )
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18 theta0 [ k ] = theta [ k ] . subs ( xi , 0 )
dtheta [ 0 , k ] = d i f f ( theta [ k ] , x i )
dtheta [ 1 , k ] = d i f f ( theta [ k ] , eta )

DOF = 4
ps i = ze ro s (1 ,DOF)
ps i [ 0 ] = (1− x i )* (3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 1 ] = −(1− x i )* (3* eta −1)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 2 ] = x i *(3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 3 ] = −x i *(3* eta −1)*( eta −1)* eta *Rational (9 , 2 )

28
DetJM = dx/2*d

InvJTM = zero s (2 , 2 )
InvJTM [ 0 , 0 ] = 2 / dx
InvJTM [ 0 , 1 ] = 0
InvJTM [ 1 , 0 ] = 0
InvJTM [ 1 , 1 ] = 1 / d

GVol = ze ro s (DOF,2*DOFp)
38 GSalto = ze ro s (DOF,2*DOFp)

f o r l in range (DOF) :
f o r k in range (DOFp) :

gradK = (np . array (InvJTM [ 0 , : ] ) ) . dot (np . array ( dtheta ) [ : , k ] )
GVol [ l , k ] =GVol [ l , k ] +i n t e g r a t e ( i n t e g r a t e ( p s i [ l ]* gradK [ 0 ] *DetJM , ( eta , 0 , 1 ) ) , ( xi , 0 , Rat iona l ( 1 , 2 ) ) )
gradK = (np . array (InvJTM [ 0 , : ] ) ) . dot ( np . array ( dtheta ) [ : , k ] )
GVol [ l ,DOFp+k]=GVol [ l ,DOFp+k]+ in t e g r a t e ( i n t e g r a t e ( p s i [ l ]* gradK [ 0 ] *DetJM , ( eta , 0 , 1 ) ) , ( xi , Rat ional ( 1 , 2 ) , 1 ) )

psiJump = ze ro s (1 ,DOF)
48 f o r k in range (DOF) :

psiJump [ k ] = ps i [ k ] . subs ( xi , Rat ional ( 1 , 2 ) )

f o r l in range (DOF) :
f o r k in range (DOFp) :

GSalto [ l ,DOFp+k]= GSalto [ l ,DOFp+k ] + in t e g r a t e ( psiJump [ l ]* theta0 [ k ]*d , ( eta , 0 , 1 ) )
GSalto [ l , k ] = GSalto [ l , k ] − i n t e g r a t e ( psiJump [ l ]* theta1 [ k ]*d , ( eta , 0 , 1 ) )

#Gradient matr ix
G = zero s (DOF,2*DOFp)

58 G = dt *(GVol + GSalto )

p r e t t y p r i n t ( s imp l i f y (G) )

A.4 Divergence of the velocity matrix

from sympy import *

import numpy as np

xi , eta= symbols ( ’ xi , eta ’ )
dx ,mu, d= symbols ( ’dx ,mu, d ’ )

#base s f u n c t i o n s
DOFp = 2
theta = ze ro s (1 ,DOFp)

10 theta [ 0 ] = 1− x i
theta [ 1 ] = x i

DOF = 4
ps i = ze ro s (1 ,DOF)
ps i [ 0 ] = (1− x i )* (3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 1 ] = −(1− x i )* (3* eta −1)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 2 ] = x i *(3* eta −2)*( eta −1)* eta *Rational (9 , 2 )
p s i [ 3 ] = −x i *(3* eta −1)*( eta −1)* eta *Rational (9 , 2 )

20 dPsi = ze ro s (2 ,DOF)
f o r k in range (DOF) :

dPsi [ 0 , k ] = d i f f ( p s i [ k ] , x i )
dPsi [ 1 , k ] = d i f f ( p s i [ k ] , eta )

ps i 1 = ze ro s (1 ,DOF)
ps i 0 = ze ro s (1 ,DOF)
f o r k in range (DOF) :

ps i 1 [ k ] = ps i [ k ] . subs ( xi , 1 )
ps i 0 [ k ] = ps i [ k ] . subs ( xi , 0 )

30
DetJM = dx/2 * d

InvJTM = zero s (2 , 2 )
InvJTM [ 0 , 0 ] = 2/dx
InvJTM [ 0 , 1 ] = 0
InvJTM [ 1 , 0 ] = 0
InvJTM [ 1 , 1 ] = 1/d

DVol = ze ro s (DOFp,2*DOF)
40 DJump = ze ro s (DOFp,2*DOF)

f o r l in range (DOFp) :
f o r k in range (DOF) :

gradK = −(np . array (InvJTM [ 0 , : ] ) ) . dot ( np . array ( dPsi ) [ : , k ] )
DVol [ l , k ] =DVol [ l , k ] +i n t e g r a t e ( i n t e g r a t e ( theta [ l ]* gradK [ 0 ] *DetJM , ( eta , 0 , 1 ) ) , ( xi , 0 , Rat iona l ( 1 , 2 ) ) )
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gradK = −(np . array (InvJTM [ 0 , : ] ) ) . dot ( np . array ( dPsi ) [ : , k ] )
DVol [ l ,DOF+k]=DVol [ l ,DOF+k]+ in t e g r a t e ( i n t e g r a t e ( theta [ l ]* gradK [ 0 ] *DetJM , ( eta , 0 , 1 ) ) , ( xi , Rat ional ( 1 , 2 ) , 1 ) )

thetaJump = ze ro s (1 ,DOF)
50 f o r k in range (DOFp) :

thetaJump [ k ] = theta [ k ] . subs ( xi , Rat iona l ( 1 , 2 ) )

f o r l in range (DOFp) :
f o r k in range (DOF) :

#c e l i
DJump[ l , k ] = DJump[ l , k ] + i n t e g r a t e ( thetaJump [ l ]* ps i1 [ k ]*d , ( eta , 0 , 1 ) )
#c e l i+1
DJump[ l ,DOF+k ] = DJump[ l ,DOF+k ] − i n t e g r a t e ( thetaJump [ l ]* ps i0 [ k ]*d , ( eta , 0 , 1 ) )

60 #Divergence matr ix
D = zero s (DOFp,2*DOF)
D = DVol + DJump

p r e t t y p r i n t ( s imp l i f y (D) )

A.5 Penalty matrix for pressure

from sympy import *

xi , eta= symbols ( ’ xi , eta ’ )
dx , dt ,mu, d= symbols ( ’dx , dt ,mu, d ’ )

6 #base s f u n c t i o n s
DOFp = 2
theta = ze ro s (1 ,DOFp)
theta [ 0 ] = 1− x i
theta [ 1 ] = x i

theta1 = ze ro s (1 ,DOFp)
theta0 = ze ro s (1 ,DOFp)
f o r k in range (DOFp) :

theta1 [ k ] = theta [ k ] . subs ( xi , 1 )
16 theta0 [ k ] = theta [ k ] . subs ( xi , 0 )

ep s i l o n = ze ro s (DOFp,3*DOFp)
f o r l in range (DOFp) :

f o r k in range (DOFp) :
#c e l i
ep s i l o n [ l ,DOFp+k ] = ep s i l o n [ l ,DOFp+k ] − i n t e g r a t e ( theta1 [ l ]* theta1 [ k ]*d , ( eta , 0 , 1 ) )
#c e l i+1
ep s i l o n [ l , 2*DOFp+k]= ep s i l o n [ l , 2*DOFp+k]+ in t e g r a t e ( theta1 [ l ]* theta0 [ k ]*d , ( eta , 0 , 1 ) )
#c e l i

26 ep s i l o n [ l ,DOFp+k ] = ep s i l o n [ l ,DOFp+k ] − i n t e g r a t e ( theta0 [ l ]* theta0 [ k ]*d , ( eta , 0 , 1 ) )
#c e l i −1
ep s i l o n [ l , k ] = ep s i l o n [ l , k ] + i n t e g r a t e ( theta0 [ l ]* theta1 [ k ]*d , ( eta , 0 , 1 ) )

p r e t t y p r i n t ( s imp l i f y (dx* ep s i l o n ) )

A.6 Papanastasiou model

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O pe r a t i on | Websi te : h t t p s : // openfoam . org
\\ / A nd | Vers ion : 7
\\/ M an i p u l a t i o n |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
FoamFile
{

10 ve r s i on 2 . 0 ;
format a s c i i ;
class d i c t i ona ry ;
l o c a t i o n ” constant ” ;
ob j e c t t r an spo r tP rope r t i e s ;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

transportModel s t ra inRateFunct ion ;
s t ra inRateFunct ionCoe f f s

20 {
f unc t i on coded ;
name ”Papanastasiou ” ;
code
#{
return s c a l a r
(

( sq r t (2 ) + sq r t (8 / max(x , 1 . e −20))*( −expm1(− sq r t ( 200 . * max(x , 1 . e −20) ) ) ) )
*

( sq r t (2 ) + sq r t (8 / max(x , 1 . e −20))*( −expm1(− sq r t ( 200 . * max(x , 1 . e −20) ) ) ) )
30 /1060.0

) ;
#} ;
}



Appendix B

Two case studies for the
generalisation of spectral analysis

We report here the two case studies underlying the generalisation of the block spectral
analysis of the matrixA of the system (2.24) together with the Schur complement presented
in the section §4.4. In Section B.1 we present in detail the linear case of a flow between
converging plates, while in Section B.2 we present the case of a flow where the section is
described by a basic trigonometric function.

B.1 Flow between converging plates

To provide the spectral analysis of the Schur complement of the matrix A of the system, we
consider the case of two converging plate in with the diameter of the pipe is not constant

and it is represented by d(x) = αx + din where α = 2
hout − hin

xout
is twice the slope of the

converging plates. x ∈ [0, xout] represents the position inside the pipe and xout is the
length of the pipe; instead, din = 2hin, while hin and hout are the inlet and outlet radii
respectively as show in Fig. B.1.
To perform our analysis we choose the first non trivial case in which the velocity has 4
non zero degrees of freedom and the pressure only 2 in each cell, respectively.

in
le
t

ou
tl
et

y = α
2 x+ hin

hin

hout x

y

Figure B.1: Illustration of converging plates

Laplacian and mass operator The (1,1)-block of matrix of A consists of the sum
of two elements: M the mass matrix and L the Laplacian matrix. They are respectively
obtained by testing the term ∂tu and the viscosity term ∇⋅(µ ∇u) with the basis functions
for velocity.
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Defining

X = [
1
2 − 1

16
− 1

16
1
2

] ,

and excluding the boundary conditions, the Laplacian matrix can be written as

Ln+1 =
27

70
cµ tridiag

2≤j≤n
[ l1 l0 l−1 ] +O(∆x2 α4),

with

l1 = (din + αxj) [
−X 0

0 −X ] , l−1 = (din + αxj+1) [
−X 0

0 −X ]

and

l0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (din + αxj) −(din + αxj)
4

α(xj+1 − xj) −α(xj+1 − xj)
8

−(din + αxj)
4

2 (din + αxj) −α(xj+1 − xj)
8

α(xj+1 − xj)

α(xj+1 − xj) −α(xj+1 − xj)
8

2(din + αxj) −(din + αxj)
4

−α(xj+1 − xj)
8

α(xj+1 − xj) −(din + αxj)
4

2(din + αxj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the above equation we placed c = ∆t
∆x and took ∆t proportional to ∆x, i.e. c = O(1).

Due to the choice of degrees of freedom for the velocity, each block has size 4×4: as we will
verify in the following, the latter has an impact on the structure of the symbol which will
be 4×4 matrix-valued. To study the symbol of the corresponding matrix sequence, we can
observe that Ln+1 can be written as the sum of two parts: one with constant coefficients
of block Toeplitz type and another whose coefficients depend on the position xj within
the domain, where j ∈ [0, n + 1] denotes the discretization velocity cell: the latter will
correspond to a matrix sequence of GLT nature. The constant part has a block Toeplitz
structure of dimension n̂ = 4 ⋅ (n + 1) as follows

Un+1 =
27

70
din µ tridiag [ −X 0 2X 0 −X 0

0 −X 0 2X 0 −X ]

Defining u1, u0, u−1 as follows

u1 = [ −X 0

0 −X ] , u0 = [ 2X 0

0 2X
] , u−1 = [ −X 0

0 −X ] ,

the generating function associated to the first part is the function L ∶ [−π,π] → C4×4

defined as

L (θ) = 27

70
dinµc (u0 + u1e

iθ + u−1e
−iθ) (B.1)

= 27

70
dinµc [(2 − 2 cos θ) 0

0 (2 − 2 cos θ)]⊗X.

Note that as L (θ) is Hermitian by Theorem 8, it coincides with the symbol of {Un+1}n.
Moving on to analyze the part with non-constant coefficients, we observe that it has a
block tri-diagonal structure

U(d)n+1 =
27

70
cµα tridiag

2≤j≤n
[ u(d)1 u(d)0 u(d)−1 ] +O(∆x2 α4)
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with blocks

u(d)1 = xj [
−X 0

0 −X ] , u(d)−1 = xj+1 [
−X 0

0 −X ] ,

u(d)0 = xj [
2X 0

0 2X
] + (xj+1 − xj) [

0 X

X 0
] .

More specifically, this part, scaled by xout, results in the product of a diagonal sampling
matrix and a block Toeplitz matrix whose generating function is L (θ) plus a correction
term that is multiplied by (xj+1 − xj) = ∆x. Therefore, it gives rise to a GLT matrix
sequence whose symbol, by GLT1-4, is

L (t, θ) = 27

70
cαµ t(u0 + u1e

iθ + u−1e
−iθ) = α

din
tL (θ), (B.2)

and precisely,

{ 1

xout
U(d)n+1}

n
∼GLT,σ,λ ( α

din
t L (θ), [0,1] × [−π,π]) , (B.3)

with, t = x
xout

, (t, θ) ∈ [0,1] × [−π,π], where we scaled U(d)n+1 by the length of the pipe
in order to scale the physical variable in [0,1].

By adding the contribution of each part, taking into consideration items GLT2-3, we

conclude that the matrix sequence { 1
xout

Ln+1}
n

scaled by the length of the pipe admits

the following distribution

{ 1

xout
Ln+1}

n
∼GLT,σ,λ (( 1

xout
+ α

din
t)L (θ), [0,1] × [−π,π]) . (B.4)

Remark 28 Setting α = 0 we obtain the case of a channel consisting of infinite parallel
plates placed at a constant distance. This case turns out to be the one treated in section
§4.1, [61]. Choosing to discretize the viscous term by SIP, it is necessary to introduce a

penalty constant equal to
β0

∆x
to guarantee the stability of the method, as we have mention

in §2.4.1. In the case just discussed, β0 was chosen as 1. If a higher penalty constant is
taken, then the matrix Ln+1 is transformed as follows

l1 = (din + αxj) [
−X −(2β0 − 1)X
0 −X ] , l−1 = (din + αxj+1) [

−X 0

−(2β0 − 1)X −X ]

l0 = (din + αxj) [
2β0X 0

0 2β0X
] + α (xj+1 − xj) [

0 X

X 0
] .

The distribution of the new matrix Ln+1 divided by the duct length is

{ 1

xout
Ln+1}

n
∼GLT,σ,λ (( 1

xout
+ α

din
t)L β0(θ), [0,1] × [−π,π]) ,

where

L β0(θ) =
27

70
dinµc [2β0 − 2(β0 − 1) cos θ −2(β0 − 1)eiθ

−2(β0 − 1)e−iθ 2β0 − 2(β0 − 1) cos θ
]⊗X.
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The second matrix that forms the (1,1)-block of A is the mass matrix M . It is a
square matrix of size (n + 1)nu × (n + 1)nu, formed by blocks of rows each of size nu = 4
which correspond to the number of test functions per each velocity cell and, excluded the
boundary conditions, it has the form

Mn+1 =
9

70
∆xρ diag

1≤j≤n+1

⎛
⎜⎜⎜
⎝
(din + αxj)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
8

1
2 − 1

16
−1

8 1 − 1
16

1
2

1
2 − 1

16 1 −1
8

− 1
16

1
2 −1

8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
+O(∆x2).

where ρ is the density of the fluid and n + 1 is the number of velocity cells.

To analyze the symbol we can proceed as for the matrix Ln+1. In fact, Mn+1 can also
be split into two matrices: one with constant coefficients and another whose coefficients
depend on the position xj . The first part

M̃n+1 =
9

70
∆xρdin diag [ 2 1

1 2
]⊗X

generates a 4× 4-block Toeplitz matrix of size n̂ = 4 ⋅ (n+ 1) and, again by Theorem 8, the
symbol associated with the scaled matrix sequence { 1

∆xM̃n+1}n is

M (θ) = 9

70
ρdin [ 2 1

1 2
]⊗X. (B.5)

Therefore, its eigenvalues are

9

70
dinρ (2 ± 1) (1

2 ±
1
16

) .

It is necessary to perform the scaling because the symbol is defined for sequences of Toeplitz
matrices whose elements do not vary with their size.

The second part, scaled by xout, represents a matrix-sequence of block GLT type of
the form

9

70
∆xρ( diag

1≤j≤n+1

αxj

xout
⊗ I4 )Tn+1 (

M (θ)
din

) +O(∆x2),

with I4 the identity matrix of size 4 × 4.
Therefore, by GLT1-4, it holds

{ 9

70
ρ( diag

1≤j≤n+1

αxj

xout
⊗ I4) Tn+1 (

M (θ)
din

)}
n

∼GLT,σ,λ ( α
din

tM (θ), [0,1] × [−π,π]) (B.6)

with t = x
xout

, (t, θ) ∈ [0,1] × [−π,π].
Consequently, by GLT2-3 we globally have that

{ 1

∆x

1

xout
Mn+1}

n
∼GLT,σ,λ (( 1

xout
+ α

din
t)M (θ), [0,1] × [−π,π]) . (B.7)
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Gradient operator The (1,2)-block G of A is obtained by testing the gradient term
with the basis function of the velocity. It has dimension (n + 1)nu × nnp and is therefore
a rectangular matrix.
Defining

ĝ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1
3 −3
3 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, ĝ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −3
3 −3
1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, g̃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 1
3 1
1 3
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

g̃1 = −g̃0 and excluding the boundary conditions, the block G can be written as

Gn+1,n = (G̃ + Ĝ) +O(∆t ∆xα4)

where G̃ = G̃n+1,n(diag
1≤j≤n

(din + αxj)⊗ I2) and Ĝ = Ĝn+1,n(diag
1≤j≤n

(din + αxj)⊗ I2) with

G̃n+1,n =
3

64
∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g̃0 0 ⋯ ⋯ ⋯ 0

g̃1 g̃0 0
...

0 g̃1 g̃0 0
...

...
. . .

. . .
. . .

. . .
...

... 0 g̃1 g̃0 0

... 0 g̃1 g̃0

0 ⋯ ⋯ ⋯ 0 g̃1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.8)

and

Ĝn+1,n =
3

640
α2 ∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝ0 0 ⋯ ⋯ ⋯ 0

ĝ1 ĝ0 0
...

0 ĝ1 ĝ0 0
...

...
. . .

. . .
. . .

. . .
...

... 0 ĝ1 ĝ0 0

... 0 ĝ1 ĝ0

0 ⋯ ⋯ ⋯ 0 ĝ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.9)

while I2 is the identity matrix of size 2 × 2 and n is the size of the pressure cells.
Each of the two parts of the matrix Gn+1,n is further subdivided into a part with constant
coefficients, which therefore depends on geometric elements din and α, and a second part
with non-constant coefficients.

Concerning the parts of G̃ and Ĝ with constant coefficients it can be written as

dinG̃n+1,n + dinĜn+1,n.

We first observe that both G̃n+1,n and Ĝn+1,n have a block rectangular Toeplitz structure.

The generating function of the scaled sequence {din∆t G̃n+1,n}n is defined by

G̃ (θ) = 3

64
din (g̃0 + g̃1e

iθ) = 3

64
din g̃0(1 − eiθ) = −i

3

32
din g̃0 e

i
θ
2 sin ( θ

2
) , (B.10)
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that is

G̃n+1,n = ∆t [Tn ( G̃ (θ)
din

)]
n+1,n

, (B.11)

while the generating function associated with the scaled sequence {din∆t Ĝn+1,n}n is

Ĝ (θ) = 3

640
dinα

2 (ĝ0 + ĝ1e
iθ) (B.12)

and

Ĝn+1,n = ∆t [Tn ( G̃ (θ)
din

)]
n+1,n

. (B.13)

By taking into consideration instead the part with non constant coefficients, it can be
written as

G̃(d)n+1,n + Ĝ(d)n+1,n

where

G̃(d)n+1,n = ∆tα [Tn ( G̃ (θ)
din

)]
n+1,n

diag
1≤j≤n

xj ⊗ I2 (B.14)

Ĝ(d)n+1,n = ∆tα [Tn ( Ĝ (θ)
din

)]
n+1,n

diag
1≤j≤n

xj ⊗ I2 (B.15)

Thanks to remark 20 and to the rectangular GLT machinery developed in [6] the singular
value distribution of the matrix sequence associated to the block G̃(d)n+1,n and Ĝ(d)n+1,n,
scaling both by the length of the pipe xout and by ∆t, is given by

⎧⎪⎪⎨⎪⎪⎩
[Tn ( G̃ (θ)

din
)]

n+1,n

α

xout
diag
1≤j≤n

xj ⊗ I2

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (k(t)G̃ (θ), [0,1] × [−π,π])

⎧⎪⎪⎨⎪⎪⎩
[Tn ( Ĝ (θ)

din
)]

n+1,n

α

xout
diag
1≤j≤n

xj ⊗ I2

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (k(t)Ĝ (θ), [0,1] × [−π,π])

where k(t) = α t
din

with (t, θ) ∈ [0,1] × [−π,π].
Considering the contribution of both constant and non-constant terms as well as the

norm-correction term expressed by O(∆t ∆xα4), the singular values of the scaled sequence
{ 1

∆txout
Gn+1,n}n are distributed as

{ 1

∆t xout
Gn+1,n}

n
∼GLT,σ (( 1

xout
+ k(t)) (G̃ (θ) + Ĝ (θ)) , [0,1] × [−π,π]) . (B.16)

Divergence operator The (1,2)-block of matrix A has a similar structure to block the
gradient of the pressure just analyzed. In turns out to be a rectangular matrix of size
nnp × (n + 1)nu. Defining

d̂0 = [ −3 −3 3 3
−1 −1 1 1

] , d̂−1 = [ −1 −1 1 1
−3 −3 3 3

] , d̃0 = [ 3 3 1 1
1 1 3 3

] ,
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d̃−1 = −d̃0, and excluding the boundaries condition, we can write the divergence matrix as

Dn,n+1 = (D̃ + D̂) +O(∆xα4)

where D̃ = (diag
1≤j≤n

(din + αxj)⊗ I2)D̃n,n+1 and D̂ = (diag
1≤j≤n

(din + αxj)⊗ I2)D̂n,n+1 with

D̃n,n+1 =
3

64

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̃0 d̃−1 0
...

0 d̃0 d̃−1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 d̃0 d̃−1 0

... 0 d̃0 d̃−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.17)

and

D̂n,n+1 =
3

640
α2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̂0 d̂−1 0
...

0 d̂0 d̂−1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 d̂0 d̂−1 0

... 0 d̂0 d̂−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.18)

with n is the size of the pressure cells.
Concerning the parts of D̃ and D̂ with constant coefficients it can be written as

dinD̃n,n+1 + dinD̂n,n+1.

We can observe that the matrix D̃n,n+1 turns out to be exactly the transpose of G̃n+1,n,
since d̃0 = g̃T0 and d̃−1 = g̃T1 and therefore the generating function of dinD̃n+1,n is

D̃(θ) = (G̃ (θ))∗ = i
3

32
din g

T
0 e−i

θ
2 sin ( θ

2
) (B.19)

which admits the same singular value functions of G̃ (θ). On the other hand, if we consider
D̂n,n+1, we note that it is not the transposition of the respective Ĝn+1,n-block and the
generating function of dinD̂n,n+1 is computed directly as

D̂(θ) = 3

640
dinα

2 (d̂0 + d̂−1e
−iθ) . (B.20)

The remaining part of the matrix Dn,n+1 can be rewritten as

D̃(d)n,n+1 + D̂(d)n,n+1

where

D̃(d)n,n+1 = α(diag
1≤j≤n

xj ⊗ I2) [Tn (D̃(θ)
din

)]
n,n+1

(B.21)

D̂(d)n,n+1 = α(diag
1≤j≤n

xj ⊗ I2) [Tn (D̂(θ)
din

)]
n,n+1

(B.22)
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Thanks to remark 20 and to the rectangular GLT machinery developed in [6] the
singular value distribution of the matrix sequence associated to the block D̃(d)n+1,n and
D̂(d)n+1,n, scaling both by the length of the pipe xout, is given by

⎧⎪⎪⎨⎪⎪⎩

α

xout
(diag

1≤j≤n
xj ⊗ I2) [Tn (D̃(θ)

din
)]

n,n+1

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (k(t)D̃(θ), [0,1] × [−π,π])

⎧⎪⎪⎨⎪⎪⎩

α

xout
(diag

1≤j≤n
xj ⊗ I2) [Tn (D̂(θ)

din
)]

n,n+1

⎫⎪⎪⎬⎪⎪⎭n
∼GLT,σ (k(t)D̂(θ), [0,1] × [−π,π])

where k(t) = α t
din

with (t, θ) ∈ [0,1] × [−π,π].
Therefore, the singular values of the matrix sequence to the entire matrix Dn,n+1 are

distributed as

{ 1

xout
Dn,n+1}

n
∼GLT,σ (( 1

xout
+ k(t)) (D̃(θ) + D̂(θ)) , [0,1] × [−π,π]) . (B.23)

Penalty term for pressure The (2,2)-block of the matrix A contains the penalty term
for pressure jumps at the edges of the main grid cells. It has a block tridiagonal structure
as follows

En = ∆x tridiag
1≤j≤n

[ 0 din + αxj −(din + αxj) 0 0 0
0 0 0 −(din + αxj) din + αxj 0

] +O(∆x2),

where n is the number of pressure cells. Each block of rows has size np = 2, as the number
of degrees of freedom of the pressure in each cell.
As we did for the previous blocks, we can extract the elements with constant coefficients
and we obtain the block Toeplitz matrix

Ẽn = din ∆x tridiag
1≤j≤n

[ 0 1 −1 0 0 0
0 0 0 −1 1 0

] .

The generating function associated to the scaled matrix sequence { 1
∆xẼn}n is the function

E ∶ [−π,π]→ C2×2 defined as

E (θ) = din [ −1 eiθ

e−iθ −1
] (B.24)

and its eigenvalues are 0 and −2din, while its eigenvectors are (e
iθ

i
) and (−e

iθ

i
) . Since Ẽn

is real symmetric, by GLT3 and GLT1 we obtain

{ 1

∆x
Ẽn}

n
∼GLT,σ,λ (E , [−π,π]). (B.25)

The part of En with variable coefficients can be written in the following form

∆xα(diag
1≤j≤n

xj ⊗ I2)Tn (E (θ)
din

) (B.26)

and by using GLT1-3 we have

{ α

xout
(diag

1≤j≤n
xj ⊗ I2)Tn (E (θ)

din
)} ∼GLT,σ,λ (k(t)E (θ), [0,1] × [−π,π]) (B.27)
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where k(t) = α t
din

and (t, θ) ∈ [0,1] × [−π,π].
Collecting the contribution of both parts and including the norm correction O(∆x), by
GLT1-4 we can conclude that the eigenvalues and the singular values of the scaled se-

quence { 1
xout

1
∆xEn}n have the following distribution

{ 1

xout

1

∆x
En}

n
∼GLT,σ,λ (( 1

xout
+ k(t))E (θ), [0,1] × [−π,π]) . (B.28)

Spectral study of the Schur complement for converging plate

Schur’s complement is defined as the (2,2)-block of matrix A plus the inverse of (1,1)-
block multiplied by (2,1) and (1,2)-blocks on the left and right respectively, i.e.

Sn = En −Dn,n+1N
−1
n+1Gn+1,n.

After scaling Sn by 1
∆t the related symbol S (t, θ) can be plainly obtained mimicking the

same reasoning done in §4.2 and using the results in [6]. As we have in mind the design
of a preconditioner for 1

xout
1

∆tSn, rather we look for S ∆x(t, θ) that depends on the grid

size and is obtained by opportunely combining the generating function of N−1
n+1

L N−1(θ) = 160

81

(din + α txout)−1

a2 −∆x2 ρ2
[ a −∆xρ
−∆xρ a

]⊗ [ 8 1
1 8

]

where a(θ) = 2 ∆xρ + 6µc (1 − cos(θ)) with the symbols of {Dn,n+1}n, { 1
∆tGn+1,n}n, and

{ 1
∆xEn}.

More specifically,

S ∆x(t, θ) = ( 1

xout
+ α t
din

)[ −1 eiθ

e−iθ −1
] −L DN−1G(t, θ).

with

L DN−1G(t, θ) = γ(t) [
5a(θ) − 3 ∆xρ 3a(θ) − 5 ∆xρ
3a(θ) − 5 ∆xρ 5a(θ) − 3 ∆xρ

](5(1 − cos(θ)) + α
2

2
(1 − eiθ))

+ γ(t) [ −3a(θ) + 5 ∆xρ 3a(θ) − 5 ∆xρ
−5a(θ) + 3 ∆xρ 5a(θ) − 3 ∆xρ

] α
2

2
(1 − e−iθ)

+ γ(t) [ −1 1
−3 3

] b(θ)α
2

20
(10 + α2) (e−iθ − 1) + γ(t) [ −3 3

−1 1
] b(θ)α

2

20
(10 − α2) (1 − eiθ)

where γ(t) = 1
xout

1
16

din
a2−∆x2 ρ2

(1 + αtxout
din

) and b(θ) = a(θ) + ∆xρ. Of course, by letting

∆x→ 0 we have S ∆x(t, θ)→S (t, θ).

B.2 Flow in a pipe with d(x) = α sin(x) + din

In this second case we consider an elongated pipe symmetric respect to x-axis and whose
diameter varies as d(x) = αsin(x) + din, with x ∈ [0, xout] and α ∈ (0, din) a positive
constant. As in the previous case, we proceed to the spectral analysis of the blocks of the
matrix A, always considering nξ = 1 and nη = 3, therefore nu = (nξ + 1)(nη − 1) = 4 and
np = (nξ + 1) = 2.
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Laplacian and mass operator The (1,1)-block of the matrix A is given by the con-
tribution of the mass matrix and by the Laplacian matrix. Given the choice of base to
discretize the velocity, both matrices result in a square dimension of (n+1)nu × (n+1)nu,
where n + 1 is the size of the dual grid.
The first element involved in the (1,1)-block of A is the Laplacian matrix. Considering
the matrix X, of size 2× 2, defining in the previous section (B.1), L can be written in the
following way

Ln+1 =
27

70
cµ tridiag

2≤j≤n
[ l1 l0 l−1 ] +O(∆x2 α4)

with

l1 = (din + α sin(xj)) [
−X 0

0 −X ] , l−1 = (din + α sin(xj)) [
−X 0

0 −X ]

and

l0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(din + α sin(xj)) −din + α sin(xj)
4

b − b
8

−din + α sin(xj)
4

2(din + α sin(xj)) − b
8

b

b − b
8

2(din + α sin(xj)) −din + α sin(xj)
4

− b
8

b −din + α sin(xj)
4

2(din + α sin(xj))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

with b = α(sin(xj+1) − sin(xj)). As for the mass matrix, the variable coefficient part of
the Laplacian matrix depends only on sin(xj) and the derivatives of the function that
describe the geometry of the pipe do not appear. Using the Toeplitz matrix generated by
the symbol L (θ), Ln+1 can be written in the following form

Ln+1 = c (Tn+1(L (θ)) + diag
1≤j≤n+1

(α sin (xj)⊗ I4 ) Tn+1 (L (θ)))

where n+1 are the velocity cell in the dual grid and L (θ) is the Hermitian function (B.1),
that, by Theorem 8, coincide with the symbol of the matrix with constant coefficients.
Then, by using GLT1-4 the symbol of the sequence {Ln+1}n is

{Ln+1}n ∼GLT,σ,λ ((1 + α sin(xout t)
din

)L (θ), [0,1] × [−π,π])

with t = x
xout

and (t, θ) ∈ [0,1] × [−π,π].
The second element involved in the matrix A is the mass matrix M , that has the

following form

Mn+1 =
9

70
∆xρ diag

1≤j≤n+1
((din + α sin(xj)) [

2 1
1 2

]⊗X) +O(∆x2).

To study the symbol of the corresponding sequence of matrices, we can observe that Mn+1

has the same structure as in the case of convergent plates, i.e. it can be written as a
sum of two parts: one with constant coefficients and another whose coefficients depend
on the position xj , with j ∈ [0, n + 1], within the domain. Observing that the first part
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is generated by a 4 × 4-block Toeplitz matrix of size n̂ = 4 ⋅ (n + 1) and the second part
represents a matrix-sequence of block GLT type, Mn+1 ca be written as

Mn+1 = ∆x(Tn+1 (M (θ)) + ( diag
1≤j≤n+1

α sin (xj)⊗ I4 )Tn+1 (
M (θ)
din

)) +O(∆x2).

where M (θ) is the symbol defining in (B.5). Following the same steps done previously,
and using GLT1-4, the symbol associated with the scaled sequences { 1

∆xMn+1}n is

{ 1

∆x
Mn+1}

n
∼GLT,σ,λ ((1 + α sin(xout t)

din
)M (θ), [0,1] × [−π,π]) (B.29)

with (t, θ) ∈ [0,1] × [−π,π].

Gradient operator The (1,2)-block of the matrix A is formed by integrating the gra-
dient pressure of the velocity and tested it with the basis function of the velocity. Remem-
bering that the pressure is defined on the main grid and since the grid is staggered, each
velocity cell is affected by the contribution of two neighbouring pressure cells. Having also
taken a different number of degrees of freedom in the transverse directions to discretize
the velocity and pressure, it follows that the (1,2)-block is rectangular and it has the form

Gn+1,n = (G̃ + Ĝ) +∆tO(∆xα4) (B.30)

where

G̃ = G̃n+1,n(diag
1≤j≤n

(din + α sin(xj))⊗ I2)

Ĝ = Ĝn+1,n(diag
1≤j≤n

(din + α sin(xj)) cos2(xj))⊗ I2)

while I2 is the identity matrix of size 2× 2. G̃n+1,n and Ĝn+1,n are defined as in (B.8) and
(B.9) respectively and have a block rectangular Toeplitz structure.
By taking into consideration the contribution of both constant and non constant parts and
exploiting the rectangular block Toeplitz structure, the elements G̃ and Ĝ can be written
as

G̃ = ∆t [Tn ( G̃ (θ)
din

)]
n+1,n

+∆tα [Tn ( G̃ (θ)
din

)]
n+1,n

diag
1≤j≤n

(sin(xj)⊗ I2) (B.31)

Ĝ = ∆t [Tn ( Ĝ (θ)
din

)]
n+1,n

diag
1≤j≤n

(cos2(xj)⊗ I2) +∆tα [Tn ( Ĝ (θ)
din

)]
n+1,n

diag
1≤j≤n

(sin(xj) cos2(xj)⊗ I2)

(B.32)

Thanks to Remark 20 and to the rectangular GLT machinery developed in [6], the singular
value distribution of the scaled sequence { 1

∆t Gn+1,n}n are distributed as

{ 1

∆t
Gn+1,n}

n
∼GLT,σ ((1 + α sin(xout t)

din
)(G̃ (θ) + Ĝ (θ) cos2(xout t)) , [0,1] × [−π,π]) .
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Divergence operator The (2,1)-block of the matrix A is related to the discretization
of the divergence of the velocity. It turns out to be a rectangular matrix of dimensions
nnp× (n+1)nu because the divergence of u is integrated on the main grid and it is tested
against the shape function related to the pressure and has a similar structure to the matrix
associated with the pressure gradient just analysed. It can be written as

Dn,n+1 = (D̃ + D̂) +O(∆xα4)

where

D̃ = (diag
1≤j≤n

(din + α sin(xj))⊗ I2)D̃n,n+1

D̂ = (diag
1≤j≤n

(din + α sin(xj)) cos2(xj))⊗ I2)D̂n,n+1

while D̃n,n+1 and D̂n,n+1 are defined as in (B.17) and (B.18) respectively.
As in the case of two non-parallel planes, also in this geometry the block D̃n,n+1 turns out
to be the transport of the block G̃n+1,1, while this does not occur for the elements D̂n,n+1

and Ĝn+1,1.
By considering the contributions of both constant and non constant portions and utilizing
the Toeplitz rectangular block structure, the matrices D̃ and D̂ can be written as

D̃ = [Tn (D̃(θ)
din

)]
n+1,n

+ α diag
1≤j≤n

(sin(xj)⊗ I2) [Tn (D̃(θ)
din

)]
n+1,n

D̂ = diag
1≤j≤n

(cos2(xj)⊗ I2) [Tn (D̂(θ)
din

)]
n+1,n

+ α diag
1≤j≤n

(sin(xj) cos2(xj)⊗ I2) [Tn (D̂(θ)
din

)]
n+1,n

The singular value distribution of the sequence {Dn,n+1}n are distributed as

{Dn,n+1}n ∼GLT,σ ((1 + α sin(xout t)
din

)(D̃(θ) + D̂(θ) cos2(xout t)) , [0,1] × [−π,π]) ,

thanks to remark 20 and to the rectangular GLT machinery introduced in [6].

Penalty term for pressure The last block of the matrix is formed by the penalty term
associated to the jump of the pressure at the intercell of the main grid. This block has
the form

En = ∆x tridiag
1≤j≤n

[ 0 din + α sin(xj) −(din + α sin(xj)) 0 0 0
0 0 0 −(din + a sin(xj)) din + α sin(xj) 0

]

+O(∆x2),

where n is the number of cells of the main grid and the number of degrees of freedom of
the pressure in each cell determines the size of each block of rows, which is np = 2. As for
the other blocks, En can be written using the Toeplitz matrix generated by the symbol E
associated with the part with constant coefficients

En = ∆x(Tn (E (θ)) + α(diag
1≤j≤n

sin(xj)⊗ I2)Tn (E (θ)
din

)) .
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Using GLT1-4 to combine the contributions of both matrices with constant and non
constant coefficients and include the norm correction O(∆x), we can deduce that the
eigenvalues and singular values of the scaled sequence { 1

∆xEn}n have the following distri-
bution

{ 1

∆x
En}

n
∼GLT,σ,λ ((1 + α sin(xout t)

din
)E (θ), [0,1] × [−π,π])

with t = x
xout

and (t, θ) ∈ [0,1] × [−π,π].

Spectral study of the Schur complement

As we said before, Sn = En −Dn,n+1N
−1
n+1Gn+1,n is defined as the (2,2)-block of matrix

A plus the inverse of (1,1)-block multiplied by (2,1) and (1,2)-blocks on the left and
right, respectively. After scaling Sn by 1

∆t
1

xout
, the related symbol S (t, θ) can be easily

obtained, similar to the reasoning used in §4.2 and the results used in [6]. Because we are
looking for a preconditioner for 1

∆tSn, we will seek for S ∆x(t, θ), which is dependent on
the grid size and generated by combining the generating functions of N−1

n+1

L N−1(θ) = 160

81

(din + α sin(xout t))−1

a2 −∆x2 ρ2
[ a −∆xρ
−∆xρ a

]⊗ [ 8 1
1 8

]

with a(θ) = 2 ∆xρ + 6µc (1 − cos(θ)), with the symbols of {Dn,n+1}n, { 1
∆tGn+1,n}n, and

{ 1
∆xEn}.

More precisely,

S ∆x(t, θ) =
1

c
(1 + α sin(t xout)

din
)[ −1 eiθ

e−iθ −1
] −L DN−1G(t, θ).

where

L DN−1G(t, θ) = γ(t) [
5a(θ) − 3 ∆xρ 3a(θ) − 5 ∆xρ
3a(θ) − 5 ∆xρ 5a(θ) − 3 ∆xρ

](5(1 − cos(θ)) + α
2

2
cos(txout) (1 − eiθ))

+ γ(t) [ −3a(θ) + 5 ∆xρ 3a(θ) − 5 ∆xρ
−5a(θ) + 3 ∆xρ 5a(θ) − 3 ∆xρ

] α
2

2
(1 − e−iθ) cos(txout)

+ γ(t) [ −1 1
−3 3

] b(θ)α
2

20
cos(txout) (10 (e−iθ − 1) + α2 cos(txout) (e−iθ − 1))

+ γ(t) [ −3 3
−1 1

] b(θ)α
2

20
cos(txout) (10 (1 − eiθ) + α2 cos(txout) (eiθ − 1))

with γ(t) = 1

16

din

a(θ)2 −∆x2 ρ2
(1 + α sin(xout t)

din
) and b(θ) = a(θ) + ∆xρ. Of course, by

letting ∆x→ 0 we have S ∆x(t, θ)→S (t, θ).
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Appendix C

CWENOZB

Early attempts of discretization of our quasi 1D model were done with high order finite
volume methods an in particular relied on the CWENO reconstruction without ghost cells
that was introduced in [Naumann, Kolb, Semplice [65]]. That reconstruction showed a
poor performance expecially on coarse grids, which we have corrected by proposing a
modified version in [78].
Although finite volumes were later replaced by DG for our quasi-1D model, and thus
CWENOZB does not enter in the numerical scheme described in the main part of this
thesis, we report here below the paper.
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1 Introduction

Computing, in an efficient way, accurate albeit non-oscillatory solutions of conserva-
tion laws requires the employment of high-order accurate numerical schemes. Their 
design encounters the main difficulties in controlling spurious oscillations near discon-
tinuities and near the domain boundaries. The first problem is well tackled by recon-
structions of the weighted essentially non-oscillatory ( ���� ) class introduced in (see 
the reviews [36–38]) or by the central weighted essentially non-oscillatory [35] set-
ting ( �����) [1, 6, 23, 32, 44]. Results about the parameters and the accuracy of 
�����, ������ and ������- �� class reconstructions in various finite volume 
settings are proven in [13, 15, 33].

The issue of boundary treatment for hyperbolic conservation laws is usually tackled 
by constructing ghost points or ghost cells outside the computational domain and by 
setting their values with suitable extrapolation techniques. Thanks to the ghost cells, 
a high-order non-oscillatory reconstruction procedure can be applied also close to the 
boundary even when its stencil is large. This approach is of course delicate, especially 
with finite-difference discretizations on non-conforming meshes. In this context, a very 
successful technique is the inverse Lax-Wendroff approach, which was introduced in 
[40], rendered more computationally efficient in [41], and further studied and extended 
for example in [24, 27, 28]; a quite up-to-date review may be found in [39]. A modi-
fied procedure enhancing its accuracy and stability has been proposed in [43]. Other 
approaches, still based on an inverse Lax-Wendroff procedure but tailored to coupling 
conditions on networks can be found in [7, 11]. A different approach, entirely based on 
���� extrapolation is studied in [2, 3].

In [29] a different strategy was considered. There, in a one-dimensional finite vol-
ume context, ghost values are entirely avoided and the point value reconstruction at 
the boundary is performed with a ����� type reconstruction that makes use only 
of interior cell averages. The reconstruction stencil for the last cell at the boundary 
is not symmetric, but extends only towards the interior of the computational domain. 
Then the boundary flux is determined from the reconstructed value and the boundary 
conditions.

In [29], achieving non-oscillatory properties when a discontinuity is close to the 
boundary requires the inclusion of very low degree polynomials (down to a con-
stant one, in fact) in the ����� procedure. This, in turn, calls for infinitesimal lin-
ear weights not to degrade the accuracy on smooth solutions. This type of CWENO 
reconstructions has been studied in general in [33] and is known as adaptive order 
�����(�) ( �����-�� or ������-��).

In this paper, we first enhance the accuracy of the boundary treatment of [29] by 
employing an adaptive order ������ reconstruction from [33] and furthermore 
extend it to two space dimensions. In particular, in Sect. 2 we describe the new one-
dimensional reconstruction that avoids ghost cells and, in Sect. 3, we compare it with 
the one of [29] with the aid of numerical tests. The novel two-dimensional no-ghost 
reconstruction is then presented in Sect.  4 and the corresponding numerical results 
are presented in Sect. 5 where we compare it with the ghosted approach of [15]. Some 
final remarks and conclusions are drawn in Sect. 6.
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2  The Novel CWENOZb Reconstruction in One Space Dimension

We start recalling here the operators that define a generic ����� reconstruction, which 
will be useful later.

Central ���� is a procedure to reconstruct point values of a function from its cell aver-
ages; it is different from the classical ���� by the fact that it performs a single nonlinear 
weight computation per cell and outputs a polynomial globally defined in the cell, which is 
later evaluated at reconstruction points.

In defining a ����� reconstruction, one starts selecting an optimal polynomial, 
denoted here by Popt , which should be chosen to have the maximal desired accuracy; the 
����� reconstruction polynomial, in fact, will be very close to Popt when the cell aver-
ages in the stencil are a sampling of a smooth enough function.

For the cases when a discontinuity is present in the stencil of Popt , a sufficient number of 
alternative polynomials, P1,⋯ ,Pm , typically with lower degree and with a smaller stencil, 
should be made available to the ����� blending procedure. The ����� operator then 
computes a nonlinear blending of all polynomials as follows. First a set of positive linear 
or optimal coefficients is chosen, with the only requirement that d0 + d1 +⋯ + dm = 1 and 
di > 0, ∀i . Then, the reconstruction polynomial is defined by

The quantities �i appearing above are called nonlinear weights; when �i ≈ di for 
i = 0,⋯ , n , then Prec ≈ Popt and the reconstruction will have the maximal accuracy. When 
a discontinuity is present in the stencil, the nonlinear weights should deviate from their 
optimal values in order to avoid the occurrence of spurius oscillations in the numerical 
scheme. In practice, the nonlinear weights are computed with the help of oscillation indica-
tors associated to each polynomial, that should be o(1) when the polynomial interpolates 
smooth data and O(1) when the polynomial interpolates discontinuous data. The construc-
tion is independent from the specific form of these indicators, which here we denote gener-
ically as OSC[P] ; typically the Jiang-Shu indicators from [21] are employed.

Let �����(Popt;P1,⋯ ,Pm) denote the CWENO reconstruction based on the optimal 
polynomial Popt and on the polynomial of lower degree P1,⋯ ,Pm . The nonlinear coeffi-
cients are computed as in the original WENO construction, namely as

where � is a small parameter and p ⩾ 1 . For detailed results on the accuracy of such a 
reconstruction, see [13] and the references therein.

Better accuracy on smooth data, especially on coarse grids, without sacrificing the 
non-oscillatory properties, can be obtained by computing the nonlinear weights as in the 
����� construction of [16], namely as

In this case, we denote the reconstruction as ������(Popt;P1,⋯ ,Pm) . Here above, � is a 
quantity that is supposed to be much smaller than the individual indicators when the data in 

(1)Prec= �����(Popt;P1,⋯ ,Pm) = �0

�
Popt −

∑m

i=1
diPi

d0

�
+

m�
i=1

�iPi.

(2)�k =
dk

�

OSC[Pk] + �
�p , �k =

�k
∑

j �j
,

(3)�k = dk

�

1 +

�

�

OSC[Pk] + �

�p�

, �k =
�k

∑

j �j
.
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the entire reconstruction stencil are smooth enough. For efficiency, this global smoothness 
indicator should be computed as a linear combination of the other oscillators. For results 
on the optimal choices for � in a ����� setting and the accuracy of the resulting recon-
structions, see [15] and the references therein.

The accuracy results of both ����� and ������ require that certain relations 
among the accuracy of all polynomials involved are satisfied; the precise conditions for 
optimal accuracy depend also on the parameters � and p [13, 15], but as a rule of thumb 
one should always have deg(Popt) ⩽ 2deg(Pk) for k = 1,⋯ ,m . If controlling spurious oscil-
lations requires the inclusion in the nonlinear combination of polynomials with degree 
smaller than 1

2
deg(Popt) , optimal accuracy can still be achieved. However, the linear weights 

of these additional polynomials of very low degree must be infinitesimal, i.e., chosen as 
O(Δxr) for some r > 0 . In order to easily distinguish the polynomials with infinitesimal lin-
ear weights, we adopt for this case the notations �����-��(Popt;P1,⋯ ,Pm;Q1,⋯ ,Qn) , 
when (2) is used for the nonlinear weights, and ������-��(Popt;P1,⋯ ,Pm;Q1,⋯ ,Qn) , 
when (3) is used instead. This approach was studied on a specific example in [29] for the 
�����case and in general for ������-�� in [33]. This latter contains a thorough 
study of sufficient conditions on r and on the other parameters that guarantee optimal con-
vergence rates for a generic ������-�� reconstruction.

2.1  Third‑Order ���� Reconstruction of (Naumann, Kolb, Semplice; 2018)

A third-order accurate reconstruction that does not make use of ghost cells has been 
introduced in [29]. The reconstruction coincides with the ������ reconstruction of 
[23] in the interior of the domain, with variable � parameter as in [13, 14, 22]. In par-
ticular, for the j-th cell one considers the following polynomials: P(2)

j
 , which is the opti-

mal second degree polynomial interpolating uj−1, uj, uj+1 , P
(1)
j,L

 and P(1)
j,R

 , which are the lin-
ear polynomials interpolating uj−1, uj and uj, uj+1 , respectively. ������ is a shorthand for 
�����(P(2)

j
;P

(1)
j,L
,P

(1)
j,R
) . This reconstruction produces a second degree, uniformly third-

order accurate, polynomial defined in each cell, using the cell averages in a stencil of three 
cells. It can thus be computed on every cell in the domain except for the last one close to 
each boundary.

In the first cell of the domain, the reconstruction is replaced with an adaptive-order 
reconstruction �����- ��(P̂(2)

1
;P

(1)
1,R

;P
(0)
1
) in which the stencils of the quadratic P̂(2)

1
 and 

of the linear P(1)
1,R

 polynomial do not involve ghost cells (see also Fig.  1) and P(0)
1

 is the 
constant polynomial with value u1 . In particular, P̂(2)

1
 is the parabola that matches the cell 

averages u1, u2, u3 on the first three cells of the computational domain. After choosing lin-
ear coefficients d(2), d(1), d(0) for P̂(2)

1
,P

(1)
1,R

,P
(0)
1

 , respectively, the nonlinear weights are then 
computed with equations (2) and the reconstruction polynomial is finally given by (1). The 
last cell is treated symmetrically. In this paper we will refer to this reconstruction as ����.

The inclusion of the constant polynomial P(0) is necessary to prevent oscillations when 
a discontinuity is present one cell away from the boundary and giving it an infinitesimal 
linear weight is necessary to guarantee the optimal order of convergence for the recon-
struction procedure on smooth data. More precisely, in [29] it is shown that choosing the 
linear weights as d(0) = min

(

Δxm̂, 0.01
)

 for the constant polynomial, d(1) = 0.25 for the lin-
ear one and consequently setting d0 = 1 − d(1) − d(0) , guarantees the optimal accuracy on 
smooth data when m̂ ∈ [1, 2] , provided � = Δxq with q ⩾ m̂.

In general, a small � yields good results on discontinuities, but keeping q = 1 seems 
desirable to avoid rounding problems in the computation of the nonlinear weights. The 
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combination m̂ = 2 and q = 1 , does not fulfill the hypotheses of the convergence result for 
���� proven in [29]; in practice, however, the reconstruction appears to give rise never-
theless to a third-order accurate scheme but degraded accuracy can be observed at low grid 
resolutions. As an extreme example in this sense, let us consider the linear transport of a 
periodic initial datum in a periodic domain. Of course there would be no need to employ 
the no-ghost reconstruction in this case, since it would be trivial to fill in the ghost val-
ues (except maybe for considerations on parallel communication), but this example serves 
quite well to illustrate the situation on smooth data.

In Table  1 we report the 1-norm errors observed for the transport of 
u(x, 0) = sin(πx − sin(πx)∕π) after one period (for full details on the numerical scheme, the 
reader is referred to the beginning of Sect. 3). It is evident that for ���� , for d(0) ∼ Δx2 , 
the optimal rate predicted by the theory is observed in practice already on coarse grids; 
when d(0) ∼ Δx , instead third-order error rates can still be observed but only on very fine 
grids; in any case, the errors on coarse grids are still larger than its ghosted ������ 
counterpart.

2.2  The Novel ����� Reconstruction

The loss of accuracy at low grid resolution can be traced back to the relative inability of 
the smoothness indicators alone to detect a smooth flow on coarse grids. The net effect 
is that, when the grid is coarse, the nonlinear weight of the constant polynomial in the 

Table 1  Errors on the linear 
transport of sin(πx − sin(πx)∕π) 
in a periodic domain, 
using ������ and ���� 
reconstructions 

(

� = Δx2
)

CWENO3 CWb3, d(0) = Δx CWb3, d(0) = Δx2

N Error Rate Error Rate Error Rate

25 5.98 × 10−2 – 8.55 × 10−2 – 8.15 × 10−2 –
50 9.46 × 10−3 2.66 1.92 × 10−2 2.16 1.25 × 10−2 2.70
100 1.13 × 10−3 3.06 4.93 × 10−3 1.96 1.39 × 10−3 3.17
200 1.34 × 10−4 3.08 1.29 × 10−3 1.94 1.56 × 10−4 3.16
400 1.63 × 10−5 3.04 2.85 × 10−4 2.17 1.73 × 10−5 3.17
800 2.03 × 10−6 3.01 5.90 × 10−5 2.27 2.03 × 10−6 3.09
1 600 2.53 × 10−7 3.00 9.48 × 10−6 2.64 2.51 × 10−7 3.02
3 200 3.16 × 10−8 3.00 1.19 × 10−6 2.99 3.15 × 10−8 2.99
6 400 3.95 × 10−9 3.00 1.72 × 10−7 2.79 3.95 × 10−9 3.00
12 800 4.94 × 10−10 3.00 2.47 × 10−8 2.80 4.94 × 10−10 3.00

P(0)

P(2)

P(1) P̃(1)

Fig. 1  Illustration of the stencil for the third-order reconstruction in the last cell. Blue: cell where the recon-
struction is computed. Black: the polynomials involved in Prec . Gray: additional polynomial for �(b3)
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first and last cells is larger than it should be strictly needed, degrading the accuracy of 
the reconstruction and of the scheme near the boundary; the errors are then propagated 
into the domain by the flow.

This issue can be successfully counteracted, even on coarse grids, by the employ-
ment of Z-weights in the construction. In fact, we recall that the idea behind ����� , 
see [16], is to replace the standard ���� nonlinear weight computation (2) with (3) 
where the global smoothness indicator � is supposed to be � = o(Ik) if the cell aver-
ages represent a locally smooth data in the stencil. The improved performances of 
����� over ���� , and of ������ over ����� reconstructions are in fact linked 
to the superior ability of detecting smooth transitions, already at low-grid resolution, 
which is granted by the global smoothness indicator � . Moreover, detecting a smooth 
flow even at low-grid resolution depends on how small is � on smooth data; thus the 
goal in the optimal design of � is to choose the coefficients of the linear combination 
�0OSC[Popt] +

∑n

i=1
�kOSC[Pk] = O(Δxs) that maximize s when the data in the stencil 

of the reconstruction are a sampling of a smooth function [15].
Our proposal thus consists in defining the new ����� reconstruction to coin-

cide with ������� = ������
(

P
(2)

j
;P

(1)

j,L
,P

(1)

j,R

)

 in the domain interior, with the 
adaptive-order reconstruction ������- ��

(

P̂
(2)

1
;P

(1)

1,R
;P

(0)

1

)

 in the first cell and with 
������- ��

(

P̂
(2)

N
;P

(1)

N,L
;P

(0)

N

)

 in the last cell.
To specify our choice of � , recall that the Jiang-Shu oscillation indicators [21] are 

defined as

where �j is the cell where the reconstruction is applied. On smooth data,

so that the combination

is O
(

Δx4
)

 ; this very low � biases very strongly the nonlinear weights (3) towards the opti-
mal ones whenever the flow is smooth. In [15] it is shown that this is the optimal choice 
and that it is not possible to obtain a combination of the indicators that is o(Δx4) in the 
third-order setup.

We now need to specify a suitable �1 for the asymmetrical stencil of the first cell and 
�N for the last one. Recall that the role of � is to indicate whether the data are smooth 
in the stencil, which is composed by the first three cells adjacent to the boundary. As 
argued in [33], only the polynomials with degree at least one are useful in the construc-
tion of � . One could use the oscillators of the parabola P(2) fitting the three cell averages 
u1, u2, u3 and the linear polynomial P(1)

1
 interpolating the first two,

OSC[P] ∶=
∑

�⩾1
Δx2�−1 ∫

�
j

(
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dx�
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dx,
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(
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(
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,
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P
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j,L

]

=
(
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)2
Δx2 − u�(xj)u
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(
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(
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(
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|

|
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|

|
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but then it is not possible to exploit the symmetry to obtain a global smoothness indicator 
of size O(Δx4).

Using �1 = O
(

Δx3
)

 , however, could make the reconstruction in the boundary cell less 
performing than the one in the domain interior. To overcome this difficulty, one could 
employ, in the construction of � , also the indicator of the linear polynomial P̃(1) interpo-
lating the averages u2, u3 . However, since the role of � is to detect smooth flows in the 
global stencil, which is composed by the first three cells and thus coincides with the stencil 
employed by the second cell, a simpler solution (which also allows to save some computa-
tions) is to take instead for the first cell the same value of � that was computed in the sec-
ond cell; this is O

(

Δx4
)

 on smooth flows and yields a better reconstruction.
The novel reconstruction procedure that we propose is thus:

– in all cells except the first and last one, compute the ������� reconstruction polyno-
mial with the optimal definition (4) of �j , as in [15];

– in the first cell, apply ������- ��
(

P̂
(2)

1
;P

(1)

1,R
;P

(0)

1

)

 with �1 ∶= �2;

– in the last cell, apply ������- ��
(

P̂
(2)

N
;P

(1)

N,L
;P

(0)

N

)

 with �N ∶= �N−1.

After the analysis of §3.1.1 of [33], it is expected that this reconstruction has third order of 
accuracy for d(0) = O(Δx) provided that p ⩾ 1 and 𝜖 = O(Δxm̂) for m̂ ∈ [1, 3].

As discussed in [15], the choice of parameters within the allowed ranges can trade bet-
ter accuracy on smooth flows (larger m̂ or smaller q) with smaller spurious oscillations 
on discontinuities (smaller m̂ or larger q). In [15] it was found that a good overall choice 
for ������� was p = 1 and m̂ = 2 and we will adopt these values in all our numerical 
tests. Regarding the infinitesimal linear weight, the choices d(0) = Δx and d(0) = Δx2 will 
be compared.

In Fig. 2 we report some results on the spectral properties of the reconstructions studied 
in this paper. In particular, following the approach of [12], we study the discrete operator 
D̂x that is obtained by the composition of a point value reconstruction and an upwind flux:

OSC
[

P̂
(2)

1

]

=
(

u�(x1)
)2
Δx2 + O(Δx4),

OSC
[

P
(1)

1,R

]

=
(

u�(x1)
)2
Δx2 + u�(x1)u

��(x1)Δx
3 + O

(

Δx4
)

,

Spectral

Fig. 2  Spectral properties of the numerical differentiation operator induced by the ����� and ������ 
reconstructions and their no-ghost counterparts. (Left) Diffusion error. (Right) Eigenvalues
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where U−
j±1∕2

 denotes the reconstructed value at the left of the interfaces. D̂x(U(t)) is the 
right-hand side of the evolution equation for the cell averages in a semidiscrete scheme for 
the linear advection equation. We fix a grid and form a matrix �  setting its k-th column to 
be the Fourier transform of D̂x

(

U
(k)
)

 , where U
(k)

 denotes the cell averages of the k-th Fou-
rier mode on the grid. The analysis of the diagonal of �  allows to introduce approximate 
diffusion and dispersion errors of the D̂x . This is analogous to the diffusion-dispersion 
study of [30], but here we consider only the spatial derivative operator and not also the fur-
ther nonlinear contributions of the Runge-Kutta scheme evolving the cell averages in time.

The diffusion error of different reconstructions is compared in the left panel of Fig. 2. It 
can be seen that for each pair of a ghosted reconstruction ( ������ or ������� ) and its 
no-ghost counterpart ( ���� and ����� respectively), it has the same sign and approxi-
mately the same magnitude. In the right panel, we show the eigenvalues of the matrix �  on 
a grid with 64 cells. We can observe that the two cases of ������� and ����� are very 
close to each other. We can thus infer that the stability and maximum CFL number are not 
affected by replacing the ghosted with the no-ghost reconstruction.

2.3  Fully Discrete Numerical Scheme

Our fully discrete numerical scheme is obtained with the method of lines, the local 
Lax-Friedrichs numerical flux, and the third-order TVD-RK3 scheme [17] in time. The 
������ and the ������� reconstruction from cell averages in the first and last cells 
make use of one ghost cell outside each boundary, which is filled according to the bound-
ary conditions before computing the reconstruction. In the same cells, the ���� and the 
����� reconstructions, instead, do not make use of ghost cells but extend their stencil 
inwards for one extra cell with respect to their ghosted counterparts.

In both cases, the flux on the boundary face is computed by applying the local Lax-
Friedrichs numerical flux to an inner value determined by the reconstruction and an outer 
value determined by the boundary conditions. For example, let us focus on the right doma-
nin boundary and let U−

N+1∕2
 be the value of the reconstruction polynomial of the N-th cell 

on its right boundary.

– Periodic boundary conditions are applied computing the boundary flux with F
(

U
−
N+1∕2

,

U
+
1−1∕2

)

 , i.e., using as outer value the inner reconstruction on the left of the first computa-
tional cell.

– Dirichlet boundary conditions prescribing u = g(t) at the boundary are applied using 
the numerical flux F

(

U−
N+1∕2

, g(tn + ciΔt)
)

 , where tn is the time at the beginning of the 
current timestep and ci is the abscissa of the i-th stage of the Runge-Kutta scheme.

– Reflecting boundary conditions in gasdynamics employ F
(

U−
N+1∕2

,Uout

)

 where 
Uout =(

�−
N+1∕2

,−v−
N+1∕2

, p
−
N+1∕2

)

 where � , v and p denote the density, velocity and pressure of the 
gas, respectively.

D̂x(U)
|

|

|j
= −

(

U−
j+1∕2

− U−
j−1∕2

)

,
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We point out that a similar approach based on �����- �� reconstructions of higher 
orders could be employed to construct boundary treatments for higher order schemes.

3  One‑Dimensional Numerical Tests

All tests in this section are conducted with the finite volume scheme described in Sect. 2.3. 
The CFL number is set to 0.45 in all tests. The numerical tests have been performed with 
the open-source code claw1dArena, see [34].

3.1  Linear Transport

Periodic solution We consider the linear transport equation ut + ux = 0 in the domain [−1, 1] 
with periodic boundary conditions. We evolve the initial data u0(x) = sin(πx − sin(πx)∕π) 
for one period, using the ������� and ����� reconstructions. Note that u0 has a criti-
cal point of order 1 (see [18]).

Table 2 shows that, as in [33], ����� can reach the optimal convergence rate already 
with d(0) ∼ Δx and that the errors obtained without using ghosts are very close to those of 
the ghosted reconstruction ������� . As already pointed out in [15], we observe that 
using Z-weights in ����� yields lower errors compared to the companion reconstruc-
tions with the Jiang-Shu weights (compare Table 1).

Smooth solution with time-dependent Dirichlet data For this second test, we 
consider again the linear transport equation on the domain [−1, 1] , but we apply 
time-dependent Dirichlet boundary data on the left (inflow) boundary imposing 
u(−1, t) = 0.25 − 0.5 sin(π(1.0 + t)) and free-flow conditions on the (outflow) boundary at 
x = 1 . We start with u0(x) = 0.25 + 0.5 sin(πx) and compare the computed cell averages 
with the exact solution u(t, x) = u0(x − t) . The final time is set to 1. This test was proposed 
in [40].

The results reported in Table 3 show that the ����� reconstruction yields third-order 
error rates already on coarse grids and with d(0) ∼ Δx . No advantage is seen for the choice 
d(0) ∼ Δx2.

Table 2  Errors on the linear 
transport of sin(πx − sin(πx)∕π) 
in a periodic domain, using 
������� and ����� 
reconstructions

������� ����� , d(0) = Δx ����� , d(0) = Δx2

N Error Rate Error Rate Error Rate

25 2.75 × 10−2 – 2.36 × 10−2 – 2.34 × 10−2 –
50 3.59 × 10−3 2.94 3.27 × 10−3 2.85 3.25 × 10−3 2.85
100 4.44 × 10−4 3.02 4.22 × 10−4 2.95 4.21 × 10−4 2.95
200 5.45 × 10−5 3.03 5.31 × 10−5 2.99 5.31 × 10−5 2.99
400 6.79 × 10−6 3.01 6.70 × 10−6 2.99 6.70 × 10−6 2.99
800 8.48 × 10−7 3.00 8.43 × 10−7 2.99 8.43 × 10−7 2.99
1 600 1.06 × 10−7 3.00 1.06 × 10−7 3.00 1.06 × 10−7 3.00
3 200 1.32 × 10−8 3.00 1.32 × 10−8 3.00 1.32 × 10−8 3.00
6 400 1.66 × 10−9 3.00 1.65× 10−9 3.00 1.65 × 10−9 3.00
12 800 2.07× 10−10 3.00 2.07× 10−10 3.00 2.07 × 10−10 3.00
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We point out, in this case, that it would not be straightforward to apply a reconstruction 
that makes use of ghost cells, like ������ or ������� . In [9] it was observed that 
accuracy would be capped at second order if the ghost cell values for the i-th stage were 
to be set by reflecting the inner ones in the exact boundary data at time tn + ciΔt , where ci 
denotes the abscissa of the i-th stage of the Runge-Kutta scheme. In the same paper, a suit-
able modification of the boundary data preserving the accuracy of the Runge-Kutta scheme 
is proposed. On the other hand, we point out that with the ���� and ����� reconstruc-
tions this issue of filling the ghost cells is not present and the exact boundary data can be 
employed in the numerical flux computation, without observing losses of accuracy.

Discontinous solution Next we consider the same setup of the previous test, but impose 
the boundary value

thus introducing a jump in the exact solution at t = 1 , computing the flow until t = 1.5 . 
This test was proposed in [40].

The results are shown in Fig. 3, where we compare the solution computed with ������� 
using ghosts and the no-ghost ���� and ����� . In the final solution, no difference can be 

u(−1, t) =

{

0.25, t ⩽ 1,

−1, t > 1,

Table 3  Errors on the smooth 
linear transport test with time-
dependent Dirichlet data

����� , d(0) = Δx ����� , d(0) = Δx2

N Error Rate Error Rate

25 2.40 × 10−3 – 2.41 × 10−3 –
50 2.95 × 10−4 3.02 2.94 × 10−4 3.03
100 3.67 × 10−5 3.01 3.66 × 10−5 3.01
200 4.58 × 10−6 3.00 4.57 × 10−6 3.00
400 5.71 × 10−7 3.00 5.71 × 10−7 3.00
800 7.13 × 10−8 3.00 7.13 × 10−8 3.00
1 600 8.91 × 10−9 3.00 8.91 × 10−9 3.00

Reference

Fig. 3  Solutions computed with 100 cells for the discontinuous linear transport test, using ������� , 
���� and ����� reconstructions ( � = Δx2)
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seen in the corner point at x = 0.5 , which is originated by a continous but not differentia-
ble boundary data. On the other hand, the numerical solution around the jump at x = − 0.5 , 
which is generated by the discontinuity in the boundary data, has slightly more pronounced 
oscillations when using ����� and d(0) = Δx2 and a more smoothed profile when using 
���� . ����� with d(0) = Δx produces an almost idential solution to the one computed by 
the ghosted ������� reconstruction.

3.2  Burgers’ Equation

For a nonlinear scalar test, we consider the Burgers’ equation ut + (u2∕2)x = 0 with initial 
data u0(x) = 1 − sin(πx) with periodic boundary conditions, so that a shock forms, travels to 
the right and is located exactly on the boundary at t = 1.

In Fig. 4 we compare the solutions computed with 25 cells. One can see that ����� com-
putes a solution which is almost exactly superimposed on the ������� , despite the fact that 
using the correct periodic ghost values should be an advantage in this test. The ���� solution 
is slightly more diffusive and, both choices of d(0) yield similar solutions.

3.3  Euler Gas Dynamics

In this section, we consider the one-dimensional Euler equations of gas dynamics,

where � , v, p and E are the density, velocity, pressure and energy per unit volume, respec-
tively. We consider the perfect gas equation of state E =

p

�−1
+

1

2
�v2 with � = 1.4.

�t

⎛

⎜

⎜

⎝

�

�v

E

⎞

⎟

⎟

⎠

+ �x

⎛

⎜

⎜

⎝

�v

�v2 + p

u(E + p)

⎞

⎟

⎟

⎠

= 0,

Initial
Reference

Fig. 4  Burgers’ test with 25 cells at t = 1
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Incoming wave from the left In this test, we consider a gas initially at rest, with 
� = 1, p = 1, v = 0 . Through a time-dependent Dirichlet boundary condition on the left, we 
introduce the following disturbance:

The boundary introduces a smooth wave travelling right. Wall boundary conditions are 
imposed on the right and the final time is set at t = 1.25 , when the wave is being reflected 
back from the wall.

In Fig. 5 we report the solutions at time t = 1.25 computed on 50 cells with the third-
order ghosted and ghost-free reconstructions, together with a reference solution com-
puted on 10 000 cells with a second-order TVD scheme with minmod slope limiter.

Spurious oscillations coming from the Dirichlet boundary conditions on the left side 
are completely absent when using ���� or ����� . Instead ������� produces a 
deep undershoot. Also, a slightly better resolution is observed near the top of the wave. 
Here again, we stress that the ���� and the ����� solutions have been computed by 
entirely neglecting the boundary conditions in the reconstruction phase and passing the 
exact Dirichlet value at tn + ciΔt to the numerical flux as outer data on the left boundary.

Sods Riemann problem with walls In this test, we use the initial data of the Sod prob-
lem, with the density, velocity and pressure set to (1, 0, 1) for x < 0.5 and (0.125, 0, 0.1) 
for x > 0.5 . The computational domain is the unit interval as usual, but we impose wall 
boundary conditions on both sides.

In Fig. 6 we show the wave structure of the exact solution for x > 0.5 . This Riemann 
problem gives rise to a left-moving rarefation (thin lines), a right moving contact (thick 
dashed line) and a faster right moving shock (thick solid line). The solution at t = 0.2 is 
still unaffected by the wall boundary conditions. The shock bounces back from the wall 
at t ≈ 0.285 , interacts with the contact wave at t ≈ 0.408 , giving rise to two shocks mov-
ing in opposite directions and to a slow, right-moving contact. This shock rebounces 
from the wall at t ≈ 0.490 and later interacts with the contact at t ≈ 0.560 . The solu-
tion at t = 0.6 is composed, from right to left, by a right-moving very weak shock (den-
sity jump of 0.04), a very slow contact wave moving rightwards with speed 0.012, a 

𝜌(t, 0) = 1.0 + 𝛿(t), p(t, 0) = 1.0 + 𝛾𝛿(t), 𝛿(t) =

{

0.01(sin(2πt))3, t ∈ [0, 0.5],

0, t > 0.5.

Initial
Reference

D
en

si
ty

Fig. 5  Gasdynamics. Incoming wave test using 50 cells. The reference is computed with 10 000 cells and a 
second order TVD scheme with the minmod slope limiter
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left moving shock (velocity − 1.13 ), a slower left-moving shock (velocity − 0.677 ) and 
finally by the rarefaction originated from the initial Riemann problem, which is at this 
time is bouncing back into the domain from the left wall (not shown in Fig. 6).

In Fig. 7 we show, in the left panel, the solution at time t = 0.2 , which is before the 
waves reach the wall; the expected solution is still unaffected by the wall. All three solu-
tions are very close to each other and only a slight extra diffusion can be noticed for the 
reconstruction that is using the Jiang-Shu nonlinear weights instead of the Z-weights.

In the right panel of Fig. 7 we show the solution at t = 0.6 . We see the rarefaction 
wave, which is reflecting in the left wall, and all the discontinous waves described 

t = 0.2

t = 0.6

1.00.5

0.408(0.426,0.927,0.303)

(0.265,0.927,0.303)

(0.125,0,0.1)

0.285

0.490

0.560
(0.872, 0.107, 0.864) (0.589, 0, 0.955)

0.633
(0.593, 0.0124, 0.966)(0.945,0.0124,0.966)

Fig. 6  Sod test with wall boundary conditions: wave structure of the solution. Thin (green) lines represent 
rarefaction waves, solid thick (red) lines are shocks, dashed thick (blue) lines are contact discontinuities. 
The states between the waves are indicated in the graph, using primitive variables, as (�, v, p)

Exact

D
en

si
ty

Fig. 7  Sod test with wall boundary conditions on 400 cells. The rarefaction in the "exact" solution at t = 
0.6 is computed with Δx =1/10 000  and a linear reconstruction with a second-order TVD scheme with the 
minmod slope limiter
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before. It can be appreciated that ����� , without using ghost cells, computes almost 
the same solution as the ghosted ������� . As in other tests, ���� is more diffusive. 
The very weak shock is barely captured at this resolution. The local characteristic pro-
jection has been used in this computation to control spurious oscillations that would 
otherwise appear in the plateaux between the two left-moving shocks and the hump left 
of the contact.

Finally, we consider the d-dimensional version of the same problem. Following [42], 
in spherical symmetry this amounts to adding to the Euler equations the source term 
S(�, u, p) = −

d−1

x

[

�u, �u2, up
]� . In particular in Fig.  8 we show the solution for d = 3 at 

t = 0.5 and at t = 0.65 . In this test, the source term contribution is computed in each cell 
with a two-point Gaussian quadrature, which is fed by the reconstructed values. We thus 
test the �����-based reconstructions’ capability of easily computing reconstructed val-
ues inside the cells. For all waves, we observe again that ����� and ������� produce 
very similar solutions, with the no-ghost version ���� being slightly more diffusive.

4  Two‑Dimensional Scheme

In this section, we consider a two-dimensional conservation law �tu + ∇ ⋅ � (u) = 0 and dis-
cretize it on a Cartesian grid, with cells of size Δx . We denote the cells as �i,j , with the pair 
of integers (i, j) referring to their position in the grid. The semi-discrete formulation reads

where Ui,j(t) is the cell average at time t in cell �i,j . The solution is advanced in time 
with the third order TVD-SSP Runge-Kutta scheme [17]. At each stage, the integral of 
the flux is split in the contributions of each edge of the cell �i,j and each of them in turn 
is approximated with the two-point Gaussian quadrature of order 3. The eight quadra-
ture points, in the reference geometry [0, 1]2 , are located at {0, 1} × {1∕2 ±

√

3∕6} and at 
{1∕2 ±

√

3∕6} × {0, 1} . At each quadrature point, a two-point numerical flux F
(

Uin,Uout

)

 , 
is applied to the inner and outer reconstructed values. On domain boundaries, only the 
inner point value, Uin , is computed by the reconstruction procedure, while Uout is computed 
according to the boundary conditions similarly to the one-dimensional case. For Euler 

dUi,j

dt
= −

1

|�i,j|
∫
��i,j

� (u(t, �)) ⋅ �(�)d� ,

Reference

D
en

si
ty

Fig. 8  Sod test in 3D, with 400 cells. The reference is computed with 10 000 cells and a linear reconstruc-
tion with the minmod limiter
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gas-dynamics, at a solid wall boundary, all components of Uout are equal to those in Uin , 
except for the normal velocity, which is given the opposite sign.

The reconstruction from cell averages to point values in two space dimensions is 
not obtained by dimensional splitting, but is computed by blending polynomials in two 
spatial variables with a ������ or a ������-�� construction. The reconstruc-
tion operator is called only once per cell per stage value and the polynomial returned is 
later evaluated at the eight reconstruction points where the numerical fluxes have to be 
computed.

Let �i,j be the cell in which the reconstruction is being computed. In every cell, the 
reconstruction is computed by a ������ operator with optimal polynomial Popt of 
degree two in two spatial variables (six degrees of freedom) associated with a 3 × 3 
stencil containing �i,j (see later for the definition of the polynomial associated to a sten-
cil). The reconstruction stencils are depicted in Fig. 9. In all panels, the cell in which 
the reconstruction is being computed is hatched, while the stencil of the optimal polyno-
mial of degree two is shaded.

The ������ operator is fully specified after the low degree polynomials and the 
global smoothness indicator � is also chosen. In Fig. 9, the stencils of the first-degree 
polynomials in two or one variables are indicated by circles joined by solid or dashed 
lines respectively; while polynomials of zero degree are indicated by a solid dot. Here 
below we describe how these polynomials are computed.

In the bulk of the computational domain, the reconstruction coincides with the two-
dimensional ������� described in [15]; it is defined as a nonlinear combination of 
second- and first-degree polynomials as

The optimal polynomial is associated with the 3 × 3 stencil of cells centered at �i,j (left 
panel in Fig. 9). The four polynomials P

��
,P

��
,P

��
 and P

��
 are linear polynomials in two 

variables associated to the four stencils depicted with solid blue lines in the figure. For 
example, P

��
 is associated to the stencil composed by the cells �r,s for r ∈ {i, i + 1} and 

s ∈ {j, j + 1} . As in [15], we define the global smoothness indicator by

where OSC[P] is the multi-dimensional Jiang-Shu smoothness indicator, as defined in [19]. 
The nonlinear weights are computed by (3) starting from the linear weights d

�
= 3∕4 and 

d
��
= d

��
= d

��
= d

��
= 1∕16.

������(Popt;P��
,P

��
,P

��
,P

��
).

� = |

|

4OSC[Popt] − OSC[P
��
] − OSC[P

��
] − OSC[P

��
] − OSC[P

��
]|
|

,

Fig. 9  Stencils for the 2d reconstruction in the middle of the domain (left), at a domain edge (center) and at 
a domain corner (right)
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Next we consider the case of a cell adjacent to a domain boundary. We focus in par-
ticular on the case of the bottom boundary, which is depicted in the central panel of 
Fig. 9. Here the reconstruction is

where P
��

 and P
��

 are defined as in the domain bulk. The stencil of Popt is biased 
towards the domain interior and more precisely it is composed by the cells �r,s for 
r ∈ {i − 1, i, i + 1} and s ∈ {j, j + 1, j + 2} . The other two polynomials, P̃

�
 and P̃

�
 are 

degree one polynomials that depend only on the tangential variable, x in the example, 
and are constant in the direction normal to the boundary. Their stencils are indicated with 
dashed lines in the figure. The global smoothness indicator � for the cell in the example is 
copied from the cell �i,j+1 . The linear weights are similar to the bulk case, i.e., d

�
= 3∕4 and 

d
��
= d

��
= d

�
= d

�
= 1∕16 . The case of the other boundaries is obtained from this one by 

symmetry.
In our numerical experiments, we have noticed that choosing correctly the linear 

weights for the low-degree polynomials in the boundary cells is important to avoid spu-
rious waves and features generated by an anomalous diffusion in the tangential direc-
tion; this latter would show up for example when choosing infinitesimal weights for the 
planes P̃

�
 and P̃

�
.

Finally we describe the reconstruction in a domain corner, focusing on the case of 
the south-west one, which is represented in the right panel of Fig. 9. Here, for stabil-
ity purposes, we must include also a constant polynomial in the ������ operator, 
denoted with P̃

�
 , to avoid spurious oscillations when a strong wave hits the corner. P̃

�
 

has of course the constant value coinciding with the cell average of the corner cell and 
its 1-cell stencil is represented by the filled circle in the picture. Following [33], we 
assign to the constant polynomial P̃

�
 and to the P̃

�
 and P̃

�
 polynomials an infinitesimal 

weight of d
�
= d

�
= d

�
= Δx2 and the reconstruction in the south-west corner cell is

The stencil of Popt is again biased towards the interior of the domain and is composed by 
the cells �r,s for r ∈ {i, i + 1, i + 2} and s ∈ {j, j + 1, j + 2} . P̃

�
 , similarly to the previous 

case, is a degree one polynomial that is constant in the y direction, while P̃
�
 is a degree one 

polynomial that is constant in the x direction. The global smoothness indicator � for the cell 
in the example is copied from the cell �i+1,j+1 . The case of the other corners is obtained 
from this one by symmetry.

Also this two-dimensional reconstructions will be referred as ����� in the rest of 
the paper.

Associating a polynomial to a stencil The polynomials associated to the stencils are 
computed as follows. Let S be a collection of neighbours of the cell �i,j that includes 
the cell itself and let Π ⊂ ℙd(x, y) be the subspace of the polynomials of degree d in 
two spatial variables where PS is sought. If the stencil S contains as many cells as the 
dimension of Π , the polynomial PS is the solution of the linear system composed by the 
equations ⟨PS⟩r,s = ur,s for all (r, s) ∈ S , where the operator ⟨⋅⟩r,s denotes the cell average 
of its argument over the cell �r,s . In the examples above, all polynomials with a tilde in 
their name are computed in this way.

When the cardinality of S is larger than dim(Π) , we associate to S the solution of the 
following constrained least-squares problem:

������(Popt;P��
,P

��
, P̃

�
, P̃

�
),

������-��
(

Popt;P��
;P̃

�
, P̃

�
, P̃

�

)

.
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In the examples above, Popt,P��
,P

��
,P

��
,P

��
 are computed like this.

On Cartesian grids, the constrained least square problem can be easily turned into an 
unconstrained one by choosing a basis of Π consisting of a constant function and of poly-
nomials with zero cell average, which are thus orthogonal to the constant one. Explicit 
expressions for the coefficients of the polynomials in the domain interior can be found in 
[10].

We point out that a similar approach based on �����-�� reconstructions of higher 
orders could be employed to construct boundary treatments for higher order schemes, like 
the fourth-order accurate bidimensional ����� of [10].

5  Two‑Dimensional Tests

The numerical scheme has been implemented with the help of the PETSc libraries [4, 5] 
for grid management and parallel communications; the tests were run on a multi-core desk-
top machine equipped with an Intel Core i7-9700 processor and 64 Gb of RAM. We show 
the results obtained with the local Lax-Friedrichs numerical flux.

We consider the two-dimensional Euler equations of gas dynamics,

where � , u, v, p and E are the density, velocity in the x and y direction, pressure and energy 
per unit volume, respectively. We consider the perfect gas equation of state 
E =

p

�−1
+

1

2
�(u2 + v2) with � = 1.4.

5.1  Convergence Test

We compare the novel reconstruction with the one of [15], that makes use of ghost cells, 
on the isentropic vortex test [35]. Of course there would be no need to use a ghost-less 
reconstruction with periodic boundary conditions, since it would be trivial to set up and fill 
in the ghost cells, but we conduct this as a stress test to verify the order of accuracy of the 
novel reconstruction.

The initial condition is a uniform ambient flow with constant temperature, density, 
velocity and pressure T∞ = �∞ = u∞ = v∞ = p∞ = 1.0 , onto which the following isen-
tropic perturbations are added in velocity and temperature:

where r =
√

x2 + y2 and the strength of the vortex is set to � = 5.0 . The domain is the 
square [−5, 5]2 with periodic boundary conditions and the final time is set to t = 10 so that 
the final exact solution is the same as the initial state.

(5)PS = argmin

�

�

(r,s)∈S

�

�

⟨PS⟩r,s − ur,s
�

�

2
, such that PS ∈ Π, ⟨PS⟩i,j = ui,j

�

.
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We observe third-order convergence rates in all variables (1-norm errors in density and 
energy are shown in Table 4). Compared with the ������� scheme, the errors are no 
worse, and in some cases slightly better.

5.2  Two‑Dimensional Riemann Problem

We have run a number of Riemann problems, in particular configurations B, G and K from 
[31], to compare the performances of the novel reconstruction on flows with waves almost 
orthogonal to the boundary.

We point out that choices of linear weights for the boundary reconstructions departing 
from the ones described in Sect.  4 may lead to spurius tangential diffusion. (This latter 
would be observed for example when choosing infinitesimal weights for the planes with 
two cells in the stencil in the middle panel of Fig. 9). Since it is on contact waves that spu-
rious diffusion can accumulate over time and become visible, we report only a comparison 
of the solutions computed with the ghosted and the no-ghost reconstructions on configura-
tion B of [31], which involves four contact discontinuities.

We evolved an initial configuration with constant data in the four quadrants; in particu-
lar, we set p = 1 everywhere and

so that the solution contains four contact waves rotating in the clock-wise direction. The 
domain is the square [−0.5, 0.5]2 with free-flow boundary conditions.

The solutions computed with and without ghost cells are shown in Fig. 10. In the plot, 
the colors stand for pressure (rainbow colorbar) and we are also showing contour lines 
of the density (grayscale colorbar). We are focusing on contact waves as they are a good 
indicator of numerical diffusion, since on this kind of waves its effects accumulate over 
time. No difference is visible between the two computed solutions, indicating that the no-
ghost reconstruction does not introduce significant differences with respect to the standard 
approach that makes use of ghosts. In particular, no wave deformation is visible close to 
the boundary, indicating that, with our choice of linear weights, no extra tangential diffu-
sion is introduced in the boundary cells.

(�, u, v) =

⎧

⎪

⎨

⎪

⎩

upper left upper right

(2.0, 0.75, 0.5) (1.0, 0.75,−0.5)

(1.0,−0.75, 0.5) (3.0,−0.75,−0.5)

lower left lower right

⎫

⎪

⎬

⎪

⎭

,

Table 4  Errors on the isentropic vortex test, using ������� and ����� reconstructions

������� �����

N Density Rate Energy Rate Density Rate Energy Rate

50 3.28 × 10−1 – 1.83 × 100 – 3.04 × 10−1 – 1.71 × 100 –
100 6.41 × 10−2 2.36 3.08 × 10−1 2.57 6.21 × 10−1 2.29 2.97 × 10−1 2.52
200 9.03 × 10−3 2.83 4.24 × 10−2 2.86 8.89 × 10−2 2.80 4.17 × 10−2 2.83
400 1.15 × 10−3 2.97 5.39 × 10−3 2.97 1.14 × 10−3 2.96 5.37 × 10−3 2.96
800 1.44 × 10−4 3.00 6.82 × 10−4 2.98 1.44 × 10−4 2.99 6.84 × 10−4 2.97
1 600 1.80 × 10−5 3.00 9.12 × 10−5 2.90 1.81 × 10−5 3.00 9.15 × 10−5 2.90
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5.3  Radial Sod Test

Next we run the cylindrical Sod shock tube problem in two space dimensions. The 
initial conditions for the velocity are u, v = 0 everywhere, while density and pres-
sure are (�H , pH) = (1, 1) for the central region, i.e., where r =

√

x2 + y2 < 0.5 , and 
(�L, pL) = (0.125, 0.1) elsewhere. We compute the solution only in the first quadrant of the 
domain, by setting the computational domain � = [0;1]2 , and using reflecting boundary 
conditions on all sides, representing symmetry lines along x = 0 and y = 0 and walls at 
x = 1 and y = 1.

In Fig. 11 we compare the solutions at t = 0.2 computed on a grid of 400 × 400 cells, 
with and without ghost cells. As before, the pressure is in colour, while for the density 
25 equispaced contour lines of the density field, from 0.04 to 1.0, are also shown (gray-
scale colorbar), so that the type of wave can be easily recognized. In all the pictures, the 
������� solution is shown reflected to the left to ease the comparison.

Almost no difference can be appreciated between the two solutions and even the small 
artifacts appear identical in both schemes. Further, in Fig. 12, we plot the density computed 
without ghost cells as a function of the distance of the the cell center from the origin. An 
almost perfect radial symmetry is observed, despite the fact that the boundary cells are 
reconstructed with a different algorithm than the bulk ones.

After t = 0.2 the cylindrical shock wave interacts with the outer walls and later with the 
expanding contact. The reflected curved shock interacts with itself exactly at the upper-
right corner at t ≃ 0.56 ; in Fig. 13, we show the solution at t = 0.6 , just after this event. 
In this way, we are testing the numerical schemes on reflecting a non-planar shock wave 
on a wall. Even more importantly, we are stressing the reconstruction procedure in the 
corner cell. In fact the shocks converge in the corner and therefore, for some timesteps, 
there is no smooth stencil available to the reconstruction procedure for the corner cell. 
Here too, no appreciable difference is visible between the solutions computed with the two 

Fig. 10  Two-dimensional Riemann problem with four slip lines, computed with (left) and without (right) 
ghost cells. The colorbar is for the pressure; there are 29 contour lines for the density, spaced by 0.1, from 
0.25 (center of pictures) to 3.05 (near the bottom and right sides)
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Fig. 11  Radial Sod solutions at t = 0.2

Fig. 12  Radial Sod solutions at t = 0.2 with the no-ghost ����� reconstruction. Density as a function of 
the cell center from the origin for all cells. Whole solution (left), zoom on the contact (middle) and on the 
shock (right)

Fig. 13  Radial Sod solutions at t = 6
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reconstruction schemes, showing that not using ghost cells in the reconstruction does not 
impair the numerical scheme.

5.4  Implosion Problem

Next we consider the problem of a diamond-shaped converging shock proposed in [20]. 
As for the previous test, the solution is computed only in the first quadrant, with symmetry 
boundary conditions. This test stresses the non-oscillatory properties of the reconstruction 
in a corner cell: in fact here, at first an oblique shock interacts with the boundary for a long 
time, and later the four sides of the diamond shock converge in the origin and are reflected 
back from there.

The test is set in the square domain [0, 0.3]2 with reflective boundary conditions on all 
four sides: those at x = 0 and y = 0 represent symmetry lines, while the other two are phys-
ical solid walls. The initial condition has zero velocity everywhere and � = 1, p = 1 in the 
outer region ( x + y > 0.15 ) and � = 0.125, p = 0.14 in the interior one. A useful reference 
for this test is [26] and the first author’s website cited therein [25]. We show the solution 
computed with a grid of 800 × 800 cells; the final time was set to t = 2.5 , saving snapshots 
every 0.005 until t = 0.1 and every 0.1 afterwards.

Figure 14 shows both solutions in an early stage of the evolution, at t = 0.03 . Here and 
in all subsequent figures, we have mirrored to the left the solution computed with ghosts. 
In the early stages of the evolution the initial discontinuity gives rise to a shock (indicated 
with “S” in the left panel) and a contact (“C”), both moving towards the origin, and to 
a rarefaction (“R”) that moves outwards. At the boundary, the shock is reflected and the 
reflected waves interact with the incoming contact (“s” and “c” in the figure). In the right 
panel, the gas velocity is represented with arrows; notice the fast wind directed towards the 
origin blowing along the coordinate axis.

Later the main shock and the reflected shocks converge in the origin, hit there head 
to head and are bounced back outwards. The snapshot reported in Fig.  15 is taken at 
t = 0.06 , just after this event. Here it is important to observe that no spurious waves and no 

Fig. 14  Implosion test at t = 0.03 . The rainbow colorbar is for the pressure, the grayscale one is for the 
density isolines. In the right panel, the arrows represent the velocity. In the left panel, the main shock (S), 
contact (C) and rarefaction (R) are indicated with capital letters, some secondary waves with small letters


