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1 Introduction and summary

Open-closed string field theory is a complete QFT framework to address physical questions
in string theory when effects involving D-branes are important. The structure of the theory
is deeply linked to the structure of the possible sewings of Riemann surfaces with bound-
aries and its quantum consistency has been elucidated by Zwiebach [1, 2] in the framework
of Batalin-Vilkovisky (BV) quantization. Truncating the theory to only punctured spheres
and disks, an interesting mathematical structure called Open-Closed Homotopy Algebra
(OCHA) was extracted by Kajiura and Stasheff in [3, 4]1 and recently extended by two of
us [6] to a full Sphere-Disk Homotopy Algebra (SDHA) by also including couplings with
only closed strings on the disk. This mathematical structure turned out to be useful to
describe classical open string field theory in a deformed background given by a classical
closed string field theory solution, with frozen closed string degrees of freedom. In par-
ticular the SDHA extension was shown to be crucial to correctly capture gauge-invariant
observables.

Because of the familiar open-closed channel duality relating an open string quantum
loop to a classical closed string exchange, there is not a classical open-closed SFT involv-
ing propagating open and closed strings: the theory is intrinsically quantum mechanical.
The homotopy-algebraic structure at the quantum level turned out to be rather involved
(certainly more involved than quantum closed string field theory [7], see for example [8])
and has been addressed in [9] in terms of open and closed IBL∞ algebras and morphisms

1Kajiura-Stasheff homotopy structure has been recently generalized to the RNS superstring in [5].
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between the two, in a structure called Quantum Open-Closed Homotopy Algebra. In
this approach, purely open and purely closed couplings are described by (generalized) co-
derivations and the other open-closed couplings are associated to morphisms intertwining
between purely closed and purely open interactions. Beside the mathematical interest, this
structure treats open-closed interactions on a different level than purely open or purely
closed ones and therefore it does not seem very convenient to work with in concrete set-
tings when one would like to treat all path integral variables, and their interactions, on
the same footing. Along this direction, a more conservative and conceptually economic
construction has been provided recently in [10], where all open-closed couplings have been
associated to a common set of open-closed multistring products, thus providing a picture
which is closer to what happens in a standard QFT when different fields are present. How-
ever open strings there have been treated fully symmetrically and the notion of colour
ordering (together with other details) has been lost in the construction.

The aim of this note is to provide a new formulation where, as the physical intuition
suggests, closed strings are taken fully symmetrically and open strings are taken to be
cyclic on every boundary, as in the setting of [2, 9] but, at the same time, all open-closed
interactions are unified inside a single object, in a way that is more similar in spirit to [10].
As this is evidently going to be rather technical, let us summarize the main outcomes of
the paper.

The full (bosonic) open-closed quantum BV master action can be written in WZW
form as

Soc[Ψ,Φ] =
∫ 1

0
dt ω̂ (χ̇(t) , π1 nG(t)) , (1.1)

where Ψ is the open string field, Φ is the closed and χ(t) = Φ(t)+Ψ(t) is the (interpolated)
open-closed string field. The various objects entering the above expression are defined
in the body of the paper but anticipating without too many details, ω̂ is a symplectic
form in the space Hclosed⊕Hopen where the dynamical closed-open BV string field χ lives.
Specifically

ω̂(χ1 , χ2) := ωc
κ2 (Φ1,Φ2) + ωo

κ
(Ψ1,Ψ2), (1.2)

where κ is the string coupling constant. G(t) is the (interpolated) group-like element of
the open-closed tensor algebra SHc ⊗′ SCHo where closed strings are fully symmetrized
and open strings are cyclic on every boundary and every boundary is fully symmetrized
with the others. The open-closed string field χ can be extracted from G by taking the
projection onto a single (open or closed) string as χ = π1 G. Finally n is an odd open-
closed co-derivation which is cyclic with respect to the open-closed symplectic form ω̂ (a
notion which will be discussed in the body of the paper). The co-derivation n can be
decomposed according to the closed or open string output

n = l + m, (1.3)
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where both l and m are sums of co-derivations associated to genus g Riemann surfaces
with b boundaries and arbitrary number of open and closed insertions

l =
∑
g,b

κ2g+bl(g,b), (1.4)

m =
∑
g,b

κ2g+b−1m(g,b). (1.5)

The difference in the two objects is that l has a closed string output while m has an open
string output. Calling π10 and π01 the projections on respectively one single closed or open
string, this means

π01l = 0, (1.6)
π10m = 0. (1.7)

The compact form of the action (1.1) can be unpackaged using the definitions in the
paper to any desired order. For example we can make explicit the kinetic terms and the
first few sphere and disk couplings as

Soc[Ψ,Φ] = 1
2κ2ωc(Φ, QcΦ) + 1

3!κ2ωc
(
Φ, l(0,0)

2,0 (Φ,Φ)
)

+ · · ·

+ 1
2κωo(Ψ, QoΨ) + 1

3κωo
(
Ψ,m(0,1)

0,2 (Ψ,Ψ)
)

+ · · ·

+ 1
κ
ωc
(
Φ, l(0,1)

0,0

)
+ 1

2!κωc
(
Φ, l(0,1)

1,0 (Φ)
)

+ · · ·

+ 1
κ
ωo
(
Ψ,m(0,1)

1,0 (Φ)
)

+ · · · ,

(1.8)

where the upper indices ·(g,b) denote genus and boundaries, while the lower indices ·nc,no

denote the number of closed and open-string inputs (in case of a single boundary). The
first two lines are the purely closed and open parts of the action respectively on the sphere
and on the disk, the third line are closed string couplings on the disk without explicit
open string insertions (notice in particular the boundary state l(0,1)

0,0 which acts as a zero-
product/tadpole for the closed strings). Finally the last term corresponds to the coupling
between an open and a closed string on the disk. Notice that this coupling can be written
in two different ways using the relation (2.20)

ωo
(
Ψ,m(0,1)

1,0 (Φ)
)

= (−)d(Φ)+d(Ψ)+d(Φ)d(Ψ)ωc
(
Φ, l(0,1)

0,1 (Ψ)
)
. (1.9)

This possibility of defining the same coupling using a product with a closed or an open
string output is present every time there is at least one open and one closed string in
interaction. Therefore l and m are not independent. Indeed, at the open-closed co-algebra
level, they are related by the open-closed duality relations (3.16), (3.17), making explicit
the very fact that any open-closed correlator can be computed by factorization on either
closed or open string channels (on every possible boundary with at least an open string
puncture).
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With these premises, the consistency of the action is provided by the BV quantum
master equation which can be explicitly evaluated to

1
2 (Soc, Soc) + ∆Soc =

∫ 1

0
dt ω̂

(
χ̇ , π1 (n + U)2 G(t)

)
, (1.10)

where U is the higher order co-derivation associated to the Poisson bivector U defining the
inverse of ω̂ in the standard sense that (ω̂ ⊗ 1)(1 ⊗ U) = 1 (see for example [8]). There-
fore the consistency of the full quantum open-closed theory is codified by the nilpotency
requirement2

(n + U)2 = 1
2[n + U ,n + U ] = 0 → 1

2 (Soc, Soc) + ∆Soc = 0. (1.11)

This is the main result of this note which is organized as follows. In section 2 we
review the standard formulation of open-closed SFT by Zwiebach and we define the open
and closed multistring products. In section 3 we formulate these multistring products as
(generalized) co-derivations acting on the open-closed tensor algebra and its corresponding
group-like element. Then we show how to write the action as a sum of two WZW-like con-
tributions. Finally we package everything into single open-closed structures thus providing
the most compact formulation. In section 4 we show how the BV quantum master equa-
tion is solved provided that the open-closed co-derivation n solves (1.11) and we examine
it order by order in the string coupling constant κ, retrieving the expected consistency
conditions for the sewing of Riemann surfaces which ensure the decoupling of BRST exact
states. We conclude in 5 by discussing the advantages of this new formulation and propose
some direction for future research.

2 Open-closed string field theory

Open-closed SFT has two independent dynamical variables: the closed and the open string
field, which are upgraded to fields and antifields according to the Batalin-Vilkovisky (BV)
quantization. The BV closed string is understood as Φ = ϕaca, where ϕa are the target
space BV fields and antifields and ca are a basis for the closed string Hilbert space associated
to the starting closed string background CFT0, subject to level matching

(b0 − b̄0) ca = (L0 − L̄0) ca = 0. (2.1)

In this space there is an odd symplectic form defined by

ωc(Φ1,Φ2) := (−1)d(Φ1)⟨Φ1, c
−
0 Φ2⟩c, (2.2)

where ⟨·, ·⟩c is the bulk BPZ inner product and where d(Φ) is the sum of the BV degree of
ϕa and the degree of the basis element ca which is defined to be its ghost number minus 2.
This is assigned such that the total BV string field has degree zero. The classical closed

2Throughout the paper, [·, ·] represents the graded commutator.
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string field is spanned by basis vectors of degree zero. The symplectic form is graded-
antisymmetric

ωc(Φ1,Φ2) = −(−1)d(Φ1) d(Φ2)ωc(Φ2,Φ1). (2.3)

The BV open string field is similarly written as Ψ = ψaoa, where ψa are the open BV fields
and oa is a basis of the boundary fields of the open string Hilbert space associated to the
initial D-brane system BCFT0. The open string symplectic form is defined as

ωo(Ψ1,Ψ2) := (−1)d(Ψ1)⟨Ψ1,Ψ2⟩o, (2.4)

where ⟨·, ·⟩o is the boundary BPZ inner product (possibly including a trace over Chan-
Paton factors) and d(Ψ) is the sum of the BV degree of ψa and the degree of the basis
element oa which is defined to be its ghost number minus 1. This is assigned such that the
total BV string field has degree zero and the classical open string field is spanned by basis
vectors of degree zero.

The BV quantum (ℏ = 1) master action is given by

Soc[Φ,Ψ] =
∞∑
g=0

∞∑
b=0

κ2g+b−2
∞∑
k=0

∞∑
{p1,...,pb}=0

1
b!k!(p1) · · · (pb)

Ag,bk;{p1,...,pb}

(
Φ∧k⊗′ Ψ⊙p1 ∧′ · · · ∧′ Ψ⊙pb

)
,

(2.5)
where (p) := p+ δp,0. Without too much specification the vertices Ag,bk;{p1,...,pb} are off-shell
amplitudes associated with Riemann surfaces of genus g and b boundaries with k bulk
punctures and pi boundary punctures on the i-th boundary. Notice that there can be
boundaries with no open-string insertions. Every vertex is weighted by a corresponding
power of the string coupling constant κ according to the worldsheet topological expansion.
Crucially, the implicit moduli space integration in the off-shell amplitudes Ag,bk;{p1,...,pb} is
cut-off towards closed and open string degeneration but the details of how this is done are
not important for the algebraic structure of the theory. The symmetrized tensor products
∧ symmetrize over bulk punctures

Φ1 ∧ · · · ∧ Φn :=
∑
σ∈Sn

(−1)ϵσ Φσ(1) ⊗ · · · ⊗ Φσ(n), (2.6)

where Sn is the group of permutations. The direct sums of such multi-string states are
elements of the symmetric tensor algebra SHc, defined as

SHc :=
⊕
n≥0
H∧n

c . (2.7)

On every boundary open strings are inserted according to the cyclic tensor product

Ψ1 ⊙ · · · ⊙Ψn :=
∑
σ∈Zn

(−1)ϵσ Ψσ(1) ⊗ · · · ⊗Ψσ(n), (2.8)

where Zn is the group of cyclic permutations. The off-shell amplitudes defined by Ag,b
k;{p1,...,pb}

are therefore color-ordered. We can define cyclic tensor algebra CHo as follows

CHo :=
⊕
n≥0
H⊙n

o . (2.9)
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This cyclic ordering is present on every boundary and all the boundaries are finally sym-
metrized by another symmetrized tensor product ∧′. The extra tensor product ⊗′ separates
closed and open strings.

Given the closed and open symplectic forms ωc and ωo it is useful to write the
Ag,bk;{p1,...,pb} using multistring products which are defined as follows. First of all let us
consider amplitudes with no open strings but not restricted by the genus or by the number
of boundaries. These amplitudes can be expressed as

Ag,bk+1(Φ1 ∧ · · · ∧ Φk+1) := ωc
(
Φ1, l

(g,b)
k,0 (Φ2 ∧ · · · ∧ Φk+1)

)
, (2.10)

where we have defined the degree odd multi string product

l
(g,b)
k,0 : H∧k

c → Hc, (2.11)

which is cyclic with respect to ωc

ωc
(
Φ1, l

(g,b)
k,0 (Φ2 ∧ · · · ∧ Φk+1)

)
= (−1)ϵωc

(
Φk+1, l

(g,b)
k,0 (Φ1 ∧ · · · ∧ Φk)

)
(2.12)

and is BPZ odd

ωc
(
Φ1, l

(g,b)
k,0 (Φ2 ∧ · · · ∧ Φk+1)

)
= −(−1)d(Φ1)ωc

(
l
(g,b)
k,0 (Φ1 ∧ · · · ∧ Φk) ,Φk+1

)
. (2.13)

All the remaining amplitudes have at least one open string in at least one boundary and
therefore they can be written using the open string symplectic form, by picking an ar-
bitrary boundary with at least one open string puncture. This, thanks to full boundary
symmetrization, can always be conventionally taken to correspond to the last in the argu-
ments of Ag,b, that is the b-th argument with pb ≥ 1

Ag,bk;{p1,...,pb}
(
Φ1 ∧ · · · ∧ Φk ⊗′ Ψ1,1 ⊙ · · · ⊙Ψ1,p1 ∧′ · · · ∧′ Ψb,1 ⊙ · · · ⊙Ψb,pb

)
:= ωo

(
Ψb,1,m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb−1 ⊗

′′ Ψb,2 ⊗ · · · ⊗Ψb,pb

))
,

(2.14)

where to lighten the notation we have written

(Φ)k := Φ1 ∧ · · · ∧ Φk

[Ψ]pj
:= Ψj,1 ⊙ · · · ⊙Ψj,pj (2.15)

and the normalizations due to cyclicity are defined by (p) := p + δp,0. Notice that we
have introduced the ⊗′′ to separate the special boundary from the others. The multistring
products with open string output m(g,b) are odd linear maps

m
(g,b)
k[p1,...,pb−1]pb

: H∧k
c ⊗′ H⊙p1

o ∧′ · · · ∧′ H⊙pb−1
o ⊗′′ H⊗pb

o → Ho, (2.16)

which are cyclic

ωo
(
Ψb,1,m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb−1 ⊗

′′ Ψb,2 ⊗ · · · ⊗Ψb,pb

))
(2.17)

= (−1)ϵωo
(
Ψb,pb

,m
(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb−1 ⊗

′′ Ψb,1 ⊗ · · · ⊗Ψb,pb−1
))
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and BPZ odd

ωo
(
Ψb,1,m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k⊗′ [Ψ]p1∧′ ·· ·∧′ [Ψ]pb−1⊗

′′Ψb,2⊗···⊗Ψb,pb

))
(2.18)

=−(−1)ϵωo
(
m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k⊗′ [Ψ]p1∧′ ·· ·∧′ [Ψ]pb−1⊗

′′Ψb,1⊗···⊗Ψb,pb−1
)
,Ψb,pb

)
.

Obviously there is nothing special about the choice of the special boundary b and this has
the consequence that the m(g,b) products have extra properties obtained by expressing the
same amplitude with different choice of special boundary

ωo
(
Ψb,1,m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb−1 ⊗

′′ Ψb,2 ⊗ · · · ⊗Ψb,pb

))
= (−1)ϵ ωo

(
Ψ1,1,m

(g,b)
k[p2,...,pb]p1−1

(
(Φ)k ⊗′ [Ψ]p2 ∧′ · · · ∧′ [Ψ]pb

⊗′′ Ψ1,2 ⊗ · · · ⊗Ψ1,p1

))
(2.19)

= Ag,bk;{p1,...,pb}
(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb

)
.

Finally, it is useful to define dual products l(g,b) with a closed string output such that the
same open-closed amplitude can be computed with the open or closed symplectic form

ωo
(
Ψb,1,m

(g,b)
k[p1,...,pb−1]pb−1

(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb−1 ⊗

′′ Ψb,2 ⊗ · · · ⊗Ψb,pb

))
:= (−1)ϵωc

(
Φ1, l

(g,b)
k−1,[p1,··· ,pb]

(
Φ2 ∧ · · · ∧ Φk ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb

))
(2.20)

= Ag,bk;{p1,...,pb}
(
(Φ)k ⊗′ [Ψ]p1 ∧′ · · · ∧′ [Ψ]pb

)
.

With the definitions and properties given above, the open-closed BV action (2.5) can be
written as

Soc[Φ,Ψ]=
∞∑

g,b=0
κ2g+b−2

∞∑
k=0

1
b!

 1
(k+1)!ωc

(
Φ,l(g,b)k,0

(
Φ∧k

))
(2.21)

+
∞∑

{p1,...,pb−1}=0
pb=1

C(p1,. ..,pb)
k!(p1) ·· ·(pb)

ωo
(
Ψ,m(g,b)

k[p1,...,pb−1]pb−1

(
Φ∧k⊗′Ψ⊙p1 ·· ·Ψ⊙pb−1⊗′′Ψ⊗(pb−1)

))
 .

Note that since we were forced to restrict the sum over pb to start from 1 (so that the
special boundary contains always at least one insertion), the summation would no longer
automatically produce the correct symmetry factor in front of couplings containing at least
one empty boundary. This needs to be corrected by including into the action the factor
C(p1, . . . , pb) which we define as

C(p1, . . . , pb) = # of inequiv. rearrangements of the b-tuple (p1, . . . , pb)
# of inequiv. rearrangements of the b-tuple (p1, . . . , pb) s.t. the last entry ̸= 0 .

(2.22)
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Using elementary combinatorics, one can show that C(p1, . . . , pb) can in fact be expressed as

C(p1, . . . , pb) = b

b− b0
, (2.23)

where 0 ≤ b0 < b denotes the number of boundaries with zero open-string field insertions.
We will observe below that the presence of this combinatorial factor will be automatically
accounted for when working in the WZW co-derivation formalism.

Notice that, using the open-closed relation (2.20) it is possible to write the action in
different equivalent ways. For example, we can isolate the terms with only open strings

Soc[Φ,Ψ]=
∞∑

g,b=0
κ2g+b−2 1

b!


∞∑

{p1,...,pb}=0

1
(p1) ·· ·(pb)

∞∑
k=0

1
(k+1)!

×ωc

(
Φ,l(g,b)

k,[p1,···,pb]
(
Φ∧k⊗Ψ⊙p1 ·· ·Ψ⊙pb

))
(2.24)

+
∞∑

{p1,...,pb−1}=0
pb=1

C(p1,. ..,pb)
(p1) ·· ·(pb) ωo

(
Ψ,m(g,b)

0[p1,...,pb−1]pb−1

(
Ψ⊙p1 ·· ·Ψ⊙pb−1⊗′′Ψ⊗(pb−1)

)) .
Other rewritings (for example choosing differently the special boundary) are also possi-
ble. It is one of the aim of this paper to give a presentation of the OC action which is
invariant under all of the above-mentioned rewritings, based on an appropriately defined
symplectic form.

3 Co-algebraic open-closed structure

To start with we define the open-closed tensor algebra as

SHc ⊗′ SCHo :=

⊕
k≥0
H∧k

c

⊗′

⊕
b≥0

⊕
p1≥0
H⊙p1

o

 ∧′ · · · ∧′
⊕
pb≥0
H⊙pb

o

 , (3.1)

this formula gives a definition of SCHo as the direct sum of the symmetric tensor product
of cyclic tensor algebras, defined in (2.9). To manipulate the action it is useful to introduce
the open-closed group-like element

G := e∧Φ ⊗′ e∧
′C(Ψ), (3.2)

where we have defined the cyclic group-like element3

C(Ψ) :=
∞∑
l=0

1
(l)Ψ⊙l = 1 + log(1−⊙Ψ). (3.3)

3The symmetrized and cyclicized group like elements e∧χ and C(χ) are the same when expressed in terms
of the simple tensor product ⊗, e∧χ = C(χ) = 1

1−⊗χ
=
∑

k≥0 χ⊗k.
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Explicitly we can write

G =

∑
k≥0

1
k!Φ

∧k

⊗′

∑
b≥0

1
b!

∑
p1≥0

1
(p1)Ψ⊙p1

 ∧′ · · · ∧′
∑
pb≥0

1
(pb)

Ψ⊙pb

 . (3.4)

As we are now going to see G is the correct reservoir for symmetrized closed strings, together
with cyclicized open strings taken from symmetrized boundaries, that appear in the action.

The multistring products l(g,b) and m(g,b) can be upgraded to odd coderivation-like
maps on SHc ⊗′ SCHo. This is straightforward for the l(g,b) products because their inputs
are already in SHc ⊗′ SCHo and we have

l
(g,b)
k[p1,··· ,pb] : SHc ⊗′ SCHo → SHc ⊗′ SCHo, (3.5)

where the defining action on the group-like element G is as follows

l
(g,b)
k[p1,··· ,pb]G=

∞∑
k′≥k

∞∑
b′≥b

∑
{p′

b+1,...,p
′
b′}≥0

1
b′!k′!

(
(p1) ·· ·(pb)(p′b+1) ·· ·(p′b′)

)(k′
k

)(
b′

b

)

×
(
l
(g,b)
k[p1,··· ,pb]

(
Φ∧k⊗′Ψ⊙p1∧′ ·· ·∧′Ψ⊙pb

)
∧Φ∧(k′−k)⊗′Ψ⊙p′b+1∧′ ·· ·∧′Ψ⊙p′

b′
)
,

(3.6)

where the binomial coefficients account for the choice of k bulk punctures out of k′ and b

boundaries out of b′. Notice in particular that it behaves as a co-derivation for the closed
string inputs and for the open strings on the boundaries which are not acted upon. On
the other hand the number of open string insertions on the boundaries that enter into the
multistring product has to precisely match the indices {p1, · · · , pb}. The reader can easily
extend this definition to a generic element of SHc ⊗′ SCHo.

We can then sum on all possible inputs and, at fixed genus and boundaries, define

l(g,b) :=
∑

k,{p1,...,pb}
l
(g,b)
k[p1,...,pb]. (3.7)

This is an example of an odd cyclic closed string co-derivation which obeys

ωc
(
π10 l(g,b) ac G , π10bc G

)
= −(−1)d(a)ωc

(
π10 ac G , π10l(g,b)bc G

)
, (3.8)

where π10 projects onto a single copy of Hc inside SHc ⊗′ SCHo and (ac, bc) are any two
closed string co-derivations (i.e. with closed string output). This is a consequence of a
relation analogous to (2.13) which holds for the products l(g,b).

We would now like to upgrade also the products m(g,b) (with open string output) to
SHc ⊗′ SCHo. An immediate difficulty for doing so is that the products m(g,b)

k[p1,··· ,pb−1]pb

are defined with non-cyclic inputs on the special boundary b, (2.16). However it is easy
to realize that co-derivations on the tensor algebra are automatically co-derivations on the
cyclic tensor algebra. In particular if ci is a co-derivation on T H it will also act as a

– 9 –



J
H
E
P
0
8
(
2
0
2
3
)
1
4
5

coderivation-like map on CH: for i ≤ j we have

ci (Ψ1 ⊙ · · · ⊙Ψj) = ci

∑
σ∈Zj

Ψσ(1) ⊗ · · · ⊗Ψσ(j)


=
∑
σ∈Zj

ci
(
Ψσ(1) ⊗ · · · ⊗Ψσ(i)

)
⊗Ψσ(i+1) ⊗ · · · ⊗Ψσ(l)

...

+
∑
σ∈Zj

Ψσ(1) ⊗ · · · ⊗Ψσ(j−i) ⊗ ci
(
Ψσ(j−i+1) ⊗ · · · ⊗Ψσ(j)

)
= ci (Ψ1 ⊗ · · · ⊗Ψi)⊙Ψi+1 ⊙ · · · ⊙Ψj

+ ci (Ψ2 ⊗ · · · ⊗Ψi+1)⊙Ψi+2 ⊙ · · ·Ψj ⊙Ψ1

...
+ ci (Ψj ⊗Ψ1 ⊗ · · · ⊗Ψi−1)⊙Ψi ⊙ · · · ⊙Ψj−1,

(3.9)

where we have assumed degree even entries (otherwise some obvious signs appear). There-
fore, one can consistently restrict

ci : T H → T H
↓ (3.10)

ci : CH → CH.

Notice in particular that for i ≤ j we have

ci
(
Ψ⊙j

)
= (j) ci

(
Ψ⊗i

)
⊙Ψ⊙j−i. (3.11)

This suggests to define the odd co-derivation with open string output

m
(g,b)
k[p1,··· ,pb−1]pb

: SHc ⊗′ SCHo → SHc ⊗′ SCHo, (3.12)

in such a way that its action on the open-closed group-like element will be

m
(g,b)
k[p1,...,pb−1]pb

G =
∑
k′≥k

∑
b′≥b

∑
p′

b
≥pb

∑
{p′

b+1,...,p
′
b′}≥0

1
b′!k′!

1
(p1) · · · (pb−1)

1
(p′b)

1
(p′b+1) · · · (p′b′)

×
(
k′

k

)(
b′

b

)
b (p′b)×

(
Φ∧k′−k ⊗′ m

(g,b)
k[p1,...,pb−1]pb

(
Φ∧k ⊗′ Ψ⊙p1 ∧′ · · · ∧′ Ψ⊙pb−1 ⊗′′ Ψ⊗pb

)
⊙Ψ⊙p′b−pb ∧′ Ψ⊙p′b+1 ∧′ · · · ∧′ Ψ⊙p′

b′
)
,

(3.13)

where, to help the visualization, the first line contains the coefficients of the open-closed
group-like element, the second line contains the combinatorial factors associated to choosing
k closed strings out of k′, b boundaries out of b′ and choosing one special boundary out of
b. Finally the coefficient (p′b) is the result of (3.11). Notice the cancellation 1

(p′
b
) (p′b) = 1.
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The explicit action on a generic element of SHc ⊗′ SCHo is straightforwardly obtained
given the understood symmetrizations and cyclicizations. It is however rather cloggy and
not particularly instructive to write it down.

Analogously to what we have done with the closed string products l(g,b), we can now
sum over the full open and closed insertions at fixed genus and boundaries

m(g,b) :=
∑
k≥0

∑
p1···pb≥0

m
(g,b)
k[p1,...,pb−1]pb

. (3.14)

The cyclicity properties further imply the relations

ωo
(
π01m(g,b)ao G, π01bo G

)
= −(−1)d(a)ωo

(
π01ao G, π01m(g,b)bo G

)
, (3.15)

for any pair of open string co-derivations (ao, bo). This is a consquence of (2.18) and (2.19).
By construction the obtained open and closed string co-derivations m(g,b) and l(g,b)

are not independent but obey the open-closed duality relation

ωc
(
π10 l(g,b) ao G , π10 bc G

)
= −(−1)d(a)ωo

(
π01 ao G , π01 m(g,b) bc G

)
(3.16)

ωo
(
π01 m(g,b) ac G , π01 bo G

)
= −(−1)d(a)ωc

(
π10 ac G , π10 l(g,b) bo G

)
, (3.17)

where (ao,c, bo,c) are open or closed co-derivations. This is a consequence of (2.20).

3.1 BV action in WZW form

To write the action in a compact form we use a standard trick. We first define an interpo-
lation for both the open and closed string fields: namely Φ(t) such that Φ(0) = 0, Φ(1) = Φ
and Ψ(t) such that Ψ(0) = 0, Ψ(1) = 1. Then we write the action (2.21) as the integral of a
total derivative by inserting

∫ 1
0 dt∂t in front. Let us start with the simpler term containing

only closed strings

∞∑
g,b=0

κ2g+b−2
∞∑
k=0

1
(k + 1)!b!

(∫ 1

0
dt∂t

)
ωc
(
Φ, l(g,b)k,0

(
Φ∧k

))

=
∞∑

g,b=0
κ2g+b−2

∞∑
k=0

∫ 1

0
dt

k + 1
(k + 1)!b!ωc

(
Φ̇, l(g,b)k,0

(
Φ∧k

))

=
∞∑

g,b=0
κ2g+b−2 1

b!

∫ 1

0
dtωc

(
Φ̇,
[ ∞∑
k=0

1
k! l

(g,b)
k,0

(
Φ∧k

)])
. (3.18)

We keep it as it is for the time being and we consider the other term in (2.21) containing
open strings (excluding for now the sum over topologies)

∞∑
k,{p1,...,pb−1}=0

pb=1

C(p1, . . . , pb)
b!k!(p1) · · · (pb)

(∫ 1

0
dt∂t

)
ωo
(
Ψ,m(g,b)

k[p1,...,pb−1]pb−1

(
Φ∧k⊗′ Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗(pb−1)

))
.

(3.19)

– 11 –



J
H
E
P
0
8
(
2
0
2
3
)
1
4
5

The t-derivative now acts separately on Φ(t) and Ψ(t). We start writing down the contri-
bution from Φ(t) which is given by

∞∑
k=1,{p1,...,pb−1}=0

pb=1

kC(p1, . . . , pb)
b!k!(p1) · · · (pb)

∫ 1

0
dt ωo

(
Ψ,m(g,b)

k[p1,...,pb−1]pb−1

(
Φ̇∧Φ∧k−1⊗′ Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗(pb−1)

))
,

(3.20)
now we use the open-closed duality (2.20) and rewrite it using the closed symplectic form as

∑
k=1,{p1,...,pb}=0

k

b!k!(p1) · · · (pb)

∫ 1

0
dt ωc

(
Φ̇, l(g,b)k−1[p1,...,pb−1,pb]

(
Φ∧k−1 ⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))
.

(3.21)

Notice that the combinatorial factor C(p1, . . . , pb) disappeared from the last expression
because now all the summation indices p1, . . . , pb are allowed to be zero. We then realize
that we can combine this term (adding the understood sum over topologies ∑g,b κ

2g+b−2)
with (3.18) to obtain

(3.18) +
∑
g,b

κ2g+b−2(3.21) =
∫ 1

0
dt
∑
g,b

κ2g+b ωc
κ2

(
π10∂t G , π10l(g,b) G

)

=
∫ 1

0
dt
ωc
κ2 (π10∂t G , π10lG) , (3.22)

where we have defined the total closed string co-derivation

l :=
∑
g,b

κ2g+bl(g,b). (3.23)

After this treatment we remain with the ∂t acting on Ψ(t) in (3.19). This will of course act
only on the b− b0 boundaries which contain at least one open-string field insertion. Using
the formula (2.23) for C(p1, . . . , pb), we observe that acting with the derivative ∂t therefore
turns the combinatorial factor C(p1, . . . , pb) into a factor of b. Thanks to the cyclicity
relations (2.18) and (2.19) and due to the explicit summations on open string insertions
we therefore produce an overall factor b(pb) obtaining in total, cfr (3.13)

∑
g,b

∑
k,{p1,...,pb,pb≥1}

κ2g+b−2 b(pb)
b!k!(p1) · · · (pb)

∫ 1

0
dt ωo

(
Ψ̇, m

(g,b)
k[p1,...,pb−1]pb−1

(
Φ∧k ⊗′Ψ⊙p1 · · · Ψ⊙pb−1 ⊗′′Ψ⊗(pb−1)))

=
∑
g,b

κ2g+b−1
∫ 1

0
dt

ωo

κ

(
π01 ∂t G , π01m(g,b) G

)
(3.24)

=
∫ 1

0
dt

ωo

κ
(π01 ∂t G , π01m G) , (3.25)

where we have defined the total open string co-derivation

m :=
∑
g,b

κ2g+b−1m(g,b). (3.26)
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The full BV master action can thus be written as

Soc[Φ,Ψ] =
∫ 1

0
dt

(
ωc
κ2 (π10∂t G , π10lG) + ωo

κ
(π01 ∂t G , π01mG)

)
, (3.27)

where we took the liberty of choosing the natural normalizations κ−χ for the closed and
open symplectic forms which compute correlators on the sphere (χ = 2) and on the disk
(χ = 1) respectively.

At last we point out that, as expected from the WZW form, the variation of the action
is a pure t-boundary term that can be explicitly evaluated as

δSoc = ωo
κ

(π01δoG, π01mG)
∣∣∣1
0

+ ωc
κ2 (π10δc G, π10lG)

∣∣∣1
0

(3.28)

= ωo
κ

(δΨ, π01mG) + ωc
κ2 (δΦ, π10lG) , (3.29)

where the generic variation δ has been naturally upgraded to a co-derivation which variates
every entry of the interpolated group-like element according to the Leibniz rule on the
tensor product such that δΦ(0) = 0 = δΨ(0) and can be naturally split into its open- and
closed-string valued part δ → δ = δc + δo.

3.2 Open-closed co-derivations and repackaging

The form of the action (3.27) is clearly suggesting an even more compact formulation. First
of all we can define a (κ-dependent) symplectic form in the space Hc ⊕Ho as

ω̂(Φ1 + Ψ1 , Φ2 + Ψ2) := ωc
κ2 (Φ1,Φ2) + ωo

κ
(Ψ1,Ψ2). (3.30)

Next we realize that calling χ := Φ+Ψ the open-closed string field, this is simply extracted
from the open-closed group-like element G by the projection on a single string π1 := π10 +
π01 as

π1G = χ = Φ + Ψ. (3.31)

Then we simply observe that for open and closed string co-derivations (l,m) we obvi-
ously have

π01l = 0, (3.32)
π10m = 0 (3.33)

so that we can define the open-closed co-derivation

n := l + m (3.34)

to re-write the action (3.27) simply as

Soc[Φ,Ψ] = S[χ] =
∫ 1

0
dt ω̂ (π1∂t G , π1 nG) . (3.35)
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In the total open-closed Hilbert space Hc ⊕Ho it is important to realize that n is a cyclic
co-derivation with respect to ω̂, meaning that given any two open-closed co-derivations
a = ac + ao and b = bc + bo, as a consequence of (3.8), (3.15), (3.16), (3.17), we have that

ω̂ (π1 n aG , π1 bG) = −(−1)d(a)ω̂ (π1 aG , π1 n bG) . (3.36)

The variation of the action can also be written in compact form by repackaging (3.28) as

δSoc = ω̂ (π1δ G , π1nG)
∣∣∣1
0

= ω̂ (δχ , π1nG) . (3.37)

4 BV quantum master equation and homotopy relations

Now we would like to establish under which conditions the open-closed SFT action (2.5)
is consistent, i.e. it is a solution to the BV master equation (ℏ = 1)

(S, S) + 2∆S = (S, S)c + (S, S)o + 2∆cS + 2∆oS = 0, (4.1)

where the open and closed BV structures are given by

(·, ·)c = κ2
←−
∂

∂ϕa
(ωc)ab

−→
∂

∂ϕb
, (4.2)

(·, ·)o = κ

←−
∂

∂ψa
(ωo)ab

−→
∂

∂ψb
. (4.3)

and

∆c = κ2

2 (−)ϕa(ωc)ab
−→
∂

∂ϕa

−→
∂

∂ϕb
, (4.4)

∆o = κ

2 (−)ψa(ωo)ab
−→
∂

∂ψa

−→
∂

∂ψb
, (4.5)

where summation on repeated indices is understood. The components of the symplectic
form with upper indices are defined as

(ωc)ab := ωc(ca, cb) (4.6)
(ωo)ab := ωo(oa, ob) (4.7)

where ca and oa are closed and open basis vectors which are dual to ca and oa in the
sense that

ωc(ca, cb) = −ωc(cb, ca) = δab (4.8)
ωo(oa, ob) = −ωc(ob, oa) = δab. (4.9)

Notice also the completeness relations

1Hc = caωc (ca, ·) = −caωc (ca, ·) (4.10)
1Ho = oaωo (oa, ·) = −oaωo (oa, ·) . (4.11)
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We can now define the closed and open Poisson bi-vectors as

Uc = (−1)ca

2 ca ∧ ca ∈ H∧2
c (4.12)

Uo = (−1)oa

2 oa ∧ oa ∈ H∧2
o . (4.13)

They are the inverse of the corresponding symplectic forms in the sense that

(ωc ⊗ 1)(1⊗ Uc) = 1Hc (4.14)
(ωo ⊗ 1)(1⊗ Uo) = 1Ho , (4.15)

which, after applying to a (closed or open) state (of even degree, for simplicity) read

(ωc ⊗ 1)(Φ⊗ Uc) = Φ (4.16)
(ωo ⊗ 1)(Ψ⊗ Uo) = Ψ, (4.17)

as can be easily checked using the completeness relations (4.10) and (4.11) (for review
see [8]).

These objects can be unified in open-closed structures by defining the open-closed BV
string field

χ = χafa = Φaca + Ψaoa. (4.18)

The total BV bracket is then given by

( · , · ) =
←−
∂

∂χa
ω̂ab

−→
∂

∂χb
(4.19)

and the symplectic laplacian

∆ = 1
2(−)χa

ω̂ab
−→
∂

∂χa

−→
∂

∂χb
. (4.20)

Notice that in these unified open-closed structures the dependence on the string coupling
constant is hidden inside the open-closed symplectic form ω̂ (3.30). Now the completeness
relation is4

1Hc⊕Ho = faω̂ (fa, ·) = −faω̂ (fa, ·) (4.21)

and the open-closed Poisson bivector is given by

U = κ2 Uc + κUo = (−1)fa

2 fa ∧ fa, (4.22)

which is easily shown to obey

(ω̂ ⊗ 1)(1⊗ U) = 1Hc⊕Ho . (4.23)
4Notice that fa = (κ2 ca, κ oa).
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4.1 BV master equation

Let us see how we can evaluate the master equation directly at the unified open-closed
co-algebra level. Starting with the BV bracket we find

(Soc, Soc) = Soc

←−
∂

∂χa
ω̂ab

−→
∂

∂χb
Soc (4.24)

= (−1)χb
ω̂ (π1∂χa G , π1nG) ω̂ab ω̂

(
π1∂χb G , π1nG

)
= (−1)χb

ω̂ (fa , π1nG) ω̂ab ω̂ (fb , π1nG)

= −ω̂ (π1nG , π1nG) (4.25)

= −
∫ 1

0
dt ∂t ω̂ (π1nG(t) , π1nG(t))

= −2
∫ 1

0
dt ω̂ (π1n∂t G , π1nG)

= 2
∫ 1

0
dt ω̂ (π1∂t G , π1nnG) = 2

∫ 1

0
dt ω̂

(
χ̇, π1n2 G

)
(4.26)

where we have used the variation of the action (3.37), the completeness relation (4.21)
and we have finally rewritten everything in interpolated way to be able to bring the co-
derivation n to the other side.

Consider now the symplectic laplacian

∆Soc = 1
2(−)χa

ω̂ab
−→
∂

∂χa

−→
∂

∂χb
Soc

= −1
2 ω̂

abω̂
(
π1∂χa G , π1n∂χb G

)
= 1

2 ω̂ (fa , π1nfa G) , (4.27)

where we have introduced the 0-product co-derivation fa which inserts the open-closed
basis element fa in G as an open-closed co-derivation. At this point we can use the conse-
quences of open-closed duality (see appendix A for details) to write

1
2 ω̂ (fa , π1nfa G) = 1

2(−)fa
∫ 1

0
ω̂ (χ̇ , π1nfaf

a G(t))

=
∫ 1

0
ω̂ (χ̇ , π1n U G(t)) ,

where we have defined the higher order odd co-derivation associated to the open-closed
Poisson bivector

U := 1
2(−)fa

faf
a, (4.28)

which trivially obeys

U2 = 0, (4.29)
π1U = 0. (4.30)
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In total we have thus shown
1
2(Soc, Soc) + ∆Soc =

∫ 1

0
ω̂ (χ̇ , π1n (n + U)G(t))

=
∫ 1

0
ω̂
(
χ̇ , π1(n + U)2 G(t)

)
. (4.31)

Therefore the BV quantum master equation is satisfied if the open-closed products assem-
bled in the co-derivation n obey

(n + U)2 = 0. (4.32)

4.2 Topological expansion

It is instructive to partially un-package this construction by making explicit the open and
closed sectors. In this case the quantum BV master equation takes the form

1
2(Soc, Soc) + ∆Soc = 1

κ2

∫ 1

0
dt ωc

(
Φ̇, π10

{1
2[l, l] + lm +

[
l, κU o +κ2U c

]}
G(t)

)
+

+ 1
κ2

∫ 1

0
dt ωo

(
Ψ̇, κπ01

{1
2[m,m] + ml +

[
m, κU o +κ2U c

]}
G(t)

)
,

(4.33)
where we have defined the higher order co-derivations associated to the closed and open
Poisson bivectors

U = κ2 U c + κUo (4.34)

U c = (−)ca

2 caca (4.35)

Uo = (−)oa

2 oaoa. (4.36)

We already know that the above expression is equal to zero if the products satisfy the
nilpotency condition (4.32) which now reads[

l + m + κUo + κ2U c, l + m + κUo + κ2U c
]

= 0. (4.37)

Now we would like to split (4.37) into the open and closed sectors by applying π10 and π01
and then expand in powers of κ. First of all we immediately notice that

π10
[
l + m +κUo +κ2U c, l + m +κUo +κ2U c

]
= π10

{
1
2 [l, l] + lm +

[
l, κUo +κ2U c

]}
(4.38)

κπ01
[
l + m +κUo +κ2U c, l + m +κUo +κ2U c

]
= κπ01

{
1
2 [m,m] + ml +

[
m, κUo +κ2U c

]}
.

(4.39)

Notice that the factor of κ in front of π01 is necessary to work homogeneously in κ and
thus to get an homogeneous dependence on the topology of the involved Riemann surfaces
when we switch from the open to closed symplectic forms and viceversa. If we now expand
in κ using (3.23), (3.26) we get
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• O(κ0): the L∞ relations controlling the consistency of closed string amplitudes on
the sphere

– κπ01:
Nothing. (4.40)

– π10:
1
2[l(0,0), l(0,0)] = 0. (4.41)

• O(κ): these are relations controlling the consistency of open-closed amplitudes on
the disk, resulting in the SDHA of [6]

– κπ01: this sector deals with disk amplitudes with at least one open string and
arbitrary number of closed strings. The reader can recognize Kajiura-Stasheff
OCHA5 [3, 4]

1
2[m(0,1),m(0,1)] + [m(0,1), l(0,0)] = 0. (4.42)

– π10: this sector is a dual version of the OCHA (meaning no new constraints)
when there is at least one open string input. However it also contains the case
with only closed strings on the disk which are not included in the OCHA

[l(0,0), l(0,1)] + π1,0 l(0,1)m(0,1) = 0, (4.43)

• O(κ2): these are relations dealing with surfaces of vanishing Euler number: the torus
(purely closed string amplitudes) and annulus (open-closed amplitudes)

– κπ01:

[m(0,2),m(0,1)] + π0,1 m(0,1)l(0,1) + [m(0,2), l(0,0)] + [m(0,1),Uo] = 0. (4.44)

– π10:

1
2[l(0,1), l(0,1)] + [l(0,0), l(0,2) + l(1,0)] + [l(0,1),Uo] + [l(0,0),U c] = 0, (4.45)

• O(κ3): surfaces of Euler number χ = −1, and so on. . .

Thus in total, paying attention that the open and closed symplectic forms are normal-
ized with different powers of κ, we see that the nilpotency relation (4.32) has a precise
perturbative expansion in κ which correctly follows the expansion in the Euler number.
Notice however that this expansion is not a real topological expansion because different
topologies can have the same Euler number (for example the torus and the annulus). In
the companion paper [17] we will fully resolve the topology by formulating OC-SFT on a
set of N identical D-branes.

5Notice that here we had to compensate the removal of the projector π01 from in front of the homotopy
relation by formally turning the m(0,1)l(0,0) term into a full graded commutator in order to remove the
contributions where the multi-string products are not nested into each other. In this particular case this is
an allowed operation because the l(0,0)m(0,1) term would never contribute with nested products.
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5 Conclusions

The main point of this paper is that the final algebraic structure of open-closed string
field theory is that of a loop homotopy algebra [11], the same algebraic structure governing
quantum closed string field theory, but defined on a more complicated space where both
closed strings and colour ordered open strings can be fit. We expect this formulation to
have many advantages.

Starting from our microscopic BV description it would be interesting to algebraically
construct the 1PI effective action [10, 12] and verify that it will be described by an open-
closed co-derivation n(1PI) satisfying

(
n(1PI)

)2
= 0, in order to solve the classical BV master

equation. This will provide an example of a “classical” open closed nilpotent structure
and it would be interesting to use this 1PI framework to address quantum background
independence in open-closed SFT, extending the analysis of [6] to quantum corrections.

Another interesting application of this new formulation is the possibility of directly
using the homotopy transfer to perform the open-closed target space path integral and
integrate out different sectors of the theory, thus obtaining different effective descriptions
of the same physics, depending on which degrees of freedom have been integrated out.
By choosing a projector P acting on Ho ⊕Hc projecting on the states we want to retain,
we could use the (quantum) homotopy transfer [13–16] by constructing an appropriate
propagator h such that

[Qopen +Qclosed, h] = 1Ho⊕Hc − P, (5.1)

so that the effective action for the fields in the image of P will be governed by a theory
which will have the same structure as the initial OC SFT with a new nilpotent structure
which will be given by

ñ + Ũ = P (n + U) 1
1 + h(n−Q + U)P (5.2)

(ñ + Ũ)2 = 0. (5.3)

It is natural to wonder about the structure of the effective action which can be obtained
integrating out completely open or closed strings by choosing the corresponding projectors
that keep eitherHo orHc out of the fullHo⊕Hc. This seems a promising QFT framework to
understand microscopically the gauge/gravity duality and geometric transitions in general.
A preliminary analysis in this direction is presented in [17].

Another interesting direction in which the present formulation is expected to be useful
is the discussion of the ghost-dilaton theorem [18–20] in open-closed SFT [21].

Of course one would ultimately want to generalize this discussion to the context of
the superstring. It should be possible to extend our construction to Type II superstrings,
starting from the initial analysis of the superstring SDHA [22, 23], where the construction
of the open-closed vertices on the disk has been discussed.
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A Cyclicity and 0-product co-derivations

In this appendix we show that

ω̂ (fa, π1nfaG) = (−)fa
∫ 1

0
dt ω̂ (χ̇(t), π1nfafaG(t)) = 2

∫ 1

0
dt ω̂ (χ̇(t), π1nUG(t)) .

(A.1)

First of all, by unpackaging the l.h.s. of the above equation we get

ω̂ (fa, π1nfaG) = ωc (ca, π10lcaG) + ωo (oa, π01moaG) . (A.2)

Now we proceed by manipulating the two terms of (A.2) separately

ωc (ca, π10lcaG)

=
∞∑

g,b,k,{p1,...,pb}=0

κ2g+b

b!k!(p1) · · · (pb)
ωc
(
ca, l

(g,b)
k+1[p1,...,pb]

(
ca ∧Φ∧k⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

=
∞∑

g,b,{p1,...,pb}=0,k=1

(−)ca
κ2g+b

b!k!(p1) · · · (pb)
ωc
(
Φ, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

+
∞∑

g,b,{p1,...,pb}=0

κ2g+b

b!(p1) · · · (pb)
ωc
(
ca, l

(g,b)
1[p1,...,pb]

(
ca⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

=
∫ 1

0
dt

∞∑
g,b,{p1,...,pb}=0,k=1

(−)ca
κ2g+b

b!(k− 1)!(p1) · · · (pb)
ωc
(
Φ̇, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

+
∫ 1

0
dt

∞∑
g,b,{p1,...,pb}=0,k=1

(−)ca
κ2g+b

b!k!(p1) · · · (pb)
ωc
(
Φ, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ ∂t(Ψ⊙p1 · · ·Ψ⊙pb)

))

+
∫ 1

0
dt

∞∑
g,b,{p1,...,pb}=0

κ2g+b

b!(p1) · · · (pb)
ωc
(
ca, l

(g,b)
1[p1,...,pb]

(
ca⊗′ ∂t(Ψ⊙p1 · · ·Ψ⊙pb)

))

where we have noticed, that the contribution containing zero closed strings needs to be
treated separately. Here we note that we can first rewrite the two terms where the derivative
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acts on the open string fields as∫ 1

0
dt

∞∑
g,b,{p2,...,pb}=0,k=1

p1=1

(−)ca
κ2g+b

b!k!(p1) · · · (pb)
ωc
(
Φ, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ p1Ψ̇⊙Ψ⊙p1−1 · · ·Ψ⊙pb

))
+ . . .

. . .+
∫ 1

0
dt

∞∑
g,b,{p1,...,pb−1}=0,k=1

pb=1

(−)ca
κ2g+b

b!k!(p1) · · · (pb)
ωc
(
Φ, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ Ψ⊙p1 · · · pbΨ̇⊙Ψ⊙pb−1

))
,

(A.3)
and∫ 1

0
dt

∞∑
g,b,{p2,...,pb}=0

p1=1

κ2g+b

b!(p1) · · · (pb)
ωc
(
ca, l

(g,b)
1[p1,...,pb]

(
ca ⊗′ p1Ψ̇⊙Ψ⊙p1−1 · · ·Ψ⊙pb

))
+ . . .

. . .+
∫ 1

0
dt

∞∑
g,b,{p1,...,pb−1}=0

pb=1

κ2g+b

b!(p1) · · · (pb)
ωc
(
ca, l

(g,b)
1[p1,...,pb]

(
ca ⊗′ Ψ⊙p1 · · · pbΨ̇⊙Ψ⊙pb−1

))
.

(A.4)
Using the open-closed duality and relabelling the summation indices, the two terms com-
bine into∫ 1

0
dt

∞∑
g,b,{p1,...,pb−1}=0,k=0

pb=1

(−)ca
κ2g+b−1bpb

b!k!(p1) · · · (pb)
κωo

(
Ψ̇,m(g,b)

k+2[p1,...,pb−1]pb−1

(
ca ∧ ca ∧Φ∧k⊗′ Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb−1

))
.

(A.5)
We can then continue to manipulate
ωc (ca, π10lcaG)

=
∫ 1

0
dt

∞∑
g,b,{p1,...,pb}=0,k=1

(−)ca
κ2g+b

b!(k− 1)!(p1) · · · (pb)
ωc
(
Φ̇, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

+
∫ 1

0
dt

∞∑
g,b,k,{p1,...,pb−1}=0

pb=1

(−)ca
κ2g+bbpb

b!k!(p1) · · · (pb)
κωo

(
Ψ̇,m(g,b)

k+2[p1,...,pb−1]pb−1

(
ca ∧ ca ∧Φ∧k⊗′ Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb−1

))

=
∫ 1

0
dt

∞∑
g,b,{p1,...,pb}=0,k=1

(−)ca
κ2g+b

b!(k− 1)!(p1) · · · (pb)
ωc
(
Φ̇, l(g,b)k+1[p1,...,pb]

(
ca ∧ ca ∧Φ∧k−1⊗′ Ψ⊙p1 · · ·Ψ⊙pb

))

+
∫ 1

0
dt

∞∑
g,b,k,{p1,...,pb}=0

(−)ca
κ2g+bb(pb)

b!k!(p1) · · · (pb)
κωo

(
Ψ̇,m(g,b)

k+2[p1,...,pb−1]pb

(
ca ∧ ca ∧Φ∧k⊗′ Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb

))

= (−)ca
∫ 1

0
dt
{
ωc
(
Φ̇(t), π10lcac

aG(t)
)

+κωo
(
Ψ̇(t), π01mcac

aG(t)
)}

= (−)ca
∫ 1

0
dt ω̂

(
χ̇(t), π1n

(
κ2cac

a
)
G(t)

)
.

(A.6)
As for the open part we have that
ωo (oa, π01moaG)

=
∞∑

g,b,k,{p1,...,pb}

(κ2g+b−1)(p1)b(b− 1)(pb)
b!k!(p1) · · · (pb)

ωo
(
oa,m

(g,b)
k[p1+1,...,pb−1]pb

(
Φ∧k⊗′ oa⊙Ψ⊙p1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb

))

+
∞∑

g,b,k,{p1,...,pb}

(κ2g+b−1)(p1)b
b!k!(p1) · · · (pb)

ωo
(
oa,m

(g,b)
k[pb,...,pb−1]p1+1

(
Φ∧k⊗′ Ψ⊙pb · · ·Ψ⊙pb−1 ⊗′′ oa⊙Ψ⊙p1

))
.

(A.7)
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By using cyclicity, we can bring the basis vectors within the m product and relabeling
the summation indices we get (also isolating the terms where this is not possible, because
there are no open-string fields to be brought on the bra of the symplectic form — those
will eventually end up contributing into the l-part of the final result (A.8))

ωo (oa, π01moaG)

=
∞∑

g,b,k,{p3,...,pb}

(κ2g+b−1)(−)oa
b(b− 1)(p1− 1)(p2− 1)

b!k!(p1− 1)(p2− 1)p3 · · · (pb + 1)

×ωo
(
Ψ,m(g,b)

k[p1,...,pb−1]pb

(
Φ∧k⊗′ oa⊙Ψ⊙p1−1 ∧′ oa⊙Ψ⊙p2−1 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb

))
+

∞∑
g,b,k,{p1,...,pb}

(κ2g+b−1)(−)oa
b(p1− 2)

b!k!(p1− 2)p2 · · · (pb + 1)×

×ωo

Ψ,m(g,b)
k[p1,...,pb−1]pb

Φ∧k⊗′

p1−2∑
n=0

oa⊙Ψ⊙n⊙ oa⊙Ψ⊙p1−n−2

 · · ·Ψ⊙pb−1 ⊗′′ Ψ⊗pb


+

∞∑
g,b,k

(κ2g+b−1)b(b− 1)
b!k! ωo

(
oa,m

(g,b)
k[1,...,0]0

(
Φ∧k⊗′ oa⊗′′

))

+
∞∑
g,b,k

(κ2g+b−1)b
b!k! ωo

(
oa,m

(g,b)
k[0,...,0]1

(
Φ∧k⊗′′ oa

))
.

At this point the meaning of the relationship written above is clear, i.e., the open BV
Laplacian glues a Riemann surface in two ways either by joining two punctures from the
same boundary or from different boundaries, which correspond respectively to (· · · oa ⊙
oa ⊙ Ψ⊙p1 · · · ) and (· · · oa ⊙ Ψ⊙p1 ∧′ oa ⊙ Ψ⊙p2 · · · ). Now as discussed for the closed part
we want to return to the co-algebra formalism by reconstructing the group like elements.
In order to do so we apply

∫ 1
0 dt ∂t isolating in the first slot of the symplectic form Ψ̇ and

Φ̇. After some algebraic steps the previous expression becomes

ωo (oa, π01moaG) = (−)oa
∫ 1

0
dt
{
ωo
(
Ψ̇(t), π01moao

aG(t)
)

+ κ−1ωc
(
Φ̇(t), π10loao

aG(t)
)}

= (−)oa
∫ 1

0
dt ω̂ (χ̇(t), π1n (κoao

a)G(t)) .

(A.8)

Furthermore, to obtain the previous result, it is essential to observe that two open 0-
coderivations on the group like element act as follows

oao
aG =

∞∑
b,k,{p1,...,pb}

b(b− 1)(p1)(p2)
b!k!(p1) · · · (pb)

(
Φ∧k ⊗′ oa ⊙Ψ⊙p1 ∧′ oa ⊙Ψp2 · · ·Ψ⊙pb

)

+
∞∑

b,k,{p1,...,pb}

b(p1)
b!k!(p1) · · · (pb)

(
Φ∧k ⊗′

[ p1∑
n=0

oa ⊙Ψ⊙n ⊙ oa ⊙Ψ⊙p1−n
]
· · ·Ψ⊙pb

)
.

(A.9)
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Finally by adding (A) with (A.8) we get the desired result

ω̂ (fa, π1nfaG) =
∫ 1

0
dt ω̂

(
χ̇(t), π1n

(
(−)oa

κoao
a + (−)ca

κ2cac
a
)
G(t)

)
= (−)fa

∫ 1

0
dt ω̂ (χ̇(t), π1nfafaG(t)) .

(A.10)
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