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Abstract
Estimating	 demographic	 parameters	 for	 wide-	ranging	 and	 elusive	 species	 living	 at	
low	density	 is	 challenging,	 especially	 at	 the	 scale	of	 an	entire	 country.	To	produce	
wolf	 distribution	 and	 abundance	 estimates	 for	 the	whole	 south-	central	 portion	 of	
the	Italian	wolf	population,	we	developed	an	integrated	spatial	model,	based	on	the	
data	collected	during	a	7-	month	sampling	campaign	 in	2020–2021.	Data	collection	
comprised	an	extensive	survey	of	wolf	presence	signs,	and	an	intensive	survey	in	13	
sampling	areas,	aimed	at	collecting	non-	invasive	genetic	samples	 (NGS).	The	model	
comprised	(i)	a	single-	season,	multiple	data-	source,	multi-	event	occupancy	model	and	
(ii)	 a	 spatially	 explicit	 capture-	recapture	model.	The	 information	about	 species'	 ab-
sence	was	used	to	inform	local	density	estimates.	We	also	performed	a	simulation-	
based	assessment,	to	estimate	the	best	conditions	for	optimizing	sub-	sampling	and	
population	modelling	in	the	future.	The	integrated	spatial	model	estimated	that	74.2%	
of	the	study	area	in	south-	central	Italy	(95%	CIs = 70.5%	to	77.9%)	was	occupied	by	
wolves,	for	a	total	extent	of	the	wolf	distribution	of	108,534 km2	(95%	CIs = 103,200	
to	114,000).	The	estimate	of	total	population	size	for	the	Apennine	wolf	population	
was	of	2557	individuals	(SD = 171.5;	95%	CIs = 2127	to	2844).	Simulations	suggested	
that	the	integrated	spatial	model	was	associated	with	an	average	tendency	to	slightly	
underestimate	population	size.	Also,	the	main	contribution	of	the	integrated	approach	
was	to	increase	precision	in	the	abundance	estimates,	whereas	it	did	not	affect	ac-
curacy	significantly.	In	the	future,	the	area	subject	to	NGS	should	be	increased	to	at	
least	30%,	while	at	least	a	similar	proportion	should	be	sampled	for	presence-	absence	
data,	to	further	improve	the	accuracy	of	population	size	estimates	and	avoid	the	risk	
of	underestimation.	This	approach	could	be	applied	to	other	wide-	ranging	species	and	
in	other	geographical	areas,	but	specific	a	priori	evaluations	of	model	requirements	
and	expected	performance	should	be	made.

https://doi.org/10.1002/ece3.11285
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-6773-9227
https://orcid.org/0000-0001-9915-3194
http://creativecommons.org/licenses/by/4.0/
mailto:vincenzo.gervasi@isprambiente.it
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.11285&domain=pdf&date_stamp=2024-05-13


2 of 16  |     GERVASI et al.

1  |  INTRODUC TION

In	 recent	 years,	 the	 concurrent	 emergence	 of	 new	 investigation	
technologies	and	advanced	statistical	tools	has	greatly	 improved	
the	ability	of	ecologists	to	monitor	animal	populations	in	space	and	
time,	 providing	 an	 insight	 which	would	 have	 been	 unachievable	
just	a	few	decades	ago	(Allan	et	al.,	2018).	Nowadays,	the	use	of	
Global	Positioning	System	(GPS)	collars,	drones,	photo	traps,	non-	
invasive	genetic	sampling	(NGS),	environmental	DNA,	etc.,	allows	
the	 collection	of	 large	datasets	 at	both	 the	population	and	 indi-
vidual	 levels	 (Beng	&	Corlett,	2020;	Oliver	et	al.,	2023;	Schad	&	
Fischer,	2022).	These	data	are	routinely	used	to	produce	distribu-
tion	and	abundance	estimates	and	to	inform	population	manage-
ment	and	conservation.	On	the	other	hand,	new	analytical	tools,	
such	as	occupancy	models	and	spatially	explicit	capture-	recapture	
models	 (SCR),	 have	 become	 standard	 methods	 for	 the	 demo-
graphic	 monitoring	 of	 animal	 populations.	 These	methodologies	
allow	the	consideration	of	imperfect	detection,	but	also	individual	
and	 spatial	 variation	 in	 detection	 and	movement	 rates,	 thus	 in-
creasing	the	robustness	of	the	estimated	demographic	parameters	
(Mackenzie	et	al.,	2002;	Tourani,	2022).

Despite	 the	 technological	 and	 methodological	 advancements,	
though,	estimating	basic	demographic	parameters	for	wide-	ranging	
and	elusive	species	 living	at	 low	density	remains	a	challenging	ex-
ercise,	especially	when	there	 is	a	need	to	estimate	these	parame-
ters	 at	 the	 scale	of	 an	entire	 country	or	 even	at	 a	 transboundary	
level.	 Large	 carnivores	 and	marine	mammals	 are	 among	 the	most	
typical	examples	of	such	a	challenge.	They	live	at	very	low	densities,	
each	 individual	 in	 the	 population	 can	 potentially	move	 over	 very	
large	 distances,	 and	 their	 populations	 are	 bound	 to	 occupy	 wide	
geographical	areas	to	be	sustained,	spanning	across	one	or	several	
countries	 (McDonald,	 2004).	 Therefore,	 monitoring	 their	 popu-
lations	 requires	 a	massive	 sampling	 effort,	which	 is	 often	beyond	
reach	 for	national	 agencies.	 The	estimation	of	population	 size	 for	
brown	bears	 (Ursus arctos),	 lynx	 (Lynx lynx),	wolverines	 (Gulo gulo),	
and	wolves	(Canis lupus)	in	Norway	and	Sweden	is	one	of	the	few	ex-
amples	of	a	systematic	large-	scale	(>500,000 km2)	NGS	program	on	
several	wide-	ranging,	elusive	species	(Bischof,	Dupont,	et	al.,	2020; 
Bischof,	Milleret,	 et	 al.,	2020).	 Similarly,	 Lauret	 et	 al.	 (2023)	 esti-
mated	the	abundance	and	density	of	bottlenose	dolphins	(Tursiops 
truncatus)	 in	 a	 vast	 portion	 of	 the	North-	Western	Mediterranean	
Sea	 (>200,000 km2),	 using	 a	 combination	of	 boat	 surveys	 and	 ae-
rial	line	transects.	For	most	of	the	populations	of	these	and	similar	
species,	though,	the	establishment	of	a	spatially	exhaustive	and	sys-
tematic	national	monitoring	program	remains	a	challenge.	The	tools	

and	techniques	are	available,	but	the	effort	required	is	often	too	big.	
As	a	result,	several	population	monitoring	programs	make	use	of	a	
mix	of	different	opportunistic	data	sources	or	restrict	their	effort	to	
portions	of	the	whole	population	(López-	Bao	et	al.,	2018;	Popescu	
et	al.,	2017).	Often,	in	fact,	a	combination	of	individual	recognition	
data,	presence-	absence	data,	dead-	recoveries,	etc.,	is	collected	op-
portunistically	 or	 even	 incidentally	 by	 field	 technicians,	 hunters,	
or	citizens	(Cretois	et	al.,	2020;	Ražen	et	al.,	2020).	While	being	of	
value	locally,	these	data	provide	information	only	about	local	abun-
dance,	a	minimum	number	of	individuals	present	in	the	population,	
minimum	distribution	maps,	 etc.,	 being	of	 little	 support	 for	 large-	
scale	management	and	conservation.

The	last	decade,	though,	has	seen	an	increasing	number	of	appli-
cations,	in	which	individual	recognition	data	and	presence-	absence	
data	were	integrated	to	enhance	the	performance	of	spatial	models.	
Kéry	and	Royle	(2016)	showed	that	both	data	types	can	be	used	to	
inform	a	SCR	model,	in	particular	through	a	link	between	the	location	
of	individual	activity	centres	and	the	probability	to	collect	presence-	
absence	data	at	a	given	sampling	site.	Therefore,	 the	 recent	avail-
ability	of	 integrated	spatial	models	offers	a	promising	opportunity	
to	 make	 the	 most	 out	 of	 these	 different	 data	 types	 (Chandler	 &	
Clark,	2014;	Schaub	&	Abadi,	2011).	Integrated	spatial	models	allow	
to	combine	and	simultaneously	analyse	data	deriving	from	different	
underlying	 sampling	 processes,	 thus	 improving	 the	 accuracy,	 pre-
cision,	and	robustness	of	demographic	parameter	estimates	 (Blanc	
et	al.,	2014;	Chandler	&	Clark,	2014).

Wolves	 in	 south-	central	 Italy	 are	 a	 typical	 example	of	 a	wide-	
ranging	species,	distributed	over	large	portions	of	land,	with	a	lack	
of	ecological	knowledge	and	some	limitations	in	the	applicability	of	a	
comprehensive	sampling	design.	Wolves	in	Italy	were	almost	extinct	
by	the	1970s,	surviving	only	in	a	few	isolated	nuclei	in	south-	central	
Apennines	(Zimen	&	Boitani,	1975).	Since	then,	and	in	line	with	the	
general	 recovery	 of	 large	 carnivores	 across	 all	 Europe	 (Chapron	
et	 al.,	 2014),	 the	 species	 has	 progressively	 recovered	 its	 former	
range,	 recolonized	 the	Alps,	 and	eventually	expanded	 into	France,	
Switzerland,	and	Austria	 (Valière	et	al.,	2003).	Although	the	Italian	
wolf	 population	 is	 now	 continuously	 distributed	 across	 the	whole	
country,	from	a	management	point	of	view	two	interconnected	pop-
ulations	are	identified	(Fabbri	et	al.,	2007),	one	in	the	Alps	and	the	
other	in	the	remaining	south-	central	portion	of	the	peninsula,	mainly	
along	 the	Apennine	Mountains	chain.	Both	 in	 the	areas	of	histori-
cal	 presence	 and	 in	 those	of	 recent	 comeback,	wolf	 presence	has	
varying	levels	of	impact	on	livestock	farming	and	social	conflicts	in	
areas	of	 their	 historical	 range	 and	 recent	 recolonization,	 requiring	
management	and	conflict	mitigation	 (Gervasi	et	al.,	2021).	Despite	
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these	management	needs,	a	formal	population	size	estimate	at	the	
national	level,	and	for	its	south-	central	portion,	is	currently	lacking,	
although	preliminary	attempts	have	been	made	using	a	collection	of	
local	studies	(Galaverni	et	al.,	2016).

In	2020,	a	national	population	estimation	project	was	launched,	as	
a	result	of	a	simultaneous	and	standardized	sampling	of	the	two	por-
tions	of	the	populations.	For	the	alpine	portion,	the	project	resulted	
in	a	SCR-	based	density	and	abundance	estimate,	which	allowed	to	
define	key	population	metrics	with	direct	relevance	for	conservation	
and	management	(Marucco	et	al.,	2023).	A	different	approach	was	
adopted	in	south-	central	Italy,	owing	to	the	vast	area	supposedly	oc-
cupied	by	the	species	(about	150,000 km2; see Figure 1),	the	lack	of	
previous	knowledge	in	large	portions	of	the	wolf	distribution	range,	
and	the	limitations	in	the	maximum	achievable	field	effort.	The	field	
design	was	based	on	a	stratified	random	sampling,	aimed	to	collect	
both	presence	signs	and	NGS	data	for	a	portion	of	the	whole	pop-
ulation.	In	this	paper,	we	describe	how	we	developed	an	integrated	
spatial	model,	combining	an	occupancy	model	and	an	SCR	model,	to	
produce	wolf	distribution	and	abundance	estimates	 for	 the	south-	
central	portion	of	the	Italian	wolf	population,	making	the	most	out	of	
the	data	collected	during	a	7-	month	sampling	campaign.

To	assess	 the	expected	performance	of	our	 sampling	and	ana-
lytical	design,	and	to	produce	guidelines	for	future	applications,	we	
also	performed	a	simulation-	based	assessment,	which	allowed	us	to	
estimate	the	best	conditions	for	optimizing	sub-	sampling	and	inte-
grated	spatial	modelling,	 in	order	 to	produce	accurate	and	precise	
enough	estimates	of	population	size.	We	discuss	the	opportunities	
and	risks	of	such	an	approach,	which	is	potentially	suitable	for	sev-
eral	monitoring	programs	of	large	carnivores	and	other	wide-	ranging	
species,	but	also	 requires	caution	and	a	proper	a	priori	evaluation	
before	its	application.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling design

To	estimate	wolf	abundance	and	distribution	in	south-	central	Italy,	
we	designed	sampling	by	overlaying	the	10 × 10	km	grid	adopted	at	
the	European	level	for	the	Habitats	Directive	92/43/EEC	reporting	
(https://	www.	eea.	europa.	eu/	data-		and-		maps/	data/	eea-		refer	ence-		
grids	-		2)	to	the	11	administrative	Regions	overlapping	the	study	area	
(Figure 1a).	 Given	 the	 large	 size	 of	 the	 area	 and	 the	 logistic	 con-
straints,	we	 randomly	 subsampled	 the	cells	 to	be	 surveyed,	based	
on	a	stratified	design.	We	distributed	sampling	effort	according	to	
the	variability	of	the	parameter	of	interest,	that	is	the	supposed	local	
wolf	density	(McDonald,	2004).	For	this	purpose,	we	considered	that	
the	best	available	proxy	for	wolf	density	was	the	opportunistic	infor-
mation	on	the	species'	presence	over	time.	Therefore,	we	classified	
all	grid	cells	into	three	strata	of	stable,	sporadic,	and	supposed	pres-
ence,	based	on	heterogeneous	and	asynchronous	previous	data	(e.g.	
reporting	under	the	Habitats	Directive).	Additionally,	we	defined	a	
fourth	stratum,	including	all	the	cells	adjacent	to	those	of	known	or	

possible	presence,	to	correct	for	some	gaps	in	the	available	informa-
tion	on	species	presence	(Figure 1a).

The	data	collection	strategy	was	articulated	into	(i)	an	extensive	
survey	aimed	at	collecting	wolf	presence	data;	(ii)	an	intensive	sur-
vey	 carried	 out	 in	 11	 sampling	 areas,	 defined	 by	 a	 3	× 3	 arrange-
ment	of	9	cells,	and	aimed	at	collecting	non-	invasive	genetic	samples	
(Figure 1b).

For	the	extensive	survey,	we	ensured	the	selection	of	spatially	bal-
anced	and	representative	sample	of	cells	via	a	Generalized	Random	
Tessellation	Stratified	 (GRTS)	design	 (Stevens	&	Olsen,	2004).	We	
defined	the	inclusion	probability	of	each	grid	cell	in	the	final	sample	
as	a	function	of	its	stratum,	allocating	a	proportionally	larger	number	
of	 cells	 in	 the	 strata	where	more	variance	 in	 the	parameter	of	 in-
terest	was	expected.	We	simultaneously	extracted	25%	of	the	cells	
across	the	four	strata.	Because	the	 information	about	the	species'	
presence	was	 generally	 scarcer	 in	 the	 southern	 part	 of	 the	 study	
area,	we	oversampled	to	50%	in	the	five	southernmost	administra-
tive	 regions,	 thus	 compensating	 for	 the	 imbalance	 in	 the	 baseline	
information	and	for	the	expected	larger	variance	in	local	density.	The	
application	of	the	sampling	algorithm	resulted	in	the	probabilistic	se-
lection	of	449	grid	cells	(254,	153,	and	8	grid	cells,	respectively,	in	
the	 stable,	 sporadic,	 and	 supposed	presence	 strata,	 and	34	 in	 the	
cells	adjacent	to	those	of	known/supposed	presence;	Figure 1a).

To	identify	the	11	intensive	survey	areas,	we	adopted	a	design	
which	 involved	 both	 a	 random	 and	 a	 systematic	 component.	We	
constrained	the	stratified	random	selection	to	the	boundaries	of	the	
administrative	regions,	with	the	additional	criterion	that	each	region	
should	include	one	intensive	area.	To	this	aim,	we	first	selected	the	
central	 10	× 10 km	 grid	 cell	 of	 each	 intensive	 area	 in	 each	 region,	
then	extended	 it	 to	 the	eight	nearest-	neighbouring	cells,	provided	
they	 fell	within	 the	 strata	 defined	 above.	 Based	 on	 the	 first	 data	
gathered	through	the	extensive	survey,	we	identified	two	additional	
intensive	areas	in	the	northern	and	southernmost	parts	of	the	study	
area,	bringing	the	total	number	to	13.	The	intensive	data	collection	
was	finally	carried	out	in	186	10	× 10 km	cells	(Figure 1b).

2.2  |  Data collection

Both	the	intensive	and	extensive	data	collection	took	place	from	1st	
October	2020	to	30th	April	2021.	We	considered	this	period	as	the	
most	promising	for	detecting	the	species,	as	it	fell	between	the	main	
dispersal	events	of	spring	and	fall	(Mech	&	Boitani,	2019).	Also,	be-
cause	new	wolf	pups	typically	are	born	at	the	end	of	spring,	we	most	
likely	 did	 not	 include	 the	 recruitment	 peak	 in	 the	 sampling	 period	
and	 could	 assume	 that	 the	 population	 remained	 demographically	
closed	throughout	the	data	collection	period	(Dupont	et	al.,	2019).	A	
network	of	field	staff	from	several	institutions	concerned	with	wild-
life	management	(N = 344),	volunteers	(N = 431)	and	forestry	service	
staff	 (N = 725)	 systematically	 collected	 field	 data	 on	 a	 network	 of	
transects,	selected	along	roads	and	trails,	and	through	photo	traps	
placed	 across	 the	 study	 area.	 Field	workers	were	 trained	 through	
106	 training	 courses	 and	 11	 repetitions	 of	 a	 course	 in	 e-	learning	
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mode.	Data	collection	occurred	under	the	supervision	of	20	highly	
experienced	technicians,	who	inspected	the	reliability	of	all	presence	
signs	before	updating	the	database	monthly.	In	the	intensive	areas,	

we	collected	both	wolf	presence	sign	data	and	non-	invasive	genetic	
samples,	whereas	in	most	of	the	extensive	areas	we	only	collected	
presence	 signs.	We	 applied	 the	 SCALP	 criteria	 to	 categorize	 each	

F I G U R E  1 (a)	Stratification	of	the	
study	area	and	selected	sampling	units	for	
the	extensive	survey	in	south-	central	Italy.	
(b)	Cells	selected	for	the	intensive	survey.
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wolf	presence	sign	 into	C1,	C2,	or	C3	 (Molinari-	Jobin	et	al.,	2012),	
representing	 increasing	 levels	of	uncertainty	 in	species	attribution.	
Targeted	wolf	presence	signs	included	scats,	photos,	tracks,	sightings,	
urine,	hairs,	 predation	 sites,	howling,	 and	wolf	 carcasses.	Targeted	
non-	invasive	 genetic	 samples	 included	 fresh	 scats,	 blood,	 saliva,	
and	muscular	tissues	retrieved	from	wolf	carcasses.	In	the	intensive	
areas,	we	collected	faecal	samples	using	cotton	swabs,	whereas	 in	
the	extensive	areas	we	collected	and	stored	a	small	portion	of	the	
scat	in	tubes	containing	96%	ethanol	(Velli	et	al.,	2019).	Typically,	we	
visited	 transects	monthly	 in	 the	 intensive	areas,	 and	bi-	monthly	 in	
the	extensive	areas.	 In	addition	 to	 the	data	collected	 through	sys-
tematic	sampling,	we	also	considered	additional	wolf	data	retrieved	
opportunistically,	that	 is	verified	data	occasionally	collected	during	
field	activities	unrelated	to	the	sampling	campaign.

2.3  |  Molecular analyses

2.3.1  |  DNA	extraction	and	amplification

DNA	 was	 automatically	 extracted	 from	 1600	 non-	invasively	 col-
lected	samples	(1592	faecal	swabs,	3	hairs,	3	urines	and	2	salivary	
swabs;	Velli	et	al.,	2019)	and	32	invasive	biological	materials	(30	mus-
cular	tissues	from	found	dead	individuals	and	2	blood	samples	from	
rescued	wolves)	using	a	QIAcube	HT®	robotic	workstation	and	the	
Qiagen	DNeasy	 Blood	 &	 Tissue	 Kit,	 following	 the	manufacturer's	
instructions.

Each	DNA	sample	was	amplified	by	Polymerase	Chain	Reaction	
(PCR)	 and	 genotyped,	 through	 a	multiple-	tube	 approach	 (Caniglia	
et	al.,	2014),	at	12	unlinked	autosomal	canine	microsatellite	(STR)	loci 
(Table S1.)	already	successfully	applied	for	individual	identifications	
in	long-	term	non-	invasive	monitoring	projects	about	population	dy-
namics	of	the	Italian	wolf	(Caniglia	et	al.,	2014;	Fabbri	et	al.,	2018),	
for	forensic	applications	(Caniglia	et	al.,	2016;	Velli	et	al.,	2022)	and	
for	the	reliable	discrimination	between	wolves,	dogs	and	their	first	
two-	three	 generation	 hybrids	 through	 Bayesian	 assignment	 pro-
cedures	 (Caniglia	et	al.,	2020).	DNA	samples	were	also	genotyped	
through	a	multiple-	tube	approach,	at	(i)	a	portion	of	the	amelogenin	
gene,	to	molecularly	determine	their	gender,	(ii)	at	4	Y-	chromosome	
STRs	(Table S1.)	to	determine	paternal	haplotypes	in	male	individu-
als,	and	(iii)	at	a	dominant	3-	bp	deletion	at	the	β-	defensin	CBD103	
gene	(the	K-	locus)	coding	for	the	black	coat	colour	in	canids	(Caniglia	
et	al.,	2013).

The	4–8	replicated	amplifications	per	locus	per	sample	foreseen	
by	the	multi-	tube	approach	were	used	to	estimate	sample	reliability	
by	 the	software	RELIOTYPE	 (Miller	et	al.,	2002),	 reconstruct	con-
sensus	 genotypes,	 and	 assess	 the	 occurrence	 of	 allelic	 dropouts	
and	 false	 alleles	 by	 the	 software	 GIMLET	 V.1.3.3	 (Valière,	2002).	
GIMLET	was	also	used	to	identify	identical	genotypes	and	individ-
ual	recaptures.	Unique	genotypes	were	also	typed	at	250 bp	of	the	
mitochondrial	DNA	control	region	(mtDNA	CR)	containing	diagnos-
tic	mutations	(Supporting	information)	to	distinguish	Italian	wolves	
from	European	wolves	and	dogs	(Caniglia	et	al.,	2013).

The	software	GENALEX	(Peakall	&	Smouse,	2012)	was	used	to	
estimate	 the	mean	number	 of	 different	 (NA)	 and	 effective	 (NE)	 al-
leles,	 the	probability	of	 identity	 (pID)	 and	 the	expected	pID	 among	
full-	sib	dyads	(pIDsibs),	and	values	of	observed	(HO)	and	expected	(HE)	
heterozygosity.

Extraction,	 amplification,	 and	post-	amplification	procedures	of	
both	non-	invasive	and	muscular	DNA	were	carried	out	 in	separate	
rooms	reserved	to	low-		and	medium-	template	DNA	samples,	adding	
a	blank	control	(no	biological	material)	during	DNA	extraction,	and	
a	blank	(no	DNA)	and	a	positive	(good	quality	and	known	wolf-	DNA	
profile)	controls	during	DNA	amplification	to	check	for	possible	con-
taminations	(for	details	see	the	Supporting	Information).

2.3.2  |  Taxon	identification

The	12-	STR	multilocus	genotypes	were	assigned	to	their	taxon	of	ori-
gin	(wolf,	dog	or	admixed),	independently	of	any	a	priori	non-	genetic	
information,	through	a	Bayesian	clustering	procedure	implemented	
in	 the	 program	 PARALLEL	 STRUCTURE	 (Besnier	 &	 Glover,	2013),	
an	R	package	 implementing	STRUCTURE,	 following	 indications	 re-
ported	in	Caniglia	et	al.	(2020).	Assignments	were	integrated	with	the	
information	derived	from	the	uniparental	(mtDNA	CR,	four	Y-	linked	
STRs)	and	coding	(K-	locus)	markers,	which	were	used	to	confirm	the	
taxon	identification	or,	in	case	of	admixed	individuals,	to	provide	the	
directionality	of	the	hybridization	(Caniglia	et	al.,	2020).

2.4  |  Statistical modelling

2.4.1  |  Occupancy	model

For	 the	 estimation	 of	 wolf	 distribution,	 we	 built	 and	 analysed	 a	
single-	season,	multiple	 data-	source,	multi-	event	 occupancy	model	
(Mackenzie	et	al.,	2002;	Miller	et	al.,	2011;	Pacifici	et	al.,	2017),	which	
accounted	for	the	different	types	of	sampling	processes	involved	in	
data	collection	(transects	and	photo	traps)	and	for	the	possibility	of	
species	misidentification	when	collecting	wolf	scats	in	areas	where	
also	dogs	were	present.

We	 divided	 the	 sampling	 period	 into	 four	 sessions,	 three	 of	
them	comprising	2 months	(October–November,	December–January,	
February–March),	whereas	 the	 last	one	only	 included	the	data	col-
lected	 in	 April.	We	 then	 built	 two	 sampling	 matrices,	 one	 for	 the	
presence	data	derived	from	photo	traps,	one	for	the	data	collected	
along	transects,	and	initially	coded	the	matrices	with	a	simple	binary	
code	 (1 = species	 detected;	 0 = species	 not	 detected).	 For	 the	wolf	
presence	data	derived	from	transects,	though,	we	could	not	exclude	
the	possibility	that	dog	scats	were	erroneously	attributed	to	wolves,	
thus	generating	a	false	detection	in	the	dataset.	To	account	for	this	
risk,	we	identified	three	different	types	of	wolf	detections	along	tran-
sects	 and	 explicitly	 included	 the	 misidentification	 probability	 into	
the	model.	This	was	possible	because	a	portion	of	the	wolf	samples	
collected	along	transects	were	genetically	analysed	and	identified	as	
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6 of 16  |     GERVASI et al.

belonging	 to	dogs,	 thus	providing	a	basis	 for	 the	estimation	of	 the	
misidentification	probability.	The	three	detection	types	were	based	
on	the	use	of	two	classification	criteria,	one	derived	from	field	work,	
the	 other	 from	 the	 genetic	 lab	 results,	 and	 allowed	 to	 distinguish	
samples	that	were	certainly	belonging	to	wolves,	samples	certainly	
belonging	 to	 dogs	 and	 uncertain	 samples.	 A	 fourth	 type	 of	 event	
was	assigned	to	cells	with	no	detection	(see	Table 1).	Then,	based	on	
two	possible	occupancy	states	(occupied	by	wolves,	not	occupied	by	
wolves)	and	four	types	of	detection	events,	we	built	a	2	× 4	detection	
matrix	for	the	data	collected	along	transects.

In	 the	detection	matrix,	P1,x,t	was	 the	probability	 to	detect	a	
dog	 sign	 in	 the	unoccupied	 cell	x	 during	 session	 t,	P2,x,t	was	 the	
probability	to	detect	a	presence	sign	(dog	or	wolf)	in	the	occupied	
cell ×	 during	 session	 t,	Gx	was	 the	 probability	 for	 a	 sample	 col-
lected	in	cell	x	to	be	genetically	analysed	in	the	lab,	and	Mx	was	the	
probability	 that	a	sample	classified	as	wolf	 in	 the	field	was	 later	
classified	as	belonging	to	a	dog	 in	the	 lab.	Parameter	G	was	 just	
a	dummy	variable,	which	was	fixed	to	one	for	the	intensive	cells,	
whose	 samples	were	 genetically	 analysed,	 and	 fixed	 to	 zero	 for	
the	cells	not	included	in	the	genetic	study.	Based	on	this	param-
eterization,	P1	represented	the	probability	of	a	false	detection	in	
the	occupancy	model.

For	the	data	derived	from	photo	traps,	we	assumed	that	all	wolf	
detections	were	correct,	as	 they	were	based	on	 the	visual	 inspec-
tion	of	photos	by	expert	technicians.	The	resulting	detection	matrix,	
therefore,	only	included	two	underlying	states	(the	same	ones	used	
for	 the	previous	matrix)	and	two	possible	detection	events	 (0 = no	
detection;	1 = wolf	presence	detected).	 In	the	matrix,	P3,x,t	was	the	
probability	of	detected	wolf	presence	through	photo	traps	in	cell	x 
during	session	t.

We	modelled	 the	 spatial	 and	 temporal	 variation	 in	 all	 the	 in-
volved	parameters	as	a	function	of	a	set	of	covariates.

We	assumed	that	cell-	specific	occupancy	was	a	realization	of	a	
Bernoulli	process	with	index	ψ.	To	estimate	the	occupancy	probabil-
ity	ψ,	we	included	the	average	altitude	above	sea	level	in	each	cell,	
the	proportion	of	cell	area	covered	by	forest,	the	proportion	of	ur-
banized	area,	the	total	 length	of	primary	and	secondary	roads,	the	
proportion	of	agricultural	land	and	of	natural	agricultural	areas,	the	
average	human	density,	the	terrain	ruggedness	index,	and	the	num-
ber	of	wild	ungulate	species	available.	We	derived	this	variable	from	
the	wild	ungulate	distribution	maps	produced	by	Linnell	et	al.	(2020)	
at	the	European	level,	using	hunting	statistics,	citizen	science	data-

bases,	vehicle	collisions,	 scientific	papers,	and	expert	assessments	
on	17	native	and	non-	native	ungulate	species.	Six	of	these	species,	
red	 deer	 (Cervus elaphus),	 roe	 deer	 (Capreolus capreolus),	 chamois	
(Rupicapra pyrenaica),	wild	boar	(Sus scrofa),	fallow	deer	(Dama dama),	
and	mouflon	(Ovis ammon)	were	distributed	in	at	least	a	portion	of	
our	study	area	and	were	used	to	build	the	species	availability	index.	
We	also	added	an	individual	random	effect,	which	accounted	for	the	
residual	differences	 in	occupancy	probability	among	cells.	We	de-
rived	landscape	variables	from	the	EU-	DEM	v1.1	(Copernicus	Land	
Monitoring	 Service,	 EEA)	 and	 from	 the	Corine	 Land	Cover	 (2018,	
Copernicus	Land	Monitoring	Service	2018,	EEA).	We	extracted	road	
density	 data	 from	 OpenStreetMap	 (OpenStreetMap	 contributors	
2021),	aggregating	the	motorway	trunk,	primary,	secondary,	tertiary,	
and	unclassified	road	classes.	We	also	added	a	spatial	autocorrela-
tion	function	through	a	normally	distributed	individual	random	term	
εx	for	each	cell.	The	random	effect	had	mean	equal	to	zero	and	vari-
ance	defined	as	σ2	 (D−ϕW),	 in	which	σ	was	the	standard	deviation,	
W	was	a	binary	adjacency	matrix	(1 = bordering,	0 = not	bordering),	
D	was	the	diagonal	matrix	of	W,	and	ϕ	was	an	estimated	parameter	
controlling	the	intensity	of	the	spatial	correlation.

For	the	detection	probability	parameters,	we	modelled	the	spa-
tial	and	temporal	variation	as	a	function	of	sampling	effort,	measured	
as	 the	 total	 number	of	 kilometres	walked	 in	 each	 cell	 during	 each	
sampling	session	(for	transect-	based	data)	and	as	the	number	of	trap	
nights	for	each	photo	trap.	We	also	estimated	a	different	intercept	for	
each	sampling	session	and	tested	if	detection	probability	was	related	
to	the	total	amount	of	snow	cover	in	each	cell	during	the	sampling	

⎡
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TA B L E  1 Description	of	the	criteria	used	to	classify	each	scat-	based	wolf	detection	into	four	detection	types,	to	account	for	a	possible	
species	misidentification	in	the	occupancy	model.	The	data	were	collected	along	transect	in	south-	central	Italy	between	October	2020	and	
April	2021.

Index Scat collected Field classification Scat analysed genetically Genetic lab results

0 No — — — Possible	species	absence

1 Yes Wolf Yes Wolf Wolf	presence	ascertained

2 Yes Wolf Yes Dog Misidentification	error

3 Yes Wolf No — Possible	species	presence
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period	(reanalysis	dataset;	ERA5-	Land).	We	also	tried	to	account	for	
the	residual	individual	heterogeneity	in	detection	probability	among	
cells,	using	a	finite-	mixture	approach	with	two	classes	of	heteroge-
neity	(Pledger,	2005),	controlled	by	an	additional	regression	param-
eter	and	by	parameter	θ,	which	defined	the	individual	probability	of	
each	cell	to	belong	to	one	of	the	two	mixtures.	As	in	most	of	the	ap-
plications	of	occupancy	models	on	large	carnivores	and	other	wide-	
ranging	species	(Blanc	et	al.,	2014;	Lauret	et	al.,	2021),	we	could	not	
assume	perfect	closure	of	the	grid	cells	during	the	sampling	period,	
that	 is	a	cell	could	possibly	be	occupied	by	the	species	only	during	
a	 portion	of	 the	 year.	 Such	 violation	would	 have	no	 effect	 on	 the	
estimates,	only	if	animal	movements	were	random	between	cells,	an	
assumption	which	cannot	be	considered	as	valid	for	species	whose	
movement	are	influenced	by	their	non-	random	habitat	use	patterns	
(Kendall	et	al.,	2013).	 In	such	a	situation,	the	occupancy	parameter	
ψ	is	usually	interpreted	as	a	probability	of	use	of	a	given	cell,	rather	
than	as	a	classical	species	presence	(Kendall	et	al.,	2013).	Therefore,	
species	detection	was	conditional	on	both	 the	probability	 that	 the	
species	is	available	for	sampling	and	the	probability	that	the	species	
is	using	the	grid	cell	during	sampling.

2.4.2  |  SCR	model

For	the	estimation	of	wolf	abundance,	we	used	the	dataset	derived	
from	the	non-	invasive	genetic	sampling	performed	in	the	13	inten-
sive	 sampling	 areas,	which	 comprised	 the	 individual	 identification	
of	all	sampled	wolves,	their	sex,	the	number	and	location	of	all	the	
individual	genetic	captures.	We	used	these	data	to	build	a	Spatially	
Explicit	Capture-	Recapture	model	(SCR).	To	this	aim,	we	used	the	10	
× 10 km	sampling	grid	to	identify	a	network	of	detectors,	located	at	
the	centre	of	each	sampling	cell.

We	associated	each	detector	to	100	sub-	detectors,	based	on	a	
1 × 1	km	grid	constructed	inside	each	cell,	and	projected	each	wolf	
detection	to	the	closest	sub-	detector.	This	allowed	us	to	model	wolf	
detection	 rates	 using	 a	 partially	 aggregated	 binomial	 observation	
process	 (Milleret	et	al.,	2018),	 in	which	the	number	of	wolf	detec-
tions	at	a	given	detector	was	the	result	of	a	binomial	process	with	
100	trials.	From	a	temporal	point	of	view,	we	aggregated	all	detec-
tions	 into	 a	 single	 sampling	 session,	 comprising	 the	 whole	 study	
period,	thus	modelling	the	temporal	variation	in	capture	probability	
through	the	spatial	component	of	the	detection	process.	In	an	SCR	
model,	the	detection	process	is	controlled	by	two	main	parameters:	
p0	 is	the	baseline	capture	probability,	corresponding	to	the	case	in	
which	 a	 detector	 is	 located	 on	 the	 same	 location	 of	 an	 individual	
home	 range	centre;	σ	 is	 the	distance	 from	 the	home	 range	centre	
at	which	 capture	 probability	 is	 half	 of	p0,	 and	 it	 is	 usually	 related	
to	home	range	size	 (Efford,	2004).	Using	a	half-	normal	function	to	
model	capture	probability	attenuation,	the	resulting	capture	proba-
bility	of	individual	i	at	detector	x	was:

where di,x	was	the	linear	distance	between	the	activity	centre	of	indi-
vidual	i	and	detector	x.

To	model	variations	in	p0,	we	used	a	series	of	individual	and	spa-
tial	covariates,	such	as	sampling	effort	(expressed	as	the	total	num-
ber	of	kilometres	walked	along	transects	 in	each	cell),	 snow	cover	
(defined	as	in	the	occupancy	model),	and	the	individual	sex.	We	also	
added	an	individual	random	effect	allowing	a	different	intercept	for	
each	intensive	area,	to	model	local	variations	in	capture	probability.	
Finally,	we	used	a	finite-	mixture	approach	with	two	classes	of	het-
erogeneity	to	account	for	the	residual	differences	in	capture	proba-
bility	among	wolves.	To	model	variations	in	the	σ	parameter,	we	used	
the	number	of	wild	ungulate	species	available	in	each	cell,	similar	to	
what	was	done	for	the	occupancy	model.

To	account	for	the	expected	uneven	distribution	of	wolves	in	the	
study	 area,	we	modelled	 the	 latent	 density	 as	 an	 inhomogeneous	
point	 process.	 For	 each	 location	 in	 the	 state	 space	 (the	 centre	 of	
each	10 × 10	cell),	we	expressed	the	expected	abundance	λ	in	cell	x	as	
a	log-	linear	function	of	a	set	of	environmental	covariates:

where	parameter	μ0	 is	the	density	intercept	and	the	remaining	μ	pa-
rameters	are	regression	coefficients	of	the	environmental	covariates.	
Then,	the	expected	population	size	was	initially	derived	by	integrating	
the λ	values	over	the	study	area:

We	modelled	variations	in	wolf	density	as	a	function	of	the	habi-
tat	covariates	used	for	the	occupancy	model,	of	the	number	of	avail-
able	wild	ungulate	prey,	and	added	a	spatial-	autocorrelation	function	
which	accounted	for	the	spatial	structure	in	the	wolf	population.	Due	
to	the	wide	latitudinal	gradient	in	the	study	area,	the	effect	of	habitat	
covariates	on	wolf	density	was	likely	to	be	slightly	different	in	the	dif-
ferent	portions	of	the	sampling	grid.	Given	the	limitations	imposed	by	
sample	size,	we	focused	on	the	average	large-	scale	effects,	but	could	
not	reveal	local	patterns	in	each	of	the	13	sampling	areas.

To	 account	 for	 the	 undetected	 individuals,	we	 augmented	 the	
observed	dataset	adding	10	times	the	number	of	detected	individu-
als	(Royle	&	Dorazio,	2012).	Each	individual	i	was	considered	being	
(zi = 1)	or	not	(zi = 0)	a	member	of	the	population	according	to	a	draw	
from	a	Bernoulli	distribution	of	probability	ψ,	with	zi ~ Bernoulli(ψ),	
where ψ	was	the	probability	for	individual	 i	to	be	a	member	of	the	
population.

2.4.3  |  Integration	of	the	occupancy	estimates	
into	the	SCR	model

After	building	the	SCR	models,	we	integrated	the	information	derived	
from	the	occupancy	model	into	the	SCR	density	function,	with	the	
objective	of	making	the	most	out	of	the	information	that	the	pres-
ence/absence	 data	 could	 provide	 to	 density	 estimation.	 The	main	
information	we	 incorporated	was	 that	when	 a	 cell	 was	 estimated	

pi,x = p0,i,x ∗exp

(
−

d2
i,x

2�2

)

log
(
�x
)
= �0 + �1 ∗cov1 + �2 ∗cov2 + … �n ∗covn

E(N) =

n∑
x=1

�x
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8 of 16  |     GERVASI et al.

to	 be	 unoccupied	 by	wolves,	 the	 local	 number	 of	 activity	 centres	
was	set	 to	zero.	We	obtained	this	constraint	 through	the	function	
“equals”	in	NIMBLE,	which	allowed	to	test	the	condition	that	the	oc-
cupancy	state	of	a	given	cell	was	unoccupied.	Being	true_occi the oc-
cupancy	state	of	cell	 i	(1 = occupied;	0 = unoccupied),	we	multiplied	
the	density	 function	 in	 the	SCR	model	by	 (1−equals(true_occ[i],0)).	
The	function	equals	to	zero	when	true_occi = 0,	thus	forcing	density	
to	be	also	zero,	whereas	it	equals	1	when	true_occi = 1,	thus	leaving	
the	estimated	density	unmodified.

We	ran	all	models	with	two	Markov	Chain	Monte	Carlo	chains	
with	30,000	 iterations	each	 in	 the	NIMBLE	R	package	 (de	Valpine	
et	al.,	2015).	We	checked	for	convergence	by	calculating	the	R- hat 
parameter	(Gelman	et	al.,	2013).

2.5  |  Simulations

After	building	and	analysing	the	integrated	spatial	model,	we	also	
constructed	 two	 sets	 of	Monte	 Carlo	 simulations,	 to	 assess	 the	
expected	performance	of	our	sampling	and	analytical	design,	and	
to	guide	a	possible	improvement	of	future	applications.	The	main	
issue	of	our	sampling	design	was	that	not	all	the	area	expected	to	
be	occupied	by	 the	wolf	 population	was	 sampled	 (genetically	or	
for	presence	signs).	As	a	result,	the	population	density	estimates	
were	 only	 partially	 the	 result	 of	 capture-	recapture	modelling	 in	
the	sampled	areas,	as	they	were	also	produced	through	a	density	
extrapolation	 from	 sampled	 to	 not	 sampled	 areas.	 The	 perfor-
mance	 of	 such	 extrapolation	 needed	 to	 be	 evaluated,	 to	 assess	
if	the	proportion	of	study	area	sampled	was	sufficient	to	provide	
adequate	statistical	power	and	to	produce	unbiased	estimates	of	
total	population	abundance.

For	 the	 first	set	of	simulations,	we	built	a	 reduced	study	area,	
with	 a	 spatial	 extent	of	29,000 km2	 (19.8%	of	 the	 actual	 sampling	
area)	 and	 divided	 it	 into	 290	 10 × 10 km	 cells.	We	 generated	 the	
expected	number	of	wolves	in	the	simulated	area	using	the	results	
of	 the	 integrated	spatial	model	and	calculating	 the	number	corre-
sponding	 to	19.8%	of	 the	estimated	population	size,	 thus	 simulat-
ing	an	average	wolf	density	equal	to	the	one	estimated	in	the	real	
model	application.	We	distributed	all	the	individual	home	range	cen-
tres	according	 to	an	 inhomogeneous	pattern,	using	a	habitat	 suit-
ability	model	produced	by	Boitani	and	Salvatori	 (2015)	during	 the	
approval	process	of	a	new	action	plan	for	wolves	in	Italy.	The	model	
was	based	on	four	different	techniques	(GLM,	GBM,	ANN,	MARS),	
whose	 predictions	 were	 averaged	 using	 the	 Ensemble	 Modelling	
method	 (Araújo	&	New,	2007).	 Individual	wolves	were	divided	by	
sex	and	assigned	an	 individual	detection	probability,	based	on	the	
results	of	 the	 integrated	 spatial	model.	We	 then	 randomly	 identi-
fied	4	 intensive	 sampling	areas,	made	up	of	9	cells	 and	organized	
in	a	3	× 3	spatial	arrangement,	which	represented	about	the	same	
proportion	of	sampled	area	as	in	the	actual	sampling	design	(12.4%).	
In	addition,	we	randomly	selected	30%	of	the	cells	for	the	presence	
signs	sampling	only,	respecting	the	proportions	adopted	for	the	ac-
tual	sampling.

After	selecting	all	sampling	cells,	we	simulated	the	sampling	pro-
cess	using	the	same	detection	probability	estimates	obtained	from	
the	integrated	spatial	model.	This	generated	a	simulated	dataset	of	
presence	 signs	 and	 individual	 genetic	 detections.	 To	 test	 the	 per-
formance	 of	 different	 modelling	 options,	 we	 analysed	 the	 simu-
lated	datasets	using	 four	different	models:	 (i)	 the	 same	 integrated	
spatial	model	used	for	the	actual	abundance	estimation;	(ii)	an	SCR	
model	with	no	data	 integration;	 (iii)	 an	SCR	model	with	no	 spatial	
autocorrelation	function;	 (iv)	an	SCR	model	which	did	not	account	
for	 sampling	effort.	We	performed	all	 the	 simulation	 in	R	4.2.1	 (R	
Development	Core	Tea,	2008)	over	100	iterations	and	summarized	
the	 results	 calculating	 the	 relative	bias	and	precision	of	 the	abun-
dance	estimates	produced	by	each	model	in	each	iteration.

For	the	second	set	of	simulations,	we	used	the	same	design	as	
the	one	 illustrated	 above,	 but	we	varied	 the	proportions	of	 study	
area	 sampled	 both	 genetically	 and	 for	 presence	 signs.	 The	 aim	of	
this	second	simulation	was	to	compare	the	performance	of	different	
sampling	designs	and	to	identify	the	minimum	proportion	of	study	
area	to	be	sampled	to	obtain	a	pre-	defined	level	of	bias	and	preci-
sion	in	the	estimates.	At	each	iteration,	we	selected	the	proportion	
of	study	area	sampled	for	genetic	sampling	in	the	range	10%–50%	
and	the	proportion	sampled	for	presence	signs	 in	 the	range	20%–
50%.	We	ran	100	iterations	using	the	integrated	spatial	model,	and	
for	 each	 run,	we	 estimated	 the	 associated	 bias	 and	 coefficient	 of	
variation	of	population	size	estimates.	Then,	we	ran	a	first	general	
linear	model	 (GLM)	with	a	Poisson	distribution,	using	 the	 rounded	
modulus	of	the	relative	bias	of	each	iteration	as	response	variable,	
whereas	the	proportions	of	study	area	sampled	for	genetic	signs	and	
presence	signs	were	used	as	predictors.	We	used	the	same	approach	
to	run	a	second	GLM	with	the	same	predictors	and	the	coefficient	
of	variation	as	response	variable.	The	results	of	the	two	models	al-
lowed	us	to	predict	the	minimum	requirements	of	a	future	sampling	
design,	in	terms	of	what	proportion	of	the	study	area	should	be	sam-
pled	with	both	methods.	We	set	the	model	performance	goals	to	an	
absolute	bias	<10%	and	a	CV < 10%.

3  |  RESULTS

3.1  |  Data collection

Out	of	the	2551	line	transects	initially	selected,	2282	were	covered	
at	 least	once	during	 the	 sampling	period.	The	overall	 sampling	ef-
fort	 along	 transects	was	 44,232 km,	 corresponding	 on	 average	 to	
11,058 km	travelled	 in	each	of	the	four	sessions	(±3824	SD;	range	
5338–13,233).	Transect	length	was	on	average	4.75 km	(SD = 2.77),	
whereas	the	average	distance	walked	on	transects	in	each	cell	was	
20.57 km	(SD = 15.19).	We	deployed	a	total	of	598	photo	traps.	An	
average	of	282.2	photo	traps	were	active	 in	each	session	(±101.3; 
range	 147–379),	 corresponding	 to	 9254.3	 trap	 nights	 per	 ses-
sion	 (±4591.8	 SD;	 range	3128–13,388).	 In	 each	 cell,	we	deployed	
on	average	2.64	photo	traps	 (SD = 2.59),	with	an	average	of	63.03	
(SD = 50.89)	nights	per	trap.
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Overall,	we	collected	15,993	wolf	presence	signs,	including	scats	
(n = 11,071),	 photos	 (n = 4285),	 tracks	 (n = 408),	 predation	 events	
(n = 97),	 dead	 wolves	 (n = 97),	 howlings	 (n = 11),	 hairs	 (n = 9),	 urine	
samples	 with	 blood	 (n = 8),	 saliva	 samples	 (n = 2),	 and	 other	 types	
of	signs	(n = 5;	Table 2).	Out	of	these,	1632	samples	underwent	ge-
netic	analysis	for	species	and	individual	genotype	identification	(see	
below),	 including	 1569	 scats	 (1319	 from	 intensive	 areas	 and	 265	
from	extensive	areas),	3	hair	samples,	3	urine	samples	with	blood,	30	
muscle	samples	extracted	from	wolf	carcasses,	3	blood	samples,	and	
a	single	saliva	sample.

3.2  |  Genotype reconstruction and taxon 
identification

After	the	four	to	eight	replicated	PCR	per	sample	per	locus	foreseen	
by	the	multiple-	tube	protocol,	971	(61%)	of	the	1600	non-	invasively	
collected	samples	and	all	 the	32	biological	 samples	obtained	 from	
found	 dead	 or	 live-	trapped	 animals	 were	 successfully	 genotyped	
(R ≥ 0.990)	at	all	biparental,	uniparental	and	coding	markers,	corre-
sponding	to	622	individuals:	373	(180	females,	168	males,	25	with	
undetermined	gender)	wolves,	60	(26	females,	29	males,	5	with	un-
determined	gender)	recent	wolf-	dog	hybrids	and	80	(25	females,	49	
males,	5	with	undetermined	gender)	introgressed	wolves	(for	details	
see the Supporting	Information).

3.3  |  Distribution and population size estimates

The	 probability	 to	 detect	wolf	 presence	 during	 the	 sampling	 pe-
riod	 was	 significantly	 affected	 by	 sampling	 effort.	 This	 was	 true	
both	 for	 wolf	 presence	 signs	 detected	 along	 transects	 (β = 2.71;	
95%	CIs = 2.49	to	2.93)	and	for	the	data	derived	from	photo	traps	
(β = 1.81;	95%	CIs = 1.62	to	1.99).	The	effect	of	snow	cover	on	wolf	
detection	probability	was	only	marginal	(β = 0.09;	95%	CIs = −0.03	
to	0.22).	 The	model	 also	 revealed	 that	43%	of	 the	 sampling	 cells	

belonged	to	the	group	with	the	highest	associated	detection	prob-
ability	 (P2,H = 0.63;	 95%	 CIs = 0.49	 to	 0.74),	 whereas	 the	 remain-
ing	57%	of	 the	 cells	had	a	 lower	 associated	detection	probability	
(P2,L = 0.13;	95%	CIs = 0.07	to	0.20).	The	probability	 to	generate	a	
false	wolf	detection	by	mistaking	a	dog	scat	for	a	wolf	scat	was	on	
average	0.048	 (95%	CIs = 0.002	to	0.084),	but	 the	model	was	not	
able	to	detect	significant	geographical	differences	or	to	reveal	the	
effect	of	any	of	the	variables	tested.

Wolf	 occupancy	 probability	 was	 significantly	 and	 positively	
affected	by	altitude	 (β = 1.14;	95%	CIs = 0.51	 to	1.79),	 forest	cover	
(β = 0.71;	95%	CIs = 0.06	to	1.40)	and	by	the	number	of	ungulate	prey	
species	(β = 0.93;	95%	CIs = 0.37	to	1.53).	The	effects	of	human	den-
sity	(β = −040;	95%	CIs = −0.93	to	0.05)	and	road	density	(β = −0.34;	
95%	CIs = −0.89	to	0.08)	were	both	negative	but	only	marginally	sig-
nificant.	Overall,	the	model	estimated	that	74.2%	of	the	study	area	
(95%	CIs = 70.5%	to	77.9%)	was	occupied	by	the	species,	for	a	total	
extent	of	the	wolf	distribution	of	108,534 km2	(95%	CIs = 103,200	to	
114,000).	The	cell-	specific	occupancy	probabilities	are	illustrated	in	
Figure 2a,	whereas	the	associated	coefficients	of	variation	of	the	oc-
cupancy	estimates	are	shown	in	Figure 2b.	The	occupancy	estimates	
were	rather	precise	along	the	Apennines	and	in	the	core	of	the	wolf	
distribution,	whereas	they	were	less	precise	at	the	periphery.

In	 the	 SCR	part	 of	 the	 integrated	 spatial	model,	 the	 individual	
baseline	 capture	probability	 (p0)	was	positively	 correlated	 to	 sam-
pling	effort	 in	each	cell	 (β = 0.42;	95%	CIs = 0.35	to	0.50),	whereas	
sex	and	the	amount	of	snow	cover	did	not	exhibit	a	significant	ef-
fect	on	this	parameter.	Also,	as	expected	in	a	species	with	a	strong	
social	structure	as	wolves,	the	data	supported	the	existence	of	two	
groups	of	individuals	in	the	population	with	different	capture	prob-
abilities.	Most	of	the	individuals	(83%;	95%	CIs = 80%	to	93%)	were	
associated	with	 the	 lower	 levels	 of	 capture	 probability	 (p = .0012,	
95%	CIs = 0.0003	to	0.0039),	whereas	the	remaining	17%	of	the	in-
dividuals	(95%	CIs = 7%	to	20%)	exhibited	the	highest	capture	prob-
ability	estimates	(p = .006,	95%	CIs = 0.0025	to	0.0163),	with	a	5-	fold	
difference	between	 the	 two	groups.	The	number	of	wild	ungulate	
prey	species	did	not	correlate	significantly	with	the	spatial	parame-
ter σ,	whose	average	value	was	estimated	at	3.49 km	(95%	CIs = 3.15	
to	3.89).	The	estimated	σ	value	was	2.8	times	smaller	than	the	av-
erage	 distance	 between	 detectors,	 close	 to	 the	 suggested	 range	
(1.5–2.5;	Royle	et	al.,	2014).	This	indicates	that	the	trap	spacing	used	
for	the	SCR	model	is	not	expected	to	have	introduced	any	relevant	
bias	 in	population	size	estimates.	Wolf	 local	density	was	positively	
affected	 by	 altitude	 (β = 1.08;	 95%	 CIs = 0.07	 to	 2.97)	 and	 by	 the	
extent	of	forest	cover	 (β = 1.11;	95%	CIs = 0.39	to	1.83),	and	nega-
tively	by	human	density	(β = −0.76;	95%	CIs = −2.39	to	0.94).	The	in-
tegrated	spatial	model	produced	an	estimate	of	total	population	size	
for	 the	Apennine	wolf	 population	of	2557	 individuals	 (SD = 171.5;	
95%	CIs = 2127	to	2844),	with	an	associated	CV = 6.7%.	When	run	
alone,	the	SCR	model	produced	a	population	size	estimate	of	2451	
wolves	 (SD = 305.9;	 95%	 CIs = 1939	 to	 3087),	 with	 an	 associated	
CV = 12.5%.	 By	 merging	 the	 two	 posterior	 distributions	 obtained	
in	our	study	for	the	south-	central	portion	of	the	population	and	in	
Marucco	et	al.	 (2023)	 for	the	Alpine	portion	of	the	population,	we	

TA B L E  2 Wolf	presence	data	collected	in	south-	central	Italy	
between	October	2020	and	April	2021	for	each	SCALP	category.

Data type C1 C2 C3 Total

Scats 886 10,185 — 11,071

Photos 4165 120 — 4285

Tracks 408 — — 408

Predation	events — 2 95 97

Dead	wolves 97 — — 97

Howling — 9 2 11

Hairs — — 9 9

Urine	with	blood 1 — 7 8

Saliva 2 — — 2

Other — — 5 5

Total 5559 10,316 118 15,993
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10 of 16  |     GERVASI et al.

F I G U R E  2 Cell-	specific	wolf	occupancy	probability	estimates	(a)	and	the	associated	coefficient	of	variation	(b)	resulting	from	a	sampling	
of	presence	signs	and	occupancy	modelling	in	south-	central	Italy,	2020–2021.
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    |  11 of 16GERVASI et al.

estimated	a	 total	population	size	of	3501	wolves	 (SD = 249.5;	95%	
CIs = 2949	to	3945)	in	the	whole	country.

3.4  |  Simulations

In	the	first	set	of	simulations,	aimed	at	evaluating	the	performance	
of	our	design	in	terms	of	accuracy	and	precision	of	population	size	
estimates,	the	 integrated	spatial	model	was	associated	with	an	av-
erage	tendency	to	slightly	underestimate	population	size	(Figure 3).	
The	 average	 relative	 bias	 in	 the	 estimates	 was	 −0.129,	 with	 64%	
of	the	estimates	exhibiting	a	bias	<20%.	 In	terms	of	bias,	 the	SCR	
model	alone	was	also	associated	with	a	tendency	to	underestimate	
population	size,	with	the	average	bias	being	−0.156	and	43%	of	the	
estimates	 exhibiting	 a	 bias	<20%	 (Figure 3).	 The	 other	 two	 simu-
lated	scenarios	performed	poorly	when	compared	to	the	first	two.	
A	model	with	no	spatial	autocorrelation	function	produced	an	aver-
age − 0.324	relative	bias,	whereas	the	model	without	any	specifica-
tion	of	sampling	effort	exhibited	an	average	bias	of	−0.485	(Figure 3).

In	 terms	 of	 precision	 of	 the	 estimates,	 the	 integrated	 spatial	
model	exhibited	the	best	performance	among	the	four	simulated	de-
signs.	Its	average	associated	coefficient	of	variation	was	8.7%,	with	
70%	of	the	estimates	exhibiting	a	CV < 10%	(Figure 4).	The	estimates	
produced	by	the	SCR	model	alone	were	less	precise,	as	the	average	

coefficient	of	variation	was	12.8%	and	only	12%	of	the	estimates	ex-
hibited	a	CV < 10%.	The	model	with	no	spatial	autocorrelation	exhib-
ited	similar	performance	than	the	SCR	in	terms	of	precision,	whereas	
the	model	without	effort	data	had	an	average	CV = 18.2%	(Figure 4).

Analysing	the	data	derived	from	the	second	set	of	simulations,	
aimed	at	evaluating	a	possible	improvement	of	sampling	design	for	
future	applications,	we	found	that	 the	accuracy	of	population	size	
estimates	from	an	integrated	design	was	significantly	influenced	by	
the	percentage	of	study	area	sampled	for	genetic	samples	(β = −2.73;	
SE = 0.22),	 but	 not	 by	 the	 percentage	 sampled	 for	 presence	 signs	
(β = 0.09;	SE = 0.29).	As	shown	in	Figure 5a,	this	generated	the	pre-
diction	 that	at	 least	30%	of	 the	study	area	should	be	selected	 for	
non-	invasive	genetic	samples	to	produce	population	size	estimates	
with	a	 satisfactory	 level	of	 accuracy	 (bias < 10%).	When	 running	a	
GLM	model	on	the	simulated	precision	of	the	different	sampling	de-
signs,	we	found	that	both	the	proportion	selected	for	non-	invasive	
genetic	 samples	 (β = −1.20;	 SE = 0.29)	 and	 that	 selected	 for	 pres-
ence/absence	sampling	(β = −0.35;	SE = 0.07)	had	a	significant	effect	
on	 the	 coefficient	 of	 variation	 associated	with	 the	 estimates.	 The	
resulting	predictions	were	 in	 line	with	what	was	suggested	by	 the	
analysis	of	model	accuracy.	When	30%	of	the	area	was	sampled	for	
presence	signs,	at	 least	 the	same	number	of	 sampling	cells	 should	
be	genetically	sampled,	to	produce	population	size	estimates	with	a	
satisfactory	level	of	precision	(CV < 10%;	Figure 5b).

F I G U R E  3 Relative	bias	in	the	
estimation	of	population	abundance,	
associated	with	four	different	capture-	
recapture	analytical	designs.	The	data	
were	derived	from	a	set	of	simulated	non-	
invasive	genetic	sampling	and	presence	
signs	sampling,	resembling	the	field	
conditions	of	our	wolf	sampling	project	in	
south-	central	Italy,	2020–2021.

F I G U R E  4 Precision	in	the	estimation	
of	population	abundance,	associated	with	
four	different	capture-	recapture	analytical	
designs.	The	data	were	derived	from	a	
set	of	simulated	non-	invasive	genetic	
sampling	and	presence	signs	sampling,	
resembling	the	field	conditions	of	our	wolf	
sampling	project	in	south-	central	Italy,	
2020–2021.
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4  |  DISCUSSION

4.1  |  Methodological implications

In	term	of	performance,	the	main	contribution	of	our	integrated	spa-
tial	modelling	approach	was	to	increase	precision	in	the	abundance	
estimates,	whereas	the	combination	of	the	SCR	and	occupancy	mod-
els	did	not	affect	accuracy	significantly	(Figures 3	and	4).	Other	ap-
plications	of	integrated	modelling	for	the	estimation	of	demographic	
parameters	produced	similar	conclusions.	Tourani	et	al.	 (2020)	de-
veloped	 and	 integrated	 spatial	 capture-	recapture	 (SCR)	 model,	 to	
incorporate	 multiple	 data	 sources	 with	 imperfect	 individual	 iden-
tification.	 They	 found	 that	 an	 integrated	 model	 outperformed	 a	
standard	SCR	model	 in	 terms	of	 precision	 and,	 to	 a	minor	 extent,	
accuracy,	especially	when	detection	probability	was	low	and	home	
ranges	had	a	low	degree	of	overlap	(Tourani	et	al.,	2020).	In	a	study	
on	the	Louisiana	black	bear	(Ursus americanus luteolus),	Chandler	and	
Clark	(2014)	also	found	that	the	main	contribution	of	an	integrated	
spatial	model	with	respect	to	a	standard	SCR	model	was	a	reduction	
of	variance	in	population	size	estimates.	On	one	hand,	this	confirms	
that	the	inclusion	of	presence	data,	obtained	through	data	sources	
which	do	not	allow	individual	identification,	can	enhance	the	estima-
tion	of	demographic	parameters	 thanks	 to	 integrated	spatial	mod-
elling.	Species	presence-	absence	data	have	some	advantages,	with	
respect	to	individual	recognition	data.	Being	often	collected	through	
photo	traps,	visual	observations,	snow	tracks,	etc.,	and	because	they	
do	 not	 require	 genotyping,	 they	 usually	 generate	 larger	 datasets	
with	a	lower	effort	and	costs	than	individual	recognition	techniques.	
Moreover,	 presence-	absence	 data	 often	 arise	 as	 by-	products	 of	
other	 field	projects	or	are	 the	 result	of	 incidental	observations	by	
citizens	or	hunters	(Cretois	et	al.,	2020;	Ražen	et	al.,	2020).	On	the	
other	hand,	our	analysis	and	simulation	exercise	confirm	that	a	ro-
bust	and	accurate	estimation	of	demographic	parameters	still	relies	

primarily	 on	 individual-	recognition	 data	 and	 capture-	recapture-	
based	techniques.	Other	analytical	approaches,	making	use	only	of	
sampling	techniques	that	do	not	allow	individual	identification,	are	
being	developed	 (Palencia	et	al.,	2021;	Rowcliffe	et	al.,	2008),	but	
simulation-	based	assessments	highlight	that	these	methods	are	still	
very	sensitive	to	external	parameters,	such	as	animal	speed,	and	that	
their	performance	can	change	greatly	with	small	variations	in	sam-
pling	conditions	(Santini	et	al.,	2022).

At	this	stage	of	research,	therefore,	SCR	models	are	still	the	more	
powerful	 statistical	 tool	 available	 to	 produce	 robust	 and	 accurate	
density	 estimates,	 accounting	 for	 imperfect	 detection	 and	 spatial	
variation	 in	 sampling	 probabilities.	 While	 the	 main	 effort	 should	
still	 be	 to	design	and	build	 a	 solid	SCR	model	 for	population	esti-
mation,	the	possibility	to	integrate	other	data	sources	and	increase	
precision	 is	an	 important	step	 forward,	especially	considering	that	
unprecise	estimates	often	have	a	poor	value	when	informing	man-
agement	decisions.	To	 this	 aim,	our	 integration	approach	 revealed	
both	 benefits	 and	 potential	 elements	 of	 improvement.	 Combining	
species	 presence	 data	 and	 the	 resulting	 occupancy	model	 with	 a	
more	 structured	dataset	 into	 an	 integrated	occupancy-	SCR	model	
offered	the	possibility	to	make	the	most	out	of	the	whole	body	of	
information	resulting	from	our	sampling	effort	 (genetic	data,	pres-
ence	signs,	photos,	etc.).	The	heterogeneity	of	 the	data	 types	and	
sampling	processes,	though,	introduced	some	elements	of	complex-
ity	during	the	integration	phase.	Occupancy	and	SCR	models,	in	fact,	
are	based	on	two	very	different	underlying	processes:	one	is	based	
on	 grid-	based	presence,	 the	other	 on	 a	 point	 process	 referring	 to	
individuals,	not	to	the	species.	This	leaves	some	uncertainty	in	the	
degree	of	 transferability	 of	 information	between	 the	 two	models,	
especially	when	using	the	estimated	species	absence	to	inform	the	
SCR	part	of	the	model.	Future	improvements	in	this	approach	should	
go	 in	 the	 direction	 of	 using	 more	 similar	 underlying	 processes,	
such	as	in	Tourani	et	al.	(2020),	thus	also	making	the	mathematical	

F I G U R E  5 Expected	accuracy	(a)	and	
precision	(b)	of	population	size	estimates	
obtained	when	sampling	30%	of	the	study	
area	for	presence	signs	and	an	increasing	
proportion	for	genetic	samples.
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integration	more	straightforward.	Still,	simulations	showed	that	the	
data	integration	did	improve	model	performance	and	that	the	poten-
tial	bias	induced	by	data	integration	was	probably	minimal	(Figure 3).	
Underestimation	is	a	known	risk,	especially	when	estimating	density	
for	 gregarious	 species.	Bischof,	Dupont,	 et	 al.	 (2020)	 and	Bischof,	
Milleret,	et	al.	(2020)	used	simulation	tools	to	show	that	large	group	
size	and	high	level	of	cohesiveness	can	be	a	source	of	bias	and	re-
duce	 precision	 in	 SCR-	based	 population	 size	 estimates;	 Jiménez	
et	al.	(2023)	also	revealed	that	gregariousness	in	wolves	can	induce	
overdispersion	and	cause	bias,	if	not	properly	accounted	for.

When	projecting	our	first	wolf	estimation	project	 into	a	future	
national	 population	monitoring	 plan,	 the	 simulation	 work	 showed	
that	 the	 area	 subject	 to	 NGS	 should	 be	 increased	 to	 further	 im-
prove	the	accuracy	of	population	size	estimates	and	avoid	the	risk	
of	underestimation.	At	least	30%	of	the	wolf	distribution	should	be	
intensively	sampled	for	individual-	recognition	data,	while	at	least	a	
similar	 proportion	 should	 be	 sampled	 for	 presence-	absence	 data.	
This	suggests	that,	while	it	is	feasible	to	produce	reliable	population	
size	estimates	without	having	 to	 sample	100%	of	 a	 species	distri-
bution,	a	careful	a	priori	evaluation	should	be	done	to	identify	the	
optimal	sampling	design.	SCR	models,	in	this	sense,	are	a	powerful	
tool.	They	can	allocate	activity	 centres	of	 sampled	 individuals	not	
only	within	the	sampled	area	but	also	outside	of	it,	thus	generating	
density	estimates	also	in	the	portions	of	a	species	distribution	buff-
ering	the	actual	sampling	grid.	On	the	other	hand,	such	extrapolation	
becomes	 gradually	 less	 reliable	when	moving	 away	 from	 sampled	
areas.	Identifying	the	correct	proportion	of	the	species	distribution	
to	be	sampled	and	the	spatial	arrangement	of	all	the	sampled	areas	
is,	 therefore,	 crucial	 to	 avoid	 that	 density	 estimation	might	 suffer	
from	a	lack	of	information	in	some	portions	of	the	study	area.	Survey	
effort	is	always	constrained	by	available	resources,	but	spatially	bal-
anced	sampling	and	stratification	can	help	to	appropriately	distrib-
ute	it	and	are	key	approaches	for	improving	the	representativeness	
of	 the	 sample	 and	 the	 precision	 of	 estimates	 (Perret	 et	 al.,	2022; 
Stevens	&	Olsen,	2004;	Thompson,	2012).	 In	our	case,	simulations	
showed	that	sampling	30%	of	the	area	or	more	would	be	a	good	min-
imum	 compromise	 between	 accuracy,	 precision,	 and	 sampling	 ef-
fort.	This	approach	could	be	extended	and	applied	to	other	species	
and	 geographic	 regions,	 but	 specific	 a	 priori	 evaluations	 of	model	
requirements	and	expected	performance	should	be	made.

4.2  |  Management implications

The	 estimates	 resulting	 from	 our	 work	 represent	 the	 first	 formal	
assessment	of	 the	wolf	 distribution	 and	 abundance	 in	 the	 regions	
of	 south-	central	 Italy.	 Combined	 with	 the	 ones	 produced	 for	 the	
alpine	 regions	 (Marucco	 et	 al.,	 2023),	 this	 also	 provides	 the	 first	
estimate	 for	 the	entire	country,	which	will	 represent	a	 fundamen-
tal	baseline	 for	 future	assessments	of	population	trend,	and	to	 in-
form	 management	 actions.	 Our	 work	 confirmed	 that	 wolves	 in	
south-	central	Italy	are	on	their	way	to	occupy	most	of	their	suitable	
habitat,	 well	 outside	 the	 habitat	 types	 of	 broad-	leaved	 mountain	

forest,	traditionally	considered	as	the	election	environment	for	the	
species	 (Mech	&	Boitani,	 2019).	As	 shown	 in	 Figure 2a,	while	 the	
Apennine	Mountain	 chain	 remains	 the	 backbone	 of	wolf	 distribu-
tion,	 high	 occupancy	 probabilities	 (and	 confirmed	 presence	 signs)	
exist	also	 in	coastal	areas	and	 in	 the	plains	associated	with	higher	
levels	of	human	density	and	 infrastructures.	This	represents	a	fur-
ther	step	in	a	successful	conservation	story,	if	we	consider	that,	only	
a	few	decades	ago,	wolves	in	Italy	were	on	the	verge	of	extinction	
(Zimen	&	Boitani,	1975).	It	also	raises	the	issue	of	the	complex	land	
sharing	with	human	activities	and	the	impacts	 it	may	cause.	While	
the	more	traditional	forms	of	wolf	 impact,	such	as	depredation	on	
livestock,	 remain	an	 issue	and	a	source	of	social	conflicts	 (Gervasi	
et	al.,	2021,	2022),	wolves	in	newly	colonized	and	densely	inhabited	
areas	are	more	likely	to	generate	different	forms	of	negative	interac-
tions	 (Carter	&	Linnell,	2016),	such	as	predation	on	domestic	dogs	
and	other	pets	(Iliopoulos	et	al.,	2021;	Kojola	et	al.,	2023),	aggressive	
interactions	with	humans	(Linnell	et	al.,	2021),	etc.	Accordingly,	the	
reports	of	wolf-	killed	dogs	and	of	not	fearful	behaviours	by	wolves	
towards	humans	have	been	 increasing	 in	 recent	years	 (ISPRA,	un-
published	data).	In	such	a	context,	the	traditional	approach,	centred	
on	national	parks	and	marginal	mountain	areas	as	 the	main	actors	
and	targets	of	management	and	conservation	actions	is	no	more	in	
line	with	the	ecological	reality	of	the	wolf	population.	Our	study	pro-
vides	a	methodologically	sound	picture	of	this	situation	(Figure 2a),	
which	 is	 in	 line	 with	 the	 expansion	 patterns	 of	 wolf	 populations	
in	 several	 other	 European	 countries	 (Eriksson	 &	 Dalerum,	 2018; 
Louvrier	et	al.,	2018).	An	effective	monitoring	of	these	new	forms	of	
human-	wolf	interactions	should	be	enhanced,	to	better	understand	
their	dynamics,	possible	causes	and	predictors,	and	to	design	effec-
tive	management	actions.	Also,	the	establishment	of	wolves	in	new	
habitat	types,	closer	to	human	settlements,	will	require	a	gradual	be-
havioural	co-	adaptation	(Carter	&	Linnell,	2016).	Humans	will	need	
to	increase	their	awareness	about	wolf	presence	and	to	modify	some	
of	their	behaviours,	accordingly.	Management	actions	should	be	put	
in	place	to	reduce	the	risks	of	human-	wolf	encounters,	for	instance	
by	 reducing	 food	availability	 in	urban	and	periurban	areas,	 and	 to	
promote	active	avoidance	of	humans	by	wolves.

On	the	other	hand,	wolves	in	newly	colonized	and	densely	inhab-
ited	areas	are	more	likely	to	be	subject	to	human-	related	mortality	
risks,	such	as	road	accidents,	poaching,	poisoning,	etc.	These	risks	
have	been	already	highlighted	as	the	main	sources	of	wolf	mortality	
in	Italy,	and	therefore	likely	to	be	strong	drivers	of	wolf	population	
dynamics	 also	 in	 future	 years	 (Musto	et	 al.,	2021).	 The	 value	of	 a	
first	national	 assessment,	 as	 the	one	 resulting	 from	 this	work	and	
from	Marucco	et	al.	(2023),	is	to	place	a	first	stepstone	towards	the	
implementation	of	a	national	monitoring	program,	based	on	periodic	
surveys	 of	 the	wolf	 population	 and	with	 the	 aim	of	 detecting	 not	
only	population	trends	but	also	to	explore	the	patterns	and	causes	
of	wolf	mortality,	reproduction	and	wolf-	dog	hybridization	rates	and	
the	other	 fundamental	parameters	needed	to	build	a	 reliable	pop-
ulation	model.	The	need	for	such	a	tool	is	even	more	crucial	during	
this	 transition	period,	 in	which	a	 shift	 from	a	purely	protective	 to	
a	 more	 active	 approach	 (including	 lethal	 control)	 is	 occurring	 in	
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wolf	management	 and	 conservation.	 Italy	 shares	 this	 shift	 and	 its	
challenges	with	several	other	European	countries.	To	this	aim,	our	
simulation	work	provides	a	quantitative	basis	to	help	managers	and	
researchers	 find	a	good	balance	between	the	 requirements	of	 the	
statistical	tools	and	the	limitations	of	the	available	resources,	when	
setting	up	a	long-	term	monitoring	program	for	wide-	ranging	elusive	
species	(see	below	for	more	details).

The	criteria	to	classify	the	unknown	detected	genotypes	at	the	
taxon	 level	(Caniglia	et	al.,	2020)	allowed	us	to	also	investigate	the	
presence	of	anthropogenic	wolf-	dog	hybridization	in	the	intensively	
sampled	areas.	About	10%	of	the	wild	individuals	sampled	showed	
recent	wolf-	dog	admixture	signals	within	the	first	two	to	three	hy-
bridization	generations,	whereas	about	13%	of	them	showed	intro-
gression	signs	older	than	three	backcrossing	generations	in	the	past.	
These	proportions	compare	well	with	the	results	extrapolated	from	
the	analyses	of	a	large	sample	of	putative	free-	living	wolves	collected	
in	Italy	during	the	last	20 years	(Caniglia	et	al.,	2020).	However,	most	
of	 the	 data	 about	wolf-	dog	 hybridization	were	 obtained	 by	 geno-
typing	 the	 biological	 samples	 at	 a	 reduced	 number	 of	 molecular	
markers,	which,	 although	highly	 differentiating	between	dogs	 and	
wolves	(Caniglia	et	al.,	2013),	represent	only	a	moderately	resolved	
snapshot	of	the	non-	coding	variability	observable	within	the	whole	
canine	genome	(Galaverni	et	al.,	2016).	Therefore,	they	can	only	pro-
vide	preliminary	evidence	of	the	phenomenon	which	surely	merits	
further	 detailed	 multidisciplinary	 investigations	 to	 ensure	 reliable	
prevalence	estimates	at	the	national	scale	(Caniglia	et	al.,	2020).
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