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Abstract
Estimating demographic parameters for wide-ranging and elusive species living at 
low density is challenging, especially at the scale of an entire country. To produce 
wolf distribution and abundance estimates for the whole south-central portion of 
the Italian wolf population, we developed an integrated spatial model, based on the 
data collected during a 7-month sampling campaign in 2020–2021. Data collection 
comprised an extensive survey of wolf presence signs, and an intensive survey in 13 
sampling areas, aimed at collecting non-invasive genetic samples (NGS). The model 
comprised (i) a single-season, multiple data-source, multi-event occupancy model and 
(ii) a spatially explicit capture-recapture model. The information about species' ab-
sence was used to inform local density estimates. We also performed a simulation-
based assessment, to estimate the best conditions for optimizing sub-sampling and 
population modelling in the future. The integrated spatial model estimated that 74.2% 
of the study area in south-central Italy (95% CIs = 70.5% to 77.9%) was occupied by 
wolves, for a total extent of the wolf distribution of 108,534 km2 (95% CIs = 103,200 
to 114,000). The estimate of total population size for the Apennine wolf population 
was of 2557 individuals (SD = 171.5; 95% CIs = 2127 to 2844). Simulations suggested 
that the integrated spatial model was associated with an average tendency to slightly 
underestimate population size. Also, the main contribution of the integrated approach 
was to increase precision in the abundance estimates, whereas it did not affect ac-
curacy significantly. In the future, the area subject to NGS should be increased to at 
least 30%, while at least a similar proportion should be sampled for presence-absence 
data, to further improve the accuracy of population size estimates and avoid the risk 
of underestimation. This approach could be applied to other wide-ranging species and 
in other geographical areas, but specific a priori evaluations of model requirements 
and expected performance should be made.
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1  |  INTRODUC TION

In recent years, the concurrent emergence of new investigation 
technologies and advanced statistical tools has greatly improved 
the ability of ecologists to monitor animal populations in space and 
time, providing an insight which would have been unachievable 
just a few decades ago (Allan et al., 2018). Nowadays, the use of 
Global Positioning System (GPS) collars, drones, photo traps, non-
invasive genetic sampling (NGS), environmental DNA, etc., allows 
the collection of large datasets at both the population and indi-
vidual levels (Beng & Corlett, 2020; Oliver et al., 2023; Schad & 
Fischer, 2022). These data are routinely used to produce distribu-
tion and abundance estimates and to inform population manage-
ment and conservation. On the other hand, new analytical tools, 
such as occupancy models and spatially explicit capture-recapture 
models (SCR), have become standard methods for the demo-
graphic monitoring of animal populations. These methodologies 
allow the consideration of imperfect detection, but also individual 
and spatial variation in detection and movement rates, thus in-
creasing the robustness of the estimated demographic parameters 
(Mackenzie et al., 2002; Tourani, 2022).

Despite the technological and methodological advancements, 
though, estimating basic demographic parameters for wide-ranging 
and elusive species living at low density remains a challenging ex-
ercise, especially when there is a need to estimate these parame-
ters at the scale of an entire country or even at a transboundary 
level. Large carnivores and marine mammals are among the most 
typical examples of such a challenge. They live at very low densities, 
each individual in the population can potentially move over very 
large distances, and their populations are bound to occupy wide 
geographical areas to be sustained, spanning across one or several 
countries (McDonald,  2004). Therefore, monitoring their popu-
lations requires a massive sampling effort, which is often beyond 
reach for national agencies. The estimation of population size for 
brown bears (Ursus arctos), lynx (Lynx lynx), wolverines (Gulo gulo), 
and wolves (Canis lupus) in Norway and Sweden is one of the few ex-
amples of a systematic large-scale (>500,000 km2) NGS program on 
several wide-ranging, elusive species (Bischof, Dupont, et al., 2020; 
Bischof, Milleret, et  al., 2020). Similarly, Lauret et  al.  (2023) esti-
mated the abundance and density of bottlenose dolphins (Tursiops 
truncatus) in a vast portion of the North-Western Mediterranean 
Sea (>200,000 km2), using a combination of boat surveys and ae-
rial line transects. For most of the populations of these and similar 
species, though, the establishment of a spatially exhaustive and sys-
tematic national monitoring program remains a challenge. The tools 

and techniques are available, but the effort required is often too big. 
As a result, several population monitoring programs make use of a 
mix of different opportunistic data sources or restrict their effort to 
portions of the whole population (López-Bao et al., 2018; Popescu 
et al., 2017). Often, in fact, a combination of individual recognition 
data, presence-absence data, dead-recoveries, etc., is collected op-
portunistically or even incidentally by field technicians, hunters, 
or citizens (Cretois et al., 2020; Ražen et al., 2020). While being of 
value locally, these data provide information only about local abun-
dance, a minimum number of individuals present in the population, 
minimum distribution maps, etc., being of little support for large-
scale management and conservation.

The last decade, though, has seen an increasing number of appli-
cations, in which individual recognition data and presence-absence 
data were integrated to enhance the performance of spatial models. 
Kéry and Royle (2016) showed that both data types can be used to 
inform a SCR model, in particular through a link between the location 
of individual activity centres and the probability to collect presence-
absence data at a given sampling site. Therefore, the recent avail-
ability of integrated spatial models offers a promising opportunity 
to make the most out of these different data types (Chandler & 
Clark, 2014; Schaub & Abadi, 2011). Integrated spatial models allow 
to combine and simultaneously analyse data deriving from different 
underlying sampling processes, thus improving the accuracy, pre-
cision, and robustness of demographic parameter estimates (Blanc 
et al., 2014; Chandler & Clark, 2014).

Wolves in south-central Italy are a typical example of a wide-
ranging species, distributed over large portions of land, with a lack 
of ecological knowledge and some limitations in the applicability of a 
comprehensive sampling design. Wolves in Italy were almost extinct 
by the 1970s, surviving only in a few isolated nuclei in south-central 
Apennines (Zimen & Boitani, 1975). Since then, and in line with the 
general recovery of large carnivores across all Europe (Chapron 
et  al.,  2014), the species has progressively recovered its former 
range, recolonized the Alps, and eventually expanded into France, 
Switzerland, and Austria (Valière et al., 2003). Although the Italian 
wolf population is now continuously distributed across the whole 
country, from a management point of view two interconnected pop-
ulations are identified (Fabbri et al., 2007), one in the Alps and the 
other in the remaining south-central portion of the peninsula, mainly 
along the Apennine Mountains chain. Both in the areas of histori-
cal presence and in those of recent comeback, wolf presence has 
varying levels of impact on livestock farming and social conflicts in 
areas of their historical range and recent recolonization, requiring 
management and conflict mitigation (Gervasi et al., 2021). Despite 
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these management needs, a formal population size estimate at the 
national level, and for its south-central portion, is currently lacking, 
although preliminary attempts have been made using a collection of 
local studies (Galaverni et al., 2016).

In 2020, a national population estimation project was launched, as 
a result of a simultaneous and standardized sampling of the two por-
tions of the populations. For the alpine portion, the project resulted 
in a SCR-based density and abundance estimate, which allowed to 
define key population metrics with direct relevance for conservation 
and management (Marucco et al., 2023). A different approach was 
adopted in south-central Italy, owing to the vast area supposedly oc-
cupied by the species (about 150,000 km2; see Figure 1), the lack of 
previous knowledge in large portions of the wolf distribution range, 
and the limitations in the maximum achievable field effort. The field 
design was based on a stratified random sampling, aimed to collect 
both presence signs and NGS data for a portion of the whole pop-
ulation. In this paper, we describe how we developed an integrated 
spatial model, combining an occupancy model and an SCR model, to 
produce wolf distribution and abundance estimates for the south-
central portion of the Italian wolf population, making the most out of 
the data collected during a 7-month sampling campaign.

To assess the expected performance of our sampling and ana-
lytical design, and to produce guidelines for future applications, we 
also performed a simulation-based assessment, which allowed us to 
estimate the best conditions for optimizing sub-sampling and inte-
grated spatial modelling, in order to produce accurate and precise 
enough estimates of population size. We discuss the opportunities 
and risks of such an approach, which is potentially suitable for sev-
eral monitoring programs of large carnivores and other wide-ranging 
species, but also requires caution and a proper a priori evaluation 
before its application.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling design

To estimate wolf abundance and distribution in south-central Italy, 
we designed sampling by overlaying the 10 × 10 km grid adopted at 
the European level for the Habitats Directive 92/43/EEC reporting 
(https://​www.​eea.​europa.​eu/​data-​and-​maps/​data/​eea-​refer​ence-​
grids​-​2) to the 11 administrative Regions overlapping the study area 
(Figure 1a). Given the large size of the area and the logistic con-
straints, we randomly subsampled the cells to be surveyed, based 
on a stratified design. We distributed sampling effort according to 
the variability of the parameter of interest, that is the supposed local 
wolf density (McDonald, 2004). For this purpose, we considered that 
the best available proxy for wolf density was the opportunistic infor-
mation on the species' presence over time. Therefore, we classified 
all grid cells into three strata of stable, sporadic, and supposed pres-
ence, based on heterogeneous and asynchronous previous data (e.g. 
reporting under the Habitats Directive). Additionally, we defined a 
fourth stratum, including all the cells adjacent to those of known or 

possible presence, to correct for some gaps in the available informa-
tion on species presence (Figure 1a).

The data collection strategy was articulated into (i) an extensive 
survey aimed at collecting wolf presence data; (ii) an intensive sur-
vey carried out in 11 sampling areas, defined by a 3 × 3 arrange-
ment of 9 cells, and aimed at collecting non-invasive genetic samples 
(Figure 1b).

For the extensive survey, we ensured the selection of spatially bal-
anced and representative sample of cells via a Generalized Random 
Tessellation Stratified (GRTS) design (Stevens & Olsen, 2004). We 
defined the inclusion probability of each grid cell in the final sample 
as a function of its stratum, allocating a proportionally larger number 
of cells in the strata where more variance in the parameter of in-
terest was expected. We simultaneously extracted 25% of the cells 
across the four strata. Because the information about the species' 
presence was generally scarcer in the southern part of the study 
area, we oversampled to 50% in the five southernmost administra-
tive regions, thus compensating for the imbalance in the baseline 
information and for the expected larger variance in local density. The 
application of the sampling algorithm resulted in the probabilistic se-
lection of 449 grid cells (254, 153, and 8 grid cells, respectively, in 
the stable, sporadic, and supposed presence strata, and 34 in the 
cells adjacent to those of known/supposed presence; Figure 1a).

To identify the 11 intensive survey areas, we adopted a design 
which involved both a random and a systematic component. We 
constrained the stratified random selection to the boundaries of the 
administrative regions, with the additional criterion that each region 
should include one intensive area. To this aim, we first selected the 
central 10 × 10 km grid cell of each intensive area in each region, 
then extended it to the eight nearest-neighbouring cells, provided 
they fell within the strata defined above. Based on the first data 
gathered through the extensive survey, we identified two additional 
intensive areas in the northern and southernmost parts of the study 
area, bringing the total number to 13. The intensive data collection 
was finally carried out in 186 10 × 10 km cells (Figure 1b).

2.2  |  Data collection

Both the intensive and extensive data collection took place from 1st 
October 2020 to 30th April 2021. We considered this period as the 
most promising for detecting the species, as it fell between the main 
dispersal events of spring and fall (Mech & Boitani, 2019). Also, be-
cause new wolf pups typically are born at the end of spring, we most 
likely did not include the recruitment peak in the sampling period 
and could assume that the population remained demographically 
closed throughout the data collection period (Dupont et al., 2019). A 
network of field staff from several institutions concerned with wild-
life management (N = 344), volunteers (N = 431) and forestry service 
staff (N = 725) systematically collected field data on a network of 
transects, selected along roads and trails, and through photo traps 
placed across the study area. Field workers were trained through 
106 training courses and 11 repetitions of a course in e-learning 
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mode. Data collection occurred under the supervision of 20 highly 
experienced technicians, who inspected the reliability of all presence 
signs before updating the database monthly. In the intensive areas, 

we collected both wolf presence sign data and non-invasive genetic 
samples, whereas in most of the extensive areas we only collected 
presence signs. We applied the SCALP criteria to categorize each 

F I G U R E  1 (a) Stratification of the 
study area and selected sampling units for 
the extensive survey in south-central Italy. 
(b) Cells selected for the intensive survey.
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wolf presence sign into C1, C2, or C3 (Molinari-Jobin et al., 2012), 
representing increasing levels of uncertainty in species attribution. 
Targeted wolf presence signs included scats, photos, tracks, sightings, 
urine, hairs, predation sites, howling, and wolf carcasses. Targeted 
non-invasive genetic samples included fresh scats, blood, saliva, 
and muscular tissues retrieved from wolf carcasses. In the intensive 
areas, we collected faecal samples using cotton swabs, whereas in 
the extensive areas we collected and stored a small portion of the 
scat in tubes containing 96% ethanol (Velli et al., 2019). Typically, we 
visited transects monthly in the intensive areas, and bi-monthly in 
the extensive areas. In addition to the data collected through sys-
tematic sampling, we also considered additional wolf data retrieved 
opportunistically, that is verified data occasionally collected during 
field activities unrelated to the sampling campaign.

2.3  |  Molecular analyses

2.3.1  |  DNA extraction and amplification

DNA was automatically extracted from 1600 non-invasively col-
lected samples (1592 faecal swabs, 3 hairs, 3 urines and 2 salivary 
swabs; Velli et al., 2019) and 32 invasive biological materials (30 mus-
cular tissues from found dead individuals and 2 blood samples from 
rescued wolves) using a QIAcube HT® robotic workstation and the 
Qiagen DNeasy Blood & Tissue Kit, following the manufacturer's 
instructions.

Each DNA sample was amplified by Polymerase Chain Reaction 
(PCR) and genotyped, through a multiple-tube approach (Caniglia 
et al., 2014), at 12 unlinked autosomal canine microsatellite (STR) loci 
(Table S1.) already successfully applied for individual identifications 
in long-term non-invasive monitoring projects about population dy-
namics of the Italian wolf (Caniglia et al., 2014; Fabbri et al., 2018), 
for forensic applications (Caniglia et al., 2016; Velli et al., 2022) and 
for the reliable discrimination between wolves, dogs and their first 
two-three generation hybrids through Bayesian assignment pro-
cedures (Caniglia et al., 2020). DNA samples were also genotyped 
through a multiple-tube approach, at (i) a portion of the amelogenin 
gene, to molecularly determine their gender, (ii) at 4 Y-chromosome 
STRs (Table S1.) to determine paternal haplotypes in male individu-
als, and (iii) at a dominant 3-bp deletion at the β-defensin CBD103 
gene (the K-locus) coding for the black coat colour in canids (Caniglia 
et al., 2013).

The 4–8 replicated amplifications per locus per sample foreseen 
by the multi-tube approach were used to estimate sample reliability 
by the software RELIOTYPE (Miller et al., 2002), reconstruct con-
sensus genotypes, and assess the occurrence of allelic dropouts 
and false alleles by the software GIMLET V.1.3.3 (Valière, 2002). 
GIMLET was also used to identify identical genotypes and individ-
ual recaptures. Unique genotypes were also typed at 250 bp of the 
mitochondrial DNA control region (mtDNA CR) containing diagnos-
tic mutations (Supporting information) to distinguish Italian wolves 
from European wolves and dogs (Caniglia et al., 2013).

The software GENALEX (Peakall & Smouse, 2012) was used to 
estimate the mean number of different (NA) and effective (NE) al-
leles, the probability of identity (pID) and the expected pID among 
full-sib dyads (pIDsibs), and values of observed (HO) and expected (HE) 
heterozygosity.

Extraction, amplification, and post-amplification procedures of 
both non-invasive and muscular DNA were carried out in separate 
rooms reserved to low- and medium-template DNA samples, adding 
a blank control (no biological material) during DNA extraction, and 
a blank (no DNA) and a positive (good quality and known wolf-DNA 
profile) controls during DNA amplification to check for possible con-
taminations (for details see the Supporting Information).

2.3.2  |  Taxon identification

The 12-STR multilocus genotypes were assigned to their taxon of ori-
gin (wolf, dog or admixed), independently of any a priori non-genetic 
information, through a Bayesian clustering procedure implemented 
in the program PARALLEL STRUCTURE (Besnier & Glover, 2013), 
an R package implementing STRUCTURE, following indications re-
ported in Caniglia et al. (2020). Assignments were integrated with the 
information derived from the uniparental (mtDNA CR, four Y-linked 
STRs) and coding (K-locus) markers, which were used to confirm the 
taxon identification or, in case of admixed individuals, to provide the 
directionality of the hybridization (Caniglia et al., 2020).

2.4  |  Statistical modelling

2.4.1  |  Occupancy model

For the estimation of wolf distribution, we built and analysed a 
single-season, multiple data-source, multi-event occupancy model 
(Mackenzie et al., 2002; Miller et al., 2011; Pacifici et al., 2017), which 
accounted for the different types of sampling processes involved in 
data collection (transects and photo traps) and for the possibility of 
species misidentification when collecting wolf scats in areas where 
also dogs were present.

We divided the sampling period into four sessions, three of 
them comprising 2 months (October–November, December–January, 
February–March), whereas the last one only included the data col-
lected in April. We then built two sampling matrices, one for the 
presence data derived from photo traps, one for the data collected 
along transects, and initially coded the matrices with a simple binary 
code (1 = species detected; 0 = species not detected). For the wolf 
presence data derived from transects, though, we could not exclude 
the possibility that dog scats were erroneously attributed to wolves, 
thus generating a false detection in the dataset. To account for this 
risk, we identified three different types of wolf detections along tran-
sects and explicitly included the misidentification probability into 
the model. This was possible because a portion of the wolf samples 
collected along transects were genetically analysed and identified as 

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11285 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 16  |     GERVASI et al.

belonging to dogs, thus providing a basis for the estimation of the 
misidentification probability. The three detection types were based 
on the use of two classification criteria, one derived from field work, 
the other from the genetic lab results, and allowed to distinguish 
samples that were certainly belonging to wolves, samples certainly 
belonging to dogs and uncertain samples. A fourth type of event 
was assigned to cells with no detection (see Table 1). Then, based on 
two possible occupancy states (occupied by wolves, not occupied by 
wolves) and four types of detection events, we built a 2 × 4 detection 
matrix for the data collected along transects.

In the detection matrix, P1,x,t was the probability to detect a 
dog sign in the unoccupied cell x during session t, P2,x,t was the 
probability to detect a presence sign (dog or wolf) in the occupied 
cell × during session t, Gx was the probability for a sample col-
lected in cell x to be genetically analysed in the lab, and Mx was the 
probability that a sample classified as wolf in the field was later 
classified as belonging to a dog in the lab. Parameter G was just 
a dummy variable, which was fixed to one for the intensive cells, 
whose samples were genetically analysed, and fixed to zero for 
the cells not included in the genetic study. Based on this param-
eterization, P1 represented the probability of a false detection in 
the occupancy model.

For the data derived from photo traps, we assumed that all wolf 
detections were correct, as they were based on the visual inspec-
tion of photos by expert technicians. The resulting detection matrix, 
therefore, only included two underlying states (the same ones used 
for the previous matrix) and two possible detection events (0 = no 
detection; 1 = wolf presence detected). In the matrix, P3,x,t was the 
probability of detected wolf presence through photo traps in cell x 
during session t.

We modelled the spatial and temporal variation in all the in-
volved parameters as a function of a set of covariates.

We assumed that cell-specific occupancy was a realization of a 
Bernoulli process with index ψ. To estimate the occupancy probabil-
ity ψ, we included the average altitude above sea level in each cell, 
the proportion of cell area covered by forest, the proportion of ur-
banized area, the total length of primary and secondary roads, the 
proportion of agricultural land and of natural agricultural areas, the 
average human density, the terrain ruggedness index, and the num-
ber of wild ungulate species available. We derived this variable from 
the wild ungulate distribution maps produced by Linnell et al. (2020) 
at the European level, using hunting statistics, citizen science data-

bases, vehicle collisions, scientific papers, and expert assessments 
on 17 native and non-native ungulate species. Six of these species, 
red deer (Cervus elaphus), roe deer (Capreolus capreolus), chamois 
(Rupicapra pyrenaica), wild boar (Sus scrofa), fallow deer (Dama dama), 
and mouflon (Ovis ammon) were distributed in at least a portion of 
our study area and were used to build the species availability index. 
We also added an individual random effect, which accounted for the 
residual differences in occupancy probability among cells. We de-
rived landscape variables from the EU-DEM v1.1 (Copernicus Land 
Monitoring Service, EEA) and from the Corine Land Cover (2018, 
Copernicus Land Monitoring Service 2018, EEA). We extracted road 
density data from OpenStreetMap (OpenStreetMap contributors 
2021), aggregating the motorway trunk, primary, secondary, tertiary, 
and unclassified road classes. We also added a spatial autocorrela-
tion function through a normally distributed individual random term 
εx for each cell. The random effect had mean equal to zero and vari-
ance defined as σ2 (D−ϕW), in which σ was the standard deviation, 
W was a binary adjacency matrix (1 = bordering, 0 = not bordering), 
D was the diagonal matrix of W, and ϕ was an estimated parameter 
controlling the intensity of the spatial correlation.

For the detection probability parameters, we modelled the spa-
tial and temporal variation as a function of sampling effort, measured 
as the total number of kilometres walked in each cell during each 
sampling session (for transect-based data) and as the number of trap 
nights for each photo trap. We also estimated a different intercept for 
each sampling session and tested if detection probability was related 
to the total amount of snow cover in each cell during the sampling 
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TA B L E  1 Description of the criteria used to classify each scat-based wolf detection into four detection types, to account for a possible 
species misidentification in the occupancy model. The data were collected along transect in south-central Italy between October 2020 and 
April 2021.

Index Scat collected Field classification Scat analysed genetically Genetic lab results

0 No — — — Possible species absence

1 Yes Wolf Yes Wolf Wolf presence ascertained

2 Yes Wolf Yes Dog Misidentification error

3 Yes Wolf No — Possible species presence

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11285 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 16GERVASI et al.

period (reanalysis dataset; ERA5-Land). We also tried to account for 
the residual individual heterogeneity in detection probability among 
cells, using a finite-mixture approach with two classes of heteroge-
neity (Pledger, 2005), controlled by an additional regression param-
eter and by parameter θ, which defined the individual probability of 
each cell to belong to one of the two mixtures. As in most of the ap-
plications of occupancy models on large carnivores and other wide-
ranging species (Blanc et al., 2014; Lauret et al., 2021), we could not 
assume perfect closure of the grid cells during the sampling period, 
that is a cell could possibly be occupied by the species only during 
a portion of the year. Such violation would have no effect on the 
estimates, only if animal movements were random between cells, an 
assumption which cannot be considered as valid for species whose 
movement are influenced by their non-random habitat use patterns 
(Kendall et al., 2013). In such a situation, the occupancy parameter 
ψ is usually interpreted as a probability of use of a given cell, rather 
than as a classical species presence (Kendall et al., 2013). Therefore, 
species detection was conditional on both the probability that the 
species is available for sampling and the probability that the species 
is using the grid cell during sampling.

2.4.2  |  SCR model

For the estimation of wolf abundance, we used the dataset derived 
from the non-invasive genetic sampling performed in the 13 inten-
sive sampling areas, which comprised the individual identification 
of all sampled wolves, their sex, the number and location of all the 
individual genetic captures. We used these data to build a Spatially 
Explicit Capture-Recapture model (SCR). To this aim, we used the 10 
× 10 km sampling grid to identify a network of detectors, located at 
the centre of each sampling cell.

We associated each detector to 100 sub-detectors, based on a 
1 × 1 km grid constructed inside each cell, and projected each wolf 
detection to the closest sub-detector. This allowed us to model wolf 
detection rates using a partially aggregated binomial observation 
process (Milleret et al., 2018), in which the number of wolf detec-
tions at a given detector was the result of a binomial process with 
100 trials. From a temporal point of view, we aggregated all detec-
tions into a single sampling session, comprising the whole study 
period, thus modelling the temporal variation in capture probability 
through the spatial component of the detection process. In an SCR 
model, the detection process is controlled by two main parameters: 
p0 is the baseline capture probability, corresponding to the case in 
which a detector is located on the same location of an individual 
home range centre; σ is the distance from the home range centre 
at which capture probability is half of p0, and it is usually related 
to home range size (Efford, 2004). Using a half-normal function to 
model capture probability attenuation, the resulting capture proba-
bility of individual i at detector x was:

where di,x was the linear distance between the activity centre of indi-
vidual i and detector x.

To model variations in p0, we used a series of individual and spa-
tial covariates, such as sampling effort (expressed as the total num-
ber of kilometres walked along transects in each cell), snow cover 
(defined as in the occupancy model), and the individual sex. We also 
added an individual random effect allowing a different intercept for 
each intensive area, to model local variations in capture probability. 
Finally, we used a finite-mixture approach with two classes of het-
erogeneity to account for the residual differences in capture proba-
bility among wolves. To model variations in the σ parameter, we used 
the number of wild ungulate species available in each cell, similar to 
what was done for the occupancy model.

To account for the expected uneven distribution of wolves in the 
study area, we modelled the latent density as an inhomogeneous 
point process. For each location in the state space (the centre of 
each 10 × 10 cell), we expressed the expected abundance λ in cell x as 
a log-linear function of a set of environmental covariates:

where parameter μ0 is the density intercept and the remaining μ pa-
rameters are regression coefficients of the environmental covariates. 
Then, the expected population size was initially derived by integrating 
the λ values over the study area:

We modelled variations in wolf density as a function of the habi-
tat covariates used for the occupancy model, of the number of avail-
able wild ungulate prey, and added a spatial-autocorrelation function 
which accounted for the spatial structure in the wolf population. Due 
to the wide latitudinal gradient in the study area, the effect of habitat 
covariates on wolf density was likely to be slightly different in the dif-
ferent portions of the sampling grid. Given the limitations imposed by 
sample size, we focused on the average large-scale effects, but could 
not reveal local patterns in each of the 13 sampling areas.

To account for the undetected individuals, we augmented the 
observed dataset adding 10 times the number of detected individu-
als (Royle & Dorazio, 2012). Each individual i was considered being 
(zi = 1) or not (zi = 0) a member of the population according to a draw 
from a Bernoulli distribution of probability ψ, with zi ~ Bernoulli(ψ), 
where ψ was the probability for individual i to be a member of the 
population.

2.4.3  |  Integration of the occupancy estimates 
into the SCR model

After building the SCR models, we integrated the information derived 
from the occupancy model into the SCR density function, with the 
objective of making the most out of the information that the pres-
ence/absence data could provide to density estimation. The main 
information we incorporated was that when a cell was estimated 

pi,x = p0,i,x ∗exp

(
−

d2
i,x

2�2

)

log
(
�x
)
= �0 + �1 ∗cov1 + �2 ∗cov2 + … �n ∗covn

E(N) =

n∑
x=1

�x
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to be unoccupied by wolves, the local number of activity centres 
was set to zero. We obtained this constraint through the function 
“equals” in NIMBLE, which allowed to test the condition that the oc-
cupancy state of a given cell was unoccupied. Being true_occi the oc-
cupancy state of cell i (1 = occupied; 0 = unoccupied), we multiplied 
the density function in the SCR model by (1−equals(true_occ[i],0)). 
The function equals to zero when true_occi = 0, thus forcing density 
to be also zero, whereas it equals 1 when true_occi = 1, thus leaving 
the estimated density unmodified.

We ran all models with two Markov Chain Monte Carlo chains 
with 30,000 iterations each in the NIMBLE R package (de Valpine 
et al., 2015). We checked for convergence by calculating the R-hat 
parameter (Gelman et al., 2013).

2.5  |  Simulations

After building and analysing the integrated spatial model, we also 
constructed two sets of Monte Carlo simulations, to assess the 
expected performance of our sampling and analytical design, and 
to guide a possible improvement of future applications. The main 
issue of our sampling design was that not all the area expected to 
be occupied by the wolf population was sampled (genetically or 
for presence signs). As a result, the population density estimates 
were only partially the result of capture-recapture modelling in 
the sampled areas, as they were also produced through a density 
extrapolation from sampled to not sampled areas. The perfor-
mance of such extrapolation needed to be evaluated, to assess 
if the proportion of study area sampled was sufficient to provide 
adequate statistical power and to produce unbiased estimates of 
total population abundance.

For the first set of simulations, we built a reduced study area, 
with a spatial extent of 29,000 km2 (19.8% of the actual sampling 
area) and divided it into 290 10 × 10 km cells. We generated the 
expected number of wolves in the simulated area using the results 
of the integrated spatial model and calculating the number corre-
sponding to 19.8% of the estimated population size, thus simulat-
ing an average wolf density equal to the one estimated in the real 
model application. We distributed all the individual home range cen-
tres according to an inhomogeneous pattern, using a habitat suit-
ability model produced by Boitani and Salvatori  (2015) during the 
approval process of a new action plan for wolves in Italy. The model 
was based on four different techniques (GLM, GBM, ANN, MARS), 
whose predictions were averaged using the Ensemble Modelling 
method (Araújo & New, 2007). Individual wolves were divided by 
sex and assigned an individual detection probability, based on the 
results of the integrated spatial model. We then randomly identi-
fied 4 intensive sampling areas, made up of 9 cells and organized 
in a 3 × 3 spatial arrangement, which represented about the same 
proportion of sampled area as in the actual sampling design (12.4%). 
In addition, we randomly selected 30% of the cells for the presence 
signs sampling only, respecting the proportions adopted for the ac-
tual sampling.

After selecting all sampling cells, we simulated the sampling pro-
cess using the same detection probability estimates obtained from 
the integrated spatial model. This generated a simulated dataset of 
presence signs and individual genetic detections. To test the per-
formance of different modelling options, we analysed the simu-
lated datasets using four different models: (i) the same integrated 
spatial model used for the actual abundance estimation; (ii) an SCR 
model with no data integration; (iii) an SCR model with no spatial 
autocorrelation function; (iv) an SCR model which did not account 
for sampling effort. We performed all the simulation in R 4.2.1 (R 
Development Core Tea, 2008) over 100 iterations and summarized 
the results calculating the relative bias and precision of the abun-
dance estimates produced by each model in each iteration.

For the second set of simulations, we used the same design as 
the one illustrated above, but we varied the proportions of study 
area sampled both genetically and for presence signs. The aim of 
this second simulation was to compare the performance of different 
sampling designs and to identify the minimum proportion of study 
area to be sampled to obtain a pre-defined level of bias and preci-
sion in the estimates. At each iteration, we selected the proportion 
of study area sampled for genetic sampling in the range 10%–50% 
and the proportion sampled for presence signs in the range 20%–
50%. We ran 100 iterations using the integrated spatial model, and 
for each run, we estimated the associated bias and coefficient of 
variation of population size estimates. Then, we ran a first general 
linear model (GLM) with a Poisson distribution, using the rounded 
modulus of the relative bias of each iteration as response variable, 
whereas the proportions of study area sampled for genetic signs and 
presence signs were used as predictors. We used the same approach 
to run a second GLM with the same predictors and the coefficient 
of variation as response variable. The results of the two models al-
lowed us to predict the minimum requirements of a future sampling 
design, in terms of what proportion of the study area should be sam-
pled with both methods. We set the model performance goals to an 
absolute bias <10% and a CV < 10%.

3  |  RESULTS

3.1  |  Data collection

Out of the 2551 line transects initially selected, 2282 were covered 
at least once during the sampling period. The overall sampling ef-
fort along transects was 44,232 km, corresponding on average to 
11,058 km travelled in each of the four sessions (±3824 SD; range 
5338–13,233). Transect length was on average 4.75 km (SD = 2.77), 
whereas the average distance walked on transects in each cell was 
20.57 km (SD = 15.19). We deployed a total of 598 photo traps. An 
average of 282.2 photo traps were active in each session (±101.3; 
range 147–379), corresponding to 9254.3 trap nights per ses-
sion (±4591.8 SD; range 3128–13,388). In each cell, we deployed 
on average 2.64 photo traps (SD = 2.59), with an average of 63.03 
(SD = 50.89) nights per trap.
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    |  9 of 16GERVASI et al.

Overall, we collected 15,993 wolf presence signs, including scats 
(n = 11,071), photos (n = 4285), tracks (n = 408), predation events 
(n = 97), dead wolves (n = 97), howlings (n = 11), hairs (n = 9), urine 
samples with blood (n = 8), saliva samples (n = 2), and other types 
of signs (n = 5; Table 2). Out of these, 1632 samples underwent ge-
netic analysis for species and individual genotype identification (see 
below), including 1569 scats (1319 from intensive areas and 265 
from extensive areas), 3 hair samples, 3 urine samples with blood, 30 
muscle samples extracted from wolf carcasses, 3 blood samples, and 
a single saliva sample.

3.2  |  Genotype reconstruction and taxon 
identification

After the four to eight replicated PCR per sample per locus foreseen 
by the multiple-tube protocol, 971 (61%) of the 1600 non-invasively 
collected samples and all the 32 biological samples obtained from 
found dead or live-trapped animals were successfully genotyped 
(R ≥ 0.990) at all biparental, uniparental and coding markers, corre-
sponding to 622 individuals: 373 (180 females, 168 males, 25 with 
undetermined gender) wolves, 60 (26 females, 29 males, 5 with un-
determined gender) recent wolf-dog hybrids and 80 (25 females, 49 
males, 5 with undetermined gender) introgressed wolves (for details 
see the Supporting Information).

3.3  |  Distribution and population size estimates

The probability to detect wolf presence during the sampling pe-
riod was significantly affected by sampling effort. This was true 
both for wolf presence signs detected along transects (β = 2.71; 
95% CIs = 2.49 to 2.93) and for the data derived from photo traps 
(β = 1.81; 95% CIs = 1.62 to 1.99). The effect of snow cover on wolf 
detection probability was only marginal (β = 0.09; 95% CIs = −0.03 
to 0.22). The model also revealed that 43% of the sampling cells 

belonged to the group with the highest associated detection prob-
ability (P2,H = 0.63; 95% CIs = 0.49 to 0.74), whereas the remain-
ing 57% of the cells had a lower associated detection probability 
(P2,L = 0.13; 95% CIs = 0.07 to 0.20). The probability to generate a 
false wolf detection by mistaking a dog scat for a wolf scat was on 
average 0.048 (95% CIs = 0.002 to 0.084), but the model was not 
able to detect significant geographical differences or to reveal the 
effect of any of the variables tested.

Wolf occupancy probability was significantly and positively 
affected by altitude (β = 1.14; 95% CIs = 0.51 to 1.79), forest cover 
(β = 0.71; 95% CIs = 0.06 to 1.40) and by the number of ungulate prey 
species (β = 0.93; 95% CIs = 0.37 to 1.53). The effects of human den-
sity (β = −040; 95% CIs = −0.93 to 0.05) and road density (β = −0.34; 
95% CIs = −0.89 to 0.08) were both negative but only marginally sig-
nificant. Overall, the model estimated that 74.2% of the study area 
(95% CIs = 70.5% to 77.9%) was occupied by the species, for a total 
extent of the wolf distribution of 108,534 km2 (95% CIs = 103,200 to 
114,000). The cell-specific occupancy probabilities are illustrated in 
Figure 2a, whereas the associated coefficients of variation of the oc-
cupancy estimates are shown in Figure 2b. The occupancy estimates 
were rather precise along the Apennines and in the core of the wolf 
distribution, whereas they were less precise at the periphery.

In the SCR part of the integrated spatial model, the individual 
baseline capture probability (p0) was positively correlated to sam-
pling effort in each cell (β = 0.42; 95% CIs = 0.35 to 0.50), whereas 
sex and the amount of snow cover did not exhibit a significant ef-
fect on this parameter. Also, as expected in a species with a strong 
social structure as wolves, the data supported the existence of two 
groups of individuals in the population with different capture prob-
abilities. Most of the individuals (83%; 95% CIs = 80% to 93%) were 
associated with the lower levels of capture probability (p = .0012, 
95% CIs = 0.0003 to 0.0039), whereas the remaining 17% of the in-
dividuals (95% CIs = 7% to 20%) exhibited the highest capture prob-
ability estimates (p = .006, 95% CIs = 0.0025 to 0.0163), with a 5-fold 
difference between the two groups. The number of wild ungulate 
prey species did not correlate significantly with the spatial parame-
ter σ, whose average value was estimated at 3.49 km (95% CIs = 3.15 
to 3.89). The estimated σ value was 2.8 times smaller than the av-
erage distance between detectors, close to the suggested range 
(1.5–2.5; Royle et al., 2014). This indicates that the trap spacing used 
for the SCR model is not expected to have introduced any relevant 
bias in population size estimates. Wolf local density was positively 
affected by altitude (β = 1.08; 95% CIs = 0.07 to 2.97) and by the 
extent of forest cover (β = 1.11; 95% CIs = 0.39 to 1.83), and nega-
tively by human density (β = −0.76; 95% CIs = −2.39 to 0.94). The in-
tegrated spatial model produced an estimate of total population size 
for the Apennine wolf population of 2557 individuals (SD = 171.5; 
95% CIs = 2127 to 2844), with an associated CV = 6.7%. When run 
alone, the SCR model produced a population size estimate of 2451 
wolves (SD = 305.9; 95% CIs = 1939 to 3087), with an associated 
CV = 12.5%. By merging the two posterior distributions obtained 
in our study for the south-central portion of the population and in 
Marucco et al.  (2023) for the Alpine portion of the population, we 

TA B L E  2 Wolf presence data collected in south-central Italy 
between October 2020 and April 2021 for each SCALP category.

Data type C1 C2 C3 Total

Scats 886 10,185 — 11,071

Photos 4165 120 — 4285

Tracks 408 — — 408

Predation events — 2 95 97

Dead wolves 97 — — 97

Howling — 9 2 11

Hairs — — 9 9

Urine with blood 1 — 7 8

Saliva 2 — — 2

Other — — 5 5

Total 5559 10,316 118 15,993

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11285 by C

ochraneItalia, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 16  |     GERVASI et al.

F I G U R E  2 Cell-specific wolf occupancy probability estimates (a) and the associated coefficient of variation (b) resulting from a sampling 
of presence signs and occupancy modelling in south-central Italy, 2020–2021.
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    |  11 of 16GERVASI et al.

estimated a total population size of 3501 wolves (SD = 249.5; 95% 
CIs = 2949 to 3945) in the whole country.

3.4  |  Simulations

In the first set of simulations, aimed at evaluating the performance 
of our design in terms of accuracy and precision of population size 
estimates, the integrated spatial model was associated with an av-
erage tendency to slightly underestimate population size (Figure 3). 
The average relative bias in the estimates was −0.129, with 64% 
of the estimates exhibiting a bias <20%. In terms of bias, the SCR 
model alone was also associated with a tendency to underestimate 
population size, with the average bias being −0.156 and 43% of the 
estimates exhibiting a bias <20% (Figure  3). The other two simu-
lated scenarios performed poorly when compared to the first two. 
A model with no spatial autocorrelation function produced an aver-
age − 0.324 relative bias, whereas the model without any specifica-
tion of sampling effort exhibited an average bias of −0.485 (Figure 3).

In terms of precision of the estimates, the integrated spatial 
model exhibited the best performance among the four simulated de-
signs. Its average associated coefficient of variation was 8.7%, with 
70% of the estimates exhibiting a CV < 10% (Figure 4). The estimates 
produced by the SCR model alone were less precise, as the average 

coefficient of variation was 12.8% and only 12% of the estimates ex-
hibited a CV < 10%. The model with no spatial autocorrelation exhib-
ited similar performance than the SCR in terms of precision, whereas 
the model without effort data had an average CV = 18.2% (Figure 4).

Analysing the data derived from the second set of simulations, 
aimed at evaluating a possible improvement of sampling design for 
future applications, we found that the accuracy of population size 
estimates from an integrated design was significantly influenced by 
the percentage of study area sampled for genetic samples (β = −2.73; 
SE = 0.22), but not by the percentage sampled for presence signs 
(β = 0.09; SE = 0.29). As shown in Figure 5a, this generated the pre-
diction that at least 30% of the study area should be selected for 
non-invasive genetic samples to produce population size estimates 
with a satisfactory level of accuracy (bias < 10%). When running a 
GLM model on the simulated precision of the different sampling de-
signs, we found that both the proportion selected for non-invasive 
genetic samples (β = −1.20; SE = 0.29) and that selected for pres-
ence/absence sampling (β = −0.35; SE = 0.07) had a significant effect 
on the coefficient of variation associated with the estimates. The 
resulting predictions were in line with what was suggested by the 
analysis of model accuracy. When 30% of the area was sampled for 
presence signs, at least the same number of sampling cells should 
be genetically sampled, to produce population size estimates with a 
satisfactory level of precision (CV < 10%; Figure 5b).

F I G U R E  3 Relative bias in the 
estimation of population abundance, 
associated with four different capture-
recapture analytical designs. The data 
were derived from a set of simulated non-
invasive genetic sampling and presence 
signs sampling, resembling the field 
conditions of our wolf sampling project in 
south-central Italy, 2020–2021.

F I G U R E  4 Precision in the estimation 
of population abundance, associated with 
four different capture-recapture analytical 
designs. The data were derived from a 
set of simulated non-invasive genetic 
sampling and presence signs sampling, 
resembling the field conditions of our wolf 
sampling project in south-central Italy, 
2020–2021.
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4  |  DISCUSSION

4.1  |  Methodological implications

In term of performance, the main contribution of our integrated spa-
tial modelling approach was to increase precision in the abundance 
estimates, whereas the combination of the SCR and occupancy mod-
els did not affect accuracy significantly (Figures 3 and 4). Other ap-
plications of integrated modelling for the estimation of demographic 
parameters produced similar conclusions. Tourani et al.  (2020) de-
veloped and integrated spatial capture-recapture (SCR) model, to 
incorporate multiple data sources with imperfect individual iden-
tification. They found that an integrated model outperformed a 
standard SCR model in terms of precision and, to a minor extent, 
accuracy, especially when detection probability was low and home 
ranges had a low degree of overlap (Tourani et al., 2020). In a study 
on the Louisiana black bear (Ursus americanus luteolus), Chandler and 
Clark (2014) also found that the main contribution of an integrated 
spatial model with respect to a standard SCR model was a reduction 
of variance in population size estimates. On one hand, this confirms 
that the inclusion of presence data, obtained through data sources 
which do not allow individual identification, can enhance the estima-
tion of demographic parameters thanks to integrated spatial mod-
elling. Species presence-absence data have some advantages, with 
respect to individual recognition data. Being often collected through 
photo traps, visual observations, snow tracks, etc., and because they 
do not require genotyping, they usually generate larger datasets 
with a lower effort and costs than individual recognition techniques. 
Moreover, presence-absence data often arise as by-products of 
other field projects or are the result of incidental observations by 
citizens or hunters (Cretois et al., 2020; Ražen et al., 2020). On the 
other hand, our analysis and simulation exercise confirm that a ro-
bust and accurate estimation of demographic parameters still relies 

primarily on individual-recognition data and capture-recapture-
based techniques. Other analytical approaches, making use only of 
sampling techniques that do not allow individual identification, are 
being developed (Palencia et al., 2021; Rowcliffe et al., 2008), but 
simulation-based assessments highlight that these methods are still 
very sensitive to external parameters, such as animal speed, and that 
their performance can change greatly with small variations in sam-
pling conditions (Santini et al., 2022).

At this stage of research, therefore, SCR models are still the more 
powerful statistical tool available to produce robust and accurate 
density estimates, accounting for imperfect detection and spatial 
variation in sampling probabilities. While the main effort should 
still be to design and build a solid SCR model for population esti-
mation, the possibility to integrate other data sources and increase 
precision is an important step forward, especially considering that 
unprecise estimates often have a poor value when informing man-
agement decisions. To this aim, our integration approach revealed 
both benefits and potential elements of improvement. Combining 
species presence data and the resulting occupancy model with a 
more structured dataset into an integrated occupancy-SCR model 
offered the possibility to make the most out of the whole body of 
information resulting from our sampling effort (genetic data, pres-
ence signs, photos, etc.). The heterogeneity of the data types and 
sampling processes, though, introduced some elements of complex-
ity during the integration phase. Occupancy and SCR models, in fact, 
are based on two very different underlying processes: one is based 
on grid-based presence, the other on a point process referring to 
individuals, not to the species. This leaves some uncertainty in the 
degree of transferability of information between the two models, 
especially when using the estimated species absence to inform the 
SCR part of the model. Future improvements in this approach should 
go in the direction of using more similar underlying processes, 
such as in Tourani et al. (2020), thus also making the mathematical 

F I G U R E  5 Expected accuracy (a) and 
precision (b) of population size estimates 
obtained when sampling 30% of the study 
area for presence signs and an increasing 
proportion for genetic samples.
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integration more straightforward. Still, simulations showed that the 
data integration did improve model performance and that the poten-
tial bias induced by data integration was probably minimal (Figure 3). 
Underestimation is a known risk, especially when estimating density 
for gregarious species. Bischof, Dupont, et  al.  (2020) and Bischof, 
Milleret, et al. (2020) used simulation tools to show that large group 
size and high level of cohesiveness can be a source of bias and re-
duce precision in SCR-based population size estimates; Jiménez 
et al. (2023) also revealed that gregariousness in wolves can induce 
overdispersion and cause bias, if not properly accounted for.

When projecting our first wolf estimation project into a future 
national population monitoring plan, the simulation work showed 
that the area subject to NGS should be increased to further im-
prove the accuracy of population size estimates and avoid the risk 
of underestimation. At least 30% of the wolf distribution should be 
intensively sampled for individual-recognition data, while at least a 
similar proportion should be sampled for presence-absence data. 
This suggests that, while it is feasible to produce reliable population 
size estimates without having to sample 100% of a species distri-
bution, a careful a priori evaluation should be done to identify the 
optimal sampling design. SCR models, in this sense, are a powerful 
tool. They can allocate activity centres of sampled individuals not 
only within the sampled area but also outside of it, thus generating 
density estimates also in the portions of a species distribution buff-
ering the actual sampling grid. On the other hand, such extrapolation 
becomes gradually less reliable when moving away from sampled 
areas. Identifying the correct proportion of the species distribution 
to be sampled and the spatial arrangement of all the sampled areas 
is, therefore, crucial to avoid that density estimation might suffer 
from a lack of information in some portions of the study area. Survey 
effort is always constrained by available resources, but spatially bal-
anced sampling and stratification can help to appropriately distrib-
ute it and are key approaches for improving the representativeness 
of the sample and the precision of estimates (Perret et  al., 2022; 
Stevens & Olsen, 2004; Thompson, 2012). In our case, simulations 
showed that sampling 30% of the area or more would be a good min-
imum compromise between accuracy, precision, and sampling ef-
fort. This approach could be extended and applied to other species 
and geographic regions, but specific a priori evaluations of model 
requirements and expected performance should be made.

4.2  |  Management implications

The estimates resulting from our work represent the first formal 
assessment of the wolf distribution and abundance in the regions 
of south-central Italy. Combined with the ones produced for the 
alpine regions (Marucco et  al.,  2023), this also provides the first 
estimate for the entire country, which will represent a fundamen-
tal baseline for future assessments of population trend, and to in-
form management actions. Our work confirmed that wolves in 
south-central Italy are on their way to occupy most of their suitable 
habitat, well outside the habitat types of broad-leaved mountain 

forest, traditionally considered as the election environment for the 
species (Mech & Boitani,  2019). As shown in Figure 2a, while the 
Apennine Mountain chain remains the backbone of wolf distribu-
tion, high occupancy probabilities (and confirmed presence signs) 
exist also in coastal areas and in the plains associated with higher 
levels of human density and infrastructures. This represents a fur-
ther step in a successful conservation story, if we consider that, only 
a few decades ago, wolves in Italy were on the verge of extinction 
(Zimen & Boitani, 1975). It also raises the issue of the complex land 
sharing with human activities and the impacts it may cause. While 
the more traditional forms of wolf impact, such as depredation on 
livestock, remain an issue and a source of social conflicts (Gervasi 
et al., 2021, 2022), wolves in newly colonized and densely inhabited 
areas are more likely to generate different forms of negative interac-
tions (Carter & Linnell, 2016), such as predation on domestic dogs 
and other pets (Iliopoulos et al., 2021; Kojola et al., 2023), aggressive 
interactions with humans (Linnell et al., 2021), etc. Accordingly, the 
reports of wolf-killed dogs and of not fearful behaviours by wolves 
towards humans have been increasing in recent years (ISPRA, un-
published data). In such a context, the traditional approach, centred 
on national parks and marginal mountain areas as the main actors 
and targets of management and conservation actions is no more in 
line with the ecological reality of the wolf population. Our study pro-
vides a methodologically sound picture of this situation (Figure 2a), 
which is in line with the expansion patterns of wolf populations 
in several other European countries (Eriksson & Dalerum,  2018; 
Louvrier et al., 2018). An effective monitoring of these new forms of 
human-wolf interactions should be enhanced, to better understand 
their dynamics, possible causes and predictors, and to design effec-
tive management actions. Also, the establishment of wolves in new 
habitat types, closer to human settlements, will require a gradual be-
havioural co-adaptation (Carter & Linnell, 2016). Humans will need 
to increase their awareness about wolf presence and to modify some 
of their behaviours, accordingly. Management actions should be put 
in place to reduce the risks of human-wolf encounters, for instance 
by reducing food availability in urban and periurban areas, and to 
promote active avoidance of humans by wolves.

On the other hand, wolves in newly colonized and densely inhab-
ited areas are more likely to be subject to human-related mortality 
risks, such as road accidents, poaching, poisoning, etc. These risks 
have been already highlighted as the main sources of wolf mortality 
in Italy, and therefore likely to be strong drivers of wolf population 
dynamics also in future years (Musto et  al., 2021). The value of a 
first national assessment, as the one resulting from this work and 
from Marucco et al. (2023), is to place a first stepstone towards the 
implementation of a national monitoring program, based on periodic 
surveys of the wolf population and with the aim of detecting not 
only population trends but also to explore the patterns and causes 
of wolf mortality, reproduction and wolf-dog hybridization rates and 
the other fundamental parameters needed to build a reliable pop-
ulation model. The need for such a tool is even more crucial during 
this transition period, in which a shift from a purely protective to 
a more active approach (including lethal control) is occurring in 
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wolf management and conservation. Italy shares this shift and its 
challenges with several other European countries. To this aim, our 
simulation work provides a quantitative basis to help managers and 
researchers find a good balance between the requirements of the 
statistical tools and the limitations of the available resources, when 
setting up a long-term monitoring program for wide-ranging elusive 
species (see below for more details).

The criteria to classify the unknown detected genotypes at the 
taxon level (Caniglia et al., 2020) allowed us to also investigate the 
presence of anthropogenic wolf-dog hybridization in the intensively 
sampled areas. About 10% of the wild individuals sampled showed 
recent wolf-dog admixture signals within the first two to three hy-
bridization generations, whereas about 13% of them showed intro-
gression signs older than three backcrossing generations in the past. 
These proportions compare well with the results extrapolated from 
the analyses of a large sample of putative free-living wolves collected 
in Italy during the last 20 years (Caniglia et al., 2020). However, most 
of the data about wolf-dog hybridization were obtained by geno-
typing the biological samples at a reduced number of molecular 
markers, which, although highly differentiating between dogs and 
wolves (Caniglia et al., 2013), represent only a moderately resolved 
snapshot of the non-coding variability observable within the whole 
canine genome (Galaverni et al., 2016). Therefore, they can only pro-
vide preliminary evidence of the phenomenon which surely merits 
further detailed multidisciplinary investigations to ensure reliable 
prevalence estimates at the national scale (Caniglia et al., 2020).
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