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Summary 

This dissertation is organized into five chapters. Chapter 1 and Chapter 2 examine the role of 

individual motor variability in motor learning processes. The aim of these two first chapters is 

to identify how motor variability measured at baseline can influence the speed at which a motor 

task involving movements in multiple directions is learned. To this end, I present a theoretical 

overview of motor learning and motor variability (Chapter 1) and an experimental study 

designed to investigate the role of motor variability in motor learning processes (Chapter 2). 

Using a robotic manipulandum, we first quantified the individual motor variability of each 

participant at baseline and then we instructed them to complete a motor learning task. Analyses 

focused on the relationship between the amount of variability at baseline and the rate of 

learning. The results of the experimental study show that individual baseline motor variability 

does not predict faster learning rates in motor adaptation task with multiple directions.		

Chapter 3 and 4 examine the ability to predict actions based on observations of arm movements. 

The aim of this research project is to determine the ability of patients with psychosis to predict 

the size of a to-be-grasped object. An introduction to the clinical picture of schizophrenia and, 

in particular, to the impairment of schizophrenic patients in action prediction is provided in 

Chapter 3. I then describe an experimental study whose primary goal is to determine whether 

there are differences between psychotic patients and healthy controls in discriminating the 

outcome of an observed action (Chapter 4). Using a progressive temporal occlusion paradigm 

with the kinematic coding framework, we quantify the ability of observers with psychosis and 

healthy controls to predict the size of a to-be-grasped object over progressive temporal 

occlusion intervals, from 10% up to 80% of movement duration. Our results show an overall 

reduced and discontinuous integration pattern associated with psychosis. Indeed, observers with 

psychosis are able to discriminate object size from 30% of the movement whereas healthy 

controls do so from only 10% of the movement observed. A further interesting result is that, 

contrary to predictions, observers with psychosis are overconfident compared to controls in the 

initial integration period (up to 20% of movement duration), but not at later intervals (30-80%).  
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Chapter 1 – Motor Learning and Individual Motor Variability 

 

1.1 Motor Learning 

Motor learning is a complex process that involves changes in the nervous system as the brain 

acquire new motor skills or improves existing ones. It involves the integration of sensory 

information from the environment with the brain’s internal representations of movement, 

leading to changes in neural pathways and the development of new motor programs. Motor 

skills are movements that involve the use of muscles to produce a specific action or behavior, 

such as throwing a ball, typing on a keyboard, or riding a bike.  

Motor learning has important implications for a variety of fields, including education, sports, 

and rehabilitation. In education, an understanding of motor learning can help teachers design 

effective learning experiences that promote the acquisition and improvement of motor skills 

(Coker, 2017). In sports, motor learning principles can be used to design training programs that 

help athletes improve their performance (Raiola, 2017). In rehabilitation, motor learning 

principles can be used to design rehabilitation programs that help individuals with disabilities 

or injuries regain their motor skills (Levin & Demers, 2021). 

One characteristic that is always present in the execution of actions and movements is motor 

variability. Motor variability refers to the inherent fluctuations in movement that occur during 

the performance of a motor task. It is a normal aspect of movement and is influenced by a 

variety of factors, including the complexity of the task, the individual’s skill level, and the 

conditions of the environment. Motor variability can be beneficial for motor learning, as it 

allows the brain to explore a range of possible solutions to a motor task and identify the most 

efficient ones (Wu et al., 2014). However, excessive motor variability can hinder motor 

learning, as it may prevent the brain from accurately identifying the most efficient movements 

and consolidating them into a stable motor memory (Faisal et al., 2008; Smits-Engelsman & 

Wilson, 2013).  
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This first section of the dissertation focuses on the relationship between a specific motor 

learning paradigm (i.e., motor adaptation) and the individual motor variability: can individual 

baseline motor variability predict the motor learning rate in a motor adaptation task?  

In this first chapter of the thesis I provide an overview of motor learning paradigms, focusing 

on those that were most relevant to this PhD project, and I present the neural basis and tasks of 

a particular motor learning process, namely motor adaptation. Finally, I describe the current 

state of research in the field of motor variability. The second chapter consists of the 

experimental study investigating the role of motor variability in motor learning rate in a motor 

adaptation task.  

 

1.2 Motor learning paradigms  

Motor learning paradigms are experimental protocols designed to investigate the neural and 

behavioral changes that occur during the acquisition of new motor skills. These paradigms 

include different tasks and methods to probe the changes that take place. For instance, 

adaptation tasks provide insight into how the nervous system adjusts to changes in the 

environment and learns new motor programs. We focus on those motor learning paradigms that 

use information content as a learning signal. 

 

1.2.1 Error-based Learning  

Error-based learning is a type of learning that occurs when individuals make an error or deviate 

from a desired movement or action and then adjusts their behavior based on the feedback 

provided by the error. It is a form of feedback-based learning that is thought to play a crucial 

role in the acquisition of motor skills (Diedrichsen et al., 2010; Izawa & Shadmehr, 2011; van 

Vugt & Tillmann, 2015). Specifically, error-based learning involves the modification of neural 

pathways in the brain based on the feedback provided by errors, leading to the development of 

new motor programs. For example, this type of learning is thought to be an important factor in 
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the acquisition of many everyday skills, such as writing, playing a musical instrument, or 

driving a car. It is also a key component of rehabilitation programs for individuals who have 

lost motor skills due to injury or illness.  

There are several factors that can influence the effectiveness of error-based learning, including 

the complexity of the task, the individual’s skill level, and the type and frequency of feedback 

provided. Studies have shown that providing frequent and timely feedback can be more 

effective for improving performance than infrequent or delayed feedback (Galea et al., 2015; 

Nikooyan & Ahmed, 2015; Seidler et al., 2013).  

 

1.2.2 Reinforcement Learning  

Reinforcement learning refers to a type of learning that occurs when an individual’s behavior 

is modified by the consequences of that behavior. It can be used to shape and modify behavior 

by providing rewards or punishments in response to specific actions.  

Reinforcement learning is based on two interacting processes to achieve learning: exploration 

and exploitation (Niv, 2009). Exploration consists of trying new options and gathering 

information about their potential rewards. It is crucial for discovering new solutions but also it 

carries the risk of trying options that may not be as rewarding as expected, leading to a 

temporary decrease in reward. Exploitation refers to the process of choosing the strategy with 

the highest reward on the basis of the current knowledge. On the other hand, exploitation could 

miss out on better options that may be discovered through exploration (Sutton, 2018). It is 

thought that the occurrence of reinforcement learning is based on the function of the basal 

ganglia (Schultz et al., 1997). 
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1.3 Motor Adaptation 

Motor adaptation is the process by which the nervous system learns by adjusting to changes in 

the environment or task demands. It is an important aspect of motor learning, and it allows us 

to perform movements more efficiently and effectively in different contexts. Motor adaptation 

can involve changes at multiple levels of nervous system, including the muscles, the brain, and 

the spinal cord (J. W. Krakauer et al., 2019).  

There are many factors that can influence motor adaptation, including the nature of the task, the 

individual’s characteristics and abilities, and the environment in which learning occurs. Studies 

have identified a number of principles of motor adaptation that can help to optimize the learning 

process and improve performance. For example, it is generally accepted that practice that is 

varied, challenging, and consistent with the task goals leads to better learning outcomes (Galea 

et al., 2015; Gonzalez Castro et al., 2014; Malone et al., 2011). There are several types of motor 

adaptation, including error-based learning and reinforcement learning. Each of these types of 

motor adaptation involves different mechanism and can be more or less effective depending on 

the task and the individual. 

 

1.3.1 Neural Basis of Motor Adaptation 

The neural basis of motor adaptation refers to the changes that occur in the nervous system as 

a result of practice and experience. There is a large body of research on the neural basis of 

motor learning, and our understanding of this process has increased significantly in recent years. 

It is now widely accepted that motor learning involves changes in the way the brain process 

sensory information, as well as changes in the strength of connections between neurons. These 

changes can be observed using a variety of techniques, including neuroimaging, 

electrophysiology, and computational modeling (Aliakbaryhosseinabadi et al., 2021; Hardwick 

et al., 2013; Ostry & Gribble, 2016). 

Cerebellum. The cerebellum plays a vital role in motor learning and is essential for the proper 

coordination of voluntary movements (Itō, 2008). Multiple studies have demonstrated the 
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important role of the cerebellum in motor learning. For example, a meta-analysis by Johnson et 

al. (J. F. Johnson et al., 2019) showed that cerebellum is involved in the process of adapting 

movements to changing environments, allowing us to adjust our movements and maintain 

coordination in new situations. Using a noninvasive brain stimulation technique, Wessel and 

colleagues (2016) showed that the cerebellar stimulation enhanced the consolidation of the new 

motor skill, retesting participants 24 h after training.  

When we perform a motor task, the cerebellum is actively involved in the learning process. It 

receives input from various sources, including sensory receptors in the muscle and joints, as 

well from the eyes and ears (Raymond et al., 1996). The input is used to make adjustments to 

muscles output, allowing us to perform the task more accurately and efficiently. When learning 

to ride a bike, the cerebellum receives input from sensors in the muscles and joint, as well as 

visual and auditory input, and uses this information to make fine adjustments to the output of 

the muscles (Itō, 2008). 

Many research studies involving individuals with cerebellar degeneration have found 

significant impairments in visuomotor adaptation (Rabe et al., 2009; Schlerf et al., 2013), force-

field adaptation (Criscimagna-Hemminger et al., 2010a; Smith & Shadmehr, 2005), saccadic 

adaptation (Golla et al., 2008; Xu-Wilson et al., 2009), locomotor adaptation (Morton & 

Bastian, 2006), and speech adaptation (Parrell et al., 2017). Patients with cerebellar damage are 

more able to adapt to a change in their environment if it is introduced gradually, compared to 

if it is introduced suddenly. In fact, Criscimagna-Hemminger and colleagues (2010b) 

investigated motor learning processes in patients with cerebellar degeneration, with a task in 

which two groups of participants had to adapt their reaching movements in response to large 

perturbations. One group experienced the perturbations suddenly, while for the second group 

the perturbations were imposed gradually. The second group demonstrated significant 

improvement, compared to the first group, suggesting that, despite cerebellar damage, they 

maintained the ability to learn from small errors and show strong resistance to change. 

Primary Motor Cortex. Using non-invasive brain stimulation techniques, the role of the primary 

motor cortex in motor learning, particularly in the acquisition and retention phases of 

information, has been investigated and deepened. Galea and colleagues (2011) found that, by 
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applying transcranial direct current stimulation (tDCS) on the primary motor cortex, retention 

in a visuomotor adaptation task improved, while it did not affect adaptation. This result showed 

a dissociation in the processes of acquisition and retention during motor learning in the primary 

motor cortex.  

Supporting these findings, Richardson et al. (2006) used repetitive transcranial magnetic 

stimulation (rTMS) to induce a disruption on the primary motor cortex immediately before 

participants performed a viscous force-field adaptation. Subjects who received the brain 

stimulation performed significantly worse than control subjects in the retest task, despite they 

performed identically to control subjects in the adaptation task. Given these findings, the 

primary motor cortex seems to be involved in initiating the formation of long-term motor 

memories, but it is not essential in the process of motor adaptation. 

Basal Ganglia. The basal ganglia are composed of multiple nuclei, including the striatum, 

globus pallidus, and substantia nigra, and are interconnected with the cerebral cortex, 

cerebellum, and brainstem. These nuclei are involved in a wide range of functions, including 

motor control, cognitive control, reward processing, and emotional regulation (Groenewegen, 

2003). It has been suggested that patients with basal ganglia disease generally find intact 

adaptation but reduced long-term memory. For example, Huntington’s and Parkinson’s disease 

patients exhibited no deficits in adapting to a force field, but still showed smaller aftereffects 

in tasks of force-field adaptation, visuomotor adaptation, and prism adaptation (Bédard & 

Sanes, 2011; Gutierrez-Garralda et al., 2013; Leow et al., 2012; Smith & Shadmehr, 2005).

  

 

1.3.2 Motor Adaptation Tasks 

Force-field adaptation task. One of the several paradigms used to study motor learning is the 

force-field adaptation paradigm. Force-field adaptation task is an exercise designed to improve 

an individual’s ability to perform movements in a new dynamic environment (Bays et al., 2005; 

Scheidt et al., 2000).  
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In a force-field adaptation task, an external force, such as a mechanical or electromechanical 

device, is applied to the subjects’ limbs to alter the way they move. The subject grasps the 

handle of a robotic manipulandum and perform arm movements, while forces are applied to the 

robot causing deviations during the movement. They must then adapt their movements in order 

to complete the task, which helps them to develop better control and learn how to move in a 

novel force environment (Gandolfo et al., 1996; Shadmehr & Mussa-ivaldi, 1994; Smith et al., 

2006).  

For example, when a subjects make reaching arm movements by holding the robotic 

manipulandum, the planned movement will be perturbed by the forces applied, creating an error 

between the predicted and the observed movement. This requires to process sensory 

information about the force field, make adjustment to the movement and execute again the task. 

The goal of the subject is to counteract the forces applied to the robotic arm, generating equal 

forces but in the opposite direction (Fig. 1). Additionally, force-field tasks can be modified to 

increase or decrease the level of difficulty, which allows the subject to progress at their own 

pace and improve themselves. 
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Visuomotor rotation adaptation. The visuomotor rotation task is another commonly used 

paradigm to study motor adaptation process. In this task, the vision of the hand is obscured, 

while a cursor representing the hand’s position is displayed on a screen. Subjects are instructed 

to make reaching movement by controlling the cursor on the screen. A visual perturbation is 

applied on the cursor with a rotation around the starting position, in such a way that the cursor 

no longer reflects the hand’s position. Subjects need to adapt by adjusting their hand movements 

Figure 1. Force-field adaptation and aftereffects. This figure (from Krakauer et al., 2019) illustrates 

behavior in a typical force-field adaptation task. In this study participants, holding a robotic 

manipulandum(A), perform a force-field (B) task adaptation. After a baseline, in which no force field 

was applied and movements were relatively straight (C), a clock-wise force-field was applied resulting 

in movement errors in the direction of the force field (D). After training, participants learned how to 

move in the force field, making straight trajectories to reach the targets (E). Removing again the force-

field, the aftereffects of adaptation are revealed. Indeed, movements errors are in the opposite direction 

to the perturbation (F), because participants learned to counteract the force-field. 
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with a deviated angle, in order to successfully move the cursor to the target in a straight line. 

This task causes a conflict between the visual error and the unchanged proprioceptive 

information, because the imposed perturbation is purely visual. But despite the discrepancy, 

participants show to be able to modify their movements following deviations, possibly 

indicating a prevalence of visual information over proprioceptive information (Fig. 2) (Huang 

et al., 2011; J. Krakauer et al., 2000; J. W. Krakauer, 2009; Wang & Sainburg, 2005). 

An interesting study by Mazzoni and Krakauer (2006) showed that adaptation to a visuomotor 

rotation occurs through an implicit learning process, despite being given explicit instructions to 

complete the task perfectly. The authors informed the participants about the specific rotation 

and gave instructions on how to counteract it. However, it was surprising that they started to 

complete the task successfully with this strategy but then gradually could no longer maintain 

explicit control and made errors.  

 

 

 

Figure 2. The figure (from Wang & Sainburg) shows the visuomotor adaptation hand paths. On 

the initial exposure, hand paths are deviated from the target, because the position of the cursor 

was rotated 30° counterclockwise (left). After adaptation, when participants learn how to 

counteract the visual rotation, hand paths are relatively straight and significantly more accurate 

(right). 



 16 

They adapted unconsciously and failed to follow the cognitive strategy, indicating that the 

motor planning system overrides explicit strategies and cannot be replaced by them in adapting 

to the visuomotor rotation task. 

 

1.4 Motor Variability 

Motor variability refers to the inherent variability present to some degree in all movements of 

a human being (Stergiou, 2018). An expression used to describe motor variability is 'repetition 

without repetition', alluding to the fact that the same motor act or motor task, no matter how 

many times we repeat it, will always be unique (Bernstein, 1966). Motor variability is the worst 

enemy of athletes and musicians who, in order to improve their performance on the field or on 

stage, practice hard to reduce it as much as possible. Reducing motor variability also often leads 

to improved performance because of the constant search for movement perfection. In fact, 

studies suggested that motor variability interferes with the goal to be achieved through motor 

control and therefore had to be counteracted (Harris & Wolpert, 1998; Todorov & Jordan, 

2002). But is that true? Is motor variability just a 'noise' of the movement to be eliminated? And 

why is it so difficult to eliminate it completely, or at least tame it? 

One reason why motor variability is difficult to eliminate is that there is not just one source of 

variability (Faisal et al., 2008). The sources of individual motor variability have been analyzed 

using multiple experimental and computational methods, finding variability at various levels, 

from movement planning in central nervous circuits to force production in muscles (Dhawale 

et al., 2017). Variability was shown at the cellular level in various processes, such as spike 

initiation (van Rossum et al., 2003; White et al., 2000), propagation (A. A. Faisal & Laughlin, 

2007), synaptic transmission (Calvin & Stevens, 1968; Katz, B., & Miledi, 1970), and muscle 

activation (Hamilton et al., 2004; Jones et al., 2002). 

As mentioned before, motor variability plays a decisive role in motor learning. It is thought to 

play a role in the exploration and adaptation of movements during learning, and in the ability 

to adapt to new or changing environments. Indeed, new research has helped change the classical 
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view of motor variability from being 'noise' of movement to an advantageous feature (Cowin et 

al., 2022; Stergiou & Decker, 2011). Evidence suggests that movement variability may have 

functional benefits in specific contexts, such as in tasks requiring the ability to adapt to changing 

conditions or to perform a range of tasks. For example, research has shown that individuals can 

control and modify their movement variability to adapt to new or changing environments and 

are more efficient at switching between different tasks (Pekny et al., 2015; Trommershäuser et 

al., 2005).  

Wu and colleagues (2014) explored the hypothesis that there was a relationship between 

learning rates and baseline task-relevant variability. The authors instructed healthy participants 

to complete reaching movements in a single direction, by using a robotic manipulandum. They 

measure the variability of movements in a baseline session and then predict how fast each 

subject could learn to complete a force-field motor adaptation task by stratifying participants 

based on their individual variability. They found that higher task-relevant variability predicts 

faster learning rates, in other words, the more variable the movements, the faster the learning.  

In view of these results, motor variability can no longer be considered only as a negative aspect 

of the human nervous system, but rather as a crucial tool for motor learning. In the context of 

the exploration-exploitation dilemma (Sutton & Barto, 2018; Kaelbling, 1996), individual 

motor variability appears to be a key characteristic of the exploration phase (Dhawale et al., 

2017). In short, the dilemma is whether to continue exploring new options or to exploit the 

knowledge already acquired to complete a task. Thus, the individual motor variability could be 

modulated according to the exploration needed to find better solutions. 

There are also many examples in the field of sports research where the motor variability of 

athletes becomes a critical element that plays a role in performance. Increasingly, studying 

motor variability is crucial to provide more detailed and reliable data to coaches and athletes 

who want to improve performance (Barris et al., 2014; Bartlett, 2008; Busquets et al., 2016).  
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Aim of the study 

Many research has shown that motor variability plays an important role in motor learning 

processes. It has been demonstrated that participants who exhibit higher baseline motor 

variability show faster learning rates in a motor adaptation task in which they complete reaching 

movements in one direction.  

The aim of this study is to explore if higher individual baseline motor variability promotes 

motor learning in multiple directions. If motor variability could predict the rate of learning also 

in multiple directions, this would provide support for the general importance of variability in 

motor learning processes. To explore this hypothesis, in the current research was utilized a 

force-field motor adaptation task in which participants have to perform reaching movements 

towards eight targets. This approach will reinforce our knowledge about the relationship 

between motor variability and motor learning. 
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Chapter 2 - The role of Individual Motor Variability in Motor Learning 

2.1 Introduction 

From the way we write to the way we throw a ball, our movements are not always the same 

(Djioua & Plamondon, 2009). Even people, who have a high level of skill and consistently 

achieve the same result, show variations in their movements during the execution of a goal-

oriented action or task (H. W. Johnson, 1961). No matter how long one practices, there is an 

ever-present variability in motor execution that makes it virtually impossible to exactly repeat 

actions. This is particularly evident in the performance of individuals with high levels of motor 

expertise. In fact, motor variability has been shown and studied even in elite athletes and dancer 

(Hopper et al., 2018; Truong et al., 2023). It was commonly believed that variability of 

movement is caused by a noisy nervous system that impedes peak performance (Cohen & 

Sternad, 2009; A. Faisal et al., 2008; Renart & Machens, 2014).  

Subsequent studies have shifted the perspective on variability from a negative aspect to be 

minimized to an advantageous feature (Cowin et al., 2022; Stergiou & Decker, 2011). Studies 

in songbird have shown that variability in motor performance can be used as a support for motor 

learning (Kao et al., 2005; Ölveczky et al., 2005; Tumer & Brainard, 2007). Adult birds show 

variations in intonation in the sounds they emit. If some variations are followed by negative 

reinforcement, then the birds make sounds with intonations gradually further away from these. 

These results show that motor learning and performance optimization are also facilitated by 

variability. Something similar was also observed in humans. Indeed, Wu and colleagues (2014) 

demonstrate a correlation between variability and motor learning. They instructed participants 

to make reaching movements in a single direction, completing a force-field adaptation task. The 

results showed that higher baseline task-relevant variability predicted faster learning rates in 

the very early stages of the learning session (i.e., the first ten trials).  

What is still unknown is whether higher individual baseline motor variability promotes motor 

learning also in multiple directions. It has been shown that training a larger portion of the 

workspace during a motor learning task leads to a broader generalization of learning. Neva and 

Henriques (2013) investigated the effects of repeated and varied training on visuomotor 
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adaptation and generalization, by training a group of participants in a visuomotor rotation task 

under different training conditions. Participants were divided into two groups: one group 

received repeated training on a single rotation (i.e., trained on 4 targets 18 times), the other 

group received varied training on multiple rotations (i.e., trained on 18 targets only once). The 

kinematics of the reaching movements were recorded and analyzed to assess the changes in 

movement patterns over the course of the training. The results showed that the group that 

received repeated training showed better adaptation to the specific rotation for which they were 

trained on, but poor generalization to other rotations. The group that received varied training 

showed better generalization to other rotations. These findings suggest that repeated training 

on a single rotation improves adaptation to that specific rotation but does not promote 

generalization to other rotations. On the other hand, varied training promotes generalization to 

other rotations.  

To investigate whether individual baseline variability facilitates motor learning in an 

environment not restricted to one reaching direction, we used a force-field adaptation task with 

eight targets in four different directions. We used the experimental task from the study by 

Mattar and Gribble (2005). In this study, participants were instructed to make reaching 

movements by holding the handle of a robotic manipulandum device. They used the robotic 

arm to guide a cursor presented on a screen in front of them. The task was to perform point-to-

point reaching movements, reaching 8 different targets from a central starting position. 

Participants were asked to guide the cursor to the targets, while the robot was applying a 

clockwise force-field. At the start of the session, trajectories of the movements show the typical 

right hook in proximity to the target, due to the clockwise force-field. At the end of the session, 

participants were able to make straight movements towards the targets showing they learned 

how to move in the force-field environment.  

Here, we explore if higher individual baseline motor variability promotes motor learning in 

multiple directions. To test this hypothesis, we measured baseline motor variability before 

participants performed an eight-target motor adaptation task and examined whether individual 

baseline variability could predict the rate at which participants learned. 
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2.2 Methods and Materials 

2.2.1 Participants 

Forty-one right-handed adults (mean age 25,2 ± 2,5, 24 females) were recruited for the study. 

Participants had no neurological or musculoskeletal impairments and they had normal or 

corrected-to-normal vision. The study received approval by the ethical committee of Liguria 

Region and was carried out complying with the principles expressed in the revised Helsinki 

Declaration (World, 2013). Participants provided written informed consent. The sample size 

for the experiment was determined based on previous similar experiment (Wu et al., 2014). 

2.2.2 Experimental design and procedure 

Subjects sat in a comfortable chair in front of a custom robotic manipulandum (Casadio et al., 

2006; Lombardi et al., 2021; Marini et al., 2019), grasping the handle with the right hand that 

allows for arms movements along the transversal plane. The position of the seat was regulated 

facing the computer monitor. The 24.5” LCD screen was set to a spatial resolution of 1920 x 

1200 pixels and 100 Hz refresh rate. To set the distance between the seat and monitor, 

participants were asked to reached the extreme point of the workspace with the arm fully 

extended, and a reference position 10 cm below the center of the workspace, keeping the elbow 

flexed approximately 45° (Fig. 3). The adjustment of the chair on the axis parallel to the monitor 

was set by aligning the participant's shoulder with the workspace midline. The torso was 

strapped to the seat with belts to prevent the subject from compensating and moving the torso. 

The robotic manipulandum used for the study is based on a planar haptic manipulator with 2 

degrees of freedom. It has a workspace area of 80 x 40 cm, which is limited by a virtual wall 

that subjects cannot overstep.  
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The manipulandum is able to measure the trajectory of the hand at the resolution of 0.1 mm, it 

records lateral force profiles of the movements and gives us the possibility to apply force field 

environment at a sampling rate of 200 Hz. The control architecture is based on the RT-LabH 

real-time operating system. 

Procedure. To accurately measure baseline variability, we included a prolonged baseline period 

in the study that consisted of two phases of 400 trials. We considered the first phase of the 

baseline period as a familiarization period, while with the second we would measure individual 

baseline motor variability. After the prolonged baseline period, subjects performed a learning 

phase of 200 trials, in which they were exposed to a velocity-dependent force-field 

environment. Participants were instructed to make point-to-point reaching arm movements (10 

cm length), while grasping the handle of the robotic manipulandum. Starting from the central 

starting position, the task was to reach one of the eight peripheral targets that appeared on the 

Figure 3. The picture depicts a subject holding the robotic manipulandum in the process of reaching the target in 

the vertical direction (90°), starting from the central position. We superimposed on the picture what the subject 

could see on the monitor in front of him to make the image easier to understand. 
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screen monitor (Fig. 4). Each trial started from the central position to reach one of eight 

peripheral targets.  

 

 

Once the target was reached, it would disappear, and the target indicating the initial starting 

position would reappear. The targets were 24 mm in diameter, located 10 cm away from a 

central starting position and could appear in eight different positions. The instruction given was 

to reach the peripheral target quickly and accurately, possibly in one movement. The 

participants received feedback on the speed of the movement for each trial. The desired 

movement duration was in the range of [175 - 275] ms. At the conclusion of each reaching 

movement, the color of the target was changed according to whether the movement was too fast 

(red target), too slow (blue target) or the correct speed (yellow target).  

The experimental protocol was divided in two experimental phases: a first phase, the baseline 

phase, in which no force field was applied to the robotic manipulandum, in order to quantify 

individual baseline motor variability, then the learning phase, in which a clockwise force field 

was applied to the manipulandum, so they could learn how to move in a new force environment. 

The force-field environment applied to the manipulandum for the learning phase was velocity 

dependent and with a clockwise direction according to the following equation: 

90° 

270° 

0° 180° 

135° 

225° 

45° 

315° 

Figure 4. Experimental Task. Subjects hold a custom robotic 

manipulandum, which they used to guide a cursor on the 

monitor screen to reach the eight targets. (modified from 

Mattar & Gribble, 2005) 
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where 𝐹! and 𝐹" are robot-generated forces in the left/right and forward/backward direction, 𝑥̇ 

and 𝑦̇ are hand velocities, 𝑘 = 20	𝑁𝑠/𝑚 and 𝑑 = 	+1.0. 

Error-clamp trials. In both baseline and learning sessions, a particular kind of trial, called error-

clamp trials, was interspersed at 20% of total trials (80 error-clamp trials in each baseline phase 

and 40 error-clamp trials in the learning phase). Error-clamp trials are used to measure the 

feedforward motor output that is produced during a movement. Reaching movements are 

controlled by feedforward motor output, which is based on pre-planned information, and online 

feedback error correction, which adjusts the movement based on any errors that are detected. 

In error-clamp trials, the lateral deviations during movements are limited to below 1 mm, 

eliminating the lateral error signal and allowing for the isolation of feedforward motor output. 

Error-clamp trials involve the application of damped high-stiffness elastic force to restrict the 

subjects’ lateral forces to a straight channel towards the target. This effectively “clamps” the 

movements within a narrow path. To ensure that we captured the entire movement, we 

examined the force output generated over an 860 ms window centered at the peak speed point, 

even though the movement duration was generally between 500 and 600 ms. This allowed us 

to study the lateral force output generated during the reaching movement in greater detail. To 

remove high-frequency noise we applied a second-order Butterworth filter with a cutoff 

frequency of 10 Hz to the force data. This smoothing process helped to improve the signal-to-

noise ratio and enhance the accuracy of the force measurements. Data analysis were performed 

using custom Matlab software (MathWorks, Natick, MA). 

Individual baseline variability estimation. We calculated the amount of the individual task-

relevant variability by considering movement variability recorded during baseline error-clamp 

trials. We first computed a variability index by projecting the lateral forces onto the ideal lateral 

forces (ideal velocity-dependent force patterns), using the following formula:  

𝐹#$%& =
𝑑𝑜𝑡(𝐹'() , 	𝑣𝑒𝑙)
𝑑𝑜𝑡(𝑣𝑒𝑙, 𝑣𝑒𝑙) 	.∗ 𝑣𝑒𝑙 
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where Flat is the time dependent force profile in a single trial, vel is the velocity profile in a 

single trial, dot represents the scalar product between two vectors, Fproj is the projections of 

lateral force profiles onto its corresponding velocity profile. Then, the variability is the standard 

deviation over time points of the Fproj projection vector. This variability index is a single-trial 

index. To obtain a single value for each subject, we averaged this single-trial index across 

baseline error clamp trials. 

Initial learning rate estimation. We followed the method used in previous studies and 

performed a baseline subtraction per participant (Wu et al., 2014), using the last eight error 

clamps during the baseline as a reference for the changes in force output measurements during 

error-clamp trials in the training period. Then, we computed the multiple linear regression with 

position, velocity, and acceleration as the independent variables as follows: 

𝐹'() = 𝛽* + 	𝛽#%+_'() ∗ 𝑝'() + 𝛽-.'_'() ∗ 𝑣'() + 𝛽(//_'() ∗ 𝑎'() 

 

Then we determined the learning level by first extracting the velocity regression coefficient of 

ideal force and finally by normalizing the velocity regression coefficient so that a value of 1 

indicated full learning: 

𝐹01.(' = 𝛽* + 𝛽-.'_01. ∗ 𝑣'() 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝐿𝑒𝑣𝑒𝑙	 =
𝛽-.'_'()
𝛽-.'_01.

 

 

For each participant an initial learning rate was determined by calculating the average rate of 

increase in learning level during the first ten trials of the training period, which included two 

error-clamp trials: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 =
𝐸𝐶2 + 𝐸𝐶3

10  
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where EC1 is the learning level in the first error-clamp trial and EC2 is the learning level in the 

second error-clamp trial.  

 

2.3 Results 

Participants completed two experimental sessions in which they were instructed to perform 

reaching movements using a robotic manipulandum. They performed the baseline session 

without any perturbations applied to arm movements. They were then asked to complete a 

force-field adaptation task in which a clockwise force field was applied to the robot. The task 

was to learn how to move in a force field environment without receiving explicit instructions. 

In other words, participants had to learn how to move precisely to targets in a single motion 

while applying perturbing forces to the arm.  

To replicate the results obtained by Wu and colleagues (2014) on the positive relationship 

between individual variability and learning rate, we focused on the very first phase of the 

learning session, the initial learning rate. We found no significant correlation between 

individual task-relevant variability and the initial learning rate, over first two error-clamp trials, 

across subjects (Fig. 5; r = +0.02, P = 0.90, t(39) = 0.12). 

 

Figure 5. Comparison of task-relevant variability with the initial 

learning over the first two error-clamp trials.  

r = .02 

p = .9  
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The pseudorandomisation of the trials permitted participants to experience targets in cycles of 

eight. Similarly, they experienced the error-clamp trial with the same scheme.  This allowed us 

to extend the computation of initial learning over the first eight error-clamps, considering that 

participants had experienced all the eight targets. Consistently, calculating the initial learning 

over the first eight trials (i.e., the first error-clamp trial for each target direction) we do not find 

a significant correlation (Fig. 6; r = -.075, P = 0.63, t(39) = -0.47).  

 

By stratifying participants according to their individual variability, replicating the analysis from 

Wu and colleagues (2014), we can form four subgroups, from participants with above-average 

variability to those with below-average variability. We had subjects (n = 6) with variability that 

was at least one standard deviation below average, subjects (n = 22) with variability that was 

below average, subjects (n = 19) with variability that was above average, and subjects (n = 7) 

with variability that was at least one standard deviation above average. We compared the 

individual variability with the average learning rate over the first two trials (Fig. 7) and the first 

eight trials (Fig. 8). Consistent with previous results, there is no positive correlation between 

initial learning rate and task-relevant variability (Suppl Fig. S1-S2).   

 

r = -.07 

p = .63  

Figure 6. Comparison of task-relevant variability 

with the initial learning over the first eight error-

clamp trials. 



 28 

  

 

 

 

These findings are corroborated by further analysis in which we investigated the relationship 

between variability and learning by calculating initial learning differently. To our knowledge, 

this is the first study to investigate the role of variability on motor learning with a force-field 

Figure 7. Comparisons between average learning rate, over first 

two error-clamp trials, and individual task-relevant variability. 

Four subgroups are shown from least to most variable (from 1 to 

4). Bars error show standard deviation. 

Figure 8. Comparisons between average learning rate, over first 

eight error-clamp trials, and individual task-relevant variability. 

Four subgroups are shown from least to most variable (from 1 to 

4). Bars error show standard deviation. 
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adaptation task with eight targets, we explored the possibility of computing initial learning in a 

different way compared to the one described by Wu and colleagues. The initial learning was 

also computed: - over the first error-clamp (Suppl Fig. S3A, in Appendix A), considering an 

even earlier phase of the learning session than the one already analyzed, - over the first sixteen 

error-clamp trials (i.e., the first two error-clamp trials for each target direction) (Suppl Fig. S3B, 

in Appendix A), over the first two error-clamp trials of a specific target (Suppl Fig. S4, in 

Appendix A), - over the first two error-clamp trials of a specific direction (i.e., four directions: 

0°-180°, 45°-225°, 90°-270°, 135°-315°) (Suppl Fig. S5, in Appendix A). 

 

2.4 Discussion 

Previous work has shown that subjects who had more task-relevant variability at baseline 

learned faster than those who had lower variability (Wu et al., 2014). The crucial difference 

with our study is the extent of workspace used for the motor adaptation task, as our study used 

a larger surface using a task with more targets. By using one of the most common motor 

adaptation tasks, i.e. a velocity dependent force-field design with eight targets (Bays et al., 

2005; Mattar & Gribble, 2005; Miyamoto et al., 2019), we were able to both quantify the 

amount of individual motor variability and to make participants complete a motor learning task.  

Here we have shown that individual baseline motor variability does not predict faster learning 

rates in motor adaptation task with multiple directions. Indeed, we found that individuals 

undergoing a force-field adaptation task with multiple directions show that motor learning rate 

is not predicted by their individual motor variability. The correlation between individual motor 

variability and initial learning rate was not significant. Interestingly, even when exploring new 

ways of interpreting the computation of initial learning, the results remain consistent.  

To our knowledge, no study has previously investigated the role of motor variability in motor 

learning processes over a larger workspace than a single direction. Indeed, Wu and colleagues 

demonstrated that higher task-relevant variability predicts faster learning rates in the very early 

stages of the learning session. They calculated the initial learning rate as a measure of learning 
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in early phases and showed that this effect occurs in the window encompassing the first two 

error-clamp trials and disappears soon after. In our study, we show that there is no such window 

in which higher baseline variability accelerates learning in the adaptation task. 

The number of targets played a role in these results, as it undoubtedly made the task more 

difficult, in terms of the number of trials required, and thus the cognitive and physical effort 

involved. It has been shown that fatigue can affect movement variability differently, leading to 

both an increase and a decrease in variability depending on the specific variable being 

considered (Cortes et al., 2014). Our results can outline that motor variability overall, rather 

than in reaching movements directed at specific targets, is not predictive of motor learning. The 

task with eight different target positions introduces an additional factor that might have 

influenced the results, namely the anisotropy of the movement. Anisotropy of limb movements 

refers to the fact that the inertial resistance of the arm depends on hand movement direction 

(Flanagan & Lolley, 2001), thus certain movements are easier to perform in certain directions 

or orientations than in others. It has been shown that trajectory kinematics of reaching 

movements are significantly different as the direction changes, and this is due to limb inertia 

(Gordon et al., 1994). The properties of the arm affect the way the target is reached, depending 

on its position. We could hypothesize that part of the variability that participants show in 

reaching targets is the inevitable variability that arises from reaching a specific target due to the 

properties of the arm. To account for this when calculating motor variability, future studies 

could consider this property of arm movement in reaching different targets. Moreover, in this 

study, the amount of motor variability at baseline of each individual was computed based only 

on the lateral forces applied in the error-clamp trials. It should also be considered that the 

individual motor variability has been quantified based on several variables such as the 

maximum curvature of the trajectory, the angle and velocity of the movement, or the amplitude 

of the movement (Cohen & Sternad, 2009; Torres, 2013; Wulf & Schmidt, 1997). 

In summary, our current findings do not support the view that motor variability could be a 

predictor of faster learning in a motor adaptation task. There is no significant correlation 

between individual baseline variability and learning rate in performing a motor adaptation task 

with multiple targets. Further studies will be necessary to reinforce knowledge of the role of 
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motor variability in motor learning processes and to determine how generalizable the positive 

effect of motor variability is in a broader workspace.  
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Chapter 3 - Introduction to Schizophrenia and Prediction Abnormalities 

This second section of the thesis aims to investigate the alterations in the action prediction in 

subjects suffering from psychotic disorders. The primary goal is to detect whether there are 

differences between patients with psychotic disorders and healthy controls in discriminating the 

outcome of an observed action (i.e., the size of an object from movement kinematics). Indeed, 

a previous study found that healthy subjects were able to predict the size of an object just by 

observing grasping movements using a progressive temporal occlusion task (Ansuini et al., 

2016). Secondly, different cognitive areas, such as functioning, psychopathological symptoms, 

cognition and neurological signs, were tested in order to investigate if the severity of positive 

and negative symptoms influences the ability to predict object size.    

 

3.1 Schizophrenia 

Schizophrenia is a severe neuropsychiatric disorder that affects approximately 1% of the 

world’s population. The age of onset in males is from 20 to 24 years and slightly later in females 

(Jablensky & Kalaydjieva, 2003). Less than 50% of patients acquire long-term recovery  

(Tandon et al., 2010), which leaves many patients disabled and disadvantaged. The impact of 

the disease is further highlighted by the Global Burden of Disease study ranking schizophrenia 

as the seventh leading cause of years of life lived with disability (YLD) in all age groups and 

third in the 15 – 44 years old (World Medical, 2013). In general, patients with schizophrenia 

present deficits in several areas, such as distortions in thinking, perception and behavior that 

lead to severe impairments in cognition, clinical outcomes, social status and quality of life 

(Green et al., 2000; Harvey et al., 2012; Hofer et al., 2005).  

The various areas in which these patients have been shown to exhibit deficits are executive 

functioning, attention (Orellana & Slachevsky, 2013), language processing (Crow, 1998), 

working and episodic memory (Barch & Ceaser, 2012). Regarding the onset of these deficits, 

evidence says that they may be present before the onset of the disorder (Lencz et al., 2006), 

stable during its course (Heilbronner et al., 2016) and associated with abnormalities in 

prefrontal and temporal brain structures (Antonova et al., 2004).    
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In the DSM-V, two significant changes were made to the diagnosis and classification of 

schizophrenia.  Firstly, the diagnostic criteria for schizophrenia were revised, and the disorder’s 

name was changed from schizophrenia-to-schizophrenia spectrum disorder. This allows 

specialists to diagnose the condition based on the severity of symptoms. Secondly, the subtypes 

of schizophrenia (paranoid, disorganized, catatonic, undifferentiated, and residual) were 

removed. The reason for eliminating the previous subtypes is that they are not stable conditions 

and have not afforded significant clinical utility nor scientific validity and reliability. 

 

Table 1. DSM-V TR – diagnostic criteria for schizophrenia  

Disorder Class: Schizophrenia Spectrum and Other Psychotic Disorders 

A. Characteristic symptoms: Two (or more) of the following, each present 

for a significant portion of time during a 1-month period (or less if 

successfully treated). At least one of these must be (1), (2) or (3): 

1. delusions 

2. hallucinations 

3. disorganized speech (e.g., frequent derailment or incoherence) 

4. grossly disorganized or catatonic behavior 

5. negative symptoms (i.e., diminished emotional expression or avolition) 

B. Social/occupational dysfunction: For a significant portion of the time 

since the onset of the disturbance, level of functioning in one or more 

major areas, such as work, interpersonal relations, or self-care, is 

markedly below the level achieved prior to the onset (or when the onset 

is in childhood or adolescence, there is failure to achieve expected level 

of interpersonal, academic, or occupational functioning). 
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C. Duration: Continuous signs of the disturbance persist for at least 6 

months. This 6-month period must include at least 1 month of symptoms 

(or less if successfully  

 

treated) that meet Criterion A (i.e., active-phase symptoms) and may 

include periods of prodromal or residual symptoms. During these 

prodromal or residual periods, the signs of the disturbance may be 

manifested by only negative symptoms or two or more symptoms listed 

in Criterion A present in an attenuated form (e.g., odd beliefs, unusual 

perceptual experiences). 

D. Schizoaffective disorder and depressive or bipolar disorder with 

psychotic feature have been ruled out because either (1) no major 

depressive or maniac episodes have occurred concurrently with the 

active-phase symptoms, they have been present for a minority of the 

total duration of the active and residual periods of the illness. 

E. The disturbance is not attributable to the physiological effects of a 

substance (e.g., a drug of abuse, a medication) or another medical 

condition.  

F. If there is a history of autism spectrum disorder or a communication 

disorder of childhood onset, the additional diagnosis of schizophrenia is 

made only if prominent delusions or hallucinations, in addition to the 

other required symptoms of schizophrenia, are also present for at least 1 

month (or less if successfully treated).  

(DSM-V, 2013, American Psychiatric Association. Diagnostic and statistical manual of mental 

disorders (5th ed.)) 
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3.2 Symptoms  

Schizophrenia involves a range of issues with thinking (cognition), behavior, and emotions. 

Patients with schizophrenia often present with a range of symptoms that can be divided into 

three major categories: positive symptoms, negative symptoms, and cognitive symptoms. 

 

3.2.1 Positive symptoms  

Positive symptoms, generally known as psychotic symptoms, include delusions and 

hallucinations, and indicate a disturbance in a person’s ability to distinguish between reality 

and fantasy. These symptoms can manifest in various ways and may involve different sensory 

modalities. Delusions of persecution and auditory hallucinations are two examples of positive 

symptoms that are commonly experienced by individuals with schizophrenia. These symptoms 

may suggest that a person has difficulty determining what is real and what is not (Tandon et al., 

2009).  

 

Hallucinations. Hallucinations occur when seeing, hearing, smelling, tasting, or feeling things 

that do not actually exist outside our minds. Hallucinations are experiences that seem real to 

the person having them, but are not based in reality. They can involve any of the senses and are 

often distressing for the person because others around them cannot hear or see the same things. 

Hearing voices is the most common type of hallucination reported by people with 

schizophrenia. Brain imaging studies have shown that people with schizophrenia experiencing 

persistent hallucinations have a reduction in the volume of several brain areas (e.g., insular 

cortex, superior temporal gyrus and fusiform gyrus) (O’Daly et al., 2007). Hallucinations can 

involve voices that are perceived as friendly or hostile, pleasant or unpleasant. The content of 

these voices may include instructions, commentary on the person’s thoughts or behavior, or 

other messages. The source of the voices may be attributed to an internal or external origin, and 

may appear to come from one or multiple locations (Plaze et al., 2011; F. Waters et al., 2012; 

F. A. V. Waters et al., 2006). 

 

Delusions. A delusion is a belief that is not based in reality and is held firmly despite evidence 

to the contrary. It can be a symptom of various mental health conditions, such as schizophrenia, 
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schizoaffective disorder, and delusional disorder. Delusions may also be a symptom of other 

conditions, such as dementia or brain injury (Coltheart et al., 2007; Feyaerts et al., 2021; 

Langdon et al., 2010). 

Delusions can take many forms and can be based on a wide range of topics. Some common 

types of delusions include: 

- Persecutory delusions: these involve the belief that one is being persecuted, watched, or 

plotted against by others 

- Grandiose delusions: these involve the belief that one has exceptional abilities, wealth 

or power 

- Erotomaniac delusions: these involve the belief that someone is in love with the person 

experiencing the delusion 

- Nihilistic delusions: these involve the belief that the world is about to end, or that one’s 

body or self does not exist 

It is important to note that what may seem like a delusion to one person may be a sincerely held 

belief to another. Moreover, not all false beliefs are delusions. In order for a belief to be 

considered a delusion, it must be fixed and resistant to change despite evidence to the contrary.  

 

 

3.2.2 Negative symptoms  

Negative symptoms of schizophrenia refer to a lack or absence of certain behaviors or emotions. 

Negative symptoms include: 

• Alogia, reduction in speech, including a lack of fluency, a decrease in the amount of 

speech, and a lack of content in conversation 

• Anhedonia, lack of pleasure or enjoyment in activities that used to be enjoyable 

• Asociality, lack of interest in social interaction or decrease in social functioning 

• Avolition, lack of motivation or a difficulty initiating and completing tasks 

• Flat affect: lack of emotional expression, such as a lack of facial or vocal changes in 

response to emotional stimuli 

Negative symptoms can have a significant impact on a person’s daily life, and it can be difficult 

for patients to care about themselves and their personal hygiene.  



 37 

It can be difficult to tell whether the symptoms are part of the development of schizophrenia or 

caused by something else. Relationships with friends and family can become problematic as 

these symptoms can be mistaken for deliberate laziness or rudeness. (Buchanan, 2007; Mäkinen 

et al., 2008; Rector et al., 2005). 

 

3.2.3 Cognitive symptoms 

Cognitive symptoms are a prominent and consistent feature of schizophrenia. These symptoms 

may involve various types of impairments, and can often be detected before other symptoms 

appear. They tend to persist over time and are a core part of the disorder (Bora & Murray, 2014; 

Heinrichs & Zakzanis, 1998; Mesholam-Gately et al., 2009). Cognitive symptoms, especially 

impairment in social cognition, predict poor social and vocational outcomes (Bowie et al., 

2008). Patients with schizophrenia may experience disorganized thoughts and behavior, as well 

as problems with working memory, such as difficulty holding onto multiple pieces of 

information at once. They may also have difficulty paying attention and may struggle to 

organize their thoughts and make decisions. These cognitive symptoms can significantly impact 

their daily functioning (Forbes et al., 2009). 

 

3.3 Action Prediction in Schizophrenia 

Planning and executing actions are a crucial aspect of human life that enables us to influence 

and shape our environment. Underlying these capabilities of human beings are specific neural 

circuits (Haggard, 2008), and they also allow for a unique subjective experience, which has 

been called 'sense of agency' (Gallagher, 2000). Predicting events in time is a significant aspect 

of the temporal structure of consciousness, and it plays a role in shaping a person’s mental life. 

The impairment of this ability in patients with schizophrenia (Fuchs, 2007; Vogeley & Kupke, 

2007) seems to be related with self-disorders (Martin et al., 2014; Mishara et al., 2016), which 

are disturbances of the “basic-self” that affect individual’s sense of self and inner experiences. 

Self-disorders are a common feature of schizophrenia. This dysfunction can manifest in a 

variety of ways, including self-awareness, self-regulation, and self-esteem. These difficulties 

may contribute to social impairments, as patients may have trouble making valid predictions 



 38 

about expected sensations and experiences. Indeed, many studies have suggested that some of 

the social difficulties experienced by people with schizophrenia may be due to a deficit in 

mentalization, which is the cognitive ability to understand and interpret the mental states (e.g., 

intentions) to others, and to predict their behavior (Sprong et al., 2007; Harrington et al., 2005; 

Frith, 2004).   

There is substantial evidence in the literature indicating that people with schizophrenia have 

difficulties making predictions. Early research on motor control suggested that problems with 

agency, or the sense of control over one’s own actions, may be caused by impairments in the 

processes involved in predicting the sensory consequences of an action (Blakemore et al., 1998; 

Franck et al., 2001; Frith et al., 2000; Jeannerod, 2009; Shergill et al., 2005). Several studies 

have suggested that a key feature of psychosis is difficulty in attributing experiences to oneself 

and a significant change in fundamental aspects of the self (Sass & Parnas, 1998). In addition, 

it has been shown that deficits related to disorders of self-agency might be due to an inability 

to predict future events (Fourneret et al., 2002; Franck et al., 2001; Frith et al., 2000; Lindner 

et al., 2005; Shergill et al., 2005). Patients who have schizophrenia, therefore, seem to rely more 

on sensory afferent information to compensate for this deficit (Chambon et al., 2011a; Synofzik 

et al., 2010; Voss et al., 2010). 

3.3.1 Linking positive symptoms and error predictions 

A framework of the motor control system depicts the components that can be related to the 

subjective experience of motor control (Blakemore et al., 2002). According to this model, a 

copy of the motor commands is sent to an internal predictor, which estimates the likely outcome 

of the motor command. These predictions can be made about both one’s own actions and those 

of external agents. A comparator node then compares sensory input to these predictions, 

generating a prediction error. When afferent sensory inputs and predictions cancel each other 

out, and there is no prediction error at the comparator node, it is thought that a sense of agency 

is experienced. The comparison between the efferent signal (indicating that a particular action 

will occur) and the reafference signal (resulting from the completed action) occurs at the 

comparator node. 
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                            Figure 9. Internal models of the motor system (from Blakemore et al., 2002) 

 

In schizophrenia disorder, the ability to predict based on an efferent copy would be impaired 

(Frith, 1992; Lindner et al., 2005). From this perspective, positive symptoms might occur when 

there is a lack of predictive input at the comparator (e.g., in delusions of control). The 

misattributions can also occur for internally generated thoughts and intentions, which are 

perceived as coming from outside. 

It has been suggested that brain functions may be based on a hierarchical Bayesian system 

(Friston et al., 2006; Lee & Mumford, 2003; Summerfield & Koechlin, 2008). A Bayesian 

mechanism refers to the process by which the brain uses prior knowledge and expectations to 

make predictions about incoming sensory information (Bayes, 1763). In healthy individuals, 
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the brain constantly updates its predictions based on new sensory information, allowing for the 

efficient processing of information. A prediction error generated by a lower-level system is 

used as input for a higher-level system, while simultaneously, feedback from the higher-level 

system provides the prior beliefs for the lower-level system. Fletcher and Frith (2009) suggested 

that, in patients with schizophrenia, there may be a dysfunction in the hierarchical Bayesian 

framework, leading to positive symptoms, both hallucinations and delusions. In terms of this 

framework, the source of the positive symptoms of schizophrenia is the propagation of false 

prediction errors up the hierarchy. The more severe the damage to the Bayesian system, the 

higher in the hierarchy will be the prediction error. 

Chambon et al. (2011) showed that psychotic patients have specific difficulties in predicting 

intentions achieved by a sequence of motor acts. They found that patients with schizophrenia 

performed poorly on an action discrimination task because they were excessively confident in 

their prior expectations. Indeed, a positive relationship was found between the severity of 

positive symptoms and the tendency of patients to rely too heavily on previous expectations 

when making decisions: the more patients relied on their previous expectations, the more severe 

their symptoms were. Only a few studies have attempted to investigate the nature and extent of 

action prediction deficits in schizophrenia. One study found that individuals with schizophrenia 

were less able to anticipate the actions of others in a virtual reality task, suggesting that the 

impairment is specific to action prediction and not general social cognition deficits (Freeman, 

2008). Another study found that patients with schizophrenia struggle to predict the actions of 

others in a simulated grocery store task, suggesting that impairment may also affect more 

complex social situations (Aubin et al., 2018).  
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Aim of the study 

It has been shown that humans can predict the result of an action, such as the size of an object 

being grasped, using a progressive temporal occlusion paradigm, in which participants observe 

reach-to-grasp video (Ansuini et al., 2016). As the occlusion intervals progress, the accuracy of 

predictions quickly improves and reaches almost perfect accuracy at around 60% of the 

movement’s duration. Earlier temporal occlusions of action predictions have not been 

investigated in patients with schizophrenia, but only actions occluded at 79%, 83%, 87% and 

100% of the entire movement (Chambon et al., 2011a).  

It is currently unknown whether, in psychosis, this predictive ability is still intact even at earlier 

time occlusions and whether there are any differences between individuals with psychosis and 

a control group in this regard. To investigate this hypothesis, we asked two groups of 

participants, patients and healthy subjects, to complete the same object size prediction task from 

Ansuini et al. (2016). The assessment of patients' symptomatology and functioning was 

evaluated using neuropsychological scales and allowed us to explore whether the severity of 

positive and negative symptoms affects the ability to predict object size. 
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Chapter 4 – Action Prediction in Psychosis 
 

4.1 Introduction 
Complex, high-level dysfunctions are often grounded in subtle abnormalities in low-level 

processes. Theoretical considerations and empirical findings suggest that psychotic symptoms 

such as diminished demarcation of self-other boundaries and misattributions of self-generated 

actions arise from abnormal motor-sensory predictions (Fletcher & Frith, 2008). 

 

In motor control the brain relies on internal forward models to predict the outcome of a motor 

command and attenuate the predicted sensory feedback of the generated action (Gallivan et al., 

2018; Wolpert et al., 2003). Mechanistically, when the predicted and the generated outcome 

match, the sensory feedback is attenuated, and the action is labeled as self-generated. When 

they do not match, the sensory feedback is not attenuated, and the action is labeled as externally 

generated. Increasing evidence suggests that a disturbance in this self-monitoring mechanism 

may underlie both reduced suppression for self-generated actions and altered self-monitoring 

in psychosis (Ford et al., 2001, 2014; Perez et al., 2012; Salomon et al., 2020, 2022; Shergill et 

al., 2014). 

 

What remains unclear is whether prediction deficits generalize to other-generated actions 

(Sokolov et al., 2017). That is, do patients with psychosis also exhibit deficits in predicting the 

actions of others? This hypothesis is motivated by the computational parallels between the 

processing of self- and other-actions (Wolpert et al., 2003) and, more specifically, by the view 

that action prediction engages neural pathways associated with internal forward models 

(Hommel et al., 2001). This hypothesis makes the distinctive prediction that observers with 

psychosis, with aberrant internal models, should also show abnormal predictions of the actions 

of others.  

 

At present, psychosis has been associated with abnormalities in intention understanding 

(inferring the intention of a manipulative action sequence), but not in action prediction 

(discriminating the outcomes of two manipulative actions) (Chambon et al., 2011). However, 

abnormalities in action prediction may be masked by the rapidity with which action-related 
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information is integrated. Using a progressive temporal occlusion paradigm, we have 

previously demonstrated that human perceivers can predict the outcome of an observed action 

(i.e., the size of the to-be-grasped object) as early as 80 ms after movement onset (10% of 

movement duration) (Ansuini et al., 2016). Prediction accuracy rapidly increases from the 

earlier to the later occlusion intervals, culminating in near perfect accuracy at about 60% of 

movement duration, well before the hand reaches the target (Ansuini et al., 2016). Previous 

work tested action predictions from late sequences (actions occluded at 79%, 83%, 87% and 

100% of movement duration) (Chambon et al., 2011b). Therefore, it is unknown whether early 

integration processes required for rapid other-action predictions are preserved in psychosis.  

 

Here, we address this gap and investigate the ability of observers with psychosis to predict the 

size of a to-be-grasped object over progressive temporal occlusion intervals, from 10% up to 

80% of movement duration. Using a novel analytic approach to examine information encoding 

and readout with single-trial resolution (Montobbio et al., 2022; Patri et al., 2020), we 

demonstrate that whilst observers with psychosis use the same sources of advance information 

as controls, they require more information to reliably predict object size and specifically lack 

the capability to extract information from earlier time periods.  
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Figure 10. Experimental design. (A) Example video frames of reach-to-grasp actions towards a small or large object presented 

under eight level of temporal occlusion. (B) Trial design of the action prediction task. 

 

 

4.2 Methods 
4.2.1 Participants  

Sixteen outpatients (8 females) diagnosed with non-affective psychotic disorders 

(schizophrenia, schizoaffective disorder, delusional disorder, and brief psychotic disorder) and 

16 control participants (11 females) participated in the study. Groups were matched for age 

(healthy mean ± SD = 26.9 ± 4.6 y; patients mean ± SD = 30 ± 4.5 y; t(30) = -1.83, P = 0.077). 

Outpatients were recruited from the Community Mental Health Services in Ferrara and had 

previously been diagnosed by an experienced psychiatrists according to ICD-9 CM criteria. 

Patients with neurological disorders, comorbid major depression and/or substance abuse 

according to ICD-9 CM criteria were excluded. Psychiatric, neurological and substance-use 

disorder were exclusion criteria for controls. All participants had normal or corrected-to-normal 

vision. The study was approved by the Ethics Committee of the University of Ferrara and 

complied with the principles of the revised Helsinki Declaration (World Medical, 2013). All 
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participants received information about the content of the study and provided written informed 

consent prior to participation in the study.   

 

4.2.2 Assessment of symptomatology and functioning 

Symptom severity and classification were assessed in the patient group using the Positive and 

Negative Syndrome Scale (PANSS) (Kay et al., 1987), the Brief Psychiatric Rating Scale 

(BPRS) (Overall & Gorham, 1990), the Brief Negative Symptom Scale (BNSS) (Kirkpatrick et 

al., 2011), the Trail Making Test (TMT B-A) (Partington & Leiter, 1949), and the Neurological 

Evaluation Scale (NES) (Buchanan & Heinrichs, 1989). To measure real-world functioning, 

patients also complete the Specific Levels of Functioning Scale (SLOF) (Schneider & 

Struening, 1983).  

 

4.2.3 Experimental design and procedures 

Action stimuli. Stimuli were selected from a dataset of 900 reach-to-grasp movements obtained 

by recording 15 agents reaching, grasping, lifting and moving a hazelnut (diameter = ~1.5 cm; 

weight = ~2 g) or a grapefruit (diameter = ~10 cm; weight = ~354 g). Each agent performed a 

total of 60 action sequences (30 actions for each object size). Detailed procedures and apparatus 

are described in (Ansuini et al., 2015). Briefly, actions were tracked using a near-infrared 

camera motion capture system (frame rate = 100 Hz; Vicon System) and simultaneously filmed 

from a lateral viewpoint using a digital video camera (Canon Alegria, 25 frames/s). The agent’s 

right hand was outfitted with 11 retroreflective hemispheric markers to compute the following 

variables of interest:  

● wrist velocity, defined as the module of the three-dimensional velocity vector of the 

wrist marker (in mm/s); 

● wrist height, defined as the z-component of the wrist marker (in mm); 

● grip aperture, defined as the Euclidean distance between the tip of the thumb and the tip 

of the index finger; 

● x-, y-, and z-index, defined as the x-, y-, and z-coordinates of the tip of the index finger 

(in mm); 

● x-, y-, and z-thumb, defined as the x-, y-, and z-coordinates of the tip of the thumb (in 

mm); 
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● x-, y-, and z-dorsum plane, defined as the x-, y-, and z-components of the radius-phalanx 

plane. This plane provides information about the abduction, adduction, and rotation of 

the hand dorsum independent of the rotation of the wrist. 

Custom software (MATLAB, MathWorks Inc.) was used to extract the selected variables. Each 

variable was calculated at intervals of 10% of the movement duration from reach onset to reach 

offset. 

 

Selection of action stimuli and video editing. For each agent and each object size, we selected 

the two reaching acts that minimized the Euclidean distance with the average kinematics 

(computed across all agents and trials) (Ansuini et al., 2016). The final set of stimuli consisted 

of 60 reaching acts (2 reaching acts x 15 agents x 2 object sizes). Digital video editing (Adobe 

Premiere Pro; .avi format, disabled audio, 25 frames/s) was used to occlude the to-be-grasped 

object. Each movie started at reach onset and ended at reach offset.  

 

Procedure. Participants were seated in front of a 17-inch computer monitor (resolution 1280 x 

800, refresh rate 75 Hz, response rate 8 ms) at a viewing distance of 50 cm. The task structure 

conformed to a two-alternative forced-choice (2AFC) task. In each trial, participants observed 

two reaching acts in two consecutive temporal intervals: one interval displayed a hand a 

reaching for a hazelnut (small object), the other a hand reaching for a grapefruit (large object). 

The task was to predict the size (small, large) of the occluded to-be-grasped object (see 

“Selection of action stimuli and video editing”). To define the timing of information integration, 

reaching acts in each trial were presented under one of eight levels of temporal occlusion, from 

10% up to 80% of movement duration.  

 

Each trial started with the presentation of white fixation cross against a black screen for 2000 

ms. Then, the first reaching act was presented, followed by an interstimulus interval of 500 ms 

(white fixation cross), after which the second reaching act was presented. After the second 

interval, the screen prompted participants to indicate the interval (first or second) containing 

the small (large) object by pressing a key. The prompt screen was displayed until response or 

for maximum of 4,000 ms. After response, participants were asked to rate the confidence of 

their choice on a four-level scale (from 1 = least confident, to 4 = most confident). Participants 
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were encouraged to use the full range of the confidence scale. The experiment consisted of 240 

trials split in eight blocks of 30 trials each. Participants were instructed to indicate the interval 

containing the small (large) object in the first four blocks and the interval containing the large 

(small) objects in the last four blocks, counterbalanced across participants. Levels of occlusion 

were pseudorandomized and balanced across blocks so that each block contained at least one 

presentation of each of the eight levels of occlusion. Feedback was provided at the end of each 

block. To familiarize participants with the task, we administered 10 practice trials. The practice 

trials were randomly selected from the main experimental videos. Stimuli, timing, and 

randomization procedures were controlled using a PsychToolbox script running in MATLAB 

R2014a (MathWorks, Inc.). 

 

4.2.4 Quantification and statistical analysis 

Psychometric curves. We re-coded participants’ choices in the 2AFC task as “small first” and 

“large first” choices, and computed, separately for each group, the psychometric curve of the 

probability of choosing “small first” as a function of the level of occlusion (Figure 11A). 

Positive and negative occlusion values in the x-axis indicate “small first” and “large first” trials, 

respectively. We used Logistic Mixed Effects Models to assess the significance of the effect of 

temporal occlusion on the interval choice probability P(small first) across groups. This allowed 

us to fit population-level psychometric curves while controlling for inter-subject variability 

(Moscatelli et al., 2012). We considered interval choice in each trial as dependent variable, 

group, occlusion level, and their interaction, as fixed effects, and subject (random intercept, and 

random slope of occlusion level) and block (random intercept) as random effects 

(Supplementary Table 1, in Appendix B). We used piecewise models with symmetrical change 

points to test for different integration rates as a function of occlusion level (as suggested by 

Figure 11A). The symmetrical change points could be set at -10% and +10%, -20% and +20%, 

or -30% and +30%. We compared these three piecewise models with a non-piecewise model 

and verified that the piecewise model with symmetrical change points at ± 20% yielded the best 

performance as measured by Bayesian Information Criterion (BIC) (Schwarz, 1978). We thus 

defined two integration periods determined by these change points – up to 20% of movement 

duration and from 30% to 80% of movement duration – and we used them as a factor in 

subsequent analyses.  
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Confidence-accuracy calibration. To measure the relationship between confidence and 

accuracy at different occlusion levels, we computed the ratio between the single-trial 

confidence rating and the prediction accuracy of a given observer at a given occlusion level. 

Next, we created a calibration curve by plotting confidence-accuracy calibration values as a 

function of occlusion level (Figure 11E). We used Gamma Mixed Effects Models to assess the 

significance of the difference in confidence-accuracy calibration between groups over the two 

integration periods. We chose a Gamma distribution because the confidence-accuracy data were 

non-negative and positively skewed (Ng & Cribbie, 2017). We compared gamma distributions 

with other distributions which allow for skewness (inverse gaussian, lognormal) and verified 

that models with gamma distributions performed better in terms of log-likelihood. We 

considered confidence-accuracy calibration as dependent variable, group and integration 

period, as well as their interaction, as fixed effects and subject (random intercept, and random 

slope of integration period) and session block (random intercept) as random effects 

(Supplementary Table 1, in Appendix B). 

 

Selection of random and fixed effects structure. As in (Montobbio et al., 2022), we applied a 

backward model selection procedure, starting from the model with the most complex structure 

to arrive at a model that included only the significant predictors. We first selected the random 

effect structure of the model by keeping the full fixed effect structure and using the BIC. The 

BIC rewards model fit and penalizes model complexity. We then retained the optimal random 

effect structure and selected the best fixed effect structure by conducting likelihood-ratio tests 

(LRT) between models differing only by the presence or absence of one predictor (Alan Agresti, 

2007). Model selection results are reported in Supplementary Table 1. We performed model 

fitting using the R package lme4 (https://CRAN.R-project.org/package=lme4). We performed 

comparisons against chance and across levels of the selected models using the R package 

emmeans (https://CRAN.R-project.org/package=emmeans). The emmeans package estimates 

the marginal means and standard errors over combinations of predictors, from which z-values 

(to calculate two-sided p-values) are computed. Statistical comparisons for the effects are 

reported in Supplementary Table 1 (Appendix B).  
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Logistic regression models of encoding and readout. To model single-trial kinematics, we 

averaged the 12 kinematic variables of interest over 10 epochs of 10% of the normalized 

movement duration. For each occlusion level (from 10% to 80% of movement duration), we 

created an n-dimensional vector, with dimensions ranging from 12 features (12 kinematic 

variables over 1 time epoch) for the 10% occlusion level to 96 features (12 kinematic variables 

over 8 time epochs) for the 80% occlusion level. Next, based on (Patri et al., 2020), we 

computed the difference between the kinematics of two reaching acts in each trial as: 

 

𝐾GG⃗ 	= 	𝐾2GGGG⃗ 	− 	𝐾3GGGG⃗  

 

where 𝐾2GGGG⃗  and 𝐾3GGGG⃗  are the kinematic vectors associated with reaching acts displayed in the first 

and second interval. To quantify the encoding of size information, for each occlusion level, we 

trained a logistic regression model to predict the single-trial probability that the small object 

was presented in the first interval 𝑌 as a linear combination of the components of the single-

trial kinematic vector 𝐾GG⃗ . The equation was as follows: 

  

𝑃L	𝑌 = "𝑠𝑚𝑎𝑙𝑙	𝑓𝑖𝑟𝑠𝑡"	|	𝐾GG⃗ P = 𝜎L𝐾GG⃗ ⋅ 𝛽	GGG⃗ + 	𝛽*P;					 

𝑃L𝑌 = "𝑙𝑎𝑟𝑔𝑒	𝑓𝑖𝑟𝑠𝑡"	|	𝐾GG⃗ P = 1 − 𝑃L𝑌 = "𝑠𝑚𝑎𝑙𝑙	𝑓𝑖𝑟𝑠𝑡"	|	𝐾GG⃗ P												 

 

where 𝜎 is the sigmoid function, 𝛽	GGG⃗  is the vector containing the values of the regression 

coefficients of each kinematic feature, and 𝛽* is the kinematic-independent bias term. The 

length of the weight vector 𝛽	GGG⃗ matched the dimension of the kinematic vector 𝐾GG⃗  for the 

considered temporal occlusion.  

 

We used a similar set of logistic regression models to analyze how size information was read 

out by individual observers in each group. For each participant and each occlusion level, we 

trained a logistic regression model to predict the single-trial probability that the observer 

reported the small object to be in the first interval Y as a sigmoidal function of a linear 

combination of the components of the single-trial kinematic vector 𝐾GG⃗ . Kinematic readout 
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models were defined as in the above equation, but with the binary stochastic variable 𝑌 

representing the interval chosen by the participant (Figure 12A). 

 

Training and evaluation of logistic regression models. Training and evaluation were performed 

similarly for both sets of models. All models were trained on all trials, separately for each level 

of occlusion, so that the dimension of the vector 𝐾GG⃗  was constant over the whole training set. To 

avoid penalizing predictors with larger ranges of values, we z-scored single-trial kinematic 

vectors within each model. Models were trained using L2 regularization. The parameter 𝜆, 

which controls the strength of the regularization term, was estimated for each model using 

leave-one-out cross-validation. We retained for each model the value 𝜆405 associated with the 

minimum mean cross-validated error. Models were trained on all trials with the retained 

regularization term. Logistic regression was implemented using the pyglmnet Python library 

(Jas et al., 2020). 

 

We evaluated the performance of the encoding and readout models by repeated 5-fold cross-

validation (50 random splits) (Kim, 2009), on top of the cross-validation used for the 

determination of the 𝜆 parameter. We computed the most likely value of Y for each trial by 

taking the argmax over Y of 𝑃L	𝐾	GGG⃗ P. Model performance was quantified as the fraction of correct 

predictions averaged over folds and random splits. For each level of occlusion, we created a 

chance-level null-hypothesis distribution of model performance by fitting the models after 

randomly permuting across trials the binary variable 𝑌. To quantify the effect of occlusion level 

on model performance, as well as differences between groups and against chance-level 

performances, we used Linear Mixed Effects Models with the normalized fraction of correct 

model predictions of each video across cross-validation repetitions as dependent variable (see 

Supplementary Methods, in Appendix B). 

 

Action prediction performance and confidence predicted by the readout model. In Figure 13C, 

we used kinematic readout models to estimate the action prediction performance and confidence 

ratings of individual participants in each group. Using Eq. 1, we computed the interval choice 

predicted as most likely by the readout model for each trial and compared it to the actual order 

of the presented stimuli. Predicted action prediction performance was obtained by averaging 
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the probability of correct interval choice across all trials for a given participant. The resulting 

value was then compared to the observed discrimination accuracy of the participant. By the 

same logic, we computed the confidence of single-trial model predictions as deviations of the 

estimated probability of reporting “small first” from chance (0.5) and compared them with the 

confidence ratings reported by participants (Figure 13C). 

 

Contribution of individual kinematic features to encoding and readout. We computed the 

contribution of each kinematic feature to kinematic encoding (readout) as the feature regression 

coefficient in the encoding (readout) logistic regression model. A positive (negative) sign is 

assigned to a feature distributed across trials with higher (lower) values for “small first” 

compared to “large first”.  

 

Single-feature alignment between encoding and readout. We quantified, separately for each 

observer and each level of occlusion, the alignment of readout coefficients relative to encoding 

coefficients at the single feature level. This was computed as the dot product between the 

encoding and readout weights of that feature, weighted by the norm of the whole encoding and 

readout vectors and adjusted by number of time epochs to make its values comparable across 

different occlusion levels: 

 

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡	[𝑖]	L𝛽.5/ 	, 𝛽$.(1P =
7!"#$	⋅	7

!
%"&'

9:7;;⃗ "#$:9	9:7;;⃗ %"&':9
⋅ 𝑡, 

 

where t ∈ (1,…,8) t is the number of time epochs; 𝛽0.5/ and 𝛽0$.(1 are the regression weights 

of the 𝑖-th kinematic feature in the encoding and readout model, respectively; 𝛽.5/ and 𝛽$.(1 

denote the whole encoding and readout coefficient vectors. High positive values indicate that a 

feature is highly informative (large encoding weights) and is correctly readout with large 

readout weights; high negative values indicate that a feature is highly informative and is 

incorrectly readout with large readout weights. Alignment values close to zero indicate that a 

feature is either weakly informative, or weakly read-out, or both.  
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Conventions for p-values. Supplementary Tables 1-4 (Appendix B) report details of 

Generalized Mixed Effects Models statistical tests and non-parametric permutation tests. 

Reported p-values are two-sided and Holm-Bonferroni corrected for the number of comparisons 

listed for each entry. In all figures, * indicates p < 0.05, ** indicates p < 0.01, *** indicates 

p < 0.001, ns indicates p ≥ 0.05. Following standard notation, asterisk(s) above bars indicate 

significance of difference from chance of an individual quantity, asterisk(s) above brackets 

indicate significance of difference between two quantities.  
 

Statistical significance of correlations. The significance of Pearson’s correlation values in 

Figure 13C and in Supplementary Figure S7 (Appendix B), was assessed using the stats module 

from Python package SciPy (Virtanen et al., 2020) with two-sided parametric Student statistics.  
 

 

 

4.3 Results 
Participants completed a two-alternative size discrimination task under eight levels of temporal 

occlusion, from 10% to 80% of movement duration. Each trial displayed two reaching acts: one 

reaching act towards a small object and the other reaching act towards a large object. The task 

was to predict the size (small, large) of the to-be-grasped object. Full statistics of all 

comparisons are reported in Supplementary Tables (Appendix B). 

 

Results using Logistic Mixed Effects Models revealed a significant interaction between 

observer group (psychotic, control) and occlusion level on psychometric curves 

(Supplementary Table 1, in Appendix B), reflecting group differences in the rate of information 

integration across occlusion levels (Supplementary Table 3, in Appendix B). As shown in 

Figure 11A, psychophysical performance in both groups increased as a function of occlusion 

level, indicating that observers in both groups integrated prospective size information over time. 

However, compared with controls, observers with psychosis showed an overall reduced and 

discontinuous integration rate, with a pronounced central plateau (Figure 11A). Fitting a 

piecewise-sigmoidal model, we identified two statistically significant change points at ± 20%, 

demarcating the boundaries of two integration periods, an initial period, from reach onset up to 
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20% of movement duration, and a second period from 30% to 80% of movement duration 

(Supplementary Table 1, in Appendix B). While the performance of the clinical group was 

lower in both periods, the offset between the two groups was more than twice as large in the 

initial up-to-20% period (Figure 11A). In this period, the slope of the psychometric curve of 

patients was not significantly different from 0 (p=0.057), indicating that psychotic observers 

failed to integrate size information (Figure 11B; Supplementary Table 3, in Appendix B). This 

was also reflected in prediction accuracy, computed as the fraction of correct interval choices 

(Figure 11C). While the control group performed above chance for all occlusion levels, the 

clinical group did not surpass chance-level performance up until presentation of 30% of the 

movement (Supplementary Table 3, in Appendix B). 

 

 

4.3.1 Confidence-Accuracy relationship across integration periods  

The above results identify two periods corresponding to different integration regimes. To assess 

whether the relationship between confidence ratings (Figure 11D) and discrimination accuracy 

(Figure 11C) differed between these integration periods, we defined a simple measure of 

calibration between confidence and accuracy (see Methods) and used Gamma Mixed Effects 

Models to statistically test the difference in confidence-accuracy calibration between groups 

and integration periods. As illustrated in Figure 11E, results revealed a significant interaction 

between group and integration period (Supplementary Table 1, in Appendix B), reflecting a 

higher confidence-accuracy calibration in the clinical group relative to the control group in the 

0-20% period, but not in the 30-80% period (Supplementary Table 3, in Appendix B).  
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Figure 11. Results of action prediction. (A) Empirical psychometric curves of P(small first) as a function of signed occlusion 

level in observers with psychosis relative control observers. (B) Piecewise regression slopes of the psychometric curves as 

estimated by Logistic Mixed Effects Models with change points at ±20% in observers with psychosis relative to control 

observers. Error bars represent standard errors. (C) Trial-averaged action prediction performance (fraction of correct responses) 

as a function of occlusion level in observers with psychosis relative to control observers. (D) Trial-averaged reported confidence 

ratings as a function of occlusion level in observers with psychosis relative to control observers. (E) Trial-averaged ratio 

between confidence ratings and action prediction accuracy as a function of occlusion level in observers with psychosis relative 

to control observers. Solid lines and shaded areas represent mean ± SEM across participants. 

 

 

4.3.2 Variability of prediction accuracy in the 0-20% period 

The above results suggest an overall reduced sensitivity to size information in psychosis, 

characterized by an almost flat integration regime in the up-to-20% period. To better understand 

the origin of this plateau and to rule out a general latency in information processing at shorter 

viewing durations, we examined the across-trial variability of prediction accuracy in this period. 

Information encoding varies across actions, as does information readout (Montobbio et al., 

2022; Patri et al., 2020). We have previously demonstrated that, across observers, prediction 

accuracy is consistently higher for some stimuli compared with others (Scaliti et al. submitted). 
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This effect was replicated for the 10% and 20% occlusion stimuli in the present study. As shown 

in Supplementary Figure S7 (Appendix B), plotting prediction accuracies at the single-stimulus 

level revealed a distribution that was both consistent across occlusion levels and groups and 

differed across stimuli. This observation, corroborated by a moderate intergroup correlation in 

single-movement prediction accuracy (Supplementary Figure S7, in Appendix B), suggest that 

observers with psychosis, whilst at chance across the entire stimulus set, were able to pick up 

some information from the most predictable stimuli in the initial period.  

 

4.3.3 Kinematic encoding and readout of object size information  

Our results so far reveal differences in information integration between observers with 

psychosis and control observers. However, they do not identify the specific features read out 

across temporal occlusion conditions, whether observers in two groups read informative or non-

informative features, and how well they read the encoded information. To directly address these 

questions, we extended our kinematic coding framework. We developed this framework to 

quantify how information encoded in movement kinematics is read out by individual observers 

with single-trial resolution (Becchio, 2021; Montobbio et al., 2022; Patri et al., 2020). Here, we 

extended it to measure how size information encoded in single-trial kinematics was read out by 

individual observers in each group across progressive levels of occlusion. 

 

As a first step, we developed an encoding model (Figure 12A; see Methods) to determine the 

availability of size information in single-trial kinematics across adjacent occlusion intervals and 

identify the kinematic features that carry this information. Results using Linear Mixed Effects 

Models revealed a significant effect of occlusion level (Supplementary Table 2, in Appendix 

B). As shown in Figure 12B, size information, as measured by the cross-validated performance 

of the encoding model, was present at 10% of movement duration, more than doubled at 20%, 

and then steadily increased reaching over 95% at 60% of movement duration (Figure 12B and 

Supplementary Table 4, in Appendix B). Figure 12C visualizes the contribution of individual 

kinematic features to size encoding as measured by the normalized magnitude of regression 

coefficients of the feature in the encoding model at each occlusion level. Consistent with 

(Ansuini et al., 2015), grip aperture (GA), the most informative variable, encoded size 

information starting from 10% of movement duration, with its contribution peaking at 20 and 
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30% of movement duration. In other variables, such as IZ, size encoding increased as time 

progressed. Finally, other variables such as WH encoded size more stably across time. Overall, 

the pattern of encoding showed a high stability from 40% of movement duration as quantified 

by the correlation of the encoding vectors at different occlusion levels (Figure 12D).  

 

 

 
Figure 12. Encoding of size information from single-trial kinematics. (A) Block diagram and equation of the kinematic 

encoding model used to quantify size information at a given occlusion level. βenc is the model linear coefficient vector, benc is 

the intercept coefficient, σ is the sigmoid function, and H is the Heaviside function. (B) Cross-validated (CV) performance of 

kinematic encoding models as a function of occlusion level. Bars represent mean ± SEM across stimuli. (C) Contribution of 

individual kinematic features to kinematic encoding of size information. Kinematic variables are ordered by decreasing 

coefficient magnitude in the encoding model fitted at the 80% occlusion level. (D) Pearson’s correlation of coefficient 

distribution across kinematic variables between different occlusion levels.  

 

 

Having quantified size information encoded across progressive occlusion periods, we next used 

a readout model (Figure 13A) to determine how observers in both groups read the encoded size 

information at the single-trial level. Model performance increased across progressive occlusion 
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times for both groups (Supplementary Table 2, in Appendix B). The model performed at chance 

only for observers with psychosis at 10% and 20% occlusion intervals (Figure 13B and 

Supplementary Table 4, in Appendix B). The tight correlation between predicted and observed 

individual accuracies indicates that the readout model accurately captured the dependence of 

observers’ choice on single-trial kinematics at the single-observer level (Figure 13C). As shown 

in Figure 13C, although confidence ratings were not used for model fitting, the model also 

accurately predicted the confidence with which observers endorsed single-trial size choices. 

Collectively, these results indicate that our readout model was able to predict how well and how 

confidently individual observers predicted object size from single-trial kinematics.  

 

 
Figure 13. Readout of size information from single-trial kinematics. (A) Block diagram and equation of the kinematic readout 

model used to quantify the readout of size information from single-trial kinematics at a given occlusion level. βread  is the model 

linear coefficient vector, bread is the intercept coefficient, σ is the sigmoid function, and H is the Heaviside function. (B) Cross-

validated (CV) performance of kinematic readout models as a function of occlusion level for control observers and observers 

with psychosis. Bars represent mean ± SEM across participants. The light sub-bars represent chance-level performance, 

quantified as the mean of the null-hypothesis distribution of cross-validated model performance. (C) Left panels. Scatter plots 

of the relationship between the observed size discrimination performance and the performance predicted by the kinematic 
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readout model across individual participants in the control group and in the psychotic group. Darker shades correspond to later 

occlusion levels. Right panels. Violin plots of the within-group relationship between reported confidence ratings and model 

prediction confidence rating, computed as the deviation of the estimated probability of answering “small first” from chance. 

Fitted regression lines are displayed over the data. Pearson’s correlation coefficients (r) and their significance values (p) are 

reported.  

 

 

4.3.4 Readout profiles of individual observers 

Readout model performance measures the relationship between trial-to-trial fluctuations in 

movement kinematics and observer’s choice. For observers with psychosis, readout model 

performance was at chance at 10% and 20% occlusion intervals, reached significance at 30% 

and then progressed steadily up to 80%. This time course matches the integration periods 

identified in Figure 12A and suggest that observers with psychosis read little of the size 

information encoded in single-trial movement kinematics in the period up-to-20% of movement 

duration. 

 

To determine which kinematic features observers read (and failed to read), we next computed 

the contribution (weight) of each feature to size readout as the normalized regression coefficient 

of the feature in the readout model. Figure 14 shows the alignment of readout weights (Figure 

14B) relative to encoding weights (Figure 14A) in each observer group. The prevalence of 

positively aligned readout weights (denoted by blue bars in Figure 14B) indicates that observers 

in both groups mostly read out correctly the encoded information. What differed between 

groups was the time course of information readout. Observers in the control group correctly 

read size information specified in grip aperture, the most informative feature, as early as 10% 

and 20% of movement duration. As time progressed, readout weights were distributed across a 

wider set of features, reflecting the progressively more distributed encoding of size information 

across features. Observers with psychosis showed a qualitatively similar, but overall delayed 

and reduced readout pattern from 30% of movement duration. In the initial period, up to 20% 

of movement duration, they assigned little, if any, readout weight to grip aperture or any other 

feature.  
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Figure 14. Relative distribution of kinematic readout weights relative to encoding weights. (A) Encoding model weights 

(coefficients) normalized by the total encoding weight at each occlusion level. Different shades of stacked bars indicate time 

epochs. Across occlusion levels, kinematic variables are ordered by the value of the encoding weight at the 80% occlusion 

level (in descending order). (B) Average fraction of readout weights across participants at each occlusion level in the control 

group and in the psychotic group. Different colors of stacked bars indicate single-feature alignment of readout weights relative 

to encoding weights. Stacking order reflects the order of time epochs (from bottom to top). The ordering of kinematic variables 

is the same as in panel A.  

 

 

4.3.5 Relation to symptoms 

To explore the relationship between prediction accuracy and psychotic symptoms, we 

correlated individual action prediction performance with BPRS, BNSS, PANSS, TMT(B-A), 

NES and SLOF (Supplementary Figure S8, in Appendix B). We found a significant negative 

correlation between BNSS and action prediction accuracy, indicating that patients with more 

severe negative symptoms were less able to predict others’ actions. The only other significant 

correlation was between SLOF functioning in social relationships and prediction accuracy; 

patients with reduced functioning in relationships being less able to predict others’ actions. 
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4.4 Discussion 
Aberrant motor-sensory predictive functions have been linked to symptoms of psychosis, most 

prominently to decreased attenuation of self-generated sensations relative to externally 

generated sensations and misattribution of self-generated actions to external sources (Fletcher 

& Frith, 2008). Here, we provide direct evidence that prediction deficits generalize to other-

generated actions. By combining a temporal occlusion paradigm with the kinematic coding 

framework, we were able to rigorously quantify the information encoded and readout across 

adjacent occlusion levels and demonstrate an overall reduced and discontinuous integration 

pattern associated with psychosis. As shown in Figure 11A, whilst the psychotic integration 

pattern was reduced but qualitatively similar to controls at occlusion periods later than 30% of 

movement duration, it exhibited a pronounced central plateau in the period up-to-20%. 

 

Plateaus are rarely visible or reported in psychometric distributions, possibly due to the fact 

that temporal intervals are often too broadly spaced for plateaus to be visible (Tünnermann & 

Scharlau, 2018). Our approach enabled us to reveal a discontinuity in the psychotic integration 

pattern that would not have been visible with a smaller number of temporal intervals or when 

examining only late intervals.  

 

Our single-trial analysis allowed us to further demonstrate that the initial plateau reflected a 

lack of sensitivity to variations encoding size information in single-trial kinematics. Size 

information is specified early in the movement, with some kinematic variables encoding size 

information as early as 10% of movement duration (80 ms). Our results show that control 

observers, but not psychotic observers, were able to read some of this information. Specifically, 

while control observers’ choices revealed a dependency on single-trial movement kinematics 

as early as at 10% of movement duration, psychotic choices did not show a dependency on 

single-trial kinematics until 30% of movement.  

 

Plateaus are often taken to indicate ranges of indecisions (Tünnermann & Scharlau, 2018). 

Based on this idea, one might expect that individuals with psychosis would be highly uncertain 

about the size of the object to be grasped during the initial phase of the task. Contrary to this 

prediction, our results that observers with psychosis were actually overconfident compared to 
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controls in the initial integration period (up to 20% of movement duration), but not at later 

intervals (30-80%).  

 

Psychosis has been associated with “jumping to conclusions”, operationalized as a tendency to 

make hasty decisions when probabilistic judgments based on the “draws to decision” task are 

required (Evans, 2015). In this task, the participant is presented with two containers (urns) that 

contain a large number of beads in different colors, with the proportions of the colors differing 

between the two urns. The participant is informed of these proportions, although the urns are 

hidden from view. The experimenter then presents a series of beads one at a time to the 

participant. After each draw, the participant can either make a guess as to which urn is being 

used or see another bead. Individuals with schizophrenia tend to make early decisions on this 

task, often making a decision after just one draw (Moritz & Woodward, 2005). It is tempting to 

link the overconfidence of observers with psychosis at earlier intervals to this bias. To test this 

hypothesis directly, future studies could use an adapted, temporal version of “draws to decision” 

procedure, in which, at each occlusion level, observers can either make a guess about the size 

of the object-to-be-grasped or see another interval. We would predict observers with psychosis 

to make decisions already at 10% and 20% of movement duration.  

 

Interpersonal prediction is essential for successful social interaction and coordinated behavior. 

Without the ability to anticipate the action of others, we could never achieve the rapid 

coordination needed to pass a ball, lift a tray full of glasses together or walk in a crowded street 

(Sebanz & Knoblich, 2009). Our correlational analysis suggests the intriguing possibility of a 

connection between altered action prediction mechanisms and social dysfunction in psychosis. 

Specifically, it is possible that individuals with psychosis lose interest in social interactions 

because they have difficulties predicting the actions of others. To directly test this hypothesis, 

it will be important to examine whether difficulties in interpersonal prediction predict 

difficulties during on real-time reciprocal social interactions (Redcay & Schilbach, 2019). 
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General Conclusions    

 
In the present thesis, I describe two research projects in the field of human movement research: 

one is about motor learning in norm-typical subjects, and the other is about the ability to predict 

actions based on movement observations. First, we showed that individual baseline motor 

variability does not predict faster learning rates in motor adaptation tasks with multiple 

directions. This study contributes to research on the role of individual motor variability in motor 

learning. Further studies will be necessary to expand knowledge in this scientific area, as some 

aspects deserve more attention in the study of motor variability, such as muscle fatigue and 

limb inertia in reaching targets located in large workspaces. 

 

Second, we provide direct evidence that prediction deficits exhibited by patients with psychotic 

disorders with respect to self-generated actions are also generalized to other-generated actions. 

Our results suggest that patients show impairment in predicting object size by observing others 

reach-to-grasp movements compared with healthy controls. Patients' accuracy was at chance 

level for the first two temporal occlusions, but they still show to be overconfident compared to 

control subjects. In addition, our analysis suggests a relationship between prediction accuracy 

and SLOF test score, which assesses performance in the social domain. Patients with impaired 

relationship skills are less able to predict the actions of others.		
These results could be a starting point for further understanding of this deficit in patients with 

psychosis. Future research could take into account the possibility to explore other aspects of 

psychosis patients' behavior such as 'jumping to conclusions'. The tendency to make hasty 

decisions may in fact have influenced the poor performance of patients in the first time-

occlusions. A readapted version of the two-alternative forced-choice task could be used to 

establish whether the overconfidence of observers with psychosis is linked to earlier intervals. 

 

Limitations. Individual motor variability was quantified using the force profiles applied by the 

participants during the execution of the reaching movements. This was possible by using a 

robotic manipulandum on which a specific type of trials, called ‘error-clamp’ trials, were 

programmed and implemented. However, the use of a robotic manipulandum restricts the 

movements to only two dimensions, making the reaching movements less natural and requiring 
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a long familiarization with the robot, before the subject is asked to complete the task. 

Familiarization makes the experiment longer and more tiring, which may have affected the 

extension of motor variability and the performance of the motor task.  

 

The second research project described in this dissertation aims to determine the ability of 

patients with psychosis to predict the size of a to-be-grasped object. Therefore, in addition to 

control subjects, patients with non-affective psychotic disorders (schizophrenia, schizoaffective 

disorder, delusional disorder, and brief psychotic disorder) were recruited for the study. In order 

to make data acquisition possible, i.e., to allow patients to perform the behavioral task on the 

computer, we used a personal computer to move the experimental set-up according to the 

patients' needs. It was therefore not possible to keep the experimental setup fixed and the same 

for all, as is desirable in experimental studies. Some conditions, such as the distance to the 

monitor, were easier to control and maintain, while others were more complex, such as the 

lighting conditions of the room in which the task was completed, the sound insulation of the 

room, the height of the surface on which PC was placed.  
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Appendix A 

Supplementary Information for 
“The role of Individual Motor Variability in Motor Learning” 

 

 

 

 

Figure S1. All participants were divided into 4 subgroups based on their individual baseline variability. The 

average task-relevant variability was 0.43±0.08 N. We have subjects (n = 6) with variability that was at least one 

standard deviation below average (average variability 0.31±0.02), subjects (n = 22) with variability that was below 

average (average variability 0.37±0.04), subjects (n = 19) with variability that was above average (average 

variability 0.51±0.07), and subjects (n = 7) with variability that was at least one standard deviation above average 

(average variability 0.58±0.05). All comparisons with initial learning computer over the first two error-clamp trials 

are reported here: - below average v. above average: p = 0.33, t(39) = -0.97; - one standard deviation below average 

v. one standard deviation above average: p = 0.93, t(11) = 0.08; - one standard deviation below average v. above 

average: p = 0.93, t(23) = -0.08; - below average v. one standard deviation above average: p = 0.61, t(27) = -0.51. 
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Figure S2. All comparisons of individual task-relevant variability with initial learning computer over the first eight 

error-clamp trials are reported here: - below average v. above average: p = 0.50, t(39) = -0.67; - one standard 

deviation below average v. one standard deviation above average: p = 0.45, t(11) = 0.77; - one standard deviation 

below average v. above average: p = 0.48, t(23) = 0.70; - below average v. one standard deviation above average: 

p = 0.91, t(27) = -0.11. 
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Figure S3. (A) We found no significant correlation between the individual baseline variability with the average 

learning rate over the first trial (r = -0.01, P = 0.90, t(39) = -0.11) and with (B) average learning rate over the first 

sixteen trials (r = -0.09, P = 0.54, t(39) = -0.60).  

 

 

 

 

 

 

 

 

Comparison of task-relevant variability with the initial 

learning over the first error-clamp trials across subjects. 

Comparison of task-relevant variability with the initial 

learning over the first sixteen error-clamp trials across 

subjects. 
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Figure S4. Comparisons of task-relevant with the initial learning rate over the two first error-clamp trials of each 

target, from target 0° to 315° (A-H). We see no significant correlations in any target position (from A to H: r = -

0.22, P = 0.15, t(39) = -1.43; r = 0.08, P = 0.61, t(39) = 0.50; r = 0.10 P = 0.50, t(39) = 0.67; r = 0.10 P = 0.51, 

t(39) = 0.66; r = 0.18 P = 0.24, t(39) = 1.19; r = -0.29 P = 0.06, t(39) = -1.95; r = -0.12 P = 0.43, t(39) = -0.79; r = 

-0.19 P = 0.23, t(39) = -1.21).   
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Figure S5. Comparisons of task-relevant with the initial learning rate over the two first error-clamp trials of each 

direction. We have four target directions: 0°-180°, 45°225°, 90°-270°, 135°-315° (A-D). We see no significant 

correlations in any target direction (from A to D: r = 0.18, P = 0.25, t(39) = 1.15; r = -0.17 P = 0.26, t(39) = -1.13; 

r = -0.11, P = 0.46, t(39) = -0.73; r = -0.17 P = 0.26, t(39) = -1.12). 
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Figure S6. Panels A and B show two example subjects lateral forces during early (first two error-clamp trials) and 

late learning (last two error-clamp trials). The plots show mean force output each subject generated on baseline 

error-clamp trials (black line), the raw force trace measured on error-clamps during the learning session (dashed 

green line), the baseline-subtracted force output (solid green line), and the ideal force output subjects should have 

applied to perfectly counteract the velocity dependent force-field (red line). Comparing early learning with late 

learning, we can see that the motor output of both subjects at the end of the learning session was close to the ideal 

force output. 

 

 

 

 

 

Late learning 
B 

Early learning 
A 
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Appendix B 

Supplementary Information for 
“Action Prediction in Psychosis” 

 
 

 

Supplementary Methods 

 

Statistical analyses on encoding and readout model performance. We used Linear Mixed Effects Models to 

quantify the effect of occlusion level and group on encoding and readout model performance, and to compare 

model performance against chance and between groups. We used the fraction of correct model predictions of each 

video across cross-validation repetitions as dependent variable. For encoding model performance, we considered 

occlusion level as fixed effect, and video ID (random intercept) as random effect. For readout model performance, 

we considered occlusion level, group and their interaction as fixed effects, and subject (random intercept, and 

random slope of occlusion level) and session block (random intercept) as random effects (Supplementary Tables 

2 and 4). Although there was no overall response bias, the ratio between “small first” and “large first” responses 

varied across observers and occlusion levels – thus determining different chance-level null-hypothesis distributions 

of readout model performance. We estimated null-hypothesis distributions, separately for each participant and 

each occlusion level, by fitting the model on permuted data (see Methods). To make all single-trial readout model 

performance values comparable, we then z-scored all values for a given participant and occlusion level using the 

mean and standard deviation of the single-subject, single-occlusion null-hypothesis distribution.  

 

 

 

  



 84 

 
Supplementary Figure S7. Object size prediction accuracy at the single stimulus level. (A) Bar graphs of single-

stimulus prediction accuracy averaged across control observers and observers with psychosis, for 10% (left) and 

20% (right) occlusion levels. (B) Scatter plot of the relationship between object size prediction accuracy in the 

patient group and in the control group at 10% and 20% occlusion levels. Data points represent single-stimulus 

object size prediction accuracy averaged across observers in each group. Fitted regression lines are displayed over 

the data. Pearson’s correlation coefficients (r) and their significance values (p) are reported. 
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Supplementary Figure S8. Relationship between neuropsychiatric scales and individual discrimination accuracy 

of participants with psychosis. Scatter plots of BPRS, BNSS, PANSS, SLOF (social), SLOF (relationships), SLOF 

(acceptability), NES and TMT (B-A) against individual prediction accuracy of observers with psychosis. Pearson’s 

correlation coefficients (r) and their Holm-Bonferroni corrected significance values (p) are reported. For 

significant linear trends, fitted regression lines are displayed over the data. 
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Psychometric curve (probability of reporting small first) 
Random effect structure selection (BIC) 

Fixed effects: Observer Group * Occlusion Level 
Random effect structure df BIC Deviance  
Subject (intercept and Occlusion Level slope), Block 8 5695 5623  
Subject (intercept), Block 6 5918 5864  
Block 5 5964 5920  
Subject (intercept and Occlusion Level slope) 7 5728 5666  
Subject (intercept) 5 5947 5903  
null 4 5992 5956  

Fixed effect structure selection (LRT) 
Random effects: Subject (intercept and Occlusion Level slope), Block 

Fixed effect tested df BIC Deviance p (LRT) 
Observer Group : Occlusion Level 8-7  5695-

5697  
5623-

5634  
<0.001 

Observer Group 8-7  5695-
5686  

5623-
5624  

0.393  

Piecewise-sigmoidal fit (BIC) 
Change points df BIC Deviance  
± 10% 13 5667 5551  
± 20% 13 5664 5548  
± 30% 13 5680 5564  
none 7 5687 5624  

Selected model 
Fixed effects       Observer Group : Occlusion Level (piecewise-sigmoidal with change points at ±20%) 
Random effects   Subject (intercept and Occlusion Level slope); Block 

 
 

Confidence-accuracy calibration 
Random effect structure selection (BIC) 

Fixed effects: Observer Group * Integration period 
Random effect structure df BIC Deviance  
Subject (intercept and Integration period slope), Block 9 23670 23590  
Subject (intercept), Block 7 24603 24540  
Block 6 26595 26541  
Subject (intercept and Integration period slope) 8 23696 23625  
Subject (intercept) 6 24619 24565  
null 5 26602 26557  

Fixed effect structure selection (LRT). 
Random effects: Subject (intercept and Occlusion Level slope), Block. 

Fixed effect tested df BIC Deviance p (LRT) 
Observer Group : Integration period 9-8 23670-

23718 
23590-

23647 
<0.001 

Selected model 
Fixed effects        Observer Group * Integration period 
Random effects   Subject (intercept and Integration period slope); Block 

 
 

Supplementary Table 1. Generalized Mixed Effects Model. Selection of random and fixed effects structure and piecewise-

sigmoidal fit (related to Figure 11). For the backward selection of the fixed structure effects, we conducted likelihood-

ratio tests (LRTs) between models differing by one predictor only. We report the tested predictor and the difference in 

degrees of freedom, BIC and deviance determined by its removal. Tests on effects that are redundant in presence of 

significant interactions (LRT between equivalent models) are omitted. Retained models and effects are highlighted in 

bold. The notation A*B indicates both main effects A and B and their interaction (denoted as A:B).  
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Encoding model performance 
Random effect structure selection (BIC) 

Fixed effects: Occlusion Level 
Random effect structure df BIC Deviance  
Stimulus (video ID)  4  -184.2  -206.14  
null  3  -189.7  -206.14  

Fixed effect structure selection (LRT). 
Random effects: none. 

Fixed effect tested df BIC Deviance p (LRT) 
Occlusion Level  3-2  -

189.7+106.0 
-

206.1+117.0  
 <0.001 

Selected model 
Fixed effects        Occlusion Level 
Random effects    - 

 

 
Readout model performance 

Random effect structure selection (BIC) 
Fixed effects: Observer Group * Occlusion Level 

Random effect structure df BIC Deviance  
Subject (intercept and Occlusion Level slope), Block 9 45791 45711  
Subject (intercept), Block 7 45790 45728  
Block 6 45890 45836  
Subject (intercept and Occlusion Level slope) 8 45795 45724  
Subject (intercept) 6 45797 45743  
null 5 45887 45843  

Fixed effect structure selection (LRT) 
Random effects: Subject (intercept), Block 

Fixed effect tested df BIC Deviance p (LRT) 

Observer Group : Occlusion Level 7-6 45790-45778 
45728-

45724 
0.837 

Observer Group 6-5 45778-45775 
45724-

46465 
0.013 

Occlusion Level 6-5 45778-46510 
45724-

46465 
<0.001 

Piecewise-linear fit (BIC) 
Change point df BIC Deviance  
10% 7 45785 45723  
20% 7 45758 45695  
30% 7 45783 45721  
none 6 45778 45724  

Selected model 
Fixed effects        Observer Group; Occlusion Level (piecewise-linear with change point at 20%) 
Random effects   Subject (intercept and Occlusion Level slope); Block 

 
 

Supplementary Table 2. Linear Mixed Effects Model selection. Selection of random and fixed effects structure and piecewise-

linear fit (related to Figures 12B and 13B). For the backward selection of the fixed structure effects, we conducted likelihood-

ratio tests (LRTs) between models differing by one predictor only. We report the tested predictor and the difference in degrees 

of freedom, BIC and deviance determined by its removal. Tests on effects that are redundant in presence of significant 

interactions (LRT between equivalent models) are omitted. Retained models and effects are highlighted in bold. The notation 

A*B indicates both main effects A and B and their interaction (denoted as A:B). 
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Piecewise regression slopes of the psychometric curves 

 Comparisons against 0  Comparisons between groups 

Integration 
period 

Control   Patient  Control - Patient 

Slope SE z p  Slope SE z p  
Slope 

difference 
SE z p 

< - 20% 5.112 0.526 
9.71

6 
<0.001  3.462 0.469 7.387 

<0.00
1 

 -1.65 
0.5

40 
-

3.054 
0.002 

[-20%, 
20%] 

3.642 0.479 
7.59

8 
<0.001  0.883 0.463 1.905 0.057  -2.76 

0.6
61 

-
4.171 

<0.001 

> 20% 6.702 0.576 
11.6

34 
<0.001  4.834 0.508 9.513 

<0.00
1 

 -1.87 
0.5

18 
-

3.604 
<0.001 

 
Confidence-accuracy calibration 

Comparisons between groups 
 10-20% integration period  30-80% integration period 
 Estimate SE z p  Estimate SE z p 

Control - 
Patient 

-0.592 0.297 -
1.991 

0.047  0.073 0.281 0.261 0.794 

 
 

Supplementary Table 3. Coefficient analysis for the retained Generalized Mixed Effects for object size prediction 

accuracy, piecewise regression slopes of the psychometric curves and confidence-accuracy calibration (related to Figure 

Object size prediction accuracy 
 Comparisons against chance (0.5)  Comparisons between groups 

Occlusion 
Level 

Control   Patient   Control - Patient 

Estimate SE z p  
Estima
te 

SE z p  
Differe
nce 

SE z p 

-80% 0.007 
0.00

3 
-

160.8 
<0.001  0.035 

0.01
3 

-
34.54 

<0.0
01 

 0.028 
0.01

3 
2.14

1 
0.059 

-70% 0.013 
0.00

5 
-

97.89 
<0.001  0.054 

0.01
7 

-
25.64 

<0.0
01 

 0.040 
0.01

7 
2.33

1 
0.059 

-60% 0.025 
0.00

8 
-

60.50 
<0.001  0.080 

0.02
2 

-
19.21 

<0.0
01 

 0.056 
0.02

2 
2.52

3 
0.049 

-50% 0.046 
0.01

2 
-

37.85 
<0.001  0.119 

0.02
6 

-
14.39 

<0.0
01 

 0.073 
0.02

7 
2.69

9 
0.042 

-40% 0.083 
0.01

8 
-

23.65 
<0.001  0.172 

0.03
1 

-
10.54 

<0.0
01 

 0.089 
0.03

1 
2.83

6 
0.034 

-30% 0.147 
0.02

5 
-

14.15 
<0.001  0.243 

0.03
6 

-
7.169 

<0.0
01 

 0.095 
0.03

3 
2.92

3 
0.031 

-20% 0.268 
0.03

4 
-

6.873 
<0.001  0.422 

0.04
1 

-
1.901 

0.22
9 

 0.154 
0.03

7 
4.16

9 
<0.001 

-10% 0.366 
0.03

1 
-

4.336 
<0.001  0.449 

0.03
3 

-
1.565 

0.35
1 

 0.083 
0.02

0 
4.17

7 
<0.001 

10% 0.589 
0.03

0 
2.

950 
0.003  0.504 

0.03
1 

0.12
5 

0.90
1 

 -0.085 
0.02

0 
-

4.188 
<0.001 

20% 0.693 
0.03

4 
5.

721 
<0.001  0.531 

0.03
9 

0.80
5 

0.84
1 

 -0.162 
0.03

8 
-

4.215 
<0.001 

30% 0.835 
0.02

6 
1

3.07 
<0.001  0.716 

0.03
7 

5.78
0 

<0.0
01 

 -0.120 
0.03

5 
-

3.462 
0.006 

40% 0.921 
0.01

5 
2

7.28 
<0.001 

 0.822 
0.02

9 
11.0

5 
<0.0

01 
 -0.100 

0.03
0 

-
3.331 

0.010 

50% 0.964 
0.00

9 
5

2.44 
<0.001 

 0.894 
0.02

2 
18.0

2 
<0.0

01 
 -0.070 

0.02
3 

-
3.124 

0.018 

60% 0.984 
0.00

5 
1

00.0 
<0.001 

 0.939 
0.01

6 
28.0

4 
<0.0

01 
 -0.045 

0.01
6 

-
2.858 

0.034 

70% 0.993 
0.00

3 
1

93.6 
<0.001 

 0.966 
0.01

1 
43.5

3 
<0.0

01 
 -0.027 

0.01
1 

-
2.579 

0.049 

80% 997 
0.00

1 
3

82.0 
<0.001 

 0.981 
0.00

7 
68.3

2 
<0.0

01 
 -0.016 

0.00
7 

-
2.318 

0.059 
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11). For all comparisons, we report the model estimate and standard error (SE) of the tested quantity, the z-value and the 

two-sided p-value computed from the z-test. All p-values are Holm-Bonferroni corrected for the number of comparisons 

listed for each entry. Significant comparisons are highlighted in bold. 
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Encoding model performance 

Comparisons against chance (0.5) 

Occlusion Level Estimate SE t p 

10% 0.733 0.019 12.489 <0.001 

20% 0.779 0.015 18.458 <0.001 

30% 0.825 0.012 26.636 <0.001 

40% 0.871 0.010 35.517 <0.001 

50% 0.917 0.010 39.930 <0.001 

60% 0.963 0.012 37.973 <0.001 

70% 1.009 0.015 33.718 <0.001 

80% 1.056 0.019 29.807 <0.001 

 
 

 
 

Readout model performance (z-scored by permutation distribution) 
Comparisons against 0  

Occlusion 
Level 

Control group  Patient group 
Estimate SE z p  Estimate SE z p 

10% 0.884 0.246 3.594 <0.001  0.150 0.246 0.610 0.271 
20% 0.867 0.268 3.238 <0.001  0.133 0.268 0.496 0.310 
30% 2.609 0.244 10.68 <0.001  1.875 0.244 7.675 <0.001 
40% 3.178 0.236 13.46 <0.001  2.444 0.236 10.35 <0.001 
50% 3.749 0.232 16.14 <0.001  3.013 0.232 12.98 <0.001 
60% 4.316 0.233 18.53 <0.001  3.582 0.233 15.37 <0.001 
70% 4.885 0.238 20.50 <0.001  4.151 0.238 17.41 <0.001 
80% 5.454 0.248 22.00 <0.001  4.720 0.248 19.03 <0.001 

 
 
 

Supplementary Table 4. Coefficient analysis for the retained Linear Mixed Effects Models for encoding and readout 

model performance (related to Figures 12B and 13B). For all comparisons, we report the model estimate and 

standard error (SE) of the tested quantity, the t-value or z-value and the two-sided p-value computed from the 

corresponding test. All p-values are Holm-Bonferroni corrected for the number of comparisons listed for each entry. 

Significant comparisons are highlighted in bold. 

 
 

 


