
P E L L E Q U AT I O N

Theory and applications to cryptography

candidate

Simone Dutto

supervisors

Danilo Bazzanella
Nadir Murru

Ph.D. in Pure and Applied Mathematics
DISMA "G. L. Lagrange" – Politecnico di Torino
Dip. di Mat. "G. Peano" – Università di Torino

Simone Dutto: Pell equation, Theory and applications to cryptography

A B S T R A C T

The Pell equation x2 − dy2 = 1 is a classical topic in number the-
ory. There are well known methods for solving this equation, but
there are still several important issues. One of the most interesting
from the point of view of cryptographic applications is the study
of its solutions over a generic field, in which case new interesting
open problems arise. This work focuses on studying the theoretical
and practical potential of the Pell equation in this context. Firstly,
the required theoretical results from the state of the art are collected
using a new unique and simple notation. This allows to obtain eas-
ily and elegantly new properties also for the generalization of the
Pell equation in the cubic case. Then, all the theoretical results are
adopted to formulate new public–key encryption and digital signa-
ture schemes with security based on the integer factorization prob-
lem or on the discrete logarithm problem, namely new RSA–like and
ElGamal cryptosystems, and new Digital Signature Algorithms. The
obtained cryptosystems are compared in terms of security, data–size
and performance with the classical alternatives, and the results are
very interesting especially in the case of the quadratic Pell equation.
Finally, the properties of the Pell equation are exploited for defining
new powerful probabilistic primality tests, related to the Lucas test
included in the widely used Baillie–PSW test. In particular, the new
primality tests are equipped with adaptations of the Selfridge method
for choosing the parameters, resulting in very powerful tests.

iii

P U B L I C AT I O N S

Some ideas and results have appeared previously in the following
publications:

Danilo Bazzanella, Antonio J. Di Scala, Simone Dutto, Nadir Murru,
"Primality tests, linear recurrent sequences and the Pell equation",
Ramanujan Journal 57 (2022),
https://doi.org/10.1007/s11139-020-00373-9.

Gessica Alecci, Simone Dutto, Nadir Murru,
"Pell hyperbolas in DLP–based cryptosystems",
Finite Fields and Their Applications 84 (2022),
https://doi.org/10.1016/j.ffa.2022.102112.

Simone Dutto,
"Developments on primality tests based on linear recurrent sequences
of degree two",
Proceedings of the 5th Number Theory Meeting (2021).

Simone Dutto, Nadir Murru,
"On the cubic Pell equation over finite fields",
https://arxiv.org/abs/2203.05290 (2022).

Simone Dutto,
"DLP–based cryptosystems with Pell cubics",
Proceedings of NuTMiC 2021 (2022).

v

https://doi.org/10.1007/s11139-020-00373-9
https://doi.org/10.1016/j.ffa.2022.102112
https://arxiv.org/abs/2203.05290

C O N T E N T S

i what is it known about the pell equation? 1

1 introduction 3

2 pell conics 7

2.1 Solutions of the Pell equation over a field 7

2.2 The Pell conic over finite fields 11

2.2.1 d non–square . 12

2.2.2 d square . 13

2.3 Generalized Pell conics 14

2.4 Exponentiation and Rédei polynomials 17

3 pell cubics 21

3.1 Solutions of the cubic Pell equation over a field 21

3.2 The Pell cubic over finite fields 25

3.2.1 r non–cube . 25

3.2.2 r cube with three roots in Fq 28

3.2.3 r cube with one root in Fq 31

3.3 Generalized Pell cubic 35

3.4 Exponentiation and extended Rédei polynomials . . . 37

ii how is the pell equation used in cryptography? 41

4 public–key cryptography 43

4.1 Classical and modern cryptography 43

4.2 rsa cryptosystem . 45

4.3 rsa with Pell conics and cubics 47

4.4 ElGamal cryptosystem 51

4.5 Digital Signature Algorithm and ecdsa 53

5 new cryptosystems with the pell conic 55

5.1 Alternative rsa–like cryptosystem 56

5.2 ElGamal with the Pell conic 57

5.3 ElGamal with the projectivization 58

5.4 ElGamal with two Pell conics 59

5.5 dsa with the Pell conic 61

5.6 Security, data–size and performance 62

6 cryptosystems with the pell cubic 69

6.1 rsa-like cryptosystem with the Pell cubic 70

6.2 ElGamal with the Pell cubic 72

6.3 ElGamal with the projectivization 75

6.4 ElGamal with two Pell cubics 78

6.5 dsa with the Pell cubic 79

6.6 Security, data–size and performance 81

vii

viii contents

iii is the pell equation related to primality tests? 89

7 primality tests in literature 91

7.1 Strong Fermat test . 92

7.2 Lucas sequences . 93

7.3 Primality tests based on Lucas sequences 95

7.3.1 Lucas test . 95

7.3.2 Strong Lucas test 96

7.3.3 Extra strong Lucas test 98

7.4 Frobenius test . 99

7.5 Pell test . 100

8 primality tests based on sequences 103

8.1 Linear recurrent sequences for primality tests 104

8.2 Strong Pell test and double Lucas test 105

8.3 Generalized Pell primality test 108

8.4 Generalized Lucas primality test 111

8.5 Numerical experiments 114

conclusions 117

bibliography 121

L I S T O F F I G U R E S

Figure 1 Geometric interpretation of P⊗dQ ∈ Cd. 8

Figure 2 Square–multiply algorithm with ⊗d on Cd. . . 18

Figure 3 Modified More algorithm for the exponentia-
tion over Pd using Rédei rational functions. . . 19

Figure 4 square–multiply algorithm with ⊙r on Cr. . . 38

Figure 5 Modified More algorithm for the exponenti-
ation over Pr using extended Rédei rational
functions. 40

Figure 6 RSA PKE scheme. 45

Figure 7 RSA on
(
Cd,⊗d

)
with fixed d. 47

Figure 8 RSA on
(
Cd,⊗d

)
with generic d depending on

msg. 48

Figure 9 RSA–like cryptosystem using ϕd with d non–
square depending on msg. 49

Figure 10 RSA on
(
Pr,⊙r

)
with fixed r non–cube. 50

Figure 11 ElGamal PKE scheme. 52

Figure 12 Digital Signature Algorithm (DSA). 53

Figure 13 DSA with Elliptic Curves (ECDSA). 54

Figure 14 RSA–like cryptosystem using ϕd with generic
d depending on msg. 56

Figure 15 ElGamal with
(
Cd,⊗d

)
of order q+ 1. 57

Figure 16 ElGamal with
(
Pd,⊗d

)
of order q+ 1. 58

Figure 17 ElGamal with
(
Pd,⊗d

)
of order q+ 1, ϕd and

δd,d ′ . 60

Figure 18 DSA with
(
Pd,⊗d

)
of order q+ 1. 61

Figure 19 RSA–like cryptosystem using ψ ′′
r

with r cube
depending on msg. 70

Figure 20 RSA–like cryptosystem using ψ ′′′
r

with r cube
depending on msg. 72

Figure 21 ElGamal with
(
Cr,⊙r

)
of order q2 + q+ 1. . . 73

Figure 22 ElGamal with
(
Cr,⊙r

)
of order q2 − 1. 74

Figure 23 ElGamal with
(
Pr,⊙r

)
of order q2 + q+ 1. . . 76

Figure 24 ElGamal with
(
Pr,⊙r

)
of order q2 − 1. 77

Figure 25 ElGamal with
(
Cr,⊙r

)
of order q2− 1, ψ ′′′

r
and

ρr,r ′ . 78

Figure 26 DSA with
(
Pr,⊙r

)
of order q2 + q+ 1 = 3p. . 80

ix

L I S T O F TA B L E S

Table 1 Data–size in bits of the classical RSA and the
RSA–like cryptosystem with ϕd introduced in
Figure 14 for different security strengths. . . . 62

Table 2 Average times in seconds for 10 random in-
stances of RSA, RSA repeated two times and
the RSA–like cryptosystem with ϕd introduced
in Figure 14, depending on the bit–length n of
N. 63

Table 3 Field size in bits for different DLP–based cryp-
tosystems depending on the cyclic group and
the classical security strength in bits. 64

Table 4 Data–size in bits for ElGamal with FFC, ECC,
Cd, Pd and the alternative formulation, depend-
ing on the size n of q and for 80 bits of security. 65

Table 5 Average times in seconds for 10 random in-
stances of ElGamal with FFC, ECC, Cd, Pd and
the alternative formulation, for fixed message
length, depending on the security strength. . . 66

Table 6 Data–size in bits for DSA with FFC, ECC and
Pd, depending on the sizes l,n of q,p and for
80 bits of security strength. 67

Table 7 Average times in seconds for 10 random in-
stances of DSA with FFC, ECC and Pd, de-
pending on the security strength. 68

Table 8 Data–size in bits of the classical RSA and the
RSA–like cryptosystems with Cd and Cr for 80
bits of security strength. 81

Table 9 Field size in bits for different DLP–based cryp-
tosystems depending on the cyclic group and
the classical security strength in bits. 82

Table 10 Data–size in bits for ElGamal with FFC, ECC,
Pr and the alternative formulations with the
Pell conic and cubic, depending on the size n
of q and for 80 bits of security strength. 83

Table 11 Average times in seconds for 10 random in-
stances of ElGamal with FFC, ECC, Pr and
the alternative formulations with the Pell conic
and cubic, for fixed message length, depend-
ing on the security strength. 84

Table 12 Data–size in bits for DSA with FFC, ECC, Pd

and Pr, depending on the sizes l,n of q,p and
for 80 bits of security strength. 86

x

List of Tables xi

Table 13 Average times in seconds for 10 random in-
stances of DSA with FFC, ECC, Pd and Pr,
depending on the security strength. 87

Table 14 Number of gppsp(d, x, y) up to 220 for differ-
ent values of the parameters d, (x, y) and their
arithmetic means with fixed d or (x, y). 114

Table 15 Number of glpsp(p, q, r) up to 220 for differ-
ent values of the parameters p, q, r and their
arithmetic means with fixed q or p, r. 115

A C R O N Y M S

PKE Public-Key Encryption 44

RSA Rivest, Shamir and Adleman PKE scheme 45

IFP Integer Factorization Problem 46

DLP Discrete Logarithm Problem 51

FFC Finite Field Cryptography 53

ECC Elliptic Curve Cryptography 53

DSA Digital Signature Algorithm 53

ECDSA DSA with Elliptic Curves 54

NIST U.S. National Institute of Standard and
Technology . 54

spsp(a) strong pseudoprime to base a 92

lpsp(p, q) Lucas pseudoprime with parameters p, q 95

fpsp(f) Frobenius pseudoprime with respect to f(x) . . 99

fpsp(p, q) Frobenius pseudoprime with respect to
x2 − px+ q . 100

slpsp(p, q) strong Lucas pseudoprime with parameters p, q 96

xlpsp(p) extra strong Lucas pseudoprime with parameter p 98

ppsp(d, x, y) Pell pseudoprime with parameters d, (x, y) . . . 101

sppsp(d, x, y) strong Pell pseudoprime with parameters d, (x, y) 103

dlpsp(p, q) double Lucas pseudoprime with parameters p, q 105

gppsp(d, x, y) generalized Pell pseudoprime with parameters
d, (x, y) . 108

glpsp(p, q, r) generalized Lucas pseudoprime with parameters
p, q, r . 111

xii

S Y M B O L S

Rd polynomial ring F[t]/⟨t2 − d⟩ 7

Nd norm over Rd . 7

Cd Pell conic with parameter d 7

⊗d Brahmagupta product with parameter d 7

R⊗d

d invertible elements of Rd with respect to ⊗d 8

Pd projectivization of Rd 9

ϕd group isomorphism between Pd and Cd 9

χq quadratic character in Fq 11

δd,d ′ group isomorphism between Cd and Cd
′ 11

Cd,q generalized Pell conic with parameter d and norm q 15

⊗d,q,a,b generalized Brahmagupta product with identity
(a,b) ∈ Cd,q . 15

τa,b
d,q group isomorphism between Cd and Cd,q with ⊗d,q,a,b 15

Rr polynomial ring F[t]/⟨tr − r⟩ 21

Nr norm over Rr . 21

Cr Pell cubic with parameter r 22

⊙r cubic Brahmagupta product with parameter r 22

R⊙r

r invertible elements of Rr with respect to ⊙r 22

Pr projectivization of Rr 22

ψ ′
r

group isomorphism between Pr and Cr for r non–cube
in Fq with q ≡ 1 (mod 3) 26

ψ ′′
r

group isomorphism between Pr and Cr for r cube in Fq

with q ≡ 1 (mod 3) . 30

ψ ′′′
r

group isomorphism between Pr and Cr for r cube in Fq

with q ≡ 2 (mod 3) . 31

ψ̃ ′′′
r

group isomorphism between Pr and Cr for r cube in
F3k . 33

Cr,q generalized Pell cubic with parameter r and norm q 35

⊙r,q,a,b,c generalized cubic Brahmagupta product with identity
(a,b, c) ∈ Cr,q . 35

υa,b,c
r,q group isomorphism between Cr and Cr,q with

⊙r,q,a,b,c . 36

ρr,r ′ group isomorphism between Cr and Cr
′ 37

(Uk)k⩾0 first Lucas sequence . 93

(Vk)k⩾0 second Lucas sequence 93

xiii

Part I

W H AT I S I T K N O W N A B O U T T H E P E L L
E Q U AT I O N ?

This first part focuses on introducing the historical and
new theoretical results concerning the Pell equation, as
well as the formalism that will be adopted in all the fol-
lowing chapters. After an initial introduction in Chapter 1,
the classical Pell equation is addressed in Chapter 2. The
classical and new results are then adapted to the the gen-
eralization of the Pell equation of degree 3 in Chapter 3.

1
I N T R O D U C T I O N

The classical Pell equation is the Diophantine equation of the form

x2 − dy2 = 1,

where d is a positive integer and solutions are sought for (x,y) ∈ Z2.
The case with d square is trivial since the only solutions are (±1, 0).
Thus, the interesting case is when d is a non–square, since with this
choice for d the Pell equation has infinitely many solutions [35].

The Pell equation has ancient origins [22, 57], since it is related to
the Archimedes cattle problem despite it is not known if Archimedes
was able to solve it. Currently, there are still several important is-
sues regarding the Pell equation. For instance, the study of the size
of the fundamental solution is an interesting problem addressed in
several papers, e.g., [15, 28, 60]. Recently, the solvability of simultane-
ous Pell equations and explicit formulas for their solutions have been
also studied in [18, 29, 33]. However, the original problem of finding
its solution is solved through methods that are mainly based on us-
ing continued fractions to find a fundamental solution, which is then
used for generating all the other ones.

Historically, one of the first mathematicians that studied extensively
the solutions of the Pell equation was surely Brahmagupta. In par-
ticular, he focused on the specific equation 92x2 + 1 = y2 in his
Brāhmasphut.asiddhānta dating circa in 628. Then he discovered that,
given two solutions (x1,y1) and (x2,y2) of the Pell equation,

(x1x2 + dy1y2, x1y2 + y1x2), (x1x2 − dy1y2, x1y2 + y1x2),

are also solutions. This result, besides giving an easy method to find
new solutions, can be related to the definition of an operation over
the set of all the solutions of a Pell equation. This is the starting point
for the applications of the Pell equation in cryptography.

In addition, since all the public–key cryptosystems require finite
sets, it is interesting to study the Pell equation over finite fields, deter-
mining the number of solutions and their properties [19, 42, 54, 55]. In
this context, the Pell equation has already been used for the formula-
tion of many public–key cryptosystems. On one hand, cryptosystems
with security relying on the difficulty of the Integer Factorization
Problem are largely studied [11, 32, 36, 47, 48], resulting generally in
a faster decryption procedure than the classical RSA. However, there
are still some issues and theoretical results allow to obtain useful en-
hancements. On the other hand, the applications of the Pell equation
in cryptosystems with security based on the Discrete Logarithm Prob-
lem are less studied [44], and new investigations are required.

3

4 introduction

Another interesting application of the Pell equation are the pow-
ers through the operation inspired by Brahmagupta. In particular, it
is possible to find a relation with the Rédei polynomials and rational
functions obtained from the development of (z+

√
d)n [39, 53], which

allows to speed up the exponentiations required in the previously
mentioned cryptosystems. Moreover, Lucas sequences [40] are solu-
tions, up to constants, of the Pell equation, and they can be seen as
sequences of solutions obtained as powers of a given solution. Thus,
following the definitions of primality tests based on the Lucas se-
quences, it is useful to investigate the uses of the solutions of the Pell
equation over finite fields in new primality tests.

These are the ideas that led the first theoretical part of this work
(Chapter 2) to obtain new results about the Pell equation, all for-
mulated under a new simple notation, so that they can be exploited
to explore new enhancements and formulations for public–key cryp-
tosystems and primality tests. For sake of completeness, the focus
moves also to the case with d square and with constant term not 1,
introducing also a generalized operation, so that a full classification
is obtained.

As a direct generalization of the classical Pell equation, it is possible
to consider its cubic version. As observed in [6], while a natural choice
could be simply

x3 − dy3 = 1,

a more interesting and theoretically correct cubic generalization of
the Pell equation is given by

x3 + ry3 + r
2z3 − 3rxyz = 1,

where r is a non–cube integer. Differently from the quadratic case,
the first studies on the cubic Pell equation are more modern, since
they can be found at the end of the XIX century in [41] and at the
beginning of the XX century in [59]. Some years later, a method for
solving the cubic Pell equation by means of a generalization of con-
tinued fractions due to Jacobi [34] was proposed [20]. However, it is
not working always because of the periodicity of the Jacobi algorithm
that is still an open problem. This issue was also addressed in the sec-
ond half of the last century, e.g., in [13] and [14]. The solutions of the
cubic Pell equation were also studied in [5] from the point of view of
recurrent sequences, generalizing how Lucas sequences are solutions
of the quadratic Pell equation. Moreover, in [6], the author exhibited
an algorithm for finding the fundamental solutions of the cubic Pell
equation that works only in some cases. Thus, in general, there is a
wide state of the art on the cubic Pell equation but the problem of
finding its solutions is still very hard to solve for any cube–free r.
A good starting point could be considering a cubic generalization of
the operation inspired by Brahmagupta and studying the cubic Pell
equation over a generic field as for the quadratic version.

introduction 5

The theoretical properties of the cubic Pell equation can be ex-
ploited for cryptographic applications as in the quadratic case. In
this context, the focus is on the solutions over a finite field and the
strategy adopted for the classical Pell equation can be generalized in
the cubic case. The idea is to explore and enhance formulations with
the cubic Pell equation of cryptosystems with security based on the
Integer Factorization Problem [46] as well as cryptographic schemes
based on the Discrete Logarithm Problem.

The second theoretical part (Chapter 3) adopts a generalization of
the notation introduced for the quadratic case in order to study the
properties of the cubic Pell equation, so that the new results can be
exploited for the mentioned cryptographic applications.

2
P E L L C O N I C S

The classical Pell equation introduced in Chapter 1 can be used for
defining a conic over a field F. Moreover, the set of solutions can be
equipped with a product such that the resulting structure is a group.

In this chapter, this construction and a particular parametrization
are introduced in Section 2.1. The latter is useful for studying the Pell
equation over finite fields in Section 2.2 and it is also handy for a
generalization in the cubic case studied in Chapter 3. Moreover, this
parametrization allows to reduce the data-size of the points of the
conic, so that it could be useful in concrete applications, like cryptog-
raphy. In Section 2.3, a group structure on the generalized Pell conic
defined by the equation x2 − dy2 = q is introduced, together with
explicit group isomorphisms with the classical Pell conic and among
different generalized Pell conics. Finally, Section 2.4 focuses on an al-
gorithm for the exponentiation over the Pell conic that requires less
operations than the classical square–multiply algorithm.

2.1 solutions of the pell equation over a field

The best way to consider the solutions over a field F of a Pell equation
with parameter d ∈ F× is by taking the polynomial ring

Rd = F[t]/⟨t2 − d⟩,

which inherits from the polynomial product the operation

(x1 + y1t) · (x2 + y2t) = (x1x2 + dy1y2) + (x1y2 + y1x2)t.

definition 2.1 Given the parameter d ∈ F×, considering as con-
jugate of x+ yt ∈ Rd the element x− yt, the product of an element
with its conjugate defines the norm over Rd given by

Nd(x+ yt) = (x+ yt) · (x− yt) = x2 − dy2 ∈ F.

The unitary elements of Rd with respect to the norm Nd are

U(Rd) = {x+ yt ∈ Rd | Nd(x+ yt) = 1},

and form a commutative group that is isomorphic to the curve de-
fined by the Pell equation, i.e., the Pell conic with parameter d:

Cd = {(x,y) ∈ F2 | x2 − dy2 = 1}.

If equipped with the Brahmagupta product with parameter d:

(x1,y1)⊗d (x2,y2) = (x1x2 + dy1y2, x1y2 + y1x2), (2.1)

Cd is a commutative group with identity (1, 0) and (x,y)−1 = (x,−y).

7

8 pell conics

Figure 1: Geometric interpretation of P⊗dQ ∈ Cd.

Due to this group isomorphism, in the following ⊗d is used also
for the product over Rd, so that its dependence on d is highlighted.

From a n geometrical point of view, the operation ⊗d over Cd can
be introduced in a very similar way to the one of the elliptic curves,
as observed, e.g., in [12]. Indeed, given two points P and Q of an
elliptic curve, their sum P ⊕Q is obtained by considering the point
R, intersection between the elliptic curve and the line through P and
Q, so that P⊕Q is the intersection between the elliptic curve and the
line through R and the identity point, that is the point at infinity. This
construction works also considering two points P and Q of Cd, with
the difference that the line through P and Q intersects the conic at
the point R that is, in this case, the point at infinity. Consequently,
the product P⊗dQ is the intersection between the conic and the line
through R (point at infinity) and the identity, that is the point (1, 0),
i.e., the line parallel to the line through P and Q, as shown in Figure 1.

It is quite easy to check that, from this geometrical construction
of ⊗d, the algebraic expression described in Equation 2.1 can be ob-
tained. Indeed, given P = (x1,y1) and Q = (x2,y2) on Cd, it is suf-
ficient to check that the slope of the line through P and Q is equal
to that of the line through (x1x2 + dy1y2, x1y2 + y1x2) and (1, 0).
Thanks to this geometrical approach, it is also possible to observe
that the identity point can be an arbitrary point of the Pell conic, and
this choice leads to the generalized Brahmagupta product that will
be introduced in Section 2.3.

In order to introduce a parametrization for Cd, by denoting with
R⊗d

d the invertible elements of Rd with respect to ⊗d, there are two
possible cases:

1. if d ∈ F× is a non–square, then

R⊗d

d
= Rd ∖ {0};

2. if d ∈ F× is a square and s ∈ F× is a square root of d, then

R⊗d

d
= Rd ∖ {0,±sy+ yt |y ∈ F}.

2.1 solutions of the pell equation over a field 9

definition 2.2 The projectivization of Rd is defined as

Pd = R⊗d

d
/F×.

In particular, its elements are of the form

[m : n] = {λ(m+nt) | λ ∈ F×}, for m+nt ∈ R⊗d

d
.

Since if n ̸= 0 then m+ nt is equivalent to mn−1 + t, it is useful to
define the canonical representatives as the elements of the form

Pd =


{
[m : 1], [1 : 0] |m ∈ F

}
, if d is a non–square,{

[m : 1], [1 : 0] |m ∈ F ∖ {±s}
}

, otherwise

∼

F∪ {α}, if d is a non–square,

F ∖ {±s}∪ {α}, otherwise,

(2.2)

where α denotes the point at infinity and, in case of d square, s ∈ F

is a fixed square root of d. Since ⊗d consists of homogeneous poly-
nomials, it is well defined also on Pd and determines a commutative
group with identity [1 : 0] and inverse of [m : 1] given by [−m : 1].

The operation ⊗d over Pd between canonical representatives is

m1 ⊗d m2 =



m1, if m2 = α,

m2, if m1 = α,
m1m2+d

m1+m2
, if m1 +m2 ̸= 0,

α, otherwise.

(2.3)

This projectivization is actually a parametrization of the Pell conic,
which is useful for studying some of its properties over finite fields
and will be naturally generalized also for the cubic case. The follow-
ing theorem provides an explicit group isomorphism between Pd and
Cd. The result was introduced in [7], but can be obtained with the
different formulation described below, which will be adapted to the
cubic case in Chapter 3.

theorem 2.1 Given d ∈ F×, the following map is a group isomor-
phism between Pd and Cd:

ϕd :
(
Pd,⊗d

) ∼−→
(
Cd,⊗d

)
,

[m : n] 7−→ (m,n)⊗d2

Nd(m,n)
=

(
m2 + dn2

m2 − dn2
,

2mn

m2 − dn2

)
.

Proof. In order for ϕd to be a group isomorphism, it must be

• well defined: for any [m : n] ∈ Pd, λ ∈ F×,

ϕd([λm : λn]) =
λ2(m,n)⊗d2

λ2Nd(m,n)
= ϕd([m : n]),

and Nd

(
ϕd([m : n])

)
=

Nd(m,n)2

Nd(m,n)2
= 1, so that ϕd(Pd) ⊆ Cd;

10 pell conics

• a group homomorphism: for any [m1 : n1], [m2 : n2] ∈ Pd,

ϕd([m1 :n1]⊗d[m2 :n2]) =
(m1m2 + dn1n2,m1n2 +n1m2)

⊗d2

Nd(m1m2 + dn1n2,m1n2 +n1m2)

=
(m1,n1)

⊗d2 ⊗d (m2,n2)
⊗d2

Nd(m1,n1)Nd(m2,n2)

= ϕd([m1 : n1])⊗d ϕd([m2 : n2]);

• injective: ker(ϕd) = {[1 : 0]} since, for any [m : n] ∈ Pd,

ϕd([m : n]) = (1, 0)⇔

m2 − dn2 = m2 + dn2,

0 = 2mn

⇔ n = 0;

• surjective: if (x, 0) ∈ Cd, then x2 = 1, which has solutions x = ±1.
Specifically, these correspond to

ϕd([1 : 0]) = (1, 0),

ϕd([0 : 1]) = (−1, 0).

If (x,y) ∈ Cd with y ̸= 0, so that x ̸= ±1 and d = x2−1
y2 ̸= 0. The

preimage of such (x,y) is an element [m : n] ∈ ϕd such thatx =
m2y2+(x2−1)n2

m2y2−(x2−1)n2 ,

y = 2mny2

m2y2−(x2−1)n2

⇔

m2y2−2mnxy+n2(x2−1) = 0,

m2y2 −n2(x2 − 1) = 2mny.

When subtracting the second equation to the first one, the re-
sulting equation is given by

2n2(x− 1)2 = 2mn(x− 1).

Since x ̸= 1 and n ̸= 0, this gives m = nx+1
y and the surjectivity

is confirmed because ϕd([x+ 1 : y]) = (x,y).

In conclusion, ϕd is a group isomorphism.

This proof gives as the inverse of ϕd the group homomorphism

ϕ−1
d

:
(
Cd,⊗d

) ∼−→
(
Pd,⊗d

)
,

(−1, 0) 7−→ [0 : 1],

(x,y) 7−→ [x+ 1 : y].

From a geometrical point of view, when taking the canonical repre-
sentative of the image, the first entry results in the slope of the line
through (−1, 0) and (x,y) evaluated with x depending on y, except
for the image of (1, 0) which is the point at infinity α = [1 : 0].

2.2 the pell conic over finite fields 11

The group isomorphism ϕd is also a direct method to generate all
the solutions of the Pell equation x2 −dy2 = 1 ∈ F from the elements
of Pd, which requires half the size to be stored, since when using the
canonical representatives in Pd, it becomes

ϕd(m)=


(

2m
m2−d

m−1, 2m
m2−d

)
=
(
m2+d

m2−d
, 2m
m2−d

)
, if m ̸= α,

(1, 0), otherwise.
(2.4)

2.2 the pell conic over finite fields

When F = Fq with q = pk and p odd prime, the group structure
of the Pell conic depends on the quadratic character in Fq of the
parameter d, i.e.,

χq(d) =


−1, if d is a non–square in Fq,

0, if d = 0,

1, if d is a square in Fq.

In the non–zero cases, it is easy to obtain also the isomorphism
between two Pell conics with different parameters.

theorem 2.2 For χq(d)=χq(d ′), there is δ ∈ F×
q such that d = δ2d

′

and the following map is a group isomorphism between Cd and Cd
′ :

δd,d ′ :
(
Cd,⊗d

) ∼−→
(
Cd

′ ,⊗d
′
)
,

(x,y) 7−→ (x, δy).

Proof. In order for δd,d ′ to be a group isomorphism, it must be

• well defined: δd,d ′(Cd) ⊆ Cd
′ since, for any (x,y) ∈ Cd,

Nd
′(x, δy) = x2 − d

′(δy)2 = x2 − d
′δ2y2 = x2 − dy2 = 1;

• a group homomorphism: for any (x1,y1), (x2,y2) ∈ Cd,

δd,d ′
(
(x1,y1)⊗d (x2,y2)

)
= δd,d ′(x1x2 + dy1y2, x1y2 + y1x2)

=
(
x1x2 + dy1y2, δ(x1y2 + y1x2)

)
= (x1x2 + d

′δ2y1y2, x1δy2 + δy1x2)

= δd,d ′(x1,y1)⊗d
′ δd,d ′(x2,y2).

• injective: for any (x,y) ∈ Cd,

δd,d ′(x,y) = (1, 0)⇔ (x, δy) = (1, 0)⇔ (x,y) = (1, 0);

• surjective: the preimage of (x,y) ∈ Cd
′ is simply (x,y/δ) ∈ Cd.

In conclusion, δd,d ′ is a group isomorphism.

12 pell conics

The map δd,d ′ can be also a group isomorphism between projec-
tivizations that, if d = δ2d

′, is given by

δd,d ′ :
(
Pd,⊗d

) ∼−→
(
Pd

′ ,⊗d
′
)
,

m 7−→ m/δ.

The cases with χq(d) ̸= 0 are fully described by Menezes and Van-
stone [42], which give also the order of the Pell conic in both situ-
ations, i.e., the number of solutions of the Pell equation over finite
fields. The case with χq(d) = −1 is tackled in Section 2.2.1, while
Section 2.2.2 deals with the case with χq(d) = 1. These subsections
include the proofs from [42] as well as new alternative proofs con-
nected to the parametrization ϕd from Theorem 2.1. This introduces
the ideas that will be exploited to study the cubic Pell equation over
finite fields in Section 3.2.

2.2.1 d non–square

When χq(d) = −1, the polynomial t2 − d ∈ Fq[t] is irreducible over
Fq, so that

Rd = Fq[t]/⟨t2 − d⟩ ∼= Fq2 ,

and the following result holds.

theorem 2.3 [42] If χq(d) = −1, then
(
Cd,⊗d

)
is a cyclic group of

order q+ 1.

Proof. Since R⊗d

d
∼= F×

q2 has q2 − 1 elements, there is a multiplicative
subgroup G ⊂ F×

q2 of order q+ 1. In particular, x+yt ∈ G if and only
if (x+ yt)q+1 = 1, where

(x+ yt)q+1 = (x+ yt)q(x+ yt) = (x+ ytq)(x+ yt)

=
(
x+ y(t2)(q−1)/2t

)
(x+ yt) =

(
x+ yd

(q−1)/2t
)
(x+ yt)

= (x− yt)(x+ yt) = x2 − dy2,

so that x+yt ∈ G if and only if (x,y) ∈ Cd. This association is a group
isomorphism between G and

(
Cd,⊗d

)
, hence the Pell conic is a cyclic

group of order q+ 1.

Looking at Pd, since there are no square roots of d in Fq, then
#Pd = q+ 1 from Equation 2.2. This is confirmed also by considering(

Pd,⊗d

)
= R⊗d

d
/F×

q
∼= F×

q2/F×
q ,

which proves also that Pd is cyclic because quotient of cyclic groups.
Thus, using the group isomorphism ϕd obtained in Theorem 2.1

for a general field gives an alternative proof that
(
Cd,⊗d

)
is cyclic of

order q+ 1. In addition, ϕd allows to describe each point of the conic
with half the size with respect to the group isomorphism obtained in
Theorem 2.3.

2.2 the pell conic over finite fields 13

2.2.2 d square

When χq(d) = 1, Rd is a ring and, as in the previous case, the Pell
conic is a cyclic group.

theorem 2.4 [42] If χq(d) = 1, then
(
Cd,⊗d

)
is a cyclic group of

order q− 1.

Proof. Fixed a square root s ∈ F×
q of d, the norm Nd of (x,y) ∈ Cd can

be factorized as

1 = x2 − dy2 = (x− sy)(x+ sy) = uv,

so that

x =
v+ u

2
, y =

v− u

2s
,

which results in a bijective correspondence between (x,y) ∈ Cd and
(u, v) ∈ F2

q such that uv = 1. This equation has exactly q− 1 solutions
in F2

q and, in particular, a unique solution for each u ∈ F×
q . Thus,(

Cd,⊗d

) ∼←→ F×
q ,

(x,y) 7−→ x− sy,(
1+ u2

2u
,
1− u2

2su

)
←− [u,

is a group isomorphism, i.e.,
(
Cd,⊗d

)
is cyclic of order q− 1.

When considering Pd, from Equation 2.2, #Pd = q− 1. This is con-
firmed by the following result.

theorem 2.5 If χq(d) = 1, then
(
Pd,⊗d

)
is a cyclic group of order

q− 1.

Proof. Fixed a square root s ∈ F×
q of d, t2 − d is reducible over Fq as

t2 − d = (t− s)(t+ s),

so that, using the Chinese remainder theorem, there is the ring iso-
morphism

Rd = Fq[t]/⟨t2 − d⟩ ∼−→ Fq[t]/⟨t− s⟩ ×Fq[t]/⟨t+ s⟩,
x+ yt 7−→ (x+ sy, x− sy).

In addition, Fq[t]/⟨t− s⟩ ∼= Fq[t]/⟨t+ s⟩ ∼= Fq, so that when passing
to the quotients there is the group isomorphism(

Pd,⊗d

)
= R⊗d

d
/F×

q
∼←→ (F×

q ×F×
q)/F×

q
∼= F×

q ,

[m : n] 7−→ m− sn

m+ sn
,

[s(1+ u) : 1− u]←− [u,

which confirms that
(
Pd,⊗d

)
is a cyclic group of order q− 1.

14 pell conics

In particular, the composition of the group isomorphisms obtained
in Theorem 2.4 and Theorem 2.5 is(

Pd,⊗d

) ∼−→ F×
q

∼−→
(
Cd,⊗d

)
,

[m : n] 7−→ m− sn

m+ sn
7−→

(
1+

(
m−sn
m+sn

)2
2m−sn
m+sn

,
1−

(
m−sn
m+sn

)2
2sm−sn

m+sn

)
= (x,y),

where

(x,y) =
(
(m+ sn)2 + (m− sn)2

2(m− sn)(m+ sn)
,
(m+ sn)2 − (m− sn)2

2s(m− sn)(m+ sn)

)
=

(
2m2 + 2dn2

2(m2 − dn2)
,

4smn

2s(m2 − dn2)

)
=

(
m2 + dn2

m2 − dn2
,

2mn

m2 − dn2

)
.

The inverse is given by(
Cd,⊗d

) ∼−→ F×
q

∼−→
(
Pd,⊗d

)
,

(x,y) 7−→ x− sy 7−→ [s(1+ x− sy) : 1− x+ sy] = [m : n],

where, if 1+ x+ sy ̸= 0, then

[m : n] = [s(1+ x− sy)(1+ x+ sy) : (1− x+ sy)(1+ x+ sy)]

= [s(1+ 2x+ x2 − dy2) : 1+ 2sy+ dy2 − x2]

= [2s(1+ x) : 2sy] = [1+ x : y],

while1+ x+ sy = 0,

x2 − dy2 = 1
⇒

x = −1− sy,

1+ 2sy+ dy2 − dy2 = 1
⇒

x = −1,

y = 0,

so that

[m : n] =

[0 : 1], if (x,y) = (−1, 0),

[1+ x : y], otherwise.

These are exactly ϕd and ϕd

−1 obtained for a general field in Theo-
rem 2.1, which allow to describe each point of the conic with half the
size with respect to the group isomorphism obtained in Theorem 2.4.

2.3 generalized pell conics

In this section, a generalization of the Pell equation and the resulting
generalized Pell conic are introduced. In addition, an explicit group
isomorphism between the standard Pell conic and a generalized Pell
conic is obtained.

2.3 generalized pell conics 15

definition 2.3 Given the parameters d, q ∈ F×, the solutions of a
generalized Pell equation x2 −dy2 = q correspond to the elements of
Rd with norm equal to q, which are the points of the generalized Pell
conic with parameter d and norm q:

Cd,q = {(x,y) ∈ F2 | x2 − dy2 = q}.

This is the canonical form of all hyperbolas and ellipses.
The classical Brahmagupta product with parameter d does not give

a group structure on Cd,q, but it can be used to define the generalized
Brahmagupta product with identity (a,b) ∈ Cd,q as

(x1,y1)⊗d,q,a,b (x2,y2) =
1

q

(a,−b)⊗d (x1,y1)⊗d (x2,y2).

Clearly, the identity point for ⊗d,q,a,b is the chosen point (a,b) ∈ Cd,q,
the inverse of a point (x,y) ∈ Cd,q is the point

1

q

(a,b)⊗d (a,b)⊗d (x,−y),

and
(
Cd,q,⊗d,q,a,b

)
is a commutative group.

When q = 1 and the chosen identity point is (a,b) = (1, 0), the
product ⊗d,q,a,b coincides with the classical ⊗d.

Despite the introduction of the new parameter q ∈ F×, it is possible
to obtain the explicit group isomorphism between two generalized
Pell conics with same d by exploiting the definition of ⊗d,q,a,b.

theorem 2.6 Given d, q ∈ F× and a point (a,b) ∈ Cd,q, the follow-
ing map is a group isomorphism between Cd and Cd,q:

τa,b
d,q :

(
Cd,⊗d

) ∼−→
(
Cd,q,⊗d,q,a,b

)
,

(x,y) 7−→ (a,b)⊗d (x,y).

Proof. In order for τa,b
d,q to be a group isomorphism, it must be

• well defined: τa,b
d,q (Cd) ⊆ Cd,q since, for any (x,y) ∈ Cd,

Nd

(
(a,b)⊗d (x,y)

)
= Nd(a,b)Nd(x,y) = q;

• a group homomorphism: for any (x1,y1), (x2,y2) ∈ Cd,

τa,b
d,q
(
(x1,y1)⊗d (x2,y2)

)
= (a,b)⊗d (x1,y1)⊗d (x2,y2)

=
(a,−b)⊗d (a,b)

q

⊗d (a,b)⊗d (x1,y1)⊗d (x2,y2)

= τa,b
d,q (x1,y1)⊗d,q,a,b τ

a,b
d,q (x2,y2);

• injective: for any (x,y) ∈ Cd,

τa,b
d,q (x,y) = (a,b)⇔ (x,y) = (1, 0);

16 pell conics

• surjective: for any (x,y) ∈ Cd,q,

(x,y) =
(a,b)⊗d (a,−b)

q

⊗d (x,y)

= (a,b)⊗d (1, 0)⊗d,q,a,b (x,y)

= τa,b
d,q
(
(1, 0)⊗d,q,a,b (x,y)

)
,

where (1, 0)⊗d,q,a,b (x,y) ∈ Cd since it has unitary norm Nd.

Thus, τa,b
d,q is a group isomorphism.

This constructive proof gives the inverse group homomorphism

(τa,b
d,q)−1 :

(
Cd,q,⊗d,q,a,b

) ∼−→
(
Cd,⊗d

)
,

(x,y) 7−→ (1, 0)⊗d,q,a,b (x,y).

The composition of (τa,b
d,q)−1 with τa

′,b ′

d,q ′ is an explicit group isomor-
phism between generalized Pell conics with same d:(

Cd,q,⊗d,q,a,b
) ∼−→

(
Cd,q ′ ,⊗d,q ′,a ′,b ′

)
,

(x,y) 7−→ (a ′,b ′)⊗d,q,a,b (x,y).
(2.5)

Since the group
(
Pd,⊗d

)
introduced in Definition 2.2 is indepen-

dent of the choice of the parameter q ∈ F× and of the identity point
(a,b) ∈ Cd,q, all the results in Section 2.1 can be adapted to general-
ized Pell conics. In particular, the composition of ϕd with τa,b

d,q results
in the group isomorphism between Pd and Cd,q, explicitly given by

ϕa,b
d,q :

(
Pd,⊗d

) ∼−→
(
Cd,q,⊗d,q,a,b

)
,

[m : n] 7−→ (a,b)⊗d ϕd([m : n]) =
(a,b)⊗d (m,n)⊗d2

Nd(m,n)
,

that, using the canonical representatives in Pd, becomes

ϕa,b
d,q (m) =


(
2am+db

m2−d
m− a, 2am+db

m2−d
+ b
)

, if m ̸= α,

(a,b), otherwise,

which is a generalization of Equation 2.4, with inverse given by

(ϕa,b
d,q)−1 :

(
Cd,q,⊗d,q,a,b

) ∼−→
(
Pd,⊗d

)
,

(−a,b) 7−→ [db,−a],

(x,y) 7−→ [x+ a : y− b].

Using the canonical representatives in Pd, the inverse becomes

(ϕa,b
d,q)−1(x,y) =


x+a
y−b , if y ̸= b,

−d
b
a , if (x,y) = (−a,b),

α, if (x,y) = (a,b).

2.4 exponentiation and rédei polynomials 17

This parametrization and its inverse can be used as an alternative way
to obtain the group isomorphism in Equation 2.5.

From a geometrical point of view, the parameter m of a point (x,y)
is the slope of the line through (x,y) and (−a,b) written considering
x variable with y, analogously to the geometric interpretation of ⊗d.

All the results in Section 2.2 can be adapted for generalized Pell
conics in the case of finite fields. The main result is that, for all the
parameters d, q ∈ Fq and any identity point (a,b) ∈ Cd,q, the group(
Cd,q,⊗d,q,a,b

)
is cyclic of order q− χq(d).

In addition, if
(
Cd,q,⊗d,q,a,b

)
and

(
Cd

′,q ′ ,⊗d
′,q ′,a ′,b ′

)
have d ̸= d

′

but χq(d) = χq(d ′), then the composition of (τa,b
d,q)−1, δd,d ′ and τa

′,b ′

d
′,q ′

results in a group isomorphism between the two generalized Pell con-
ics given explicitly by

τa
′,b ′

d
′,q ′ ◦ δd,d ′ ◦ (τa,b

d,q)−1(x,y) =
1

q

(
a ′(ax− dby) + d

′b ′δ(ay− bx),

a ′δ(ay− bx) + b ′(ax− dby)
)
.

2.4 exponentiation and rédei polynomials

In this section, an alternative algorithm for the exponentiation with
respect to ⊗d is described.

Improving the exponentiation algorithm is very useful because it
is the usual computational bottleneck in practical implementations.
Generally, exponentiation is implemented with a square–multiply al-
gorithm, eventually enhanced with a precomputation phase, so that
the total time is mainly determined by the speed of the single prod-
uct, which is required in both square and multiply steps. Thus, the
new algorithm is compared with the exponentiation with ⊗d through
the classical square–multiply algorithm.

As can be easily observed in Equation 2.1, the operation ⊗d on Cd

requires 5 products and 2 additions in F, while ⊗d between canon-
ical representatives in Pd from Equation 2.3 requires 1 inversion, 2
products and 2 additions in F. However, the inversion is largely more
expensive than the additional 3 products required in the first case.

Therefore, in a comparison of square–multiply implementations,
the first one is the most efficient. Figure 2 describes the algorithm
BrahSquaMult for the square–multiply exponentiation with ⊗d on Cd.

An interesting improvement exploits that the exponentiation of a
canonical representative in Pd can be evaluated with Rédei polyno-
mials or Rédei rational functions. They are classical number theory
objects firstly introduced in [53], while a more general overview can
be found in [39]. Here only the definitions and the useful properties
are recalled, while alternative Rédei polynomials are introduced in
order to have an improvement also for the exponentiation over Cd.

18 pell conics

BrahSquaMult(d, x,y,k):

1. a,b = 1, 0

2. kbin = binary(k)

3. for bit in kbin:

4. a,b = a2 + db2, 2ab

5. if bit == 1:

6. a,b = ax+ dby,ay+ bx

7. return a,b

Figure 2: Square–multiply algorithm with ⊗d on Cd.

definition 2.4 Given a parameter d ∈ F× with t2 = d not neces-
sarily in F, the classical Rédei polynomials (Ak)k⩾0 and (Bk)k⩾0 result
from

(m+ t)k = Ak(d,m) +Bk(d,m)t, for k ⩾ 0.

These two sequences clearly correspond to the coordinates resulting
from [m : 1]⊗dk ∈ Pd.

The ratios of Rédei polynomials are the Rédei rational functions

Qk(d,m) =
Ak(d,m)

Bk(d,m)
, for k > 0,

which are the canonical representatives of m⊗dk ∈ Pd.
On the other hand, considering the coordinates of (x,y)⊗dk ∈ Cd, it

is possible to define the generalized Rédei polynomials as

(x+ yt)k = ak(d, x,y) + bk(d, x,y)t, for k ⩾ 0.

In particular, the classical Rédei polynomials for k ⩾ 0 are

Ak(d,m) =

⌊k/2⌋∑
i=0

(
k

2i

)
d
imk−2i =

∑
i+j=k,
j even

(
k

i, j

)
d
j/2mi,

Bk(d,m) =

⌊k/2⌋∑
i=0

(
k

2i+ 1

)
d
imk−2i−1 =

∑
i+j=k,
j odd

(
k

i, j

)
d
(j−1)/2mi.

On the other hand, the generalized Rédei polynomials for k ⩾ 0 can
be written as

ak(d, x,y) =
⌊k/2⌋∑
i=0

(
k

2i

)
d
ixk−2iy2i =

∑
i+j=k,
j even

(
k

i, j

)
d
j/2xiyj,

bk(d, x,y)=
⌊k/2⌋∑
i=0

(
k

2i+1

)
d
ixk−2i−1y2i+1=

∑
i+j=k,
j odd

(
k

i, j

)
d
(j−1)/2xiyj,

where the multinomial coefficients are
(

k
i,j
)
= k!

i! j! .

2.4 exponentiation and rédei polynomials 19

ModMore(d,m,k):

1. A,B = 1, 0

2. kbin = binary(k)

3. for bit in kbin:

4. A,B = A2 + dB2, 2AB

5. if bit == 1:

6. A,B = Am+ dB,A+Bm

7. return A/B

Figure 3: Modified More algorithm for the exponentiation over Pd using
Rédei rational functions.

It also possible to use a matrix notation, so that(
Ak(d,m)

Bk(d,m)

)
=

(
m d

1 m

)k(
1

0

)
,

(
ak(d, x,y)

bk(d, x,y)

)
=

(
x dy

y x

)k(
1

0

)
,

where the second matrix is the same exploited in Chapter 8 for a
primality test based on the Pell conic.

In [45], the More algorithm was proposed for evaluating the Rédei
rational function Qk, i.e., the result of the exponentiation in Pd, with
complexity O(logk) considering additions and multiplications over
F. In [12], an improvement of the performance of this algorithm
was obtained and the result was called modified More algorithm.
This improved algorithm is detailed in Figure 3 under the denomi-
nation ModMore. In a comparison with Figure 2, the two algorithms
have the same number of operations at each step except for step
6, where BrahSquaMult requires an additional product, and step 7,
where ModMore requires a final inversion.

Thus, from the point of view of performance, the two algorithms
are comparable. The main advantage in evaluating the exponentiation
of canonical representatives in Pd through the modified More algo-
rithm is that the size of the data is halved because they are elements
of the field F and not of the Pell conic Cd.

3
P E L L C U B I C S

The idea of this chapter is to generalize the results obtained for the
Pell conic in Chapter 2 to the cubic Pell equation, which can be de-
fined analogously to the Pell equation of degree 2.

After considering its solutions over a field in Section 3.1, together
with a generalization of the Brahmagupta product that gives a group
structure, the cases over finite fields are characterized in Section 3.2.
A further generalization of the Pell cubic is introduced and studied
in Section 3.3, where its relations with the standard Pell cubic are
obtained. Finally, in Section 3.4, a generalization of Rédei polynomials
and rational functions with dimension three is exploited to obtain a
well-performing exponentiation algorithm.

3.1 solutions of the cubic pell equation over a field

As for the classical quadratic Pell equation, it is possible to define the
cubic Pell equation over a field F by taking a parameter r ∈ F× and
the polynomial ring

Rr = F[t]/⟨t3 − r⟩,

which inherits from the polynomial product the operation

(x1 + y1t+ z1t
2) · (x2 + y2t+ z2t2)

= x1x2+r(y1z2+z1y2)+(x1y2+y1x2+rz1z2)t+(x1z2+y1y2+z1x2)t
2.

definition 3.1 Given the parameter r ∈ F×, considering the prim-
itive cubic roots of unity ω,ω2, the conjugates of x+ yt+ zt2 ∈ Rr

are the polynomials

x+ yωt+ zω2t2, x+ yω2t+ zωt2,

and, analogously to the quadratic case, a norm over Rr is defined as

Nr(x+ yt+ zt
2)

= (x+ yt+ zt2) · (x+ yωt+ zω2t2) · (x+ yω2t+ zωt2)

= x3 + ry3 + r
2z3 − 3rxyz.

The unitary elements of Rr with respect to the norm Nr are

U(Rr) = {x+ yt+ zt2 ∈ Rr | Nr(x+ yt+ zt
2) = 1},

and form a commutative group.

21

22 pell cubics

Thus, it is natural to define the cubic Pell equation as

x3 − 3rxyz+ ry3 + r
2z3 = 1,

and the Pell cubic with parameter r as

Cr = {(x,y, z) ∈ F3 | x3 + ry3 + r
2z3 − 3rxyz = 1}.

Considering the cubic Brahmagupta product with parameter r given by

(x1,y1, z1)⊙r (x2,y2, z2) (3.1)

=
(
x1x2 + r(y1z2 + z1y2), x1y2 + y1x2 + rz1z2, x1z2 + y1y2 + z1x2

)
,

Cr is a commutative group with identity (1, 0, 0) and inverse of an
element (x,y, z) given the product of its conjugates

(x,y, z)−1 = (x,yω, zω2)⊙r (x,yω2, zω)

= (x2 − ryz, rz2 − xy,y2 − xz),

where ω,ω2 are primitive cubic roots of unity.

Clearly, the group over the Pell cubic is isomorphic to that of the
unitary elements of Rr with respect to the norm Nr, so that in the
following ⊙r is used also for denoting the product over Rr, in order
to highlight its dependence on r.

In order to find a parametrization for Cr, inspired by Definition 2.2
for the quadratic case, the invertible elements of Rr with respect to ⊙r

are considered. They are all but the non–zero divisors or, equivalently,
all those with non–zero norm, i.e.,

R⊙r

r
= {x+ yt+ zt2 ∈ Rr | Nr(x+ yt+ zt

2) ̸= 0}.

definition 3.2 The projectivization of Rr is defined as

Pr = R⊙r

r
/F×.

In particular, its elements are of the form

[l : m : n] = {λ(l+mt+nt2) | λ ∈ F×}, for l+mt+nt2 ∈ R⊙r

r
.

Analogously to the quadratic case, it is useful to define the canonical
representatives:

• if n ∈ F×, then l+mt+nt2 is equivalent to ln−1 +mn−1t+ t2

and the canonical representative is [ln−1 : mn−1 : 1] ∼ (l ′,m ′);

• if n = 0 and m ∈ F×, then l+mt is equivalent to lm−1 + t and
the canonical representative is [lm−1 : 1 : 0] ∼ (l ′,α);

• finally, if m = n = 0, then the canonical representative is simply
[1 : 0 : 0] ∼ (α,α).

3.1 solutions of the cubic pell equation over a field 23

Since ⊙r consists of homogeneous polynomials, it is well defined also
on Pr and determines a commutative group with identity [1 : 0 : 0]

and inverse of [l : m : n] given by [l2 − rmn : rn2 − lm : m2 − ln].

The operation ⊙r over Pr is easier to be described with canonical
representatives, so that the explicit formulas are

(l1,m1)⊙r (α,α) = (l1,m1),

(l1,α)⊙r (l2,α) = (l1l2, l1 + l2),

(l1,m1)

⊙r

(l2, α)

=



(
l1l2+r

m1+l2
, l1+m1l2

m1+l2

)
, if m1 + l2 ̸= 0,(

l1l2+r

l1−m2
1

,α
)

, if m1 = −l2, l1 ̸= m2
1,

(α,α), otherwise,

(3.2)

(l1,m1)

⊙r

(l2,m2)

=



(
l1l2+r(m1+m2)
l1+l2+m1m2

, l1m2+m1l2+r

l1+l2+m1m2

)
, if l1+l2+m1m2 ̸= 0,(

l1l2+r(m1+m2)
l1m2+m1l2+r

,α
)

, if

{
l1+l2+m1m2 = 0,
l1m2+m1l2+r ̸=0,

(α,α), otherwise.

The inverses are

[l : m : 1]⊙r [l
2 − rm : r − lm : m2 − l] = [1 : 0 : 0],

[l : 1 : 0]⊙r [l
2 : −l : 1] = [1 : 0 : 0],

or using the short notation

(l,α)−1 = (l2,−l),

(m2,m)−1 = (−m,α),

(l,m)−1 =

(
l2 − rm

m2 − l
,

r − lm

m2 − l

)
, for l ̸= m2,m ̸= α.

The characterization of Pr depends on the parameter r ∈ F×:

1. if r is a non–cube, then the null polynomial is the one and only
with zero norm and

Pr = {[l : m : 1], [l : 1 : 0], [1 : 0 : 0] | l,m ∈ F}

∼ (F×F)∪ (F× {α})∪ {(α,α)};
(3.3)

2. if r is a cube and {1,ω,ω2} ⊂ F, then F contains all the cu-
bic roots of r that, when denoting one of them with s, are
{s, sω, sω2}. In this case, t3 − r can be completely decomposed
in three factors which are zero–divisors in Rr, so that R⊙r

r con-
tains all but the multiples of these 3 polynomials, i.e.,

R⊙r

r
= Rr ∖ ⟨t− s, t− sω, t− sω2⟩.

24 pell cubics

Thus, in the explicit description of Pr, the only elements to be
excluded are those in ⟨[−s : 1 : 0], [−sω : 1 : 0], [−sω2 : 1 : 0]⟩.
The multiples of [−s : 1 : 0] are, for any l ∈ F,

[−s : 1 : 0]⊙r [l : 1 : 0] = [−ls : −s+ l : 1],

and, for any l ′,m ′ ∈ F with [l ′ : m ′ : 1] ̸= [s2 : s : 1],

[−s : 1 : 0]⊙r [l
′ : m ′ : 1] = [−l ′s+ s3 : −m ′s+ l ′ : −s+m ′]

=

[−s(l ′ − s2) : l ′ − s2 : 0], if m ′ = s,[
−
(

l ′−s2

m ′−s

)
s :
(

l ′−s2

m ′−s

)
− s : 1

]
, otherwise

=

[−s : 1 : 0], if m ′ = s,

[−ls : l− s : 1], with l = l ′−s2

m ′−s otherwise.

Analogous results are obtained for the multiples of [−sω : 1 : 0]

and [−sω2 : 1 : 0], so that

⟨[−s : 1 : 0]⟩ = {[−s : 1 : 0], [−ls : l− s : 1] | l ∈ F},

⟨[−sω : 1 : 0]⟩ = {[−sω : 1 : 0], [−lsω : l− sω : 1] | l ∈ F},

⟨[−sω2 : 1 : 0]⟩ = {[−sω2 : 1 : 0], [−lsω2 : l− sω2 : 1] | l ∈ F}.

In order to characterize their intersections, if 0 ⩽ i < j ⩽ 2, then
[−lsωi : l−sωi : 1] = [−l ′sωj : l ′−sωj : 1] if and only ifl = l ′ωj−i,

l− l ′ = s(ωi −ωj)
⇔

l = −sωj,

l ′ = −sωi.

This means that, by exploiting the identity 1+ω+ω2 = 0,

⟨[−s : 1 : 0]⟩ ∩ ⟨[−sω : 1 : 0]⟩ = {[s2ω : sω2 : 1]},

⟨[−sω : 1 : 0]⟩ ∩ ⟨[−sω2 : 1 : 0]⟩ = {[s2 : s : 1]},

⟨[−sω2 : 1 : 0]⟩ ∩ ⟨[−s : 1 : 0]⟩ = {[s2ω2 : sω : 1]}.

Thus, the list of the elements not in Pr can be obtained from
the union of the three sets of the multiples of each zero–divisor
while considering that three elements are obtained twice. In par-
ticular, the duplicates can be removed by excluding for each
0 ⩽ i ⩽ 2 the element with second coordinate m = sωi+2, i.e.,

Pr = {[l : m : 1], [l : 1 : 0], [1 : 0 : 0] | l,m ∈ F} (3.4)

∖∪2i=0{[−sω
i :1 :0], [−sωi(m+ sωi) :m :1] |m ̸= sωi+2};

3. if r is a cube and {ω,ω2} ̸⊂ F, then only one root s of r is in F,
so that there are only two zero–divisors

t3 − r = (t− s)(t2 + st+ s2).

3.2 the pell cubic over finite fields 25

This means that the invertible elements in Rr are

R⊙r

r
= Rr ∖ ⟨t− s, t2 + st+ s2⟩.

Thus, in the explicit description of Pr, the only elements to be
excluded are those in ⟨[−s : 1 : 0], [s2 : s : 0]⟩.
As in the previous scenario,

⟨[−s : 1 : 0]⟩ = {[−s : 1 : 0], [−ls : l− s : 1] | l ∈ F}

= {[−s : 1 : 0], [−s(m+ s) : m : 1] |m ∈ F},

while, the second zero–divisor does not have any new multiple
since

[s2 : s : 1]⊙r [−s : 1 : 0] = [0 : 0 : 0],

and for every [l : m : n] non multiple of [−s : 1 : 0]

[s2 : s : 1]⊙r [l : m : n] = [s2 : s : 1].

In conclusion

Pr = {[l : m : 1], [l : 1 : 0], [1 : 0 : 0] | l,m ∈ F} (3.5)

∖ {[−s : 1 : 0], [−s(m+ s) : m : 1], [s2 : s : 1] |m ∈ F}.

However, differently from the quadratic case, the group isomor-
phism between

(
Pr,⊙r

)
and

(
Cr,⊙r

)
is still unknown.

3.2 the pell cubic over finite fields

Despite a group isomorphism for the case with a generic field F is
missing, the projectivization Pr can still be exploited to give a com-
plete characterization of the Pell cubic over a finite field Fq with
q = pk and p odd prime, generalizing the results in Section 2.2.

This characterization depends on the parameter r ∈ F×
q and, as

observed in the previous section, there are three different scenarios.
This is confirmed also by the value of gcd(3,q− 1) in the extended
Euler criterion for cubes in a finite field [1]:

r ∈ Fq is a cube⇔ r
(q−1)/gcd(3,q−1) = 1. (3.6)

3.2.1 r non–cube

From Equation 3.6, a finite field Fq contains a non–cube element r

if and only if gcd(3,q − 1) > 1, i.e., q ≡ 1 (mod 3), in which case
(q− 1)/3 = ⌊q/3⌋ andr

(q−1)/3 ̸= 1,

r
q−1 = 1

⇔ r
⌊q/3⌋ = ω, primitive cubic root of unity.

26 pell cubics

In this case, the polynomial t3 − r is irreducible over Fq, so that

Rr = Fq[t]/⟨t3 − r⟩ ∼= Fq3 ,

and it is possible to obtain a result analogous to Theorem 2.3.

theorem 3.1 If r is a non–cube in Fq, then
(
Cr,⊙r

)
is a cyclic group

of order q2 + q+ 1.

Proof. Clearly, R⊙r

r
∼= F×

q3 has q3 − 1 elements. If G ⊂ F×
q3 denotes its

multiplicative subgroup of order q2 + q+ 1, then x+ yt+ zt2 ∈ G if
and only if the exponentiation (x+ yt+ zt2)q

2+q+1 = 1 and

(x+ yt+ zt2)q
2+q+1 = (x+ yt+ zt2)q

2

(x+ yt+ zt2)q(x+ yt+ zt2)

= (x+ytq+zt2q)q(x+ytq+zt2q)(x+ yt+ zt2),

where

tq = (t3)(q−1)/3t = r
⌊q/3⌋t = ωt, ωq = (ω3)(q−1)/3ω = ω,

so that (x+ yt+ zt2)q
2+q+1 becomes

(x+ yωt+ zω2t2)q(x+ yωt+ zω2t2)(x+ yt+ zt2)

= (x+ yωqtq + zω2qt2q)(x+ yωt+ zω2t2)(x+ yt+ zt2)

= (x+ yω2t+ zωtq)(x+ yωt+ zω2t2)(x+ yt+ zt2)

= x3 − 3rxyz+ ry3 + r
2z3.

Thus, x+ yt+ zt2 ∈ G if and only if (x,y, z) ∈ Cr. This association is
a group isomorphism between G and

(
Cr,⊙r

)
, hence the Pell cubic is

a cyclic group of order q2 + q+ 1.

When considering Pr, since there are no cubic roots of r in Fq,
then #Pr = q2 + q+ 1 from Equation 3.3. This is confirmed also by(

Pr,⊙r

)
= R⊙r

r
/F×

q
∼= F×

q3/F×
q ,

which proves also that Pr is cyclic because quotient of cyclic groups.
In addition, it is possible to obtain the following result.

theorem 3.2 If q ≡ 1 (mod 3) and r ∈ F×
q is a non–cube, then the

following map is a group isomorphism between Pr and Cr:

ψ ′
r
:
(
Pr,⊙r

) ∼−→
(
Cr,⊙r

)
,

[l : m : n] 7−→ Nr(l,m,n)⌊q/3⌋−1(l,m,n)⊙r3.

Proof. In order for ψ ′
r

to be a group isomorphism, it must be

• well defined: for any [l : m : n] ∈ Pr, λ ∈ F×
q ,

ψ ′
r
([λl : λm : λn]) =

(
λ3Nr(l,m,n)

)(q−4)/3(
λ3(l,m,n)⊙r3

)
= λq−1ψ ′

r
([l : m : n]) = ψ ′

r
([l : m : n]).

3.2 the pell cubic over finite fields 27

Moreover, ψ ′
r
(Pr) ⊆ Cr because, for any [l : m : n] ∈ Pr,

Nr

(
ψ ′

r
([l : m : n])

)
= Nr(l,m,n)q−4Nr(l,m,n)3

= Nr(l,m,n)q−1 = 1;

• a group homomorphism: given [l1 : m1 : n1], [l2 : m2 : n2] ∈ Pr,
by denoting their product as [l : m : n], the resulting image is

ψ ′
r
([l : m : n]) = Nr(l,m,n)⌊q/3⌋−1(l,m,n)⊙r3

= Nr(l1,m1,n1)
⌊q/3⌋−1Nr(l2,m2,n2)

⌊q/3⌋−1

(l1,m1,n1)
⊙r3 ⊙r (l2,m2,n2)

⊙r3

= ψ ′
r
(l1,m1,n1)⊙r ψ

′
r
(l2,m2,n2);

• injective: for any [l : m : n] ∈ Pr, ψ ′
r
([l : m : n]) = (1, 0, 0) means

Nr(l,m,n)⌊q/3⌋−1(l3 + 6rlmn+ rm3 + r
2n3) = 1,

Nr(l,m,n)⌊q/3⌋−1(3l2m+ 3rln2 + 3rm2n) = 0,

Nr(l,m,n)⌊q/3⌋−1(3l2n+ 3lm2 + 3rmn2) = 0,

with Nr(l,m,n) ̸= 0, so that:

– if m,n ̸= 0, then taking the second and third equationn(l2m+ rln2 + rm2n) = 0,

m(l2n+ lm2 + rmn2) = 0
⇔ l(rn3 −m3) = 0,

which is satisfied only when l = 0 since r is not a cube.
However, this implies m = 0 or n = 0, i.e., a contradiction;

– if m ̸= n = 0, then from the third equation lm2 = 0, i.e.,
l = 0, so that the point is [l : m : n] = [0 : 1 : 0] and the first
equation remains r

⌊q/3⌋ = 1, which is not true because of
the generalized Euler criterion;

– if n ̸= m = 0, then from the second equation rln2 = 0, i.e.,
l = 0, so that the point is [l : m : n] = [0 : 0 : 1] and the
first equation remains r

2⌊q/3⌋ = 1. Thus, r⌊q/3⌋ = ±1, but
r⌊q/3⌋ = −1 is not valid since it implies rq−1 = −1, while
r⌊q/3⌋ = 1 is in contradiction with the generalized Euler
criterion;

– m = n = 0 is the only remaining option, which implies
that ker(ψ ′

r
) = {[1 : 0 : 0]};

• surjective: this is straightforward because ψ ′
r

is an injection be-
tween two finite groups with same cardinality q2 + q+ 1.

In conclusion, ψ ′
r

is a group isomorphism.

28 pell cubics

Since this group isomorphism gives a parametrization of Cr, it al-
lows to find all the solutions of the cubic Pell equation over Fq. In-
deed, it is sufficient to evaluate ψ ′

r
over all the elements of Pr, de-

scribed explicitly in Equation 3.3. However, the explicit inverse is
hard to find, so that it is difficult to obtain the point of Pr related
to a given point of Cr.

Example 3.1. Considering q = 7 and r = 2, which is not a cube in F7,
the previous results assure that the cubic Pell equation

x3 + 2y3 + 4z3 − 6xyz ≡ 1 (mod 7) ,

admits q2 + q+ 1 = 57 solutions and ψ ′
2 allows to find all of them as

ψ ′
2([l : m : 1]), ∀ l,m ∈ F7,

ψ ′
2([l : 1 : 0]), ∀ l ∈ F7,

ψ ′
2([1 : 0 : 0]) = (1, 0, 0).

For instance, a random solution of the cubic Pell equation can be
found by taking randomly l,m ∈ F7, e.g., l = 3 and m = 5, and
evaluating

ψ ′
2([3 : 5 : 1]) = (5, 4, 4).

It is easy to check that

53 + 2 · 43 + 4 · 43 − 6 · 5 · 4 · 4 ≡ 1 (mod 7) .

Similarly, when taking l = 4 and [4 : 1 : 0] ∈ P2,

ψ ′
2([4 : 1 : 0]) = (2, 4, 1),

is another solution of the cubic Pell equation.

It is noteworthy that for large values of q this method for finding
all the solutions of the cubic Pell equation is not efficient, since it has
complexity O(q2), even if it is surely better than an exhaustive search
that has complexity O(q3).

However, for large values of q it is really interesting to use the
above method for generating random solutions of the cubic Pell equa-
tion since, exploiting ψ ′

r
as in the previous example, it is always pos-

sible to generate different solutions.

3.2.2 r cube with three roots in Fq

If q ≡ 1 (mod 3), then Fq contains both the primitive cubic roots of
unity ω,ω2. In addition, if r is a cube, fixed a cubic root s ∈ F×

q of r,
then the other two cubic roots are ωs,ω2s and {s,ωs,ω2s} ⊆ F×

q .
In this case, with a proof analogous to Theorem 2.4, the following

result holds.

3.2 the pell cubic over finite fields 29

theorem 3.3 If q ≡ 1 (mod 3) and r ∈ F×
q is a cube, then

(
Cr,⊙r

)
is isomorphic to F×

q ×F×
q .

Proof. Fixed a cubic root s ∈ F×
q of r, the norm Nr of (x,y, z) ∈ Cr

can be factorized as

1 = x3 + ry3 + r
2z3 − 3rxyz

= (x+ωsy+ω2s2z)(x+ω2sy+ωs2z)(x+ sy+ s2z) = uvw,

so that

x =
w+ v+ u

3
, y =

w+ωv+ω2u

3s
, z =

w+ω2v+ωu

3s2
,

is a bijective correspondence between (x,y, z) ∈ Cr and (u, v,w) ∈ F3
q

such that uvw = 1. This equation has exactly (q− 1)2 solutions in F3
q

and, in particular, a unique solution for each (u, v) ∈ F×
q ×F×

q . Thus,(
Cr,⊙r

) ∼←→ F×
q ×F×

q ,

(x,y, z) 7−→ (x+ωsy+ω2s2z, x+ω2sy+ωs2z),(
1+uv2+u2v

3uv
,
1+ωuv2+ω2u2v

3suv
,
1+ω2uv2+ωu2v

3s2uv
,
)
←− [(u, v),

is a group isomorphism.

When considering Pr, it is clear from Equation 3.4 that

#Pr = q2 + q+ 1− 3q = (q− 1)2.

This is confirmed by the following result, obtained analogously to
Theorem 2.5.

theorem 3.4 If q ≡ 1 (mod 3) and r ∈ F×
q is a cube, then

(
Pr,⊙r

)
is isomorphic to F×

q ×F×
q .

Proof. Fixed s cubic root of r in Fq, t3 − r is reducible over Fq as

t3 − r = (t− s)(t−ωs)(t−ω2s).

Thus, the Chinese remainder theorem gives the ring isomorphism

Rr = Fq[t]/⟨t3−r⟩ ∼−→ Fq[t]/⟨t−s⟩ ×Fq[t]/⟨t−ωs⟩ ×Fq[t]/⟨t−ω2s⟩,
x+ yt+ zt2 7→ (x+sy+s2z, x+ωsy+ω2s2z, x+ω2sy+ωs2z).

In addition, Fq[t]/⟨t− s⟩ ∼= Fq[t]/⟨t−ωs⟩ ∼= Fq[t]/⟨t−ω2s⟩ ∼= Fq,
and when passing to the quotients there is the map(

Pr,⊙r

)
= R⊙r

r
/F×

q
∼←→ (F×

q ×F×
q ×F×

q)/F×
q

∼= F×
q ×F×

q ,

[l : m : n] 7−→
(
l+ωsm+ω2s2n

l+ sm+ s2n
,
l+ω2sm+ωs2n

l+ sm+ s2n

)
,

[s2(1+ v+ u) : s(1+ωv+ω2u) : 1+ω2v+ωu]←− [(u, v),

which is a group isomorphism.

30 pell cubics

Composing the obtained results gives an explicit group isomor-
phism between Pr and Cr for r cube in Fq with q ≡ 1 (mod 3):

ψ ′′
r
:
(
Pr,⊙r

) ∼−→
(
Cr,⊙r

)
,

[l : m : n] 7→
(
l3 + 2s2l(m2+smn+s2n2) + s4mn(m+sn)

Nr(l,m,n)
,

s2m3 + 2m(l2+s2ln+s4n2) + sln(l+s2n)

Nr(l,m,n)
,

s5n3 + 2sn(l2+slm+s2m2) + lm(l+sm)

sNr(l,m,n)

)
,

where it is interesting to notice that the sum of the numerators is
(l+ sm+ s2n)3. The inverse group homomorphism is the map

(ψ ′′
r
)−1 :

(
Cr,⊙r

) ∼−→
(
Pr,⊙r

)
,

(x,y, z) 7−→
[
s2(1+2x−sy−s2z) : s(1−x+2sy−s2z) : 1−x−sy+2s2z

]
.

This group isomorphism allows to find all the solutions of the cubic
Pell equation: it is sufficient to evaluate ψ ′′

r
over all the elements of

Pr described explicitly in Equation 3.4. In addition, differently from
the previous case, the explicit inverse of the group isomorphism can
be used to describe each point of the Pell cubic with two thirds of the
size with respect to the classical notation for the points in F3

q.

Example 3.2. When q = 13 and r = 5, which is the cube of {7, 8, 11}
in F13, the previous results assures that there are (q − 1)2 = 144

solutions of the cubic Pell equation

x3 + 5y3 − z3 − 2xyz ≡ 1 (mod 13) .

In this case, ψ ′′
5 allows to find all of them as

ψ ′′
5 ([l : m : 1]), ∀m ∈ F13, l ∈ F13 ∖ {−7m+ 3,−8m+ 1,−11m+ 9},

ψ ′′
5 ([l : 1 : 0]), ∀ l ∈ F13 ∖ {−7,−8,−11},

ψ ′′
5 ([1 : 0 : 0]) = (1, 0, 0).

For instance, a random solution of the cubic Pell equation can be
found by taking randomly m ∈ F13, e.g., m = 3, and another element
l ∈ F13 ∖ {8, 3, 2}, e.g., l = 9, and evaluating

ψ ′′
5 ([9 : 3 : 1]) = (3, 4, 3).

It is easy to check that

33 + 5 · 43 − 33 − 2 · 3 · 4 · 3 ≡ 1 (mod 13) .

Similarly, when taking l = 4 ̸∈ {6, 5, 2} and [4 : 1 : 0] ∈ P5, so that

ψ ′′
5 ([4 : 1 : 0]) = (10, 4, 9),

is another solution of the cubic Pell equation.

3.2 the pell cubic over finite fields 31

3.2.3 r cube with one root in Fq

If q ̸≡ 1 (mod 3), then Fq does not contain any non–trivial cubic root
of unity. In addition, each r ∈ F×

q is a cube and has only one cubic
root s in Fq.

In this case, Equation 3.5 holds and the projectivization Pr has

#Pr = q2 + q+ 1− (q+ 2) = q2 − 1,

unless there is a m ∈ Fq such that

[−s(m+ s) : m : 1] = [s2 : s : 1]⇔ 3s2 = 0,

which is satisfied only when q = 3k, in which case #Pr = q2. The
result for generic q is also confirmed by the following statement, ob-
tained analogously to Theorem 2.5.

theorem 3.5 If q ≡ 2 (mod 3) and r ∈ F×
q , then

(
Pr,⊙r

)
is a cyclic

group of order q2 − 1.

Proof. Given s cubic root of r in Fq, t3 − r is reducible over Fq as

t3 − r = (t− s)(t2 + st+ s2),

so that, using the Chinese remainder theorem, there is the ring iso-
morphism

Rr = Fq[t]/⟨t3 − r⟩ ∼−→ Fq[t]/⟨t− s⟩ ×Fq[t]/⟨t2 + st+ s2⟩,
x+ yt+ zt2 7−→

(
x+ sy+ s2z, x− s2z+ (y− sz)t

)
.

In addition, Fq[t]/⟨t− s⟩ ∼= Fq and Fq[t]/⟨t2 + st+ s2⟩ ∼= Fq2 , and
when passing to the quotients there is(

Pr,⊙r

)
= R⊙r

r
/F×

q
∼−→ (F×

q ×F×
q2)/F×

q
∼= F×

q2 ,

[l : m : n] 7−→
(

l− s2n

l+ sm+ s2n
,

m− sn

l+ sm+ s2n

)
,

[s2(1− sv+ 2u) : s(1+ 2sv− u) : 1− sv− u]←− [(u, v),

which is a group isomorphism.

The relation with the Pell cubic when q = pk and p ̸= 3 is given by
the following result.

theorem 3.6 If q ≡ 2 (mod 3) and r ∈ F×
q , then the following map

is a group isomorphism between Pr and Cr:

ψ ′′′
r

:
(
Pr,⊙r

) ∼−→
(
Cr,⊙r

)
,

[l : m : n] 7−→ Nr(l,m,n)⌊q/3⌋(l,m,n).

32 pell cubics

Proof. In order for ψ ′′′
r

to be a group isomorphism, it must be

• well defined: for any [l : m : n] ∈ Pr, λ ∈ F×
q ,

ψ ′′′
r
([λl : λm : λn]) =

(
λ3Nr(l,m,n)

)(q−2)/3
λ(l,m,n)

= λq−1ψ ′′′
r
([l : m : n]) = ψ ′′′

r
([l : m : n]),

and ψ ′′′
r
(Pr) ⊆ Cr because, for any [l : m : n] ∈ Pr,

Nr

(
ψ ′′′

r
([l : m : n])

)
= Nr(l,m,n)q−2Nr(l,m,n)

= Nr(l,m,n)q−1 = 1;

• a group homomorphism: given [l1 : m1 : n1], [l2 : m2 : n2] ∈ Pr,
by denoting their product as [l : m : n], the resulting image is

ψ ′′′
r
([l : m : n]) = Nr(l,m,n)⌊q/3⌋(l,m,n)

= Nr(l1,m1,n1)
⌊q/3⌋Nr(l2,m2,n2)

⌊q/3⌋

(l1,m1,n1)⊙r (l2,m2,n2)

= ψ ′′′
r
(l1,m1,n1)⊙r ψ

′′′
r
(l2,m2,n2);

• injective: for any [l : m : n] ∈ Pr, Nr(l,m,n) ̸= 0 and

ψ ′′′
r
([l : m : n]) = (1, 0, 0)⇔


Nr(l,m,n)⌊q/3⌋l = 1,

Nr(l,m,n)⌊q/3⌋m = 0,

Nr(l,m,n)⌊q/3⌋n = 0

⇔


(l3)(q−2)/3l = 1,

m = 0,

n = 0

⇔ [l : m : n] = [1 : 0 : 0];

• surjective:

– x3 = 1 admits only the solution x = 1, so that (1, 0, 0) is the
only point of Cr with y = z = 0, as well as [1 : 0 : 0] in Pr;

– if z = 0 but y ̸= 0, then the preimage of (x,y, 0) is of the
form [l : 1 : 0] andx = (l3 + r)⌊q/3⌋l,

y = (l3 + r)⌊q/3⌋
⇒ l =

x

y
;

– if z ̸= 0 then
x = Nr(l,m, 1)⌊q/3⌋l,

y = Nr(l,m, 1)⌊q/3⌋m,

z = Nr(l,m, 1)⌊q/3⌋

⇒

l = x/z,
m = y/z.

In conclusion, ψ ′′′
r

is a group isomorphism.

3.2 the pell cubic over finite fields 33

This proof gives also as inverse of ψ ′′′
r

the classical projectivization

(ψ ′′′
r
)−1 :

(
Cr,⊙r

) ∼−→
(
Pr,⊙r

)
,

(1, 0, 0) 7−→ [1 : 0 : 0],

(x,y, 0) 7−→ [x/y : 1 : 0],

(x,y, z) 7−→ [x/z : y/z : 1].

Thanks to the group isomorphism ψ ′′′
r

, the properties of
(
Pr,⊙r

)
are inherited by

(
Cr,⊙r

)
, i.e, it is cyclic with q2 − 1 elements. In ad-

dition, it is possible to find all the solutions of the cubic Pell equation
by simply evaluating ψ ′′′

r
over all the elements of Pr, which are de-

scribed explicitly in Equation 3.5. As in the previous case, the explicit
inverse can be used to describe each point of the Pell cubic with two
thirds of the size of points in F3

q.

Example 3.3. Considering q = 11 and r = 9, which is the cube of 4 in
F11, the previous results assures that the cubic Pell equation

x3 + 9y3 + 4z3 + 6xyz ≡ 1 (mod 11) ,

admits q2 − 1 = 120 solutions and ψ ′′′
9 allows to find all of them as

ψ ′′′
9 ([l : m : 1]), ∀m ∈ F11, l ∈ F11 ∖ {−4m+ 5}, (l,m) ̸= (5, 4),

ψ ′′′
9 ([l : 1 : 0]), ∀ l ∈ F11 ∖ {−4},

ψ ′′′
9 ([1 : 0 : 0]) = (1, 0, 0).

For instance, a random solution of the cubic Pell equation can be
found by taking randomly m ∈ F11, e.g., m = 2, and another element
l ∈ F11 ∖ {8}, e.g., l = 7, and evaluating

ψ ′′′
9 ([7 : 2 : 1]) = (9, 1, 6).

It is easy to check that

93 + 9 · 13 + 4 · 63 + 6 · 9 · 1 · 6 ≡ 1 (mod 11) .

Similarly, when taking l = 3 ̸= 7 and [3 : 1 : 0] ∈ P9,

ψ ′′′
9 ([3 : 1 : 0]) = (4, 5, 0),

is another solution of the cubic Pell equation.

When q = 3k, the Pell cubic is no more a cyclic group and the
group isomorphism has a different form with respect to ψ ′′′

r
.

theorem 3.7 If q = 3k and r ∈ F×
q , then the following map is a

group isomorphism between Pr and Cr

ψ̃ ′′′
r

:
(
Pr,⊙r

) ∼−→
(
Cr,⊙r

)
,

[l : m : n] 7−→ Nr(l,m,n)q/3−1(l,m,n)⊙r2.

34 pell cubics

Proof. In order for ψ̃ ′′′
r

to be a group isomorphism, it must be

• well defined: for any [l : m : n] ∈ Pr, λ ∈ F×
q ,

ψ̃ ′′′
r
([λl : λm : λn]) =

(
λ3Nr(l,m,n)

)q/3−1
λ2(l,m,n)⊙r2

= λq−1ψ̃ ′′′
r
([l : m : n]) = ψ̃ ′′′

r
([l : m : n]),

and ψ̃ ′′′
r
(Pr) ⊆ Cr because, for any [l : m : n] ∈ Pr,

Nr

(
ψ̃ ′′′

r
([l : m : n])

)
= Nr(l,m,n)q−3Nr(l,m,n)2

= Nr(l,m,n)q−1 = 1;

• a group homomorphism: given [l1 : m1 : n1], [l2 : m2 : n2] ∈ Pr,
by denoting their product as [l : m : n], the resulting image is

ψ̃ ′′′
r
([l : m : n]) = Nr(l,m,n)q/3−1(l,m,n)⊙r2

= Nr(l1,m1,n1)
q/3−1Nr(l2,m2,n2)

q/3−1

(l1,m1,n1)
⊙r2 ⊙r (l2,m2,n2)

⊙r2

= ψ̃ ′′′
r
(l1,m1,n1)⊙r ψ̃

′′′
r
(l2,m2,n2);

• injective: for any [l : m : n] ∈ Pr, ψ̃ ′′′
r
([l : m : n]) = (1, 0, 0)

means 
Nr(l,m,n)q/3−1(l2 + 2rmn) = 1,

Nr(l,m,n)q/3−1(rn2 + 2lm) = 0,

Nr(l,m,n)q/3−1(m2 + 2ln) = 0,

with Nr(l,m,n) ̸= 0, so that:

– ifm,n ̸= 0, then taking the second and third equation givesn(rn2 + 2lm) = 0,

m(m2 + 2ln) = 0
⇔ rn3 −m3 = 0.

The system is satisfied only when m = sn with s ∈ F×
q

cubic root of r, which implies [l : m : n] = [l/n : s : 1] that,
if substituted in the third equation, gives

s2 + 2l/n = 0 ⇔ l/n = s2.

However, this is a contradiction since [s2 : s : 1] ̸∈ Pr;

– if m ̸= n = 0, then the third equation gives m2 = 0;

– if n ̸= m = 0, then the second equation gives rn2 = 0;

– m = n = 0 is the only remaining option, which implies
that ker(ψ̃ ′′′

r
) = {[1 : 0 : 0]};

3.3 generalized pell cubic 35

• surjective: it is important to notice that for each (x,y, z) ∈ Cr

1 = x3 + ry3 + r
2z3 = (x+ sy+ s2z)3,

with s ∈ F×
q cubic root of r. This implies that each point of the

Pell cubic can be identified by the pair (y, z) ∈ F2
q, since the first

coordinate can be evaluated as x = 1− sy− s2z. Thus, Cr has
q2 elements and ψ̃ ′′′

r
is an injection between two finite groups

with same cardinality, which means that it is also surjective.

In conclusion, ψ̃ ′′′
r

is a group isomorphism.

3.3 generalized pell cubic

In this section, as for the quadratic case in Section 2.3, a generalization
of the cubic Pell equation and the resulting generalized Pell cubic are
introduced. In addition, an explicit group isomorphism between the
standard Pell cubic from Section 3.1 and a generalized Pell cubic is
obtained.

definition 3.3 Given the parameters r, q ∈ F×, the solutions of a
generalized cubic Pell equation x3 + ry3 + r

2z3 − 3rxyz = q corre-
spond to the elements of Rr with norm Nr equal to q, which are the
points of the generalized Pell cubic with parameter r and norm q:

Cr,q = {(x,y, z) ∈ F3 | x3 + ry3 + r
2z3 − 3rxyz = q}.

The product ⊙r does not give a group structure on Cr,q, but it can
be exploited to define the generalized cubic Brahmagupta product with
identity (a,b, c) ∈ Cr,q as

(x1,y1, z1)⊙r,q,a,b,c (x2,y2, z2)

=
1

q

(a2 − rbc, rc2 − ab,b2 − ac)⊙r (x1,y1, z1)⊙r (x2,y2, z2).

In the following, the product of the conjugates of an element is de-
noted by (a,b, c). Clearly, the identity point for ⊙r,q,a,b,c is the chosen
(a,b, c) ∈ Cr,q, the inverse of a point (x,y, z) ∈ Cr,q is the point

1

q

(a,b, c)⊙r (a,b, c)⊙r (x,y, z),

and
(
Cr,q,⊙r,q,a,b,c

)
is a commutative group.

When q = 1 and the chosen identity point is (a,b, c) = (1, 0, 0), the
product ⊙r,q,a,b,c coincides with the classical ⊙r.

Despite the introduction of the new parameter q ∈ F×, it is possible
to obtain the explicit group isomorphism between two generalized
Pell cubics with same q by exploiting the definition of ⊙r,q,a,b,c.

36 pell cubics

theorem 3.8 Given r, q ∈ F× and a point (a,b, c) ∈ Cr,q, the fol-
lowing map is a group isomorphism between Cr and Cr,q:

υa,b,c
r,q :

(
Cr,⊙r

) ∼−→
(
Cr,q,⊙r,q,a,b,c

)
,

(x,y, z) 7−→ (a,b, c)⊙r (x,y, z).

Proof. In order for υa,b,c
r,q to be a group isomorphism, it must be

• well defined: υa,b,c
r,q (Cr) ⊆ Cr,q since, for any (x,y, z) ∈ Cr,

Nr

(
(a,b, c)⊙r (x,y, z)

)
= Nr(a,b, c)Nr(x,y, z) = q;

• a group homomorphism: for any (x1,y1, z1), (x2,y2, z2) ∈ Cr,

υa,b,c
r,q

(
(x1,y1, z1)⊙r (x2,y2, z2)

)
= (a,b, c)⊙d (x1,y1, z1)⊙r (x2,y2, z2)

=
(a,b, c)⊙r (a,b, c)

q

⊙r (a,b, c)⊙r (x1,y1, z1)⊙r (x2,y2, z2)

= υa,b,c
r,q (x1,y1, z1)⊙r,q,a,b,c υ

a,b,c
r,q (x2,y2, z2);

• injective: for any (x,y, z) ∈ Cr,

υa,b,c
r,q (x,y, z) = (a,b, c)⇔ (x,y, z) = (1, 0, 0);

• surjective: for any (x,y, z) ∈ Cr,q,

(x,y, z) =
(a,b, c)⊙r (a,b, c)

q

⊙r (x,y, z)

= (a,b, c)⊙r (1, 0, 0)⊙r,q,a,b,c (x,y, z)

= υa,b,c
r,q

(
(1, 0, 0)⊙r,q,a,b,c (x,y, z)

)
,

where (1, 0, 0)⊙r,q,a,b,c (x,y, z) ∈ Cr because

Nr

(
(1, 0, 0)⊙r,q,a,b,c (x,y, z)

)
= 1.

Thus, υa,b,c
r,q is a group isomorphism and

(υa,b,c
r,q)−1 :

(
Cr,q,⊙r,q,a,b,c

) ∼−→
(
Cr,⊙r

)
,

(x,y, z) 7−→ (1, 0, 0)⊙r,q,a,b,c (x,y, z),

is the inverse group homomorphism.

By composing (υa,b,c
r,q)−1 with υa

′,b ′,c ′

r,q ′ , it is possible to obtain an ex-
plicit group isomorphism between generalized Pell cubics with same
parameter r:(

Cr,q,⊙r,q,a,b,c
) ∼−→

(
Cr,q ′ ,⊙r,q ′,a ′,b ′,c ′

)
,

(x,y, z) 7−→ (a ′,b ′, c ′)⊙r,q,a,b,c (x,y, z).
(3.7)

3.4 exponentiation and extended rédei polynomials 37

Since the group
(
Pr,⊙r

)
introduced in Definition 3.2 is indepen-

dent of the choice of the parameter q ∈ F× and of the identity point
(a,b, c) ∈ Cr,q, all the results in Section 3.2 can be adapted to general-
ized Pell cubics. In particular, taking ψ

r
as one of the group isomor-

phisms ψ ′
r
, ψ ′′

r
, ψ ′′′

r
or ψ̃ ′′′

r
(depending on the parameter r and the

value of q (mod 3)) and composing it with υa,b,c
r,q results in a group

isomorphism between Pr and Cr,q:

ψa,b,c
r,q :

(
Pr,⊙r

) ∼−→
(
Cr,q,⊙r,q,a,b,c

)
[l : m : n] 7−→ (a,b, c)⊙r ψr

([l : m : n]).

The inverse group homomorphism is

(ψa,b,c
r,q)−1 :

(
Cr,q,⊙r,q,a,b,c

) ∼−→
(
Pr,⊙r

)
,

(x,y, z) 7−→ ψ−1
r

(
(1, 0, 0)⊙r,q,a,b,c (x,y, z)

)
.

When the inverse of ψ
r

is explicitly known, like for ψ ′′
r

and ψ ′′′
r

, this
parametrization and its inverse can be used as an alternative way to
obtain the group isomorphism in Equation 3.7.

All the results in Section 3.2 can be adapted for generalized Pell
cubics in the case of finite fields.

In addition, if r ̸= r
′ are both cubes in Fq, then there is ρ ∈ F×

q

such that r = ρ3r
′, so that the following map is a group isomorphism

between Cr and Cr
′ :

ρr,r ′ :
(
Cr,⊙r

) ∼−→
(
Cr

′ ,⊙r
′
)
,

(x,y, z) 7−→ (x, ρy, ρ2z).

This can be also a group isomorphism between projectivizations

ρr,r ′ :
(
Pr,⊙r

) ∼−→
(
Pr

′ ,⊙r
′
)
,

[l : m : 1] 7−→ [l/ρ2 : m/ρ : 1],

[l : 1 : 0] 7−→ [l/ρ : 1 : 0].

Thus, the composition of (υa,b,c
r,q)−1, ρr,r ′ and υa

′,b ′,c ′

r
′,q ′ results in

an explicit group isomorphism between two generalized Pell cubics(
Cr,q,⊙r,q,a,b,c

)
and

(
Cr

′,q ′ ,⊙r
′,q ′,a ′,b ′,c ′

)
.

3.4 exponentiation and extended rédei polynomials

In this section, the results obtained in Section 2.4 for the quadratic
case are adapted for the exponentiation with respect to ⊙r. After con-
sidering possible implementations of the square–multiply algorithm,
an alternative approach is obtained exploiting an extension of Rédei
polynomials and rational functions.

38 pell cubics

BrahSquaMult(r, x,y, z,k):

1. a,b, c = 1, 0, 0

2. kbin = binary(k)

3. for bit in kbin:

4. a,b, c = a2 + 2rbc, rc2 + 2ab,b2 + 2ac

5. if bit == 1:

6. a,b, c = ax+ r(bz+ cy),ay+ bx+ rcz,az+ by+ cx

7. return a,b, c

Figure 4: square–multiply algorithm with ⊙r on Cr.

As can be easily observed in Equation 3.1, the operation ⊙r on Cr

requires 11 products and 6 additions in F, while the version with the
canonical representatives in Pr introduced in Equation 3.2 requires
at most 1 inversion, 5 products and 6 additions in F. However, the
inversion is largely more expensive than the additional 6 products re-
quired in Equation 3.1. Therefore, in a comparison of square–multiply
implementations, the first one is the most efficient. Figure 4 describes
the algorithm BrahSquaMult for the square–multiply exponentiation
over Cr.

In the following the Rédei polynomials and rational functions are
extended to the cubic case in order to let them exploitable for the
exponentiation over Cr and Pr, respectively.

definition 3.4 Given a parameter r ∈ F× and t3 = r not necessar-
ily in F, the extended Rédei polynomials (Ak)k⩾0, (Bk)k⩾0 and (Ck)k⩾0

result from

(l+mt+ t2)k

= Ak(r, l,m) +Bk(r, l,m)t+Ck(r, l,m)t2, for k ⩾ 0.

These three sequences clearly correspond to the coordinates resulting
from [l : m : 1]⊙rk ∈ Pr.

The extended Rédei rational functions are obtained for k > 0 as

Pk(r, l,m) =
Ak(r, l,m)

Ck(r, l,m)
,

Qk(r, l,m) =
Bk(r, l,m)

Ck(r, l,m)
.

They are the canonical representatives of (l,m)⊙rk ∈ Pr.
On the other hand, as for the quadratic case, considering the co-

ordinates of the point (x,y, z)⊙rk ∈ Cr, the generalized extended Rédei
polynomials can be defined as

(x+ yt+ zt2)k

= ak(r, x,y, z) + bk(r, x,y, z)t+ ck(r, x,y, z)t2, for k ⩾ 0.

3.4 exponentiation and extended rédei polynomials 39

In particular, there is an explicit form for the extended Rédei poly-
nomials given by

Ak(r, l,m) =
∑

h+i+j=k,
i+2j≡0(mod 3)

(
k

h, i, j

)
r
(i+2j)/3lhmi,

Bk(r, l,m) =
∑

h+i+j=k,
i+2j≡1(mod 3)

(
k

h, i, j

)
r
(i+2j−1)/3lhmi,

Ck(r, l,m) =
∑

h+i+j=k,
i+2j≡2(mod 3)

(
k

h, i, j

)
r
(i+2j−2)/3lhmi,

while the generalized extended Rédei polynomials are

ak(r, x,y, z) =
∑

h+i+j=k,
i+2j≡0(mod 3)

(
k

h, i, j

)
r
(i+2j)/3xhyizj,

bk(r, x,y, z) =
∑

h+i+j=k,
i+2j≡1(mod 3)

(
k

h, i, j

)
r
(i+2j−1)/3xhyizj,

ck(r, x,y, z) =
∑

h+i+j=k,
i+2j≡2(mod 3)

(
k

h, i, j

)
r
(i+2j−2)/3xhyizj,

where the multinomial coefficients are
(

k
h,i,j

)
= k!

h! i! j! .
It also possible to use a matrix notation, so thatAk(r, l,m)

Bk(r, l,m)

Ck(r, l,m)

 =

 l r rm

m l r

1 m l


k10

0

 ,

ak(r, x,y, z)

bk(r, x,y, z)

ck(r, x,y, z)

 =

x rz ry

y x rz

z y x


k10

0

 .

The modified More algorithm for the quadratic case described in
Figure 3 can be adapted for the evaluation of the extended Rédei
rational functions Pk,Qk i.e., for evaluating the exponentiation of a
canonical representative (l,m)⊙rk ∈ Pr. The obtained algorithm is
detailed in Figure 5 under the denomination ModMore and has com-
plexity O(logk) considering additions and multiplications over F. In
a comparison with Figure 4, the two algorithms have the same num-
ber of operations at each step except for step 6, where BrahSquaMult

requires 3 additional products, and step 7, where ModMoore requires
two final inversions.

40 pell cubics

ModMore(r, l,m,k):

1. A,B,C = 1, 0, 0

2. kbin = binary(k)

3. for bit in kbin:

4. A,B,C = A2 + 2rBC, rC2 + 2AB,B2 + 2AC

5. if bit == 1:

6. A,B,C = Al+ r(B+Cm),Am+Bl+ rC,A+Bm+Cl

7. return A/C,B/C

Figure 5: Modified More algorithm for the exponentiation over Pr using
extended Rédei rational functions.

Thus, from the point of view of performance, the two algorithms
are comparable. The main advantage in evaluating the exponentia-
tion of a canonical representative in Pr through the modified More
algorithm is that the size of the data is two thirds of that of the points
on the Pell cubic Cr.

Part II

H O W I S T H E P E L L E Q U AT I O N U S E D I N
C RY P T O G R A P H Y ?

Now that the theory and formalism of the Pell equation
have been introduced, their applications to cryptography
are discussed. After introducing in Chapter 4 the basic
concepts of cryptography and the state of the art in the
use of the Pell equation in cryptosystems, the quadratic
Pell equation is exploited to obtain new cryptosystems in
Chapter 5. Analogously, other cryptosystems based on the
cubic Pell equation are introduced in Chapter 6.

4
P U B L I C – K E Y C RY P T O G R A P H Y

After introducing all the required definitions and results concerning
the quadratic and cubic Pell equation, this chapter focuses on their
use in cryptography. In particular, Section 4.1 introduces the basic
concepts behind classical and modern cryptography. Then two of the
mainly used cryptosystems are addressed in order to adapt them for
exploiting Pell equations. In Section 4.2, the classical RSA cryptosys-
tem is described together with some RSA–like schemes from the state
of the art that can be considered as initial points for the following
work. In the same way, Section 4.4 and Section 4.5 focus on the El-
Gamal cryptosystem and on the DSA, respectively, since they can be
formulated also using Pell conics and cubics, as will be pointed out
in the following chapters.

4.1 classical and modern cryptography

Cryptography is one of the two branches under the discipline cryp-
tology. Its main purpose is to study the ways in which two or more
parties can talk to each other in an insecure environment with the
requirement that nobody else can understand what is being said. Its
counterpart is the cryptanalysis, which focuses on breaking the sys-
tems developed by cryptographers.

From a mathematical point of view, cryptography models the sys-
tems used to hide information in a message, called cryptosystem, using
the following sets:

• P containing the comprehensible messages, called plaintexts;

• C containing the unintelligible messages, called ciphertexts;

• K containing the keys for obtaining ciphertexts from plaintexts
and vice versa, they are usually generated by Gen : N→ K;

• E = {Enck : P→ C, k ∈ K} set of the encryption functions;

• D = {Deck : C→ P, k ∈ K} set of the decryption functions.

Classical cryptography is only based on the secrecy of the used key
that, if known, allows to obtain the plaintext from the ciphertext. This
is the principle behind the modern symmetric or private-key cryptog-
raphy, so-called because the encryption key is the same used for the
decryption, i.e., given k ∈ K, for each p ∈ P,

Deck(Enck(p)) = p.

43

44 public–key cryptography

The main advantages of this kind of cryptosystems are the low com-
putational costs and the easy way to define the security level, which
is simply given by the length of the key. However, they require to
share secretly the key using a secure channel and, if the information
exchange is among n different parties, then the required keys are(

n

2

)
=
n(n− 1)

2
≈ n

2

2
.

They are useful for sharing large amount of data among few users.
After the revolution of computers, the number of users dramat-

ically increased while the secure channels to share the secret keys
became hardly available. Those are the main reasons behind the intro-
duction in the mid-1970s of the asymmetric or public–key cryptography,
in which the key for the decryption is secret and different from the
one used in the encryption that is public. Thus, given pk ∈ K there is
sk ∈ K such that, for each p ∈ P,

Decsk(Encpk(p)) = p.

This idea was firstly introduced in 1976, when Diffie and Hellman
published an history changing article titled New directions in cryptogra-
phy [23], in which they introduced a method for exchanging through a
public channel a secret key that then can be used in a symmetric cryp-
tosystem. Since then, actual asymmetric cryptosystems with different
purposes were developed. In particular, the main uses addressed are:

• secrecy: the information in message can be sent secretly if en-
crypted using the public key of the receiver, so that it can be
retrieved using the secret key in its possession. The resulting
cryptosystems are called Public-Key Encryption (PKE) schemes;

• data integrity, authentication and non–repudiation: it is important
to guarantee that a message has not been modified while in tran-
sit, as well as assure the identity of the sender that must not be
able to repudiate it. All these objectives can be achieved by sign-
ing the message using the secret key, so that anyone can use the
related public key to check its integrity and the identity on the
signer. The resulting cryptosystems are called digital signatures.

Public–key cryptography resolves the problems of symmetric cryp-
tography, since the secure channel is no more needed and the number
of key required in a conversation among n users is simply 2n (se-
cret and public key for each one). However, computational costs are
higher than in the symmetric case and security is lower since it relies
on mathematical problems that are thought to be difficult, but not
impossible, to solve. Therefore, public–key cryptosystems are useful
when small amounts of data need to be encrypted and sent to many
users via an insecure channel.

4.2 rsa cryptosystem 45

Gen(n): Enc(m,pk):

1. p,q←$ {0, 1}n/2 primes require : m < N

2. N = pq 1. c = me (modN)

3. φ(N) = (p− 1)(q− 1) 2. return c

4. e←$ Z×
φ(N)

Dec(c,pk, sk):

5. d = e−1 (modφ(N)) 1. m = cd (modN)

6. sk = (p,q,d) 2. return m

7. pk = (N, e)

8. return pk, sk

Figure 6: RSA PKE scheme.

4.2 rsa cryptosystem

This section focuses on one of the first and still largely used cryptosys-
tems. This is a PKE scheme introduced in 1977 by Rivest, Shamir and
Adleman (RSA) [52]. In particular, RSA is detailed in Figure 6.

In the key generation algorithm (Gen), given the bit–length n of
the modulus, two primes p,q of n/2 bits are generated and used to
obtain N = pq and its Euler totient function φ(N) (steps 1-3). Step 4

takes a random public exponent e, which is inverted modulo φ(N) in
step 5 in order to obtain the secret exponent d. Finally, the public key
consists of N and e while the secret key contains p, q and d. In some
formulations, the factors of N are not part of the secret key, since the
decryption does not necessarily requires them. However, they can be
used to reduce the computational costs by performing calculations
with smaller moduli thanks to the Chinese remainder theorem.

The encryption (Enc) takes a message m ∈ ZN and evaluates the ci-
phertext c asm raised to the public exponent emodulo N. In practice,
m must be invertible in ZN, otherwise N can be efficiently factorized
through the evaluation of gcd(m,N).

The decryption (Dec) requires only the exponentiation of the cipher-
text c ∈ ZN to the secret exponent d modulo N. If p and q have not
been discarded, it is possible to improve the performance by eval-
uating mp = cd (modp) and mq = cd (modq) and applying the
Chinese remainder theorem to retrieve m ∈ ZN.

The cryptosystem is correct, i.e., the retrieved message is the initial
one, thanks to the generalized Euler theorem.

theorem 4.1 If N is a square–free integer and k ≡ 1 (modφ(N)),
then each m ∈ Z satisfies mk ≡ m (modN).

Indeed, m = Dec(Enc(m,pk),pk, sk) because

cd ≡ (me)d ≡ med (modφ(N)) (modN) ,

where ed ≡ 1 (modφ(N)) and the theorem can be directly applied.

46 public–key cryptography

The security of RSA can be studied for different attacks:

• in a key recovery attack (obtaining d from N and e), since the
secret exponent is e−1 (modφ(N)), it is hard when the modulus
is unknown and find φ(N) is equivalent to factorize N;

• a message recovery attack, i.e., retrieve m knowing c,N and e,
is an instance of discrete e–th root, which is hard unless the
factorization of N is known.

In conclusion, the security of RSA relies on the Integer Factorization
Problem (IFP), i.e., finding the prime factors p,q of N. The best known
classical algorithm for solving an IFP is the general number field
sieve, which requires sub-exponential time. However, for some bad
choices of p and q the resulting instances of the IFP can be easily
solved:

• if |p− q| < 2 4
√
N then the two primes are close to

√
N and it is

possible to exploit the Fermat factorization method:

1. take a =
√
N;

2. if a2 −N is not a square, then take a+ 1 and retry;

3. else, b2 = a2 −N and N = (a+ b)(a− b);

• if p− 1 (or q− 1) has only small prime factors, then there is the
Pollard p− 1 algorithm:

1. take k = 2k13k2 · · ·pkl

l and a coprime with N;

2. evaluate b = gcd(ak − 1,N);

3. if b = 1, then increase k and retry;

4. if b = N, then decrease k and retry;

5. else, b is a factor of N.

Since any a ∈ ZN satisfies ah(p−1) ≡ 1 (modp) and p− 1 has
only small factors, a k = h(p− 1) can be easily found.

Other attentions should be put in the choice of the exponents e and
d. Generally, it is best to take e = 2k+ 1 in order to reduce the number
of bits that need to be published. However, if e is too small, then in
the encryption of all the messages m <

e
√
N there is no reduction

modulo N and a simple integer e–th root returns the plaintext.
Also a small secret exponent d can be problematic since there is

the Wiener attack [58]. The idea is that, if q < p < 2q and d < 3
√
N/3,

then among the convergents of the continued fraction of e/N there is
the secret exponent d that can be obtained in polynomial time.

In addition, it is important to notice that the RSA encryption is de-
terministic, i.e., encrypting the same message with the same public key
returns always the same ciphertext. This is not a suitable behaviour
for a cryptosystem, since an adversary could easily create a dictionary
of all the associations plaintext-ciphertext for the given public key.

4.3 rsa with pell conics and cubics 47

Gen(n): Enc(m,pk):

1. p,q←$ {0, 1}n/2 primes require : m < N

2. N = pq 1. M = ϕd(m) =
(
m2+d

m2−d
, 2m
m2−d

)
∈ Cd

3. d←$ ZN 2. C =M⊗de ∈ Cd

4. φ̃d(N) = (p−
(

d

p

)
)(q−

(
d

q

)
) 3. return C

5. e←$ Z×
φ̃d(N)

Dec(C,pk, sk):

6. d = e−1 (mod φ̃d(N)) 1. M = C⊗dd ∈ Cd

7. sk = (p,q,d) 2. m = ϕ−1
d

(x,y) = x+1
y ∈ ZN

8. pk = (N, e, d) 3. return m

9. return pk, sk

Figure 7: RSA on
(
Cd,⊗d

)
with fixed d.

In order to avoid this problem, a padding function is adopted in
order to hid the message behind random information that could be
removed easily removed by the receiver. A standard choice is the
Optimal Asymmetric Encryption Padding (OAEP) [10].

4.3 rsa with pell conics and cubics

The use of conics in cryptography has been widely studied, and the
quadratic Pell equation has already some applications in cryptosys-
tems like RSA.

The Pell conic can be adopted in RSA because the Brahmagupta
product with parameter d satisfies an analogous of the generalized
Euler theorem.

However, since RSA works with ZN that is not a field, the quadratic
character adopted in Chapter 2 is no more well defined and must be
replaced by the Jacobi symbol

(
d

N

)
. This is still a correct notation on

Zp and Zq, since they are fields and the Jacobi symbols are actually
Legendre symbols that coincide with χp and χq, respectively. It is
important to remember that for N = pq,

(
d

N

)
=
(

d

p

)(
d

q

)
so that

(
d

N

)
=


−1, then d is a quadratic non–residue ZN,

0, then d ≡ 0 (modN) ,

1, then d could be a quadratic residue or not.

theorem 4.2 [37] If N =
∏l

i=1 pi is a square–free integer, given
d ∈ ZN, φ̃d(N) =

∏l
i=1(pi −

(
d

pi

)
) and k ≡ 1 (mod φ̃d(N)), then

each point M ∈ Cd satisfies M⊗dk =M. Analogously, each canonical
representative m ∈ Pd satisfies m⊗dk ≡ m (modN).

The standard RSA resulting from the use of Cd is introduced in [37].
The proposed scheme is described in Figure 7 where, instead of using
ZN, the Pell conic over ZN with parameter d is adopted.

48 public–key cryptography

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N2

2. N = pq 1. (x,y)← [msg

3. φ̃(N) = (p2 − 1)(q2 − 1) 2. d = x2−1
y2 ∈ ZN

4. e←$ Z×
φ̃(N)

3. C = (x,y)⊗de ∈ Cd

5. d = e−1 (mod φ̃(N)) 4. return C, d

6. sk = (p,q,d) Dec(C, d,pk, sk):

7. pk = (N, e) 1. M = C⊗dd ∈ Cd

8. return pk, sk 2. msg←[M

3. return msg

Figure 8: RSA on
(
Cd,⊗d

)
with generic d depending on msg.

The key generation algorithm (Gen) takes an n bits long modulus
N = pq in steps 1-2, while d and the cardinality φ̃d(N) are obtained
in steps 3-4. Then the algorithm continues as in the classical RSA
with φ̃d(N) instead of φ(N). The private key is the same generated
for the classical RSA, while the public key contains the modulus N,
the exponent e and also the parameter d for the Pell conic.

In the encryption algorithm (Enc), the message m ∈ ZN is encoded
in step 1 into a point of the Pell conic using ϕd and the ciphertext is
simply its power to e over Cd.

The decryption algorithm (Dec) works backwards, i.e., after obtain-
ing the initial point through the power of the ciphertext to d over Cd,
the message is retrieved using the inverse of ϕd.

As the author notices, this is simply a scholastic cryptosystem. In
practice, its computational costs are doubled with respect to those of
the classical RSA. Also the size of the ciphertext is doubled, while the
public key includes also d, so that more information needs to be sent.
Furthermore, despite this disadvantages, there is no gain in security
since the IFP has the same difficulty of an analogous instance of RSA.

An alternative approach was proposed in [32] and is described in
Figure 8. The main difference with the previous cryptosystem is that
the Pell conic is not fixed in the key generation algorithm, but it de-
pends on the point obtained from the message.

This is why, in the key generation algorithm (Gen), after obtaining
the modulus N = pq in steps 1-2, step 3 considers as cardinality the
product of the possible orders of the Pell conic over Zp and Zq, i.e.,

φ̃(N) = (p− 1)(p+ 1)(q− 1)(q+ 1).

Then, the algorithm continues as the standard RSA.
The encryption algorithm (Enc) takes a message that has double

length with respect to the previous cases. This is encoded in step 1

into a point of Z2
N, from which the parameter d of the related Pell

conic is obtained in step 2. The ciphertext contains the e–th power of
the point of Cd obtained in step 3 and also the parameter d.

4.3 rsa with pell conics and cubics 49

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N2

2. N = pq 1. (x,y)←[msg

3. φ̃(N) = (p+ 1)(q+ 1) 2. d = x2−1
y2 ∈ ZN quadratic non–residue

4. e←$ Z×
φ̃(N)

3. m = ϕ−1
d

(x,y) = x+1
y ∈ Pd

5. d = e−1 (mod φ̃(N)) 4. c = m⊗de ∈ Pd

6. sk = (p,q,d) 5. return c, d

7. pk = (N, e) Dec(c, d,pk, sk):

8. return pk, sk 1. m = c⊗dd ∈ Pd

2. msg← [ϕd(m) =
(
m2+d

m2−d
, 2m
m2−d

)
3. return msg

Figure 9: RSA–like cryptosystem using ϕd with d non–square depending on
msg.

In this way, the receiver can easily obtain the plaintext using Dec

on the received point, which involves the d–th power over Cd and the
decoding from the obtained point to the original message.

With respect to the classical RSA, the keys have the same size but
the bit–length of plaintext and ciphertext are doubled. However, also
the computational costs are doubled because it is required the power
of a point of the Pell conic. Considering that again the security is not
increased, this cryptosystem is equivalent to the classical RSA.

A different enhancement of RSA was described in [36], where the
concept of RSA–like cryptosystems obtained exploiting a group iso-
morphism is introduced. The idea is to encode the message as an
element of a group

(
G,⊗

)
, e.g., a curve, then exploit an explicit group

isomorphism to another
(
G ′,⊙

)
, so that the exponentiation required

in the decryption is computationally lighter.
Following this approach, Pell conics have been exploited in [48] and

[11], for d quadratic residue and non–residue, respectively. In partic-
ular, the second proposal adopts ϕd, i.e., the group isomorphism be-
tween Pd and Cd, to obtain the RSA–like cryptosystem described in
Figure 9. In addition, since the formulation works in Pd, the authors
adopt the modified More algorithm based on Rédei rational functions,
described in Figure 3.

Differently from the previous cryptosystems, in the key generation
algorithm, after obtaining the modulus N = pq in steps 1-2, the car-
dinality of the curve is fixed in step 3 as (p+ 1)(q+ 1), which means
the required d is a quadratic non–residue in both Zp and Zq. Then,
the algorithm continues as the classical RSA.

The encryption is similar to the previous one but, instead of work-
ing on the Pell conic, the inverse of ϕd is exploited to pass to the
canonical representatives in Pd in step 3. When the plaintext length
is fixed to 2n, this allows to reduce the ciphertext size from 3n of the
proposals in [48] to 2n.

50 public–key cryptography

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N2

2. p,q ≡ 1 (mod 3) 1. (l,m)←[msg

3. N = pq 2. c = (l,m)⊙re ∈ Pr

4. r←$ ZN non–cube in Zp and Zq 3. return c

5. φ̃r(N) = (p2 + p+ 1)(q2 + q+ 1) Dec(c,pk, sk):

6. e←$ Z×
φ̃r(N)

1. (l,m) = c⊙rd ∈ Pr

7. d = e−1 (mod φ̃r(N)) 2. msg←[(l,m)

8. sk = (p,q,d) 3. return msg

9. pk = (N, e, r)

10. return pk, sk

Figure 10: RSA on
(
Pr,⊙r

)
with fixed r non–cube.

Finally, the decryption algorithm (Dec) retrieves the element of Pd

and then the message using ϕd in the version from Equation 2.4.
As observed in [11], in a comparison with the classical RSA in terms

of computational costs of Dec when the plaintext length is fixed to 2n,
the proposal in Figure 9 is better because it requires only 1 exponen-
tiation in Pd, plus 3 multiplications and 1 inversion in ZN, instead
of two exponentiation in ZN. In the same scenario, the described for-
mulation is also better than the proposals from [48], which require 1

exponentiation in ZN and a comparable number of multiplications
in ZN, but at least two inversions.

Despite these advantages, the cryptosystem in Figure 9 presents
an important problem that will be described in Section 5.1, where a
solution is proposed.

Also the cubic Pell equation can be exploited in cryptosystems
based on RSA. In this case, the results in Section 3.2 give different
cases since for any p prime and r ∈ Z×

p

φ̃r(p) =



p2 + p+ 1, for p ≡ 1 (mod 3) and r non–cube,

(p− 1)2, for p ≡ 1 (mod 3) and r cube,

p2 − 1, for p ≡ 2 (mod 3) ,

p2, for p ≡ 0 (mod 3) .

Despite this difference, a formulation of the generalized Euler theo-
rem can proved analogously as in the quadratic case.

theorem 4.3 IfN =
∏l

i=1 pi is a square–free integer, given r ∈ ZN,
φ̃r(N) =

∏l
i=1 φ̃r(pi) and k ≡ 1 (mod φ̃r(N)), then each M ∈ Cr

satisfies M⊙rk = M. Analogously, each canonical representative in
the projectivization (l,m) ∈ Pr satisfies (l,m)⊙rk = (l,m).

In [46], RSA is formulated using the projectivization related to a
Pell cubic with r non–cube, as described in Figure 10.

4.4 elgamal cryptosystem 51

In order to have a non–cube parameter, steps 1-2 of the key gener-
ation algorithm (Gen) take p,q ≡ 1 (mod 3), the modulus N = pq of
n bits is obtained in step 3 and, after choosing in step 4 the param-
eter r non–cube in both Zp and Zq, the cardinality of the cubic is
evaluated in step 5 according to the generalized Euler theorem. Then,
the algorithm continues as the classical RSA but, as for the quadratic
version in Figure 7, the public key contains also the parameter r.

The encryption algorithm (Enc) takes a message 2n bits long which
is converted in step 1 into a canonical representative in Pr. Thus, its
e–th power is evaluated in step 2 and the result is the ciphertext.

The decryption algorithm is straightforward since simply evaluates
the d–th power of the ciphertext in Pr and retrieve the message from
the obtained element.

Clearly, this is not a RSA–like cryptosystems since no group iso-
morphism is exploited. In particular, this cryptosystem is analogous
to the one described in Figure 7 but with the cubic projectivization.
It presents no advantages with respect to the RSA–like cryptosystem
in Figure 9 the message and ciphertext length are the same as well
as the security order, but the computational costs are clearly higher.
The authors explicitly observe that finding the group isomorphism
would allow to improve their scheme by obtaining the cubic version
of the quadratic cases described before. Exploiting the results from
Chapter 3, this problem is tackled in Section 6.1.

4.4 elgamal cryptosystem

One of the other main cryptosystems on which is based modern cryp-
tography was introduced in 1985 by ElGamal [24]. This PKE scheme
is based on the same concept of the Diffie-Hellman key exchange:
taking a cyclic group

(
G,⊗

)
and a generator g ∈ G, it is easy to eval-

uate h = g⊗x ∈ G but knowing only g and h it is difficult to obtain
the used exponent x. This problem is called Discrete Logarithm Prob-
lem (DLP) and, together with the IFP, constitutes the foundations of
the security in nowadays public–key cryptography.

The cryptosystem proposed by ElGamal is presented in Figure 11.
The algorithm for the key generation (Gen) takes as input an integer

n representing the bit–length of the order q of the cyclic group to
be used. Usually q is taken as prime as possible in order to avoid
possible small subgroups that constitute easy instances of the DLP.
In steps 1-2, the order and the group

(
G,⊗

)
are chosen, generally

there are recommended options depending on the order q. Then, in
step 3, a generator g ∈ G is taken. After choosing a random exponent
sk as secret key in step 4, a public point h ∈ G is obtained in step 5

as the sk–th power of the generator g. In conclusion, the public key
contains all the information about the cyclic group and the elements
g,h ∈ G.

52 public–key cryptography

Gen(n): Enc(msg,pk):

1. q←$ {0, 1}n require : msg < q

2.
(
G,⊗

)
cyclic of order q 1. m←[msg

3. g←$ G generator 2. r←$ {1, . . . ,q− 1}

4. sk←$ {1, . . . ,q− 1} 3. c1 = g⊗r ∈ G

5. h = g⊗sk ∈ G 4. c2 = h⊗r ⊗m ∈ G

6. pk = (q,G,⊗,g,h) 5. return c1, c2
7. return pk, sk Dec(c1, c2,pk, sk):

1. m = (c⊗sk
1)−1 ⊗ c2 ∈ G

2. msg← [m

3. return msg

Figure 11: ElGamal PKE scheme.

The encryption algorithm (Enc) takes a messagemsg smaller than q
which is encoded in step 1 into an element m ∈ G. After taking a ran-
dom exponent r in step 2, the ciphertext is obtained as two elements
c1, c2 ∈ G: the first one is evaluated in step 3 as the r–th power of
the public generator g, while c2 is determined in step 4 as the group
operation between h⊗r and the element m representing the message.

During the decryption algorithm (Dec), the element m is retrieved
in step 1 by evaluating the group operation between the inverse of
c⊗sk
1 and c2. Finally, the original message is recovered in step 2.

The cryptosystem is correct since

(c⊗sk
1)−1 ⊗ c2 = ((g⊗r)⊗sk)−1 ⊗ h⊗r ⊗m

= (h⊗r)−1 ⊗ h⊗r ⊗m = m.

The security for ElGamal can be studied considering two different
scenarios:

• a key recovery attack, i.e., obtain sk knowing only pk, involves
solving the DLP instance given by h = g⊗sk ∈ G;

• a message recovery attack, i.e., retrieve m knowing the public
key and the ciphertext, requires to find the exponent r from the
equation c1 = g⊗r ∈ G, which is another instance of DLP.

In conclusion, the security of ElGamal relies clearly on the DLP.
It is noteworthy that, differently from RSA, the ElGamal is a proba-

bilistic cryptosystem since each encryption of the same message with
the same public key depends on the chosen random exponent r, i.e.,
different runs of Enc with same inputs return different outputs. This
means that the ElGamal cryptosystem does not require the use of a
padding function in order to satisfy the minimal security criteria.

4.5 digital signature algorithm and ecdsa 53

Gen(l,n): Sig(msg,pk, sk):

1. q←$ {0, 1}n prime 1. r←$ {2, . . . ,q− 1}

2. p←$ {0, 1}l prime, p− 1 = dq 2. s1 = (gr (modp)) (modq)

3. h←$ {2, . . . ,p− 2} 3. s2 = r−1(H(msg) + sk · s1) (modq)

4. g = hd (modp) 4. return s1, s2
5. sk←$ {2, . . . ,q− 1} Ver(msg, s1, s2,pk):

6. y = gsk (modp) 1. u1 = H(msg) · s−1
2 (modq)

7. pk = (p,q,g,y) 2. u2 = s1 · s−1
2 (modq)

8. return pk, sk 3. v = (gu1 · yu2 (modp)) (modq)

4. return s1 = v?

Figure 12: Digital Signature Algorithm (DSA).

4.5 digital signature algorithm and ecdsa

Among all the cryptosystems classified as DLP–based, the mainly
used is the Digital Signature Algorithm (DSA). There are two clas-
sical formulations: the original one is less efficient and is classified
as Finite Field Cryptography (FFC) [27], while the most efficient and
widely adopted is among the cryptosystems in Elliptic Curve Cryp-
tography (ECC), namely the ECDSA [56]. Before exploring the pos-
sible formulations of DSA with the introduced groups on the Pell
conics and cubics, the classical versions are here described.

The Digital Signature Algorithm (DSA) is detailed in Figure 12.
The key generation algorithm is quite similar to the one for El-

Gamal with G = Zp, but a multiplicative subgroup of order q is re-
quired. The input is a pair of integers (l,m) ∈ {(1024, 160), (2048, 224),
(3072, 256), (7680, 384), (15360, 512)} depending on the standard secu-
rity strengths from [8]. The public parameters, that may be shared
between different users, are p,q and the generator g ∈ Zp of order q
obtained in steps 1-4. The secret key is an integer smaller than q, that
is used as exponent for g ∈ Zp to obtain the public key y in step 6.

In the signature algorithm, after taking a random integer r < q

in step 1, the message is signed through two values: s1 is obtained
in step 2 as the r-power of g in Zp then reduced modulo q; s2 is
obtained in step 3 as the digest of msg through a public hash H plus
sk · s1, all multiplied by the inverse of r in Zq.

The verification algorithm evaluates two exponents in u1,u2 ∈ Zq

in steps 1-2, then compares the value v with the received s1 so that, if
the signature is valid, then it returns True since

v =
(
gu1 · yu2 (modp)

)
(modq)

=
(
gH(msg)·s−1

2 (modq) · (gsk)s1·s
−1
2 (modq) (modp)

)
(modq)

=
(
gs

−1
2 (H(msg)+sk·s1) (modq) (modp)

)
(modq)

=
(
gs

−1
2 ·r·s2 (modq) (modp)

)
(modq) = s1.

54 public–key cryptography

Gen(n): Sig(msg,pk, sk):

1. q←$ {0, 1}n prime 1. r←$ {2, . . . ,q− 1}

2. E(Zp) elliptic curve, p prime 2. S = r ·G ∈ E(Zp)

3. G←$ E(Zp) of order q 3. s1 = xS (modq)

4. sk←$ {2, . . . ,q− 1} 4. s2 = r−1(H(msg) + sk · s1) (modq)

5. P = sk ·G ∈ E(Zp) 5. return s1, s2
6. pk = (p,q,E(Zp),G,P) Ver(msg, s1, s2,pk):

7. return pk, sk 1. u1 = H(msg) · s−1
2 (modq)

2. u2 = s1 · s−1
2 (modq)

3. V = u1 ·G+ u2 · P ∈ E(Zp)

4. return s1 ≡ xV (modq)?

Figure 13: DSA with Elliptic Curves (ECDSA).

DSA was a standard proposed by the U.S. National Institute of
Standard and Technology (NIST) in 1991, and among the first public
responses to the proposal, Vanstone introduced the possibility of a
more efficient DSA with Elliptic Curves (ECDSA). The resulting cryp-
tosystem is described in Figure 13.

Clearly, the main difference with DSA is the adopted cyclic group.
The key generation algorithm generates in steps 1-3 the public pa-
rameters consisting of a prime q, the elliptic curve E(Zp) and a gen-
erator G of the cyclic group of order q. Since secure elliptic curves
are not easy to generate randomly, some chosen ones are considered
standard, e.g., [16, 26]. Then, the algorithm takes the secret key and
evaluate the point for the public key as in DSA.

The signature algorithm is very similar to the one for DSA: a ran-
dom factor r taken in step 1 is used in step 2 to obtain a point S on the
curve. Here, instead of the double reduction modulo p and q in Fig-
ure 12, the x coordinate of S is reduced modulo q in order to obtain
the first element s1 of the signature in step 3. Finally, s2 is obtained
as in DSA.

The decryption algorithm is again analogous to DSA: after evaluat-
ing u1 and u2 in steps 1-2 in the same way as in Figure 12, the point
V used to verify the signature is obtained in step 3. The algorithm is
correct since

V = u1 ·G+ u2 · P
=
(
H(msg) · s−1

2 (modq)
)
·G+

(
s1 · s−1

2 (modq)
)
· sk ·G

=
(
s−1
2 (H(msg) + sk · s1) (modq)

)
·G

=
(
s−1
2 · r · s2 (modq)

)
·G = S.

The success of ECDSA is due mainly to its shorter key lengths with
respect to FFC and RSA signatures, as well as for its advantages of
performance and scalability [8].

5
N E W C RY P T O S Y S T E M S W I T H T H E P E L L C O N I C

This chapter focuses on the construction of new cryptosystems that
exploit the Pell conic.

Firstly, after some considerations about the RSA–like cryptosystem
on the Pell conic described in Figure 9 and introduced in [11], an
alternative version without the constraint on d of being a quadratic
non–residue is obtained in Section 5.1.

Then, the cyclic structure of the Pell conic over a finite field Fq

and the group isomorphisms obtained in Section 2.2 are exploited to
obtain different ElGamal formulations, considering that:

• as observed in Section 2.2.2, when χq(d) = 1, the Pell conic is
isomorphic to F×

q , so that its applications in cryptography are
not different from FFC. On the other hand, when d is a non–
square in Fq, Cd is isomorphic to the subgroup of F×

q2 of order
q+ 1, so that its applications in cryptography are not trivial;

• in this case, it is also important to avoid small subgroups since
they give easier DLP instances. Thus, the best option is to have
q = 2p− 1 with p prime, so that only the elements in the trivial
subgroup of order 2 must be avoided;

• from a computational point of view, it is not useful to use a
generalized Pell conic

(
Cd,q,⊗d,q,a,b

)
in a formulation of ElGa-

mal since the group isomorphism between Cd and Cd,q (τa,b
d,q)

reduces the complexity of the DLP over Cd,q to the DLP over Cd,
while the computational costs would arise.

In particular, three different ElGamal formulations are proposed:
the first one is introduced in Section 5.2 and exploits directly the
cyclic group

(
Cd,⊗d

)
. Since the projectivization

(
Pd,⊗d

)
is also a

cyclic group, isomorphic to the Pell conic, it can be used in a second
formulation of ElGamal that is described in Section 5.3. The third
option is a new formulation of ElGamal that requires ϕd and δd,d ′ ,
i.e., the group isomorphism between Pd and Cd and group isomor-
phism between Cd and Cd

′ , respectively, where χq(d) = χq(d ′) and is
defined in Section 5.4.

A last proposal for a digital signature scheme, inspired by DSA and
ECDSA, is introduced in Section 5.5.

Finally, in Section 5.6, some comparisons in terms of security, data–
size and performance among the proposals and with the classical
schemes are described.

55

56 new cryptosystems with the pell conic

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N2

2. N = pq 1. (x,y)← [msg

3. φ̃(N) = (p2 − 1)(q2 − 1) 2. d = x2−1
y2 ∈ ZN

4. e←$ Z×
φ̃(N)

3. m = ϕ−1
d

(x,y) = x+1
y ∈ Pd

5. d = e−1 (mod φ̃(N)) 4. c = m⊗de ∈ Pd

6. sk = (p,q,d) 5. return c, d

7. pk = (N, e) Dec(c, d,pk, sk):

8. return pk, sk 1. m = c⊗dd ∈ Pd

2. msg←[ϕd(m) =
(
m2+d

m2−d
, 2m
m2−d

)
3. return msg

Figure 14: RSA–like cryptosystem using ϕd with generic d depending on
msg.

5.1 alternative rsa–like cryptosystem

The RSA–like cryptosystem from [11] in Figure 9 is theoretically cor-
rect, but in a real implementation has a construction problem.

In the algorithm Gen, step 3 fixes the cardinality of the Pell conic as
φ̃(N) = (p+1)(q+1). This means that the parameter d is constrained
to be a quadratic non–residue in both Zp and Zq. When considering
the composite modulus N, this condition assures that d is a quadratic
non–residue, but excludes the cases which are quadratic non–residue
only modulo p or q. The problem arises in step 2 of the algorithm
Enc, which requires to check that the parameter d of the Pell conic
obtained from the point representing the message is a quadratic non–
residue. Since the factorization of N is unknown by the sender, the
best way to do so is to evaluate the Jacobi symbol

(
d

N

)
knowing that

it is equal to −1 if and only if d is a quadratic non–residue in ZN.
However, when

(
d

N

)
=
(

d

p

)(
d

q

)
= −1, the cardinality of the conic

should be (p− 1)(q+ 1) or (p+ 1)(q− 1), which is in contradiction
with the cardinality φ̃(N) fixed in the key generation at step 3.

In order to avoid this misbehaviour, a modification in one or both
the algorithms is required, but:

• asking for
(

d

N

)
= 1 in the encryption is not the solution, since

this is satisfied also by quadratic residues modulo N (and p, q);

• fixing φ̃(N) = (p ± 1)(q ∓ 1) in the key generation results in
a correct behaviour only for half of the values for d that are
accepted in the encryption.

A working solution inspired by the cryptosystem in Figure 8 is
described in Figure 14. The algorithms are analogous to those in Fig-
ure 9, but in the key generation step 3 takes φ̃(N) as the product of
the possible orders of the curve over Zp and Zq, i.e., (p2 − 1)(q2 − 1).

5.2 elgamal with the pell conic 57

Gen(n): Enc(msg,pk):

1. p←$ {0, 1}n−1 prime require : msg < q

2. q = 2p− 1 1. y←[msg

3. d←$ Fq with χq(d) = −1 2. x =
√
1+ dy2 ∈ Fq

4. G←$ Cd of order q+ 1 3. r←$ {2, . . . ,q}

5. sk←$ {2, . . . ,q} 4. C1 = G⊗dr ∈ Cd

6. H = G⊗dsk ∈ Cd 5. C2 = H⊗dr ⊗d (x,y) ∈ Cd

7. pk = (q, d,G,H) 6. return C1,C2

8. return pk, sk Dec(C1,C2,pk, sk):

1. (x,y) = (C⊗dsk
1)−1 ⊗d C2 ∈ Cd

2. msg←[y

3. return msg

Figure 15: ElGamal with
(
Cd,⊗d

)
of order q+ 1.

This means that the bit–length of secret exponent d is doubled (2n
instead of n), but it allows to accept any d in step 2 of the encryption.

In order to avoid an increment of the computational costs, the pri-
vate exponent d can also be determined only in the decryption, since
the receiver can easily evaluate the actual cardinality of the conic
φ̃d(N) = (p −

(
d

p

)
)(q −

(
d

q

)
) from the received d. In this way, the

exponentiation in step 1 has an exponent of n bits as in the cryptosys-
tem in Figure 9.

5.2 elgamal with the pell conic

The first cryptosystem is detailed in Figure 15 and consists in ElGa-
mal with the cyclic group

(
Cd,⊗d

)
.

The algorithm for the key generation (Gen) takes as input an integer
n representing the bit–length of the cardinality q of the finite field. By
following the considerations on the choice of q, in step 1 a prime p
of n− 1 bits is taken randomly such that q = 2p− 1 in step 2. Then,
in step 3, the parameter d ∈ Fq with χq(d) = −1 is taken, so that
the order of the cyclic group

(
Cd,⊗d

)
is q+ 1 = 2p. Since half of the

elements in F×
q are non–squares, the search ends rapidly. In general,

it is useful to take d small, so that the computational costs of ⊗d

are lower. In step 4, a generator G of Cd is taken randomly. Since
the generators are φ(q + 1) = φ(2p) = p − 1, excluding the trivial
subgroup of order 2, i.e., {(1, 0), (−1, 0)}, there is 50% of probability to
take one of them at the first attempt. Then the algorithm proceeds as
the classical ElGamal key generation: the secret key sk is a random
exponent taken in step 5 and a public point H ∈ Cd is obtained in
step 6 through the square–multiply algorithm with ⊗d (introduced in
Figure 2). In conclusion, the public key contains the cardinality q, the
parameter d ∈ Fq and the points G,H ∈ Cd.

58 new cryptosystems with the pell conic

Gen(n): Enc(msg,pk):

1. p←$ {0, 1}n−1 prime require : msg < q

2. q = 2p− 1 1. m←[msg

3. d←$ Fq with χq(d) = −1 2. r←$ {2, . . . ,q}

4. g←$ Pd of order q+ 1 3. c1 = g⊗dr ∈ Pd

5. sk←$ {2, . . . ,q} 4. c2 = h⊗dr ⊗d m ∈ Pd

6. h = g⊗dsk ∈ Pd 5. return c1, c2
7. pk = (q, d,g,h) Dec(c1, c2,pk, sk):

8. return pk, sk 1. m = (c⊗dsk
1)−1 ⊗d c2 ∈ Pd

2. msg←[m

3. return msg

Figure 16: ElGamal with
(
Pd,⊗d

)
of order q+ 1.

The encryption algorithm (Enc) takes a messagemsg smaller than q
which is used in step 1 to determine the y coordinate of a point of F2

q.
The corresponding x such that (x,y) ∈ Cd is obtained in step 2. Since
such a point could not exist, some bits of y can be kept variable by
reducing the maximum length of the message msg. In the following
steps, the ciphertext consisting of two points C1,C2 ∈ Cd is obtained:
after taking a random exponent r ⩽ q in step 3, it is used in step 4 to
obtain C1 through the square–multiply exponentiation with ⊗d and
base the public generator G, while the second point C2 is determined
in step 5 as the Brahmagupta product of H⊗dr with the point (x,y)
representing the message.

During the decryption algorithm (Dec), the point (x,y) is retrieved
in step 1 as the Brahmagupta product of the inverse of C⊗dsk

1 with
C2. From the obtained y, the original message is recovered in step 2.

From the point of view of security, since as observed in Theorem 2.3
the Pell conic is isomorphic to the multiplicative subgroup G ⊂ F×

q2

of order q+ 1, the DLP in Cd can be reduced to the DLP in G. Thus,
the obtained algorithm is simply an alternative form for that with G.

5.3 elgamal with the projectivization

The second cryptosystem is described in Figure 16 and consists in
ElGamal with the cyclic group

(
Pd,⊗d

)
.

The algorithm for the key generation (Gen) is very similar to the one
in the previous scheme. The input is the bit–length n of the cardinality
of the finite field, which is obtained as q = 2p − 1 with p random
prime of n− 1 bits (steps 1-2). The parameter d ∈ Fq with χq(d) = −1

is taken in step 3, so that it is a non–square and the order of the
cyclic group

(
Pd,⊗d

)
is q + 1 = 2p. The search for such a d ends

rapidly because half of the elements in F×
q are non–squares. As in the

previous cryptosystem, it is best to take a small parameter d in order
to reduce the computational costs of the Brahmagupta product in Pd.

5.4 elgamal with two pell conics 59

In step 3, a random generator g ∈ Pd is taken among the possible
φ(q+ 1) = φ(2p) = p− 1 choices and, excluding (1, 0), (−1, 0) that
have period 2, there is 50% of probability to find it at the first attempt.
Then, in step 4, a random exponent is taken as the secret key sk.
The public key, instead, consists of the cardinality q, the parameter
d ∈ Fq, the chosen generator g ∈ Pd and h that is the power of g
to sk with ⊗d (step 6), that can be implemented using the modified
More algorithm introduced in Figure 3.

The encryption algorithm (Enc) takes a messagemsg smaller than q
which is used in step 1 to determine the coordinatem of the canonical
representative of an element [m : 1] ∈ Pd. In step 2, an exponent r ⩽ q
is chosen randomly. It is then used to obtain the ciphertext in steps
3-4, which consists of two canonical representatives c1, c2 ∈ Pd given
by the power of g to r with ⊗d and the Brahmagupta product of h⊗dr

with m, respectively.
During the decryption algorithm (Dec), the canonical representative

m related to the message is retrieved as the Brahmagupta product of
the inverse of c⊗dsk

1 (which is simply its opposite) with c2 in step 1.
Finally, in step 2, the original message is recovered from m.

The security of this cryptosystem relies on the DLP in Pd, which
can be reduced to the DLP on F×

q2/F×
q because of the group isomor-

phism observed in Section 2.2.1. This is again isomorphic to the mul-
tiplicative subgroup G ⊂ F×

q2 of order q + 1. The advantage with
respect to the previous algorithm is that the elements require half the
size to be stored, as will be observed in Section 5.6.

5.4 elgamal with two pell conics

The third cryptosystem is an alternative version of ElGamal with(
Pd,⊗d

)
. The new ideas adopted in this scheme are to exploit the

group isomorphism between Pd and Cd (ϕd) to obtain a reduction
in the data–size, and to use the group isomorphism between Cd and
Cd

′ (δd,d ′) introduced in Section 2.2 in order to have the possibility to
choose the message without the constraint given by the fixed param-
eter d. The resulting cryptosystem is described in Figure 17.

The key generation algorithm (Gen) takes as input the bit–length n
of the cardinality q of the finite field, obtained in steps 1-2 from a ran-
domly chosen prime p of n− 1 bits such that q = 2p− 1. The main
difference with the previous key generations is in step 3 where, in-
stead of taking a random d, the chosen parameter is the smallest non–
square, so that the computational costs of ⊗d are decreased. Then, a
generator g ∈ Pd is randomly chosen in step 4, as well as a secret ex-
ponent sk in step 5, which are used to obtain h = g⊗dsk ∈ Pd in step
6, using the modified More algorithm from Figure 3. Finally, the pub-
lic key contains the cardinality q, the parameter d and the elements
g,h, while the secret key is simply the used exponent sk.

60 new cryptosystems with the pell conic

Gen(n): Enc(msg,pk):

1. p←$ {0, 1}n−1 prime require : msg < q2

2. q = 2p− 1 1. (x,y)←[msg

3. d←$ Fq min with χq(d) = −1 2. d
′ = x2−1

y2 ∈ Fq with χq(d ′) = −1

4. g←$ Pd of order q+ 1 3. m = ϕ−1
d
′ (x,y) = x+1

y ∈ Pd
′

5. sk←$ {2, . . . ,q} 4. r←$ {2, . . . ,q}

6. h = g⊗dsk ∈ Pd 5. δ =
√

d/d
′ ∈ Fq

7. pk = (q, d,g,h) 6. c1 = δd,d′(g)⊗d
′r ∈ Pd

′

8. return pk, sk 7. c2 = δd,d′(h)⊗d
′r ⊗d

′ m ∈ Pd
′

8. return c1, c2, d
′

Dec(c1, c2, d
′,pk, sk):

1. m = −c
⊗

d
′sk

1 ⊗d
′ c2 ∈ Pd

′

2. msg←[ϕd
′(m) =

(
m2+d

′

m2−d
′ , 2m

m2−d
′

)
3. return msg

Figure 17: ElGamal with
(
Pd,⊗d

)
of order q+ 1, ϕd and δ

d,d ′ .

The encryption algorithm (Enc) is very different from the classi-
cal ElGamal. With respect to the previous algorithms, the maximum
length of the message can be doubled because it is used in step 1 to
obtain the coordinates of a point (x,y) ∈ F2

q. From this point, step
2 searches for a non–square d

′ ∈ Fq such that (x,y) ∈ Cd
′ . If nec-

essary, some of the bits of x can be kept variable so that such a d
′

can be found. Then, in step 3, the parameter m related to the point
is obtained through the inverse of parametrization ϕd

′ , specifically
considering the canonical representative in Pd

′ . In step 4 a random
exponent r ⩽ q is chosen. Now, since the public key contains param-
eters of points of Cd, the isomorphism δd,d ′ is required, i.e., step 5

evaluates the coefficient δ such that d = δ2d
′. This is used in step 6

to obtain the base g/δ ∈ Pd
′ that raised to r gives c1 and in step 7

for the base h/δ ∈ Pd
′ that raised to r and multiplied by m gives c2.

The ciphertext contains c1, c2 ∈ Pd
′ and the parameter d

′ used in the
calculations.

The decryption algorithm (Dec) is analogous to the previous cases
but, after evaluating in step 1 m as the product between the inverse
of c⊗d

′sk
1 and c2, the message is retrieved in step 2 using the point of

Cd
′ obtained from the element m ∈ Pd

′ through ϕd
′ in the form with

the canonical representative given in Equation 2.4.
As for ElGamal with the projectivization, the security is based on

the DLP on Pd and Pd
′ , which can be reduced to the DLP over the

multiplicative subgroup G ⊂ F×
q2 of order q+ 1.

The advantages in adopting this algorithm are the halved data–
size and the doubled length of the message without doubling the
computational costs, as will be pointed-out in the last section.

5.5 dsa with the pell conic 61

Gen(l,n): Sig(msg,pk, sk):

1. p←$ {0, 1}n prime 1. r←$ {2, . . . ,p− 1}

2. q←$ {0, 1}l prime, q+ 1 = dp 2. s1 = g⊗dr (modp)

3. d←$ Fq with χq(d) = −1 3. s2 = r−1(H(msg) + sk · s1) (modp)

4. h←$ Pd 4. return s1, s2
5. g = h⊗dd ∈ Pd of order p Ver(msg, s1, s2,pk):

6. sk←$ {2, . . . ,p− 1} 1. u1 = H(msg) · s−1
2 (modp)

7. y = g⊗dsk ∈ Pd 2. u2 = s1 · s−1
2 (modp)

8. pk = (p,q, d,g,y) 3. v = (g⊗du1 ⊗d y
⊗du2) (modp)

9. return pk, sk 4. return s1 = v?

Figure 18: DSA with
(
Pd,⊗d

)
of order q+ 1.

5.5 dsa with the pell conic

As for the classical ElGamal, the structure of cyclic group on the Pell
conic or on the related projectivization can be exploited to formu-
late alternative DSA. In particular, the most interesting option to be
considered is the non–trivial case with d ∈ Fq non–square. Since sig-
nature schemes require smaller data–size and working with

(
Cd,⊗d

)
requires larger data and comparable times with respect to

(
Pd,⊗d

)
,

only the formulation in the second case is introduced. The algorithms
for the obtained DSA are described in Figure 18.

The key generation (Gen) takes a couple of integer values (l,n) as in
the classical DSA. The first one is the bit–length of the field cardinality
q = dp− 1 where p is a prime n bits long and d is an even integer
(steps 1-2). Then a generator g of the subgroup of Pd of order p is
obtained in steps 3-4 as the exponentiation of a generic element to d.
Finally, the secret key is taken in step 6 as an integer smaller than p
and used as exponent in step 7 to evaluate the public key y as power
of the generator g. The values p,q, d and the generator g ∈ Pd can
be considered as parameters of the system that can be shared among
different users.

In the signature algorithm (Sig), a random exponent r is taken in
step 1 and then used to obtain the first part of the signature s1 as r–th
power of the public generator g ∈ Pd reduced modulo p. The second
part is obtained exactly as in DSA and ECDSA.

In order to verify a signature on the message msg, the algorithm
Ver obtains u1,u2 ∈ Zp as in the classical schemes. Then they are
used to check the validity of s1 and s2 by verifying that

v =
(
g⊗du1 ⊗d y

⊗du2
)
(modp)

=
(
g⊗dH(msg)⊗ds

−1
2 (modp) · (g⊗dsk)⊗ds1·s−1

2 (modp)
)
(modp)

=
(
g⊗ds

−1
2 (H(msg)+sk·s1

)
(modp)

=
(
g⊗ds

−1
2 ·r·s2 (modp)

)
(modp) = s1.

62 new cryptosystems with the pell conic

Sec. Cryptosystem pk sk msg c

80

RSA 1024 1024 1024 1024

RSA–like 1024 3072 2048 2048

112

RSA 2048 2048 2048 2048

RSA–like 2048 6144 4096 4096

128

RSA 3072 3072 3072 3072

RSA–like 3072 9216 6144 6144

192

RSA 7680 7680 7680 7680

RSA–like 7680 23040 15360 15360

256

RSA 15360 15360 15360 15360

RSA–like 15360 46080 30720 30720

Table 1: Data–size in bits of the classical RSA and the RSA–like cryptosys-
tem with ϕd introduced in Figure 14 for different security strengths.

5.6 security, data–size and performance

This section presents some practical results about security, data–size
and computational costs for all the newly introduced cryptosystems
based on the Pell conic.

The RSA–like cryptosystem described in Figure 14 is the only pro-
posal whose security is based on the IFP. In particular, it shares the
same security requirements as the classical RSA, i.e., their public keys
have the same size, as described in Table 1 for the standard security
strengths from [8]. The table shows a comparison of data–size for
public and secret keys, maximum message length and ciphertext size
in bits between the classical RSA and the RSA–like cryptosystem with
ϕd introduced in Figure 14 for different security strengths. The secret
key of the RSA–like cryptosystem requires triple the bits for RSA, but
this is negligible since it remains stored by the receiver. On the other
hand, the sizes of messages and ciphertexts are doubled so that, in a
performance comparison of Enc and Dec, the RSA–like cryptosystem
should be compared with a double run of the algorithms of RSA.

This is the idea adopted when collecting the time data in Table 2:
the study uses simple Python implementations for both RSA and the
RSA–like cryptosystem from Figure 14 for a serial run on the cluster
of the DISMA at Politecnico of Turin, on a single CPU with 46G of
RAM allocated. The displayed values are the average times in seconds
for 10 randomly generated instances, whose times are taken as the
minimum of 10 identical runs. In the times for the Gen algorithm, the
generation of the primes factors p and q of N is not considered since
it is a common procedure for all the cryptosystems. For the double
use of RSA, the keys can be used multiple times, so that only a single
run of Gen is considered.

5.6 security, data–size and performance 63

n Alg. RSA RSA× 2 RSA–like

1024 Gen 0.000478 0.000478 0.001163

Enc 0.000004 0.000007 0.000601

Dec 0.004465 0.008930 0.019687

2048 Gen 0.001098 0.001098 0.003044

Enc 0.000003 0.000006 0.001253

Dec 0.020171 0.040341 0.115604

3072 Gen 0.001949 0.001949 0.005771

Enc 0.000003 0.000006 0.001480

Dec 0.059177 0.118355 0.334385

7680 Gen 0.008427 0.008427 0.029038

Enc 0.000003 0.000006 0.011386

Dec 0.744808 1.489616 4.231494

15360 Gen 0.028525 0.028525 0.102918

Enc 0.000003 0.000006 0.013337

Dec 5.194125 10.388251 28.937031

Table 2: Average times in seconds for 10 random instances of RSA, RSA re-
peated two times and the RSA–like cryptosystem with ϕd intro-
duced in Figure 14, depending on the bit–length n of N.

Despite the promising results in [11], the practical implementations
do not respect the theoretical predictions. Indeed, all the times for the
RSA–like cryptosystem collected in the last column are higher than
those in columns 3 and 4. This is mainly due to the computational
costs of the operation ⊗d in Pd that, despite the optimized imple-
mentation of the modified More algorithm introduced in Figure 3, is
still less efficient with respect to the multiplication in the modular
exponentiation required in the classical RSA.

When considering the DLP–based cryptosystems, the security de-
pends on the adopted cyclic group. In particular, since in all the intro-
duced schemes the parameter d ∈ Fq is a non–square, Theorem 2.3
gives an explicit group isomorphism between

(
Cd,⊗d

)
and the mul-

tiplicative subgroup G ⊂ F×
q2 of order q+ 1. In addition, this is true

also for
(
Pd,⊗d

)
through ϕd. Thus, the DLP related to the Pell conic

can be reduced to that in a finite field that, with respect to the stan-
dard security strengths from [8] for FFC, has halved size of q.

The comparison of the size of q for FFC, ECC and cryptosystems
based on the Pell conic is detailed in Table 3. Despite the sizes of the
fields in Pell-based cryptosystems are halved with respect to those in
FFC, the sizes in ECC still remain the smallest. Given these security
levels, it is possible to compare the proposed cryptosystems with the
classical ones in terms of data–size and performance.

64 new cryptosystems with the pell conic

Sec. FFC ECC Cd, Pd

80 1024 160 512

112 2048 224 1024

128 3072 256 1536

192 7680 384 3840

256 15360 512 7680

Table 3: Field size in bits for different DLP–based cryptosystems depending
on the cyclic group and the classical security strength in bits.

Table 4 collects the size of the data involved in the various ElGamal
formulations. In particular, the public key is divided in two parts: the
public parameters, i.e., the data required for the description of the
cyclic group and one of its generators, that can be used by different
users, and the actual public key (the element h or the point H). The
other collected values are the size of the secret key, the maximum mes-
sage length and the bit–length of the ciphertext (that for ElGamal is a
pair of elements or points). The considered formulations are, in order
from top to bottom, the classical ElGamal scheme in Figure 11 with
finite fields and with elliptic curves, and the cryptosystems based on
the Pell conic described in Figure 15, Figure 16 and Figure 17, i.e.,
respectively, ElGamal with the cyclic group

(
Cd,⊗d

)
of order q+ 1,

ElGamal with the cyclic group
(
Pd,⊗d

)
of order q + 1 and the El-

Gamal cryptosystem that still works with the cyclic group
(
Pd,⊗d

)
of order q + 1 but exploits the parametrization ϕd and the isomor-
phism δd,d ′ . For each case, the table shows the data–size depending
on the size n of the cardinality q of the related finite field (taken from
Table 3) and the values for 80 bits of security strength.

The formulation with Cd in the third row has the same size of that
in FFC (first row) in terms of parameters, public key and ciphertext,
but the maximum message length is halved, so that in a fair com-
parison its encryption and decryption should be run twice, and the
ciphertext length becomes the double of that in the first row. Despite
this drawback, a performance comparison could be interesting since
q has still halved size with respect to FFC.

Looking at the fourth row, i.e, at the formulation with Pd, all the
sizes are half of those for FFC, except for the bit–length of the pa-
rameters which is still smaller. Again, when fixing the same message
length, two runs of Enc and Dec are required so that the size of the
ciphertext is doubled and becomes equal to that in the first row. How-
ever, with respect to the previous formulation, the public key has half
the size and calculations are still faster than in FFC since q is smaller.

Finally, when comparing the formulation in the fifth row with the
classical FFC, its parameters and keys require half the bits, but the
maximum message length is the same and the ciphertext is smaller.
Thus, this is the best proposal also in terms of information encrypted.

5.6 security, data–size and performance 65

Formulation par pk sk msg c1, c2

FFC
2n n n n 2n

2048 1024 1024 1024 2048

ECC
6n 2n n n 4n

960 320 160 160 640

Cd

4n 2n n n 4n

2048 1024 512 512 2048

Pd

3n n n n 2n

1536 512 512 512 1024

ϕd, δd,d′
2n n n 2n 3n

1024 512 512 1024 1536

Table 4: Data–size in bits for ElGamal with FFC, ECC, Cd, Pd and the alter-
native formulation, depending on the size n of q and for 80 bits of
security.

Despite the formulation in ECC (second row) is competitive for its
smallest data, when fixing the maximum message length, its param-
eters and keys maintain the smallest size, but the ciphertext length
grows as that of the formulation with Cd. In particular, the ratio with
the length of the message is 4, while in the first and fourth row the
ratio is 2 and the best value is 1.5 corresponding to the last proposal.

The last study concerns the performance of the ElGamal formula-
tions and consists in collecting the elapsed times of a simple imple-
mentation in Python of each of the algorithms run on the cluster of
the DISMA at Politecnico of Turin, on a single CPU with 46G of RAM
allocated. For each level of security strength and cryptosystem, the
times shown in Table 5 are the averages of 10 randomly generated in-
stances, whose times are taken as the minimum of 10 identical runs.
The formulations are compared for different security strengths each
with maximum message length fixed. Following considerations from
the analysis on the data–size, this results in repeating encryption and
decryption k times for ECC, where k is the ratio between the message
length for FFC and ECC (e.g., for 80 bits of security, 1024/160 = 6.4 so
that k = 7), and 2 times when using directly Cd or Pd. When working
with a finite field Fq, the case with q prime is considered, and the bit–
length n of q depends on the standard security strengths, assuming
the values obtained in Table 3.

The times for the key generation algorithm do not take into ac-
count the generation of the public parameters, i.e., the cyclic group
and one of its generators as described in steps 1-3 in Figure 11 or
1-4 in Figure 15, Figure 16 and Figure 17. This because they can be
precomputed and used by different users, so that the times take into
account only the generation of the keys, i.e., a single exponentiation.

66 new cryptosystems with the pell conic

Sec. Alg. FFC ECC× k Cd × 2 Pd × 2 ϕd, δd,d′

80 Gen 0.011079 0.028271 0.011713 0.009781 0.007524

Enc 0.022311 0.393407 0.059983 0.040459 0.028152

Dec 0.012183 0.194531 0.023631 0.020472 0.010203

112 Gen 0.074718 0.056586 0.073778 0.056865 0.038527

Enc 0.149400 1.194561 0.364686 0.229299 0.164122

Dec 0.077622 0.567866 0.148194 0.115962 0.057106

128 Gen 0.233983 0.075437 0.227347 0.171958 0.112873

Enc 0.467730 1.818186 1.103675 0.689103 0.496599

Dec 0.239429 0.903710 0.454805 0.347872 0.171190

192 Gen 3.188959 0.185410 2.811594 2.127992 1.372381

Enc 6.372422 7.454103 13.791595 8.525471 6.291258

Dec 3.218019 3.718247 5.630895 4.273549 2.103753

256 Gen 22.874051 0.365562 18.155630 13.841428 9.519104

Enc 45.766954 22.052779 87.457496 55.563741 42.658508

Dec 22.981310 10.965318 36.287580 27.792128 14.464945

Table 5: Average times in seconds for 10 random instances of ElGamal with
FFC, ECC, Cd, Pd and the alternative formulation, for fixed message
length, depending on the security strength.

The key generation performs similarly for FFC and ElGamal with
Cd (Figure 15) in columns 3 and 5, despite the latter is generally a
bit faster. The formulation with Pd (Figure 15) in the sixth column
is generally at the third place, beaten by the version that exploits
the change of parameter d described in Figure 17 (column 7). ECC
in the fourth column is less efficient at lower security strengths but,
thanks to the good scalability of elliptic curves, works better than any
other formulation starting from the third level of security strength
(128 bits).

This advantage is a bit attenuated for encryption and decryption:
in particular, ECC is the less efficient formulation for the first four
levels and becomes comparable to the others for 128 bits of security.
However, for the highest level, the good scalability of elliptic curves
allows to increase the efficiency of the two algorithms, which become
the fastest. Among the others, ElGamal with Cd is generally the worst
option, followed by the formulation with Pd. For the first four levels
of security, the formulations in FFC and from Figure 17 are the most
efficient, with encryption slightly better for the former and decryp-
tion more efficient for the latter.

In conclusion, considering the big advantage in key and ciphertext
size, the new ElGamal using the group isomorphisms ϕd and δd,d ′

(Figure 17) seems to be a very powerful alternative for DLP–based
PKE schemes.

5.6 security, data–size and performance 67

Formulation par pk sk s1, s2

FFC
2l+n l n 2n

2208 1024 160 320

ECC
6n 2n n 2n

960 320 160 320

Pd

3l/2+n l/2 n 2n

1696 512 160 320

Table 6: Data–size in bits for DSA with FFC, ECC and Pd, depending on the
sizes l,n of q,p and for 80 bits of security strength.

Finally, the new formulation of DSA with Pd from Figure 18 is
compared with the classical DSA in FFC and ECDSA, introduced in
Figure 12 and Figure 13, respectively, through the same analysis car-
ried out for the ElGamal formulations.

From the point of view of security, the results obtained for ElGamal
can be adapted directly to the formulations of DSA, so that the sizes
of the adopted fields depending on the classical security strengths
80, 112, 128, 192, 256 bits are still the ones described in Table 3. In par-
ticular, column 2 can be related to the classical DSA, column 3 to
ECDSA and column 4 to DSA with Pd.

Looking at the data–size, there is a main difference with ElGamal
since, instead of working in the cyclic group of order q that is l bits
long, the classical formulation in FFC, as well as the new proposal,
consider a subgroup of prime order p of n bits.

The standard pairs (l,n) for FFC [8], in order of increasing secu-
rity strength, are (1024, 160), (2048, 224), (3072, 256), (7680, 384) and
(15360, 512). For the formulation with Pd, the size of q is l/2 as ob-
served for ElGamal, while the related values of n remain unchanged.
Table 6 shows the size in bits of the involved data depending on the
standard security parameters (l,n) and for 80 bits of security strength,
which corresponds to l = 1024 and n = 160. All the cryptosystems
share the same size for secret key and signature, since all the used
subgroups have the same order independently of the chosen security
strength. For the public parameters and keys, it is noteworthy that,
despite ECC maintains the smallest sizes, the new formulation with
Pd is better than the classical DSA in FFC.

The performance of the three digital signatures is studied, as for
the ElGamal formulations, by collecting the elapsed times of simple
Python implementations run on the cluster of the DISMA at Politec-
nico of Turin, on a single CPU with 46G of RAM allocated. For each
level of security strength and formulation of DSA, Table 7 shows the
average times of 10 randomly generated instances, whose times are
taken as the minimum of 10 identical runs.

68 new cryptosystems with the pell conic

Sec. Alg. FFC ECC Pd

80 Gen 0.002201 0.028173 0.003310

Sig 0.002349 0.028242 0.003514

Ver 0.004529 0.055046 0.007245

112 Gen 0.010515 0.056601 0.013278

Sig 0.010660 0.056749 0.013333

Ver 0.021193 0.112299 0.027623

128 Gen 0.021097 0.075419 0.029619

Sig 0.021220 0.075467 0.029847

Ver 0.042351 0.150855 0.060985

192 Gen 0.169084 0.185556 0.216012

Sig 0.169643 0.186087 0.216910

Ver 0.338843 0.371402 0.443050

256 Gen 0.797075 0.364633 0.983670

Sig 0.797973 0.366812 0.989801

Ver 1.593990 0.730208 2.014678

Table 7: Average times in seconds for 10 random instances of DSA with FFC,
ECC and Pd, depending on the security strength.

In the key generation, the times required to obtain the public pa-
rameters is not counted since they can be precomputed and used by
different users. Thus, the collected times take into account only the
generation of private and public key, i.e., a single exponentiation in
the cyclic group, excluding steps 1-4 in Figure 12, steps 1-3 in Fig-
ure 13 and steps 1-5 in Figure 18.

For all the three algorithms, the time comparison is the same: in the
first three levels of security strengths the FFC formulation is the best,
followed by that with Pd, while ECDSA is the less efficient. For 192
bits of security strength, the scalability of ECC makes it the second
best. Finally, in the highest level, the most efficient, ECC becomes the
most efficient scheme.

Thus, at lower levels of security, the classical DSA is suitable when
there is no constraint on the public data–size, while the new proposal
based on Pd could be a good alternative since the bit–length is re-
duced to almost 2/3 at the cost of a small loss in performance. When
higher security is required, ECDSA is still the best option for both
data–size and computational costs.

6
C RY P T O S Y S T E M S W I T H T H E P E L L C U B I C

As in the previous chapter for the quadratic case, it is interesting to
investigate the applications of the Pell cubic to cryptosystems.

New RSA formulations can be obtained by exploiting Theorem 4.3
that allows to use any Pell cubic Cr or the related projectivizations Pr.
However, as observed for the quadratic cases in Section 4.3, generally
there are no advantages with respect to the classical RSA. On the
other hand, Section 6.1 investigates the idea of a RSA–like cryptosys-
tem based on the Pell cubic, which can be obtained by improving the
cryptosystem introduced in [46] and described in Figure 10. In addi-
tion to the theoretical interest, due to the fact that the application of
the cubic generalization of the Pell equation is new in cryptography,
exploiting the group isomorphisms obtained in Chapter 3 could bring
to promising results from the point of view of data–size and perfor-
mance, since these are the main advantages of RSA–like cryptosys-
tem, as described in Section 4.3. Moreover, if the size reduction from
a point in F3

q to one in F2
q observed in Section 3.2 can be efficiently

exploited, it could be interesting to investigate further improvements
from the combination with the results on the Pell conic.

Then, the idea of formulating the ElGamal cryptosystems with the
groups related to the Pell cubic is considered. While the Pell conic is
always a cyclic group, the results obtained in Section 3.2 assures that
Cr is a cyclic group only when:

• q ≡ 1 (mod 3) and the parameter r ∈ Fq is a non–cube. This is
the most interesting option since the cyclic group Cr is isomor-
phic to the subgroup of F×

q3 of order q2+q+ 1, so that its appli-
cations in cryptography are not trivial. However, the group iso-
morphism ψ ′

r
that allows to obtain efficiently the points of the

cubic from the elements of the projectivization has unknown
inverse, so that computations are complicated;

• q ≡ 2 (mod 3) with any parameter r ∈ Fq (that are all cubes),
in which case the order is q2 − 1. Despite in this case the group
is isomorphic to F×

q2 , the group isomorphism ψ ′′′
r

has explicit
inverse so that it could be interesting to investigate this formu-
lation in comparison with the one from FFC.

These cases are studied in Section 6.2 for ElGamal with the Pell
cubic and in Section 6.3 with the related projectivizations. Finally,
in Section 6.4, the group isomorphisms ψ ′′′

r
and ρr,r ′ are used as in

Section 5.4 to obtain a cryptosystem that has no constraints given by
a fixed parameter r, generalizing Figure 17.

69

70 cryptosystems with the pell cubic

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N3

2. p,q ≡ 1 (mod 3) 1. (x,y, z)← [msg

3. N = pq 2. r = s3 ←[(x,y, z) ∈ Cr

4. φ̃(N) = (p− 1)2(q− 1)2 3. (l,m) = (ψ ′′
r
)−1(x,y, z) ∈ Pr

5. e←$ Z×
φ̃(N)

4. c = (l,m)⊙re ∈ Pr

6. d = e−1 (mod φ̃(N)) 5. return c, r

7. sk = (p,q,d) Dec(c, r,pk, sk):

8. pk = (N, e) 1. (l,m) = c⊙rd ∈ Pr

9. return pk, sk 2. msg←[ψ ′′
r
(l,m)

3. return msg

Figure 19: RSA–like cryptosystem using ψ ′′
r

with r cube depending onmsg.

Then, analogously to the quadratic case, a digital signature scheme
with Pr inspired by DSA and ECDSA, is introduced in Section 6.5.

Finally, Section 6.6 focuses on the comparisons in terms of security,
data–size and performance among the proposals based on the Pell cu-
bic with the best options based on the Pell conic and with the classical
schemes.

6.1 rsa-like cryptosystem with the pell cubic

Thanks to the explicit group isomorphisms for Cr obtained in Sec-
tion 3.2, it is possible to formulate new RSA–like cryptosystems.

For RSA there is no need for a cyclic group, since its correctness
is assured by the generalized Euler theorem and Theorem 4.3 is the
version for the Pell cubic. However, a RSA–like cryptosystem requires
an explicit group isomorphism that works as parametrization for the
cubic, with an explicit inverse. In the following, since RSA uses ZN

with N = pq and p,q primes, the finite fields are Zp and Zq.
As observed in Section 3.2, despite having the theoretical proofs for

all the cases generated by the choice of p (or q) and the parameter r,
the only cases for which the group isomorphism between Pr and Cr

as well as its inverse are explicitly known are when p ̸≡ 0 (mod 3)
and r ∈ Zp is a cube. In particular, there are only two possible
choices of parameters that satisfy this property: the one described
in Section 3.2.2 where r is a cube with 3 roots and the group iso-
morphism is ψ ′′

r
, and the case studied in Section 3.2.3 in which any

r ∈ Zp is a cube with 1 root and the group isomorphism is ψ ′′′
r

.
The first case can occur only when p ≡ 1 (mod 3) and r ∈ Zp is a

cube. In particular, if also q ≡ 1 (mod 3) and r ∈ Zq is a cube, then
r is a cube with 9 roots in ZN with N = pq, because of the Chinese
remainder theorem. The RSA–like cryptosystem resulting from this
case is described in Figure 19.

6.1 rsa-like cryptosystem with the pell cubic 71

In the key generation algorithm (Gen), after steps 1-2 which take
the primes p,q so that in step 3 the modulus N = pq is n bits long,
the cardinality of Cr (and Pr) is evaluated as φ̃(N) = (p− 1)2(q− 1)2,
obtained from Theorem 4.3. Then the algorithm continues as in the
classical RSA.

Choosing 2n as maximum message length results in an easy en-
coding of the plaintext in a canonical representative of Pr, but also
in having no advantages with respect to the quadratic version intro-
duced in Figure 14, as for RSA with Pr from Figure 10.

Thus, it is best for the encryption algorithm (Enc) to take a message
of 3n bits and encode it into a point of Z3

N in step 1. The idea is to
obtain in step 2 the parameter r of the related Pell cubic from the
cubic Pell equation

z3r
2 + (y3 − 3xyz)r + (x3 − 1) = 0, (6.1)

but evaluate the square root modulus N of the determinant is not effi-
cient because the sender does not know the factors of N. In addition,
in order to evaluate the inverse of ψ ′′

r
, the cubic root s of r in ZN

is required and this is another inefficient calculation if the factors of
N are unknown. In the remaining part of the algorithm, the related
canonical representative in Pr is obtained in step 3 and the ciphertext
contains its e–th power and the parameter r.

The decryption algorithm (Dec) works backwards and has no ineffi-
cient parts since, after obtaining the d–th power of the ciphertext, the
receiver can easily evaluate the cubic root of r and use ψ ′′

r
to retrieve

the point and hence the message.
In conclusion, it could be interesting to compare the obtained RSA–

like cryptosystem with the classical RSA, or the RSA with Pr, or the
RSA–like cryptosystem with the Pell conic described in Figure 14.
However, the problem in the encryption seems to be unsolvable.

The second case in which the group isomorphism and its inverse
are explicitly known consists in having p,q ≡ 2 (mod 3), so that each
r ∈ ZN is a cube with one root. The RSA–like cryptosystem obtained
with this choice of parameters is described in Figure 20.

As before, in the key generation algorithm (Gen), after obtaining
N = pq of n bits in steps 1-3, the results in Section 3.2.3 assure that
the cardinality of Cr (and Pr) is φ̃(N) = (p2 − 1)(q2 − 1) as evaluated
in step 4. Then, the algorithm continues as in the classical RSA by
taking the public exponent and its secret inverse modulo φ̃(N).

The encryption algorithm (Enc) takes a message of 3n bits and en-
codes it into a point of Z3

N in step 1. Step 2 focuses on obtaining
the parameter r of the related Pell cubic from Equation 6.1. However,
evaluating the square root modulo N of the determinant is still inef-
ficient. Differently from Figure 19, the inverse of ψ ′′′

r
in step 3 does

not require to know the cubic root of r. In the end, the ciphertext
contains the e–th power of the canonical representative in Pr related
to the point and the parameter r.

72 cryptosystems with the pell cubic

Gen(n): Enc(msg,pk):

1. p,q←$ {0, 1}n/2 primes require : msg < N3

2. p,q ≡ 2 (mod 3) 1. (x,y, z)←[msg

3. N = pq 2. r←[(x,y, z) ∈ Cr (cube)

4. φ̃(N) = (p2 − 1)(q2 − 1) 3. (l,m) = (ψ ′′′
r
)−1(x,y, z) ∈ Pr

5. e←$ Z×
φ̃(N)

4. c = (l,m)⊙re ∈ Pr

6. d = e−1 (mod φ̃(N)) 5. return c, r

7. sk = (p,q,d) Dec(c, r,pk, sk):

8. pk = (N, e) 1. (l,m) = c⊙rd ∈ Pr

9. return pk, sk 2. msg← [ψ ′′′
r
(l,m)

3. return msg

Figure 20: RSA–like cryptosystem using ψ ′′′
r

with r cube depending on msg.

Again, the decryption algorithm (Dec) has no problematic parts
since, after obtaining the d–th power of the ciphertext, the receiver
can easily use ψ ′′

r
to retrieve the point and hence the original mes-

sage from its coordinates.
In conclusion, the obtained cryptosystem could be interesting when

compared with the other RSA or RSA–like cryptosystems with Pell
conic or cubic but, as for the previous formulation, the problem in
the encryption seems to be unsolvable.

6.2 elgamal with the pell cubic

This section addresses the formulation of the ElGamal cryptosystem
with the group

(
Cr,⊙r

)
. As observed at the beginning of the chapter,

there are two possible cases that result in two different cryptosystems,
both with pros and cons.

In Figure 21, the ElGamal formulation with q ≡ 1 (mod 3) and
parameter r ∈ Fq non–cube is described.

The algorithm for the key generation (Gen) takes as input the bit–
length n of the cardinality q of the finite field. In step 1, it is required
that the remainder of q divided by 3 is 1 and, in addition, step 2

supposes that the obtained order q2 + q + 1 of the cyclic group Cr,
which is clearly divisible by 3, has only another prime factor p. With
this constraint, there is only one small subgroup of order 3, so that
it is easily avoidable. Then, in step 3, the parameter r ∈ Fq is taken,
while checking if it is not a cube by using the extended Euler crite-
rion introduced in Equation 3.6. Since one third of the elements in F×

q

are non–cubes, the search ends rapidly. In general, it useful to take r

small, so that the computational costs of ⊙r are reduced. In step 4, a
generator G of Cr is taken randomly. Since the points of the cubic are
not easy to find, it is useful to take randomly l,m ∈ Fq and exploit
the parametrization ψ ′

r
([l : m : 1]) = G ∈ Cr. It is easy to check when

G is a generator since 3 and p are the only divisors of the order of Cd.

6.2 elgamal with the pell cubic 73

Gen(n): Enc(msg,pk):

1. q←$ {0, 1}n, q ≡ 1 (mod 3) require : msg < q2

2. p = (q2 + q+ 1)/3 prime 1. y, z←[msg

3. r←$ Fq non–cube 2. x←[y, z, r

4. G←$ Cr of order q2 + q+ 1 3. r←$ {2, . . . ,q2 + q}

5. sk←$ {2, . . . ,q2 + q} 4. C1 = G⊙rr ∈ Cr

6. H = G⊙rsk ∈ Cr 5. C2 = H⊙rr ⊙r (x,y, z) ∈ Cr

7. pk = (q, r,G,H) 6. return C1,C2

8. return pk, sk Dec(C1,C2,pk, sk):

1. (x,y, z) = (C⊙rsk
1)−1 ⊙r C2 ∈ Cr

2. msg←[y, z

3. return msg

Figure 21: ElGamal with
(
Cr,⊙r

)
of order q2 + q+ 1.

In particular, since there are φ(q2 + q+ 1) = φ(3p) = 2(p− 1) gener-
ators, excluding the trivial subgroup of order 3, there is 2/3 of prob-
ability to take one of them at the first attempt. Then the algorithm
proceeds as the classical ElGamal key generation: the secret key sk
is a random exponent taken in step 5, while a public point H ∈ Cr

is obtained in step 6 through the square–multiply algorithm with ⊙r

(introduced in Figure 4). In conclusion, the public key contains the
cardinality q, the parameter r ∈ Fq and the points G,H ∈ Cr.

The encryption algorithm (Enc) takes a message that needs to be
encoded into a point on the cubic. However, ψ ′

r
is not exploitable be-

cause its inverse should be used in the decryption but it is not known
explicitly. Thus, msg is taken smaller than q2 and determines in step
1 the y and z coordinates of a point of F2

q. The corresponding x such
that (x,y, z) ∈ Cr is then obtained in step 2. Since the computation of
the roots of x3 − (3ryz)x+ (ry3 + r

2z3 − 1) = 0 is not efficient, this
step needs a difficult search. In the following steps, the ciphertext
consisting of two points C1,C2 ∈ Cr is obtained: after taking a ran-
dom exponent r < q2 + q+ 1 in step 3, it is used in step 4 to obtain
C1 through the square–multiply exponentiation with ⊙r and base the
public generator G, while the second point C2 is determined in step
5 as the cubic Brahmagupta product of H⊙rr with the point (x,y, z)
representing the message.

In the decryption algorithm (Dec), (x,y, z) is retrieved as the cubic
Brahmagupta product of the inverse of C⊙rsk

1 with C2 in step 1. From
the obtained y and z coordinates, the original message is recovered
in step 2.

From the point of view of security, since as observed in Theorem 3.1
the Pell cubic with r non–cube is isomorphic to the multiplicative
subgroup G ⊂ F×

q3 of order q2 + q+ 1, the DLP in Cr can be reduced
to the DLP in G. Thus, the obtained cryptosystem is an alternative
formalization for that with G.

74 cryptosystems with the pell cubic

Gen(n): Enc(msg,pk):

1. q←$ {0, 1}n, q ≡ 2 (mod 3) require : msg < q2

2. r←$ Fq (cube) 1. l,m←[msg

3. G←$ Cr of order q2 − 1 2. (x,y, z) = ψ ′′′
r
(l,m)

4. sk←$ {2, . . . ,q2 − 2} 3. r←$ {2, . . . ,q2 − 2}

5. H = G⊙rsk ∈ Cr 4. C1 = G⊙rr ∈ Cr

6. pk = (q, r,G,H) 5. C2 = H⊙rr ⊙r (x,y, z) ∈ Cr

7. return pk, sk 6. return C1,C2

Dec(C1,C2,pk, sk):

1. (x,y, z) = (C⊙rsk
1)−1 ⊙r C2 ∈ Cr

2. msg←[(ψ ′′′
r
)−1(x,y, z)

3. return msg

Figure 22: ElGamal with
(
Cr,⊙r

)
of order q2 − 1.

The other case with q ≡ 2 (mod 3) and parameter r ∈ Fq cube is
described in Figure 22.

As in the previous cryptosystem, the algorithm for the key gen-
eration (Gen) takes as input the bit–length n of the cardinality q of
the finite field. Step 1 takes the required q, checking that it gives
remainder 2 when divided by 3. Differently from before, it is not
possible to have an order with only two prime factors. Indeed, the
cyclic group has q2 − 1 = (q − 1)(q + 1) elements, where 3 |q + 1

and 8 | (q− 1)(q+ 1). The best choice should be a prime q such that
q− 1 = 2p1 and p1 + 1 = 6p2 with p1,p2 primes, so that

q2 − 1 = (q− 1)(q+ 1) = 2p1(2p1 + 2) = 24p1p2,

but such a q is quite rare: among the primes up to 220, only 312
satisfy this property. Thus, for simplicity of formulation and imple-
mentation, no other constraints on the choice of q are added. In step
2, the parameter r ∈ Fq is taken among all the elements of Fq since
they are all cubes. In general, it useful to take r small, so that the
computational costs of ⊙r are reduced. In step 3, a generator G of
Cr is taken randomly. Again the parametrization ψ ′′′

r
is useful to find

easily a point on the cubic given two values l,m ∈ Fq. Differently
from the previous case, there is no assurance that the obtained point
is a generator without knowing a factorization of the order q2 − 1,
but at least checking that G⊙r(q

2−1)/3 and G⊙r(q
2−1)/2 are not the

identity point (1, 0, 0) allows to exclude small subgroups. Then the
algorithm proceeds as the classical ElGamal key generation, i.e., in
step 4 a random exponent is taken as secret key sk, while a public
point H ∈ Cr is obtained in step 5 as the exponentiation of G to sk
through the square–multiply algorithm with ⊙r. In conclusion, the
public key contains the cardinality q, the parameter r ∈ Fq and the
points G,H ∈ Cr.

6.3 elgamal with the projectivization 75

The encryption algorithm (Enc) takes a message msg < q2 and
encodes it into a point on the cubic. In order to do so, ψ ′′′

r
can be ex-

ploited since its inverse is explicitly known. Thus, a pair l,m ∈ Fq is
obtained frommsg in step 1 and (x,y, z) = ψ ′′′

r
([l : m : 1]) ∈ Cr is eval-

uated in step 2. As observed in Equation 3.5, there are q+ 1 invalid
pairs but the probability to obtain one of them is about 1/q, which is
quite low for large q. As in all ElGamal formulations, the ciphertext
consists of two elements of the group, i.e., C1,C2 ∈ Cr. They are ob-
tained from a random exponent r < q2 − 1 chosen in step 3, which
is then used in step 4 to obtain C1 through the square–multiply ex-
ponentiation with ⊙r and base the public generator G. The second
point C2 is determined in step 5 as the cubic Brahmagupta product
of H⊙rr with the point (x,y, z) representing the message.

In the decryption algorithm (Dec), (x,y, z) is retrieved as the cubic
Brahmagupta product of the inverse of C⊙rsk

1 with C2 in step 1. From
the obtained point (x,y, z), the original message is recovered from the
element in the projectivization returned by the inverse of the group
isomorphism ψ ′′′

r
.

From the point of view of security, the DLP over Cr with r cube
with one root over Fq can be reduced thanks to the explicit group
isomorphism in Theorem 3.5 and ψ ′′′

r
to the DLP in F×

q2 .
The assessments concerning data–size and computational costs for

both the cryptosystems introduced in this section are tackled in Sec-
tion 6.6 in comparison with the other proposals.

6.3 elgamal with the projectivization

This section addresses the ElGamal formulation obtained by exploit-
ing the cyclic group

(
Pr,⊙r

)
, i.e., the projectivization related to the

Pell cubic. As for the previous scenario, there are only two possible
formulations depending on the choice of q and r.

Figure 23 describes the cryptosystem resulting from the case with
q ≡ 1 (mod 3) and r ∈ Fq non–cube.

The algorithm for the key generation (Gen) is very similar to the one
in Figure 21. The input is an integer n representing the bit–length of
the cardinality q of the finite field. This value is obtained as before in
step 1 such that the remainder of its division by 3 is 1. Again, the or-
der q2 +q+ 1 is a multiple of 3, so that it is best if it has only another
prime factor p, as checked in step 2. As before, the parameter r ∈ Fq

is taken in step 3 among the non–cubes by exploiting the generalized
Euler criterion from Equation 3.6. The search ends rapidly because
one third of the elements in F×

q are non–cubes and, generally, it is
useful to take r small in order to decrease the computational costs of
the product ⊙r over Pr. In step 4, a random generator g ∈ Pr is taken
among the φ(q2 + q+ 1) = φ(3p) = 2(p− 1) generators of the cyclic
group. Thus, there is 2/3 of probability to find it at the first attempt.

76 cryptosystems with the pell cubic

Gen(n): Enc(msg,pk):

1. q←$ {0, 1}n, q ≡ 1 (mod 3) require : msg < q2 + q+ 1

2. p = (q2 + q+ 1)/3 prime 1. (l,m)←[msg

3. r←$ Fq non–cube 2. r←$ {2, . . . ,q2 + q}

4. g←$ Pr of order q2 + q+ 1 3. c1 = g⊙rr ∈ Pr

5. sk←$ {2, . . . ,q2 + q} 4. c2 = h⊙rr ⊙r (l,m) ∈ Pr

6. h = g⊙rsk ∈ Pr 5. return c1, c2
7. pk = (q, r,g,h) Dec(c1, c2,pk, sk):

8. return pk, sk 1. (l,m) = (c⊙rsk
1)−1 ⊙r c2 ∈ Pr

2. msg←[(l,m)

3. return msg

Figure 23: ElGamal with
(
Pr,⊙r

)
of order q2 + q+ 1.

Then, in step 5, a random exponent is taken as the secret key sk.
The public key, instead, consists of the cardinality q, the parameter
r ∈ Fq, the chosen generator g ∈ Pr and h that is the power of g
to sk with ⊙r (step 6), that can be implemented using the modified
More algorithm introduced in Figure 5.

The encryption algorithm (Enc) takes a message msg smaller than
q2 + q+ 1 which is used in step 1 to determine the coordinates l,m
of the canonical representative of an element in Pr. In step 2, an expo-
nent r < q2 +q+ 1 is chosen randomly and is then used to obtain the
ciphertext in steps 3-4. This consists of two canonical representatives
c1, c2 ∈ Pr given by the power of g to rwith ⊙r and the Brahmagupta
product of h⊙rr with (l,m), respectively.

During the decryption algorithm (Dec), the canonical representative
(l,m) related to the message is retrieved as the cubic Brahmagupta
product of the inverse of c⊙rsk

1 with c2 in step 1. Finally, in step 2, the
original message is recovered from (l,m).

All exponentiations can be obtained exploiting the modified More
algorithm introduced in Figure 5.

The security of this cryptosystem relies on the DLP in Pr, which
can be reduced to the DLP on F×

q3/F×
q because of the group isomor-

phism observed in Section 3.2.1. This is again isomorphic to the mul-
tiplicative subgroup G ⊂ F×

q3 of order q2 + q+ 1. In addition to the
easier way to encode the message, which allows to encrypt also longer
messages, the advantage with respect to the formulation in Figure 21

is that the elements require 2/3 of the size to be stored, as will be
pointed out in Section 6.6 where comparisons of data–size and per-
formance among the different formulations are addressed.

As observed in Section 3.2.3, Pr is cyclic also for q ≡ 2 (mod 3) and
r ∈ Fq cube, and Figure 24 describes the resulting cryptosystem.

The algorithm for the key generation (Gen) takes as input the bit–
length n of the cardinality q of the finite field, which is obtained in
step 1 while checking that it gives remainder 2 when divided by 3.

6.3 elgamal with the projectivization 77

Gen(n,k): Enc(msg,pk):

1. q←$ {0, 1}n, q ≡ 2 (mod 3) require : msg < q2 − 1

2. r←$ Fq (cube) 1. (l,m)←[msg

3. g←$ Pr of order q2 − 1 2. r←$ {2, . . . ,q2 − 2}

4. sk←$ {2, . . . ,q2 − 2} 3. c1 = g⊙rr ∈ Pr

5. h = g⊙rsk ∈ Pr 4. c2 = h⊙rr ⊙r (l,m) ∈ Pr

6. pk = (q, r,g,h) 5. return c1, c2
7. return pk, sk Dec(c1, c2,pk, sk):

1. (l,m) = (c⊙rsk
1)−1 ⊙r c2 ∈ Pr

2. msg←[(l,m)

3. return msg

Figure 24: ElGamal with
(
Pr,⊙r

)
of order q2 − 1.

As observed for the case with the cubic, the cyclic group has order
q2 − 1 = (q− 1)(q+ 1), where 3 |q+ 1 and 8 | (q− 1)(q+ 1), but there
are other prime factors depending on the value of q and having the
best factorization means asking too many constraints. In step 2, the
parameter r ∈ Fq is taken among all the elements of Fq which are all
cubes. In general, it useful to take r small, so that the computational
costs of ⊙r are reduced. In step 3, a generator g of Pr is taken ran-
domly. As with the Pell cubic, without a factorization of q2 − 1 there
is no assurance that the obtained element is a generator, but check-
ing that g⊙r(q

2−1)/3 and g⊙r(q
2−1)/2 are not (α,α) allows to exclude

small subgroups. From there, the algorithm is an implementation of
the classical ElGamal key generation, since in step 4 a random expo-
nent is taken as secret key sk, while a public point H ∈ Pr is obtained
in step 5 as the exponentiation of G to sk. Here the modified More al-
gorithm for the cubic case can be exploited. In conclusion, the public
key contains the cardinality q, the parameter r ∈ Fq and g,h ∈ Pr.

The encryption algorithm (Enc) takes a message msg smaller than
q2 and encodes it into the canonical representative of an element in
Pr. The element (l,m) ∈ F2

q obtained in step 1 should not be one of
the q+ 1 invalid pairs described in Equation 3.5, but the probability
to obtain one of them is about 1/q, which is quite low for large q.
As always, the ciphertext in an ElGamal cryptosystem consists of two
elements of the cyclic group, i.e., c1, c2 ∈ Pr. They are obtained from
a random exponent r < q2 − 1 chosen in step 2, which is then used in
step 3 to obtain c1 through the cubic modified More algorithm for the
exponentiation with ⊙r with base the public generator g. The second
point c2 is determined in step 4 as the cubic Brahmagupta product of
h⊙rr with the element (l,m) representing the message.

During the decryption algorithm (Dec), the element (l,m) is re-
trieved as the cubic Brahmagupta product of the inverse of c⊙rsk

1 with
c2 in step 1. From the obtained pair, in step 2 the original message is
recovered.

78 cryptosystems with the pell cubic

Gen(n): Enc(msg,pk):

1. q←$ {0, 1}n, q ≡ 2 (mod 3) require : msg < q3

2. r←$ Fq small cube 1. (x,y, z)←[msg

3. g←$ Pr of order q2 − 1 2. r
′ ←[(x,y, z) ∈ Cr

′

4. sk←$ {2, . . . ,q2 − 2} 3. (l,m) = (ψ ′′′
r
′)−1(x,y, z) ∈ Pr

′

5. h = g⊙rsk ∈ Pr 4. r←$ {2, . . . ,q2 − 2}

6. pk = (q, r,g,h) 5. ρ = 3
√

r/r
′ ∈ Fq

7. return pk, sk 6. c1 = ρr,r′(g)⊙r
′r ∈ Pr

′

7. c2 = ρr,r′(h)⊙r
′r ⊙r

′ (l,m) ∈ Pr
′

8. return c1, c2, r
′

Dec(c1, c2, r
′,pk, sk):

1. (l,m) = (c
⊙

r
′sk

1)−1 ⊙r
′ c2 ∈ Pr

′

2. msg←[ψ ′′′
r
′ (l,m)

3. return msg

Figure 25: ElGamal with
(
Cr,⊙r

)
of order q2 − 1, ψ ′′′

r
and ρ

r,r ′ .

Again, the modified More algorithm introduced in Figure 5 is use-
ful to efficiently obtain the required exponentiations.

From the point of view of security, the DLP over Pr with r cube
with one root over Fq can be reduced to the DLP over F×

q2 because
of the group isomorphism obtained in Theorem 3.5. Thus, it can be
compared with the second cryptosystem introduced in the previous
section, which is very similar but requires more computations (be-
cause of the use of ψ ′′′

r
) and has higher data–size since canonical

representatives of Pr require only a pair of values instead of 3.

6.4 elgamal with two pell cubics

The last formulation of the ElGamal cryptosystem with the Pell cubic
wants to reproduce the alternative version described for the quadratic
case in Figure 17. The idea is to remove the constraint on the message
given by the fixed Pell cubic by exploiting both the group isomor-
phism with the projectivization and that with another cubic with dif-
ferent parameter r. The only case in which these two maps and their
inverses are explicitly described is when q ≡ 2 (mod 3) and r ∈ Fq is
a cube. The obtained cryptosystem is described in Figure 25.

The key generation algorithm (Gen) is practically the same of the
cryptosystem with the projectivization of order q2 − 1: it takes as
input the bit–length n of the cardinality q of the finite field. In step
1, the required q is chosen such that it is congruent to 2 modulo 3.
The cyclic group has order q2 − 1 with 3 |q+ 1 and 8 |q2 − 1 but, as
observed in the other analogous cases, it is difficult to have the best
factorization, i.e., 24p1p2, so that no other constraints are considered.
In step 3, a small cube r ∈ Fq is chosen randomly. This allows to
reduce the computational costs of ⊙r when obtaining the public key.

6.5 dsa with the pell cubic 79

Specifically when, after taking a generator g ∈ Pr in step 4 and a
secret exponent sk < q2 − 1 in step 5, h = g⊙rsk ∈ Pr is obtained in
step 6. In the end, the public key contains the cardinality q and the
elements g,h, while the secret key is simply the used exponent sk.

The encryption algorithm (Enc) is very different from that of the
classical ElGamal. With respect to the previous algorithms with cyclic
groups of the same order, the maximum length of the message can be
increased because in step 1 msg is encoded into the coordinates of a
point (x,y, z) ∈ F3

q. From this point, step 2 searches for a cube r
′ ∈ Fq

such that (x,y, z) ∈ Cr
′ . This can be obtained by solving the quadratic

equation obtained from the constraint given by the unitary norm. If
necessary, some of the bits of x can be kept variable so that such a
r
′ can be found. Then, in step 3, the canonical representative (l,m)

related to the point is obtained through the inverse of parametrization
ψ ′′′

r
′ . In step 4 a random exponent r < q2 − 1 is chosen. Now, since

the public key contains parameters of points on Cr, the isomorphism
ρr,r ′ is required. Thus, step 5 evaluates the coefficient ρ such that
r = ρ3r

′, which is easy to find using the inverse of 3 ∈ Z×
q that exists

since gcd(3,q− 1) = 1. The found value is used in step 6 to obtain
the base ρr,r ′(g) ∈ Pr

′ that raised to r gives c1 and in step 7 for the
base ρr,r ′(h) ∈ Pr

′ that raised to r and multiplied by (l,m) gives c2.
The ciphertext contains c1, c2 ∈ Pr

′ and the parameter r
′ used in the

calculations.
In the decryption algorithm (Dec), after evaluating in step 1 (l,m)

as the product between the inverse of c⊙r
′sk

1 and c2, the message is
retrieved in step 2 using the point of Cr

′ obtained ψ ′′′
r
′ .

As for the previous ElGamal formulations a key-recovery attack
should solve the DLP on Pr, while the security against message recov-
ery is based on the DLP on Pr

′ . However, they can both be reduced
to the DLP over F×

q2 .
The advantages in adopting this version are the data–size reduced

to 2/3 with respect to the cryptosystems on the Pell cubic as well as
the increased length of the message without doubling the computa-
tional costs.

6.5 dsa with the pell cubic

As for the classical ElGamal and with the Pell conic, when the Pell
cubic or the related projectivization are cyclic groups they can be
exploited to formulate alternative DSA. In particular, between the two
possible cases in which the groups are cyclic, the non–trivial choice
of parameters, i.e., q ≡ 1 (mod 3) and r ∈ Fq non–cube is preferable.
Since signature schemes require smaller data–size and working with(
Cr,⊙r

)
requires larger data and comparable times with respect to(

Pr,⊙r

)
, only the formulation with the projectivization is introduced.

The obtained DSA is described in Figure 26.

80 cryptosystems with the pell cubic

Gen(l): Sig(msg,pk, sk):

1. q←$ {0, 1}l, q ≡ 1 (mod 3) 1. r←$ {2, . . . ,p− 1}

2. p = (q2 + q+ 1)/3 prime 2. (l,m) = g⊙rr ∈ Pr

3. r←$ Fq non–cube 3. s1 = l (modp)

4. g←$ Pr of order p 4. s2 = r−1(H(msg) + sk · s1) (modp)

5. sk←$ {2, . . . ,p− 1} 5. return s1, s2
6. y = g⊙rsk ∈ Pr Ver(msg, s1, s2,pk):

7. pk = (q, r,g,y) 1. u1 = H(msg) · s−1
2 (modp)

8. return pk, sk 2. u2 = s1 · s−1
2 (modp)

3. (l,m) = g⊙ru1 ⊙r y
⊙ru2 ∈ Pr

4. return s1 = l (modp)?

Figure 26: DSA with
(
Pr,⊙r

)
of order q2 + q+ 1 = 3p.

The key generation algorithm (Gen) takes as input the size l (adopt-
ing the same notation of the other DSA) of the cardinality q of the
finite field. In step 1, q is taken such that q ≡ 1 (mod 3). Differently
from the formulation in FFC or with the Pell conic where it is easy
to obtain the order p of the adopted subgroup with fixed length of n
bits, this is very difficult in this case. The most efficient option is tak-
ing p = (q2 + q+ 1)/3, as in step 2, but the resulting p is 2l bits long
and, as will be observed in the following section, this choice gives
large signatures and increases the computational costs. After choos-
ing in step 3 a non–cube parameter r ∈ Fq, the following steps the
algorithm works as in the classical DSA: a generator g of order p is
taken in step 4, as well as a secret exponent sk < p in step 5, and
they give the actual public key h = g⊙rsk. The values p,q, r and the
generator g ∈ Pr are parameters of the system that can be shared
among different users.

The signature algorithm (Sig) is analogous to the one for ECDSA:
a random exponent r is taken in step 1 and then used to obtain a
element (l,m) ∈ Pr from the public generator g. The first part of the
signature s1 is the coordinate l (modp) (despite the reduction is not
required since p > q), while the second part is obtained exactly as in
DSA and ECDSA.

For the verification through Ver of a signature on the message msg,
the algorithm obtains u1,u2 ∈ Zp as in the classical schemes. Then
they are used to check the validity of (s1, s2) by verifying that

(l,m) = g⊙ru1 ⊙r y
⊙ru2

= g⊙rH(msg)·s−1
2 (modp) ⊙r (g

⊙rsk)⊙rs1·s−1
2 (modp)

= g⊙rs
−1
2 (H(msg)+sk·s1) (modp)

= g⊙rs
−1
2 ·r·s2 (modp) ≡ (s1,m) (modp) .

6.6 security, data–size and performance 81

Cryptosystem pk sk msg c

RSA 1024 1024 1024 1024

RSA–like Cd 1024 3072 2048 2048

RSA–like Cr 1024 3072 3072 3072

Table 8: Data–size in bits of the classical RSA and the RSA–like cryptosys-
tems with Cd and Cr for 80 bits of security strength.

6.6 security, data–size and performance

As for the quadratic case, the proposed cryptosystems are studied in
terms of security, data–size and performance.

All the cryptosystems with security based on the IFP share the
same security requirements as the classical RSA. Thus, when compar-
ing the size of the data required in each cryptosystem the public key
can have the same size for fixed security level. This is described in Ta-
ble 8, which compares the new RSA–like cryptosystems based on the
Pell cubic, introduced in Figure 19 and Figure 20, with the classical
RSA and the RSA–like cryptosystem with Cd from Section 5.1. Poten-
tially, the versions that adopt the Pell cubic have tripled maximum
message length, so that should be compared with three runs of the
classical RSA. However, as observed in Section 6.1, it is impossible to
conduct a performance analysis since the two proposals based on the
Pell cubic miss an efficient implementation. This is because both the
encryption algorithms require to obtain the parameter r for the Pell
cubic that contains the point of F3

q in which the message is encoded,
and this requires to evaluate a square root modulo N with unknown
factorization. In alternative it is possible to reduce the maximum mes-
sage length to the size adopted for the quadratic case, but this results
obviously in higher computational costs with respect to the RSA–like
cryptosystem with Cd from Section 5.1.

On the other hand, a comparison of the DLP–based cryptosystems
with the cyclic groups related to the Pell cubic with the classical ver-
sions and with those with the Pell conic could be very interesting.

Firstly, it is important to notice that the size of the cardinality of
the underlying finite fields depends on the considered case:

• if q ≡ 1 (mod 3) and r ∈ Fq is a non–cube, then the cyclic
groups are isomorphic to the multiplicative subgroup G ⊂ F×

q3

of order q2 + q+ 1. Thus, the bit–length of q can be 1/3 of that
in FFC;

• if q ≡ 2 (mod 3) and r ∈ Fq is a cube, then the cyclic groups
are isomorphic to the F×

q2 of order q2 − 1 and the bit–length of
q is half of that in FFC. In this case, the field size is the same as
in the formulations based on the Pell conic.

82 cryptosystems with the pell cubic

Sec. FFC ECC Cr
∼= G Cr

∼= F×
q2

80 1024 160 341 512

112 2048 224 682 1024

128 3072 256 1024 1536

192 7680 384 2560 3840

256 15360 512 5120 7680

Table 9: Field size in bits for different DLP–based cryptosystems depending
on the cyclic group and the classical security strength in bits.

The resulting sizes of q for the classical cryptosystems and the new
formulations, depending on the standard security strengths, are col-
lected in Table 9. Despite the reduction with respect to the size of FFC,
ECC still maintains the smallest size. Given these security levels, it is
possible to compare the proposed cryptosystems with the classical
ones in terms of data–size and performance.

In the following analysis, some formulations with the cyclic groups
related to the Pell cubic are not considered, in particular:

• when the order is q2 + q+ 1, i.e., the cryptosystem with Cr in
Figure 21, in the encryption algorithm, requires to encode the
message into a point on the Pell cubic and an efficient encoding
is unknown;

• when the order is q2 − 1, i.e., for the cryptosystem with Cr in
Figure 22, the message can be encoded into a point by exploit-
ing the group isomorphism ψ ′′′

r
, but working directly on the

projectivization as in Figure 24 is more efficient;

• in the same context above, since Pr is isomorphic to F×
q2 , the

cryptosystem in Figure 24 has the same security of the ones with
the Pell conic, which however have clearly lower computational
costs.

Thus, the only ElGamal formulations considered in the analysis of
data–size and performance are the one in Figure 23 with the group(
Pr,⊙r

)
∼= G ⊂ F×

q3 of order q2 + q+ 1 and the alternative formula-
tion in Figure 25 that exploits the group isomorphisms ψ ′′′

r
and ρr,r ′ .

The first study concerns the size of the data involved in the dif-
ferent ElGamal formulations. In Table 10, the public key is divided
in the public parameters that can be used by different users, i.e., the
data required for the description of the cyclic group and one of its
generators, and the element h or the point H representing the actual
public key. The other columns contain, from left to right, the size of
the secret key, the maximum message length and the bit–length of the
ciphertext.

6.6 security, data–size and performance 83

Formulation par pk sk msg c1, c2

FFC
2n n n n 2n

2048 1024 1024 1024 2048

ECC
6n 2n n n 4n

960 320 160 160 640

ϕd, δd,d′
2n n n 2n 3n

1024 512 512 1024 1536

Pr

4n 2n 2n 2n 4n

1364 682 682 682 1364

ψ ′′′
r

, ρr,r′
3n 2n 2n 3n 5n

1536 1024 1024 1536 2560

Table 10: Data–size in bits for ElGamal with FFC, ECC, Pr and the alterna-
tive formulations with the Pell conic and cubic, depending on the
size n of q and for 80 bits of security strength.

For sake of completeness, in addition to the classical versions in
FFC and ECC, there are also the results related to the best cryptosys-
tem with the Pell conic, namely the alternative formulation from Fig-
ure 17. These formulations are compared with those based on the
Pell cubic from Figure 23 and Figure 25, in rows 4 and 5, respectively.
For each formulation, the table shows the data–size depending on the
size n of the cardinality q of the adopted finite field, as described in
Table 9, and the values for 80 bits of security strength.

The formulation with Pr in the fourth row has size of q taken from
the fourth column in Table 9. Despite this is one third of the size in
FFC, the ratio between the size of parameters or ciphertext and the
other data is still 2, so that the two formulations are comparable.

The results in the last row, corresponding to the alternative for-
mulation with the Pell cubic, are similar to those for the analogous
formulation in the quadratic case, collected in the third row. In par-
ticular, while for the former cryptosystem the parameters and the
message are shorter in relation to the length of the keys, i.e., the ratio
is 3/2 instead of 2, the quadratic formulation is better for the cipher-
text length with respect to the message size since the ratio is 3/2 that
is smaller than 5/3. Thus, the alternative formulation that exploits
the group isomorphisms ϕd and δd,d ′ from Figure 17 is still the best
option in terms of information encrypted, while ECC maintains the
smallest parameters and keys.

Finally, the new ElGamal formulations are compared in terms of
performance with the classical versions and the best for the quadratic
case. The study collects the elapsed times of a simple implementation
in Python of each of the algorithms run on the cluster of the DISMA
at Politecnico of Turin, on a single CPU with 46G of RAM allocated.

84 cryptosystems with the pell cubic

Sec. Alg. FFC× 3 ECC× k ϕd, δd,d′ × 3 Pr × 5 ψ ′′′
r

, ρr,r′ × 2

80 Gen 0.011079 0.028271 0.007524 0.014578 0.027371

Enc 0.066933 1.124020 0.084456 0.142804 0.208351

Dec 0.036549 0.555804 0.030609 0.073841 0.083358

112 Gen 0.074718 0.056586 0.038527 0.075820 0.150707

Enc 0.448200 3.344770 0.492367 0.757254 1.278954

Dec 0.232865 1.590024 0.171319 0.385625 0.491019

128 Gen 0.233983 0.075437 0.112873 0.231408 0.445202

Enc 1.403191 5.454558 1.489797 2.309788 3.933183

Dec 0.718288 2.711129 0.513570 1.169162 1.486196

192 Gen 3.188959 0.185410 1.372381 2.799048 5.399148

Enc 19.117265 22.362310 18.873775 27.945614 50.413716

Dec 9.654056 11.154742 6.311260 14.064906 18.491061

256 Gen 22.874051 0.365562 9.519104 18.526002 36.211894

Enc 137.300863 65.423245 127.975524 184.850919 337.483436

Dec 68.943929 32.530443 43.394834 92.752310 124.280203

Table 11: Average times in seconds for 10 random instances of ElGamal with
FFC, ECC, Pr and the alternative formulations with the Pell conic
and cubic, for fixed message length, depending on the security
strength.

For each case, Table 11 shows the average elapsed times of 10 ran-
domly generated instances, whose times are taken as the minimum
of 10 identical runs. In order to have a fair comparison, besides the
same security strength, the maximum message length is fixed. Since
the biggest size is the one for the alternative formulation in Figure 25

but it is not a multiple of the others, the encryption and decryption al-
gorithms in the last column are run twice, so that the other cryptosys-
tems can encrypt messages of similar size with different quantities of
multiple runs. In particular, following the analysis on the data–size,
this means repeating encryption and decryption 3 times for FFC, k
times for ECC, where k is the ratio between the message length for
the last column and ECC (e.g., for 80 bits of security, 3072/160 = 19.2
so that k = 20), 3 times for the alternative formulation in the quadratic
case and 2 times when using directly Pr. When working with a finite
field Fq, the case with q prime is considered, and the bit–length n
of q depends on the standard security strengths, assuming the values
obtained in Table 9.

Since the parameters for the description of the cyclic group and one
of its generators can be precomputed and shared among different
users, the times for the key generation algorithm do not take into
account these steps. In particular, this means excluding steps 1-4 in
Figure 23 and steps 1-3 in Figure 25.

6.6 security, data–size and performance 85

The times required for the single exponentiation in the key gener-
ation scale very well for ECC, starting as the worst and then passing
to second and first place in the following levels of security. The other
formulations maintain generally the same order: the case based on
the Pell conic in the third column is the fastest, followed by the clas-
sical FFC and the new formulation with Pr that are comparable, and
finally by the alternative version in the last column.

In addition to the considerations about the encryption and decryp-
tion algorithms from Section 5.6, the formulations based on the Pell
cubic are among the slowest. In both algorithms, for the first three
levels of security, ElGamal with Pr is third while the alternative for-
mulation in the last column is fourth. In the two higher levels, they
maintain the same order but are at the fourth and fifth place, respec-
tively, because ECC is less slowed down by the required repetitions.

In conclusion, the formulations based on the Pell cubic are not com-
parable with the other ElGamal cryptosystems. However, they remain
interesting mainly from the theoretical point of view, especially be-
cause finding the missing explicit inverse of the group isomorphisms
could result in useful enhancements.

In the last part of this section, the new formulation of DSA with the
projectivization related to the Pell cubic with parameter r non–cube
introduced in Figure 26 is compared with the classical DSA with FFC
and ECDSA, and also with the formulation with Pd from Figure 18.

From the point of view of security, since the adopted cyclic group is
the same used in the ElGamal formulation, the results are still those
obtained in the fourth column of Table 9. In particular, the size of the
cardinality q of the finite field is one third of the size l of q for FFC,
but ECC still works with smaller fields. In addition, the fifth column
can be related also to the size of the finite field exploited with the Pell
conic. These results allow to obtain balanced comparisons among the
different DSA formulations.

Firstly, looking at the size of the involved data, Table 12 extends
Table 6 with the results for the formulation with Pr. In particular,
the table shows the size in bits of the involved data depending on the
pairs (l,n) representing the size of q and p, respectively, taken among
the standard values (1024, 160), (2048, 224), (3072, 256), (7680, 384)
and (15360, 512), which correspond to the standard levels of security
strength.

In addition, each row contains the values for 80 bits of security
strength, which corresponds to l = 1024 and n = 160. As observed in
Section 6.5, when working with the Pell cubic it is difficult to obtain
an order p for the adopted subgroup with fixed length of n bits, and
the most efficient option is taking p = (q2+q+ 1)/3. With this choice,
p is 2l bits long so that, differently from the first and third row, the
values depend only on the size l of q.

86 cryptosystems with the pell cubic

Formulation par pk sk s1, s2

FFC
2l+n l n 2n

2208 1024 160 320

ECC
6n 2n n 2n

960 320 160 320

Pd

3l/2+n l/2 n 2n

1696 512 160 320

Pr

4l/3 2l/3 2l/3 l

1364 682 682 1024

Table 12: Data–size in bits for DSA with FFC, ECC, Pd and Pr, depending
on the sizes l,n of q,p and for 80 bits of security strength.

As can be easily observed in the last row of the table, in particular
from the values for 80 bits of security strength, the resulting sizes
for public parameters and key are better than in the first row and
comparable to those in the third row. However, the secret key and the
signature are larger than in all the other formulations because of the
larger p while, in general, ECDSA in the second row maintains the
smallest sizes. Thus, with a good method for finding p of the right
size, i.e., from the standard value for the security levels, it is possible
to obtain a digital signature scheme with competitive data–size.

Finally, Table 13 extends Table 7 for an analysis on the performance
of the DSA formulations. The shown values are the elapsed times of
simple Python implementations of the algorithms for the different
DSA formulations run on the cluster of the DISMA at Politecnico of
Turin, on a single CPU with 46G of RAM allocated. For each level of
security strength and formulation of DSA, Table 13 shows the average
times of 10 randomly generated instances, whose times are taken as
the minimum of 10 identical runs.

Also from this point of view, the formulation based on the Pell
cubic in the last column is not comparable with the classical DSA and
ECDSA or with the formulation with Pd: despite the results in the
first row are better than those for ECC, when increasing the security
level ElGamal with Pr scales very badly, requiring generally times of
one order of magnitude larger than the others.

This is again due to the choice of p since it is the order of the
used cyclic group. By taking p = (q2 + q + 1)/3, which is 2l bits
long, all exponentiations required in the key generation, signature
and verification algorithms are very slow because the exponent is in
Zp. Thus, not only data are larger than in the other formulation, but
also performance is highly affected and the results in Table 13 are
witnesses of this behaviour.

6.6 security, data–size and performance 87

Sec. Alg. FFC ECC Pd Pr

80 Gen 0.002201 0.028173 0.003310 0.014103

Sig 0.002349 0.028242 0.003514 0.014740

Ver 0.004529 0.055046 0.007245 0.029093

112 Gen 0.010515 0.056601 0.013278 0.075435

Sig 0.010660 0.056749 0.013333 0.076789

Ver 0.021193 0.112299 0.027623 0.153284

128 Gen 0.021097 0.075419 0.029619 0.231625

Sig 0.021220 0.075467 0.029847 0.233023

Ver 0.042351 0.150855 0.060985 0.467125

192 Gen 0.169084 0.185556 0.216012 2.789547

Sig 0.169643 0.186087 0.216910 2.800969

Ver 0.338843 0.371402 0.443050 5.608597

256 Gen 0.797075 0.364633 0.983670 18.462964

Sig 0.797973 0.366812 0.989801 18.589444

Ver 1.593990 0.730208 2.014678 37.244228

Table 13: Average times in seconds for 10 random instances of DSA with
FFC, ECC, Pd and Pr, depending on the security strength.

In conclusion, there is still hope for an improvement with respect to
the DSA formulation based the Pell conic but, with the current setting,
adopting the cyclic group

(
Pr,⊙r

)
is not a good alternative. Finding

an efficient method to obtain the order p of a cyclic subgroup of the
wanted size could resolve these issues and make the DSA formulation
based on the Pell cubic a competitive alternative.

Part III

I S T H E P E L L E Q U AT I O N R E L AT E D T O
P R I M A L I T Y T E S T S ?

When dealing with integers as in cryptography, it is im-
portant to know the primality of a given number. After
recalling classical primality tests in Chapter 7, new pow-
erful primality tests related to the Pell equation of degree
two are introduced in Chapter 8.

7
P R I M A L I T Y T E S T S I N L I T E R AT U R E

A primality test is an algorithm that allows to determine if an odd
integer has divisors different from 1 and itself.

The fact that there are infinitely many prime numbers was already
proven by Euclid in its Elements dated around 300 BC. The prob-
lem of separating prime numbers from composite ones has always
been interesting, and nowadays it is more important than ever since,
as observed in Chapter 4, the confidentiality of all communications
through insecure channels relies on large prime numbers. However,
despite there are theoretical results that give sufficient or equivalent
conditions for primality, they are not efficient.

The idea behind primality tests is to answer this question as rapidly
and reliably as possible, and in order to do so different necessary
conditions for primality have been exploited.

The resulting primality tests are classified depending on the relia-
bility of their results:

• heuristic primality tests seems to work well in practice but there
is no proof behind their reliability. A classical example is the
Fibonacci test, which is passed by an odd number n if

Fp+1 ≡ 0 (modp) ,

where (Fk)k is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .;

• deterministic primality tests give a sure result but have high
computational costs. The only unconditional deterministic algo-
rithm able to determine in polynomial time the primality of an
integer number is the AKS test [2]: an odd number n is declared
prime if for enough basis ai ∈ Z with gcd(n,ai) = 1,

(t+ ai)
n ≡ tn + ai (modn) ,

in the polynomial ring Zn[t]. This is an application of a poly-
nomial generalization of the Fermat little theorem. However, de-
spite the fastest version of this primality test [38] has complexity
Õ(log6 n), its practical applications are very slow;

• probabilistic primality tests have provable bounds on the proba-
bility of false positive results. One of the most classical and still
used in combination with other primality tests is the Fermat test,
which simply applies the Fermat little theorem: an odd integer
n is declared probable prime for a base a ∈ Z if gcd(n,a) = 1

and
an−1 ≡ 1 (modn) .

91

92 primality tests in literature

This chapter focuses on other largely used probabilistic primality
tests. Firstly, a stronger version of the Fermat test is introduced in
Section 7.1. This is adopted in two of the most used probabilistic pri-
mality tests: the Rabin–Miller test and the Baillie–PSW test, which
combines it with the strong Lucas test. Section 7.2 introduces the Lu-
cas sequences that are the basis for all the Lucas probable prime tests
described in Section 7.2, together with the mentioned Baillie–PSW
test. Finally, Section 7.5 introduces a primality test based on the Pell
conic, which then will be related to the Lucas tests.

7.1 strong fermat test

The Fermat test is very fast but not very reliable. In particular, there
exists a composite integer n that is declared prime for any base a ∈ Z

with gcd(n,a) = 1. These integers are called Carmichael numbers and
there are infinitely many of them [3].

Thus, the Fermat test should be strengthened and the principal way
to do so is considering the following result.

theorem 7.1 Given p odd prime, if p− 1 = 2rs with s odd, then for
every a ∈ Zp ∖ {0}

as ≡ 1 (modp) , or a2
ks ≡ −1 (modp) , for some 0 ⩽ k < r.

Proof. The square roots of unity in Zp are ±1, i.e., x2 ≡ 1 (modp) if
and only if x ≡ ±1 (modp). The Fermat little theorem assures that
a2

rs ≡ 1 (modp). The repeated square roots correspond to decreas-
ing k from r− 1 to 0 and at each step:

• if a2
ks ≡ −1 (modp), then the thesis is confirmed;

• if a2
ks ≡ 1 (modp), then the next k is considered.

If k = 0 is reached, then as ≡ 1 (modp).

definition 7.1 The strong Fermat test declares an odd integer n
probable prime to base a∈Z if gcd(n,a) = 1, n−1 = 2rs, s odd and

as ≡ 1 (modn) , or

a2
ks ≡ −1 (modn) , for some 0 ⩽ k < r.

A composite n that satisfies this condition is called strong pseudoprime
to base a (spsp(a)).

In [51], the author proved that a composite n is a spsp(a) to at
most one quarter of all bases a ∈ Z. This property is the fundamental
idea behind the Rabin–Miller test [43, 51], which tests the integer n by
applying the strong Fermat test for k different bases and declares n
probably prime with a probability at most 4−k. In [43], a deterministic
version of this test was introduced, but its correctness relies on the
unproven extended Riemann hypothesis.

7.2 lucas sequences 93

7.2 lucas sequences

Given two parameters p, q ∈ Z, the Lucas sequences [40] are particular
linear recurrent integer sequences (xk)k⩾0 that, given x0, x1, satisfy

xk = pxk−1 − qxk−2, for k > 1.

François Édouard Anatole Lucas (1842–91) defined two sequences us-
ing the roots α,β of the polynomial x2 − px+ q as

Uk =
αk −βk

α−β
, Vk = αk +βk, for k ⩾ 0.

The discriminant of the polynomial is d = p
2 − 4q, the roots are

α =
p +
√

d

2
, β =

p −
√

d

2
,

and p = α+β, q = αβ,
√

d = α−β, so that

αk =
Vk +Uk

√
d

2
, βk =

Vk −Uk

√
d

2
, for k ⩾ 0.

Thus, the first Lucas sequence (Uk)k⩾0 and the second Lucas se-
quence (Vk)k⩾0 can be described asU0 = 0, U1 = 1,

Uk = pUk−1 − qUk−2,

V0 = 2, V1 = p,

Vk = pVk−1 − qVk−2.
(7.1)

Other useful formulations can be

Uk =
pUk−1 + Vk−1

2
, Vk =

dUk−1 + pVk−1

2
, for k > 0.

or using matrix forms, for k ⩾ 0,(
Uk+1

Uk

)
=

(
p −q

1 0

)(
Uk

Uk−1

)
=

(
p −q

1 0

)k(
1

0

)
,

(
Vk+1

Vk

)
=

(
p −q

1 0

)(
Vk

Vk−1

)
=

(
p −q

1 0

)k(
p

2

)
,

(
Vk

Uk

)
=

(
p/2 d/2

1/2 p/2

)(
Vk−1

Uk−1

)
=

(
p/2 d/2

1/2 p/2

)k(
2

0

)
.

Given two pairs (Um,Vm), (Un,Vn) with m,n ⩾ 0, it is possible to
obtain the values in the position m+n as

Um+n =
UmVn + VmUn

2
, Vm+n =

VmVn + dUmUn

2
.

In particular, when m = n ⩾ 0, the resulting formulas are

U2n = UnVn, V2n =
V2
n + dU2

n

2
.

94 primality tests in literature

Example 7.1. Some Lucas sequences are known with specific names:

• (Uk)k⩾0 with p = 1, q = −1 is the sequence

U0 = 0, U1 = 1, Uk = Uk−1 +Uk−2,

of the Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ,

fully described at https://oeis.org/A000045;

• (Vk)k⩾0 with p = 1, q = −1 is the sequence

V0 = 2, V1 = 1, Vk = Vk−1 + Vk−2,

of the Lucas numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . ,

fully described at https://oeis.org/A000032;

• (Uk)k⩾0 with p = 2, q = −1 is the sequence

U0 = 0, U1 = 1, Uk = 2Uk−1 +Uk−2,

of the Pell numbers

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, . . . ,

fully described at https://oeis.org/A000129. They are named
after Pell since they are related to the solutions of the Pell equa-
tion x2 − 2y2 = ±1. The ratios x/y of its solutions are

1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
,
8119

5741
,
19601

13860
, . . . ,

which are (Uk +Uk−1)/Uk, for k > 0, and approximate
√
2;

• (Vk)k⩾0 with p = 2, q = −1 is the sequence

V0 = 2, V1 = 2, Vk = 2Vk−1 + Vk−2,

of the Pell–Lucas numbers

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, . . . ,

fully described at https://oeis.org/A002203;

• (Uk)k⩾0 with p = 3, q = 2 is the sequence

U0 = 0, U1 = 1, Uk = 3Uk−1 − 2Uk−2 = 2k − 1,

of the Mersenne numbers

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, . . . ,

fully described at https://oeis.org/A000225.

https://oeis.org/A000045
https://oeis.org/A000032
https://oeis.org/A000129
https://oeis.org/A002203
https://oeis.org/A000225

7.3 primality tests based on lucas sequences 95

7.3 primality tests based on lucas sequences

The properties of the Lucas sequences are deeply exploited to obtain
probabilistic primality tests. In the following, starting from the sim-
plest to the strongest, the main primality tests based on the Lucas
sequences are described.

7.3.1 Lucas test

The main result exploited for testing the primality of an integer using
Lucas sequences is the following generalization of the Fermat little
theorem.

theorem 7.2 Given p odd prime, fixed the parameters p, q ∈ Z, if
d = p

2− 4q has Legendre symbol j =
(

d

p

)
̸= 0 and gcd(p, q) = 1, then

Up−j ≡ 0 (modp) ,

Vp−j ≡ 2q(1−j)/2 (modp) .

Proof. Since gcd(p, d) = 1, j = ±1 so that:

• if j = 1, then
√

d ∈ Zp as well as α,β ∈ Zp and, for the Fermat
little theorem,

Up−1 =
αp−1 −βp−1

α−β
≡ 0 (modp) ,

Vp−1 = αp−1 +βp−1 ≡ 2 (modp) ;

• if j = −1, then
√

d ̸∈ Zp as well as α,β ̸∈ Zp and, for the
Frobenius morphism αp = β,βp = α, i.e.,

Up+1 =
αp+1 −βp+1

α−β
≡ 0 (modp) ,

Vp+1 = αp+1 +βp+1 = 2αβ ≡ 2q (modp) .

Thus, in both cases the thesis is verified.

definition 7.2 [4] The first congruence in Theorem 7.2 gives the
Lucas test, which declares an odd integer n probable prime for the
parameters p, q ∈ Z with d = p

2 − 4q if j =
(

d

n

)
̸= 0, gcd(n, q) = 1

and
Un−j ≡ 0 (modn) .

A composite n that passes this test is called Lucas pseudoprime with
parameters p, q (lpsp(p, q)).

In [4], the distribution of lpsp(p, q) is studied but the results have
been improved. In particular, the best upper bound for the number
lp(x) of lpsp(p, q) not exceeding a sufficiently large x is given in [30]

lp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

96 primality tests in literature

7.3.2 Strong Lucas test

Theorem 7.2 can be extended as for the Fermat little theorem with
Theorem 7.1, and the result allows to strengthen the Lucas test.

theorem 7.3 Given p odd prime and the Lucas sequences (Uk)k⩾0,
(Vk)k⩾0 with parameters p, q ∈ Z, if d = p

2 − 4q has Legendre sym-
bol j =

(
d

p

)
̸= 0, gcd(p, q) = 1 and p− j = 2rs with s odd, then

Us ≡ 0 (modp) ,

or

V2ks ≡ 0 (modp) , for some 0 ⩽ k < r.

Proof. Theorem 7.2 assures that U2rs ≡ 0 (modp) and this value can
be obtained through Equation 7.2 as

U2rs = U2r−1sV2r−1s,

so that

U2r−1s ≡ 0 (modp) ,

or

V2r−1s ≡ 0 (modp) .

In the latter case, the thesis is obtained. Otherwise Equation 7.2 can
be used again for halving the indices and the resulting conditions are
analogous to the previous ones. Eventually, if the index 20s is reached,
then only the condition Us ≡ 0 (modp) remains and the thesis is at
last confirmed.

definition 7.3 [4] Using Theorem 7.3, the strong Lucas test declares
an odd integer n probable prime for the parameters p, q ∈ Z with
d = p

2 − 4q if j =
(

d

n

)
̸= 0, gcd(n, q) = 1, n− j = 2rs with s odd and

Us ≡ 0 (modn) ,

or

V2ks ≡ 0 (modn) , for some 0 ⩽ k < r.

A composite n that passes this test is called a strong Lucas pseudoprime
with parameters p, q (slpsp(p, q)).

Clearly, any slpsp(p, q) is a lpsp(p, q), i.e., for all sufficiently large x,
the number slp(x) of slpsp(p, q) not exceeding x is

slp(x) < lp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

In [4] also a lower bound is obtained, but it has been improved in
[25], where the authors proved that, for all sufficiently large x, there
is a positive constant c such that

x(logx)c < slp(x) < lp(x).

7.3 primality tests based on lucas sequences 97

The strong Lucas test can be combined with the strong Fermat test
in order to obtain a powerful test. This was firstly introduced in [4],
together with another important consideration: when j =

(
d

n

)
= 1,

the strong Lucas test is equivalent to a strong Fermat test with base
a = q. Specifically, if d ≡ S2 (modn), then the parameters could
be taken as p = S + 2, q = S + 1, so that α = S + 1, β = 1 and
Un−1 = q

n−1−1
q−1 . Thus, in this case, the strong Lucas test and the

strong Fermat test are not independent and it is not worth combining
them.

A possible solution is to choose the parameters depending on the
integer n to be tested, instead of fixing them for every n. The authors
of [4] suggested two methods for choosing the parameters p, q ∈ Z

such that d = p
2 − 4q is not a square in Zn.

The most promising is the Selfridge method:

1. take d ∈ {5,−7, 9,−11, . . .} with
(

d

n

)
= −1 and |d| minimum;

2. fix p = 1 and evaluate q = 1−d

4 .

Example 7.2. If testing different odd integers with the Lucas test and
the strong Lucas test, the pseudoprimes with parameters p = 4, q = 1

up to 20000 are 38 in the first case:

65, 209, 629, 679, 901, 989, 1241, 1769, 1961, 1991, 2509, 2701,

2911, 3007, 3439, 3869, 5249, 5719, 5777, 6061, 6767, 6989,

9869, 11041, 12749, 13019, 13133, 13529, 13949, 14701, 14839,

15505, 15841, 16109, 18721, 18817, 19169, 19981;

while in the strong case they are 14:

209, 901, 989, 2701, 2911, 6061, 6767, 6989,

9869, 11041, 13133, 13529, 14839, 18817.

When adopting the Selfridge method with the Lucas test, the pseu-
doprimes up to 20000 are 19:

323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,

11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, 19043;

the full list can be found at https://oeis.org/A217120.
If the Selfridge method is used with the strong Lucas test, the pseu-

doprimes up to 20000 are just 5:

5459, 5777, 10877, 16109, 18971;

the full list can be found at https://oeis.org/A217255.
The combination of the strong Fermat test for base a = 2 and

the strong Lucas test with parameters selected through the Selfridge
method is called Baillie–PSW test [4, 50]. This is one of the mainly
used tests, also because there are no known composite numbers that
are declared probable primes [17]. Despite this, it is conjectured that
there are infinitely many of these Baillie–PSW pseudoprimes [49].

https://oeis.org/A217120
https://oeis.org/A217255

98 primality tests in literature

7.3.3 Extra strong Lucas test

A stronger primality test based on Lucas sequences can be obtained
from the following result.

theorem 7.4 [31] Given p odd prime and the Lucas sequences
(Uk)k⩾0, (Vk)k⩾0 with parameters p ∈ Z, q = 1, if d = p

2 − 4 has
Legendre symbol j =

(
d

p

)
̸= 0 and p− j = 2rs with s odd, then

Us ≡ 0 (modp) and Vs ≡ ±2 (modp) ,

or

V2ks ≡ 0 (modp) , for some 0 ⩽ k < r.

Proof. After Theorem 7.3, it is sufficient to prove that, if q = 1 and
Us ≡ 0 (modp), then Vs ≡ ±2 (modp). The first hypothesis implies
that αβ ≡ 1 (modp) and, since Us = αs−βs

α−β is null, αs ≡ βs (modp).
Thus, αs ≡ βs ≡ α−s (modp). This means that α2s ≡ 1 (modp), i.e.,
αs ≡ ±1 (modp), so that

Vs = αs +βs ≡ αs +α−s ≡ 2αs ≡ ±2 (modp) ,

and the thesis is confirmed.

definition 7.4 [31] Using Theorem 7.4, the extra strong Lucas test
declares an odd integer n probable prime for the parameter p ∈ Z

with d = p
2 − 4 if j =

(
d

n

)
̸= 0, n− j = 2rs with s odd and

Us ≡ 0 (modn) and Vs ≡ ±2 (modn) ,

or

V2ks ≡ 0 (modn) , for some 0 ⩽ k < r.

A composite n that passes this test is called a extra strong Lucas pseu-
doprime with parameter p (xlpsp(p)).

Clearly, any xlpsp(p) is a slpsp(p, q) with q = 1, so that, for large x,
the number xlp(x) of xlpsp(p) not exceeding x is

xlp(x) < slp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

Since in the Selfridge method p = 1 and q = 1−d

4 , it is not directly
suitable for the extra strong Lucas test. The main adaptation for test-
ing n takes the minimum integer p > 2 such that d = p

2− 4 has Jacobi
symbol j =

(
d

n

)
= −1.

Example 7.3. The fixed parameters adopted in Example 7.2 are suit-
able also for the extra strong Lucas test, and the pseudoprimes with
parameter p = 4 (and q = 1) up to 20000 are only 4:

989, 2701, 11041, 18817.

7.4 frobenius test 99

The list of pseudoprimes obtained with the adaptation of the Self-
ridge method is not comparable to that for the strong Lucas test. In
particular, in the latter cases, the pseudoprimes up to 50000 are 9:

5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309;

for the extra strong case, they are still 9 but different:

989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059;

this list is fully described at https://oeis.org/A217719.

7.4 frobenius test

In [31], a primality test based on polynomials and the Frobenius mor-
phism is introduced.

definition 7.5 The Frobenius probable prime test with respect to a
monic polynomial f(x) ∈ Z[x] of degree d with discriminant d de-
clares an odd integer n > 1 probable prime if gcd(n, f(0)d) = 1 and
it is not declared composite by the following steps:

1. factorization step: take f0(x) = f(x) (modn) and, for 1 ⩽ i ⩽ d,
Fi(x) = gcd(xn

i
− x, fi−1(x)) monic and fi(x) = fi−1(x)/Fi(x).

If any of the monic gcd fail to exist, or fd(x) ̸= 1, then declare n
composite;

2. Frobenius step: for 2 ⩽ i ⩽ d, compute Fi(xn) (mod Fi(x)), if it is
non–zero for some i, then declare n composite;

3. Jacobi step: given S =
∑

2|i deg(Fi(x))/i, if (−1)S ̸=
(

d

n

)
, then

declare n composite.

A composite n that passes this test is called Frobenius pseudoprime with
respect to f(x) (fpsp(f)).

If an odd integer n is a fpsp(f), then it is a Fermat pseudoprime to
base f(0). Thus, if the discriminant d of f(x) is non–zero and |f(0)| ̸= 1,
then for all sufficiently large x (depending only on |f(0)|) the number
of fpsp(f) up to x is at most

x exp
(
−

log x log log log x
2 log log x

)
.

This test is related to the primality test resulting from both the
conditions in Theorem 7.2, which declares an odd integer n probable
prime for the parameters p, q ∈ Z with d = p

2 − 4q if j =
(

d

n

)
̸= 0,

gcd(n, q) = 1 and

Un−j ≡ 0 (modn) ,

and

Vn−j ≡ 2q(1−j)/2 (modn) .

https://oeis.org/A217719

100 primality tests in literature

This is exactly a Frobenius probable prime test with respect to the
monic polynomial x2 − px + q of degree d = 2 with discriminant
d = p

2 − 4q, so that a composite n that passes this test can be called
Frobenius pseudoprime with respect to x2 − px+ q (fpsp(p, q)).

Clearly, any fpsp(p, q) is a lpsp(p, q), i.e., for all sufficiently large
x (depending only on q), the upper bound on the number fp(x) of
fpsp(p, q) not exceeding x can also be obtained as

fp(x) < lp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

Despite there are no references in the literature, it is possible to
adopt directly the Selfridge method with the Frobenius test with re-
spect to x2 − px + q in order to choose good parameters p, q ∈ Z

depending on the integer n to be tested.

Example 7.4. When adopting the parameters p = 4, q = 1 used in
Example 7.2, the Frobenius pseudoprimes up to 20000 are 22:

209, 901, 989, 2701, 2911, 3007, 3439, 5719, 6061, 6767, 6989, 9869,

11041, 13133, 13529, 14701, 14839, 15505, 15841, 18721, 18817, 19981;

they are less than the Lucas pseudoprimes (38), but more than the
strong and extra strong Lucas pseudoprimes (14 and 4, respectively).

However, using the Selfridge method with the Frobenius test con-
firms that it is not comparable with the strong and extra strong Lucas
test: there are only two Frobenius pseudoprimes up to 50000, specif-
ically 5777 and 10877. Interestingly, these pseudoprimes are the odd
n ≡ 2, 3 (mod 5) that are Frobenius pseudoprimes with parameters
p = 1, q = −1 (related to the Fibonacci polynomial x2 − x− 1). These
pseudoprimes are described at https://oeis.org/A212423 and the
list up to 1000000 is:

5777, 10877, 75077, 100127, 113573, 161027,

162133, 231703, 430127, 635627, 851927.

7.5 pell test

Lucas tests can be related to the Pell conic with parameter d (Cd)
through the Pell test [21]. The idea behind this test is to exploit that,
as observed in Section 2.2, if p is prime, then Cd over Zp defined
through the Pell equation as

Cd =
{
(x,y) ∈ Z2

p | x2 − dy2 ≡ 1 (modp)
}

,

with the Brahmagupta product with parameter d

(x1,y1)⊗d (x2,y2) = (x1x2 + dy1y2, x1y2 + y1x2) (modp) ,

is a cyclic group of order p− j where j =
(

d

p

)
̸= 0 is the Legendre

symbol of d over p, i.e., its quadratic character. In the tests, since n is
generally non–prime, j =

(
d

n

)
is the Jacobi symbol.

https://oeis.org/A212423

7.5 pell test 101

definition 7.6 [21] The Pell test declares an odd integer n probable
prime for the parameters d ∈ Z, (x, y) ∈ Cd if j =

(
d

n

)
̸= 0 and

yn−j ≡ 0 (modn) , where (xn−j,yn−j) = (x, y)⊗dn−j.

A composite n that passes this test is called Pell pseudoprime with pa-
rameters d, (x, y) (ppsp(d, x, y)).

Remark. The same denomination is adopted in the literature for a test
that uses the Pell numbers introduced in Section 7.2 as those in the
Lucas sequence (Uk)k⩾0 with p = 2, q = −1. This test declares an
odd integer n probable prime if

Un ≡
(
2

n

)
(modn) ,

and a Pell pseudoprime (https://oeis.org/A099011) is a composite
that passes the test.

The relation between the Pell test and the Lucas test is that, if an
odd integer n passes the Pell test with parameters d ∈ Z, (x, y) ∈ Cd,
then n passes the Lucas test with parameters p = 2x, q = 1.

On the other hand, if n passes the Lucas test with parameters p ∈ Z

and q = 1, then n passes the Pell test with parameters d = p
2 − 4

and (x, y) = (p/2, 1/2) [21]. However, if p ∈ Z is fixed for different
n, this relation gives Pell tests with different parameters (x, y) ∈ Cd

because of the inverse of 2 ∈ Zn that is (n+ 1)/2. It is still possible
to consider that, if p is even, then the Lucas test is related to the Pell
test with fixed parameters d = (p/2)2 − 1 and (x, y) = (p/2, 1).

Example 7.5. Fixed the parameters p = 4, q = 1, as observed in Exam-
ple 7.2, the first two Lucas pseudoprimes are 65 and 209. In the first
case, the related Pell test has

d = p
2 − 4 = 12, (x, y) = (p/2, 1/2) ≡ (2, 33) (mod 65) ,

while, in the second case, the parameters are d = 12, (x, y) = (2, 105),
which are different from the previous ones.

However, when considering

d = (p/2)2 − 1 = 3, (x, y) = (p/2, 1) = (2, 1),

the resulting Pell test is equivalent to the Lucas test for testing any n.

In general, it is not possible to fix the parameters d ∈ Z and
(x, y) ∈ Cd for testing different integers with the Pell test, because
x
2 − dy

2 ≡ 1 (modn) and this can not be true for any integer n. For
overcoming this issue, the use of a parametrization of Cd can be help-
ful. As introduced in Theorem 2.1, a possible parametrization is

ϕd(m) =


(
m2+d

m2−d
, 2m
m2−d

)
, if m ∈ Zn ∖ {±

√
d},

(1, 0), if m = α point at infinity.

https://oeis.org/A099011

102 primality tests in literature

In this way, different integers can be tested with fixed parameters
d,m ∈ Z by applying the Pell test with d and (x, y) =

(
m2+d

m2−d
, 2m
m2−d

)
.

With this formulation, if n passes the Lucas test with parameters
p ∈ Z, q = 1, then n passes the Pell test with parameters d = p

2 − 4

and m = p + 2, which can be fixed for different n. Clearly not every
couple d,m ∈ Z can be found with this relation.

Example 7.6. The Lucas test with parameters p = 4 and q = 1 in-
troduced in Example 7.2 is related to the Pell test with parameters
d = p

2 − 4 = 12 and m = p + 2 = 6, so that they generate the same
list of pseudoprimes.

Conversely, if n passes the Pell test with parameters d,m ∈ Z, then
n passes the Lucas test with parameters p = 2m

2+d

m2−d
, q = 1. How-

ever, the parameter p depends on n, so that it is not always possible
to obtain an equivalent Lucas test with fixed parameters for testing
different integers.

Example 7.7. Fixed the parameters d = m = 3 for a Pell test, the
related Lucas test has parameters p = 2m

2+d

m2−d
= 4, q = 1, so that the

Pell pseudoprimes are the same of Example 7.2.
It is important to notice that, despite the same Lucas test is ob-

tained, the values of d and m are different from those in the previous
example. This means that there are Pell tests with different parame-
ters that are equivalent to each others.

A different case is the Pell test with parameters d = 2, m = 3,
whose pseudoprimes up to 20000 are:

33, 55, 145, 319, 561, 579, 589, 779, 899, 989, 1079, 1595, 1649,

1685, 1711, 1807, 1829, 2123, 2507, 2915, 3013, 3201, 3281, 3707,

3827, 4687, 5339, 5447, 5633, 5671, 5885, 6369, 6441, 6901, 7061,

8711, 9179, 9379, 9773, 9869, 9899, 10403, 10585, 11001, 11521,

11537, 11659, 13201, 13299, 14023, 14065, 14111, 14257, 14279,

14795, 15189, 15707, 18241, 18299, 18535, 18721, 19561, 19951.

This test is related to a Lucas test with parameters p = 2m
2+d

m2−d
= 22

7

and q = 1, so that p can not be fixed and for all n ≡ 0 (mod 7) it does
not exist.

In conclusion, when the parameters d,m ∈ Z of a Pell test can be
related to the fixed parameters p ∈ Z, q = 1 of a Lucas test, the pseu-
doprimes have equivalent distributions, i.e., for all sufficiently large
x, the number pp(x) of Pell pseudoprimes with parameters d,m ∈ Z

not exceeding x is

pp(x) = lp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

8
P R I M A L I T Y T E S T S B A S E D O N S E Q U E N C E S

The Pell test is based on the points of the Pell conic that, with ⊗d, is
a cyclic group with identity (1, 0) and order n− j, where j =

(
d

n

)
̸= 0

is the Jacobi symbol. However, it considers only the y coordinate of
(x, y)⊗dn−j ∈ Cd. A possible improvement can be obtained by consid-
ering both the coordinates of the obtained point.

definition 8.1 [9] The strong Pell test declares an odd integer n
probable prime for the parameters d∈Z, (x, y)∈Cd if j=

(
d

n

)
̸=0 and

(xn−j,yn−j) = (x, y)⊗dn−j = (1, 0).

A composite n that passes this test is called strong Pell pseudoprime
with parameters d, (x, y) (sppsp(d, x, y)).

Clearly, any sppsp(d, x, y) is a ppsp(d, x, y), i.e., for all sufficiently
large x, the number spp(x) of sppsp(d, x, y) not exceeding x is

spp(x) < pp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

The check in the strong Pell test can be written in a matrix form as(
xn−j

yn−j

)
=

(
x dy

y x

)n−j(
1

0

)
≡

(
1

0

)
(modn) . (8.1)

A similar approach can be adopted for the Lucas test using the matrix
forms in Section 7.2, so that the check on the first Lucas sequence
(Uk)k⩾0 is the second row of(

Un−j+1

Un−j

)
=

(
p −q

1 0

)n−j(
1

0

)
≡

(
1

0

)
(modn) . (8.2)

In this chapter, the generalization of these matrix constructions is
exploited to obtain new primality tests inspired by those seen in Sec-
tion 7.3 and Section 7.5. In Section 8.1, the main result on linear recur-
rent sequences of order two using a matrix approach is introduced.
The Lucas test and the Pell test, as well as their connection, arise as
particular cases. Moreover, in this way, the strong Pell test is related
to a new stronger version of the Lucas test in Section 8.2. Section 8.3
and Section 8.4, describe two further generalizations of the Pell test
and the Lucas test, respectively. For both the tests, a deep study on
the choice of their parameters is conducted. In addition, a method for
choosing their parameters similar to the one proposed by Selfridge in
[4] is obtained in Section 8.5, which shows some empirical results on
these tests when their parameters are fixed and when the adaptations
of the Selfridge method for choosing the parameters are adopted.

103

104 primality tests based on sequences

8.1 linear recurrent sequences for primality tests

This matrix structure observed for the Pell and Lucas test can be gen-
eralized by considering that any matrix M ∈ Z2×2 generates the
linear recurrent sequences(

ṽk

ũk

)
=Mk

(
1

0

)
, for k ⩾ 0,

and the following result holds.

lemma 8.1 [9] Let d ∈ Z be the discriminant of the characteristic
polynomial of M ∈ Z2×2. If p is prime and det(M), d ̸≡ 0 (modp),
then

1. (ṽp−1, ũp−1) ≡ (1, 0) (modp), when
√

d ∈ Z×
p ;

2. (ṽp+1, ũp+1) ≡ (det(M), 0) (modp), when
√

d ̸∈ Z×
p .

Proof. Let α,β be the roots of the characteristic polynomial of M, so
that M is similar to the diagonal matrix(

α 0

0 β

)
,

and there are two possible scenarios:

1. if
√

d ∈ Z×
p , then α,β ∈ Z×

p and, for the Fermat little theorem,
αp−1 ≡ βp−1 ≡ 1 (modp). Thus, Mp−1 = Id and(

ṽp−1

ũp−1

)
=Mp−1

(
1

0

)
≡

(
1

0

)
(modp) ;

2. if
√

d ̸∈ Z×
p , then α,β ̸∈ Zp and, for the Frobenius morphism,

αp = β,βp = α, i.e.,(
ṽp+1

ũp+1

)
=Mp ·M

(
1

0

)
≡ det(M)

(
1

0

)
(modp) .

Thus, in both cases the thesis is verified.

This result allows to define new primality tests by declaring an odd
integer n probable prime given the sequences (ũk)k⩾0, (ṽk)k⩾0 gener-
ated through M ∈ Z2×2 with gcd(n, det(M)) = 1 and d discriminant
of the characteristic polynomial, if j =

(
d

n

)
̸= 0 and

(ṽn−j, ũn−j) ≡

(1, 0) (modn) , if j = 1,

(det(M), 0) (modn) , if j = −1.

8.2 strong pell test and double lucas test 105

8.2 strong pell test and double lucas test

Thanks to Equation 8.1, the strong Pell test introduced in Defini-
tion 8.1 can be seen as an example of this construction.

For the Lucas test, Equation 8.2 shows how it could be seen as part
of an enhanced test that, with the matrix notation used in Lemma 8.1,
has (ũk)k⩾0 = (ṽk−1)k⩾0 = (Uk)k⩾0.

definition 8.2 [9] The double Lucas test declares an odd integer
n probable prime for the parameters p, q ∈ Z with d = p

2 − 4q if
j =

(
d

n

)
̸= 0, gcd(n, q) = 1 and

(Un−j+1,Un−j) ≡

(1, 0) (modn) , if j = 1,

(q, 0) (modn) , if j = −1.

A composite n that passes this test is called double Lucas pseudoprime
with parameters p, q (dlpsp(p, q)).

Clearly each dlpsp(p, q) is a lpsp(p, q), i.e., for all sufficiently large
x, the number dlp(x) of dlpsp(p, q) not exceeding x is

dlp(x) < lp(x) < x exp
(
−

log x log log log x
2 log log x

)
.

proposition 8.1 An odd integer n passes the double Lucas test
with parameters p, q ∈ Z if and only if it passes the Frobenius proba-
ble prime test with respect to x2 − px+ q.

Proof. Both the tests require Un−j ≡ 0 (modn), while the second
check differs. From the properties of Lucas sequences described in
Section 7.2, Vk = 2Uk+1 − pUk for k ⩾ 0, so that:

• when j = 1, n passes the double Lucas test if

(Un,Un−1) ≡ (1, 0) (modn) ,

which is true if and only if Vn−1 ≡ 2 (modn);

• when j = −1, n passes the double Lucas test if

(Un+2,Un+1) ≡ (q, 0) (modn) ,

which is true if and only if Vn+1 ≡ 2q (modn).

Thus, the conditions in the double Lucas test are equivalent to

(Un−j,Vn−j) ≡
(
0, 2q(1−j)/2

)
(modn) ,

as required by the Frobenius test.

106 primality tests based on sequences

Thus, as for the Frobenius test, the double Lucas test is not compa-
rable with strong and extra strong Lucas tests.

In addition, dlp(x) = fp(x) for all sufficiently large x (depending
only on q), which also confirms the upper bound deduced previously
from lp(x).

As for all Lucas tests, it is possible to use the Selfridge method with
the double Lucas test in order to find good parameters depending on
n, and the resulting pseudoprimes are those listed in Example 7.4.

As observed for Lucas and Pell tests in Section 7.5, there is an equiv-
alence between double Lucas and strong Pell tests that can be easily
proved using the matrix approach introduced in Section 8.1.

proposition 8.2 [9] If n passes the double Lucas test with param-
eters p ∈ Z, q = 1, then n passes the strong Pell test with parameters
d = p

2 − 4 and (x, y) = (p/2, 1/2).
On the other hand, if n passes the strong Pell test with parameters

d ∈ Z, (x, y) ∈ Cd, then n passes the double Lucas test with parame-
ters p = 2x and q = 1.

Proof. Equation 8.1 and Equation 8.2 introduced the matrices

C =

(
x dy

y x

)
and L =

(
p −q

1 0

)
,

related to the strong Pell test and the double Lucas test, respectively.
Since det(C) = 1 and det(L) = q, they can be similar only if q = 1.

If n is passes the double Lucas test with parameters p ∈ Z, q = 1,
then the matrix

r1 =

(
1 p

0 2

)
,

gives the relation

r
−1
1 · L · r1 =

(
p/2 (p2 − 4)/2

1/2 p/2

)
=

(
x dy

y x

)
,

so that n passes the strong Pell test with parameters d = p
2 − 4 and

(x, y) = (p/2, 1/2).
On the other hand, if n passes the strong Pell test with parameters

d ∈ Z and (x, y) ∈ Cd, then

r2 =

(
1 −x

0 y

)
,

gives the relation

r
−1
2 ·C · r2 =

(
2x −x

2 + dy
2

1 0

)
=

(
p −1

1 0

)
,

so that n passes the double Lucas test with parameters p = 2x and
q = 1.

8.2 strong pell test and double lucas test 107

This relation presents the same problems of that between Lucas
and the Pell test described in Section 7.5: when fixing the parameters
p ∈ Z, q = 1 of a double Lucas test, the corresponding strong Pell
test has parameters d = p

2 − 4 and (x, y) = (p/2, 1/2), which change
with n because of the inverse of 2 ∈ Zn. It is still possible to consider
that, if p is even, then the double Lucas test is related to the strong
Pell test with fixed parameters d = (p/2)2 − 1 and (x, y) = (p/2, 1).

Example 8.1. The double Lucas pseudoprimes with parameters p = 4,
q = 1 up to 20000 are the Frobenius pseudoprimes from Example 7.4:

209, 901, 989, 2701, 2911, 3007, 3439, 5719, 6061, 6767, 6989, 9869,

11041, 13133, 13529, 14701, 14839, 15505, 15841, 18721, 18817, 19981.

While the strong Pell test on the first pseudoprime 209 has

d = p
2 − 4 = 12, (x, y) = (p/2, 1/2) ≡ (2, 105) (mod 209) ,

the parameters for the second pseudoprime 901 are

d = p
2 − 4 = 12, (x, y) = (p/2, 1/2) ≡ (2, 451) (mod 901) .

However, when considering

d = (p/2)2 − 1 = 3, (x, y) = (p/2, 1) = (2, 1),

the resulting strong Pell test is equivalent to the double Lucas test for
testing any n.

In general, it is not possible to fix d ∈ Z, (x, y) ∈ Cd for testing
different integers with the strong Pell test, because it is necessary
that x

2 − dy
2 ≡ 1 (modn) and this can not be true for any integer n.

The use of the parametrization for Cd introduced in Theorem 2.1
allows to obtain that if n passes the double Lucas test with parameters
p ∈ Z, q = 1, then n passes the strong Pell test with parameters
d = p

2 − 4 and m = p + 2, which can be fixed for different n, but not
every couple d,m ∈ Z can be found.

Example 8.2. The double Lucas test with p = 4, q = 1 is related to the
strong Pell test with parameters d = p

2 − 4 = 12, m = p + 2 = 6, so
that they generate the same list of pseudoprimes in Example 8.1.

On the other hand, if n passes the strong Pell test with parameters
d,m ∈ Z, then n passes the Lucas test with parameters p = 2m

2+d

m2−d
,

q = 1, where p depends on n, so that it is not always possible to
obtain an equivalent double Lucas test with fixed parameters.

Example 8.3. Fixed the parameters d = m = 3 for a strong Pell test, the
related double Lucas test has parameters p = 2m

2+d

m2−d
= 4, q = 1, so

that the strong Pell pseudoprimes are again the same of Example 8.1.
Since the values of d andm are different from those in the previous

example, there are strong Pell tests with different parameters that are
equivalent to each other.

108 primality tests based on sequences

The pseudoprimes up to 20000 given by the strong Pell test with
parameters d = 2, m = 3 are less than those in Example 7.5:

33, 145, 561, 589, 899, 1079, 1595, 1711, 1807, 1829, 2507, 2915,

3013, 3201, 3281, 3707, 5339, 5447, 5633, 6369, 6441, 7061, 8711,

9179, 9869, 10403, 10585, 11001, 11521, 11537, 13201, 13299,

14257, 14279, 14795, 15189, 18241, 18299, 18721, 19561, 19951.

The related double Lucas test has p = 2m
2+d

m2−d
= 22

7 and q = 1, so that
p can not be fixed and for all n ≡ 0 (mod 7) it does not exist.

As for all the Lucas tests, the Selfridge method can be directly used
with the double Lucas test in order to find good parameters p, q ∈ Z

depending on the integer n to be tested. This is the original idea
behind the usage of the method with the Frobenius test with respect
to x2 − px+ q, all the results have been described in Section 7.4.

Example 8.4. The double Lucas pseudoprimes obtained using the Sel-
fridge method are described at https://oeis.org/A212423 and the
list up to 1000000 is:

5777, 10877, 75077, 100127, 113573, 161027,

162133, 231703, 430127, 635627, 851927.

8.3 generalized pell primality test

In order to obtain a relation between strong Pell tests and double Lu-
cas tests with any q ∈ Z, it is possible to consider the generalized Pell
conic with parameter d and norm q (Cd,q) introduced in Section 2.3

Cd,q =
{
(x,y) ∈ Z2

n | x2 − dy2 ≡ q (modn)
}

.

Despite the product ⊗d is no more well defined over Cd,q, taking a
point (x, y) ∈ Cd,q defines the linear recurrent sequences(

xk

yk

)
=

(
x dy

y x

)k(
1

0

)
, for k ⩾ 0,

where the determinant of the matrix is x
2 − dy

2 ≡ q (modn).
Using Lemma 8.1 with these sequences gives the following test.

definition 8.3 [9] The generalized Pell test declares an odd integer n
probable prime for the parameters d ∈ Z, (x, y) ∈ Cd,q, if j =

(
d

n

)
̸= 0,

gcd(n, q) = 1 and

(xn−j,yn−j) ≡

(1, 0) (modn) , if j = 1,

(q, 0) (modn) , if j = −1.

A composite n that passes this test is called generalized Pell pseudoprime
with parameters d, (x, y) (gppsp(d, x, y)).

https://oeis.org/A212423

8.3 generalized pell primality test 109

Considering the matrices C and L related to a generalized Pell and
a double Lucas test, respectively and r1, r2 introduced in Proposi-
tion 8.2, it is possible to prove the following result.

proposition 8.3 If n passes the double Lucas test with parameters
p, q ∈ Z then n passes the generalized Pell test with d = p

2 − 4q and
(x, y) = (p/2, 1/2).

On the other hand, if n passes the generalized Pell test with pa-
rameters d ∈ Z, (x, y) ∈ Cd, then n passes the double Lucas test with
p = 2x and q = x

2 − dy
2.

This result relates a double Lucas test with fixed parameters to a
generalized Pell test with parameters that change with n because of
the inverse of 2 ∈ Zn, analogously to what observed for the Pell test
in Example 7.5 and for the strong Pell test in Example 8.1.

The important difference with respect to those cases is that the
generalized Pell test can have fixed parameters d ∈ Z, (x, y) ∈ Z2 for
testing different n, as long as x

2 − dy
2 = q ̸≡ 0 (modn), and this test

is related to a double Lucas test with fixed parameters.
In addition, it is noteworthy that a double Lucas test with fixed

parameters p even, q ∈ Z is always equivalent to a generalized Pell
test with fixed parameters d = (p/2)2 − q and (x, y) = (p/2, 1).

Example 8.5. A generalized Pell test with fixed parameters d = 3,
(x, y) = (2, 1) is equivalent to a double Lucas test with fixed parame-
ters p = 2x = 4, q = x

2 − dy
2 = 1, so that the resulting generalized

Pell pseudoprimes up to 20000 are those in Example 8.1. Conversely,
Proposition 8.3 relates a double Lucas test with parameters p = 4,
q = 1 with a generalized Pell test with parameters d = p

2 − 4q = 12,
(x, y) = (p/2, 1/2) = (2, 1/2), where y depends on n. It is still possible
to relate this double Lucas test with the initial generalized Pell test,
whose fixed parameters can be retrieved as d = (p/2)2 − q = 3 and
(x, y) = (p/2, 1) = (2, 1).

Changing the fixed parameters of the generalized Pell test to d = 3,
(x, y) = (4, 2) results in having a relation with the double Lucas test
with fixed parameters p = 2x = 8, q = x

2 − dy
2 = 4. Conversely,

Proposition 8.3 relates this double Lucas test with a generalized Pell
test with parameters d = p

2 − 4q = 48, (x, y) = (p/2, 1/2) = (4, 1/2),
which change depending on n, while the other obtained relation is
with the generalized Pell test with parameters d = (p/2)2 − q = 12

and (x, y) = (p/2, 1) = (4, 1). Since the values of d and (x, y) are
different from those in the initial test, there are generalized Pell tests
with different parameters that are equivalent to each others.

The pseudoprimes up to 20000 given by the generalized Pell test
with parameters d = 3, (x, y) = (4, 2) or d = 12, (x, y) = (4, 1) are:

2701, 13019, 15841, 18721.

They correspond to the double Lucas pseudoprimes for p = 8, q = 4.

110 primality tests based on sequences

In conclusion, an integer is a gppsp(d, x, y) if and only if it is a
dlpsp(p, q) with p even. Thus, for all sufficiently large x (depending
only on q = x

2−dy
2), the number gpp(x) of gppsp(d, x, y) not exceed-

ing x is

gpp(x) = dlp(x) < x exp
(
−

log x log log log x
2 log log x

)
,

or analogously with the upper bound for the number fp(x) of Frobe-
nius pseudoprimes with respect to x2 − px+ q.

In the following, some results on the parameters which determine
equivalent generalized Pell tests are shown.

proposition 8.4 The generalized Pell test is independent of the
sign of the parameters x, y ∈ Z.

Proof. As observed in Section 2.4, exponentiation with respect to ⊗d

can be obtained by exploiting the generalized Rédei polynomials in-
troduced in Definition 2.4 so that, considering the point (x, y) as a
binomial in Z[t]/(t2 − d), for any k ⩾ 0,

(xk,yk) = (x, y)⊗dk ∼= (x + ty)k = ak(d, x, y) + tbk(d, x, y),

where

xk = ak(d, x, y) =

⌊k/2⌋∑
i=0

(
k

2i

)
d
ixk−2iy2i,

yk = bk(d, x, y) =

⌊k/2⌋∑
i=0

(
k

2i+ 1

)
d
ixk−2i−1y2i+1.

The integers n to be tested are odd and j =
(

d

n

)
= ±1, so that n− j is

even and changing the sign of x or y results in obtainingan−j(d, x,−y) = an−j(d, x, y),

bn−j(d, x,−y) = −bn−j(d, x, y),

or analogously an−j(d,−x, y) = an−j(d, x, y),

bn−j(d,−x, y) = −bn−j(d, x, y).

Thus, in the generalized Pell test, the check on xn−j is the same in
both cases, while the check yn−j = an±1(d, x, y) ≡ 0 (modn) is satis-
fied if and only if −bn±1(d, x, y) ≡ 0 (modn).

In conclusion, an integer n that passes the generalized Pell test for
the parameters d and (x, y) still passes it if the sign of x or y (or both)
is changed, and vice versa.

8.4 generalized lucas primality test 111

proposition 8.5 The generalized Pell test is independent of the
choice of d, y ∈ Z ∖ {0} as long as dy

2 remains unchanged.

Proof. The previous formulation can be written for k ⩾ 0 as

xk = ak(d, x, y) =

⌊k/2⌋∑
i=0

(
k

2i

)
x
k−2i(dy

2)i,

yk = bk(d, x, y) =

⌊k/2⌋∑
i=0

(
k

2i+ 1

)
xk−2i−1(dy2)iy.

Thus, if the parameters d, y ∈ Z and d
′, y

′ ∈ Z of a generalized Pell
test have dy

2 = d
′
y
′2, then j =

(
d

n

)
=
(

d
′

n

)
, ak(d, x, y) = ak(d

′, x, y
′)

for any k and the check on xn−j is equivalent.
In the check on yn−j, bk(d, x, y) = ybk(dy

2, x, 1) with y ̸= 0, so that

bn−j(d, x, y) ≡ 0 (modn)⇔ bn−j(dy
2, x, 1) ≡ 0 (modn) .

Analogously, bk(d ′, x, y
′) = y

′ bk(d
′
y
′2, x, 1) with y

′ ̸= 0, so that

bn−j(d
′, x, y

′) ≡ 0 (modn)⇔ bn−j(d
′
y
′2, x, 1) ≡ 0 (modn) ,

and the thesis is confirmed because dy
2 = d

′
y
′2.

8.4 generalized lucas primality test

Lemma 8.1 allows also to generalize the double Lucas test by adding
a third parameter r ∈ Z. The resulting linear recurrent sequences are(

Ṽk

Ũk

)
=

(
p −q

r 0

)k(
1

0

)
, for k ⩾ 0, (8.3)

with discriminant of the matrix d = p
2 − 4qr and the following test

can be defined.

definition 8.4 [9] The generalized Lucas test declares an odd integer
n probable prime for the parameters p, q, r ∈ Z with d = p

2 − 4qr if
j =

(
d

n

)
̸= 0, gcd(n, qr) = 1 and

(Ṽn−j, Ũn−j) ≡

(1, 0) (modn) , if j = 1,

(qr, 0) (modn) , if j = −1.

A composite n that passes this test is called generalized Lucas pseudo-
prime with parameters p, q, r (glpsp(p, q, r)).

As for the generalized Pell test, some results on the equivalence
among generalized Lucas tests with different parameters are shown.
In particular, the following one holds also for all the other tests based
on Lucas sequences.

112 primality tests based on sequences

proposition 8.6 The generalized Lucas test is independent of the
sign of the parameter p ∈ Z.

Proof. The linear recurrent sequences defined in Equation 8.3 are a
generalization of the Lucas sequences (Uk)k⩾0 and (Vk)k⩾0 intro-
duced in Equation 7.1, and can be described asŨ0 = 0, Ũ1 = r,

Ũk = pŨk−1 − qrŨk−2,

Ṽ0 = 1, Ṽ1 = p,

Ṽk = pṼk−1 − qrṼk−2.
(8.4)

If the sign of p ∈ Z is changed, then the obtained sequences areŨ ′
0 = 0, Ũ ′

1 = r,

Ũ ′
k = −pŨ ′

k−1 − qrŨ ′
k−2,

Ṽ ′
0 = 1, Ṽ ′

1 = −p,

Ṽ ′
k = −pṼ ′

k−1 − qrṼ ′
k−2,

so that, for any k ⩾ 0, Ũ ′
k = (−1)k+1Ũk,

Ṽ ′
k = (−1)kṼk.

This can be verified by induction on the index k:

• if k = 0, then Ũ ′
0 = −Ũ0 = 0 and Ṽ ′

0 = Ṽ0 = 1;

• if k = 1, then Ũ ′
1 = Ũ1 = r and Ṽ ′

1 = −Ṽ1 = −p;

• if k > 1 is even, then assuming the thesis true for k− 1 and k− 2
results in havingŨ ′

k = −pŨ ′
k−1 − qrŨ ′

k−2 = −pŨk−1 + qrŨk−2 = −Ũk,

Ṽ ′
k = −pṼ ′

k−1 − qrṼ ′
k−2 = pṼk−1 − qrṼk−2 = Ṽk;

• if k > 1 is odd, then assuming the thesis true for k− 1 and k− 2
results in havingŨ ′

k = −pŨ ′
k−1 − qrŨ ′

k−2 = pŨk−1 − qrŨk−2 = Ũk,

Ṽ ′
k = −pṼ ′

k−1 − qrṼ ′
k−2 = −pṼk−1 + qrṼk−2 = −Ṽk.

In the generalized Lucas test, k = n± 1 with n odd, so that the
interesting case is k even. Thus, when changing the sign of p ∈ Z,
the check on Ṽk remains unchanged, while Ũn±1 ≡ 0 (modn) if and
only if −Ũn±1 ≡ 0 (modn).

This result is true for all tests based on Lucas sequences, so that
when studying these tests with fixed parameters for testing different
integers, it is sufficient to focus only on the instances with p ⩾ 0.

8.4 generalized lucas primality test 113

proposition 8.7 The generalized Lucas test is independent of the
choice of q, r ∈ Z, as long as the value of qr remains unchanged.

Proof. The generalized Lucas sequences with parameters p, q, r ∈ Z

can be compared with the classical Lucas sequences with parameters
p and q

′ = qr. In particular, by induction on the index k ⩾ 0, it is
possible to prove that Ũk = rUk and Ṽk = Vk:

• if k = 0, then Ũ0 = rU0 = 0 and Ṽ0 = V0 = 1;

• if k = 1, then Ũ1 = rU1 = r and Ṽ1 = V1 = p;

• if k > 1, then assuming the thesis true for k− 1 and k− 2 results
in having

Ũk = pŨk−1 − qrŨk−2 = prUk−1 − qr
2Uk−2

= r(pUk−1 − q
′Uk−2) = rUk,

as well as

Ṽk = pṼk−1 − qrṼk−2 = pVk−1 − qrVk−2

= pVk−1 − q
′Vk−2 = Vk.

Thus, the generalized tests with parameters p, q, r ∈ Z is equivalent
to the double Lucas test with parameters p, q

′ = qr.
Given two generalized Lucas tests with parameters p, q, r ∈ Z and

p, q
′, r

′ ∈ Z, respectively, if qr = q
′
r
′, then they are both equivalent

to the same double Lucas test and the thesis is verified.

The first consequence of this result is that each glpsp(p, q, r) is a
dlpsp(p, qr), and vice versa, so that for all sufficiently large x, the
number glp(x) of glpsp(p, q, r) not exceeding x is

glp(x) = dlp(x) < x exp
(
−

log x log log log x
2 log log x

)
,

or analogously with the upper bound for the number fp(x) of Frobe-
nius pseudoprimes with respect to x2 − px+ qr.

Despite this equivalence makes the generalized Lucas test less im-
portant, adapting the Selfridge method gives very interesting results.
As for the other tests based on Lucas sequences, the idea is to test
the integer n with parameters that have discriminant d such that(

d

n

)
= −1, so that the test is not equivalent to a strong Fermat test.

The resulting method for choosing the parameters involves to:

1. fix p, r > 0;

2. take d∈
{

p
2− 4rq |q∈Z∖{0}

}
with

(
d

n

)
= −1 and |d| minimum;

3. evaluate q = p
2−d

4r
.

In the following section an analysis on the resulting pseudoprimes
with different fixed parameters is conducted in order to find their
best values.

114 primality tests based on sequences

x 0 1 2 3

d \ y 1 2 3 1 2 3 1 2 3 1 2 3 µd

5 108 144 126 17 11 14 178 11 14 19 7 17 56

−7 102 104 137 11 3 21 3 7 10 9 5 6 35

−11 92 156 157 4 6 12 4 7 8 2 8 7 39

13 106 120 132 7 2 8 4 8 10 6 4 4 34

−15 81 118 156 8 15 10 5 24 10 7 9 15 38

17 108 187 109 12 8 5 6 12 5 8 5 6 39

µ(x,y) 100 138 136 10 8 12 33 12 10 9 6 9

Table 14: Number of gppsp(d, x, y) up to 220 for different values of the pa-
rameters d, (x, y) and their arithmetic means with fixed d or (x, y).

8.5 numerical experiments

Table 14 collects the number of pseudoprimes up to 220 = 1.048.576
for the generalized Pell test with different choices of the parameters:

• d is taken among the first six non–square values used in the Sel-
fridge method (the average number of d to be tried is less than
2 [4]), which are the interesting cases because of the relation
between generalized Pell test and double Lucas test;

• (x, y) has integer coordinates between 0 and 3, since negative
values behave as positive ones because of Proposition 8.4. Points
with coordinate y = 0 can be excluded because Proposition 8.5
assures that they are equivalent to cases with d = 0.

The collected data strongly depend on the values of the parameters.
However, their arithmetic means for fixed d or (x, y), shown in the
last column and row, respectively, allow to understand which values
can be considered more reliable, for example in an adaptation of the
Selfridge method introduced in Section 7.3.2.

In particular, if the parameters for the generalized Pell test are not
fixed for each integer n to be tested, but instead are taken as:

• d ∈ {5,−7, 9,−11, . . .} with j =
(

d

n

)
= −1 and |d| minimum;

• (x, y) = (3, 2), the case with lowest arithmetic mean in Table 14;

then an alternative version of the Selfridge method for selecting the
parameters is obtained and, as for the classical version, it works em-
pirically better than fixing the parameters independently of n.

In particular, when adopting this method for testing all the odd
integers smaller than 244 = 17.592.186.044.416, each number was cor-
rectly declared prime or composite, i.e., no generalized Pell pseudo-
primes were found.

8.5 numerical experiments 115

p 0 1 2 3

q \ r 1 2 3 1 2 3 1 2 3 1 2 3 µq

1 − 118 128 − 2 6 − 118 9 165 251 128 103

−1 − 118 128 60 223 4 121 18 250 74 4 5 91

2 118 251 140 2 20 4 118 223 4 251 13 7 96

−2 118 251 140 223 8 60 18 17 6 4 409 9 105

3 128 140 250 6 4 6 9 4 25 128 7 250 80

−3 128 140 250 4 60 11 250 6 9 5 9 9 73

µp,r 123 170 173 59 53 15 103 64 51 105 116 68

Table 15: Number of glpsp(p, q, r) up to 220 for different values of the pa-
rameters p, q, r and their arithmetic means with fixed q or p, r.

Analogously, Table 15 shows the number of pseudoprimes up to
220 for the generalized Lucas test with different parameters:

• 0 ⩽ p ⩽ 3, since negative values of p can be excluded thanks to
Proposition 8.6;

• q can be positive or negative and, in particular, is taken among
the first six values obtained by the Selfridge method;

• 1 ⩽ r ⩽ 3, since Proposition 8.7 assures that it is possible to
consider only positive values of r.

Since cases with same value of qr are equivalent, they return the same
number of pseudoprimes, but they are collected in order to study the
behavior of the test with fixed p, r for the adaptation of the Selfridge
method.

Some trivial cases are excluded because they generate sequences
for which Equation 8.3 is satisfied by many odd integers, namely:

• p = 0, q = r = 1, related to
(
0 −1
1 0

)
that has period 4;

• p = 0, q = −1, r = 1, related to
(
0 1
1 0

)
that has period 2;

• p = q = r = 1, related to
(
1 −1
1 0

)
that has period 6.

The case with p = 2, q = r = 1 is also excluded since its discriminant
d is zero. When r = 1 the test is simply the double Lucas tests, but
these cases are included for the sake of completeness, as well as the
cases with p = 0 in which Ũ2k = 0 ∀k ⩾ 0, i.e., in the test only the
check on Ṽn−j = (−qr)

n−j
2 is significant.

The collected quantities strongly depend on the chosen parameters.
Table 15 contains also the arithmetic means of the values for fixed q

in the last column and for fixed p, r in the last row, which allow to
understand what are the most reliable choices.

116 primality tests based on sequences

When adapting the Selfridge method to the generalized Lucas test,
the best choices for the fixed parameters and the consequent set of
possible values of d are, in order of best statistical results:

1. p = 1, r = 3 and d ∈ {−11, 13,−23, 25, . . .};

2. p = 2, r = 3 and d ∈ {−8, 16,−20, 28, . . .};

3. p = 1, r = 2 and d ∈ {−7, 9,−15, 17, . . .};

4. p = 1, r = 1 and d ∈ {5,−7, 9,−11, . . .} gives the double Lucas
test with the Selfridge method, the first pseudoprime is 5777.

In all these cases, d is taken such that
(

d

n

)
= −1 and |d| is minimum,

while q = p
2−d

4r
.

In particular, when testing the integers up to 244 with the param-
eters obtained through method 1, only primes were declared primes,
i.e., no generalized Lucas pseudoprime with parameters p = 1, r = 3

and q from Selfridge was found. Thus, as for the classical Selfridge
method, this adaptation seems to work empirically better than fixing
the same parameters for different n.

C O N C L U S I O N S

In this work, the Pell equation and different classical and new gen-
eralizations have been studied and applied to different branches of
cryptography.

The first part was a theoretical study with the target to obtain as
much information as possible, while introducing a versatile notations
and focusing on the requirements for the wanted applications.

Starting from the famous Diophantine equation that took the in-
terest of Archimedes, its properties in generic and finite fields, and
as a group structure have been collected all under the same notation.
In particular, the solutions of the Pell equation have been associated
to a conic with an efficient and useful parametrization to a projec-
tivization that allows to reduce the size of each point. The obtained
results concern the solutions over generic fields and also finite fields,
for all the possible choices of the parameter d. The sets have also been
equipped with an operation inspired by Brahmagupta, resulting in a
cyclic group. Moreover, the generalization of the Pell equation with a
constant term q ̸= 1 have been studied together with a generalization
of the operation between the points. Among the obtained results, it
has been proven that all the Pell conics with the same quadratic char-
acter of d are isomorphic and the map has been explicitly obtained.
Finally, by exploiting a relation with Rédei polynomials and rational
functions, an efficient algorithm for the exponentiation on the projec-
tivization is recalled using the introduced notation.

In the same way, the properties of the generalization of the Pell
equation in cubic case over generic and finite fields have been deep-
ened. Its solutions over a field have been associated to a cubic with
an operation obtained analogously to the quadratic case. When deal-
ing with finite fields, a parametrization was found for any choice of
the parameter r, but the structure is generally a group, but it is not
cyclic for any r. In some cases, the explicit inverse of the parametriza-
tion is still unknown. Moreover, finding the same results for a generic
field is still an open issue. As for the quadratic case, the study moved
to the generalization of the cubic Pell equation with a constant term
q ̸= 1. After defining a generalization of the operation between the
points, the same parametrization for the simple case is adapted to the
generalized case and, when the inverse is explicitly known, a group
isomorphism between any Pell cubic with same cubic character of r

can be obtained. The study is concluded by generalizing the Rédei
polynomials and rational functions in order to obtain a new efficient
algorithm for the exponentiation on the projectivization related to the
Pell cubic.

117

118 conclusions

The second part of this work focused on the public–key cryptosys-
tems that can be obtained by exploiting the results from the first part.

Firstly, after recalling the state of the art with particular attention to
the schemes based on the Pell equation or similar constructions, new
enhancements and formulations with security based on the classical
IFP and DLP are introduced. For all the proposals, a practical imple-
mentations written in Python is developed and, when possible, the
efficient exponentiation algorithm is adopted. Specifically, the prob-
lem of an RSA–like cryptosystem from the literature has been solved
thanks to the obtained results. However, despite the promising ex-
pectations, in a comparison with the classical RSA with same secu-
rity strength and maximum message length, the new cryptosystem
needs still to be optimized. On the other hand, the classical ElGa-
mal cryptosystem is formulated using the cyclic groups related to the
Pell conic. Besides two standard and scholastic formulations that are
not comparable to the classical version in FFC and ECC, an alterna-
tive formulation that exploits the found explicit group isomorphisms
seem to be a good competitor. In particular, it works better than both
the classical versions in all the standard security levels, except for the
highest, while maintaining the smallest data–size when the maximum
message length is fixed. Moreover, also DSA is tackled: the proposed
formulation uses the projectivization with d non–square. For lower
security levels, in a trade–off between performance and size of the
public data, the classical DSA is best for the former, while the pro-
posal for the latter. When higher security is required, ECDSA is still
the best option for both data–size and performance.

Following the structure of the first part, the same work has been
conducted using the Pell cubic. Considering the different cases de-
pending on the choice of r, two new RSA–like cryptosystem were
introduced following a suggestion from the literature. However, the
obtained schemes are not even comparable to the formulation with
the Pell conic since the available choices for r are not optimal. From
the point of view of DLP–based cryptosystems, ElGamal and DSA
have again been addressed. Also in this case, the formulations with
the cyclic groups related to the Pell cubic are not as efficient as the
classical versions or the best one for the quadratic case. Generally, the
problem is due to the missing inverses of the parametrizations with
the optimal choices for r, but this can be a starting point since finding
them could still lead to competitive cryptosystems.

The third and final part focused on probabilistic primality tests,
with particular attention to the tests based on the Lucas sequences.
This interest arises from a link between those sequences and the one
obtained from the powers of a point on a Pell conic. Firstly, the state
of the art for probabilistic primality tests is described, together with
some specific tests that exploit sequences of integers modulo the n to
be tested.

conclusions 119

Then, after generalizing the Lucas test through the definition of pri-
mality tests based on linear recurrent sequences, an enhanced version
of the Lucas test is defined by considering an additional congruence.
This can be related to a primality test based on the Pell conic, which
leads to a generalization that exploits the generalized Pell equation
with constant term q ̸= 1. In particular, thanks to an analysis of the
test with fixed parameters, the Selfridge method used for the Lucas
tests can be adapted in order to choose good parameters depend-
ing on the integer to be tested. Analogously, a further generalization
of the Lucas test has been defined and the Selfridge method was
adapted. Both the resulting primality tests are very powerful since no
pseudoprimes smaller than 244 were found.

Also in this context there are still open issues, since further study
on the pseudoprimes for these tests could be useful. In particular,
finding the first pseudoprime, if any exists, is of great importance,
especially in a comparison with the standard Baillie–PSW test, for
which it is conjectured that there are infinitely many pseudoprimes,
but no one was found yet.

B I B L I O G R A P H Y

[1] A. Aabrandt and V. L. Hansen. “A Note on Powers in Finite
Fields.” In: International Journal of Mathematical Education in Sci-
ence and Technology 47.6 (2016), pp. 987–991.

[2] M. Agrawal, N. Kayal, and N. Saxena. “PRIMES is in P.” In:
Annals of Mathematics 160.2 (2004), pp. 781–793.

[3] W. R. Alford, A. Granville, and C. Pomerance. “There are in-
finitely many Carmichael numbers.” In: Annals of Mathematics
140 (1994), pp. 703–722.

[4] R. Baillie and S. S. Jr. Wagstaff. “Lucas Pseudoprimes.” In: Math-
ematics of Computation 35.152 (1980), pp. 1391–1417.

[5] C. Ballot. “Strong arithmetic properties of the integral solutions
of X3 +DY3 +D2Z3 − 3DXYZ = 1, where D = M3 ± 1, M ∈
Z∗.” In: Acta Arithmetica 89 (1999), pp. 259–277.

[6] E. J. Barbeau. Pell’s Equation. New York-Berlin: Springer-Verlag,
2003.

[7] S. Barbero, U. Cerruti, and N. Murru. “Generalized Rédei ra-
tional functions and rational approximations over conics.” In:
International Journal of Pure and Applied Mathematics 64 (2010),
pp. 305–317.

[8] E. Barker. SP 800-57 Part 1: Recommendation for Key Management.
Tech. rep. NIST, 2020.

[9] D. Bazzanella, A. J. Di Scala, S. Dutto, and N. Murru. “Primality
tests, linear recurrent sequences and the Pell equation.” In: The
Ramanujan Journal 57.1 (2022), pp. 755–768.

[10] M. Bellare and P. Rogaway. “Optimal asymmetric encryption.”
In: Advances in Cryptology – EUROCRYPT ’94. Springer, 1995,
pp. 92–111.

[11] E. Bellini and N. Murru. “An efficient and secure RSA–like
cryptosystem exploiting Rédei rational functions over conics.”
In: Finite Fields and their Applications 39 (2016), pp. 179–194.

[12] E. Bellini, N. Murru, A. J. Di Scala, and M. Elia. “Group law
on affine conics and applications to cryptography.” In: Applied
Mathematics and Computation 409.125537 (2021).

[13] L. Bernstein. “Fundamental units from the preperiod of a
generalized Jacobi–Perron algorithm.” In: Journal für die reine
und angewandte Mathematik (Crelles Journal) 1974.268–269 (1974),
pp. 391–409.

121

122 bibliography

[14] L. Bernstein. “Units and Periodic Jacobi–Perron Algorithms in
Real Algebraic Number Fields of Degree 3.” In: Transactions of
the American Mathematical Society 212 (1975).

[15] J. Bourgain. “A Remark on Solutions of the Pell Equation.”
In: International Mathematics Research Notices 2015.10 (2015),
pp. 2841–2855.

[16] D. R. L. Brown. SEC 2: Recommended Elliptic Curve Domain Pa-
rameters (Ver. 2.0). Tech. rep. Certicom Research, 2010.

[17] Z. Chen and Greene J. “Some comments on Baillie–PSW pseu-
doprimes.” In: Fibonacci Quarterly 41.4 (2003), pp. 334–344.

[18] M. Cipu. “Explicit formula for the solution of simultaneous Pell
equations x2 − (a2 − 1)y2 = 1, y2 − bz2 = v21.” In: Proceedings of
the American Mathematical Society 146.3 (2018), pp. 983–992.

[19] B. Cohen. “Chebyshev polynomials and Pell equations over
finite fields.” In: Czechoslovak Mathematical Journal 71 (2021),
pp. 491–510.

[20] P. H. Daus. “Normal Ternary Continued Fraction Expansions
for the Cube Roots of Integers.” In: American Journal of Mathe-
matics 51.1 (1929), pp. 67–98.

[21] A. J. Di Scala, N. Murru, and C. Sanna. “Lucas pseudoprimes
and the Pell conic.” In: arXiv:2001.00353 (2020).

[22] L. E. Dickson. History of the Theory of Numbers, Vol. II, Diophan-
tine analysis. Carnegie Institution of Washington, 1920.

[23] W. Diffie and M. Hellman. “New directions in cryptography.”
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–
654.

[24] T. ElGamal. “A Public–Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms.” In: IEEE Transactions
on Information Theory 31 (1985), pp. 469–472.

[25] P. Erdös, P. Kiss, and Sárközy. “A Lower Bound for the Count-
ing Function of Lucas Pseudoprimes.” In: Mathematics of Com-
putation 51.183 (1988), pp. 315–323.

[26] FIPS 186-4: Digital Signature Standard (DSS). Tech. rep. National
Institute of Standards and Technology, 2013.

[27] FIPS 186: Digital Signature Standard (DSS). Tech. rep. National
Institute of Standards and Technology, 1994.

[28] E. Fouvry. “On the size of the fundamental solution of the Pell
equation.” In: Journal für die reine und angewandte Mathematik
(Crelles Journal) 2016.717 (2016), pp. 1–33.

[29] R. Fu and H. Yang. “On the solvability of the simultaneous Pell
equations x2 − ay2 = 1 and y2 − bz2 = v21.” In: International
Journal of Number Theory 17.9 (2021), pp. 1997–2008.

bibliography 123

[30] D. M. Gordon and C. Pomerance. “The Distribution of Lu-
cas and Elliptic Pseudoprimes.” In: Mathematics of Computation
57.196 (1991), pp. 825–838.

[31] J. Grantham. “Frobenius Pseudoprimes.” In: Mathematics of
Computation 70.234 (2000), pp. 873–891.

[32] M. Gysin and J. Sebery. “How to use Pell’s equation in cryptog-
raphy.” In: preprint (1999).

[33] B. He, A. Pinter, and A. Togbé. “On simultaneous Pell equa-
tions and related Thue equations.” In: Proceedings of the Ameri-
can Mathematical Society 143.11 (2015), pp. 4685–4693.

[34] C. G. J. Jacobi. Gesammelte Werke. Vol. VI. Berlin: Reimer, 1891,
pp. 385–426.

[35] M. J. Jacobson and H. C. Williams. Solving the Pell Equation. CMS
Books in Mathematics. New York: Springer, 2009.

[36] K. Koyama. “Fast RSA–type schemes based on singular cubic
curves y2 + axy ≡ x3 (modn).” In: International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
1995, pp. 329–340.

[37] F. Lemmermeyer. Introduction to Cryptography. Citeseerx, 2006.

[38] H. W. Lenstra Jr. and C. Pomerance. “Primality testing with
Gaussian periods.” In: Journal of the European Mathematical Soci-
ety 21 (2019), 1229–1269.

[39] R. Lidl, G. L. Mullen, and Turnwald G. Dickson polynomials. Pit-
man Monographs and Surveys in Pure and Applied Mathemat-
ics. New York: Longman, 1993.

[40] E. Lucas. “Sur les rapports qui existent entre Ia theorie des nom-
bres et le calcul integral.” In: Comptes Rendus Paris 82 (1876),
pp. 1303–1305.

[41] G. B. Mathews. “On the arithmetic theory of the form x3 +

ny3 +n2z3 − 3nxyz.” In: Proceedings of the London Mathematical
Society S1-21.1 (1889), pp. 280–287.

[42] A. J. Menezes and S. A. Vanstone. “A note on cyclic groups,
finite fields, and the discrete logarithm problem.” In: Applied
Algebra in Engineering, Communication and Computing 3 (1992),
pp. 67–74.

[43] G. L. Miller. “Riemann’s Hypothesis and Tests for Primality.”
In: Journal of Computer and System Sciences 13.3 (1976), pp. 300–
317.

[44] A. M. Mishra. “A Digital Signature Scheme Based on Pell Equa-
tion.” In: International Journal of Innovative Research in Science,
Engineering and Technology 3.1 (2014), pp. 8596–8600.

124 bibliography

[45] W. More. “Fast Evaluation of Rédei Functions.” In: Applicable
Algebra in Engineering, Communication and Computing 6.3 (1995),
pp. 171–173.

[46] N. Murru and F. M. Saettone. “A Novel RSA–Like Cryptosys-
tem Based on a Generalization of the Rédei Rational Func-
tions.” In: 10737 LNCS (2018), pp. 91–103.

[47] N. R. Murthy and M. N. S. Swamy. “Cryptographic applica-
tions of Brahmagupta–Bhaskara equation.” In: IEEE Transac-
tions on Circuits and Systems I 53 (2006), pp. 1565–1571.

[48] Sahadeo Padhye. “A Public Key Cryptosystem Based on Pell
Equation.” In: IACR Cryptology ePrint Archive 2006/191 (2006).

[49] C. Pomerance. “Are There Counterexamples to the Baillie–PSW
Primality Test?” In: unpublished (1984).

[50] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff. “The pseudo-
primes to 25 · 109.” In: Mathematics of Computation 35.151 (1980),
pp. 1003–1026.

[51] M. O. Rabin. “Probabilistic algorithm for testing primality.” In:
Journal of Number Theory 12.1 (1980), pp. 128–138.

[52] R. L. Rivest, A. Shamir, and L. Adleman. On Digital Signatures
and Public–Key Cryptosystems. Tech. rep. Massachusetts Inst of
Tech Cambridge Lab for Computer Science, 1977.

[53] L. Rédei. “Uber eindeuting umkehrbare polynome in endlichen
korpen.” In: Acta Scientiarum Mathematicarum (Szeged) 11 (1946),
pp. 85–92.

[54] A. Teckan. “The number of solutions of Pell equations x2 −

ky2 = N and x2 + xy− ky2 = N over Fp.” In: Ars Combinatorica
102 (2011), pp. 225–236.

[55] A. Tekcan, A. Ozkoc, C. Kocapinar, and H. Alkan. “The Pell
equation x2 − Py2 = Q.” In: International Journal of Physical and
Mathematical Sciences 4.7 (2010), pp. 795–798.

[56] S. Vanstone. “Responses to NIST’s proposal.” In: Communica-
tions of the ACM 35.7 (1992), pp. 50–52.

[57] A. Weil. Number theory: an approach through history. Boston:
Birkhauser, 1984.

[58] M. J. Wiener. “Cryptanalysis of short RSA secret exponents.” In:
IEEE Transactions on Information Theory 36.3 (1990), pp. 553–558.

[59] C. L. E. Wolfe. “On the indeterminate cubic equation x3 +

Dy3 +D2z3 − 3Dxyz = 1.” In: University of California Publica-
tions in Mathematics 1.16 (1923), pp. 359–369.

[60] P. Xi. “Counting fundamental solutions to the Pell equation
with prescribed size.” In: Compositio Mathematica 154 (2018),
pp. 2379–2402.

	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols
	What is it known about the Pell equation?
	1 Introduction
	2 Pell conics
	2.1 Solutions of the Pell equation over a field
	2.2 The Pell conic over finite fields
	2.2.1 d non–square
	2.2.2 d square

	2.3 Generalized Pell conics
	2.4 Exponentiation and Rédei polynomials

	3 Pell cubics
	3.1 Solutions of the cubic Pell equation over a field
	3.2 The Pell cubic over finite fields
	3.2.1 r non–cube
	3.2.2 r cube with three roots in Fq
	3.2.3 r cube with one root in Fq

	3.3 Generalized Pell cubic
	3.4 Exponentiation and extended Rédei polynomials

	How is the Pell equation used in cryptography?
	4 Public–key cryptography
	4.1 Classical and modern cryptography
	4.2 rsa cryptosystem
	4.3 rsa with Pell conics and cubics
	4.4 ElGamal cryptosystem
	4.5 Digital Signature Algorithm and ecdsa

	5 New cryptosystems with the Pell conic
	5.1 Alternative rsa–like cryptosystem
	5.2 ElGamal with the Pell conic
	5.3 ElGamal with the projectivization
	5.4 ElGamal with two Pell conics
	5.5 dsa with the Pell conic
	5.6 Security, data–size and performance

	6 Cryptosystems with the Pell cubic
	6.1 rsa-like cryptosystem with the Pell cubic
	6.2 ElGamal with the Pell cubic
	6.3 ElGamal with the projectivization
	6.4 ElGamal with two Pell cubics
	6.5 dsa with the Pell cubic
	6.6 Security, data–size and performance

	Is the Pell equation related to primality tests?
	7 Primality tests in literature
	7.1 Strong Fermat test
	7.2 Lucas sequences
	7.3 Primality tests based on Lucas sequences
	7.3.1 Lucas test
	7.3.2 Strong Lucas test
	7.3.3 Extra strong Lucas test

	7.4 Frobenius test
	7.5 Pell test

	8 Primality tests based on sequences
	8.1 Linear recurrent sequences for primality tests
	8.2 Strong Pell test and double Lucas test
	8.3 Generalized Pell primality test
	8.4 Generalized Lucas primality test
	8.5 Numerical experiments

	Conclusions
	Bibliography

