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Abstract 1 

Besides the physiological regulation of water, sodium and potassium homeostasis, aldosterone 2 

modulates several physiological and pathological processes in the cardiovascular system. At 3 

vascular level, aldosterone excess stimulates endothelial dysfunction and infiltration of 4 

inflammatory cells, enhances the development of the atherosclerotic plaque and favours plaque 5 

instability, arterial stiffness and calcification. At cardiac level, aldosterone increases cardiac 6 

inflammation, fibrosis and myocardial hypertrophy. As clinical consequence, high aldosterone 7 

levels are associated with enhanced risk of cardiovascular events and mortality, especially 8 

when aldosterone secretion is inappropriate for renin levels and sodium intake, as in primary 9 

aldosteronism. Several clinical trials showed that mineralocorticoid receptor antagonists 10 

(MRA) reduce cardiovascular mortality in patients with heart failure and reduced ejection 11 

fraction, but inconclusive results were reported for other cardiovascular conditions, as heart 12 

failure with preserved ejection fraction, myocardial infarction and atrial fibrillation. In patients 13 

with primary aldosteronism adrenalectomy or treatment with MRA significantly mitigate 14 

adverse aldosterone effects, reducing the risk of cardiovascular events, mortality and incident 15 

atrial fibrillation. 16 

In this review, we will summarize the major pre-clinical and clinical studies investigating the 17 

cardiovascular damage mediated by aldosterone and the protective effect of MRA for the 18 

reduction of cardiovascular risk in patients with cardiovascular diseases and primary 19 

aldosteronism. 20 
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Introduction 1 

Aldosterone is the main mineralocorticoid hormone synthesized in the zona glomerulosa of the 2 

adrenal cortex by aldosterone synthase, converting 11-deoxycorticosterone to aldosterone. 3 

Aldosterone mediates its effects trough genomic and non-genomic mechanisms: the first ones 4 

are mediated by the activation of the nuclear MR (mineralocorticoid receptor), the second ones 5 

by a putative membrane receptor, probably the high-affinity aldosterone-binding membrane 6 

protein, GPR30 (G protein-coupled receptor 30)1. Aldosterone excess can result from two 7 

different conditions: I) the overactivation of the renin-angiotensin system due to the reduction 8 

of intravascular volume, as described in heart failure or ascites (secondary aldosteronism), or 9 

II) autonomous aldosterone secretion. In the latter condition, aldosterone overproduction is 10 

independent of angiotensin II stimulation and its clinical spectrum ranges from the mildest 11 

form of renin-independent aldosteronism to the overt forms of PA (primary aldosteronism)2. 12 

Beside the commonly known effects on the renal tubular epithelium, aldosterone regulates 13 

several physiological and pathological process in extra-renal organs. In particular, 14 

supraphysiological activation of MR lead to increased cardiac and vascular damage, with 15 

consequent increased risk of cardiovascular events and cardiovascular mortality3,4. In this 16 

review, we summarize the pathological basis of aldosterone-mediated cardiovascular damage, 17 

from a pre-clinical and clinical standpoint, and we recapitulate the results of major studies 18 

evaluating the impact of mineralocorticoid receptor antagonists (MRA) for treatment and 19 

prevention of cardiovascular diseases. 20 

Aldosterone and vessels 21 

Endothelial dysfunction 22 

Endothelial dysfunction is an early feature of the vascular atherosclerotic process caused by 23 

impairment of NO (nitric oxide)-mediated vasodilatation5. Aldosterone impairs endothelial 24 
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function at different levels (Figure 1). In vitro, aldosterone reduces NO production in 1 

endothelial cells6 through inhibition of eNOS (endothelial NO synthase) activity6 by two 2 

mechanisms: via increased phosphatase 2A activity and dephosphorylation of eNOS (Ser1177) 3 

and via oxidation of BH4 (tetrahydrobiopterin), an important cofactor of eNOS, with 4 

consequent eNOS uncoupling6. Aldosterone also reduce G6PD (glucose-6-phosphate 5 

dehydrogenase) in endothelial cells, with increase of ROS (reactive oxygen species) and 6 

reduced NO bioavailability7.  7 

Aldosterone may exert its detrimental effects by indirect mechanisms mediated by EVs 8 

(extracellular vesicles): circulating EVs of patients with PA carry endothelin-1 mRNA that, 9 

once transferred to the endothelial cells, may contribute to aldosterone-mediated endothelial 10 

dysfunction8. Similarly, circulating EVs from patients with PA display differential expression 11 

of several surface antigens able to modify gene expression of recipient endothelial cells, 12 

potentially affecting endothelial function9. 13 

In vivo, aldosterone infusion impairs endothelial function in mouse and rat models7,10,11. 14 

Aldosterone indirectly reduces endothelium-dependent vasorelaxation through endothelial 15 

G6PD reduction7 and COX-2 (cyclooxygenase-2) activation, with increased production of 16 

prostacyclin, which act as vasoconstrictors under specific conditions10, and directly increase 17 

vasoreactivity through EGFR (epidermal growth factor receptor) activation12.  The role of 18 

renin-angiotensin-aldosterone system at endothelial and vascular level is more complex than 19 

previously thought and aldosterone is a crucial regulator of multiple and interdependent 20 

pathways. Knock-out of AT1R (angiotensin II receptor type 1) in mice or AT1R inhibition 21 

blunts the aldosterone-mediated endothelial dysfunction11 and this is likely caused by increased 22 

overexpression of AT1R induced by aldosterone, with consequent increase of AngII 23 

(angiotensin II)-mediated endothelial dysfunction13. Beyond renal epithelia, the ENaC 24 

(epithelial sodium channel) is expressed in the vascular endothelium and regulated by 25 
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aldosterone through MR14. Aldosterone increases ENaC abundance in the plasma membrane 1 

and its activity, with increased Na+ current and activation of multiple pathways leading to 2 

impairment of eNOS activity and reduced NO production15. 3 

In humans, a large observational study reported an association between high aldosterone levels 4 

and ARR (aldosterone-to-renin ratio) and impaired FMD (flow mediated dilatation), a 5 

surrogate and non-invasive measure of endothelial function16. Similarly, in patients with 6 

resistant hypertension, FMD is inversely correlated with urinary aldosterone secretion, plasma 7 

aldosterone and ARR17. 8 

In patients with PA, FMD is inversely correlated with the severity of PA phenotype18,19. FMD 9 

is significantly lower in patients with unilateral PA, compared with matched patients with EH 10 

(essential hypertension); whereas patients with bilateral PA, which usually display a milder 11 

phenotype, have similar severity of FMD than EH18. Circulating EPC (endothelial progenitor 12 

cells) mediate functional effects at endothelial level by regulation of endothelial repair and 13 

altering the intracellular balance of eNOS activity20. Patients with PA have lower number of 14 

circulating EPC, compared with patients with EH, and the EPC concentration is inversely 15 

correlated with plasma aldosterone levels21. Moreover, EPC from patients with PA display 16 

reduced migratory potential, which is partially restored by spironolactone treatment22. 17 

Adrenalectomy significantly restore FMD in patients with unilateral PA18,19,23; conversely, the 18 

benefit of MRA therapy was inconsistent in different studies23,24. 19 

Arterial Stiffness 20 

Arterial stiffness is the reduction of arterial distensibility and it is associated with 21 

cardiovascular morbidity and mortality. It is estimated by PWV (pulse wave velocity), forward 22 

or reflected wave amplitude and augmentation index25. 23 
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Animal studies demonstrated that aldosterone increases arterial stiffness through multiple 1 

pathways by MR activation26 leading to remodeling of the extracellular matrix and cell-matrix 2 

attachment proteins26. Aldosterone exerts its effect through a profound modulation of gene 3 

expression profile at vascular levels, as showed in ex vivo models of mouse aortas27. Several 4 

genes related to the extracellular matrix remodeling are differentially expressed, including 5 

upregulation of connective tissue growth factor and modulation of 6 

metalloproteinase/metallopeptidase regulatory proteins27. In rat and mouse models, aldosterone 7 

increase collagen deposition in the arterial walls through galectin-328 and endothelin-129 8 

mediated mechanisms, through ENaC activation15, VEGFR1 (type 1 vascular endothelial 9 

growth factor receptor) activation30 and Nox1 (NADPH [nicotinamide adenine dinucleotide 10 

phosphate] oxidase 1) mediated pathways31.  11 

Aldosterone also induces osteogenic phenotype in VSMC (vascular smooth muscle cells), 12 

thereby contributing to calcification and stiffness of the vascular wall32. In particular, 13 

aldosterone has been shown to induce osteo-inductive signaling through activation of alkaline 14 

phosphatase in VSMCs32, mediated by PIT-1 activation (type III sodium-dependent phosphate 15 

transporter)33. Moreover, aldosterone reduces autophagy of VSMCs, a process that 16 

physiologically inhibits osteogenic differentiation of VSMCs34. Beyond these mechanisms, 17 

aldosterone may favor indirectly vascular calcification by activating NADPH oxidase that in 18 

turn mediate the osteogenic phenotype of  vascular SMC35, by stimulation of vascular 19 

inflammation33, upregulation of parathyroid hormone receptor in SMCs36, and via activation 20 

of aldosterone-induced non-genomic pathway35. Blockade of aldosterone effect through 21 

spironolactone mitigate the progression of  vascular calcification in vitro32 and in animal 22 

models37. 23 

In individuals with newly diagnosed hypertension or normotension, high aldosterone38 and 24 

high ARR39 are associated with increased PWV, independently of BP levels38. Spironolactone 25 
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significantly reduced arterial stiffness in patients with hypertension40. Prospective studies 1 

reported a stronger reduction of PWV and augmentation index in patients with essential 2 

hypertension treated with spironolactone than patients treated with thiazide diuretics40,41. 3 

A meta-analysis showed that patients with PA have higher PWV than matched patients with 4 

EH but no differences in the  augmentation index42. Forward and reflected wave amplitude are 5 

higher in patients with PA than EH, and reflected wave amplitude is correlated with log 6 

aldosterone levels, suggesting that arterial stiffness is more pronounced in patients with a florid 7 

PA phenotype43.  8 

Adrenalectomy significantly reduce PWV44, augmentation index44 and wave amplitude43 in 9 

patients with unilateral PA while the available literature in patients with bilateral PA treated 10 

with MRA provides conflicting results24,44. Patients with higher PWV before adrenalectomy 11 

have lower probability of normalization of blood pressure levels after surgery45. This 12 

observation reinforces the recommendation for early identification and treatment of patients 13 

with PA. 14 

Aldosterone and heart 15 

Coronary artery disease 16 

Atherosclerosis is the accumulation of fibrous and fatty materials in the intima layer of the 17 

vascular wall and is the main cause of acute or chronic coronary artery disease46. The initiation 18 

of the atherosclerotic process is driven by the progressive engulfment of macrophage with 19 

oxidized LDL (low-density lipoprotein), generating foam cells. The accumulation of 20 

macrophage in the atherosclerotic lesion is therefore crucial, being the result of an impaired 21 

balance between monocyte extravasation and macrophage proliferation on one side, and 22 

apoptosis and efferocytosis on the other46. In vitro findings suggest that aldosterone can directly 23 

impair this delicate balance by several mechanisms (Figure 2). Aldosterone activate endothelial 24 
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cells, increasing adhesion molecules, such as the ICAM-1 (intercellular adhesion molecule 1), 1 

and promoting leukocyte-endothelium interaction and consequent extravasation47. Moreover, 2 

aldosterone stimulates human coronary artery SMC (smooth muscle cells) release of pro-3 

inflammatory molecules36 and enhances monocyte chemotaxis48. Once migrated in the intima 4 

layer, monocytes differentiate into two types of macrophages: M1, expressing classical 5 

macrophage marker and characterized by a pro-inflammatory action, or M2 phenotype, 6 

expressing anti-inflammatory markers and reducing the local inflammatory burden49. 7 

Aldosterone favors M1 differentiation, which increases the secretion of several pro-8 

inflammatory cytokines, including TNFα (tumor necrosis factor α), IL-12 (interleukin-12), 9 

CCL5 (chemokine ligand 5)50, and IL-1 β (interleukin-1β)51. The latter is induced by 10 

aldosterone-mediated increase of NLRP3 (NLR family pyrin domain containing 3) expression, 11 

one of the main component of the NLRP3 inflammasome, a multimeric complex that processes 12 

and increase interleukin release in macrophages51.  13 

Several experiments in animal models corroborated and expanded in vitro findings. 14 

Adrenalectomy and eplerenone treatment significantly reduce vascular fibrinoid necrosis 15 

observed in a model of secondary aldosteronism (rats treated with AngII and high salt intake) 16 

and aldosterone infusion completely reversed the protective effect of adrenalectomy52. 17 

Aldosterone infusion increase macrophage infiltration in the atherosclerotic plaque of ApoE 18 

(apolipoprotein-E) knock out mice48,53,54. On one side, aldosterone induce overexpression of 19 

ICAM-153 and macrophage chemoattractant protein-154, enhancing macrophage recruitment; 20 

on the other, aldosterone reduce macrophage apoptosis and efferocytosis55. As described in 21 

vitro, aldosterone enhance macrophage polarization towards a M1 phenotype in mice models50. 22 

This effect is inhibited by MRA or myeloid selective knock out of MR, which in turns favor 23 

polarization towards M2 phenotype50. The plaque size and lipid content of the plaque is 24 

increased by aldosterone administration in ApoE knock out mice 48,53 and inhibited by MRA 25 
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treatment56. In the same mouse model, MRA reduce lipid peroxides and oxidation of LDLs 1 

within the plaque further contributing to plaque stabilization57. 2 

Studies in humans demonstrated a significant association between aldosterone levels and 3 

subclinical coronary atherosclerosis, assessed by coronary artery calcium assessment58. The 4 

association is stronger in patients with suppressed plasma renin activity (≤0.5 μg/L/hour)58. 5 

Aldosterone is independently associate with a higher risk of acute cardiac ischemic events4 and 6 

cardiovascular mortality4. However, in patients without known coronary artery disease the 7 

association between aldosterone and cardiovascular mortality is significant only in patients 8 

with low renin, suggesting that renin independent aldosteronism is a greater predictor of 9 

cardiovascular risk than aldosterone levels per se58. High aldosterone levels are also associated 10 

with a higher rate of cardiovascular events, cardiovascular mortality and overall mortality in 11 

patients with acute MI (myocardial infarction)59. 12 

The early administration of MRA in patients with myocardial infarction prevent left ventricular 13 

remodeling60. On the basis of these findings, two RCT (randomized controlled trial) evaluated 14 

the early treatment with MRA after MI in patients without HF (heart failure)61 o irrespective 15 

of HF diagnosis62(Supplementary Table 1). In the REMINDER (Impact Of Eplerenone On 16 

Cardiovascular Outcomes In Patients Post MI) trial61 eplerenone reduced the primary 17 

composite outcome, comprising cardiovascular events and mortality, reduced left ventricular 18 

function, prolonged hospitalization or re-hospitalization and natriuretic peptides reduction. 19 

However, the difference was driven by the reduction of natriuretic peptides, without significant 20 

differences in other components of the primary endpoint61. In the ALBATROSS (Aldosterone 21 

Lethal effects Blocked in Acute MI Treated with or without Reperfusion to improve Outcome 22 

and Survival at Six months follow-up) trial, canrenone intravenous administration followed by 23 

oral spironolactone for 6 months failed to improve the composite primary outcome62. 24 
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Nevertheless, an exploratory sub-analysis showed a benefit of mortality in patients with MI 1 

with ST-elevation62. 2 

Patients with PA display greater vascular inflammation than patients with EH, assessed by 3 

means of 18F-FDG PET-CT (18fluoro-D-glucose positron emission tomography with computed 4 

tomography), a surrogate measure of macrophage vascular infiltration and atherosclerotic 5 

burden63,64. The results of a wide meta-analysis confirmed that patients with PA display an 6 

increased risk of coronary artery disease (1.77-fold higher) compared with patients with EH 65. 7 

In patients with PA, aldosterone levels are associated with the risk of cardiovascular events66. 8 

Adrenalectomy reduce the risk of cardiovascular events to lower levels than patients with EH3. 9 

On the other side, MRA treatment reduce the risk of cardiovascular events to values similar to 10 

EH patients, but only when renin levels are no longer suppressed (plasma renin activity≥ 1 11 

μg/L/hour)3, suggesting that a complete blockade of MR is necessary for the reversal of 12 

aldosterone-mediated cardiovascular risk. 13 

Heart Failure 14 

MI leads to rapid loss of cardiomyocytes that exceed the cardiac regenerative capacity, leading 15 

to a substitution of functional myocardium with fibrotic tissue, with consequent post-infarction 16 

ventricular remodeling67. In the absence of ischemic events, ventricular remodeling can be the 17 

consequence of hemodynamic overload and neurohormonal mechanisms, enhancing LVH (left 18 

ventricular hypertrophy) and cardiac fibrosis. In both scenarios aldosterone plays a crucial and 19 

detrimental role leading to increased risk of left ventricular systolic and diastolic dysfunction, 20 

HF and increased cardiovascular mortality68 (Figure 2). 21 

In vitro findings showed that aldosterone stimulates fibroblast collagen synthesis69 and, 22 

through MAPK (mitogen-activated protein kinases) cascade70–72, cardiomyocytes 23 

hypertrophy70, cardiac myofibroblast proliferation71 and increased myocardiocyte release of 24 

matrix metalloproteinase72.  25 
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Aldosterone infusion in rats increase perivascular and interstitial fibrosis by mechanisms that 1 

are reversed by MRA administration73. Aldosterone-induced cardiac fibrosis is mediated by 2 

two mechanisms: perivascular and interstitial inflammation and direct alteration of 3 

extracellular matrix deposition68. In mouse and rat models, aldosterone increase interstitial 4 

oxidative stress74,75, through NADPH and NFκB (nuclear factor kappa-light-chain-enhancer of 5 

activated B cells) activation74, leading to increased release of inflammatory molecules and 6 

infiltration of inflammatory cells74,75. In rats, galectin-376 and TRAF3IP2 (TRAF3 Interacting 7 

Protein 2)77 expression are upregulated by aldosterone and both proteins mediate aldosterone 8 

cardiac fibrosis by regulating collagen deposition and enhancing a pro-inflammatory 9 

environment76,77. In mice, aldosterone infusion directly alter the extracellular matrix 10 

compartment through upregulation of tissue inhibitor of metalloproteinases-1, leading to 11 

reduce matrix metalloproteinase activity and cardiac collagen accumulation78. On the opposite, 12 

after myocardial infarction, aldosterone infusion significantly affect ventricular remodeling in 13 

mice, increasing the expression of metalloproteinases via CaMKII (Ca2+/calmodulin-14 

dependent protein kinase II) oxidation, causing cardiac rupture79.  15 

Cardiac hypertrophy is caused by direct aldosterone-mediated pathways and indirect 16 

aldosterone-mediated mechanisms, through increased blood pressure and hemodynamic 17 

overload80. Aldosterone infusion increase myocardiocyte hypertrophy, through cardiotrophin-18 

1 mediated effect73, ROS mediated mechanisms81, PAI-1 (plasminogen activator inhibitor-1) 19 

levels82 and through circadian clock proteins83. Most of those mechanisms directly or indirectly 20 

promote myocardial fibrosis73,81,83, further contributing to the ventricular remodeling and 21 

increased risk of HF. 22 

In humans, MRAs have been evaluated in patients with HFpEF (HF with preserved ejection 23 

fraction), HFmrEF (HF with mildly reduced ejection fraction) and HFrEF (HF with reduced 24 

ejection fraction)84 (Supplementary Table 1). In patients with HFrEF, the RALES 25 
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(Randomized Aldactone Evaluation Study) trial85 and the EPHESUS (Eplerenone Post-Acute 1 

MI Heart Failure Efficacy and Survival Study) trial86 have demonstrated that addition to the 2 

standard therapy of long-term treatment with 25 mg of spironolactone85 or up to 50 mg of 3 

eplerenone86 significantly reduce the overall and cardiovascular mortality. The EMPHASIS-4 

HF (Eplerenone in Mild Patients Hospitalization And Survival Study in HF) trial further 5 

demonstrated a benefit of eplerenone add-on therapy in patient with HFrEF and mild 6 

symptoms, reducing overall and cardiovascular mortality86. The ARTS-HF (MinerAlocorticoid 7 

Receptor antagonist Tolerability Study-HF) phase 2b trial compared efficacy and safety of 8 

finerenone, a novel and more cardio-selective MRA, versus eplerenone in patients with HFrEF 9 

and diabetes and/or chronic kidney disease, reporting a similar reduction of natriuretic peptide 10 

and a similar safety profile87.  11 

In patients with HFpEF and diastolic dysfunction, spironolactone improved diastolic 12 

function88,89 with discordant benefit on exercise capacity88,89. In the TOPCAT (Treatment of 13 

Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial spironolactone 14 

treatment of patients with HF and EF≥45% did not reduce the primary composite outcome of 15 

cardiovascular mortality, aborted cardiac arrest or hospitalization for HF, but determined a  16 

significant reduction of hospitalization for HF90. However, a post-hoc analysis showed a 17 

reduced primary composite outcome in the subgroup of patients with resistant hypertension91, 18 

further reinforcing the established recommendation of MRA as the most effective add-on 19 

treatment for resistant hypertension92,93. 20 

Patients with PA display increased sign of cardiac fibrosis compared with EH, as assessed 21 

trough indirect echocardiographic methods94 and cardiac magnetic resonance95. Left 22 

ventricular mass is increased in patients with PA compared with EH, with higher rates of 23 

LVH65. The severity of LVH correlate with the severity autonomous aldosterone secretion96 24 

and is inappropriate for the cardiac workload97. Diastolic function is significantly impaired in 25 
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patients with PA, compared with matched patients with EH98. Although no difference in 1 

systolic function have been reported between patients with PA and EH68, preclinical systolic 2 

dysfunction, assessed by speckle-tracking echocardiography, is more pronounced in patients 3 

with PA99. As consequence of the these morpho-functional changes, patients with PA display 4 

an increased risk of HF than patients with EH65.  5 

Aldosterone-induced LVH is partially reversible with adrenalectomy and MRA treatment96,100. 6 

Similarly, diastolic function is partially restored after adrenalectomy in patients with unilateral 7 

PA, although contrasting results have been reported68. 8 

Atrial Fibrillation 9 

The onset of AF (atrial fibrillation) depends on three mechanisms: automaticity, triggered 10 

activity, and re-entry. Triggered activity is caused by additional impulses known as 11 

afterdepolarization, favored by cytosolic calcium overload101. Pre-clinical studies suggest that 12 

aldosterone can directly modulate electrophysiological properties of cardiomyocytes, 13 

increasing cytosolic calcium load and facilitating cardiac arrhythmias102,103 (Figure 2). In vitro, 14 

aldosterone increase Ca2+ influx via the L-type Ca2+ channel102 and T-type Ca2+ channel104. L-15 

type Ca2+ current activates ryanodine receptor, the main Ca2+ channel of the sarcoplasmic 16 

reticulum, inducing Ca2+ release in the cytosolic space105. Aldosterone, through MR activation, 17 

increases the activity of ryanodine receptor, contributing to Ca2+ overload and facilitating the 18 

onset of afterdepolarizations103. Rapid depolarizations increase intracellular calcium, MR 19 

expression and aldosterone responsiveness in atrial cardiomyocytes, leading to a positive 20 

feedback and a vicious cycle that favors AF development104.  21 

At structural level, increased calcium load enhances profibrotic pathways in atrial tissue, with 22 

consequent atrial remodeling and dilatation, which constitutes the main substrate for long-23 

lasting AF stabilization101. Moreover, aldosterone directly contributes to atrium remodeling, 24 

through increased collagen deposition through MAPK dependent mechanism106. 25 
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In vivo, prolonged infusion of aldosterone in rat models increase P wave duration, total right 1 

atrium activation time and atrial anisotropy of conduction, favoring re-entry mechanisms and 2 

AF maintenance107. Beyond electrophysiological changes, aldosterone infusion directly 3 

increases atrial fibroblast proliferation and collagen deposition in the atrium; on the other side, 4 

aldosterone reduces active matrix metalloproteinase 13 (MMP13), with consequent reduction 5 

of collagen cleavage107. The remodeling of atrial tissue favor the stabilization of AF, doubling 6 

the time of spontaneous conversion108. The aldosterone-mediated structural changes seems to 7 

be partially reversible, as suggested by treatment with oral eplerenone in tachypaced sheep 8 

models109. In this model, MRA treatment reduced atrial fibrosis and atrial dilatation with 9 

consequent reduction of progression to persistent AF109. 10 

In humans, the role of MRAs for AF prevention has been evaluated in patients with HFrEF and 11 

HFmrEF-HFpEF. In patients with HFrEF, the EMPHASIS-HF trial showed a significant 12 

reduction of new onset AF in the eplerenone group, compared with placebo (2.7% vs 4.5%)110. 13 

On the other hand, a post-hoc analysis of TOPCAT trial, showed no benefit of spironolactone 14 

treatment for the prevention of new onset AF in patients with HFmrEF-HFpEF111. A meta-15 

analysis, including 5 RCT and 9 observational studies, reported a reduction of new-onset AF 16 

and recurrent AF in patients treated with MRA112, although patients characteristics were very 17 

heterogenous. Recently, a RCT including patients with early persistent AF and HF showed that 18 

target treatment of underlying conditions, with renin-angiotensin system inhibitors, MRA, 19 

statin and cardiac rehabilitation, significantly improved sinus rhythm maintenance, compared 20 

with conventional therapy113. Intriguingly, the use of  renin-angiotensin system inhibitors was 21 

similar in target and conventional group, but MRAs were used in 85% of patients in target 22 

group vs 4% in conventional treatment, suggesting an important role of MRAs in sinus rhythm 23 

maintenance113. On the basis of these evidences, the recent ESC (European Society of 24 
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Cardiology) Guidelines of 2020 introduced MRA as a potential non-antiarrhythmic drugs for 1 

upstream therapy of AF114. 2 

Patients with PA have higher risk of AF, estimated 3.52-fold higher in a large meta-analysis of 3 

31 studies65. The prevalence of PA in patients with AF, without underlying cardiac cause of 4 

arrythmia, is very high (42%)115 and therefore these patients should be screened for PA116. 5 

Adrenalectomy in patients with unilateral PA, reduce AF incident risk to values similar to 6 

EH117. On the opposite, patients with PA treated with MRA display a persistent higher risk of 7 

AF117. However, when MRA therapy is titrated to rise renin levels, the risk of AF is similar to 8 

patients with EH118, reinforcing the recommendation that MRA treatment should be up-titrated 9 

to achieve a complete blockade of MR. 10 

Perspectives and conclusions 11 

Aldosterone contributes to the development of cardiovascular damage, through multiple arrays 12 

of pathways that ultimately lead to increased cardiovascular diseases, events and mortality. 13 

Although several pre-clinical studies have investigated the mechanisms that drive aldosterone 14 

effects, the elucidation of this complex network is far to be complete. Beyond the direct effects 15 

on vascular and cardiac cells, recent evidence suggest that aldosterone excess induces 16 

cardiovascular damage through indirect mechanisms, including the alteration of circulating 17 

extracellular vesicles. In the future, a complete understanding of the biomolecular processes 18 

that drive aldosterone-mediated cardiovascular risk could be crucial to counteract in a synergic 19 

fashion the deleterious effects of aldosterone excess. 20 

MRAs have been proposed for the reduction of aldosterone-mediated cardiovascular risk in 21 

several conditions with different results. Although the benefit for patients with HFrEF has been 22 

clearly established, the benefit in patients with HFmrEF and HFpEF is still debated. Similarly, 23 

the benefit for patients with myocardial infarction without heart failure and for prevention of 24 

atrial fibrillation is still unclear. 25 
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Finally, in patients with PA the blockade of MR is only partially effective for the reversion of 1 

the increased cardiovascular risk, compared to adrenalectomy. New highly selective 2 

aldosterone-synthase inhibitors and other novel MRAs are currently under investigation and 3 

are promising candidates for the treatment of PA in the near future.  4 
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Figure Legends 1 

Figure 1. Molecular pathways mediating aldosterone-induced endothelial dysfunction 2 

and arterial fibrosis and calcification. 3 

Aldosterone induces endothelial dysfunction via multiple intracellular pathways in 4 

endothelial cells, reducing synthesis of vasodilatory mediators and increasing vasoconstrictor 5 

molecules. Aldosterone enhances arterial fibrosis and calcification through activation of 6 

several synergic pathways in vascular smooth muscle cells. Aldo=aldosterone, 7 

AngII=angiotensin II, AT1R=angiotensin II receptor type 1, BH4=tetrahydrobiopterin, COX-8 

2=cyclooxygenase-2, G6PD=glucose-6-phosphate dehydrogenase, EGF=epidermal growth 9 

factor, EGFR=epidermal growth factor receptor, ENaC=epithelial sodium channel, 10 

eNOS=endothelial nitric oxide synthase, EVs=extracellular vesicles, MR=mineralocorticoid 11 

receptor, NO=nitric oxide, Nox1=nicotinamide adenine dinucleotide phosphate] oxidase 1, 12 

PA=primary aldosteronism, PIT-1=type III sodium-dependent phosphate transporter, 13 

PTH=parathyroid hormone, PTHR= PTH receptor, ROS=reactive oxygen species, 14 

SR=sarcoplasmic reticulum, VEGF= vascular endothelial growth factor, VEGFR1= type 1 15 

VEGF receptor. The figure was produced using Servier Medical Art 16 

(https://smart.servier.com/). 17 

 18 

Figure 2. Pathological mechanisms, anatomical alteration and cardiovascular 19 

consequences of aldosterone-mediated cardiovascular damage. 20 

Aldosterone promotes the development of cardiovascular disease by multiple pathological 21 

mechanisms, leading to the atherosclerosis of coronary artery, myocardial fibrosis and 22 

hypertrophy and electrophysiological alterations with consequent increased risk of 23 
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cardiovascular disease and events. The figure was produced using Servier Medical Art 1 

(https://smart.servier.com/) and image acquired by iStockphoto (https://istockphoto.com/) 2 

https://smart.servier.com/

