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ABSTRACT
An entire ecosystem of methodologies and tools revolves around
scientific workflowmanagement. They cover crucial non-functional
requirements that standard workflow models fail to target, such as
interactive execution, energy efficiency, performance portability,
Big Data management, and intelligent orchestration in the Com-
puting Continuum. Characterizing and monitoring this ecosystem
is crucial to developing an informed view of current and future re-
search directions. This work conducts a systematic mapping study
of the Italian workflow research community, analyzing 25 tools and
10 applications from several scientific domains in the context of
the "National Research Centre for HPC, Big Data, and Quantum
Computing" (ICSC). The study aims to outline the main current
research directions and determine how they address the critical
needs of modern scientific applications. The findings highlight a
variegated research ecosystem of tools, with a prominent interest in
advanced workflow orchestration and still immature but promising
efforts toward energy efficiency.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; • Computer systems organization→ Heterogeneous
(hybrid) systems.
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1 INTRODUCTION
In the Big Data (and AI) ramp-up period, driven by the rush of
specialization, the tools and cultures revolving around traditional
HPC and Cloud platforms serving data analysis tasks started dif-
ferentiating [60]. However, pushed by their complementarity and
interdependence for the broad spectrum of major research domains,
their path of integration (and perhaps unification) has not taken too
long to gain strength [61]. The cross-breeding of HPC and Cloud re-
source provisioning in the same computing ecosystem is becoming
a consolidated approach to ease access to HPC resources and accel-
erate Cloud services [3, 6]. Also, according to the Edge Computing
paradigm [68], Cloud services are progressively moving closer to
data sources to comply with crucial extra-functional requirements,
such as latency, privacy, and security.

Despite this trend, tghe orchestration of large-scale scientific
applications in modular supercomputers [71, 73], and in the large,
over the full spectrum of the so-called Computing Continuum [9]
(i.e., hybrid HPC+Cloud+Edge execution environments) is still an
ambitious goal. Execution locations can be heterogeneous, exposing
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different hardware architectures, communication layers, authentica-
tion methods, and resource allocation paradigms. They are typically
geographically distributed, meaning placement choices significantly
impact communication overhead, especially in the Big Data domain.
Eventually, different execution locations might exhibit different a
significantly different energy efficiency to complete the same task.

Workflows are a powerful abstraction to model large-scale scien-
tific applications. They can explicitly model many relevant aspects
of a modular workload, like the requirements of each module, the
data dependencies between different modules, and a global view
of the whole application as a graph. They are an effective inter-
mediate representation for distributed applications. Nevertheless,
workflows alone fail to cover the whole process of workload orches-
tration in the Compute Continuum, and they do not target crucial
non-functional requirements such as interactive execution, energy
efficiency, and performance portability.

For this reason, an entire ecosystem of methodologies and tools is
being developed that revolves around the field of scientific workflow
orchestration. Some aim to lower the barriers between prototyp-
ical workflows and production-ready implementations, allowing
domain experts to interactively access heterogeneous computing
resources through a common, high-level interface. Others start
from a graph-based representation of a complex application and
optimize one or more aspects of its enactment, e.g., scheduling,
data movements, Quality-of-Service (QoS), or energy consumption.
Further approaches expose programming paradigms that serve as
abstraction layers between the application level and the details of
the underlying execution environment (e.g., network, storage, or
hardware architecture), fostering performance portability.

This report stems from a collaboration among many partners
with diverse competencies under the framework of the novel Italian
“National Research Centre for High-Performance Computing, Big Data
and Quantum Computing” (ICSC), which is described in Sec. 1.1.
The adopted approach is derived from the Systematic Mapping
Study (SMS) methodology, which aims at structuring a research
area [7, 58]. Differently from Systematic Literature Reviews, SMSs
are built on general questions to discover research trends. The qual-
ity assessment of primary studies is optional; for instance, primary
studies without empirical evidence can be included. Being the anal-
ysis limited to the Italian scientific community, the present work
deals with the national trends in the HPC and Cloud community.
The 25 universities and research institutes participating in ICSC
have been selected among the most active bodies in the interna-
tional HPC arena. There are few EuroHPC JU 1 research projects
that do not include one or more ICSC partners.

This report aims to document the ICSC ecosystem analytically,
cataloguing current research efforts and investigating how they
meet the real needs of application developers. In particular, it aims
to answer three questions regarding current and future directions
for research on Workflow Management Systems (WMSs):

Q1 Which are the main research directions for WMSs in the
Computing Continuum?

Q2 Which research directions are widespread in the scientific
community?

1The European High-Performance Computing Joint Undertaking,
https://eurohpc-ju.europa.eu/

Q3 Which research directions address a critical need for modern
scientific applications?

We collected 25tools and 10scientific applications from several
domains, and we (manually) classified them into five categories
that segment quite well the primary emerging research directions
(Sec. 2): 1) Interactive Computing, 2) Orchestration, 3) Energy effi-
ciency, 4) Performance portability, and 5) Big Data management.

Then, application developers were asked to select the tools they
deemed helpful in improving execution in a Computing Continuum
environment (Sec. 3). The results of this survey, i.e., the answers to
the previous research questions, are reported in Sec. 4, while Sec. 5
concludes the report by sketching future collaborations.

1.1 The National Research Centre for HPC, Big
Data, and Quantum Computing

The National Research Centre for High-Performance Computing,
Big Data, and Quantum Computing (ICSC) is one of the five Italian
research champions, recently funded by NextGenerationEU with
320M€ (2022-26). It is organized according to a Hub&Spoke model,
where the Hub has coordination functions and the Spokes are sci-
entific departments participated by universities and companies
throughout the national territory. ICSC has 11 Spokes representing
different areas of HPC. Each Spoke has two main research topics
and two scientific leaders.

Spoke 0 – Supercomputing Cloud infrastructure aims to implement
supercomputing infrastructures capable of competing globally and
providing computational resources to the European scientific com-
munity. The extension of the 238 PFLOPS Leonardo supercomputer
with an additional 100 PFLOPS modules ("Mona Lisa," co-funded
by EuroHPC JU) is one of the ongoing action items of Spoke 0.

Spoke 1 – FutureHPC & Big Data and Spoke 10 – Quantum Com-
puting are focused on the platforms, methods, and tools of future
computing. Spoke 1 has an evolutionary vision of next-generation
systems, which will be based on classic architectures and methods
consistent with the Turing Machine model. Spoke 10 looks to a
more distant and necessarily more uncertain future. Quantum Com-
puting promises a possible revolution in computation that goes
beyond the limits of classical physics to which the Turing machine
and its computations are bound.

The remaining Spokes are focused on scientific areas that most
benefit from HPC: Spoke 2 – Fundamental research & space economy;
Spoke 3 – Astrophysics & cosmos observation; Spoke 4 – Earth &
climate; Spoke 5 – Environment & natural disasters; Spoke 6 – Mul-
tiscale modelling & engineering applications; Spoke 7 – Material &
molecular sciences; Spoke 8 – In-silico medicine & omics data; Spoke
9 – Digital society & smart cities. All Spokes are described in detail
on the ICSC website2.

As sketched in Fig. 1, Spoke 1 is organized into 5 scientific Flag-
ships (FLs) and two living labs. This work stems from FL3) Work-
flows & I/O, Cloud-HPC convergence, digital twins of Spoke 1, but
gathers information on applications from all other Spokes. The
objective of Spoke 1–FutureHPC & Big Data is the creation of new
labs as an integral part of a national federated centre on a global
level with skills aimed at hardware and software co-planning and

2https://www.supercomputing-icsc.it
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Figure 1: The Big picture of Spoke 1–FutureHPC & Big Data
(total financial envelope 21,5M€).

enhancing Italian leadership in the EuroHPC JU, as well as in the
ecosystem of data infrastructure for science and industry. [4].

1.2 The Italian ecosystem and beyond
This study only considers the Italian ICSC ecosystem and cannot be
considered a survey of the state-of-the-art workflows at the inter-
national level. Instead, the study aims to discuss research directions
in scientific workflows using the ICSC ecosystem as a statistical
sample of international research on workflows.

Scientific workflows play an essential role in the whole EuroHPC
JU funding program. For example, the ACROSS project3 leverages
pre-exascale infrastructures and effective mechanisms to easily
describe andmanage complexworkflows in a diverse set of scientific
domains, achieving high performance and energy efficiency, and the
eFlows4HPC4 project aims to create a European workflow platform
to enable the design of complex applications that integrate HPC,
Big Data and AI.

In the USA, a similar survey involving 15 partners of the Exascale
Computing Project (ECP) [50] led to the definition of ExaWorks [2],
a workflow Software Development Toolkit (SDK) consisting of a
wide range of workflow management tools that can be composed
and interoperated through standard interfaces. Despite similar in
the scientific aim, e.g., in the definition of a common software stack
(called European Open Stack) [28], the EuroHPC JU is structurally
different from the American ECP project [50]: being a Joint Un-
dertaking, each funded project requires the co-investment of the
European Union and the countries that participate that project (or
tender). For this, leading EU countries in the HPC arena need to
mobilize national funding, which the EuroHPC JU can amplify. All
European precursor-to-Exascale (Leonardo, LUMI, MareNostrum5),
forthcoming Exascale platforms, andmany funded research projects
have been realized thanks to 50% EU and 50% national co-funding.

In addition to institutional research activities, community efforts
are crucial in shaping future research directions. For example, the
Workflow Community Initiative5 is a community-centred effort
3https://www.acrossproject.eu/
4https://eflows4hpc.eu/
5https://workflows.community/

for gathering and promoting long-standing and recent community-
focused efforts in the field of scientific workflow research.

2 RESEARCH DIRECTIONS AND TOOLS
This report analyzes 25different tools from 9 Italian research insti-
tutions. Tools were collected among ICSC Spoke 1 partners in the
context of FL3, which targets large-scale scientific workflows and
their execution in the Computing Continuum (see Fig. 1).

We clustered the collected tools according to their principal re-
search direction. All tools exhibit a primary direction, even if some
cover multiple research topics. As reported in Table 1, five classes
have been identified: interactive computing (Sec. 2.1), orchestra-
tion (Sec. 2.2), energy efficiency (Sec. 2.3), performance portability
(Sec. 2.4), and Big Data management (Sec. 2.5). To answer questions
1 and 1, we discuss the main challenges related to workflow man-
agement in the Computing Continuum, and we briefly introduce
the related tools for each class.

2.1 Interactive computing
The advent of the Cloud-based *-as-a-Service model significantly
lowered the technical barriers to Cloud-based infrastructures, re-
placing Command Line Interfaces (CLIs) with user-friendly web-
based dashboards, promoting an on-demand resource provisioning
paradigm and adopting declarative public web APIs as the primary
communication medium. Conversely, most HPC facilities expose
only SSH-based remote shells, queue management systems, and air-
gapped worker nodes. One of the challenges in scientific workflow
management is to fill this gap, developing user-friendly interac-
tive computing interfaces for HPC systems without compromising
the critical features of these environments, namely, performance,
security, and system-wide usage.

Given their widespread diffusion in diverse scientific domains,
Jupyter Notebooks [70] are a promising technology enabling inter-
active workflows in HPC infrastructures. Jupyter Notebooks have
been designed initially to support scientific computing, from inter-
active prototyping to publication [38]. Nowadays, Jupyter supports
interactive computing in several languages through dedicated ker-
nels and can be offered as a service on Cloud platforms, e.g., through
JupyterHub6 or Google Colaboratory7. Still, enabling Jupyter-based
workflows as a service onHPC facilities poses threemain challenges
addressed by the collected tools.

First, interactive computing requires on-demand resource pro-
visioning, while HPC facilities offer batched executions through
queue managers. However, several batch systems (e.g., SLURM [74])
provide ways to access resources on-demand through advanced
reservations. The BookedSlurm plugin introduces a methodology
to easily create resource reservations through a web calendar and
account for them under a pay-per-use mode using a digital currency.

Second, the standard transport layer (i.e., ZeroMQ) requires a
bidirectional TCP connection between the publicly exposed front-
end web server and the air-gapped worker nodes, commonly not
allowed in HPC centres. The Interactive Computing Service (ICS)
[19] integrates the Jupyter stack with the SLURM controller to
interactively provide near-instantaneous access to HPC resources.

6https://jupyterhub.readthedocs.io/en/stable/
7https://colab.research.google.com
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Table 1: Collected tools classified in five research directions.

Interactive computing Orchestration Energy efficiency Performance portability Big Data management

BookedSlurm TORCH [72] PESOS [16] FastFlow [5] ParSoDA [10]
ICS [19] INDIGO [23] Lapegna et al. [41] Nethuns [12] MALAGA
Jupyter Workflow [20] Liqo [37] De Lucia et al. [46] INSANE [64] aMLLibrary [33]

StreamFlow [21] CAPIO [47] WindFlow [49]
SPF [53] BLEST-ML [14] CHD [18]
BDMaaS+[17] MLIR [43] Mingotti et al. [51]
MoveQUIC [59]

Third, the standard execution flow of Notebook cells is purely se-
quential, preventing users from modelling applications as workflow
graphs. The Jupyter Workflow [20] kernel enables Jupyter Note-
books to describe and orchestrate complex distributed workflows,
where each cell is seen as a step and inter-cell dependencies are
extracted semi-automatically by inspecting the Abstract Syntax
Tree (AST) of each code cell.

2.2 Orchestration
The micro-service and Function-as-a-Service (FaaS) paradigms fos-
ter modularity of applications and infrastructure-agnostic deploy-
ments, simplifying maintainability and enhancing portability. The
FaaS paradigm recently percolated to Edge and Fog environments,
pushing towards a Cloud-Edge Continuum. Hence, the serverless
computing model attracts attention in scientific workflow manage-
ment as a primary execution infrastructure [8, 62] or combined
with HPC facilities in hybrid settings [65].

If this approach simplifies operations from the application de-
velopers’ point of view, it moves all the deployment and life-cycle
management aspects to the provider side. Hence, there is a need
for advanced orchestration algorithms and tools capable of guaran-
teeing near real-time responses for function invocations indepen-
dent of the underlying deployment infrastructure. When moving
to the Continuum, additional aspects emerge. Function placement
decisions become vital as invocation performance rises from the
combination of available computing power and near-data process-
ing. Plus, efficient migration strategies are crucial whenever data
sources expose high dynamicity in their generation rate.

Seven of the collected tools target orchestration in the Comput-
ing Continuum. TORCH [72] and the INDIGO orchestrator [23]
are TOSCA-based frameworks for deploying and orchestrating ap-
plications targeting multi-Cloud environments. Liqo [37] enables
dynamic and seamless Kubernetes multi-cluster topologies. Stream-
Flow [21] orchestrates hybrid workflows on top of heterogeneous
Cloud/HPC environments. SPF [53] is a Fog-as-a-Service platform
targeting Smart City environments. BDMaaS+ [17] is a decision
support tool for service providers who want to distribute an IT
service on a global scale relying on private and public Cloud plat-
forms. Finally, MoveQUIC [59] is a toolbox for the live migration
of micro-services at the Edge.

2.3 Energy efficiency
Energy consumption is a key indicator in the whole spectrum of the
Computing Continuum. On the HPC side, there is growing attention
on measuring and reducing the carbon footprint of computational

research [36, 39, 40], even if initiatives promoting sustainable HPC
have existed for several years. For example, the Green500 list [29],
which ranks supercomputers based on the amount of power needed
to complete a fixed amount of work, dates back to 2007.

With the entire Computing Continuum available, a viable solu-
tion is to adopt energy-aware placement algorithms [44], which
try to minimize the carbon footprint of workload executions with-
out violating QoS requirements. Another possibility is to move
computations on Edge sensors whenever possible. Besides relying
on low-power hardware, this strategy also removes data transfers,
saving additional energy. However, efficiently exploiting this class
of devices requires resource-constrained algorithms and implemen-
tations.

Three of the collected tools address energy efficiency and low-
power devices. PESOS [16] is an energy-efficient resource manage-
ment algorithm for the placement of VMs in a Cloud environment,
aiming to minimize the energy footprint of the overall platform
while considering the QoS requirements of each VM. Lapegna et al.
[41] investigate how to implement clustering algorithms on parallel
and low-energy devices for Edge computing. De Lucia et al. [46]
propose a technique to make hyperspectral image classification
through convolutional neural networks affordable on low-power
and high-performance sensor devices.

2.4 Performance portability
Performance portability can be defined as a measurement of an ap-
plication’s performance efficiency for a given problem that executes
correctly on a set of platforms [57]. In practice, it derives from the
composition of two opposing forces. Gaining portability across a set
of diverse execution environments requires high-level abstractions,
agnostic of the specific hardware stack that the application will
target at runtime. On the other hand, maximizing performance re-
quires a deep knowledge of the target execution architecture, such
as the network topology and speed, the cache sizes, the amount of
memory, and the presence or absence of high-end storage devices.

The heterogeneity of hardware accelerators that followed the
end of Dennard scaling and the increasing modularity of modern
scientific applications made performance portability libraries cru-
cial for any large-scale scientific application that targets production
usage. Commonly, a performance portability library is composed of
two key elements. A programming model provides developers with
abstractions between the application and one or more low-level
resources, e.g., network, memory, storage, or data structures. Each
abstraction is then translated into an efficient implementation opti-
mized for a specific target execution environment, e.g., a high-end
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network with smart NICs, a high-bandwidth burst buffer, or a dis-
tributed data structure. Depending on the library, this translation
can happen at compile time [27] or runtime [32].

Six of the collected tools target different aspects of performance
portability. FastFlow [5] leverages the structured parallel program-
ming methodology to define a single streaming dataflow program-
ming model for shared-memory and distributed-memory systems.
Nethuns [12] and INSANE [64] abstract the network layer, exposing
a minimal set of communication primitives. CAPIO [48] provides a
programmable file system in user space that intercepts the POSIX
I/O system calls of an application, allowing users to target different
devices and inject data streaming capabilities without modifying
the existing codebase. BLEST-ML [14] leverages a machine learning
algorithm to estimate a suitable block size for data partitioning in
large-scale HPC infrastructures, optimizing data-parallel applica-
tions. Finally, MLIR [43] extends the LLVM toolchain with domain-
specific middle-end representations to make compiler-level code
optimizations more flexible.

2.5 Big Data management
With the advent of Big Data and the rise of Deep Learning, novel al-
gorithms based on neural networks began to co-exist with standard
simulation approaches in large-scale scientific workflows. If the
training of huge neural models is still anchored to HPC facilities,
data pre-processing and inference steps are becoming first-class
citizens in geographically distributed Big Data pipelines, prefer-
ring near-data processing approaches for better performance and
privacy. On the other hand, workflows are proving their worth in
modelling and orchestrating Deep Learning pipelines [22, 45].

As in the case of traditional scientific workflows, most Big Data
tools expose a dataflow paradigm [52]. However, the Big Data do-
main requires a higher expressive power of dataflow operators to
support batch, micro-batch, and streaming execution models [1].
Also, advanced data structures [75] are fundamental to seamlessly
enable distributed in-memory computations, ensuring near-data
processing and avoiding I/O and data transfer overhead.

Moving Big Data analytics and Deep Learning pipelines to the
Continuum poses new challenges. Data are commonly collected,
filtered, and pre-processed at the Edge and moved to large data
warehouses for parallel data mining and large models’ training.
Domain experts need tools and algorithms to support pluggable
data processing operators for diverse data types, from images to
graphs to geospatial information. At runtime, they should coordi-
nate the execution of such operators from Edge to Cloud transpar-
ently, providing efficient implementations targeting multi-core and
distributed architectures and exploiting heterogeneous hardware
devices when available.

Six of the collected tools belong to the Big Data ecosystem.
ParSoDA [10] is a Java programming library supporting parallel
data mining applications executed on HPC systems. MALAGA is
a Hadoop-compliant Java-based framework for multi-dimensional
Big Data analytics over graph data. The aMLLibrary [33] is a high-
level Python package that trains and optimizes multiple perfor-
mance models using autoML, supporting feature selection and hy-
perparameter tuning. WindFlow [49] is a high-level library for con-
tinuous data stream processing onmulti-core and hybrid CPU+GPU

architectures. CHD [18] implements a parallel multi-density cluster-
ing approach to discover urban hotspots in a city. Finally, Mingotti
et al. [51] implement a Real-Time Simulator (RTS) of a Phasor
Measurement Unit (PMU) supporting hardware-in-the-loop (HIL)
simulation techniques.

3 APPLICATIONS
This Section describes 10scientific applications from 11 ICSC part-
ners. Application providers were asked to identify, among the tools
listed in Sec. 2, those that they deemed valuable to improve the
current status of their workload, with a specific focus on workflow
execution in a Computing Continuum environment. The results of
this selection are summarized in Table 2. Aiming to answer question
1, this Section provides, for each application, a brief description
of the workload, the list of tools chosen for integration, and the
reasons behind these choices.

3.1 Compression of petascale collections of
textual and source-code files

The case study for this application is the Software Heritage ini-
tiative8. It aims to collect the complete history/heritage of human
coding publicly available, replicate it massively to ensure its preser-
vation and share it with everyone who needs it, from science to
industry. The Software Heritage archive is reported to contain over
800 TB of data. Since the archive is steadily growing, the conse-
quent impact on the scalability and storage cost of the archive and
its mirrors is becoming a serious concern, not only in economic
terms but also in terms of energy demands and the environmental
impact of operating storage devices and replacing them when worn
out. Compressing large collections of files is very challenging, and
this problem was addressed in the past with various techniques.

The application is based on the so-called PPC paradigm [30]:
Permuting + Partition + Compress, whose main algorithmic idea is
to permute the files, bringing the "similar" files close to each other,
partition them into blocks (of proper size); and eventually, compress
each block with a suitable compressor (whose compression window
is at least larger than the block size). This application aims to address
the current limits of the PPC framework: it is based on a single-
threaded implementation in Python, and it can manage GBs of data,
but it cannot scale to TBs/PTs.

In order to address the mentioned challenges, the intention is to
extend the compression libraries to a parallel and distributed sce-
nario by adopting tools for parallel and distributed batch processing
across clusters. ParSoDA can be used to define a data compression
pipeline composed of three main phases: parallel sorting of files
based on their filenames or other content- or context-based fea-
tures; serialization and grouping of files in blocks of predefined
size; parallel compression of those blocks of files by commodity
or ad-hoc compressors. FastFlow can implement the entire data
compression workflow expressing stream parallelism between the
different phases, thus enabling their overlap.WindFlow can acceler-
ate intra-node parallelization phases requiring complex streaming
semantics and use HW accelerators.

8https://softwareheritage.org
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Table 2: The list of collected scientific applications and the tools identified for integration.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10

Interactive computing
BookedSlurm
ICS ✓ ✓
Jupyter Workflow ✓ ✓

Orchestration

TORCH
INDIGO ✓ ✓
Liqo ✓ ✓
StreamFlow ✓ ✓ ✓
SPF
BDMaaS+ ✓ ✓
MoveQUIC ✓ ✓

Energy efficiency
PESOS ✓
Lapegna et al.
De Lucia et al.

Performance portability

FastFlow ✓
Nethuns ✓ ✓
INSANE
CAPIO ✓ ✓
BLEST-ML
MLIR ✓

Big Data management

ParSoDA ✓ ✓
MALAGA
aMLLibrary ✓ ✓
WindFlow ✓
CHD
Mingotti et al. ✓

3.2 Astrophysics data analysis and visualization
Over the years, the astrophysics domain has developed a set of
ad-hoc tools and software modules to tackle the challenging par-
ticularities of the field. With the emergence of high-performance
visualization and Visual Analytics as enabling technologies, some
of these components become candidates to be replaced by either
faster, more accurate, or more efficient data-driven technologies
modelling pre-processing, runtime, and post-processing stages.

The tool considered for this application is VisIVO [35, 69], de-
veloped by adopting the Virtual Observatory standards. Its main
objective is to perform 3D and multi-dimensional data analysis
and knowledge discovery of unknown relationships between multi-
variate and complex astrophysical datasets. VisIVO requires three
steps to render the visualization: data importing, filtering, and view-
ing. The importing process converts the supplied datasets (orig-
inally in different formats) into an internal binary format. The
filtering process allows several operations on the data, e.g., ran-
domization or decimation to reduce the final resolution, mathe-
matical or statistical operators, or commonly adopted cosmological
post-processing. Finally, the visualization process creates multi-
dimensional views from the data that must fit the available RAM.

The evolution direction of VisIVO is tailored to pursue the fol-
lowing objectives: enhancing the portability of the VisIVO modular
applications and their resource requirements; fostering reproducibil-
ity and maintainability; taking advantage of more flexible resource
exploitation over heterogeneous HPC facilities (including mixed
HPC-Cloud resources); minimizing data-movement overheads and

improving I/O performances. For this, the integration of VisIVO
with two groups of tools is considered. StreamFlow, Jupyter Work-
flow, and ICS allow a portable representation of the VisIVOmodular
applications and their resource requirements, foster reproducibility
and maintainability, and allow taking advantage of heterogeneous
HPC facilities while minimizing data-movement overheads. CAPIO
andNethuns can boost VisIVO I/O performances without modifying
the original codebase and allow it to coordinate the I/O within its
modules.

3.3 Genomic variant calling pipeline
This application aims to increase the flexibility of the prototype
defined above by looking at its execution model. The objective is
to remotely run the process on an HPC system by exploiting the
StreamFlow WMS. In particular, the intention is to adapt the current
implementation of the pipeline to the StreamFlow environment.
StreamFlow allows the remote execution of the pipeline, making
the whole execution more agile. The increased flexibility will allow
testing the pipeline in several other (possibly heterogeneous) execu-
tion environments. Therefore, the integration outcome will provide
fast provisioning and make it possible to evaluate the effects of
system hardware/software aspects, such as the availability of GPUs
or different storage and file systems in the host machines.
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3.4 Edge-Cloud Continuum federation
infrastructure

The observed evolution of the computing space warranted by net-
working suggests the emergence of a decentralized, federated, yet
seamless organization. This prediction evokes the concept of the
Continuum as a platform infrastructure where data processing may
take place dynamically and where it is deemed most convenient
under any of the criteria of interest to the end user (e.g., latency,
privacy, and energy). This concept enables the traditional Internet
and the Internet of Things to integrate into a seamless Contin-
uum, where many *-as-a-service applications may be developed,
deployed, and employed regardless of the location.

The architectural concept of this application assumes workflow
executions that traverse service components deployed dynamically
across compute-capable nodes of the Edge-to-Cloud Continuum.
This vision gives rise to the notion of "dynamic orchestration," in
which a workflow is specified in terms of required services, and the
matching to provided services may be resolved dynamically based
on user preferences, service levels, privacy, energy, and latency
requirements. Therefore, deploying service components selected
for the workflow may be dynamic and opportunistic, and may also
contemplate mobility and migration.

Allowing compute bundles to migrate requires understanding
that they may have ongoing communications with client endpoints,
which may also share a connection state. This scenario requires
server-side connection migration, which MoveQUIC may support.
The next level up in the application system concept is the orches-
trator control plane across federations of Compute nodes. In that
direction, the intention is to incorporate a single cluster zone in
larger federations using Liqo. Describing and deploying the user
application as a dynamic orchestration of a workflow execution
will need a flexible orchestration platform for which the plan is to
explore the use of the INDIGO orchestrator.

3.5 Serverledge: QoS-Aware FaaS in the
Edge-Cloud Continuum

Serverledge [66] has been designed to fill the gap between Edge and
Cloud and provides a flexible and extensible framework for the FaaS
paradigm in geographically distributed environments. Serverledge
provides a suitable framework for low-latency FaaS execution in
the Edge-Cloud Continuum. However, several challenges must be
addressed to fully support QoS-aware execution and scheduling in
such a dynamic environment. The two main directions in which
Serverledge can evolve are improving the runtime management
layer by providing live function migration and supporting energy-
efficient orchestration.

While serverless functions usually have a short duration, long-
running functions are gaining popularity as approaches for server-
less data analytics and machine learning. The existence of such
workloads at the edge calls for live migration mechanisms to mi-
grate running instances, free up resources as needed, or, in gen-
eral, respond to adaptation needs. Indeed, function migration to
a different node can allow the system to revise initial scheduling
decisions that become far from optimal over time, reschedule a
resource-consuming and long-running function on a different node
with more powerful resources, or support the smooth movement

of mobile users during function execution. In this direction, the
considered tool is MOVEQuic.

The other intention is to integrate Serverledge with the energy-
efficient orchestration provided by PESOS. The goal is to provide
holistic energy-efficient management from FaaS execution at the
Edge to FaaS frameworks deployed in Cloud data centres. This
goal is achieved by managing how FaaS resources are redirected to
different Cloud nodes and by taking into account the current load
of each node and trying to consolidate the allocation of resources
to power off some of the nodes whenever possible. PESOS will be
extended and integrated with the Serverledge toolkit to manage
heterogeneous Cloud and Edge nodes.

3.6 Improving I/O phases in computational
modelling of Galaxy Formation

The formation and evolution of galaxies and Supermassive Black
Holes at their centres is a central theme of contemporary As-
trophysics and Cosmology. Numerical modelling of this problem
has proven to be challenging due to the long-range nature of the
gravitational interaction, which cannot be shielded [34]. For these
reasons, the computational complexity of algorithms devised to
model galaxy formation and evolution poses challenging problems
when implemented in parallel codes. Astrophysical codes are often
adopted as testbeds of new hardware architectures, as they can
challenge their scaling capabilities.

The considered application is designed to cope with a well-
known state-of-the-art parallel code, FLASH [31]. This code imple-
ments a spatial and temporal partition based on an Adaptive Mesh
Refinement decomposition and a rather sophisticated hierarchical
tree scheme to deal with the long-range gravitational interactions.
Despite its modular architecture, allowing considerable flexibility
in designing target-specific numerical experiments and physical
simulations is a very complex task. Plus, some related tasks are
not supported by the FLASH library. Instead of producing new
modules in FLASH to undertake these tasks, it is more convenient
to glue FLASH together with other packages specifically designed
to resolve the desired computation, e.g., SYGMA [63].

This application implements a workflow in which FLASH and
SYGMA run concurrently and asynchronously to perform different
tasks, periodically synchronizing their outputs for physical con-
sistency. Inside FLASH, the paths to the libraries (including those
specific to I/O) are stored in a site-specific configuration file with
compilation and link-specific options. The main intention of this
application is to improve the I/O of both the large datasets produced
by FLASH and during data exchange between FLASH and SYGMA.
More specifically, CAPIO middleware will be used to boost the I/O
performance of the FLASH-SYGMA workflow without modifying
the original codes, and Nethuns will be used to improve the I/O
of the large data outputs produced by FLASH, i.e., of both check-
points and data files. This aspect is particularly relevant, as parallel
I/O is seen as one of the major bottlenecks in exploiting FLASH
capabilities on future exascale architectures.

3.7 WorldDynamics.jl
WorldDynamics.jl is an open-source Julia package that provides a
modern framework to investigate Integrated Assessment Models
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(IAMs) of sustainable development benefiting from Julia’s ecosys-
tem for scientific computing. An IAM aims to integrate the critical
aspects of society and economy with the biosphere and atmosphere
within a unified modelling framework, providing informed pol-
icymaking in different contexts such as climate change, human
development, and social development. The goal of WorldDynam-
ics.jl is to allow users to easily use and adapt different IAMs, from
World3 to recent proposals.

This application, available at [24], is a modern framework based
on current software engineering and Machine Learning techniques
to investigate models of global dynamics focused on sustainable
development. Among its features, it can recreate all the figures
found in books that detail the World1, World2, and World3 models,
perform sensitivity analysis by adjusting the initial values of vari-
ables, and analyze alternative scenarios by modifying either the
model’s parameters or the interpolation tables, which are utilized
to approximate non-linear functions through linear segments.

WorldDynamics.jl would benefit frommore readable access to its
models and workflows. Integration with Jupyter Workflow would
make WolrdDynamics.jl more accessible and allow model execu-
tions in a distributed fashion, improving the performance and read-
ability while exploiting HPC architectures. On the other hand, inte-
grationwith BDMaaS+would speed up the process and run different
models (and simulations) in a parallel fashion.

In addition, the intention is to investigate Machine Learning
techniques and the data furnished by real-time simulators. The
aMLLibrary already implements regression, which is the base case
of WorlDynamics.jl model discovery algorithm. Furthermore, aML-
Library can make a better exploitation of the available data. Also,
the toolMingotti et al. proposed can be plugged into the application
model as a source of new data and, hence equations. Indeed, the
models proposed until now are generally based on coarse-grain
data. In contrast, the tool proposed by Mingotti et al. allows for
building a more precise subsystem alongside extrapolating valuable
data for global consumption.

3.8 Optimized deployment of Cloud-native
applications in the Cloud Continuum

Multi-Cloud and Cloud Continuum scenarios refer to many in-
terconnected computing resources consisting of Cloud, Edge, and
on-premises resources, usually located in different locations with
possibly different ownership, renting prices, and sizes. The high
heterogeneity of the Cloud Continuum introduces many challenges
from the service management perspective. One of them is the iden-
tification of optimized deployments for HPC applications, which
require high computational resources. On the one hand, to mini-
mize the overall provisioning costs, a service provider would like
to deploy its application by analyzing the pricing perspective, thus
looking at the renting prices of the chosen execution environment,
such as Kubernetes clusters or vanilla Virtual Machines (VMs). On
the other hand, communication latencies between different comput-
ing locations might play a crucial role in assessing the performance
of complex workflows, such as the ones of HPC applications. The
state-of-the-art orchestration components are not designed to con-
sider all these requirements and to fully benefit from the capabilities
of multi-Cloud and Cloud continuum scenarios.

This application is designed to solve these challenges by present-
ing a novel approach integrating three different tools: BDMaaS+,
INDIGO, and Liqo. This integration aims at enabling an optimized
deployment of complex Cloud-native applications over multi-Cloud
and cloud continuum scenarios by exploiting the capabilities of
multiple and distributed computing clusters. To illustrate the ap-
plication design, the considered use case describes a provider in-
terested in deploying an HPC application. First, the provider needs
to describe the application case and its workflow using the stan-
dardized TOSCA notation. Then, the INDIGO orchestrator interacts
with BDMaaS+ to find the most appropriate computing resources
considering the application requirements, provider-defined policies
(pricing, latency), and the current availability of resources among
the multi-Cloud. After that, BDMaaS+ returns to INDIGO the in-
formation on the computing resources that can sustain the QoS
demanded by the composite Cloud application described in the
TOSCA blueprint.

Given such fresh data, the INDIGO orchestrator produces an
application deployment plan that includes Kubernetes "intents."
The orchestrator will then enforce the application provisioning
by invoking the Liqo API and providing it with the Kubernetes
intents defined above. Guided by the deployment requests issued by
the INDIGO orchestrator, Liqo dynamically creates a federation of
networked computing resources. It will then instantiate, configure,
and run the application’s distributed components in the federation.

3.9 Anomalous subgroup characterization with
DivExplorer

DivExplorer [55, 56] is an automatic approach for exploring datasets
and finding subgroups of data for which a model behaves anoma-
lously. The notion of divergence is introduced to estimate the dif-
ferent classification behaviours in data subgroups concerning the
overall behaviour. Subgroups are characterized by attribute values,
making the subgroups directly interpretable. DivExplorer effec-
tively integrates performance and divergence into the exploration
process, leveraging frequent pattern mining algorithms and en-
abling efficient exploration of all subgroups with adequate repre-
sentation in the dataset. The approach also handles hierarchical
subgroup exploration over data hierarchies [54] and proved its
effectiveness also on complex models such as speech ones.

This application represents a comprehensive framework to an-
alyze the behaviour of Machine Learning models, focusing on pe-
culiarities at the subgroup level. Having as its core component
the DivExplorer approach, it covers multiple directions: handling
Big Data and Big Data models, generalizing to multiple tasks and
models, proposing novel methodologies for model comparison and
selection, leveraging subgroup analysis for model improvement,
and integrating subgroup analysis into interactive frameworks en-
abling access to computational data on an HPC system.

The intention is to investigate the integration of DivExplorer
with three different tools. In the aMLLibrary, the analysis of perfor-
mance at the subgroup could be a relevant component for validating
and choosing the best regression model. Therefore, integrating Di-
vExplorer and aMLLibrary would enable a comprehensive model
comparison and selection for the regression task. The Interactive
Computing Service would enable access to computational data on an
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HPC system, enabling a seamless workflow capable of streamlining
the analysis process. The subgroup analysis functionality would be
directly accessible in the Jupyter launcher of the IAC interface. By
accessing subgroup analysis via IAC, users can easily access and
analyze relevant data, build models, and explore subgroup-specific
behaviour in a unified and cohesive manner. Finally, integrating the
Big Data implementation of DivExplorer with the ParSoDA library
would simplify the development of parallel data mining applica-
tions executed on HPC systems by using the set of functions of
ParSoDA for processing and analyzing data.

3.10 Compilation flow and deployment strategy
targeting HPC RISC-V accelerators

Generating efficient executable code for HPC and Cloud computing
architectures is complex. Compiler toolchains play a crucial role in
providing techniques and methodologies to achieve optimal work-
load mapping. This scenario poses a severe challenge for efficient
compiler design. The high-level structure of a standard compiler
toolchain includes three main stages: front-end, middle-end, and
back-end. The front-end stage recognizes legal programs and pro-
duces an intermediate representation (IR) with an abstraction level
suitable for later transformations. The middle-end and back-end
optimization passes transform an input program representation
into an equivalent one optimized for a target metric (e.g., speed,
size, or safety), and the design of the IR language must simplify this
goal, adopting machine-independent or machine-specific knowl-
edge, respectively.

In recent years, compiler researchers and companies have ex-
plored an approach based on Multi-Level Intermediate Representa-
tion (MLIR) [43]. MLIR introduces a set of domain-specific middle-
end representations geared toward domain-specific optimizations,
allowing different levels of abstraction to co-exist freely using a
uniform IR grammar.

This application aims to demonstrate the MLIR flow into an HPC
environment, supporting high-level workloads targeting experi-
mental RISC-V accelerators. The specification and initial design
of MLIR abstractions for a RISC-V accelerator for HPC computing
are completed. A research prototype is available as an open-source
project [76, 77]. The application prototype will implement the low-
level representations required to target a RISC-V accelerator and
the related transformations from high-level representations down
to LLVM [42] IR. It will also manage the orchestration of the opti-
mization flow. StreamFlow is chosen as a workflow management
tool to orchestrate the MLIR transformation steps.

4 DISCUSSION
This Section quantitatively analyzes the collected data to answer the
three research questions introduced in Sec. 1. Despite being specif-
ically related to the Italian research community, most of what is
discussed below aligns with the future directions of scientific work-
flows outlined in recent literature for the whole research ecosystem.

Q1. Which are the main research directions for
WMSs in the Computing Continuum?
This report identifies five main research directions: interactive com-
puting, orchestration, energy efficiency, performance portability,

3
7

3

6 6

Interactive computing

Orchestration
Energy efficiency
Performance portability
Big Data management

Figure 2: Pie chart reporting the tool distribution over the
five identified research domains.

and Big Data management. These findings overlap with recent
literature’s beliefs about the future directions of scientific work-
flows. Ben-Nun et al. [11] identify performance portability as a
crucial aspect of Exascale applications. They propose workflows as
a programming model to achieve it, aided by advanced orchestra-
tion tools and high-level interfaces (which fall under the broader
scope of "productivity"). Dube et al. [26] identify performance porta-
bility across heterogeneous devices and High-Performance Data
Analytics in the Continuum as crucial ingredients to realize an
"Internet of Workflows," i.e., to dynamically compose workflows
and deploy them across multiple organizational and geographical
boundaries. The 2022 Workflow Community Summit report [25]
identifies "Workflows for Continuum and Cross-Facility Comput-
ing" as a critical research direction for the workflow community. It
underlines how Big Data management and intelligent orchestration
represent crucial challenges in this topic.

The presence of energy efficiency as a key research direction is
interesting. Despite several works in the literature about energy-
efficient scheduling of scientific workflows [13, 15, 67], this topic is
rarely seen as a first-class citizen in workflow research’s roadmap.
However, orchestrating workflows in the full spectrum of Com-
puting Continuum means including low-power Edge devices and
sensors as potential execution locations. This requires including
energy consumption in workflow requirements and developing a
new class of energy-aware WMSs

On the other hand, the absence of tools covering crucial as-
pects of distributed workflow orchestration, such as performance
monitoring, provenance collection, fault tolerance, and security, is
unexpected. Properly handling all these aspects will be a relevant
goal for the project’s subsequent phases.

Q2. Which research directions are widespread in
the scientific community?
Fig. 2 shows the distribution of collected tools over the five identi-
fied research domains. The effort is quite balanced among the differ-
ent research directions, with 3 tools covering interactive computing
and energy efficiency (12%) and 7 addressing diverse orchestration
aspects (28%). These data imply that there is no single, predomi-
nant research line in distributed workflow management but several
independent efforts that contribute to scientific advancement.

Fig. 3 shows how many research directions are covered by the
tools provided by a single institution. It is worth noting that more
than half of the involved institutions cover a single research topic,
and no institutions span the whole set of identified directions. These
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Figure 3: Histogram reporting how many research directions
are covered by the tools provided by a single institution.
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Figure 4: Pie chart reporting how the tools selected for inte-
gration distribute over the five identified research domains.

findings underline how collaborative initiatives are crucial for pro-
viding direct links between highly specialized groups and building
a holistic research ecosystem around scientific workflows.

Q3. Which research directions address a critical
need for modern scientific applications?
Fig. 4 shows how the tools selected by each application provider
are distributed over the five identified research domains. Compared
with Fig. 2, the distribution here is much more unbalanced, ranging
from a single vote (below 3.6%) in the energy efficiency domain to
11 votes (above 39%) in the orchestration domain.

Developing a solid orchestration infrastructure targeting Com-
puting Continuum is critical for current scientific workloads. Flex-
ibility, intended as portability across potentially heterogeneous
computing environments, and the possibility to create dynamic
federations stand out as the most desirable properties of such in-
frastructure. Along this line, advanced placement algorithms such
as BDMaaS+ [17] are perceived as crucial to optimize resource
allocations in such complex environments.

Interactive computing, performance portability, and Big Data
management have aroused significant interest, with at least three
application providers identifying them as critical needs (see Table 2).
Jupyter Workflow [20] and the Interactive Computing Service [19]
are seen as a way to increase application accessibility to the end
users through high-level interfaces to HPC centres. Performance
portability libraries can improve performance with little to no mod-
ification to the codebase, i.e., without affecting maintainability.
Along this line, high-performance Big Data runtimes like ParSoDA

[10], and WindFlow [49] can inject data parallelism in scientific
workloads without significantly modifying existing data structures.

The little interest in energy efficiency that emerges from Fig. 2
is partly justified by the fact that two out of three collected tools
target specific algorithms (i.e., clustering [41] and hyperspectral
image classification [46]), reducing their applicability to a limited
range of applications. Only Serverledge enumerates energy-efficient
orchestration in the Continuum as a critical need (see Sec. 3.5).

5 CONCLUSION AND FUTUREWORK
Aiming to outline the main current research directions in the Italian
community and determine how they address the critical needs of
modern scientific applications, this work collected and analyzed 25
tools and 10 applications from several Italian research institutions
in the context of the ICSC Spoke 1 initiative.

The tools were clustered into five research directions, i.e., inter-
active computing, orchestration, energy efficiency, performance
portability, and Big Data management. These directions overlap
with recent literature’s beliefs about future directions of scientific
workflows, with the interesting exception of energy efficiency. In-
deed, despite being crucial to target both Edge Computing and next-
generation supercomputing platforms, energy efficiency is rarely
perceived as a first-class citizen in WMSs’ development roadmap.

Applications providers were asked to identify the tools they
deemed valuable to improve the current status of their workload,
with a specific focus on workflow execution in the Compute Con-
tinuum. The results of this selection highlight a prominent interest
in advanced workflow orchestration and a still significant interest
in all research directions but energy efficiency, partly due to the
domain-specific nature of the collected tools.

The next phases of the Spoke 1 of ICSC work program will
be focused on implementing the proposed tool integrations and
testing them on pipelines from applicative Spokes and industries.
This is expected to produce two scientific results. Firstly, to select
tools that are suitable to be integrated into the larger software
ecosystems, for example, the European Open Stack promoted by
EuroHPC JU [28]. Secondly, to evaluate the actual added value
the tools and their integration bring to the scientific workflow
ecosystem. This evaluation will be the subject of the forthcoming
project deliverables and follow-up scientific reports. As a byproduct,
the close cooperation between different research institutions will
contribute to creating a solid workflow research community at
the national level, with this report serving as a primer for new
researchers and institutions that may wish to join.

ICSC also targets cooperation with the industrial sector, mean-
ing that additional applications with higher Technology Readiness
Levels (TRLs) will be introduced in the ecosystem. Assessing if
industrial and academic applications share the exact critical needs
will be an interesting subject for further investigation.
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