
Published online 29 May 2023 Nucleic Acids Research, 2023, Vol. 51, Web Server issue W451–W458 

https://doi.org/10.1093/nar/gkad455 

PhD-SNPg: updating a webserver and lightweight tool 
for scoring nucleotide variants 

Emidio Capriotti 1 ,* and Piero Fariselli 2 ,* 

1 BioFolD Unit, Department Pharmacy and Biotechnology (FaBiT), University of Bologna, Via F. Selmi 3, Bologna 

40126, Italy and 

2 Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Torino, Italy 

Received March 31, 2023; Revised May 08, 2023; Editorial Decision May 09, 2023; Accepted May 14, 2023 

A

O
i
c
(
m
s
s
t
f
t
s
E
p
i
a
a
l
t
o
o
S
r
t

G

I

R
e
m
t
t

*

C

©
T
(
i

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/W

1/W
451/7184161 by guest o
BSTRACT 

ne of the primary challenges in human genetics 

s determining the functional impact of single nu- 
 leotide v ariants (SNVs) and insertion and deletions 

InDels), whether coding or noncoding. In the past, 
ethods have been created to detect disease-related 

ingle amino acid changes, but only some can as- 
ess the influence of noncoding variations. CADD is 

he most commonly used and advanced algorithm 

or predicting the diverse effects of genome varia- 
ions. It employs a combination of sequence con- 
ervation and functional features derived from the 

NCODE project data. To use CADD, a large set of 
re-calculated inf ormation m ust be downloaded dur - 

ng the installation process. To streamline the vari- 
nt annotation process, we developed PhD-SNP 

g , 
 machine-learning tool that is easy to install and 

ightweight, rel ying solel y on sequence-based fea- 
ures. Here we present an updated version, trained 

n a larger dataset, that can also predict the impact 
f the InDel variations. Despite its simplicity, PhD- 
NP 

g performs similarly to CADD, making it ideal for 
apid genome interpretation and as a benchmark for 
ool development. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

ecent advances in sequencing technology have led to an 

xponential growth of the observed genetic variants in hu- 
ans ( 1 , 2 ), whose effects are poorly understood. Most of 

he available data were generated by international consor- 
iums, aiming to characterize the pattern of genetic varia- 
ions across individuals ( 3 , 4 ) and identify mutations associ- 
ted with human diseases ( 5 , 6 ). 

Thus, predicting the functional effect of genetic variants 
s a key challenge for interpreting the human genome, and in 

urn, for implementing more accurate diagnostic and treat- 
ent strategies ( 7 , 8 ). In the last few y ears, sever al meth-

ds have been developed for predicting the impact of Sin- 
le Nucleotide Variants (SNVs) and Insertions / Deletions 
InDels) on human health. Ne v ertheless, fe w of them can 

ssess the effect of those genome variations in noncoding 

egions ( 9 ). 
One of the primary challenges in human genetics is deter- 
ining the impact of these genetic variations. Se v eral meth- 

ds have been developed to identify disease-related single 
9 051 209 4286; Email: emidio .capriotti@unibo .it 
unito .it 

ids Research. 
Attribution-NonCommercial License 
-use, distribution, and reproduction in any medium, provided the original work 
m 

https://orcid.org/0000-0002-2323-0963
https://orcid.org/0000-0003-1811-4762


W452 Nucleic Acids Research, 2023, Vol. 51, Web Server issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/W

1/W
451/7184161 by guest on 06 Septem

ber 2023
amino acid changes. Howe v er, fe w tools are availab le to
score the impact of noncoding variants, which is crucial for
understanding their contribution to disease ( 10 ). 

Among the most popular algorithms for predicting the
effect of SNVs in noncoding regions are CADD ( 11 ) and
FATHMM ( 12 , 13 ). These tools combine sequence conser-
vation with functional features deri v ed from the ENCODE
project data. Howe v er, the installation process for these al-
gorithms r equir es do wnloading a lar ge set of pre-calculated
information, which can be time-consuming and r esour ce-
intensi v e. To address this issue, we created PhD-SNP 

g , a
lightweight tool that relies solely on sequence-based fea-
tures ( 14 ). 

This paper presents an updated PhD-SNP 

g version,
which introduces some novelties. First, it is trained on
a more e xtensi v e set of variants (more than three times
than the original method), improving the previous perfor-
mance. Second, the new version of PhD-SNP 

g can also
deal with InDel predictions in coding and noncoding re-
gions. Finally, PhD-SNP 

g e xpands the e volutionary infor-
mation by extending the input conservation scores from
100 to 470 aligned species (from Ph yloP7 / Ph yloP100 to
Ph yloP100 / Ph yloP470). 

PhD-SNP 

g is designed to be easy to install and use, and
it is available both as a w e b server and standalone soft-
ware for processing large datasets of variants locally. The
machine learning core of the tool is trained only on com-
parati v e information in the form of conservation scores cal-
culated from multiple sequence alignments extracted from
the UCSC repository. This information is obtained from
the Uni v ersity of California, Santa Cruz (UCSC) genome
browser ( https://genome.ucsc.edu/ ), a widely-used r esour ce
in the field of genomics. 

Compared to other state-of-the-art methods like CADD
( 11 ), FATHMM-MKL ( 14 ) and GVAWA ( 15 ), PhD-SNP 

g

r equir es r elati v ely fe w input r esour ces, making it easier to
install and run on new sets of variations, even on lap-
top computers. The full version of PhD-SNP 

g only needs
less than 30 Gb of UCSC data, while FATHMM-MKL
and CADD r equir e 400 Gigabytes or more. Addition-
ally, a second lightweight version of PhD-SNP 

g ( ∼100Mb)
can run in ‘web mode’ by retrieving UCSC data directly
from their URLs without downloading the entire genome
files. 

Because PhD-SNP 

g has such simple input r equir ements
(nucleotide sequence and conservation score), it can also be
used as a baseline tool for benchmarking algorithms that
use more complex input features, for example, to estimate
the improvement in performance achieved by adding new
input features such as open chromatin, histone modifica-
tion, and transcription factor binding sites. All the training
and testing datasets used to de v elop PhD-SNP 

g are avail-
able online to facilitate this process. 

Having benchmark datasets available is crucial for eval-
ua ting the discrimina ti v e power of ne w methods with dif-
fer ent input featur es, while avoiding over estimating perfor-
mance ( 16 ). By providing a lightweight and easy-to-use tool
for predicting the functional effects of SNVs in coding and
noncoding regions, the de v elopers of PhD-SNP 

g hope to
make it easier for r esear chers to explore the complex genetic
landscape of human diseases. 
METHOD OUTLINE 

We did not optimize the hyper-parameters for this up-
dated version of PhD-SNP 

g but kept the ones previously
selected. PhD-SNP 

g is a binary classifier based on a Gra-
dient Boosting algorithm, as implemented in scikit-learn
package ( 17 ). PhD-SNP 

g was trained and trained using two
sets of ∼104,000 SNVs and ∼34,000 InDels extracted from
the Clinvar database ( 18 ). Both testing sets were generated
from two versions of Clinvar released in December 2020 and
2022. The location and the type of the SNVs and InDels
are depicted on the corresponding human chromosome car-
toon ( Pathogenic in red and Benign in blue) of Figure 1 A
and B, respecti v ely. 

Dataset selection 

The datasets of SNVs and InDels used for training and
testing PhD-SNP 

g were extracted from Clinvar ( 18 ) ( http://
www.ncbi.nlm.nih.gov/clin var/ ). The Clin var database (ver-
sion December 2020) was filtered by selecting the SNVs, and
InDels annotated Pathogenic, Lik el y pathogenic or Benign
and Lik el y benign annotation. After this filtering, we ended
up with a dataset of SNVs (Clinvar122020-SNV) that con-
sists of 51,958 Pathogenic and 120,826 Benign SNVs. In the
Clinvar122020-SNV dataset, 6,261 (12%) of the Pathogenic
and 40,878 (34%) of the Benign SNVs are in noncoding
regions. From the same version of Clinvar, it was col-
lected a dataset of InDels (Clinvar122020-InDel) consist-
ing of 37,421 Pathogenic and 4,523 Benign InDels. In the
Clinvar122020-InDel dataset, 1,200 (3%) of the Pathogenic
and 3,405 (75%) of the Benign InDels are in noncoding
regions. 

To assess the performance of the method, we de-
ri v ed two other datasets based on a mor e r ecent ver-
sion of Clinvar (December 2022), by selecting anno-
tated SNVs and InDels not present in the Clinvar122020-
SNV and Clinvar122020-InDel datasets. A new dataset
of SNVs (NewClinvar122022-SNV), comprises 104,716
SNVs, 21,299 of which are annotated as Pathogenic and
83,417 as Benign . In the NewClinvar122022-SNV dataset,
2,334 (11%) of the Pathogenic and 62,917 (75%) of the Be-
nign SNVs are in noncoding regions. From the latest ver-
sion of the Clinvar database, we extracted a new dataset
(NewClinvar122022-InDel) including 24,382 Pathogenic
and 17,145 Benign InDels. Among them, 922 (4%) of the
Pathogenic and 16,359 (95%) of the Benign InDels are in
noncoding regions. The composition of all datasets is sum-
marized in Supplementary Tables S1–S3 and Supplemen-
tary Figure S1. 

After the collection of the datasets of SNVs
(Clin var122020-SNV, NewClin var122022-SNV) and
InDels (Clin var122020-InDel, NewClin var122022-InDel)
a specific procedure was used for generating balanced
training and testing sets. For scoring the performance
of PhD-SNP 

g in the prediction of SNVs, we generated
training and testing composed of 103,916 and 42,594
SNVs, respecti v ely. In the training and testing sets, the
fraction of Pathogenic and Benign variants was balanced
by downsampling randomly from the most abundant class
(Benign) in the Clinvar122020-SNV, NewClinvar122022-

https://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/clinvar/
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Figure 1. ( A, B ) Distribution along the chromosomes of Pathogenic (red) and Benign (blue) single nucleotide variants (SNVs) and InDels respecti v ely. *The 
size of the mitochondrial chromosome (M) in panels A and B is increased 2,500 times. The impact of an InDel is predicted considering the closest SNV 

caused by the sequence variation. In the example in Panel C , the deletion of AGGA in position 77,000,728 of the chromosome 13 generates a variation 
from G to A in position 77,000,730. ( D ) Schematic view of the input features of PhD-SNP 

g algorithm for predicting pathogenic SNVs and InDels which 
takes in input 35 and 38 features respecti v ely. 
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NV datasets, respecti v ely. A similar procedure was applied 

or generating the testing and training sets for predicting 

he impact of InDels which include 34,290 and 9,046 In- 
els, respecti v ely. Gi v en the small number of benign InDels 

nd strong unbalance between two classes of InDels in the 
linvar122020-InDel dataset, the training and testing sets 
f InDels were generated from NewClinvar122022-InDel 
nd Clinvar122020-InDel respecti v ely. In this case, the 
andom downsampling was performed on the subset of 
atho genic InDels, w hich r epr esent the most abundant 
lass. The Initial datasets of SNVs and InDels, as well as 
v e balanced v ersions for each training and testing set, are 
rovided as supplementary files. The genomic location in 

hose files is based on the hg38 human genome assembly. 

eatur e ev aluation 

e implemented two versions of PhD-SNP 

g for predicting 

he impact of SNVs and InDels. The input of the method 

redicting the impact of SNVs consists of 35 values, 25 en- 
oding for the sequence and mutation, and 10 for the Phy- 
oP conservation scores ( 19 ), as pre-computed at the UCSC 

epository. In detail, the input is composed b y: (i) 25 v al- 
es r epr esenting the 5-nucleotide window sequence center ed 

n the mutated position (5 times 5 possible nucleotides: 
, C, G, T, N); (ii) 10 values mapping the conservation 

cores of the 100-species (PhyloP100) and 470-species align- 
ents (PhyloP470) to the fiv e window positions. Compar- 

ng the PhyloP scores adopted in the new version of PhD- 
NP 

g with PhyloP7 used in the previous version, PhyloP100 

hows the highest discriminati v e power (Supplementary Ta- 
les S4-S6). This result is confirmed by plotting its distribu- 
ion for Pathogenic and Benign SNVs (Supplementary Fig- 
res S2-S3). 
A similar approach was implemented for predicting the 
athogenic InDels. In particular, we assume that the ef- 
ect of an InDel corresponds to the effect of the clos- 
st SNV that is obtained by deleting and / or inserting a 

et of nucleotides in a gi v en region of the genome. In 

igure 1 C, we represented the example of the deletion 

hr13:g.77000728 CAGGA > C which, in the closets loci, 
orresponds to the change of G (Guanine) to A (Adenine) 
n position 77,000,730 of chromosome 13. Using this as- 
umption, we de v eloped a second v ersion of PhD-SNP 

g 

or predicting the impact of the InDels which takes in in- 
ut 38 values. In detail, the input is composed of 35 val- 
es used for predicting the impact of SNVs and three new 

eatures encoding for the size and location of the InDel. 
hey r epr esent the lengths of the r efer ence and alternati v e
lleles and a boolean variable corresponding to the loca- 
ion of the mutated loci in coding or noncoding regions 
Figure 1 D). 

ethod evaluation 

e defined two datasets, one from model de v elopment, 
sing a cross-validation procedure to evaluate the perfor- 
ance and a second hold-out set to evaluate the method 

ener alization. We oper ated a 10-fold split for the cross- 
alidation procedure, which was accomplished fiv e times by 

mploying a bootstrapping procedure to generate different 
ross-validation sets. The mean value of the accuracy in- 
ices of these fiv e bootstraps is used as the final score. 
In order to limit bias due to having the same genomic 

egions between the training and testing sets, we split the 
ariants (SNVs and InDels) by chromosomes. Thus, when 

e predict variants of a gi v en chromosome, the model used 

as trained using only variants from other chromosomes. 
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Table 1. Performance of PhD-SNP 

g , CADD and FATHMM-MKL on the Ne wClinvar122022-SNV dataset. Av erage results of the 5 bootstrap tests 
(10-f old) perf ormed on the Clin var122020-SNV dataset. Q2: Over all Accur acy , TNR: T rue Negati v e Ra te, NPV: Nega ti v e Predicti v e Value, TPR: True 
Positi v e Rate, PPV: Positi v e Predicted Value, MCC: Matthews Correlation Coefficient, AUC: Area Under the Recei v er Operating Characteristic Curve, 
Brier: Brier Score. PhD-SNP 

g performance evaluation measures (defined in Supplementary Materials) are averaged over 5 bootstrap tests (10-fold) 

Method Subset Q3 TNR NPV TPR PPV MCC F1 AUC Brier DB 

PhD-SNP 

g All 0.898 0.883 0.909 0.912 0.887 0.796 0.899 0.959 0.076 100 .0 
Coding 0.892 0.869 0.910 0.914 0.876 0.784 0.894 0.956 0.080 84 .0 
Noncoding 0.930 0.958 0.909 0.900 0.954 0.861 0.926 0.970 0.055 16 .0 

CADD All 0.911 0.845 0.973 0.976 0.863 0.828 0.916 0.982 NA 100 .0 
Coding 0.901 0.817 0.981 0.984 0.844 0.813 0.909 0.983 NA 84 .0 
Noncoding 0.962 0.987 0.941 0.936 0.986 0.925 0.960 0.985 NA 15 .9 

FATHMM-MKL All 0.761 0.628 0.856 0.894 0.706 0.542 0.789 0.865 0.179 99 .9 
Coding 0.728 0.567 0.833 0.887 0.673 0.480 0.766 0.836 0.204 83 .9 
Noncoding 0.939 0.945 0.935 0.932 0.943 0.878 0.937 0.974 0.050 16 .0 
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We adopted the same strategy to evaluate the variants
in the hold-out set. We predict variants of a gi v en chro-
mosome using the model fitted during the cross-validation
phase, which did not contain variants from the chromosome
to test in its training set. 

We tested if there are shared genes among the different
chromosomes, and we found that only between chromo-
some X and Y there are a few shared genes and for this rea-
son we kept the variations located into these two chromo-
somes in the same fold. A r epr esentation of this procedure
is shown in Supplementary Figure S4. 

Pr ediction perf ormance 

Initially, PhD-SNP 

g performance was evaluated using a 10-
fold cross-validation test on a pproximatel y 104 000 SNVs
and 34 000 InDels. PhD-SNP 

g achie v ed an Area Under
the Recei v er Oper ating Char acteristics ( 19 ) Curve (AUC) of
0.95 and 0.99 for SNVs and InDels, respecti v ely, on these
subsets. These r esults ar e pr esented in Supplementary Ta-
bles S7 and S8 and Supplementary Figure S5. In the first
test, the new version of PhD-SNP 

g demonstrated compa-
rable performance to the previous version, which obtained
an AUC of ∼0.95 (Supplementary Tables S9-S10). In or-
der to assess the generalization ability of the predictor and
compare PhD-SNP 

g performance with that of CADD and
FATHMM, two sets of annotated variants composed of
around 42 000 SNVs and 9000 InDels were extracted from
the NewClinvar122022-SNV and Clinvar122020-InDel, re-
specti v ely. On the NewClinvar122022-SNV testing set, the
AUC of PhD-SNP 

g was 0.96, which is still high and com-
parable to that obtained in the cross-validation test. No-
tably, this score is similar to that obtained on the same set by
CADD (Table 1 and Figure 2 A). This trend is also observed
in the subsets of mutations located in coding and noncod-
ing regions (Table 1 and Figure 2 B and C). These surpris-
ing findings confirm that PhD-SNP 

g achie v es good perfor-
mance despite having fewer features than other approaches.
On av erage FATHMM-MKL achie v es lower performance
than PhD-SNP 

g and CADD, ne v ertheless it shows com-
parable AUC on the subset of noncoding variants. Similar
r esults wer e obtained when evaluating PhD-SNP 

g ’s perfor-
mance in predicting pathogenic InDels. In this particular
task, PhD-SNP 

g achie v ed an AUC of a pproximatel y 0.97,
which is slightly higher than that achie v ed by CADD. How-
e v er, CADD is slightly more accurate than PhD-SNP 

g in
predicting the impact of InDels occurring in coding regions
(Table 2 and Figure 2 D–F). The results also show that both
CADD and PhD-SNP 

g performs better than FATHMM-
Indel which reaches similar AUC on the subset of coding
InDels. An examination of the predictions of PhD-SNP 

g on
the subsets of insertion and deletions, which r epr esent ap-
proximately 32% and 65% of the entire testing set, respec-
ti v ely, demonstrated a comparable level of performance in
terms of AUC (Supplementary Table S11). In this analysis,
we also scored the calibration of the predictions. This prop-
erty refers to the idea that the probability associated with
the prediction of pathogenicity should match the expected
value of true positi v es ( 20 ). The results based on the calcula-
tion of the Brier score ( 21 ) indicate that PhD-SNP 

g predic-
tions of pathogenic SNVs and InDel show a good le v el of
calibration. Indeed, in the majority of the cases, the Brier
score of PhD-SNP 

g is below 0.1. In order to pre v ent this
source of bias in all prediction tests, the training and testing
sets were split in such a way that variants on the same chro-
mosome were kept in the same subset. Supplementary Ma-
terials provide additional information on how PhD-SNP 

g 

was compared to CADD and FATHMM, as well as the def-
inition of the performance evaluation measures and the rel-
ati v e standar d errors (Supplementary Tab les S12-S13). Fur-
thermore, we calculated the method performance on more
balanced subsets with reduced variants from the most rep-
resented genes to estimate the possible effect of overr epr e-
sented variants from specific genes. The results in Supple-
mentary Tables S14 and S15 show that the performance
scores on the testing dataset obtained by selecting a max-
imum of 5 or 10 variants for each gene are similar to those
obtained on the whole set of coding variants. 

In the last part of our analysis (Table 3 and Supplemen-
tary Table S16), we evaluated the performance of PhD-
SNP 

g on different subsets of variants according to the clas-
sification reported by ANNOVAR ( 22 ). We grouped SNVs
and InDels into six classes, which are: ‘ exonic ’, ‘ intronic ’,
‘ splicing ’, ‘ noncoding RNA ’ and ‘ other ’ (the combination of
all remaining noncoding elements). The distribution shows
that in the ClinVar dataset, the most-r epr esentati v e class is
the coding ( exonic ) class for both SNVs and InDels (Ta-
ble 3 and Supplementary Table S16). As far as InDels are
concerned, the intronic is well r epr esented, leaving the other
classes with few instances. For this reason, the AUC scores
are generally very good for all classes (Table 3 ), while the
measures of accuracy that require a decision threshold (such
as MCC, F1, ecc.) fluctuate more, except for the most abun-
dant exonic class. 
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Figure 2. Comparison of the area under recei v er oper ator char acteristic curve (ROC) for CADD (red) and PhD-SNP 

g (blue). Comparison of the area under 
recei v er oper ator char acteristic curv e (ROC) for CADD (b lack), PhD-SNP 

g (red) and FATHMM-MKL / indel (b lue). The ROC curv es are calculated on 
the datasets NewClinvar122022-SNV ( A ) and Clinvar122020-InDels ( D ) and their subset of coding and noncoding SNVs ( B , C ) and InDels ( E , F ). 

Table 2. Performance of PhD-SNP 

g , CADD and FATHMM-indel on the Clinvar122020-InDel dataset. Average results of the 5 bootstrap tests (10-fold) 
performed on the NewClinvar122022-InDel dataset. Q2: overall Accuracy, TNR: true negati v e rate, NPV: negati v e predicti v e value, TPR: true positi v e 
rate, PPV: positi v e predicted value, MCC: Ma tthews correla tion coef ficient, AUC: ar ea under the r ecei v er oper ating char acteristic curve, Brier : Brier score. 
PhD-SNP 

g performance evaluation measures (defined in Supplementary Materials) are averaged over 5 bootstrap tests (10-fold) 

Method Subset Q3 TNR NPV TPR PPV MCC F 1 AUC Brier %DB 

PhD-SNP 

g All 0.907 0.830 0.981 0.984 0.853 0.824 0.914 0.966 0.081 100 .0 
Coding 0.877 0.357 0.933 0.994 0.873 0.532 0.930 0.880 0.107 56 .6 
Noncoding 0.946 0.954 0.987 0.865 0.642 0.718 0.737 0.962 0.048 43 .4 

CADD All 0.915 0.922 0.909 0.907 0.921 0.830 0.914 0.960 NA 99 .9 
Coding 0.878 0.717 0.651 0.914 0.935 0.607 0.924 0.882 NA 56 .6 
Noncoding 0.963 0.976 0.984 0.830 0.765 0.777 0.796 0.953 NA 43 .3 

FATHMM-indel All 0.833 0.771 0.883 0.896 0.794 0.672 0.842 0.910 0.127 95 .2 
Coding 0.855 0.638 0.574 0.901 0.922 0.517 0.911 0.848 0.113 53 .1 
Noncoding 0.805 0.803 0.982 0.830 0.263 0.394 0.399 0.888 0.144 42 .1 
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ethod usage and output of the prediction 

hD-SNP 

g can predict the effect of single and multiple 
NVs from an input file. Variant Calling Format (VCF) file 

s also accepted as input. By default, our server, and scripts 
ccept as input genomic coordinates from the hg38 assem- 
lies of the human genome. Genomic coordinates based on 

g19 assembly are internally converted to hg38 coordinates 
y the liftOver program. 
The application of our method is limited by the avail- 

bility of the conservation scor e. Indeed, PhD-SNP 

g pr e- 
ictions can be performed only on genomic regions 

or which either the PhyloP100 or PhyloP470 score is 
vailable. 
g
The primary output of PhD-SNP 

g probabilistically as- 
igns as ‘ Pathogenic ’ or ‘ Benign ’ score. Additionally, PhD- 
NP 

g generates three supplementary values to support the 
rediction, namely the False Discovery Rate (FDR), the 
hyloP100 score at the mutated site, and the average Phy- 

oP100 score calculated over the 5-nucleotide input window. 
DR can be employed to eliminate less reliable predictions. 

ERVER DETAILS 

redicting the impact of single nucleotide variants and InDels 

he PhD-SNP 

g server is able to predict the impact of a sin- 
le nucleotide variant through either a CSV or VCF text 
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Table 3. Performance of PhD-SNP 

g on the testing set of SNVs (NewClinVar122022) and InDels (ClinVar122020) classified according to their location. 
The variants are classified in exonic, intronic, splicing, noncoding RNA and UTR using ANNOVAR. Average performance on the 5 bootstrap tests 
(10-f old) perf ormed on both datasets. Q2, TNR, NPV , TPR, PPV , MCC , F1, AUC and Brier are defined in Supplementary Ma terials 

Variants Subset Q 2 TNR NPV TPR PPV MCC F1 AUC Brier %DB 

SNVs All 0.898 0.883 0.909 0.912 0.887 0.796 0.899 0.959 0.076 100 .0 
(NewClinVar122022) Exonic 0.892 0.871 0.911 0.914 0.875 0.785 0.894 0.956 0.080 84 .9 

Intronic 0.892 0.963 0.916 0.463 0.676 0.502 0.550 0.835 0.084 5 .9 
Splicing 0.975 0.705 0.058 0.976 0.999 0.198 0.988 0.960 0.020 6 .6 
ncRNA 0.923 0.958 0.953 0.683 0.712 0.653 0.697 0.897 0.059 0 .8 
UTR 0.920 0.951 0.964 0.416 0.342 0.335 0.374 0.744 0.062 1 .5 
Other 0.815 0.963 0.821 0.391 0.783 0.461 0.517 0.747 0.151 0 .2 

InDels All 0.907 0.830 0.981 0.984 0.853 0.824 0.914 0.966 0.081 100 .0 
(ClinVar122020) Exonic 0.872 0.376 0.920 0.992 0.868 0.539 0.926 0.885 0.111 60 .7 

Intronic 0.979 0.984 0.994 0.448 0.226 0.307 0.299 0.891 0.019 27 .9 
Splicing 0.848 0.844 0.902 0.856 0.777 0.689 0.814 0.929 0.135 1 .6 
ncRNA 0.947 0.971 0.974 0.422 0.376 0.367 0.390 0.864 0.046 1 .4 
UTR 0.938 0.942 0.996 0.430 0.045 0.123 0.082 0.822 0.055 7 .9 
Other 0.902 0.991 0.907 0.190 0.500 0.277 0.267 0.763 0.096 0 .3 
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format (as previously described in 14). In this newer ver-
sion, it is possible to provide multiple SNVs and InDels
by copying and pasting a list of variants in separate rows
within the input box. If the input is in VCF format, a file
containing a header and at least fiv e columns (CHROM,
POS, ID, REF, ALT) separated by a tab character should
be uploaded. Each SNV and InDel is then listed on sepa-
rate rows after the header. If the variant’s ID in the third
column is missing or unavailable, a dot (.) can be used. 

When the list of SNVs and InDels are provided, the server
analyzes each variant and checks if the r efer ence allele cor-
responds to the allele reported in the selected version of the
human genome (hg19 or hg38). This task is performed us-
ing the tw oBitToF a program ( 20 ). A window sequence of
5 nucleotides centered around the mutated position is used
to generate the 25-element vector encoding for the sequence
information. If the nucleotide in the input matches the refer-
ence allele, the server extracts the corresponding conserva-
tion indexes (PhyloP100 and PhyloP470) for the positions
around the mutation site. The pre-calculated conservation
index es, which ar e available on the UCSC r epository, ar e
collected using the bigWigToBedGraph program ( 23 ). The
PhyloP100 and PhyloP470 scores are used to generate a 10-
element vector, which r epr esents the conservation features.
After this step, the 35-element vector encoding for the se-
quence and conservation features is gi v en as input to the
Gradient Boosting algorithm, which returns the prediction
output described above. For predicting pathogenic InDels,
the server identifies variants occurring at the closest loci.
The 35-element vector described above as generated and
complemented with three features describing the size and
location of the variation. After the calculation of the predic-
tion, in the final step of the prediction task, the PhD-SNP 

g

server annotates the input variants using the T r ansVar tool
( 24 ). T r ansVar finds the possible effect on the amino acid
sequence of the longest matching transcript corresponding
to the mutated region. 

Alternative input format for single amino acid variants 

The PhD-SNP 

g server simplifies the prediction of single
amino acid variants (SAVs) by accepting a list of SAVs
as input. Each SAV in the list should be indicated by the
approved HGNC (HUGO Gene Nomenclature Commit-
tee) gene symbol ( 25 ) and the amino acid change, which
should be separated by a comma. The amino acid change
can be described by combining the one-letter symbol of
the wild-type residue, the position of the residue along the
protein sequence, and the one-letter symbol of the mutant
residue. For instance, the substitution of Methionine (M)
at position 237 with Isoleucine (I) in TP53 is r epr esented
as TP53,M237I. By submitting the input to the PhD-SNP 

g

server in this MUT format, the server maps the protein
change back to the corresponding genomic variant using
the T r ansVar algorithm. The SNVs are then predicted for
their impact using the same method described earlier. 

Input interface 

PhD-SNP 

g w e b interface features a textarea box that allows
users to input SNVs and InDels in CSV and MUT formats.
Additionally, a ‘Browse’ button allows users to upload CSV
and VCF files in either standard text or gzipped format.
Three ‘Input Type’ buttons (CSV, VCF and MUT) enable
users to select the appropriate input format for the list of
variants. A second group of buttons (Assembly) indicates
the human r efer ence genome (hg19 or hg38) to which the
SNVs refer. Users can access examples of inputs in CSV and
MUT format using the ‘chr,pos,ref,alt’ and ‘gene,mut’ links
at the top of the w e b interface. How e v er, the usage of the
textarea box for the VCF input format is discouraged, al-
though an example of VCF-like input is linked in the ‘Help’
w e b page. Finally, an optional email box is available at the
bottom of the PhD-SNP 

g w e b page for receiving the output
via email. 

Server output 

The output of PhD-SNP 

g is a w e b page that displays the
pr ediction r esults in a tabular format. On the top of the
page , the J obID of the prediction process and the link to
the output in text format (output.txt) are provided. In the
JavaScript d3 ( https://d3js.org/ ) table, the predictions associ-
ated with each SNV are reported in rows composed of nine
columns. The first four columns define the variants, and

https://d3js.org/
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he remaining fiv e provide information about the predic- 
ion. From left to right, the fiv e prediction columns are: the 
esult of the binary classifier (prediction), the probabilistic 
utput (score) defined above, the associated false discovery 

ate (fdr), the value of the PhyloP100 score in the mutated 

ite (phylop100) and the average value of the PhyloP100 

cores for the fiv e positions centered on the mutated site 
avg-phylop100). A plus sign (+) at the beginning of each 

o w allo ws the visualiza tion of the results of the annota tion
erformed by the T r ansVar algorithm. W hen a variant maps 
o a coding region, four rows report the RefSeq ( 26 ) code of
he longest tr anscript (Tr anscript), the HGNC gene symbol 
nd the associated UniProt ( 27 ) identifiers (Gene), the sense 
f the tr anslated str and (Str and) and information about the 
ucleotide change at DNA, RNA and protein le v els (Re- 
ion). When available, the links to the RefSeq and UniProt 
atabases are provided. The output file summarizes the pre- 
iction and annotation information in a VCF-like format. 
he same file includes in the bottom part information about 
rrors and warnings occurring during the prediction pro- 
ess. 

At the top of the page, a second w e b interface, accessi- 
le through the Job link ( http://snps.biofold.org/phd-snpg/ 
nd-job.html ), allows retrieving the output stored on the 
hD-SNP 

g server for ∼1 day. The prediction output is ac- 
essible using the JobID provided at the beginning of the 
utput page. 

ONCLUSIONS 

he PhD-SNP 

g w e b server provides an intuiti v e interface 
or predicting the impact of genomic variations in coding 

nd noncoding regions. In terms of performance, although 

ur tool is able to return predictions for all the regions of 
he genome for which a PhyloP score is available, the per- 
ormance of the method could be affected by the amount of 
ata used in the training step. In this regard, some classes 
f variants are underrepresented in the dataset deri v ed from 

linvar. In particular, the pathogenic variants in noncoding 

 egions r epr esent ∼3% of the SNVs and InDels datasets and 

enign InDels in coding regions are ∼2%. Howe v er, PhD- 
NP 

g reported performance is not significantly affected by 

he different distributions of the gene variants (Supplemen- 
ary Tables S14 and S15), indicating that the method is very 

obust for the coding regions. 
It is also worth noting that this paper considers all non- 

oding sequence types a unique group. Some are more 
 epr esented in our data (introns) than others (noncoding 

NAs , UTR, etc.); thus , our results , and in turn, the perfor-
ance, may be significantly different from those reported 

ere if a user tests on an InDels set of different composition 

n noncoding regions. 
From the technical standpoint, the updated PhD-SNP 

g 

ersion is trained on a more e xtensi v e set of variants and
an also deal with InDel variations. Furthermore, now 

hD-SNP 

g extends the evolutionary information of the 
nput conservation scores from 100 to 470 species (from 

h yloP10 / Ph yloP100 to Ph yloP100 / Ph yloP470). 
Nonetheless, the standalone version of PhD-SNP 

g can be 
asily installed and executed on standard laptop machines. 
pecifically, it can run on an Intel Xeon 2.40 GHz machine 
ith 8 GB of RAM, and can predict the effect of 1000 SNVs 
n less than 2 min. The runtime may increase when running 

he program in w e b mode, depending on network speed. De- 
pite its simple input features, PhD-SNP 

g performs com- 
arably to state-of-the-art methods that r equir e mor e de- 
anding information and r esour ces. PhD-SNP 

g is a r eli- 
ble and lightweight tool for assessing the effect of novel 
ariants. It can be a fundamental benchmark for compar- 
ng predictors that rely on more intricate input features. 

 V AILABILITY AND REQUIREMENTS 

he PhD-SNP 

g server is freely available on the Internet 
t http://snps.biofold.org/phd-snpg . The w e b interface and 

he PhD-SNP 

g scripts are written in Python. The PhD- 
NP 

g standalone tool is stored on GitHub ( https://github. 
om/biofold/PhD-SNPg ), and can be installed by running 

 python2.7 script tha t automa tically downloads the pro- 
rams and data and programs ( tw oBitToF a , liftOver and 

igWigToBedGraph ) from the UCSC repository, with few 

ibrary dependencies including scikit-learn package. 

A T A A V AILABILITY 

hD-SNP 

g is accessible at http://snps.biofold.org/phd- 
npg . 

UPPLEMENT ARY DA T A 

upplementary Data are available at NAR Online. 
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