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Towards Secure TinyML on a Standardized AI Architecture

Muhammad Yasir Shabir, Gianluca Torta, Andrea Basso, Ferruccio Damiani

Abstract Recently, ML tasks that have been traditionally associated with
high-performance CPUs and GPUs, have started to be performed also on
highly constrained devices at the far edge. This shift towards the devices,
often named TinyML, has many well recognized advantages such as lower
bandwidth requirements and energy consumption, cheaper prices, increased
privacy, and scalability. However, it also poses serious challenges: first of all,
it requires to handle even complex ML tasks with Microcontollers (MCUs)
equipped with small memories, low-performance processors, and limited
power supply; moreover, TinyML has to face the additional security threats
that can specifically affect small devices, that usually have to rely on less sup-
port from the hardware and the OS to implement security, and once deployed
in the field, can be exposed to physical threats. A first contribution of this
work is to provide a thorough review of related literature to help delineate
the state-of-the-art and classify existing approaches based on their scope,
goals and employed technical solutions. A second contribution is to delineate
a research program to advance such state-of-the-art, with a special focus on
secure and energy efficient ML applications, in the context of a standardized
component-based architecture recently proposed by the MPAI organization,
which applies in particular to far edge AI applications.
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1 Introduction

Until very recently, Machine Learning (ML) applications have been hosted
mostly on public clouds (or possibly on high performance on-prem systems),
with organizations often relying on ready-to-go deployed models from cloud
services, e.g., in many industrial applications. However, dependency on cloud-
based machine learning services raises several challenges such as huge energy
consumption, privacy issues, network and processing latency, and reliability
issues [1, 10, 23].

TinyML is a revolutionary technology that allows ML to be run on em-
bedded edge devices that have very limited processing power and memory.
This technology has opened up a new realm of possibilities in the IoT world,
enabling a variety of innovative applications such as predictive maintenance,
anomaly detection, and smart monitoring. TinyML recognizes that the phys-
ical world is smarter than the existing scenario , and embedded edge devices
can make decisions before seeking help from edge AI or cloud AI. This setting
results in improvements such as energy efficiency, better privacy of local data
processing, low processing latency, and minimal connectivity dependency.

In the present work, we want to explore TinyML applications, paying
particular attention to two aspects that have been given little attention in
earlier studies.

First of all, we pay close attention to the TinyML security problem. We
investigated several methods and approaches that are used to secure the
TinyML models because it is a main challenges in the field of machine learning
specially for the memory constrained ML techniques.

Secondly, considering potential applications of TinyML (in fields such as
healthcare, agriculture, education, transportation, etc.), we believe it is im-
portant to go beyond the typical model of a single ML module executed
on a device. We envision TinyML applications that involve many modules,
executed in a single or multiple, communicating devices. A relevant initia-
tive that aims to standardize AI-based applications is carried by the Moving
Picture, Audio, and Data Coding by Artificial Intelligence (MPAI)1 organi-
zation. In particular, The MPAI AIF (AI Framework) specification [19], now
an IEEE standard in its version 1.1, defines a framework for designing, im-
plementing and deploying complex AI applications modeled as workflows of
data connecting individual modules. The standard version 2.0, now under
development, will cover also security functionalities of the AIF.

In the present work, starting from the state-of-the-art, we will delineate
challenges and research directions to go from simple and monolithic models
to full fledged standard-based, complex, and secure TinyML applications.
The paper is structured as follows. In section 2 we will describe the MPAI
organization and is initiatives that are most useful for the present discussion.
In section 3 we will review several works from the literature, guided by our

1 https://mpai.community/
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focus on TinyML applications and their security. In section 4 we will outline
the research directions towards our goals described above. Finally, in section
5 we will give some final remarks and conclude.

2 Background on MPAI

The MPAI community is a non-profit multinational organization with estab-
lished rules, procedures, statutes and well organized bodies. Its main objective
is to create data coding standards for AI applications.

MPAI activities include 15 standard development lines, ranging from au-
dio to health, from autonomous cars to online gaming, and from XR to the
metaverse.2 Of particular interest in the present work, is the definition of a
standard Artificial Intelligence Framework (MPAI-AIF), which aims at facil-
itating the construction and automation of mixed artificial intelligence - ma-
chine learning - data processing workflows for the application areas currently
under consideration by MPAI. It is worth mentioning that some authors of
the present paper are members of the MPAI-AIF DC (Development Commit-
tee), and that the research proposal described in the next sections partially
depends on current and future developments of the framework.

Figure 1 displays the MPAI-AIF Reference Model for V1 of the standard, in
which an AIF Implementation hosts the execution of AI Workflows (AIW),
which are made up of fundamental processing units known as AI Modules
(AIM).

Fig. 1: Reference Model of MPAI-AIF V1.

The standard architecture described by the MPAI-AIF Technical Specifi-
cation [19] (adopted by IEEE as standard IEEE 3301-2022) has the following
key features:

1. No dependency on specific Operating System;

2 https://mpai.community/standards/
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2. Modularity: AIWs are built on AIM components;
3. Standard interfaces encapsulate components;
4. The MPAI Store (a repository of AIWs and AIMs) gives access to verified

components; and
5. Components can be implemented in software, hardware or a mix of the

two (hybrid).

A prototype of the MPAI-AIF V1 has been implemented for highly-
constrained MCUs [2]. It is written in the C language on top of the Zephyr
RTOS.

Currently, the MPAI-AIF DC is working on the definition of the 2nd ver-
sion of the standard [20], which concentrates on adding security services.
Figure 2 shows the MPAI-AIF V2 Reference Model.

Fig. 2: Reference Model of MPAI-AIF V2.

In particular, MPAI-AIF V2 defines a set of trusted services covering:

1. Trusted execution of AI algorithms such as NN inference (Security Engine);
2. Trusted handling of AI Models such as (Deep) Neural Networks (Model

Service);
3. Attestation of the trustworthiness of HW/SW configuration (Attestation

Service);
4. Trusted communication (Communication Service);
5. Trusted storage (Storage Service); and
6. Cryptography, including encryption, signing, hashing, ... (Encryption Ser-

vice).
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3 Literature Review

In this section we report a quite extended literature review, which is not
intended as a generic survey on TinyML (such as [5]), but rather a focused
selection of works in the literature that may provide the basis on which we
pursue our research goals. In particular, we are interested in:

� Complex applications consisting of several cooperating modules, possibly
running on several devices;

� Systems that are executed exclusively (or prevalently) on constrained, far
edge devices; and

� End-to-end security of the systems, from the single-device level to the local
network-of-devices, to external communications, e.g., with the cloud.

The following sub-sections are based on the careful review of 18 works
(denoted as P1 to P18), that are described and classified along dimensions
that emerge from the above list of interests.

3.1 TinyML Systems

According to different studies (e.g., [22, 17, 11]), TinyML is designed to op-
erate with a power consumption of a few milliwatts. To achieve this, the
involved devices may utilize hardware acceleration and power management
modules to optimize the energy efficiency of the system. The software used in
TinyML must also be as compact as possible to minimize RAM requirements
and power consumption. Moreover, TinyML requires to optimize machine
learning models to provide better accuracy under resource-constraints. When
this is possible to achieve, IoT-based embedded edge devices can perform a
range of tasks without relying on the cloud. In general, TinyML systems
can include energy-harvesting edge devices, battery-operated embedded edge
devices, sensors, and in general devices that can store just a few tens or
hundreds of KB in RAM.

Our investigation of works that address constrained, intelligent devices ex-
ecuting ML (and AI in general), started with the following questions. Below,
we’ll go through each of these questions in detail. These are:

1. Q1. In the investigated system, is AI executed on end devices, edge, or
both?

2. Q2. Is AI used for optimizing some system behavior (e.g. communication
between device and edge, energy, ...)?

3. Q3. Is AI used for ”normal” system operations (e.g., image or sound recog-
nition) ?

4. Q4. Is there cooperation between AI-enabled devices?
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Examples of TinyML applications include smart wearables, health moni-
tors, environmental sensors, and smart agriculture systems [24]. Smart wear-
ables, for example, can monitor vital signs such as heart rate and detect
irregularities to alert the wearer or healthcare professionals. Health monitors
can be used to detect changes in patients’ conditions and notify caregivers.
Environmental sensors can detect changes in air quality, temperature, and
humidity levels, allowing for better control of indoor environments. Smart
agriculture systems can help farmers optimize crop yields by monitoring soil
moisture, temperature, and other environmental factors. Table 1 reports the
type of application and the problem solved by 10 of the works we have revised.

Table 1: TinyML Applications.

Paper Application Type Solved Problem

P1 [29] Intelligent Edge Computing
Framework for AI-Drive IIoT

Scheduling problem

P2 [8] Intelligent data transportation
routing

Intelligent and secure edge-
enabled computing

P3 [16] Smart & Sustainable Campus Indoor Air and Temperature
Quality monitoring

P4 [27] Intelligent and Efficient MEC-
access control

Battery Prediction for Mobile-
Edge Computing

P5 [13] Learning IoT in Edge Wireless Cameras to monitoring
and identify

P6 [28] Tasks-oriented Edge Computing Reduced the bandwidth for
transmission data

P7 [26] Machine Learning Classifier Ex-
ecution

ML frameworks for classification

P8 [18] Face Mask detection Technique Quantize the CNN model
P9 [22] Human-Centric embedded ma-

chine learning
Emotion-aware facial recognition

P10 [14] Signal recognition and channel
estimation in OFDM systems

Tiny AI for Channel estimation
and signal detection

Table 2 reports, for each of the papers, the answers to the four questions
outlined above.

In P1 [29], the authors identify the most challenging issue in IIoT (In-
dustrial IoT) contexts, which is ensuring a limited processing latency. The
proposed framework considers heterogeneous resources and identifies the best
combination of hardware to handle various AI tasks in the needed processing
time. AI operations are implemented using a variety of AI libraries, such as
PyTorch or TensorFlow, and the framework may link diverse AI tasks and
AI hardware in a transparent way. An important issue is scheduling hetero-
geneous hardware for improved energy efficiency when performing various
AI activities at the intelligent edge. Because unique AI hardware consumes
less energy when doing specialized jobs, the proposed framework’s schedul-
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Table 2: TinyML Systems Main Characteristics.

Paper Q1 Q2 Q3 Q4

P1 [29] Both(Edge
and Device)

Energy Optimization Images Yes

P2 [8] Edge Communication
Efficiency with low
energy consumption

Sensor data No

P3 [16] Edge Energy Optimization Air Quality and Air
Temperature

No

P4 [27] Server Energy Optimization No No
P5 [13] Edge No Video Sensing Yes
P6 [28] Both (Edge

and Device)
Communication
Optimization

Images Yes

P7 [26] Edge and
Device

No Voice, Image, Sound No

P8 [18] Device No Images No
P9 [22] Device No Images No
P10 [14] End devices Yes optimize signal

recognition
Yes

ing method takes into account the task type and latency needs to minimize
energy consumption while ensuring a limited processing delay.

Paper P2 [8] presents an intelligent and secure edge-enabled computing
model (ISEC) for sustainable cities using Green IoT. The aim of the pro-
posal is to improve communication efficiency in terms of energy optimization
and provide security for data transmission. The model exploits deep learning
techniques for the data routing, by first predicting the best routes for the
data transmission between edge servers, and then for training the sensors
to make more accurate predictions for finding a transmission route. Hashing
with chaining techniques is adopted to provide an efficient security solution.

In paper P3 [16] the authors discuss the design methodology used for the
architecture specification of the IPVC Smart & Sustainable Campus (IPVC-
S2C), a FIWARE-based platform with edge-enabled intelligence targeting
higher education institutions. The system is applied to the Indoor Air Quality
monitoring on the campus. The authors introduce the core elements and ICT
infrastructure required to support the implementation of the platform, while
maintaining compatibility with legacy systems.

In paper P4 [27], authors consider a dynamic MEC-access control prob-
lem in an IoT scenario that consists of k MEC (Mobile-Edge Computing)
servers and one IoT device with energy harvesting (EH) capability. Then,
they propose an intelligent Long Short-Term Memory (LSTM) enhanced
Deep Q-Network (DQN) access control algorithm for learning the optimal
access control strategy from/to the IoT device. The learned strategy maxi-
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mizes the long-term average up-link transmission rate whilst minimizing the
transmissions energy consumption.

In paper P5 [13], the authors first introduce deep learning for IoT in an
edge computing environment. The authors claim to have developed a novel
offloading scheme to improve the performance of IoT deep learning applica-
tions with edge computing. In order to adapt deep learning models for IoT to
edge computing, the authors develop an elastic model, which offloads (part
of) a Deep Network to edge nodes. Finally, they test a deep learning model
for IoT with extensive experiments in a given edge computing environment,
comparing the results of their proposed edge computing method with con-
ventional solutions.

The authors of paper P6 [28] address the problem of effectively reducing
the bandwidth needed for the transmission of data from the IoT devices
to edge computing servers, such that AI model inference of IoT data can be
performed. To solve the aforementioned challenge, they design TORC (Tasks-
oriented Edge Computing), a multi-task AI model inference framework for
IoT edge computing with support for temporally dynamic task importance
and bandwidth variation. In TORC, a neural network runs on IoT devices
and encodes the data (that is intended for AI analysis tasks on the edge)
into a compact representation, based on bitrate weights and importance of
tasks. The output of the encoder is then quantized and compressed with an
algorithm entropy coding. An edge server receives the encoded data with
limited bandwidth, and decodes it with the primary purpose of maintaining
the accuracy of AI-based analysis tasks as high as possible.

The authors of paper P7 [26] propose techniques that preserve the quality
of the ML model regardless of the available RAM, namely, they allow fast
classification using 0-bytes of SRAM. The proposed technique targets the
deployment of models built with standard ML frameworks for classification,
such as Python scikitlearn. To show the comparability of the results, the au-
thors compare with known models ported with sklearn, m2cgen and emlearn
libraries, and claim that the proposed technique is four times better than the
competitors.

In paper P8 [18], the authors propose a face mask detection technique ap-
plicable to smart IoT devices with very low memory. The proposed method is
implemented on a tiny development board with memory constraints, such as
an ARM Cortex-M7 microcontroller clocked at 480 Mhz and 496 KB frame
buffer RAM. The model is quantized to further reduce its size using Tensor-
Flow Lite Framework.

In paper P9 [22], the authors propose a TinyML technique in smart sens-
ing devices used to detect the presence or absence of fruits in images of
plants, focusing on energy consumption in various IoT scenarios. TinyML
and LoRaWAN have been used in the proposed model to determine whether
an energy-efficient model is capable of detecting fruits availability. The pro-
posed model was tested for accuracy with various experiments and was shown
to achieve 90% accuracy and three times energy savings on battery-powered
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sensors compared to similar cloud-based applications. The proposed tech-
niques are based on the development of embedded vision AI algorithms with
TinyML. This technique allows knowing when and where attention is needed
by the plants, through LoRaWAN communication.

In paper P10 [14], the authors discuss a Tiny-ML method for hardware-
efficient channel estimation and signal detection in low-cost, low-power edge
devices. The method replaces large dense layers with small cascading sub-
layers to reduce computation and storage requirements. The authors also in-
troduce a rank-restricted back-propagation algorithm to facilitate fast train-
ing. The proposed techniques are validated using computer simulations of or-
thogonal frequency-division multiplexing (OFDM) systems using IEEE Std
802.11a-1999 and the Wireless World Initiative (WINNER II) as the chan-
nel model. The authors compare the computations and memory storage of
the Tiny-ML approach with a benchmark Fully Connected Deep Neural Net-
works (DNN) and found that the Tiny-ML scheme can achieve 2.5-3 times
acceleration in model training and 4.5 times acceleration in model inference
while reducing on-chip storage by roughly 4.5 times in comparison to the FC
DNN.

3.2 Resources and Environments

One of the most significant challenges of working with TinyML is the con-
straints placed on resources like memory and power. In order to create ap-
plications that are both efficient and effective, researchers must develop new
algorithms and methods for optimizing resource utilization. As a result, the
field of TinyML research is constantly evolving, with new techniques and
tools being developed all the time.

Based on our study and their analysis, we have drawn a table that shows
some characteristics of the models used in the TinyML we have analyzed,
and of the SW/HW environments adopted. See Table 3.

3.3 Security

Secure TinyML entails the integration of a number of security measures to
protect the data processed and produced by machine learning models running
on micro-controllers. These techniques include secure boot techniques that
ensure a secure device startup and the integrity of the software during the
boot process. To secure data exchanged between the device and the cloud or
other endpoints, cryptography, such as encryption and decryption algorithms,
is also essential.
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Table 3: TinyML Resources and SW Environments.

Paper Train Model Size Board Type or
MCU

SW Environment

P1 [29] Yes 1 to 300 MB TensorRT 7.1.3 Simulated on NS-3
P2 [8] No data packet size 64 bits ARM based 4

devices used
Tensorflow Lite

P3 [16] No – ARM based 4
devices

Tensorflow Lite

P4 [27] No – – –
P5 [13] No Video data 95kb/s Simulation Python 2.7
P6 [28] No Images sized 256Ö512

pixels
Simulation PyTorch

P7 [26] Yes 1MB Arduino Nano and
Mega, Blue Pill,
ESP 32,01s,8266

Python scikitlearn

P8 [18] Yes 138KB after full
quantization

ARM Cortex-M7
microcontroller

TensorFlow-Lite

P9 [22] Yes – Smart-watches
and tiny personal
assistants

Tensor Flow Lite

P10 [14] Yes Proportional to the
recommended
compression ratios

All tiny devices Computer Simula-
tions

Access control mechanisms must be implemented by secure TinyML sys-
tems to ensure that only authorized users may access the device and data.
This is enabled via user authentication techniques like passwords or bio-
metric identification. In order to protect data transmissions and avoid data
surveillance and eavesdropping, protected TinyML additionally uses secure
communication protocols like Secure Socket Layer (SSL).

In a variety of fields, including healthcare, industrial IoT, and smart homes,
the use of secure TinyML has become increasingly important. Examples in-
clude real-time patient monitoring and diagnosis in healthcare using TinyML
models running on microcontrollers. To prevent data breaches and maintain
patient privacy, it is necessary to process sensitive data, such as patient in-
formation and vital signs, with a substantial level of privacy and security.

Therefore, the implementation of secure TinyML is crucial for the adop-
tion and deployment of TinyML solutions in various fields. The incorporation
of secure boot processes, cryptography, access control, and secure communi-
cation protocols ensures the protection of sensitive data and devices from
unauthorized access and cyber-attacks.

The following list of security measures can be implemented to make
TinyML more secure:

1. Encryption: Data, models, and firmware can be encrypted to prevent unau-
thorized access.



Towards Secure TinyML on a Standardized AI Architecture 11

2. Authentication: Authentication protocols can be used to ensure only au-
thorized users can access the system.

3. Secure Communication: Secure communication protocols like SSL may be
utilized for secure communication between memory-constrained devices
and towards external targets such as cloud servers.

4. Access Controls: Access controls can be implemented to ensure that only
authorized users get access to the system.

5. Protection of User Data Privacy: privacy approaches, including differential
privacy, can be used to ensure user data privacy.

Some TinyML hardware and software security are shown in Table 4. Table
4 reports information about 10 of the works we have revised that discuss se-
curity features. Two of the papers (P2 and P9) have already been mentioned
in the tables above, while eight papers P11 - P18 are specifically relevant to
security.

Table 4: Secure TinyML.

Paper HW Security SW Security Security Techniques

P2 [8] No Yes Symmetric cryptography is per-
formed using the Diffie-Hellman al-
gorithm

P9 [22] No Yes Practical implications of adversarial
threats on HC-EML applications

P11 [3] No Yes Cutting-edge technologies, such as
TinyML,HE, and FL

P12 [15] No Yes Secure Aggregation based on Cryp-
tographic Schemes

P13 [12] No Yes Protect the model’s intellectual
property using security techniques

P14 [6] Yes Yes Protect the AI models developed
and the training data used

P15 [25] Yes Yes OTA-TinyML tested 6 ML models
remotely from 4 memory units on 7
MCU boards

P16 [7] No Yes EC-IG prototype: OP-TEE +
QEMU on Armv8-A

P17 [9] NO Yes Security and privacy architecture for
HioT

P18 [4] No Yes Securing Models: Defending Against
Three Standard Adversarial Attacks

In paper P11 [3] , the authors discuss a study that focuses on Wearable
Devices (WD) used for healthcare monitoring. The authors categorizes these
technologies and identify privacy and security risks connected to their use.
In addition, the authors review a number of cutting-edge technologies, such
as TinyML, Homomorphic Encryption (HE), and Federated Learning (FL),
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that may be capable of dealing with these challenges. This study offers a
taxonomy of threats and attacks that may compromise the security and pri-
vacy of WD. The study’s main objectives are to emphasize the significance
of protecting private health information, and to propose technologies that
could help reduce the associated risk. In particular, the authors identify (i)
the user behavior and perception, (ii) health-related data transfer, and (iii)
data storage, as the three primary challenges involving security and privacy
in WDs.

The authors of paper P12 [15] discuss a research study that focuses on
secure aggregation for federated learning using cryptographic schemes. The
authors define the problem, categorize existing solutions, analyze challenges,
and examine recent solutions of other studies. They then propose an im-
proved definition of secure aggregation for federated learning and single out
the four main privacy-enhancing technologies used to achieve secure aggre-
gation. Namely: (i) differential privacy; (ii) Trusted-Execution Environment
(TEE); (iii) secure shuffling under anonymity assumptions; and (iv) cryptog-
raphy.

In paper P13 [12], authors focus on investigating other challenges that
arise when edge ML is deployed and how to solve them, rather than the
computational aspect. The authors explore the operational side of edge ML
and discuss approaches that can be applied to various use cases, such as image
recognition and natural language processing but not limited to these research
areas. The paper assumes that the ML model is a deep neural network, but
the discussed approaches are useful for other types of ML models as well.
The authors focus on protecting the intellectual property of the ML model,
particularly for TinyML and explain the challenges associated with protecting
the model, providing solutions to address these challenges. The suggested
techniques include model encryption, obfuscation, watermarking, and secure
model training.

Paper P14 [6] discusses the challenges faced by service providers when
deploying AI models on IoT devices in a secure manner. The provider must
consider the trustworthiness of the supporting platform and the range of
potential threats to the device, such as direct attacks on the model IP or se-
curity of input data. To scale deployments to multiple devices and OEMs, it
becomes necessary to separate untrusted code from the high-value model IP.
The article emphasizes the need for secure inference outputs to prevent tam-
pering and ensure the integrity of the AI model throughout the supply chain.
The authors mention a DevSecOps workflow integrating standardized tooling
for configuration, packaging, and image signing while selecting cryptographic
algorithms that fit within the resources of constrained IoT devices.

In paper P15 [25], authors propose a novel technique, called over-the-air
(OTA) TinyML, which allows for the remote deployment of memory con-
strained machine learning models on IoT devices. The mentioned technique
enables IoT devices to perform tasks such as firmware updates, reconfigura-
tion, and repurposing. The authors first discuss the challenges of OTA ML



Towards Secure TinyML on a Standardized AI Architecture 13

deployment over IoT devices from both research and engineering perspec-
tives. Second, they claim that their OTA-TinyML framework facilitates the
fetching, storage, and execution of TinyML models on resource-constrained
IoT devices. It downloads the C source file of ML models from a web server to
the embedded IoT devices using HTTPS. OTA-TinyML is tested by remotely
fetching six types of ML models, storing them on four types of memory units,
and then loading and executing them on seven popular MCU boards.

In paper P16 [7], with the aim of enabling Industry 4.0 vertical and hori-
zontal integration, the authors propose an Edge-computing based Industrial
Gateway (EC-IG) for interfacing information technology and operational
technology. They design and develop a working prototype to demonstrate
remote production-line maintenance with a focus on security and the edge
paradigm. The EC-IG brings computational resources and data storage closer
to data sources, improving security aspects and enhancing the efficiency of
the overall system.

The authors of paper P17 [9] focus on the security and privacy of the
Internet of Things (IoT) in healthcare applications. They highlight the chal-
lenges while implementing security frameworks and focus on the need for
effective security and privacy solutions. The article aims to provide current
challenges to the security and privacy of IoT in healthcare and to encourage
the adoption of robust security measures to protect sensitive patient data. A
security and privacy architecture for HioT is proposed.

In paper P18 [4] the authors discuss the application of edge AI through
a human-centric perspective, presenting a pipeline for developing human-
centric embedded machine learning (HC-EML) applications using a generic
human-centric AI (HCAI) framework. Authors also analyze the privacy, trust-
worthiness, robustness, and security aspects of HC-EML applications, includ-
ing challenges and possible solutions. The paper includes a case study on
human facial emotion recognition (FER) based on the AffectNet dataset, an-
alyzing the effects of input quantization on the security, robustness, fairness,
and trustworthiness of an EML (Embedded Machine Learning) model. The
FER model is found to be heavily influenced by certain facial features such
as eyes, alar crease, lips, and jaws. Moreover, the input quantization is biased
against dark skin faces, possibly due to low-contrast features.

4 Towards Complex, Secure TinyML Applications

4.1 State of the Art and Research Gaps

The literature review presented in section 3 has allowed us to get an under-
standing of the state-of-the art in technologies related to secure Tiny ML
applications. From our analysis, we have drawn the following observations:
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1. Many edge-AI systems still rely on powerful edge nodes, or even the cloud,
as fundamental components to address complex AI tasks.

2. Systems that are strongly based on constrained devices (TinyML) tend to
have simple architectures where:

� end devices perform a simple ML task (e.g., image classification) indi-
vidually, and then

� communicate their results to upper level system components (e.g. edge
servers) for storing and analysing them.

3. Various model optimization techniques exist that make it possible to store
AI models and perform inferences even in highly constrained devices.

4. Security of TinyML systems inherits methods for protecting the Intellec-
tual Property (IP) of AI models from the more general ML security area
(e.g., watermarking, obfuscation, cryptography.)

5. Lightweight cryptographic technologies can be adopted for authentication,
confidentiality, and integrity of communications, while hardware-backed
Trusted Execution Environments (TEE) can be exploited to guarantee
security within single devices.

Therefore, the main gaps we have found towards our goal of enabling
complex, secure TinyML applications can be summarized as follows:

1. There is currently a lack of research and implementations of complex, coop-
erative TinyML applications, i.e., applications composed by several mod-
ules, possibly running on separate, heterogeneous devices and exchanging
information through a wireless network. Some challenges posed by such
applications include:

� interoperability of application modules at the data level, i.e., the data
produced by a module must be consumable by other modules, possibly
created by different vendors and/or reusable in different contexts;

� seamless connection of modules on a single device, or multiple devices to
build an end-2-end application from sensor inputs to the final outputs;
and

� automatic mapping of the modules of a complex application into a net-
work of devices, if no device is sufficiently powerful to completely host
it, or partitioning is convenient for other reasons such as energy or
computational efficiency.

As we shall see, the MPAI-AIF specification [19] is a very promising start-
ing point for addressing these challenges, although it needs to be extended
in a suitable way.

2. The main gap that we could find in the state-of-the art of security is the
lack of an application programmer-friendly framework addressing all the
security aspects relevant for complex TinyML applications:

� Portability across a variety of MCUs and RTOSes.
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� Coverage of (i) single device security, (ii) communication security, (iii)
Intellectual Property (AI models) security.

The MPAI-AIF V2 specification under development [20] can be at the
same time a source and a target of the developments for addressing these
open challenges (see section 4.2).

4.2 Sketch of a Proposal

As an example of a potential complex TinyML application, let us refer to the
MMC-UST (Multi-Modal Conversation - Unidirectional Speech Translation)
defined by MPAI in [21]. Figure 3 shows the workflow associated with the
Use Case.

Fig. 3: MPAI MMC-UST Use Case.

Without going into the details of the UC, which are beyond the scope of
the present work, we note that:

� the input speech (coming from microphones) is processed by two modules,
one for extracting the text (Speech Recognition), and one for extracting
additional features, such as the intonation (Speech Feature Extraction);

� the extracted text is processed by a Translation module into a translated
text; and

� the features and translated text are used as inputs of a Speech Synthesis
module that produces an output audio, possibly sent to a speaker.

The data-interoperability of the modules is addressed by the MPAI MMC-
UST standard, which defines, e.g., the syntax and semantics of the Speech
Features produced by the Speech Feature Extraction module and consumed
by the Speech Synthesis module.
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On the other hand, the MPAI specifications do not say anything about
whether the modules should be hosted on a single device, or distributed on
several devices. The following is one of many possibilities: the microphone, the
Speech Recognition and the Speech Feature Extraction modules are hosted
on device DIN; the Translation module is hosted on device DTR (likely, a
sufficiently powerful edge node, or even the cloud); and the Speech Synthesis
module is hosted on device DOUT which is directly connected to speakers. As
already pointed out in section 4.1, we need a transparent way (to the module
programmer) to distribute modules across several devices, and possibly to do
this in an automated and dynamic way. In other words, given the metadata
describing the modules of the Use Case and their data connections, we would
like to automatically map the application to different devices without having
to recompile its modules; and, if conditions change (e.g., a communication
link becomes broken or too slow), to adjust the mapping to best fit the new
conditions.

In Figure 4, we have depicted a schema of a TinyML application that is
mapped to three different devices by an Application Partitioner.

Fig. 4: Schema of a Distributed TinyML Application.

The Application Partitioner could be one of the devices that will host
the application, or an external node (edge, cloud). The fundamental point
is that it must have access to metadata describing the application as well
as to metadata describing the available devices in the local network. We
can build upon and extend features offered by the MPAI-AIF to realize this
architecture:



Towards Secure TinyML on a Standardized AI Architecture 17

� MPAI-AIF already defines an architectural component named MPAI Store
(Figure 1), from which metadata about complete Use Cases (AIWs) as
well as their individual components (AIMs) can be downloaded. We need
to extend such metadata in order to include resource usage of modules
(input and output data size and rate, RAM, flash, ...).

� We also need to associate metadata to the network devices (clock speed,
RAM, flash, sensors, wireless communications, ...); there should be a way
for the Application Partitioner to know such metadata, either from a static
Knowledge Base or by collecting it through some form of discovery over
the local network of devices.

� We need a mapping algorithm, which decides how to partition the appli-
cation and allocate its parts to different devices; many approaches for this
kind of allocation are possible:

– optimal or approximated;
– centralized or distributed (in the latter case, the devices themselves may

be involved in the computation of the partition); and
– static or adaptive (in the latter case, it is required to monitor the ap-

plication to gather the information that may call for adjustments of the
partition).

� We need a way to communicate to each device the part of the application
that it has been assigned, and how such part connects with other parts
hosted on different devices.

As mentioned above, the new MPAI AIF specification V2 under develop-
ment will define security services offered by the AIF (Figure 2). Since some of
the authors of this paper participate to the Definition Committee (DC), the
standard specification itself is going to incorporate some features required
by our proposed architecture. Without committing to what will be included
in the standard and what will be left (at least temporarily) outside, we can
point out the following features:

� A Model Service will have to provide functions for the secure download
and update of TinyML models (most often, but not necessarily, Neural
Networks that have been optimized).

� A Communication Service will have to provide functions for the secure
exchange of data between modules. The modules using this service will
not know whether the module(s) they want to exchange data with are
local or remote, and will be determined by how the application has been
partitioned.

� A Firmware Update service will have to provide secure update of parts of
the Firmware (modules of the TinyML application).

� Appropriate programmer-friendly tools will have to be available at firmware
compile-time to:

– configure the memory layout of the device distinguishing Secure and
Non Secure areas;
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– configure secrets (e.g., keys) to be provisioned on the device and provi-
sion them; and

– configure the firmware for including just the security algorithms actually
needed by the application (and their dependencies).

5 Conclusions

The recent trend of performing machine learning tasks on memory-constrained
devices at the edge, known as TinyML, it offers several advantages such as
lower energy consumption and increased privacy. However, it also presents
significant challenges such as performing complex ML tasks on microcon-
trollers with limited resources. Additionally, the security threats associated
with these devices are a major concern.

In this work we have provided a review of related literature and proposed
a research directions to advance the state-of-the-art in secure and energy-
efficient ML applications, with a special focus on a standardized architecture
proposed by the MPAI organization for far edge AI applications. Overall,
addressing the challenges of TinyML while leveraging its benefits has the
potential to transform the field of AI and bring advanced machine learning
capabilities to smart devices at the edge.
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