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Abstract. We study the determinant of the second variation of an opti-
mal control problem for general boundary conditions. Generically, these
operators are not trace class and the determinant is defined as a prin-
cipal value limit. We provide a formula to compute this determinant in
terms of the linearisation of the extrenal flow. We illustrate the proce-
dure in some special cases, proving some Hill-type formulas.
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1. Introduction

The main focus of this paper is the study of the spectrum of a particular
class of Fredholm operators that arise in the context of Optimal Control.
Our main result is a formula that relates the determinant of these operators
to the fundamental solutions of an ODE system in a finite-dimensional space,
in the spirit of Gelfand–Yaglom Theorem.

For operators of the form 1 + K, where K is a self-adjoint compact op-
erator, various ways of defining a determinant function can be found in the
literature. Going all the way back to Poincaré, Fredholm and Hilbert. If the
operator K one considers is in the so called trace class, i.e. the sequence of its
eigenvalues (with multiplicity) gives an absolutely convergent series, a defi-
nition of determinant which involves the (infinite) product of its eigenvalues
is possible.

In our case, however, the classical approach does not immediately apply
since, typically, the operators one encounters are not trace class. In fact, for
a large class of optimal control problems, the second variation of the cost
functional at a critical point, denoted by Q, can be written as:

Q(u) = 〈(1 + K)u, u〉 =
∫ 1

0

(
−〈Htut, ut〉 + σ(Ztut,

∫ t

0

Zτuτdτ)
)

dt,
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where ut is an infinitesimal variation of the control and lives in a finite codi-
mension subspace of L2([0, 1],Rk), σ is the standard symplectic form on R

2n,
Zt a 2n × k matrix and −Ht a strictly positive definite k × k symmetric
matrix.

Whenever the compact part K has this particular integral form, there
is a non negative real number ξ(K), which we call capacity, for which the
following asymptotic relation for the ordered sequence of eigenvalues holds:

λn(K) =
ξ(K)

n
+ O(n5/3), n ∈ Z. (1)

This is shown in [3] and [10], under some hypothesis on the regularity of the
coefficients Ht and Zt. For more details see Sects. 1.1 and 2 and Appendix A.

This symmetry of the spectrum allows us to talk about trace and deter-
minant of the operators K and 1+K in the sense of principal value limits. In
particular, whenever the compact part of the second variation is trace class,
this limit coincides exactly with the usual Fredholm determinant defined for
trace class operators. A similar approach has been independently adopted in
the works [19,20] to study the spectrum of Hamiltonian differential operators.

There are, of course, many other ways to define a determinant function
for classes of Fredholm operators. For instance, one could apply the theory of
regularized determinants, see [27], or rely on the so-called ζ−regularization,
see [15] for details. The literature concerning these topics is vast. To mention
a few works, one could refer to [24,25] for Sturm-Liouville problems, to [17]
for graphs and to [16] for similar results proved in the general framework
of elliptic operators acting on sections of vector bundles. A relation between
regularized determinants and ζ-regularization is given in [18].

It is worth pointing out another feature of the construction. Theorem 1
relates the determinant of 1 + K to the fundamental solution of a finite-
dimensional system of (linear) ODEs. This provides a way to compute the
determinant and allows to recover some classical results such as Hill’s formula
for periodic trajectories. This kind of formulas have important applications
since they allow to relate variational properties of an extremal (i.e. the eigen-
values of the second variation), to dynamical properties such as stability.
These latter properties are usually expressed through the eigenvalues of the
linearisation of the Hamiltonian system of which the extremal we are consid-
ering is solution. Take the case of a periodic, non-degenerate trajectory. On
one hand, knowing the sign of the determinant amounts to know the parity of
the Morse index of the extremal. On the other hand, this sign is completely
determined by the number of positive eigenvalues of the linearisation grater
than one. Applications of this kind of ideas go back to Poincaré’s result about
the instability of closed geodesics and can be found, for example, in [13] or
[21]. For several interesting examples of the interplay between parity of Morse
index and stability see for instance [11,12] or [8]. Other related works in this
direction are [26,28] and [22].

Being able to compute the determinant of an operator, without knowing
explicitly its spectrum, is also the reason why Gelfand–Yaglom Theorem is
an extremely useful tool. In theoretical physics, it finds application in the
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semiclassical approximation of the wave function. Indeed, using the stationary
phase expansion, the contributions to the path integral localize at classical
solutions. The quadratic term of the expansion involves the determinant of
the Hessian of the classical action. Theorem 1 could be of use in computing
this expansion for a broader class of action functionals.

The results are formulated in a quite general framework and the tech-
niques can be applied without virtually any modifications to treat constrained
variational problems on compact graphs as already done in [9] to compute
the Morse index.

In this paper we will deal exclusively with strictly normal extremals
(see Definition 3 in Appendix A). This hypothesis is somewhat restrictive,
nevertheless is a priori verified in a consistent number of cases. For instance in
Riemannian, almost-Riemannian and contact manifolds. For generic normal
extremals of step 2 sub-Riemannian manifolds and in the so called linear
quadratic regulator problems to list a few.

The structure of the paper is the following: in Sect. 1.1 we recall the
notation and the setting we will use through out the paper and give the
full statements of our results. Section 2 contains some information about the
second variation and the structure of the space of variation we will employ.

In Sect. 3 we deal with a couple of applications, such as Hill’s formula
and the eigenvalue problem for Schrödinger operators. The results deserve
some interest in their own, however, the main focus of the section is to provide
a worked out example of how to apply the formulas to concrete situations.

The last part of the paper is Sects. 4.1 and 4.2. They are devoted to the
proof of Theorem 1. We first prove the result for boundary conditions of the
type N0 ×N1 (Sect. 4.1) and than extend it to the general case (Sect. 4.2). Fi-
nally, we give formulas to compute the trace of the compact part of the second
variation K (Lemmas 3 and 4) and some normalization constant appearing
in Theorem 1.

1.1. Problem statement and main results

We begin this section briefly recalling the setting and the notations that
will be used throughout the paper. The reader is referred to [4,6] for more
information on optimal control and sub-Riemannian problems. By an optimal
control problem we mean the following data: a configuration space, i.e. a
smooth manifold M , a family of smooth (and complete if M is non compact)
vector fields fu defined on it and a cost function ϕ. The vector fields fu

depend on a parameter u living in some open set U ⊆ R
k. We can think of

it as our way of interacting with the system and moving a particle from one
state to another. We will always assume that the fu are smooth jointly in
both u and the state variable.

To any function u(·) ∈ L∞([0, 1], U) and to any q0 ∈ M we can associate
a trajectory in the configuration space considering the solution of:

q̇ = fu(t)(q), q(0) = q0. (2)

We will usually call the function u(·) control.
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We can impose further restrictions on solutions of (2) specifying proper
boundary conditions. The most general situation that we are going to treat
in the paper is the case in which the boundary conditions are given by a
submanifold N ⊆ M×M . We say that (a Lipschitz continuous) γ : [0, 1] → M
is admissible if it solves (2) for some control u and if (γ(0), γ(1)) ∈ N . We
say that a control u is admissible if the corresponding trajectory, denoted by
γu, is defined on the whole interval [0, 1] and it is admissible.

Given a smooth function ϕ : U × M → R, we are interested in the
following minimization problem on the space of admissible curves:

min
γu admissible

J (γu) = min
γu admissible

∫ 1

0

ϕ(u(t), γu(t))dt (3)

In classical mechanics problems ϕ corresponds to the Lagrangian of the sys-
tem. In optimal control ones it is usually referred to as the running cost.

It is customary to parametrized the space of admissible curves using the
control function u(·) and a finite-dimensional parameter space that takes into
account the initial data. We are going to follow this approach. However, we
postpone the discussion of the structure of our space of variations to Sect. 2
since it is independent of the main statements.

The wellknown Pontryagin Maximum Principle (see Appendix A) gives
a geometric description of critical points u of the restriction of J to the space
of admissible controls in terms of suitable lifts of γu to the cotangent bundle.
This lifts are called extremals and satisfy, for some ν ≤ 0, a Hamiltonian
ODE:

λ̇t = 
hu(t)(λ), where hu(λ) = 〈λ, fu(q)〉 + νϕ(u, q).

There are two families of critical points. A point u can either be a critical
point of the constraints determining the set of admissible controls (giving a
so-called abnormal extremal having ν = 0) or can be a true critical point of J
(giving a normal extremal having ν < 0). The two conditions are not mutually
exclusive, a critical point can have multiple lifts. We will only consider critical
points u which are regular points of the constraints. They are called strictly
normal optimal controls and admit no abnormal lift. The associated normal
extremal is termed strictly normal extremal.

In this case, the space of variations can be endowed, locally, with a
smooth Banach manifold structure. Thus, it makes sense to consider its tan-
gent space. It is a finite codimension subspace V of L∞([0, 1],Rk) ⊕R

dim(N).
Suppose that u is critical point of the functional J restricted to the

space of variations and consider the Hessian of J at u. It is a quadratic form
on V. We denote it by Q(v) = d2

uJ |V(v, v) and we will refer to it as the second
variation of J at u. Instead of working with the L∞ topology, we will work
with the weaker L2 one since it turns out that the quadratic form Q extends
by continuity.

We will further assume that hu(λ) defined above is strictly convex along
(u(t), γu(t)) in the u variable, this is the so called strong Legendre condition.
Under this assumption and for an appropriate choice of scalar product on
L2([0, 1],Rk), it turns out that the quadratic form (Q− I)(v) = Q(v)−〈v, v〉
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is compact. However, as mentioned, it is in general not trace-class since the
asymptotic relation in Eq. (1) holds.

Given an eigenvalue of Q, λ, denote by m(λ) its multiplicity. We define
the determinant of the second variation as the following limit:

det(Q) = lim
ε→0

∏
|λ−1|>ε

λm(λ), where λ ∈ Spec(Q).

As stated in the introduction, the computation of this determinant for
general boundary conditions is the main contribution of this work. We provide
a formula for this determinant involving essentially two ingredients:

• the fundamental solution of a linear (non autonomous) system of ODE
which we call Jacobi equation;

• the annihilator to the boundary condition manifold, a Lagrangian sub-
manifold of T ∗M .

To state the main Theorem and define precisely the objects above, we
need to introduce a little bit of notation. We will just sketch here what is
needed for this purpose, further details are collected in Appendix A or given
along with the proofs. From now on, assume that a strictly normal extremal
λt with optimal control ũ is fixed (see Appendix A). As asserted by PMP, it
satisfies the following (non autonomous) Hamiltonian ODE:

ht
ũ(λ) = hu(λ)|u=ũ(t) = (〈λ, fu(q)〉 − ϕ(u, q)) |u=ũ(t), λ̇ = 
ht

ũ(λ).

The first objects we introduce are the flow of 
ht
ũ at time t, denoted by Φ̃t,

and its differential, denoted by (Φ̃t)∗. Note that λt satisfy λt = Φ̃t(λ0). We
will use the map Φ̃t to connect the tangent spaces to each point of λt to the
starting one, λ0. This flow, in some sense, plays the role of the choice of a
connection (or parallel transport as in Riemannian geometry, see [13]).

The second object we are going to introduce, is a kind of quadratic
approximation of our starting system. It is given by a quadratic Hamiltonian
on Tλ0T

∗M (see for detail [1] or [6, Chapters 20 and 21]). To define it, we
need to introduce two matrix-valued functions Zt ∈ Matk×2 dim(M)(R) and
Ht ∈ Matk×k(R). They can be computed in terms of Φ̃t and the Hamiltonians
hu as shown in (32). The matrix Zt is the derivative of 
hu with respect to
the control variable along the extremal and, heuristically, represents a linear
approximation of the Endpoint map of the original system. On the other
hand, Ht is the hessian of hu with respect to the control variable along
the extremal and gives some sort of quadratic approximation of hu. These
matrices will be used to get an explicit integral expression of Q, given in
Equation (5), and to define Jacobi equation below. Strong Legendre condition
can be formulated in terms of Ht. We will assume that it is symmetric,
positive definite and with uniformly bounded inverse.

Let π : T ∗M → M be the natural projection and set Π := kerπ∗, the
fibers. Define δs as the dilation by s ∈ R of Π. It is determined by the relations
π∗(δsw) = π∗(w) for all w ∈ Tλ0T

∗M and δsv = sv for all v ∈ ker(π∗). Let
J be some coordinates representation of the standard symplectic form on
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Tλ0T
∗M . Let us define the following quadratic form:

βs(λ) =
1
2
〈λ, JδsZtH

−1
t (δsZt)∗Jλ〉, λ ∈ Tλ0T

∗M.

We will call Jacobi (or Jacobi type) equation the following ODEs system on
Tλ0T

∗M :

λ̇ = 
βs(λ), λ ∈ Tλ0T
∗M.

Denote its fundamental solution at time t by Φs
t . Here, and for the rest of

the paper, we will call fundamental solution any family Θt, t ∈ R of linear
maps which satisfies a linear ODE and have initial condition Θ0 = I.

Remark 1. Whenever PMP’s maximum condition determines a C2 function
h = maxu hu on T ∗M , normal extremals satisfy a Hamiltonian ODE on the
cotangent bundle of the form λ̇ = 
h(λ). Jacobi equation for s = 1 is closely
related to the linearisation of 
h along the extremal we are fixing. Suppose
local coordinates are fixed and let d2

λt
h be the Hessian of h along the extremal.

Let Ψt be the fundamental solution of:

Ψ̇t = d2
λt

h Ψt.

It can be shown (see for example [6, Proposition 21.3]) that:

Ψt = (Φ̃t)∗Φ1
t .

The last maps we will need are a family of symplectomorphisms of
Tλ0T

∗M and Tλ1T
∗M . Their definition depends on the choice of a scalar

product on each tangent space. Let g0 and g1 be two scalar products on these
spaces. Assume that at each λi, Πi := ker(π∗) ⊆ Tλi

T ∗M has a Lagrangian
orthogonal complement with respect to gi which we denote by Π⊥

i . Denote
by J0 and J1 the linear maps determined by σ(v, w) = gi(Jiv, w) for all
v, w ∈ Tλi

T ∗M . For a subspace V , denote by prV the orthogonal projection
onto V . We set:

As
0(η) = η + (1 − s)J−1

0 prΠ⊥
0
η, η ∈ Tλ0(T

∗M),

As
1(η) = η + (1 − s)

(
J−1

1 + Φ̃∗ ◦ prΠ0 ◦ Φ̃−1
∗
)

prΠ⊥
1
η, η ∈ Tλ1(T

∗M).
(4)

The datum of the boundary condition is encoded in a Lagrangian sub-
manifold of

(
T ∗(M × M), (−σ) ⊕ σ

)
, the annihilator of N . It can be thought

of as the symplectic version of the normal bundle in Riemannian geometry
and is defined as follows. Take a sub-manifold N ⊆ M × M and consider:

Ann(N) =
⋃

q∈N

{(λ0, λ1) ∈ T ∗
q (M × M) :

〈λ0,X0〉 = 〈λ1,X1〉,∀(X0,X1) ∈ TqN}.

In light of PMP (see Appendix A), critical points of J with boundary con-
ditions given by N , lift to the cotangent bundle to curves λt such that
(λ0, λ1) ∈ Ann(N).

Fix now a complement to T(λ0,λ1)Ann(N), say VN , and denote by πN

the projection on VN having T(λ0,λ1)Ann(N) as kernel. We are ready now to
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define a function that plays the role of the characteristic polynomial of the
Hessian of J . For a map f denote by Γ(f) its graph, set:

pQ(s) = det(πN |Γ(As
1Φ̃∗Φs

1As
0)

).

With this notation, our main result reads as follows:

Theorem 1. Suppose that λt is a strictly normal extremal for problem (3) and
ũ is its optimal control. Moreover, suppose that λt satisfies Legendre strong
condition, i.e. that ∃α > 0 such that, ∀v ∈ R

k

〈−Htv, v〉 ≥ α〈v, v〉
and that at least one of the following holds:

• the maps t → Zt and t → Ht are piecewise analytic in t;
• the dimension of the space of controls k satisfies k ≤ 2;
• the operator I − Q is trace class;

Let λ ∈ Spec(Q) and m(λ) be its multiplicity. Then, the limits:

det(Q) = lim
ε→0

∏
|λ−1|>ε

λm(λ), tr(Q − I) = lim
ε→0

∑
|λ−1|>ε

m(λ)(λ − 1).

are well defined and finite. Moreover, for almost any choice of metrics g0 and
g1 we have that pQ(0) �= 0 and that:

det(I + s(Q − I)) = pQ(0)−1es(tr(Q−I)−p′
Q(0))pQ(s).

Remark 2. The hypothesis about the regularity of Zt and Ht are needed to
obtain the asymptotic for the spectrum of Q−I that guarantees the existence
of the trace and of the determinant as limits. They can be weakened somehow
by requiring that the skew-symmetric k × k matrix Z∗

t JZt is continuously
diagonalizable (see [3]).

Remark 3. It is worth pointing out that, under Legendre strong condition,
the matrices Zt and Ht are analytic (or Ck) as soon as M , the dynamics
fu(q), the cost ϕ(u, q) and the Hamiltonian function h = maxu hu appearing
in the statement of PMP are analytic (or Ck+1) too. Compare with [6, Section
21.4].

Moreover, if Zt and Ht are at least C1, Q − I is trace class as soon as
σ(Ztv, Ztw) = 0 for all t ∈ [0, 1] and for all v, w ∈ R

k (see [10]).

Remark 4. The constants pQ(0), p′
Q(0) and tr(Q− I) are completely explicit

and are given in terms of iterated integrals in Lemmas 4 and 3.

In particular we have the following corollary:

Corollary 1. Under the assumption above, the determinant of the second vari-
ation Q satisfies:

det(Q) = pQ(0)−1etr(Q−I)−p′
Q(0) det(πN |Γ(Ψt)),

where Ψt = Φ̃∗Φ1 and coincides with the fundamental solution of the lineari-
sation of the extremal flow, whenever the latter is defined.
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2. The second variation

The aim of this section is threefold: to define precisely what we mean by
d2J |V , to define precisely its domain and to provide the integral representa-
tion of this quadratic form we will use throughout the proof section of the
paper.

Before going on, a little remark about topology is in order. Up until now
we have considered Lipschitz continuous curves and L∞ controls. Hence, it
would be natural to work on the Banach space L∞([0, 1],Rk) ⊕ R

dim(N).
However, it turns out that, even if d2J |V is defined on the latter space, it
extends to a continuous quadratic form on L2([0, 1],Rk)⊕R

dim(N). Moreover,
critical points of d2J |V in L2([0, 1],Rk) are continuous and thus belong to
L∞([0, 1],Rk). For this reason (and Fredholm alternative), we will work with
L2 controls for the rest of the paper.

Let n0, n1 ∈ N and consider the Hilbert space H (whose scalar product
will be defined in the next section) given by:

H = R
n0 ⊕ L2([0, 1],Rk) ⊕ R

n1 .

Let (Σ, σ) be a symplectic space and consider a linear map Z : H → Σ defined
as:

Z(u) = Z0u0 +
∫ 1

0

Ztutdt + Z1u1, u = (u0, ut, u1) ∈ H.

Suppose that Π ⊂ Σ is a Lagrangian subspace transverse to the image of the
map Z and define:

V = Z−1(Π).

For an appropriate choice of Z and Π which depends on (2) and (3), the
second variation (at a strictly normal critical point) is the quadratic form
given in the following definition.

Definition 1. (Second variation) The second variation at ũ is the quadratic
form defined on V ⊆ H:

Q(u) =
∫ 1

0

(
−〈Htut, ut〉 + σ(Ztut,

∫ t

0

Zτuτdτ + Z0u0)
)

dt

+ σ(Z0u0 +
∫ 1

0

Ztutdt, Z1u1),

(5)

where Ht stands for a symmetric matrix of dimension k and 〈, 〉 for the
standard euclidean inner product of Rk.

The definition of this quadratic form may be a bit strange at first glance.
Despite the appearances, the way one gets to such an expression is quite
natural. The construction is explained in detail in [9]. We will sketch here
just the main features, essentially to introduce the notation needed.

The idea is to reduce the problem with boundary conditions N to a
fixed points (or Dirichlet) problem for an appropriate auxiliary system. We
will consider just the case of separated boundary conditions N0 × N1. The
general case reduces to this one using the procedure explained in Sect. 4.2.
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The first step of the construction is to build the auxiliary system. We
always work with a fixed strictly normal extremal λt. Choose local foliations
in neighbourhoods of its initial and final points having a portion of N0 and N1

as leaves. This determines two integrable distributions in a neighbourhood
of those points. Suppose that said distributions are generated by some fields
{Xj

i }dim(Nj)
i=1 and j = 0, 1. Consider the extended system:

f̂ t
u(q) =

⎧⎪⎨
⎪⎩

∑dim(N0)
i=0 X0

i (q)ui
0, for t ∈ [−1, 0)

fu(q), for t ∈ [0, 1]∑dim(N1)
i=0 X1

i (q)ui
1, for t ∈ (1, 2].

Denote the initial and final points of our original extremal curve by (q0, q1).
We will use controls that are locally constant on [0, 1]c, this will be enough to
reach any neighbouring point of (q0, q1) in N0 × N1. Minimizing our original
functional is equivalent to minimize, with Dirichlet boundary conditions, the
following one:

J (γ(u0,u,u1)) =
∫ 1

0

ϕ(u(t), γ(u0,u,u1)(t))dt.

The second step is to differentiate the Endpoint map (see Appendix A)
of the auxiliary system. We employ the machinery of Chronological Calculus
(see also [6, Section 20.3]), which is standard for fixed endpoints. One of the
main steps of this differentiation, is to use a suitable family of symplecto-
morphism to trivialize the cotangent bundle along the curve we are fixing.
This allows us to write all the equations in the tangent space to the initial
point, Tλ0(T

∗M). Let us consider the following functions depending on the
parameter u:

ĥt
u(λ) = 〈λ, f̂ t

u(q)〉 − ϕt(u, q), q = π(λ).

When an optimal control ũ(t) is given, we consider ĥt
ũ(t)(λ) and the Hamil-

tonian system:

˙̂Φt = 
̂
ht

ũ(t)(Φ̂t).

We then define the following functions:

Ẑt = ∂u

ht

u(Φ̂t(λ))|λ=λ0 , Ẑt : Rk → Tλ0(T
∗M),

Ĥt = ∂2
uht

u(Φ̂t(λ))|λ=λ0 , Ĥt : Rk → R
k.

The asymptotic expansions of Chronological Calculus tell us that the
second variation at ũ is the following quadratic form:

Q(u) =
∫ 2

−1

〈−Ĥtu, u〉 −
∫ 2

−1

∫ t

−1

σ(Ẑτuτ , Ẑtut)dτdt.

It is defined on the tangent space V to the variations fixing the endpoints of
our curve. This space can be described explicitly as V = {v :

∫ 2

−1
Ẑtvtdt ∈ Π},

where Π = ker π∗.
The third step is to specialize this representation to our auxiliary sys-

tem. Notice that an extremal of the original problem lifts naturally to an
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extremal of the auxiliary one. If ũ is the original optimal control, extending
it by zero on [0, 1]c gives the optimal control for the auxiliary problem. Ap-
plying the construction just sketched to the extended system, we find that Ẑt

and Ĥt are locally constant on [0, 1]c. We denote Z0 to be its value on [−1, 0)
and Z1 the value on (1, 2]. Ĥt is zero outside [0, 1]. Summing up we have:

Ẑt =

⎧⎪⎨
⎪⎩

Z0 for t ∈ [−1, 0)
Zt for t ∈ [0, 1]
Z1 for t ∈ (1, 2].

Ĥt =

{
Ht for t ∈ [0, 1]
0 for t ∈ [0, 1]c.

Thus, after the substitution, we recover precisely the operator given in (5).

Remark 5. We always assume that our extremal is strictly normal and satis-
fies Legendre strong condition. In terms of the matrices Zt and Ht this means
that for t ∈ [0, 1] and some α > 0:

Xt := π∗Zt satisfies
∫ 1

0

X∗
t Xt > 0, 〈−Htv, v〉 ≥ α〈v, v〉, ∀v ∈ R

k.

As a last remark, notice that, by the first order optimality conditions,
the map Z0 takes values in the space Tλ0Ann(N0) and the map Z1 in the
space (Φ̃−1

1 )∗ (Tλ1Ann(N1)) ( see PMP in Appendix A and [9]).

2.1. The scalar product on the space of variations

As already mentioned, we will assume through out this paper Legendre strong
condition. The matrix −Ht is positive definite on [0, 1], with uniformly bound
ed inverse. This allows to use −Ht to define an Hilbert structure on L2([0, 1],
R

k) equivalent to the standard one. We have still to define the scalar product
on a subspace transversal to V0 = {u0 = u1 = 0}. A natural choice would be
to introduce two metrics, one on Tλ0T

∗M and one on Tλ1T
∗M , and pull them

back to the space of controls using the maps Z0 and Φ̃∗Z1 : Rn → Tλi
T ∗M .

Let us call any such metrics g0 and g1.

Definition 2. For any u, v ∈ H define:

〈u, v〉 = −
∫ 1

0

Ht(ut, vt)dt + g0(Z0u0, Z0v0) + g1(Φ̃∗Z1u1, Φ̃∗Z1v1).

Since the symplectic form σ is a skew-symmetric bilinear form, there
exists a gi−skew-symmetric linear operator Ji such that:

gi(JiX1,X2) = σ(X1,X2), ∀X1,X2 ∈ Tλi
T ∗M, i = 0, 1.

In terms of the symplectic form, the scalar product can be written as:

〈u, v〉 = −
∫ 1

0

Ht(ut, vt)dt + σ(J−1
0 Z0u0, Z0u0) + σ(J−1

1 Φ̃∗Z1u1, Φ̃∗Z1u1).

Now, we use the Hilbert structure just introduced to write the oper-
ator K associated with the quadratic form Q − I, which is compact. To
simplify notation, we can perform the change of coordinates in L2 sending
vt → (−Ht)

1
2 vt and substitute Zt with Zt(−Ht)− 1

2 . In this way, the Hilbert
structure on the interval becomes the standard one.
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We introduce a further piece of notation, call pr0 (respectively pr1) the
orthogonal projection on Im(Z0) (respectively Im(Φ̃∗Z1)) with respect to the
scalar product g0 (respectively g1). Let L be a partial inverse to Φ̃∗Z1, i.e. a
map L : Tλ0T

∗M → R
n defined by the relation LΦ̃∗Z1v1 = v1. Set:

Λ(u) = Lpr1 J1Φ̃∗
(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)
. (6)

Lemma 1. The second variation, as a bilinear form, can be expressed as:
Q(u, v) = 〈u + Ku, v〉 where u, v ∈ V and K is the operator defined by:

Ku =

⎛
⎜⎝

−u0

−Z∗
t J
(∫ t

0
Zτuτdτ + Z0u0

)
−u1 − Λ(u)

⎞
⎟⎠ (7)

where Λ(u) is given above, in Eq. (6).

Proof. A quick manipulation of the expression involving the symplectic form
in Definition 1, yields the following:∫ 2

−1

∫ t

−1

σ(Zτuτ , Ztvt)dτdt =
∫ 0

−1

∫ t

−1

σ(Zτuτ , Ztvt)dτdt

+
∫ 1

0

∫ t

−1

σ(Zτuτ , Ztvt)dτdt +
∫ 2

1

∫ t

−1

σ(Zτuτ , Ztvt)dτdt

=
∫ 1

0

σ

(∫ t

0

Zτuτdτ + Z0u0, Ztvt

)
dt

+ σ
(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1, Z1v1

)

=
∫ 1

0

σ

(∫ t

0

Zτuτdτ + Z0u0, Ztvt

)
dt

+ g1

(
J1Φ̃∗

(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)
, Φ̃∗Z1v1

)
.

Recall that Zt is constant on [0, 1]c. Moreover, the images of the maps Z0

and Z1 are isotropic subspaces. We used this fact to simplify the expression
in the first line. Now, it is clear that in the last term:

g1

(
J1Φ̃∗

(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)
, Φ̃∗Z1v1

)
,

only the projection onto the image of Φ̃∗Z1 plays a role. It is straightforward
to check that:

g1

(
J1Φ̃∗

(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)
, Φ̃∗Z1v1

)
= g1(Φ̃∗Z1Λ(u), Φ̃∗Z1v1).

Recall that we have normalized Ht to −1, thus the first summand can
be rewritten as follows:∫ 1

0

σ

(∫ t

0

Zτuτdτ + Z0u0, Ztvt

)
dt =

∫ 1

0

〈Z∗
t J
(∫ t

0

Zτuτdτ + Z0u0

)
, vt〉dt.
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Adding and subtracting g(Z0u0, Z0v0) and g(Z1u1, Z1v1) to single out
the identity, we obtain the formula in the statement. �

3. Hill-type formulas

Before going to the proof of Theorem 1, we present here some applications
of the main result. We deduce Hill’s formula for periodic trajectories and
specify it to the eigenvalue problem for Schrödinger operators. In the second
sub-section we present a variation of the classical Hill formula for systems
with drift. We will mainly deal with periodic and quasi-periodic boundary
conditions. Namely, we consider the case N = Γ(f) for a diffeomorphism of
the state space f : M → M .

The proofs of this section rely quite heavily on the machinery intro-
duced in Sect. 4.2, in particular in Lemmas 4 and 3. The statements, on the
other hand, do not and could shed some light on Theorem 1. Despite the
appearance, proofs are rather simple. They reduce to a (long) computation
of the normalizing factors appearing in the statement of Theorem 1 and can
be skipped at first reading.

3.1. Driftless systems and classical Hill’s formula

In this section, we consider driftless systems with periodic boundary condi-
tions on R

n and specify the formulas of Theorem 4 for this class of problems.
First of all, let us explain what we mean by driftless systems. Let t → Rt

be a continuous family of symmetric matrices of size n × n and let us denote
by u a function in L∞([0, 1],Rn).

Consider the following family of vector fields fu(q), their associated
trajectories qu(t) and the action functional A(u):

fu(q) = u(t),

{
q̇u = fu(q) = u(t),
q(0) = q0 ∈ R

n.

A(u) =
1
2

∫ 1

0

|u|2 − 〈Rtqu(t), qu(t)〉dt.

(8)

The Hamiltonian coming from the Maximum Principle takes the follow-
ing form:

H(p, q) = max
u∈Rk

〈p, u〉 − 1
2
(|u|2 − 〈Rtq, q〉) =

1
2
(〈p, p〉 + 〈Rtq, q〉). (9)

Let us denote the flow generated by H by Ψt. Fix a normal extremal λt

for periodic boundary conditions and its optimal control ũ(t) = p(t).
We impose periodic boundary conditions, i.e. we take N = Δ = {(q, q) ∈

R
2n : q ∈ R

n}. Let g be a scalar product on R
n which we identify, with a

slight abuse of notation, with a symmetric matrix G.

Theorem 2. (Hill’s formula) Let I+K be the second variation at ũ and Ψ the
fundamental solution of Ψ̇ = 
HΨ and G the matrix representing the scalar
product g. The following equality holds:

det(I + K) = (−1)n(2e)−n det(G−1) det(1 − Ψ).
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Remark 6. If we are working on the interval [0, T ] instead of [0, 1] every-
thing remains essentially unchanged. The only difference is that extra factor
T−n appears on the right-hand side. In the notation of the proof below this
corresponds to the term det(Γ)−1.

We can apply the previous result to study boundary value problems for
Sturm-Liouville operators. Let us illustrate the case of Schrödinger equation
with periodic boundary conditions. Fix, without loss of generality, the nor-
mal extremal (p(t), q(t)) = (0, 0) and with relative optimal control ũ = 0.
Consider the cost R̃t = Rt + λ, for λ ∈ R. Consider the second variation of
the functional

Aλ(u) =
1
2

∫ 1

0

|ut|2 + 〈(Rt + λ)qu(t), qu(t)〉dt,

at the point ũ = 0. It is given by the operator 1 + Kλ where:

〈Kλ(u), u〉 = λ

(∫ 1

0

∫ t

0

〈(τ − t)u(τ), u(t)〉dτdt + 〈u0, u0〉
)

+ 〈K0(u), u〉.

We have the following corollary:

Corollary 2. Let λ ∈ R, Ψλ the fundamental matrix of the lift to R
2n of the

following ODE on R
2n:

q̈(t) = (Rt + λ)q(t).

The determinant of the operators 1 + Kλ can be expressed as:

det(1 + Kλ) = (−1)n(2e)−n det(G−1) det(1 − Ψλ),

where G is as in the previous statement.

Proof of Theorem 2. We are going now to describe explicitly all the objects
involved in Theorem 1. Let us start with the flow Φ̃ we use to re-parametrize
the space and its differential. It is given by the Hamiltonian:

hũ(t)(p, q) = 〈p, ũ(t)〉 +
1
2
〈Rtq, q〉 ⇒

{
ṗ = −Rtq

q̇ = ũ(t).

Φ̃t(p, q) =
(

1 − ∫ t

0
Rτdτ

0 1

)(
p
q

)
+

(
− ∫ t

0

∫ τ

0
Rτ ũ(r)drdτ∫ t

0
ũ(τ)dτ

)

(Φ̃t)∗ =
(

1 − ∫ t

0
Rτdτ

0 1

)
.

The matrix Zt is the following:

Zt = (Φ̃−1
t )∗∂u


ht
u =

(∫ t

0
Rτdτ
1

)
.

To simplify notation, let us call R̂ = − ∫ 1

0
Rτdτ . The annihilator of the

diagonal is simply the graph of the identity. Hence the following map, defined
on (Tλ0T

∗M)2, has the latter as kernel:

(η0, η1) → η1 − η0.
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We will now define Qs as in Eq. (28) (actually up to a scalar, but this
is irrelevant). For η ∈ Tλ0T

∗M set:

Qs(η) =
(−1 1

)( η

As
1Φ̃∗Φs

1A
s
0η

)
= (As

1Φ̃∗Φs
1A

s
0 − 1)η ∈ Tλ0T

∗M.

It is clear that the kernel of Qs is precisely the intersection of the graph
with the diagonal subspace. Since we are working on R

2n we can define the
determinant of this map as:

det(Qs) = det(As
1Φ̃∗Φs

1A
s
0 − 1).

As already mentioned in Sect. 1.1 this function is a multiple of the charac-
teristic polynomial of K. It satisfies (see Sects. 4.1 and 4.2):

det(Qs) = aebs det(1 + sK), a ∈ C
∗, b ∈ C.

Let us compute the normalization factors. To do so, we have to evaluate
det(Qs) and its derivative at s = 0. This will give us the relations:

det(Q0) = a, a(b + tr(K)) = ∂s det(Qs)|s=0.

We have to work a bit to write down precisely all the quantities appearing
in the formulas above. It is straightforward to compute the matrix represen-
tations of the maps As

0 and As
1. In this setting the projections onto Π0 and

Π⊥
0 are given by:

prΠ0 =
(

1 0
0 0

)
, prΠ⊥

0
=
(

0 0
0 1

)
.

Recall that the definition of As
0 and As

1 given in (4) depends on the choice
of two scalar products g0 and g1. Denote by G0 and G1 their restriction to
Π⊥

0 and Π⊥
1 respectively. We have that:

As
0 =

(
1 (1 − s)G0

0 1

)
, As

1 =
(

1 (1 − s)(G1 − R̂)
0 1

)

As
1Φ̃∗ =

(
1 sR̂ + (1 − s)G1

0 1

)
.

The value of Φs
t and its derivative at s = 0 is given in Lemma 4. Here,

for the submatrices of Φ0
t and ∂sΦs

t |s=0, we use the notation defined in the
Lemma 4. In this case, since Yt =

∫ t

0
Rτdτ and Xt = 1, we obtain:

Φ0
t =

(
1 0
Γ 1

)
=
(

1 0
t 1

)
,

∂sΦs
t |s=0 =

(
Θ 0
Ω −Θ∗

)
=

( ∫ t

0

∫ τ

0
Rωdω 0∫ t

0

∫ τ

0

∫ τ

r
Rωdωdrdτ − ∫ t

0

∫ τ

0
Rωdω

)
.

Let us compute the value of det(Qs) in zero. Putting all together we have:

det(Qs)|s=0 = det
((

1 G1

0 1

)(
1 0
Γ 1

)(
1 G0

0 1

)
−
(

1 0
0 1

))
.
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After a little bit of computation we find that Qs|s=0 satisfies:
Qs|s=0 =

(
G1Γ G0 + G1 + G1ΓG0

Γ ΓG0

)
, det(Qs|s=0) = (−1)n det(Γ) det(G1 + G0),

(Qs|s=0)
−1 =

(−G0(G1 + G0)−1 Γ−1 + G0(G1 + G0)−1G1

(G1 + G0)−1 −(G1 + G0)−1G1

)
.

We can compute the derivative det(Qs) at s = 0, we find that:

∂sQ
s|s=0 = (∂sA

s
1)Φ̃∗Φs

1A
s
0 + As

1Φ̃∗(∂sΦs
1)A

s
0 + As

1Φ̃∗Φs
1(∂sA

s
0)|s=0

=
(

(G1 − R̂)Γ G1 − R̂
0 0

)(
1 G0

0 1

)

+
(

1 G1

0 1

)((
Θ 0
Ω −Θ∗

)(
1 G0

0 1

)
+
(

0 G0

0 ΓG0

))
.

We use now Jacobi formula for the derivative of the determinant of a family
of invertible matrices. It reads:

∂s det(Ms) = det(Ms)tr(∂sMsM
−1
s ).

Without going into the detail of the actual computation, which at this point
is just matrix multiplication, we have that:

∂s det(Qs)|s=0 = det(Qs)|s=0 tr(∂s(Qs)(Qs)−1)|s=0

= det(Qs)|s=0 tr((G1 + G0)−1(G0 − G1 + R̂) + Γ−1Ω).

The last quantity we have to compute is tr(K). To do so we use Lemma 3.
Mind that in the statement of the Lemma one works with twice the variables,
taking as state space Rn×R

n and using the symplectic form (−σ)⊕σ on R
2n×

R
2n. The quantities with ˜ on top always refer to the system in R

4n, where
we have a trivial dynamic on the first factor and the boundary condition we
impose are in this case Δ×Δ (see the beginning of Sect. 4.2 for more details).
The formula given in the lemma reads:

tr(K) = −dim(N) + tr[π1
∗Φ̃−1

∗ pr1J̃1Φ̃∗(Z̃0)]

+ tr
[
Γ−1

(
Ω + (π2

∗ − π1
∗)Φ̃−1

∗ pr1J̃1Φ̃∗

(∫ 1

0

Z̃tZ
∗
t J |Πdt

))]
.
(10)

Let us explain all the objects appearing in the formula. π̃i
∗ denotes the dif-

ferential of the natural projection on the i−th factor. The matrix Φ̃∗ is given
here by:

Φ̃∗ =

⎛
⎜⎜⎝

(
1 0
0 1

)
0

0
(

1 R
0 1

)
⎞
⎟⎟⎠ .

Moreover the matrices Z̃0, Z̃t and Z̃1 are:

Z̃0 =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ , Z̃t =

⎛
⎜⎜⎝

0
0∫ t

0
Rτdτ
1

⎞
⎟⎟⎠ , Z̃1 =

⎛
⎜⎜⎝

0
1

−R
1

⎞
⎟⎟⎠ , Φ̃∗Z̃1 =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ .
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The map pr1 denotes the orthogonal projection onto the image of Z̃1. We are
using the scalar product g0 ⊕ g1 on Tλ0T

∗M × Tλ1T
∗M to define it. One can

check that the following map is the coordinate representation of pr1:

pr1 = (G0 + G1)−1

⎛
⎜⎜⎝

0 0 0 0
0 G0 0 G1

0 0 0 0
0 G0 0 G1

⎞
⎟⎟⎠ ,

pr1J̃1 = (G0 + G1)−1

⎛
⎜⎜⎝

0 0 0 0
−1 0 1 0
0 0 0 0

−1 0 1 0

⎞
⎟⎟⎠ .

Now everything reduces to some tedious matrix multiplications. The
second term in the right hand side of (10) simplifies as follows:

tr[π1
∗Φ̃−1

∗ pr1J̃1Φ̃∗(Z̃0)] = tr(R̂(G0 + G1)−1).

For the third term notice that (π2
∗−π1

∗)(Φ̃∗)−1pr1 is identically zero since
Φ̃∗ does not change the projection on the horizontal part and we are work-
ing with periodic boundary conditions. It follows we are left with tr(Γ−1Ω).
Summing up we have that:

tr(K) = tr(ΩΓ−1 + R̂(G0 + G1)−1)−dim(M).

It is natural to think of g0 and g1 as restrictions of globally defined
Riemannian metrics. Doing so, since we are working with periodic boundary
conditions, amounts to choose G0 = G1. Hence the result. �
3.2. System with drift and Hill-type formulas

In this section we give a version of Hill’s formula for linear systems with drift.
They are again linear system with quadratic cost of the following form:

fu(q) = Atq + Btu(t),

{
q̇u = fu(q) = Atqu + Btu(t),
q(0) = q0 ∈ R

n

A(u) =
1
2

∫ 1

0

|u|2 + 〈Rtqu(t), qu(t)〉dt.

(11)

Here At is n×n matrix and Bt a n×k one, both with possibly non-constant
(but continuous) coefficients. The maximized Hamiltonian takes the form:

H(p, q) = 〈p,Atq〉 +
1
2

(〈BtB
∗
t p, p〉 + 〈Rtq, q〉) .

Denote by Φ̂t the fundamental solution of q̇ = Atq at time t. We can lift
this map to a symplectomorphism of the cotangent bundle which we denote
by Φt. As boundary conditions, we take the following affine subspace of R4n:

N = Γ
(

Φ̂ + Φ̂
∫ 1

0

Φ̂−1
r Brũ(r)dr

)
.

Notice that, since only the tangent space matters in our formulas, the trans-
lation is irrelevant and it would be the same as if we considered Γ(Φ̂). An
obvious choice of extremal is the point λt = (0, 0), with control ũ = 0.
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Theorem 3. (Hill’s formula with drift) Suppose that a critical point of the
functional given in (11) is fixed and let ũ be its optimal control. Let G0

and G1 be our choices of scalar product, Γ :=
∫ 1

0
Φ̂τBτB∗

τ Φ̂∗
τdτ and Ψt the

fundamental solution of Ψ̇ = 
HΨ. Moreover, define the following matrix:

G = G0 + Φ̂∗
t G1Φ̂t.

Let I + K be the second variation at ũ. The following equality holds:

det(I + K) =
(−1)ne−2 tr(G−1G0)

det(G) det(Γ)
det(Ψt − Φt).

Proof. The proof is completely analogous to the one of Theorem 2. First of
all the Hamiltonian we use to re-parametrize is given as follows:

ht
ũ(t) = 〈p,Btũ(t) + Atq〉 +

1
2
〈Rtq, q〉.

Hence the flow and its differential are given by:

Φ̃t(p, q) =
(

(Φ̂∗
t )

−1 −(Φ̂∗
t )

−1
∫ t

0
Φ̂∗

τRτ Φ̂τdτ

0 Φ̂t

)(
p
q

)

+

(
−(Φ̂∗

t )
−1
∫ t

0
Φ̂∗

τRτ Φ̂τ

∫ τ

0
Φ̂−1

r Brũ(r)drdτ

Φ̂t

∫ t

0
Φ̂−1

r Brũ(r)dr

)
,

(Φ̃t)∗ =
(

(Φ̂∗
t )

−1
∗ −(Φ̂∗

t )
−1
∫ t

0
Φ̂∗

τRτ Φ̂τdτ

0 Φ̂t

)
.

We have to define the map Qs. Similar to the previous case, we can define a
map having as kernel the annihilator to the boundary conditions as follows:

(η0, η1) →
(

Φ̂∗
t 0

0 (Φ̂t)−1

)
η1 − η0 =: T1η1 − η0.

Hence:

det(Qs) = det(T1A
s
1Φ̃∗Φs

1A
s
0 − 1).

Set as before R̂ = −(Φ̂∗)−1
∫ 1

0
Φ̂∗

τRτ Φ̂τdτ , the upper right minor of Φ̃∗. A
quick computation shows that:

T1A
s
1Φ̃∗ =

(
1 (1 − s)Φ̂∗

t G1Φ̂t + sΦ̂∗
t R̂

0 1

)
:= Âs

1Φ̃∗.

Hence, up to renaming G1 and Γ in the proof of Theorem 2, we have:

det(Qs)|s=0 = (−1)n det(Γ) det(Φ̂∗
t G1Φ̂t + G0) = (−1)n det(Γ) det(G),

∂s det(Qs)
det(Qs)

|s=0 = tr(((Φ̂∗
t G1Φ̂t + G0)−1(G0 − Φ̂∗

t G1Φ̂t + Φ̂∗
t R̂) + Γ−1Ω).

Now we have to apply Lemma 3 to compute the trace of the compact
part of the second variation. Here pr1 and Z̃1 are different since we have
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changed boundary conditions. However we have the same kind of simplifica-
tion as in the previous case. Let us write explicitly the new objects:

Z1 =

⎛
⎜⎜⎝

0
1
0
Φ̂t

⎞
⎟⎟⎠ , pr1 =

⎛
⎜⎜⎝

0 0 0 0
0 LG0 0 LΦ̂∗

t G1

0 0 0 0
0 ˆΦtLG0 0 Φ̂tLΦ̂∗

t G1

⎞
⎟⎟⎠ , L = (G0 + Φ̂∗

t G1Φ̂t)−1.

In the end, the trace reads:

tr(K) = tr(Γ−1Ω + Φ̂∗
t R̂(Φ̂∗

t G1Φ̂t + G0)−1) − dim(M).

Contrary to the previous section the two terms do not simplify. We are
left with the following equation for b:

b = dim(M) + tr((Φ̂∗
t G1Φ̂t + G0)−1(G0 − Φ̂∗

t G1Φ̂t))

= n + 2 tr(G−1G0) − n = 2 tr(G−1G0).

Hence, the statement follows evaluating det(Qs) at s = 1:

det(Qs) = det(T1Φ̃∗Φ1
1 − 1) = det(Φ−1

t Φ̃∗Φ1
1 − 1)

= det(Ψt − Φt).

�

4. Proof of the main theorem

In this section, we provide a proof of Theorem 1. First, we work with sepa-
rated boundary conditions and then reduce the general case to the former.
The proof is a bit long so we try to give here a concise outline. The idea
is to construct an analytic function f which vanishes precisely on the set
{−1/λ : λ ∈ Spec(K)} ⊆ R. Particular care is needed to show that the mul-
tiplicity of the zeros of this function equals the multiplicity of the eigenvalues
of K. We do this in Propositions 1 and 2 respectively. We show that this
function decays exponentially and use a classical factorization Theorem by
Hadamard to represent it as

f(s) = askebs
∏

λ∈Spec(K)

(1 + λs)m(λ), a, b ∈ C, a �= 0, k ∈ N.

To prove the general case, we double the variables and consider general
boundary conditions as separated ones. In this framework, we compute the
value of the parameters a, b and k appearing in the factorization.

4.1. Separated boundary conditions

We briefly recall the notation. We are working with an extremal λt with initial
and final point (λ0, λ1) ∈ Ann(N), where N = N0×N1 are product boundary
conditions. We are assuming that λt is strictly normal and satisfies Legendre
strong conditions. We work in a fixed tangent space, namely Tλ0T

∗M , to do
so we backtrack our curve to its starting point λ0 using the flow generated
by the time-dependent Hamiltonian:

ht
ũ(λ) = 〈λ, fũ(t)(q)〉 − ϕt(q, ũ(t)).
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We denote the differential of said flow by Φ̃∗. We have a scalar product gi

on Tλi
T ∗M , for each i = 0, 1. We assume that the orthogonal complement

to the fiber at λi, Πi = Tλi
T ∗

π(λi)
M is a Lagrangian subspace and that the

range of Z0 (and Φ̃∗Z1 respectively) is contained in Π⊥
0 (resp. Π⊥

1 ).

Remark 7. If we fix Darboux (i.e. canonical) coordinates coming from the
splitting Πi ⊕Π⊥

i it is straightforward to check that gi takes a block diagonal
form with symmetric n × n matrix Gj

i on the main diagonal. Similarly, we
can write down the coordinate representation of the matrix Ji and find:

gi(X,Y ) =
〈(

G1
i 0

0 G2
i

)(
X1

X2

)
,

(
Y1

Y2

)〉
, Ji =

(
0 −(G1

i )
−1

(G2
i )

−1 0

)
.

For s ∈ R (or C) we introduce the following symplectic maps:

As
0(η) = η + (1 − s)J−1

0 prΠ⊥
0
η, η ∈ Tλ0(T

∗M),

As
1(η) = η + (1 − s)(J−1

1 + Φ̃∗ ◦ prΠ0 ◦ Φ̃−1
∗ )prΠ⊥

1
η, η ∈ Tλ1(T

∗M).
(12)

Notice that the transformation As
i are indeed symplectomorphisms. In

(canonical) coordinates given by Πi and Π⊥
i they have the following matrix

representation:

As
i =

(
1 (1 − s)Si

0 1

)
, S∗

i = Si.

The last map we are going introduce is two families of dilation in
Tλ0(T

∗M), one of the vertical subspace and one of its orthogonal comple-
ment. Let s ∈ R (or C) and let us define the following maps:

δs : Tλ0T
∗M → Tλ0T

∗M, δsν = s prΠ0ν + prΠ⊥
0
ν,

δs : Tλ0T
∗M → Tλ0T

∗M, δsν = prΠ0ν + s prΠ⊥
0
ν.

(13)

Proposition 1. Let As
i be the maps given in Eq. (12) and let Φs

1 be the fun-
damental solution of the system:

η̇ = Zs
t (Zs

t )∗Jη, Zs
t = δsZt,

The operator I + sK restricted to V has non trivial kernel if and only
if there exists a non zero (η0, η1) ∈ T(λ0,λ1)(Ann(N)) such that

As
1 ◦ Φ̃∗ ◦ Φs

1 ◦ As
0 η0 = η1,

In particular, the geometric multiplicity of the kernel of I + sK equals the
number of linearly independent solutions of the above equation.

Proof. I + sK has a non trivial kernel if and only if

〈u, v〉 + 〈sKu, v〉 = 0, ∀u, v ∈ V.

Equivalently if and only if ∃u such that u + sKu ∈ V⊥ (see Lemma 2 below
for a description of V⊥). This is in turn equivalent to the following system⎧⎪⎪⎨

⎪⎪⎩

(1 − s)u0 = v0

ut = sZ∗
t J
( ∫ t

0
Zτuτdτ + Z0u0

)
+ Z∗

t Jν

(1 − s)u1 = sΛ(u) + v1

(14)
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Let us substitute Zt with Zs
t = δsZt. It is straightforward to check,

using the definition in (13), that:

sZ∗
t J

∫ t

0

Zτuτdτ = (Zs
t )∗J

∫ t

0

Zs
τuτdτ.

Moreover Z∗
t Jν = (Zs

t )∗Jν for any ν ∈ Π and sZ∗
t JZ0 = (Zs

t )∗JZs
0 since

δsZ0 = Z0.
All the computations we will do from here on are aimed at rewriting

(14) as a boundary value problem in Tλ0T
∗M × Tλ0T

∗M . Let us start with
the second equality in (14). Define:

η(t) =
∫ t

0

Zs
τuτdτ + Zs

0u0 + ν, η(0) = Zs
0u0 + ν.

The linear constraint defining V implies:

Z0u0 +
∫ 1

0

Ztutdt + Z1u1 ∈ Π ⇐⇒ Z0u0 +
∫ 1

0

Zs
t utdt + Zs

1u1 ∈ Π

⇐⇒ η(1) + Zs
1u1 ∈ Π0

⇐⇒ Φ̃∗(η(1) + Zs
1u1) ∈ Π1.

This imposes a condition on the initial and final value of η(t). The initial
one must lie in π−1

∗ TN0 and final one in π−1
∗ TN1. If we multiply by Zs

t the
second equation in (14), we are brought to consider the following problem:{

η̇(t) = Zs
t (Zs

t )∗Jη(t),
(π∗η(0), π∗η(1)) ∈ T (N0 × N1).

(15)

Now we use the remaining equations in (14) to reduce the space π−1
∗ (T (N0 ×

N1)) to a Lagrangian one. Let us reformulate the first and third line in (14) as
equations in Tλ0T

∗M and Tλ1T
∗M . Using the maps Z0 and Φ̃∗Z1 we obtain:{

(1 − s)Z0u0 = Z0v0 = pr0J0ν,

(1 − s)Φ̃∗Z1u1 = Φ̃∗Z1v1 + sΦ̃∗Z1Λ(u) = pr1J1Φ̃∗ν + sΦ̃∗Z1Λ(u).

Where we used the fact that (v0, vt, v1) is a vector in V⊥. Notice that,
for u ∈ V we have that:

s

(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)
= Z0u0 +

∫ 1

0

Zs
t utdt + Zs

1u1.

This implies that the term sΦ̃∗Z1Λ(u) can be rewritten as:

sΦ̃∗Z1Λ(u) = s pr1J1Φ̃∗

(
Z0u0 +

∫ 1

0

Ztutdt + Z1u1

)

= pr1J1Φ̃∗(η(1) + Zs
1u1 − ν).

If substitute Z0u0 with prΠ⊥
0
η(0) we end up with the equations:

{
(1 − s)prΠ⊥

0
η(0) = pr0J0ν = pr0J0η(0),

(1 − s)Φ̃∗Z1u1 = pr1J1Φ̃∗(η(1) + Zs
1u1).
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Now we do the same kind of substitution for the term Zs
1u1. Using the

projections on Π0 and Π⊥
0 and recalling that Φ̃∗ sends Π0 to Π1, we have:

Zs
1u1 = s prΠ0Z1u1 + prΠ⊥

0
Z1u1 = (s − 1) prΠ0Z1u1 + Z1u1.

pr1J1Φ̃∗Zs
1u1 = (s − 1) pr1J1Φ̃∗prΠ0Z1u1 + pr1J1Φ̃∗Z1u1

= (s − 1) pr1J1Φ̃∗prΠ0Z1u1.

Last equality being due to the fact that the image of Φ̃∗Z1 is isotropic
and thus J1Im(Φ̃∗Z1) ⊂ Im(Φ̃∗Z1)⊥. Moreover Φ̃∗Z1u1 coincides with the
projection of −Φ̃∗η(1) on Π⊥

1 . Thus we are left with:{
(1 − s)prΠ⊥

0
η(0) = pr0J0ν = pr0J0η(0),

(1 − s)(−prΠ⊥
1
Φ̃∗η(1) + pr1J1Φ̃∗prΠ0Z1u1) = pr1J1Φ̃∗η(1).

(16)

It is straightforward to check that pr1J1Φ̃∗prΠ0Z1u1 depends only on
the projection of Z1u1 on Π⊥

0 . Moreover, expanding 1 = Φ̃∗ ◦ Φ̃−1
∗ and using

the relation Φ̃∗Z1u1 = −prΠ⊥
1
Φ̃∗η(1), the second equality in (16) can be

rewritten as:

(s − 1)prΠ⊥
1
Φ̃∗η(1) = pr1J1Φ̃∗η(1) + (1 − s)pr1J1Φ̃∗prΠ0Φ̃

−1
∗ prΠ⊥

1
Φ̃∗η(1).

(17)

If s = 1, the equations reduce to pr0(J0η(0)) = 0 and pr1J1Φ̃∗η(1) = 0.
Consider the first case, the relation is equivalent to:

σ(η(0), Z0w0)=g0(J0η(0), Z0w0)=g0(pr0J0η(0), Z0w0) = 0, ∀w0 ∈ R
dim(N0).

Thus we are looking for a solution starting from Tλ0Ann(N0). Similarly set-
ting s = 1 in the second equality we find that η(1) must lie inside Tλ1Ann(N1).

Now, for s �= 1, we want to interpret the boundary conditions as an
analytic family of Lagrangian subspaces depending on s. To do so we employ
the following linear map defined in (12):

As
0(η) = η + J−1

0 (1 − s)prΠ⊥
0
η.

If η ∈ Tλ0Ann(N0) we have that prΠ⊥
0
η = pr0η and pr0J0η = 0 and

thus:
prΠ⊥

0
(As

0(η)) = prΠ⊥
0
(η) ∈ Im(Z0).

pr0J0(As
0(η)) = pr0(J0η + (1 − s)prΠ⊥

0
η)

= pr0J0η + (1 − s)prΠ⊥
0
η

= (1 − s)prΠ⊥
0
(As

0(η)).

So we have shown that As
0(Tλ0Ann(N0)) is precisely the space satisfying

the first set of equations. A similar argument works for the final point. Let
us recall the definition of As

1 given in (12):

As
1(η) = η + (1 − s)(J−1

1 + Φ̃∗prΠ0Φ̃
−1
∗ )prΠ⊥

1
η.

Now, we check that the boundary condition for the final point are
satisfied if and only if As

1 ◦ Φ̃∗ η(1) ∈ Tλ1Ann(N1). In fact, take any η in
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Tλ1Ann(N1), it holds:

prΠ⊥
1
(As

1)
−1η = prΠ⊥

1
η,

prΠ1(A
s
1)

−1η = prΠ1η + (s − 1)(J−1
1 + Φ̃∗prΠ0Φ̃

−1
∗ )prΠ⊥

1
η,

pr1J1(As
1)

−1η = (s − 1)pr1(1 + J1Φ̃∗prΠ0Φ̃
−1
∗ )prΠ⊥

1
η.

It is straightforward to substitute the last equality in (17) and check that
indeed (As

1)
−1(Tλ1Ann(N1)) is the right space.

Let us call Φs
1 the fundamental solution of (15) at time 1 and denote by

Γ(Φs
1) its graph. It follows that s ∈ R \ {0} is in the kernel of 1 + sK if and

only if:

Γ(Φ̃∗ ◦ Φs
1) ∩ As

0(Tλ0Ann(N0)) × (As
1)

−1(Tλ1Ann(N1)) �= (0).

which is equivalent to the condition:

Γ(As
1 ◦ Φ̃∗ ◦ Φs

1 ◦ As
0) ∩ Tλ0Ann(N0) × Tλ1Ann(N1) �= (0). (18)

Now we prove the part about the multiplicity. Suppose that two different
controls u and v give the same trajectory ηt solving (15). Since the maps
Z0 and Z1 are injective it must hold that v0 = u0 and v1 = u1. Moreover,∫ t

0
Zτuτdτ =

∫ t

0
Zτvτdτ ∀ t ∈ [0, 1] and thus:

Ku = Z∗
t J

∫ t

0

Zτuτdτ = Z∗
t J

∫ t

0

Zτvτdτ = Kv.

However, Volterra operators are always injective and thus u = v.
Vice-versa, consider u = 0 and see whether you get solutions of the

system above that do not correspond to any variation. Since u0 and u1 are
both zero we are considering solution starting from the fiber and reaching
the fiber. Plugging in ut = 0 we obtain:

0 = η̇ = Zs
t (Zs

t )∗Jη = Zs
t (Zs

t )∗Jν.

However prΠ⊥Zs
t (Zs

t )Jν = XtX
∗
t ν and by assumption the matrix∫ 1

0
XtX

∗
t dt is invertible. Thus we get a contradiction. �

The following Lemma was used in the proof of Proposition 1. Gives the
orthogonal complement to V inside H, using the Hilbert structure introduced
in Definition 2. We will denote by the symbol ⊥i the orthogonal complement,
in Tλi

T ∗M , with respect to the scalar product gi.

Lemma 2. With this choice of scalar product the orthogonal complement to
V is given by:

V⊥ = {(v0, Z
∗
t Jν, v1) : ν ∈ Π},

where v0 and v1 are determined by the following conditions:

Z0v0 − J0ν ∈ ImZ⊥0
0 , Φ̃∗Z1v1 − J1Φ̃∗ν ∈ ImΦ̃∗Z⊥1

1 .

Proof. Suppose that u ∈ V⊥. Let us test it against infinitesimal variations
that fix the endpoints, i.e. such that ui = 0 and

∫ 1

0
Ztutdt ∈ Π. Recall

that Π is Lagrangian, thus the condition
∫ 1

0
Ztutdt ∈ Π can be equivalently

formulated as σ(
∫ 1

0
Ztutdt, ν) = 0 for all ν ∈ Π. Hence, the subspace {u : ui =
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0,
∫ 1

0
Ztutdt ∈ Π} is the intersection of the kernels of ut → ∫ 1

0
σ(Ztut, ν)dt.

It follows that:

〈v, u〉 = −
∫ 1

0

〈vt, ut〉dt = 0, ∀u ∈ V ⇐⇒ vt = σ(ν, Zt·), ν ∈ Π.

Hence vt = Z∗
t Jν. Now, take u ∈ V and compute:

〈v, u〉 = σ(ν,

∫ 1

0

Ztutdt) + σ(J−1
0 Z0v0, Z0u0) + σ(J−1

1 Φ̃∗Z1v1, Φ̃∗Z1u1).

Since u ∈ V, we have:

σ

(
ν,

∫ 1

0

Ztutdt

)
= −σ(ν, Z0u0 + Z1u1).

It follows that:
〈v, u〉 = −σ(ν, Z0u0 + Z1u1) + σ(J−1

0 Z0v0, Z0u0) + σ(J−1
1 Φ̃∗Z1v1, Φ̃∗Z1u1)

= σ(J−1
0 Z0v0 − ν, Z0u0) + σ(J−1

1 Φ̃∗Z1v1 − Φ̃∗ν, Φ̃∗Z1u1).

Since we are assuming that
∫ 1

0
XtX

∗
t dt > 0, the image of the map

ut → π∗
∫ 1

0
Ztutdt is the whole Tq0M . In particular, for any u0, is possible to

find variations of the form (u0, ut, 0) ∈ V. An analogous statement holds for
variations of the form (0, ut, u1).

Hence, if 〈u, v〉 = 0 ∀u ∈ V, then both σ(J−1
0 Z0v0 − ν, Z0u0) and

σ(J−1
1 Φ̃∗Z1v1 − Φ̃∗ν, Φ̃∗Z1u1) must be zero at the same time.

Moreover, this implies that v0 and v1 are completely determined by the
value of ν. Finally notice that:

σ(J−1
0 Z0v0 − ν, Z0u0) = 0∀u0 ⇐⇒ Z0v0 − J0ν ∈ Im(Z0)⊥0 ,

σ(J−1
1 Φ̃∗Z1v1 − Φ̃∗ν, Z1u1) = 0∀u1 ⇐⇒ Φ̃∗Z1v1 − J1Φ̃∗ν ∈ Im(Φ̃∗Z1)⊥1 .

�
Remark 8. If we complexify all the subspaces involved in the proof of Propo-
sition 1, i.e. tensor with C we can take also s ∈ C.

We can reformulate the intersection problem in the statement of Propo-
sition 1 as follows. Let πN1 the orthogonal projection, with respect to g1,
onto the subspace Tλ1Ann(N1)⊥ and define a map Qs as:

Qs : Tλ0Ann(N0) → Tλ1Ann(N1)⊥, Qs(η) = πN1(A
s
1Φ

s
1A

s
0)(η). (19)

Let us fix now two bases, one of Tλ0Ann(N0) and one of Tλ1Ann(N1). Con-
struct two 2n×n matrices using the elements of the chosen basis. Let us call
the resulting objects T0 and T1 respectively. It follows that J1T1 is a basis of
Tλ1Ann(N1)⊥. Define the function det(Qs) as the determinant of the n × n
matrix T ∗

1 J1A
s
1Φ

s
1A

s
0T0. Clearly, different choices of basis give simply a scalar

multiple of det(Qs) and thus is well defined:

det(Qs) =
det(T ∗

1 J1A
s
1Φ

s
1A

s
0T0)

det(T ∗
0 T0)1/2 det(T ∗

1 J1J∗
1 T1)1/2

.

Moreover det(Qs)|s=s0 = 0 if and only if there exists at least a solution to
our boundary problem. Notice that map s → det(Qs) is analytic in s since
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the fundamental matrix is an entire map in s (see [3, Proposition 4]). The
following Proposition shows that the multiplicity of any root s0 �= 0 is equal
to the number of independent solutions to the boundary value problem.

Proposition 2. The multiplicity of any root s0 �= 0 of det Qs equals the di-
mension of the kernel of Qs.

Proof. The proof is done in two steps. First, we show that the equation
det(Qs) = 0 is equivalent to det(Rs) = 0 where Rs is a symmetric matrix,
analytic in s. Once one knows this, it suffices to compute ∂sR

s and show that
it is non-degenerate to prove that the multiplicity of the equation is the same
as the dimension of the kernel.
Step 1: Replace Qs with a symmetric matrix Let us restrict to the case s ∈ R,
since all the roots are real. As shown in (18) and remarked above, the deter-
minant of the matrix Qs is zero whenever the graph of As

1Φ̃∗Φs
1A

s
0 intersect

the subspace L0 = T(λ0,λ1)(Ann(N0 × N1)). Suppose that s0 is a time of in-
tersection and choose as coordinates in the Lagrange Grassmannian L0 and
another subspace L1 transversal to both L0 and Λs := Γ(As

1Φ̃∗Φs
1A

s
0). This

means that, if (Tλ0T
∗M)2 ≈ {(p, q)|p, q ∈ R

2n}, we identify L0 ≈ {q = 0}
and L1 ≈ {p = 0}.

In this coordinates Λs is given by the graph of a symmetric matrix, i.e.
is the following subspace Λs = {(p,Rsp)} where again Rs is analytic in s.

The quadratic form associated to the derivative ∂sR(s) can be inter-
preted as the velocity of the curve s → Λs inside the Grassmannian, it is
possible to compute it choosing an arbitrary base of Λs and an arbitrary set
of coordinates. Invariants such as signature and nullity do not change (see for
example [5,7] or [2]). Take a curve λs = (ps, R

sps) inside Λs then one has:

S(λs) = σ(λs, λ̇s) = 〈ps, ∂sR
sps〉.

Recall that we will be using the symplectic form given by (−σλ0)⊕σλ1 ,
in order to have that graph of a symplectic map is a Lagrangian subspace.
Step 2: Replace Λs with a positive curve We slightly modify our curve to
exploit a hidden positivity of the Jacobi equation. We substitute the funda-
mental solution Φs

1 with the following map:

Ψs = Ψs
1 = δsΦs

1δ 1
s
.

It is straightforward to check that Ψs is again a symplectomorphism
and that it is the fundamental solution of the following ODE system at time
t = 1:

Ψ̇s
t = sZtZ

∗
t JΨs

t , Ψs
0 = Id. (20)

On one hand, we are introducing a singularity at s = 0 but on the other
hand we are going to show that the graph of Ψs becomes a monotone curve
and its velocity is fairly easy to compute.

First of all, hoping that the slight abuse of notation will not create any
confusion, let us introduce a family of dilations similar to the δs,δs also in
Tλ1T

∗M . The definition is analogous to the one in (13) but with Π1 and Π⊥
1

instead of Π0 and Π⊥
1 . We will denote them with the same symbol.
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Let us consider the following symplectomorphisms:

δsA
s
1Φ̃∗Φs

1A
s
0δ 1

s
= δsA

s
1Φ̃∗δ 1

s
ΨsδsA

s
0δ 1

s
.

Notice that the dilations δs preserve the subspaces Tλi
Ann(Ni) and thus the

intersection points between the graph of the above map and the subspace
T(λ0,λ1)Ann(N0 × N1) are unchanged. Let us rewrite the maps δsA

s
0δ 1

s
and

δsA
s
1Φ̃∗δ 1

s
. For the former:

δsA
s
0δ 1

s
= δs(1 + (1 − s)J−1

0 prΠ⊥
0
)δ 1

s
= 1 +

1 − s

s
J−1

0 prΠ⊥
0

= Bs
0.

For the latter, a computation in local coordinates and the fact that the dila-
tions δs and Φ̃∗ do not commute yield:

δsA
s
1Φ̃∗δ 1

s
= δs(1 + (1 − s)(J−1

1 + Φ̃∗prΠ0Φ̃
−1
∗ )prΠ⊥

1
)Φ̃∗δ 1

s

=
(

1 +
1 − s

s
J−1

1 prΠ⊥
1

)
Φ̃∗ = Bs

1Φ̃∗.

Thus we take, for s �= 0, as curve Λs := Γ(Bs
1Φ̃∗ΨsBs

0), the graph of the
symplectomorphism just introduced. Notice that Ψs is actually analytic, the
singularity at s = 0 comes only form the maps Bs

i .
Step 3: Computation of the velocity Now we compute the velocity of the graph
of Bs

1Φ̃∗ΨsBs
0. Take a curve λs = (η,Bs

1Φ̃∗ΨsBs
0η) inside the Λs and let us

compute the quadratic form associated to the velocity:

S(λs) = −σ(η, ∂sη) + σ(Bs
1Φ̃∗ΨsBs

0η, ∂s(Bs
1Φ̃∗ΨsBs

0η))

= σ(Bs
1Φ̃∗ΨsBs

0η, (∂sB
s
1)Φ̃∗ΨsBs

0η) + σ(ΨsBs
0η, (∂sΨs)Bs

0η)+

+ σ(Bs
0η, ∂s(Bs

0)η).

Let us consider the terms of the type σ(Bs
i x, ∂sB

s
i x). It immediate to

compute the derivative in this case, recall that Bs
i x = x + (1−s)

s J−1
i prΠ⊥

i
x.

It follows that ∂sB
s
i = − 1

s2 J−1
i prΠ⊥

i
thus the first and last term read as:

σ(Bs
1ξ, (∂sB

s
1)ξ) = − 1

s2
σ(ξ, J−1

1 prΠ⊥
1
ξ)

=
1
s2

g1(prΠ⊥
1
ξ, prΠ⊥

1
ξ), where ξ = Φ̃∗ΨsBs

0η,

σ(∂s(Bs
0)η,Bs

0η) = − 1
s2

σ(Bs
0η, J−1

0 prΠ⊥
0
η) = − 1

s2
g0(J0η, J−1

0 prΠ⊥
0
η)

=
1
s2

g0(prΠ⊥
0
η, prΠ⊥

0
η).

Notice we used the fact that Ji (and thus J−1
i ) is gi−skew symmetric.

Now we rewrite the middle term. We present it as the integral of its derivative
using the equation for Ψs

t . Let us use the shorthand notation x = Bs
0η. We

obtain:
d
dt

(σ(Ψs
tx, (∂sΨs

t )x)) = σ(∂tΨs
tx, (∂sΨs

t )x) + σ(Ψs
tx, (∂s∂tΨs

t )x)

= sσ(ZtZ
∗
t JΨs

tx, ∂sΨs
tx) + sσ(Ψs

tx,ZtZ
∗
t J∂sΨs

tx)

+ σ(Ψs
tx, ∂s

(
sZtZ

∗
t

)
JΨs

tx).
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The first and second term have opposite sign and thus cancel out. What
remains is:

d
dt

(σ((∂sΨs
t )x,Ψs

tx)) = σ(Ψs
tx,ZtZ

∗
t JΨs

tx) = g(Z∗
t JΨs

tx,Z∗
t JΨs

tx).

Integrating over [0, 1] and using the fact that ∂sΨs
t |(0,0) = 0 we get that:

σ(∂sΨsx,Ψsx) =
∫ 1

0

g(Z∗
t JΨs

tx,Z∗
t JΨs

tx)dt.

Using the notation || · || to denote the norm with respect to the corre-
sponding metric and summing everything up we find the following expression
for the velocity of our curve:

Ss(λs) =
1
s2

(
‖prΠ⊥

0
η‖2 + ‖prΠ⊥

1
ΨsBs

0η‖2
)

+
∫ 1

0

‖Z∗
t JΨs

tB
s
0η‖2dt.

Since each term of the sum is non-negative Ss(λs) is zero if and only
if each term is zero. From the first one we obtain that η must be contained
in the fiber. Notice that Bs

0 acts as the identity on Π0 and thus in this case
‖prΠ⊥

1
Φ̃∗ΨsBs

0η‖2 = ‖prΠ⊥
1
Ψsη‖2.

It follows that Ψs
tB

sη = Ψs
tη is a solution of the Jacobi equation (15)

starting and reaching the fiber (recall that Φ̃∗(Π0) = Π1). Let us consider
now the third piece, since the integrand is positive it must hold that for
almost any t, Z∗

t JΨs
tη = 0. If we multiply this equation by Zt we find that:

ZtZ
∗
t JΨs

tη = 0 = Ψ̇s
tη.

It follows that we are dealing with a constant solution starting and
reaching the fiber. However, this contradicts the assumption that the matrix∫ 1

0
XtX

∗
t dt is non degenerate. In fact, if we substitute a non-zero constant so-

lutions starting from the fiber in (15), we find that prΠ⊥
0
(η) =

∫ 1

0
XtX

∗
t dt η �=

0 �

The following proposition is proved in [3].

Proposition 3. There exists c1, c2 > 0 such that:

‖Φs
1‖ ≤ c1e

c2|s| ∀ s ∈ C.

Moreover Φs
t is analytic and the function s → det(Qs) is entire and satisfy

the same type of estimate.

This fact tells us that detQs is an entire function of order ρ ≤ 1. We
know its zeros, which are determined by the eigenvalues of K, and thus we can
apply Hadamard factorization theorem (see [14]) to present it as an infinite
product. It follows that we have the following identity:

det(Qs) = askebs
∏

λ∈Sp(K)

(1 + sλ)m(λ) a, b ∈ C, a �= 0, k ∈ N. (21)

where m(λ) is the geometric multiplicity of the eigenvalue λ. To determine
the remaining parameters it is sufficient to know the value of det(Qs) and



Vol. 26 (2024) Functional determinants for the second variation Page 27 of 39 12

a certain number of its derivatives at s = 0 (depending on the value of k).
Assume for now that k = 0, a straightforward computation shows that:

det(Qs)|s=0 = a, ∂s det(Qs)|s=0 = a(b + tr(K)). (22)

We will compute these quantities in Lemmas 4 and 3 for general boundary
conditions. The proofs can be adapted to the case of separated conditions
easily.

4.2. General boundary condition

In this section we prove a determinant formula for general boundary condi-
tions N ⊆ M ×M . First, we reduce this case to the case of separate boundary
conditions. We have to slightly modify the proof of Proposition 1 since, after
this reduction, the Endpoint map will not be a submersion anymore. Then,
we compute the normalization factors given in (22).

Let us consider M × M as state space, with the following dynamical
system:

fu(q′, q) =
(

0
fu(q)

)
, (q′, q) ∈ M × M. (23)

and boundary conditions Δ × N . With this definition, any extremal be-
tween two points q0 and q1 lifts naturally to an extremal between (q0, q0)
and (q0, q1). However, the Endpoint map of the new system is no longer
surjective. In fact, any trajectory is confined to a submanifold of the form
{q̂} × M . Thus, even if we started with a strictly normal extremal, we do
not get a strictly normal extremal of the new system. However, there is no
real singularity of the Endpoint map here: we have just introduced a certain
number of conserved quantities. All the proofs presented above work also in
this case. We are going to discuss briefly how to adapt them.

Let us start with Pontryagin maximum principle. It implies that the lift
of the extremal curve q̃(t) = (q0, q(t)) is the curve λ̃(t) = (−λ0, λ(t)). This is
because the initial and final covector of the lift must annihilate the tangent
space of the boundary conditions manifold. In this case N0 = Δ and the
annihilator of the diagonal subspace is {(λ,−λ) : λ ∈ Tλ0T

∗
q0M}. Moreover,

by the orthogonality condition in PMP (see Appendix A), we know that
(−λ(0), λ(1)) annihilates the tangent space of N .

Thus, if we want to work in one fixed tangent space, we have to multiply
the first covector by −1. This changes the sign of the symplectic form and
we are thus brought to work on Tλ0T

∗M × Tλ0T
∗M with symplectic form

(−σ) ⊕ σ.
With this change of sign, the tangent space to the annihilator of the

diagonal gets mapped to the diagonal subspace of Tλ0T
∗M × Tλ0T

∗M and
the tangent space to the annihilator of the boundary conditions N is mapped
to the tangent space of:

A(N) = {(μ0, μ1) : 〈μ0,X0〉 = 〈μ1,X1〉, ∀(X0,X1) ∈ TN}.

Let us make now some notational remarks. We will still denote by Φ̃∗
the map 1 × Φ̃∗, which correspond to the new flow we are using to backtrack
our trajectory to the starting point.
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As explained in Sect. 2, to define the scalar product on our space of
variations, it is necessary to introduce two metrics on the tangent spaces to
the endpoints of our curve. We will choose them of the form g̃0 = g0 ⊕ g0

and g̃1 = g0 ⊕ g1 where g0 and g1 are two metrics on Tλ0T
∗M and Tλ1T

∗M
respectively.

Now we compute the second variation of the new system (23). As a
general rule, we will denote all the quantities relative to (23) on M × M ,
putting a˜on top. We have:

Z̃0u0 =
(

Z0u0

Z0u0

)
, Z̃1 =

(
Z0

1u1

Z1
1u1

)
, Z̃t =

(
0
Zt

)
.

Notice that Φ̃∗Z̃1 maps R
dim(N) to the tangent space to A(N) and we can

assume that its image is contained in Π⊥
0 × Π⊥

1 . We will denote by p̃r1 the
orthogonal projection onto the image of Z̃1.

The domain of the second variation is the subspace V = {(u0, ut, u1) :
Z̃0u0 +

∫ 1

0
Z̃tut + Z̃1u1 ∈ Π0 × Π0}. Clearly, this equation is equivalent to:

Z0u0 + Z0
1u1 ∈ Π0 and Z0u0 + Z1

1u1 +
∫ 1

0

Ztutdt ∈ Π0.

It follows that the control u0 is completely determined by u1. Moreover, we
can assume that Z0u0 = −Z0

1u1 since we are free to choose any system of
coordinates and any trivialization of the tangent bundle of the manifolds Δ
and N .

Let As
i be the maps given in (12). The following proposition is the

counterpart of Proposition 1 for general boundary conditions.

Proposition 4. Let Φs
1 be the fundamental solution of the Jacobi system:

η̇ = Zs
t (Zs

t )∗Jη.

The operator 1+ sK restricted to V has non trivial kernel if and only if there
exists a non zero (η0, η1) ∈ T(λ0,λ1)A(N) such that

As
1 ◦ Φ̃∗ ◦ Φs

1 ◦ As
0 η0 = η1. (24)

The geometric multiplicity of the kernel equals the number of linearly inde-
pendent solutions of the above equation.

Proof. The proof is completely analogous to the one of Proposition 1. How-
ever, some slight modifications are in order since the Endpoint map is not
surjective in this case.
Step 1: Characterize V⊥. The orthogonal complement to V is given by:

V⊥ =
{

(v0, Z̃
∗
t Jν̃, v1) : p̃r1

((
2Z0v0

0

)
+ J̃1ν̃

)
= Φ̃∗Z̃1v1

}
.
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The proof is the same as the one of Lemma 2 and yields vt = Z̃∗
t Jν̃. Here,

however, we can not separate v0 from v1. Take u ∈ V and v ∈ V ⊥:

〈u, v〉 = σ

(∫ 1

0

Ztutdt, ν

)
+ g̃0(Z̃0u0, Z̃0v0) + Φ̃∗g̃1(Z̃1u1, Z̃1u1)

= g̃0(Z̃0u0, Z̃0v0 − J̃0ν) + Φ̃∗g̃1(Z̃1u1, Z̃1v1 − J̃1ν)

= g0(Z0
1u1, J0ν − 2Z0v0 + Z0

1v1) + Φ̃∗g1(Z1
1u1, Z

1
1v1 − J1ν) = 0.

Hence:

p̃r1

(
2Z0v0 − J0ν

J1ν

)
= p̃r1

((
2Z0v0

0

)
+ J̃1ν̃

)
= Φ̃∗Z̃1v1. (25)

Step 2: Derivation of Jacobi equation. Now we can write down Jacobi equation
in a fashion similar to the one of Proposition 1. The system reads:⎧⎪⎨
⎪⎩

(1 − s)Z̃0u0 = Z̃0v0,
˙̃η(t) = Z̃s

t (Z̃s
t )Jη̃(t),

(1 − s)Φ̃∗Z̃1u1 = Φ̃∗Z̃1v1 + s p̃r1J̃1Φ̃∗(Z̃0u0 +
∫ 1

0
Z̃tutdt + Z̃1u1).

(26)

Where η̃(t) =
∫ t

0
Z̃s

t utdt + Z̃0u0 + ν̃. Arguing as in Proposition 1, we can
rewrite the last term of the third equation. We have:

pr1J̃1Φ̃∗

(
Z̃s

0u0 +
∫ 1

0

Z̃s
t utdt + Z̃s

1u1

)
= pr1J̃1Φ̃∗(η(1) − ν̃ + Z̃s

1u1).

Φ̃∗Zs
1u1 = Φ̃∗Z1

1u1 + sΦ̃∗p̃rΠZ̃1u1 = Φ̃∗Z1
1u1 + s(Φ̃∗p̃rΠΦ̃−1

∗ )Φ̃∗Z̃1u1.

By the equation defining V we have that:

p̃rΠ⊥Φ̃∗η(1) = −
(

Z0
1u1

Φ̃∗Z1
1u1

)
= −Φ̃∗Z̃1u1.

Lastly note the the first equation gives (1−s)Z̃0u0 = (1−s)p̃rΠ⊥η(0) = Z̃0v0.
Let us now plug all this equations into (26) recalling that p̃rΠ + p̃rΠ⊥ = 1.
The third line now reads:

pr1

((
2(1 − s)p̃rΠ⊥

0
η(0)

0

)
+ J̃1Φ̃∗(p̃rΠη(1) − sΦ̃∗p̃rΠΦ̃−1

∗ p̃rΠ⊥Φ̃∗η(1))

+ (1 − s)p̃rΠ⊥Φ̃∗η(1)
)

= 0.

Writing the equation component-wise and using the fact that, since Φ̃∗
preserve the fibers, it holds:

Φ̃∗prΠ0 = Φ̃∗prΠ0Φ̃
−1
∗ p̃rΠ⊥

1
Φ∗ + prΠ1Φ̃∗,

we obtain a relation very similar to the one in (16). Namely:

p̃r1

⎛
⎝ −J0

(
3(s − 1)J−1

0 prΠ⊥
0
η(0) + Φ̃∗prΠ0η(0)

)

J1

(
prΠ1Φ̃∗η(1) + (1 − s)(Φ̃∗prΠ1Φ̃

−1
∗ + J−1

1 )prΠ⊥
1
Φ̃∗η(1)

)
⎞
⎠ = 0.

(27)
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At this point the argument is again the following. If X belongs to A(N) + Π
and ˜pr1(J̃1X) = 0, it follows that:

g̃1(p̃r1J̃1X, Z̃1u1) = σ(X, Z̃1u1) = 0, ∀u1 ∈ R
dim(N).

Hence X must lie in Im(Z̃1)∠ ∩ (A(N) + Π), which is A(N). Consider the
maps As

i defined in (12), they preserve A(N) + Π. Thus we can rewrite (27)
as: (

(As
0)

−1η(0)
As

1Φ̃∗η(1)

)
∈ A(N) ⇐⇒ Γ(As

1Φ̃∗Φs
1A

s
0) ∩ A(N).

Notice the presence of the inverse of As
0 due to the sign of the symplectic

form.
Step 3: Uniqueness Arguing again as in Proposition 1, to the trivial variation
(0, 0, 0) correspond constant solutions of Jacobi equation starting from the
fiber. However, since the Endpoint map of the original system is regular,
there are no such solutions. Hence the correspondence between ker(1 + sK)
and Γ(As

1Φ̃∗As
0) ∩ A(N) is one-to-one. �

Now we define an analogous map to the one in Eq. (19). Let πN be the
orthogonal projection on the space T(λ0,λ1)A(N)⊥ and consider the map:

Qs : Γ(As
1Φ̃∗Φs

1A
s
0) → T(λ0,λ1)A(N)⊥, Qs(η) = πN (η). (28)

Let T = (T0, T1) be any linear invertible map from R
2n to the tan-

gent space T(λ0,λ1)A(N). We denote by J the map (−J0) ⊕ J1 representing
the symplectic form (−σλ0) ⊕ σλ1 . As in the previous section we define the
following function:

det(Qs) =
det(T ∗

1 J1A
s
1Φ̃∗Φs

1A
s
0 − T ∗

0 J0)
det(T ∗

0 J0J∗
0 T0 + T ∗

1 J1J∗
1 T1)1/2

.

Remark 9. One could also define (28) as a bilinear form, using just the sym-
plectic pairing. In fact, for (η, (ξ0, ξ1)) in Tλ0T

∗M × T(λ0,λ1)A(N), define:

Q̃s(η, (ξ0, ξ1)) = σ(As
1Φ̃∗Φs

1A
s
0η, ξ1) − σ(η, ξ0).

This form is degenerate exactly when Γ(As
1Φ̃∗As

0) ∩ A(N) �= (0).

Proposition 5. The multiplicity of any roots s0 �= 0 of the equation det(Qs)
is equal to the geometric multiplicity of the boundary value problem.

Proof. The same proof of Proposition 2 works verbatim. Indeed, we are work-
ing with the same curve, Γ(As

1Φ̃∗As
0). �

In the remaining part of this section we carry out the computation of
the normalizing factors of the function det(Qs). As already mentioned at the
end of the previous section a classical factorization theorem by Hadamard
(see [14]) tells us that:

det(Qs) = askebs
∏

λ∈Sp(K)

(1 + sλ)m(λ) a, b ∈ C, a �= 0, k ∈ N

where m(λ) is the geometric multiplicity of the eigenvalue. We are now going
to compute the values of a, b ∈ C and k.
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Theorem 4. For almost any choice of metrics g0, g1 on Tλi
T ∗M , det(Qs|s=0)

�= 0. Whenever this condition holds, the determinant of the second variation
is given by:

det(1 + sK) = det((Qs|s=0)−1)es(tr(K)−tr(∂sQs (Qs)−1|s=0)) det(Qs). (29)

Proof. We prove the first assertion: for almost any choice of scalar product,
k = 0 and thus a = det(Qs

1|s=0) �= 0. This is equivalent to a transversality
condition between the graph of the symplectomorphism As

1Φ̃∗ΦsAs
0 and the

annihilator of the boundary conditions N .
We can argue as follows: consider the following family of maps acting on

the Lagrange Grassmannian of Tλ0T
∗M × Tλ1T

∗M depending on the choice
of scalar products G0 and G1:

FG = (As
0)

−1 × As
1|s=0, G = (G0, G1), Gi > 0.

It is straightforward to see that they define a family of algebraic maps of
the Grassmannian to itself. For any chosen subspace L0, F−1

G (L0) is arbitrary
close to Π0 ×Π1, for Gi large enough. Notice that Γ(As

1Φ̃∗ΦsAs
0)∩L0 �= (0) if

and only if Γ(Φ̃∗Φs)∩F−1
G (L0) �= (0). Using the formula in Lemma 4 one has

that Γ(Φ̃∗Φs) is transversal to Π0 ×Π1 and thus to F−1
G (L0) for any fixed L0

and Gi sufficiently large. Now, since everything is algebraic in G and there
is a Zariski open set in which the transversality condition holds, the possible
choices of Gi for which k > 0 are in codimension 1.

Let us assume that k = 0 and compute b. Differentiating the expression
for det(Qs) in Eq. (21) at s = 0 we find that:

∂s det(Qs)|s=0 = a(b + tr(K)).

An integral formula for the trace of K is given in Lemma 3. The deriv-
ative of det(Qs) can be computed using Jacobi formula:

∂s det(Qs)|s=0 = a tr(∂sQ
s (Qs)−1)|s=0.

An explicit expression of the derivatives of the map Qs can be computed
using Lemma 4. It follows that b = tr(∂sQ

s (Qs)−1) − tr(K) and we obtain
precisely the formula in the statement. �

Before giving the explicit formula for tr(K) and the derivatives of the
fundamental solution to Jacobi equation at s = 0 we need to make some
notational remark and write down a formula for the second variation in the
same spirit of Sect. 2 and Eq. (5). We are working on the state space M ×M
with twice the number of variables of the original system and trivial dynamic
on the first factor and separated boundary conditions. The left boundary
condition manifold is the diagonal of M ×M and the right one is our starting
N . We apply the formula in Eq. (5) to this particular system, we denote
by Z̃t and Z̃i the matrices for the auxiliary problem, in general everything
pertaining to it will be marked by a tilde. Identifying T(λ0,λ0)T

∗(M × M)
with Tλ0T

∗M × Tλ0T
∗M we have that:

Z̃0u0 =
(

Z0u0

Z0u0

)
, Z̃1 =

(
Z0

1u1

Z1
1u1

)
, Z̃t =

(
0
Zt

)
.
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We still work on the subspace V = {(u0, ut, u1) : Z̃0u0 +
∫ 1

0
Z̃tut +Z̃1u1 ∈ Π}.

However, it is clear that this equation implies that:

Z0u0 + Z0
1u1 ∈ Π0 and Z0u0 + Z1

1u1 +
∫ 1

0

Ztutdt ∈ Π0.

It follows that control u0 is completely determined by u1. Moreover, we can
assume that Z0u0 = −Z0

1u1 since we are free to choose any system of coor-
dinates and any trivialization of the tangent bundle of the manifolds Δ and
N . Technically we are working with different scalar products on each of the
copies of Tλ0T

∗M . However, it is easy to see that on the space V only the
sum of these metrics plays a role. We will denote it g0. Now we are ready to
state the following:

Lemma 3. The second variation of the extended system, as a quadratic form,
can be written as 〈(I + K)u, u〉 where K is the symmetric (on V) compact
operator given by:

−〈Ku, u〉 =
∫ 1

0

∫ t

0

σ(Zτuτ , Ztut)dτdt − σ

(
Z0

1u1,

∫ 1

0

Ztutdt

)

+ σ

(∫ 1

0

Ztutdt − Z0
1u1, Z

1
1u1

)
+ g0(Z0

1u1, Z
0
1u1)

+ (Φ̃∗g1)(Z1
1u1, Z

1
1u1).

Moreover, define the following matrices:

Γ =
∫ 1

0

XtX
∗
t dt, Ω =

∫ 1

0

∫ t

0

XtZ
∗
t JZτX∗

τ dτdt.

Denote by pr1 the projection onto T(λ0,λ1)A(N) and by πi
∗ the differential

of the natural projections πi : T ∗M → M relative to the i−th component,
i = 1, 2. The trace of K has the following expression:

tr(K) = −dim(N) + tr[π1
∗Φ̃−1

∗ pr1J̃1Φ̃∗(Z̃0)]

+ tr
[
Γ−1

(
Ω + (π2

∗ − π1
∗)Φ̃−1

∗ pr1J̃1Φ̃∗

(∫ 1

0

Z̃tZ
∗
t J |Πdt

))]
.

Proof. The first part is a straightforward computation combining the ex-
pression obtained in Lemma 1 for the second variation with the observation
concerning the structure of the maps Z0 and Z1 made before the statement
and the choice of the Riemannian metrics.

Now, notice that the codimension of the space giving fixed endpoints
variations V for the extended system in H is 2 dim(M). Moreover, it is defined
as the kernel of the linear functional:

ρ : (u0, ut, u1) → π̃∗

(
Z̃0u0 +

∫ 1

0

Z̃tutdt + Z̃1u1

)
∈ Tπ(λ0)M × Tπ(λ0)M.

It is straightforward to check that the following subspace is 2 dim(M)−dime
nsional and transversal to ker ρ:

V ′ = {(u0, Z
∗
t Jν, 0) : ν ∈ Π, u0 ∈ R

dim M}.
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The trace of K on the whole space splits as a sum of two pieces, the
trace of K|V and the trace of K|V′ . We can then further simplify and compute
separately the trace on V ′ ∩ {u0 = 0} and its complement V ′ ∩ {ν = 0}. We
are going to compute the trace of K on the whole space and then the trace
of K|V′ , determining in this way the value of K|V .

Consider H = H1 ⊕ H2. Where

H1 = {u : u = (0, ut, 0)}, H2 = {u : u = (u0, 0, u1)}.

It is straightforward to check that H⊥
1 = H2 for our class of metrics and

that H1 ≡ L2([0, 1],Rk). Using Eq. (5), the restrictions of the quadratic form
K̂(u) = 〈u,Ku〉 to each one of the former subspaces read:

K̂|H1(u) =
∫ 1

0

∫ t

0

σ(Ztut, Zτuτ )dtdτ, K̂|H2(u) = σ(Z̃0u0, Z̃1u1) − ‖u‖2
H.

The trace of the first quadratic form is zero (see [3, Theorem 2]) whereas the
trace of the second part is just −dim(N). Thus we have that:

tr(K|V) = −dim(N) − tr(K|V′).

To compute the last piece we apply K to a control u ∈ V ′ ∩ {u0 = 0} using
the explicit expression of the operator given in Lemma 1. Recall that pr1 is
projection onto the image of Φ̃∗Z̃1. It follows that:

K(u) =
(

0,−Z∗
t J

∫ t

0

Zτuτdτ,−Lpr1J̃1Φ̃∗

(∫ 1

0

Z̃tutdt

))

=
(

0,−Z∗
t J

∫ t

0

Zτuτdτ,−Λ(u)
)

.

Now we write K(u) in coordinates given by the splitting V ⊕ V ′. To do
so we have first to consider ρ ◦ K(u). It is given by:

−ρ ◦ K(u) = π̃∗

(∫ 1

0

Z̃tZ
∗
t J

∫ t

0

ZτZ∗
τ Jν + Φ̃−1

∗ pr1J̃1Φ̃∗

(∫ 1

0

Z̃tZ
∗
t Jνdt

))

=
(

0
Ων

)
+ π̃∗Φ̃−1

∗ pr1J̃1Φ̃∗

(∫ 1

0

Z̃tZ
∗
t Jνdt

)
.

(30)

Set Γ =
∫ 1

0
X∗

t Xtdt, it easy to check that, if u ∈ V ′, then

ρ(u) =
(

X0u0

Γν + X0u0

)
.

for an invertible matrix X0 which, without loss of generality, can be taken to
be identity. It follows that the projection on the first component of ρ ◦ K(u)
is completely determined by the second term in Eq. (30). Let us call πi

∗ for
i = 1, 2 the projection on the i−th component. It follows that an element
(Z0û0, Z

∗
t Jν̂, 0) = û ∈ V ′ has the same projection as K(u) if and only if:{
û0 = X−1

0 π1
∗Φ̃−1

∗ pr1J̃1Φ̃∗(
∫ 1

0
Z̃tZ

∗
t Jνdt),

ν̂ = Γ−1
(
Ων + (π2

∗ − π1
∗)Φ̃−1

∗ pr1J̃1Φ̃∗(
∫ 1

0
Z̃tZ

∗
t Jνdt)

)
.



12 Page 34 of 39 S. Baranzini JFPTA

In particular the restriction to V ′ ∩ {u0 = 0} is given by:

ν → Γ−1

(
Ω + (π2

∗ − π1
∗)Φ̃−1

∗ pr1J̃1Φ̃∗

(∫ 1

0

Z̃tZ
∗
t Jdt

))
ν.

A similar strategy applied to V ′ ∩ {ν = 0} tells us that the last contri-
bution for the trace is given by the following map:

u0 → X−1
0 π1

∗Φ̃−1
∗ pr1J̃1Φ̃∗Z̃0u0.

It is worth pointing out that indeed the trace does not depend on X0 and
that the vector

∫ 1

0
Z̃tZtJνdt is the following:

∫ 1

0

Z̃tZtJνdt =

⎛
⎜⎜⎜⎝

(
0
0

)

(
Θν
Γν

)

⎞
⎟⎟⎟⎠ .

In particular, if the boundary conditions are separated (i.e. N = N0×N1) the
part of the trace coming from V ′ ∩ {u0 = 0} depends only on the projection
onto Tλ1N1. �

Lemma 4. The flow Φs
t |s=0 and its derivative ∂sΦs

t |s=0 are given by:

Φs
t |s=0 =

(
1 0∫ t

0
XτX∗

τ dτ 1

)
, ∂sΦ

s
t |s=0 =

( ∫ t

0
YτX∗

τ dτ 0∫ t

0

∫ τ

0
XτZ∗

τ JZrX
∗
r drdτ − ∫ t

0
XτY ∗

τ dτ

)
.

Proof. It is straightforward to check that Φs
1|s=0 solves the following Cauchy

problem:
⎧⎪⎨
⎪⎩

Φ̇0
t =

(
0 0

XtX
∗
t 0

)
Φ0

t ,

Φ0
0 = Id.

Similarly ∂sΦs
1|s=0 solves:

⎧⎪⎨
⎪⎩

∂sΦ̇s
t |s=0 =

(
0 0

XtX
∗
t 0

)
∂sΦs

t |s=0 +

(
YtX

∗
t 0

0 −XtY
∗
t

)
Φ0

t ,

∂sΦs
0|s=0 = 0.

Solving the ODE one obtains the formula in the statement. �
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Appendix A

In this appendix we collect some information concerning Pontryagin Maxi-
mum Principle (PMP) and the differentiation of the endpoint map used and
mentioned throughout the text. Everything is fairly standard material in
geometric control theory, the reader is referred to [4,6,23] for further details.

A.1. Pontryagin maximum principle

Let us introduce a useful family of Hamiltonian functions on T ∗M . They
generate a family of Hamiltonian flows which we use to backtrack admissible
trajectories γ to their initial point. Moreover, they appear in the formulation
of PMP and extend the flow of the fields fu(t) to the cotangent bundle. Set:

ht,ν
u : T ∗M → R, ht,ν

u (λ) = 〈λ, fu〉 + νϕ(u, π(λ)), ν ≤ 0.

In particular, if γ̃ is an admissible curve, we can build a lift, i.e. a curve
λ̃ in T ∗M such that π(λ̃) = γ̃, solving λ̇ = 
ht,ν

u (λ). The following wellknown
theorem, Pontryagin Maximum Principle, gives a characterization of critical
points of J (as defined in (3)), for any set of boundary conditions N .

Theorem 1. (PMP) If a control ũ ∈ L∞([0, 1], U) is a local minimizer for
the functional in Eq. (3) there exists a curve λ : [0, 1] → T ∗M , ν ∈ R and an
admissible curve q : [0, 1] → M such that for almost all t ∈ [0, 1]

1. λ(t) is a lift of q(t):

q(t) = π(λ(t));

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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2. λ(t) satisfies the following Hamiltonian system:
dλ

dt
= 
ht,ν

ũ(t)(λ);

3. the control ũ is determined by the maximum condition:

ht,ν
ũ(t)(λ(t)) = max

u∈U
ht,ν

u (λ(t)), ν ≤ 0;

4. the non-triviality condition holds: (λ(t), ν) �= (0, 0);
5. transversality condition holds:

(−λ(0), λ(1)) ∈ Ann(N).

We call q(t) an extremal curve (or trajectory) and λ(t) an extremal.

There are essentially two possibilities for the parameter ν, it can be
either 0 or, after appropriate normalization of λt, −1. The extremals belong-
ing to the first family are called abnormal whereas the ones belonging to the
second normal.

A.2. The endpoint map and its differentiation

In this subsection, we write down the integral expression for the first and
second derivative of the endpoint map. Further details can be found in [6,
Section 20.3]. Denote by Uq0 ⊂ L∞([0, 1], U) be the space of admissible con-
trols at point q0 and define the following map:

Et : Uq0 → M, u → γu(t).

It takes the control u and gives the position at time t of the solution starting
from q0 of:

q̇ = fu(τ)(q).

We call this map Endpoint map. It turns out that Et is smooth, provided
that the fields fu(q) are smooth too.

For a fixed control ũ consider the function ht,ν
ũ (λ) := ht,ν

ũ(t)(λ) and define
the following non autonomous flow which plays the role of parallel transport
in this context:

d
dt

Φ̃t = 
ht,ν
ũ (Φ̃t), Φ̃0 = Id. (31)

It has the following properties:
• It extends to the cotangent bundle the flow which solves q̇ = fũ(q) on

the base. In particular if λt is an extremal with initial condition λ0,
π(Φ̃t(λ0)) = qũ(t) where qũ is an extremal trajectory.

• Φ̃t preserves the fiber over each q ∈ M . The restriction Φ̃t : T ∗
q M →

T ∗
Φ̃t(q)

M is an affine transformation.

We suppose now that λ(t) is an extremal and ũ a critical point of the
functional J . We use the symplectomorphism Φ̃t to pull back the whole curve
λ(t) to the starting point λ0. We can express all the first- and second-order
information about the extremal using the following map and its derivatives:

bt
u(λ) = (ht,ν

u − ht,ν
ũ ) ◦ Φ̃t(λ).
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Notice that:

• bt
u(λ0)|u=ũ(t) = 0 = dλ0 bt

u|u=ũ(t) by definition.
• ∂ubt

u|u=ũ(t) = ∂u(ht
u ◦ Φ̃t)|u=ũ(t) = 0 since λ(t) is an extremal and ũ the

relative control.

Thus the first non zero derivatives are the order two ones. We define
the following maps:

Zt = ∂u

bt

u(λ0)|u=ũ(t) : Rk = Tũ(t)U → Tλ0(T
∗M),

Ht = ∂2
ubt(λ0)|u=ũ(t) : Rk = Tũ(t)U → T ∗

ũ(t)U = R
k.

(32)

We denote by Π = kerπ∗ the kernel of the differential of the natural
projection π : T ∗M → M .

Proposition 6. (Differential of the endpoint map) Consider the endpoint map
Et : Uq0 → M . Fix a point ũ and consider the symplectomorphism Φ̃t and
the map Zt defined above. The differential is the following map:

dũE(vt) = dλ(t)π ◦ dλ0Φ̃t

(∫ t

0

Zτvτdτ

)
∈ TqtM.

In particular, if we identify Tλ0(T
∗M) with R

2m and write Zt =
(

Yt

Xt

)
,

ũ is a regular point if and only if vt → ∫ t

0
Xτvτdτ is surjective. Equivalently

if the following matrix is invertible:

Γt =
∫ t

0

XτX∗
τ dτ ∈ Matn×n(R), det(Γt) �= 0

If dũEt is surjective then (Et)−1(qt) is smooth in a neighbourhood of ũ
and is tangent space is given by:

Tũ(Et)−1(qt) =
{

v ∈ L∞([0, 1],Rk) :
∫ t

0

Xτvτdτ = 0
}

=
{

v ∈ L∞([0, 1],Rk) :
∫ t

0

Zτvτdτ ∈ Π
}.

If the differential of the endpoint map is surjective, the set of admissible
control becomes smooth (at least locally) and our minimization problem can
be interpreted as a constrained optimization problem. We are looking for
critical points of J on the submanifold {u ∈ U : Et(u) = q1}.

Definition 3. We say that a normal extremal λ(t) with associated control ũ(t)
are strictly normal if the differential of the endpoint map at ũ is surjective.

It makes sense to go on and consider higher-order optimality conditions.
At critical points is well defined (i.e. independent of coordinates) the Hes-
sian of J (or the second variation). Using chronological calculus (see again
[6] or [1]) it is possible to write the second variation of J on ker dEt ⊆
L∞([0, 1],Rk).
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Proposition 7. (Second variation) Suppose that (λ(t), ũ) is a strictly normal
extremal, i.e. a critical point of J for fixed initial and final point. For any
u ∈ L∞([0, 1],Rk) such that

∫ 1

0
Xtutdt = 0 the second variation of J has the

following expression:

d2
ũJ (u) = −

∫ 1

0

〈Htut, ut〉dt −
∫ 1

0

∫ t

0

σ(Zτuτ , Ztut)dτdt.

The associated bilinear form is symmetric provided that u, v lie in a subspace
that projects to a Lagrangian one via the map u → ∫ 1

0
Ztutdt.

d2
ũJ (u, v) = −

∫ 1

0

〈Htut, vt〉dt −
∫ 1

0

∫ t

0

σ(Zτuτ , Ztvt)dτdt.

Throughout the paper we make the assumption, which is customarily
called strong Legendre condition, that the matrix Ht is strictly negative def-
inite and has uniformly bounded inverse. This guarantees that the term:∫ 1

0

−〈Htut, vt〉dt,

is equivalent to the L2 scalar product.
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