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Abstract

Introduction: Predicting postoperative incontinence beforehand is crucial for intensified and personalized rehabil-
itation after robot-assisted radical prostatectomy. Although nomograms exist, their retrospective limitations highlight
artificial intelligence (AI)’s potential. This study seeks to develop a machine learning algorithm using robot-assisted
radical prostatectomy (RARP) data to predict postoperative incontinence, advancing personalized care.

Materials and Methods: In this propsective observational study, patients with localized prostate cancer un-
dergoing RARP between April 2022 and January 2023 were assessed. Preoperative variables included age, body
mass index, prostate-specific antigen (PSA) levels, digital rectal examination (DRE) results, Gleason score,
International Society of Urological Pathology grade, and continence and potency questionnaires responses.
Intraoperative factors, postoperative outcomes, and pathological variables were recorded. Urinary continence
was evaluated using the Expanded Prostate cancer Index Composite questionnaire, and machine learning
models (XGBoost, Random Forest, Logistic Regression) were explored to predict incontinence risk. The chosen
model’s SHAP values elucidated variables impacting predictions.

Results: A dataset of 227 patients undergoing RARP was considered for the study. Post-RARP complications
were predominantly low grade, and urinary continence rates were 74.2%, 80.7%, and 91.4% at 7, 13, and 90
days after catheter removal, respectively. Employing machine learning, XGBoost proved the most effective in
predicting postoperative incontinence risk. Significant variables identified by the algorithm included nerve-
sparing approach, age, DRE, and total PSA. The model’s threshold of 0.67 categorized patients into high or low
risk, offering personalized predictions about the risk of incontinence after surgery.

Conclusions: Predicting postoperative incontinence is crucial for tailoring rehabilitation after RARP. Machine
learning algorithm, particularly XGBoost, can effectively identify those variables more heavily, impacting the
outcome of postoperative continence, allowing to build an Al-driven model addressing the current challenges in
post-RARP rehabilitation.
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Introduction

LOCALIZED PROSTATE CANCER (PCa) has a substantial
impact on health care systems, and radical prostatec-
tomy is the treatment of choice for this malignancy.' This
surgical procedure can, however, result in postoperative
complications significantly affecting patients’ quality of life
(QoL).> To improve these outcomes, robotic surgery has been
widely employed in this setting, leading robot-assisted radi-
cal prostatectomy (RARP) to become the most performed
robotic surgery worldwide.?

Over time, various surgical techniques performed roboti-
cally were proposed to improve patients’ QoL by reducing
the occurrence of postoperative complications, to reduce the
incidence of urinary incontinence, and to improve erectile
dysfunction. In addition, many studies have emphasized the
importance of continuous and intensive postoperative reha-
bilitation (i.e., pelvic floor muscle training [PFMT]), proto-
cols after RARP.

However, even in the setting of robotic oncologic surgery,
health care systems are unable to provide adequate rehabili-
tation programs for all patients owing to the significant bur-
den of disease in the general population.® Therefore, it is
important to predict in advance the occurrence of postoper-
ative incontinence, to immediately plan intensified and per-
sonalized functional rehabilitation programs in those patients
more probably at risk to develop it.”®

In this context, nomograms based on preoperative and
intraoperative characteristics have been developed: however,
these are limited by the retrospective nature of studies con-
sidered for their development.”'® Today, artificial intelli-
gence (Al) is gaining ground in health care, and in this
setting, it may play a role. With constant data implementa-
tion, it is possible to build a neural network trained on large
volumes of prospective data, replacing nomograms.

The aim of this study is to develop and train a machine
learning algorithm capable of discriminating the postopera-
tive incontinence risk based on patient’s perioperative char-
acteristics, starting from data obtained by a series of RARP.

Materials and Methods

This prospective observational monocentric study en-
rolled patients diagnosed with localized PCa (cT1-3, cNO,
and cMO0), who underwent RARP + pelvic lymph node dis-
section (PLND) between April 2022 and January 2023.
RARP was performed with transperitoneal approach by a
single expert surgeon (F.P.). The study was designed fol-
lowing the good clinical practice guidelines and all the pa-
tients signed an informed consent. Exclusion criteria were
absolute contraindications to laparoscopic pelvic surgery,
preoperative urinary incontinence, contraindications to pel-
vic floor rehabilitation, and ongoing neoadjuvant hormonal
therapy.

The following preoperative variables were considered:
Age, body mass index (BMI), total prostate-specific antigen
(PSA) levels at diagnosis, the positivity of digital rectal ex-
amination (DRE), and primary and secondary Gleason score
(GS) determined through prostate biopsy, the International
Society of Urological Pathology (ISUP) at Fusion Biopsy and
Standard Biopsy. In addition, all patients preoperatively
completed the International Prostate Symptom Score (IPSS),
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Incontinence Symptom Index (ISI), and International Index
of Erectile Function questionnaires.

We assessed intraoperative variables such as blood loss,
total operative time (i.e., from Veress needle insertion to
surgical wound closure), and the performance of PLND
during the procedure. Based on the Pasadena consensus
panel,11 the intrafascial, interfascial, and sub-extrafascial
dissection planes are referred to as full, partial, and minimal
nerve sparing (NS), respectively.

During the postoperative period, we evaluated the duration
of catheterization, performance of postoperative cysto-
graphy, its timing, and overall hospital stay. Postoperative
complications were recorded for 90 days and classified with
the modified Clavien-Dindo classification system,'? speci-
fying the need for hospitalization.

Pathological variables included prostate gland and tumor
volume, percentage of tumor involvement in relation to the
prostate, pTNM stage, GS, and the presence of positive sur-
gical margins.

Urinary continence was assessed 7, 30, and 90 days fol-
lowing catheter removal using the question from the Ex-
panded Prostate cancer Index Composite questionnaire:
“How many PADs did you usually use to control urine
leakage in the last 4 weeks?,” modifying its last part in ac-
cordance with the specific time point. Continence was de-
fined with the answer ‘“‘zero pads” per day. ISI and IPSS
questionnaires were also administered following the same
timeline.

Data concerning potency recovery were not considered in
this study.

Machine learning to define incontinence risk groups

The next step included building a machine learning model
able to categorize each individual patient based on his risk to
develop postoperative incontinence, aiming to provide a
tailored rehabilitation treatment.

All the previously reported variables were evaluated to-
gether with different predictive models, to identify those
more heavily impacting the postoperative continence.

Three different models were investigated:

e XGBoost, a gradient boosting machine learning algo-
rithm: A powerful algorithm used for a variety of tasks,
including classification, regression, and ranking, known
for its accuracy and speed (Supplementary Data).

e Random Forest, an ensemble learning algorithm: It
works by building a collection of decision trees and
averaging their predictions. It is a robust algorithm, not
easily prone to overfitting.

e Logistic Regression, a classification algorithm: A
simple, but effective algorithm often used as a baseline
for other classification algorithms.

Therefore, the areas under curve (AUC) of these models
were compared through benchmark analysis to assess which
found the closest relationship between perioperative vari-
ables and the occurrence of postoperative incontinence with
respect to baseline.

Therefore, once the most suitable machine learning model
was identified, SHAP (SHapley Additive exPlanations) val-
ues, a machine learning explainability approach used to
clarify the predictions of any machine learning model, were
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assigned to all the variables depending on their impact and
magnitude in the prediction of the outcome. Features with
positive SHAP values impact the prediction positively,
whereas those with negative values have a negative impact.
The magnitude of the SHAP value indicates how strong the
effect is. Open-source Python software was employed with
essential libraries such as pandas, numpy, matplotlib, sea-
born, sklearn, xgboost, and shap to further enhance the pre-
dictive capabilities and interpretability of the model."?

Results

A total of 227 consecutive patients were enrolled. Pre-
operative data are schematized in Table 1.

Perioperative data and postoperative complications up to
90 days are summarized in Table 2.

Overall, 67/227 (29.5%) patients underwent full NS pro-
cedure, 114/227 (50.2%) partial NS, and 46/227 (20.3%)
patients minimal NS, respectively. PLND was performed in
122/140 cases. No intraoperative complication was detected.

The median (interquartile range [IQR]) postoperative
hospital stay was 5 (5-6) days, and median (IQR) catheteri-
zation time was 4 (4-5) days. Postoperative complications
were all low grade (i.e., Clavien-Dindo I or II), but three
cases, which were graded as IIla. Specifically, these last were
two patients with lymphocele, who underwent percutaneous
puncture, and a suprapubic hematoma, who underwent sur-
gical drainage.

Final pathology showed pT2 in 36.4% and pT3 in 63.5%
cases (Table 3).

TABLE 1. BASELINE CHARACTERISTICS OF THE PATIENTS

Characteristics
Number of patients 227
Age, years, mean (SD) 67.1 (7.0)
BMI, mean (SD) 26.4 (3.4)
Diabetes, n (%) 26 (11.4)
Smoke, n (%) 16 (7)
Hypertension, n (%) 110 (48.4)
Cardiopathy, n (%) 22 (9.7)
PSA, ng/mL, mean (SD) 10.0 (10.6)
Positive DRE, n (%) 106 (46.7)
ECE, n (%) 32 (14)
Biopsy GS, median (IQR) 7 (7-8)
ASA score, median (IQR) 2 (2-2)
IPSS (preoperative), median (IQR) 10 (4-15)
IIEF-5 score (preoperative), median (IQR) 19 (15-23)
ISI score (preoperative), median (IQR) 0 (0-2)
D’ Amico classification, n (%)

High risk 56 (24.7)

Intermediate risk 148 (65.2)

Low risk 23 (10.1)
Clinical stage, n (%)

Tlc 67 (29.5)

T2 148 (65.2)

T3 12 (5.3)

ASA =American Society of Anesthesiology; BMI=body mass
index; DRE=digital rectal examination; ECE =extracapsular ex-
tension; GS =Gleason score; IIEF-5=International Index of Erec-
tile Function-5; IPSS=International Prostate Symptom Score;
IQR =interquartile range; ISI=Incontinence Symptom Index;
PSA =prostate-specific antigen; SD =standard deviation.
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TABLE 2. PERIOPERATIVE VARIABLES
Perioperative data
Operative time, minutes, mean (SD) 143.2 (29.9)
PLND, n (%) 190 (83.7)
NS approach, n (%)
Full NS 67 (29.5)
Partial NS 114 (50.2)
Minimal NS 46 (20.3)
Blood losses, mL, mean (SD) 242.7 (54.3)
Intraoperative complications, n (%) 0 (0)
Catheterization time, days, mean (SD) 4 (4-5)
Hospital stay, days, mean (SD) 5 (5-6)
Postoperative complications, n (%) 19 (8.3)
Fever 3(1.3)
Suprapubic hematoma 4 (1.7)
Lymphocele 3(1.3)
Acute urinary retention 4 (1.7)
Urine leakage 52.2)
Postoperative complications 3(1.3)

Clavien grade >2, n (%)

NS =nerve sparing; PLND =pelvic lymph node dissection.

Functional data are shown in Table 4.
Postoperative urinary continence was recorded in 74.2%,
80.7%, and 91.4% cases at 7, 30, and 90 days, respectively.

Machine learning model building

The plot of receiver operating characteristics curve re-
ported in Figure 1, comparing on a benchmark analysis
XGBoost, Random Forest, and Logistic Regression models,
shows that the XGBoost achieved the highest AUC, followed
by the Logistic Regression and Random Forest models. This
suggests that the XGBoost was the best model for this task, as
it was able to distinguish between positive and negative ex-
amples with the highest, even if not perfect, accuracy.

The plot reported in Figure 2 shows the average SHAP
values for different features, whereas Figure 3 provides a
useful overview of the magnitude of different variables in the
dataset, from the most to the least impacting the ‘“‘immediate
continence’’ outcome.

TABLE 3. PATHOLOGIC VARIABLES

Pathological data

Positive margins, n (%) 48 (21.1)
Prostate volume, mL, mean (SD) 45.1 (22.3)
Tumor volume, mL, mean (SD) 5.2 (6.1)
% Tumor, mean (SD) 13.2 (12.8)
Pathological T stage, n (%)

pT2 89 (39.2)

pT3 138 (60.8)
Pathological N stage, n (%)

pNO 183 (80.6)

pN1 7 (3.0
Pathological GS, n (%)

6 512.2)

7 181 (79.7)

8 17 (7.5)

9 24 (10.6)




TABLE 4. FUNCTIONAL OUTCOMES
AND RELATIVE QUESTIONNAIRES

Functional outcomes

Postoperative continence, n (%)

1 week 170 (74.9)

1 month 185 (81.5)

3 months 209 (92.0)
Postoperative IPSS, median (IQR)

1 week 8 (4-10)

1 month 7 (4-12)

3 months 7 (3-10)
Postoperative ISI score, median (IQR)

1 week 4 (2-4)

1 month 2 (24

3 months 1(0-2)

The feature NS approach, age, DRE, and total PSA had the
highest average SHAP values, with consequent significant
impact on the predictions and classification. In contrast, the
features ISUP at FB and GS had small average SHAP values,
with a small impact on predictions. It is important to note that
the SHAP values are just average values: the actual SHAP
value for a given instance may be different, depending on the
values of the other features.

The plots reported in Figure 4 describe the SHAP force
plot prediction for a continent or incontinent patient at
catheter removal.

The model, based on the current dataset, considered the
threshold value of 0.5. If the value detected was lower than
0.5, the model assigned the patient to the higher risk category
to develop incontinence. If the value, on the contrary, was
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higher than 0.5, the patient was classified in the low-risk
category. Plot ““a” shows the characteristics of a continent
patient; indeed, the value assigned by the model to him is
1.18, higher than the threshold value of 0.5. Contrarily, in plot
“b,” the patient results to be incontinent, being the value
assigned by the model lower than the threshold value (0.08).

Discussion

To date, the development of cutting-edge technology for
the treatment of PCa brought a significant improvement in
functional outcomes, with robotic surgery undoubtedly
playing a key role.'* Nevertheless, a significant percentage of
patients still reports postoperative functional issues following
RARP (i.e., 20%—65% urine incontinence and 20%-90%
erectile dysfunction at 1 year).'>!®

In this scenario, a postoperative protocol based on PEFMT is
a key component of the rehabilitation process and has a
substantial influence on patients’ QoL.''® When started
immediately after surgery, if followed consistently and me-
thodically, and if adjusted based on clinical results, these
rehabilitation protocols have proven their ability to quicken
and enhance the recovery of both sexual potency and urinary
continence.'*°

However, the application of such protocols for post-RARP
rehabilitation in routine clinical practice may be difficult. The
high prevalence of RARP, which in fact accounts for more
than 70% of all surgical procedures in high-volume uro-
oncological centers, represents one of the main issues.”'

Owing to the high number of PCa surgeries, intensive re-
habilitation is challenging in the public health system. Hospital
departments struggle with multidisciplinary rehabilitation,
making manual data interpretation for protocol adherence and
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FIG. 4. Plots of SHAP force to predict risk of continence or incontinence. (a) Patient assigned to low-risk class; (b)

patient assigned to high-risk class.

efficiency assessment difficult.”? To address these issues, we
explored machine learning methodologies to classify patients
based on postoperative incontinence risk, incorporating peri-
operative characteristics.>>** Our goal was to develop a tool
for automatic, personalized PFMT protocols using preopera-
tive, intraoperative, and early postoperative data. This ap-
proach aims to tailor the rehabilitation process, automatically
modifying the plan based on continence outcomes at inter-
mediate steps, offering potential solutions to current rehabili-
tation challenges.

In fact, classic protocols are “‘rigid,”” based exclusively on
progressive schemes taking into account only the inconti-
nence degree, ignoring his perioperative characteristics.”> By
including the patient-related characteristics (e.g., BMI, age,
smoking habits) in the pre-PFMT evaluation, it is possible to
profile the patient and create a rehabilitation program that is
customized and flexible.*®

In addition, this machine learning algorithm can be inte-
grated into developing digital platforms for telerehabilitation
programs, contributing to make the whole process more au-
tomatized and physician independent.*’-*®

To date, the increased time and clinical resources needed
for reviewing biometric data and patient-reported outcomes
in telemedicine protocols have raised the overall number of
medical visits, even when conducted remotely.*? This is
linked to the widespread use of digital health interventions,
which initially require specialized personnel for data moni-
toring. However, integrating technology to streamline clini-
cal workflows, interpret data, and communicate promptly
with patients is crucial for success.””

Considering this, implementing machine learning algo-
rithms for real-time tracking of symptoms, physiological
metrics, and patient outcomes, with automated alerts to cli-
nicians or program adjustments, can be a viable strategy. This
approach addresses the current challenge of the substantial
work burden associated with digital data monitoring and in-
terpretation.

Looking at our machine learning algorithm development,
some interesting findings have to be discussed. First of all, we
identified the most suitable model to predict the risk of in-
continence in the current cohort of patients. This model,

called XGBoost, can assign specific weights (referred to as
SHAP values) to individual variables. These weights help
balance the impact of all other factors that might influence the
risk of postoperative incontinence. In simpler terms,
XGBoost considers various factors and assigns importance to
each one, ensuring a comprehensive assessment of the risk of
inincontinence after surgery.

The variables more impacting the outcome of immediate
continence, as reported in the example of Figure 4, for both
patients were the NS approach according to Pasadena, the
total PSA, and the DRE. However, looking at the values of
these variables (that were also the ones that more clearly
distinguished the population of continent from the one of
incontinent patients at SHAP values graph; Fig. 2), this evi-
dence seems to find correspondence from a clinical per-
spective. In fact, in plot ““a,” the patient underwent a full NS
RARP, and had a PSA 4 ng/mL (not high value) and a neg-
ative DRE. This suggests that the patient could be affected by
a not highly aggressive or extended disease, reflecting in a
more conservative surgical approach that can justify a pre-
cocious recovery of urinary continence.

Conversely, in plot “b,” the patient underwent minimal
NS RARP according to Pasadena and had a PSA >10ng/mL
and a positive DRE. All these factors are suggestive for a
more aggressive or extended tumor that make necessary a
wider resection of periprostatic tissues for oncologic reasons,
impacting more heavily on anatomical structures responsible
for postoperative urinary continence recovery.

Considering all these factors, the result is a predictive
model capable of classifying a patient as potentially continent
or incontinent based on their characteristics. It specifies
which factors are more likely to impact the risk of inconti-
nence and the weight of those favoring continence recovery.
Although built on a cohort with defined urinary continence
outcomes, the model can prospectively be applied to new
patients with unknown outcomes. The study cohort served as
the machine learning training set, necessitating validation on
a new patient cohort.

Furthermore, the analysis focused on immediate postop-
erative continence outcomes (i.e., catheter removal), but it
can be extended to different time points in a telerehabilitation
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program where continence recovery is assessed. At each time
point evaluation, the algorithm’s variables may be adjusted,
considering previous continence outcomes, allowing the
model to adapt and refine itself with the accumulating in-
formation over time.

This can match the final goal of the machine learning
model implementation in a futuristic rehabilitation program:
To be strictly tailored on gatients’ features during his conti-
nence recovery journey.”’ However, it is important to ac-
knowledge the limitations of our study. First, the sample size
was limited, which may affect the general application of our
findings. Furthermore, the follow-up period of 90 days was
relatively short and may not be sufficient to draw definitive
conclusions. Moreover, the surgical outcomes reported may
not be applicable to low-volume RARP centers, although
detailed descriptions of the operative technique were exten-
sively provided for replication purposes.

Moreover, XGBoost is a good machine learning model that
can assign the patient to a certain risk category, but, like all
machine learning and Al models, it is necessary to employ big
data (i.e., a higher number of instances), since increasing the
sample size (i.e., study population) may increase the AUC value.

We are still in a developmental stage of the project, and
further studies will be needed to improve both the platform
and the machine learning model to achieve a tool that can
truly help the clinician in daily practice.

Conclusions

In conclusion, it is crucial to predict postoperative incon-
tinence accurately to customize rehabilitation plans after
RARP. In this context, machine learning methods, particu-
larly XGBoost, show promise in efficiently pinpointing es-
sential factors, like the NS approach, age, DRE, and total
PSA, specifically for this study. The setup of this algorithm,
which can evaluate the risk of postoperative incontinence for
each patient based on these identified variables, can find great
application in clinical practice and health care optimization.
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Abbreviations Used
Al = artificial intelligence
ASA = American Society of Anaesthesiology
AUC = area under curve
BMI = body mass index
DRE =digital rectal examination
ECE = extracapsular extension
GS = Gleason score
IIEF-5 = International Index of Erectile Function-5
IPSS = International prostate Symptom Score
IQR = interquartile range
ISI = Incontinence Symptom Index
ISUP = International Society of Urological Pathology
NS =nerve sparing
PCa = prostate cancer
PFMT = pelvic floor muscle training
PLND = pelvic lymph node dissection
PSA = prostate-specific antigen
QoL = quality of life
RARP =robot-assisted radical prostatectomy
ROC =receiver operating characteristics curve
SD = standard deviation
SHAP = SHapley Additive exPlanations
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