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Abstract
Extracellular vesicles (EVs) are membranous cargo particles that mediate intercellular communication. They are heterogene-
ous in size and mechanism of release, and found in all biological fluids. Since EV content is in relation to the originating cell 
type and to its physiopathological conditions, EVs are under study to understand organ physiology and pathology. In addition, 
EV surface cargo, or corona, can be influenced by the microenvironment, leading to the concept that EV-associated molecules 
can represent useful biomarkers for diseases. Recent studies also focus on the use of natural, engineered, or synthetic EVs 
for therapeutic purposes. This review highlights the role of EVs in kidney development, pediatric kidney diseases, includ-
ing inherited disorders, and kidney transplantation. Although few studies exist, they have promising results and may guide 
researchers in this field. Main limitations, including the influence of age on EV analyses, are also discussed.
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Abbreviations
CKD  Chronic kidney disease
EV  Extracellular vesicles
FSGS  Focal segmental glomerulosclerosis
GFR  Glomerular filtration rate
GS  Gitelman syndrome
miRNA/miR  Micro-RNA

MSC  Mesenchymal stem cell
NS  Nephrotic syndrome
PDE  Peritoneal dialysis effluent
TBMN  Thin basement membrane nephropathy

Introduction

Extracellular vesicles (EVs) represent an evolutionarily con-
served mechanism of cell-to-cell communication in both 
eukaryotic and prokaryotic organisms. They are lipid mem-
brane-covered cargo particles that contain nucleic acids, pro-
teins, and other biomolecules, loaded through selective and/
or non-selective mechanisms [1, 2]. Since the beginning of 
EV-related studies, EVs have been isolated from almost all 
mammalian cells and biological fluids, such as blood, urine, 
milk, and saliva [1, 2].

EVs are categorized by their characteristics such as size 
(small or large EVs), type of biogenesis (exosomes and 
ectosomes) and physiological and pathological condition of 
release (i.e., oncosomes, migrasomes) [3]. EVs are com-
posed of a membrane containing surface proteins, tetraspa-
nins and receptors, and, on the inside, cell-type specific pro-
teins, enzymes, signal transduction molecules, chaperones 
and nucleic acids (e.g., microRNA, mRNA and DNA). Once 
released, EVs travel short distances through the extracellular 
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matrix and long distances through biological fluids to reach 
the target cell [1]. More importantly, EVs present a distinct 
surface repertoire that allows them to target specific cell 
types [4]. For instance, tumor-derived EVs were reported to 
display a specific organotropism through integrins (α6β4 for 
lung and αvβ5 for liver metastasis) [5].

Once internalized, EV content contributes to cellular 
processes such as cell metabolism, signal transduction and 
modulation of gene expression profile [6]. Depending on the 
internalization pathway and cargo content, EVs can subse-
quently undergo lysosomal degradation or be recycled back 
to the extracellular space.

In general, through targeted cell reprogramming, EVs are 
considered highly involved in controlling organ physiology 
and disease modulation and progression [5–7]. In addition, 
increasing evidence suggests that the analysis of EV corona, 
the surface cargo that attaches to the EV surface through 
ionic bounds during their permanence in a biological fluid, 
might also be of interest for diagnostic applications. Urinary 
EVs are highly interesting for evaluating kidney physiology 
and pathological conditions, since they are mainly derived 
from the kidney (Fig. 1) [8]. In fact, serum EVs cannot pass 
through the membrane pores of the glomerular filtration 
barrier (6 nm) [9], and their presence could be a possible 
marker of kidney diseases. The present review highlights the 
potential role of EVs in kidney development, in identifying 

biomarkers for genetic and non-genetic primary pediatric 
kidney diseases, and their potential use as a therapeutic tool.

EVs in kidney physiology and development

EVs present in urine have been involved in communication 
between intra-nephron compartments, including glomerular-
tubular, endothelial cell-podocyte and tubular-interstitial 
cell interactions [10]. It is of interest to identify the factors 
that modulate urinary EV release and their content, and to 
evaluate whether EVs may regulate physiological processes 
within the nephron and trigger pathological events such as 
epithelial-mesenchymal transition.

EVs are considered to be involved in organ development. 
For instance, their relevance has been highlighted in neural 
development and regulation of stem cell numbers in epithe-
lia such as skin and intestine [11]. The role of EVs in kid-
ney development has also been studied. EVs isolated from 
a ureteric bud cell line contain proteins required for tissue 
morphology, homeostasis, and integrity [12]. In addition, 
ureteric bud-derived EVs contain miRNAs able to affect the 
Wnt pathway, which play an essential role in the kidney 
developmental process, including tissue renewal, cell pro-
liferation and homeostasis [13]. This study underlines the 
important role of EV communication during nephrogenesis, 

Fig. 1  Urinary EVs are influenced by nephron mass and demographic factors and show distinctive protein cargo as disease biomarkers. Illustra-
tions were created with Biorender.com
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and additional studies will be of interest to fully understand 
the EV mechanisms of action during kidney development. A 
recent study found that EVs from engineered kidney tubular 
epithelial cells improve tubuloid maturation [14]. Indeed, 
EVs from proximal tubule epithelial cells overexpressing 
organic anion transporter, a membrane transporter involved 
in the excretion of waste, enhanced tubuloid polarization, 
cilia structure formation and epithelial transport capacity. 
Some authors also suggest that EVs can be a major tool for 
developing bioartificial kidneys by promoting dense cilia 
structures and organoid differentiation and maturation [14].

EV‑based biomarker discoveries for pediatric 
kidney diseases: promises and limitations

At present, kidney biopsy, albeit invasive, represents a 
pivotal diagnostic tool for several pediatric kidney dis-
eases. Diagnostic, predictive, and prognostic biomarkers 
are very much needed, and EVs isolated from biologi-
cal fluids are under extensive investigation, as reported in 
Table 1. EV-based diagnostic assays may prospectively 
present benefits compared to the currently available ones 
[25]. First, the sample collection is an easy, rapid and 
painless process compared to traditional biopsy sampling. 
Second, biomarkers are protected from degradation by a 
lipid bilayer and can be detectable with high sensitivity as 
they can be concentrated in small volumes. For instance, 
the NGAL protein level of EVs allowed early detection 

of tissue injury, in patients with type 1 diabetes, in com-
parison with free (non EV-associated) NGAL [15]. Third, 
EVs provide different types of molecular diagnostic analy-
sis based on cargo content, such as proteins, RNA spe-
cies, DNA and lipids. In addition, EV-based biomarkers 
offer a multiplex diagnostic platform which can relate an 
identified biomarker to the physiopathological state of the 
originating cell, thanks to specific cell-related markers. In 
particular, origins of plasma and urinary EVs have been 
clearly profiled based on cell-specific signatures [26–28].

However, there are some limitations linked to EV stud-
ies. The heterogenic distribution of EVs in biological fluids 
and the absence of standards for EV isolation and purifica-
tion may result in differences among studies. EV isolation 
requires expensive and specialized equipment like ultra-
centrifuge or EV-capturing kits. Moreover, the presence 
of contaminants in biological fluids, such as uromodulin 
in urine, interferes with EV isolation and analysis. In addi-
tion, the EV profile can be influenced by different physi-
ological conditions, such as age, sex, circadian rhythm and 
exercise, roles that have not been fully depicted at present 
[29]. For instance, urinary EV expression of podocyte and 
mesangial cell markers was reported to decrease with age 
and vary according to kidney quality and sex [30]. Another 
study indicated that circulating miRNAs that were found 
significantly modulated in pediatric patients with acute kid-
ney injury were not confirmed in infant patients, indicat-
ing the age-dependent changes in EV miRNA profile as an 
additional confounding factor [16].

Table 1  Studies related to biomarker discovery in EVs isolated from pediatric patients with kidney diseases

Disease Participants EV origin Biomarkers Ref

Diabetic kidney disease 34 type I diabetes mellitus and 15 healthy 
controls

Urine Presence of NGAL in patients [15]

Acute kidney injury after cardiac surgery 14 patients and 10 controls Blood miR-7g-5p, miR-152-3p and miR-320a [16]
Chronic kidney disease 27 CKD patients and 3 healthy controls Urine Decreased Mucin 1 protein

Increased MGAM protein
[17]

Atherosclerosis and arterial stiffness in 
CKD

37 dialysis patients, 33 pre-dialysis 
patients and 18 healthy controls

Blood Increased CD144 and CD146 protein [18]

Acute and chronic glomerular diseases 12 Chronic and 26 Acute postinfec-
tive glomerulonephritis and 7 healthy 
controls

Urine Decreased CD133 [19]

Idiopathic NS 129 Idiopathic NS patients
126 healthy controls

Urine Increased miR-194-5p, and miR-23b-3p [20]

Subgroups of Idiopathic NS 33 NS patients and 7 healthy controls Urine Different protein profile among sub-
groups of idiopathic NS patients

[21]

Primary FSGS 8 primary FSGS patients and 5 minimal 
change disease

Urine Increased miR-193a [22]

FSGS 20 primary nephrotic syndrome and 10 
healthy controls

Urine Increased STAT-3 [23]

Wilms tumor 14 Wilms tumor patients and 14 healthy 
controls

Plasma Increased PD-L1 [24]
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Finally, studies often report observations in small 
cohorts, and large multicentric studies with consist-
ent standardization are required to validate the present 
results.

EV‑based biomarkers in chronic kidney 
disease

The kidney is the major source of urinary EVs, whose levels 
directly correlate with kidney function (Fig. 1), indicating 
that the EV level may be a useful marker of nephron num-
ber/activity to assess chronic kidney disease (CKD) [8]. In 
particular, the excretion rate of urinary EVs was positively 
correlated with glomerular filtration rate (GFR), creatinine 
clearance and total kidney volume. In parallel, the number 
of urinary EVs significantly decreased after nephrectomy as 
a consequence of nephron loss.

Besides the direct number of EVs, other studies report 
the identification of EV-carried molecules as biomarkers. 
For instance, several urinary EV miRNAs involved in kid-
ney fibrosis, such as miR-29c and miR-451, were proposed 
as CKD biomarkers [31, 32]. Another study investigated 
the urinary EV protein signatures in pediatric patients with 
CKD due to kidney hypoplasia or other pediatric patholo-
gies [17]. The level of Mucin 1, a distal tubule/collecting 
duct-specific protein [33], was reduced and possibly cor-
related with nephron loss. In parallel, the proximal tubule 
protein MGAM, an enzyme that is involved in the digestion 
of starch to glucose [34], was increased, as possible com-
pensation for the nephron loss. In another study, circulat-
ing EVs from kidney transplanted patients were analyzed 
to investigate kidney graft function [35]. Three miRNAs 
(miR-21, miR-210 and miR-4639) correlated with eGFR 
level and were suggested to be linked to chronic allograft 
dysfunction. Therefore, these studies and others indicate 
that EVs may be used to monitor kidney donor suitability 
for transplantation and allograft function. Unfortunately, 
no study has been performed on transplanted pediatric 
patients.

EV-related biomarkers for atherosclerosis and arterial 
stiffness were also investigated in circulating EVs from 
pediatric CKD patients [36], reporting that the number 
of EVs carrying endothelial markers, CD144 and CD146, 
was significantly increased compared to healthy individu-
als, as reported in adult patients [18]. Besides, the levels 
of  CD144+ and  CD146+ EVs were positively associated 
with blood pressure, age and C-reactive protein level and 
negatively associated with hemoglobin, eGFR and albumin 
level. Therefore,  CD144+ and  CD146+ EVs in circulating 
blood may be potential biomarkers for atherosclerosis and 
arterial stiffness in pediatric CKD patients.

EV‑based biomarkers in acute glomerular 
injury

Urinary EVs also appear as a potential biomarker of glo-
merular injury. For instance, urinary EV level of podo-
planin and Wilms tumor 1 (WT1) protein are considered 
as potential markers of diabetic glomerular damage and 
podocyte injury, respectively [37, 38].

In a recent study, urinary EV expression of CD133, a 
marker of renal progenitors, was shown to be decreased in 
children with acute glomerulonephritis during the phase 
of kidney damage, but the level could be restored with 
patient treatment and recovery [19]. Another study on 
adult transplanted patients, CD133 levels were shown not 
only to correlate with glomerular filtration rate, but also 
to predict the kidney progression toward CKD, suggesting 
that CD133 levels might be related to kidney regenerative 
capacity after damage [28].

A pioneering proteomic analysis [39] on urinary EVs 
isolated from young adults affected by either IgA nephrop-
athy or thin basement membrane nephropathy (TBMN), 
allowed the identification of 1877 exosomal proteins 
that are differentially expressed in patients compared to 
healthy controls. Among these, the expression levels of 
four proteins (aminopeptidases N, vasorin precursor, α-1-
antitrypsin, and ceruplasmin) were confirmed by Western 
Blot. The analysis of these factors not only allows diseased 
individuals to be separated from healthy ones, but also 
distinguishes children affected by IgA nephropathy from 
those with TBMN. This finding is remarkable as the initial 
clinical features of the two groups are mostly overlapping, 
but the clinical evolution is significantly different, with 
TBMN having a favorable prognosis for most patients, 
while IgA nephropathy leads to kidney failure in 15–40% 
of cases [40].

EV‑based biomarkers in nephrotic syndrome

Nephrotic syndrome (NS) is the most common pediatric 
glomerular disease, with a worldwide incidence of 5 in 
100,000 children per year [41]. The first-line therapy for 
NS is treatment with corticosteroids (i.e., prednisone), but 
10% of patients are non-responsive [42]. Responsiveness 
to the treatment is currently the main criteria for patient 
classification, so that they are defined as steroid-sensitive 
or steroid-resistant. However, the stratification of these 
patients still lacks details and, especially for those with 
steroid-resistant NS, this leads to unmet therapeutic needs. 
For these reasons, EV-based markers could be relevant 
for classifying subtypes, etiologies or steroid treatment 
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response. Due to technical challenges in urinary EV iso-
lation and characterization associated with the nephrotic 
range of proteinuria, only a few studies have been per-
formed on urinary EVs in NS patients, mainly focusing 
on their miRNA and protein content.

The miRNA profile of urinary EVs was assessed in a large 
cohort of pediatric patients with NS [20]. The authors found 
that 30 miRNAs were significantly increased in urinary EVs 
of NS patients. In particular, 5 of these (miR-194-5p, miR-
146b-5p, miR-378a-3p, miR-23b-3p and miR-30a-5p) were 
demonstrated to be more than 3 times higher in active NS 
than in patients with clinical remission. Among those miR-
NAs, miR-194-5p and miR-23b-3p levels correlated with 
urine protein levels, suggesting that these miRNAs could 
represent a promising diagnostic biomarker in childhood idi-
opathic NS. When studying NS patients classified according 
to their steroid treatment response, EV protein patterns were 
found to differ among patients with different subgroups and 
specifically correlated with patient response [21]. Based on 
the first study, urinary EV markers might be useful as prog-
nostic factors in idiopathic NS.

WT1 protein was identified as a relevant marker for 
podocyte-related diseases in a variety of studies [43]. In one 
study, a role for WT1 protein in focal segmental glomerulo-
sclerosis (FSGS) pathogenesis was proposed by Gebeshuber 
et al., who demonstrated that increased levels of miRNA-
193a inhibit the expression of WT1, leading to a decreased 
expression of some relevant architectural podocyte proteins 
[22]. However, contradictory results were published in two 
studies related to the relevance of EV-expressed WT1 to ster-
oid responsiveness. Zhou et al. showed that urinary WT1 
discerns FSGS patients from steroid-sensitive ones with 
active pathology and allows us to distinguish steroid-sensitive 
patients in remission from those in relapse [38]. On the other 
hand, urinary exosomal WT1 did not correlate with either 
steroid responsiveness, or the kidney pathological condi-
tion according to Lee et al. [44]. These differences between 
results may be caused by the age-related changes of WT1 in 
urinary EVs. Another recent study focused on STAT3 acti-
vation in patients suffering from FSGS [23]. Urinary EVs 
from pediatric patients with FSGS promoted STAT3 phos-
phorylation and mesangial cell proliferation, suggesting their 
role in mesangial cell proliferation through STAT3 pathway 
activation.

EV‑based biomarkers in genetic kidney 
diseases

Gitelman syndrome (GS) and Bartter type 1–4 syndromes 
are rare inherited forms of hypokalemic metabolic alkalosis 
[45, 46]. Currently, their differential diagnosis is performed 
mainly by clinical evaluation and genetic testing [47]. A 

pilot study from Corbetta et al. [48] demonstrated the use-
fulness of urinary EV measurement of NCC and NKCC2, 
ion-transporter proteins in the distal tubule and limb of 
Henle, respectively, in distinguishing GS and Bartter type 
1 patients from healthy controls and from other salt-losing 
tubulopathies. In detail, urinary EVs from GS patients were 
characterized by a lower level of NCC compared to healthy 
controls, while lower NKCC2 levels allow to discriminate 
Bartter type 1 subjects from other patients. For future stud-
ies, the authors suggested investigating the correlation 
between genetic mutation penetrance and ion-channel pro-
tein levels in urinary EVs, because the NCC and NKCC2 
expression levels could also be related to the mutation sever-
ity of the genetic variation. Urinary EV characterization has 
also been proven to increase the power of diagnosis of the 
familial form of nephronophthisis, an autosomal recessive 
kidney ciliopathy with high genetic variability and a strong 
phenotypical heterogeneity [49]. Urinary EV biomarker 
analysis in pediatric patients is still in its infancy, with a sin-
gle study performed in 2019 by Stokman et al. [50], where 
candidate urinary EV biomarkers were identified through 
global proteomic analysis. Among 156 urinary EV proteins 
identified as differentially expressed by mass spectrometry in 
12 pediatric patients and controls, the upregulation of vesicle 
NGAL was observed in the patient cohort, corroborating 
with its enrichment in serum and urine of nephronophthisis 
subjects [51]. Thus, the increase in NGAL protein level in 
urinary EVs provides an early detection for organ damage 
in nephronophthisis patients.

In general, urinary EV assessments might be of interest in 
genetic diseases as they could represent an early test in the 
first disease stages before performing the genetic evaluation 
or they could be useful in the stratification of the genetic 
disease based on mutation penetrance, allowing for a better 
characterization of the severity of the disease and therefore 
better management. However, at present, there is no indica-
tion that EV studies might have better diagnostic precision 
over genetic testing.

Wilms tumor

Among kidney diseases, Wilms tumor is the most common 
pediatric kidney malignancy and recurrence may occur in 
about half of pediatric patients [52, 53]. EV-related prog-
nostic markers are extensively studied in oncology. In 
Wilms tumor, however, a single study focused on the anal-
ysis of EV-expressed immune checkpoint molecule PD-L1 
as a Wilms tumor progression marker. When evaluating 
PD-L1 levels on plasma EVs from fourteen Wilms tumor 
patients [24], PD-L1 appeared significantly correlated 
with  CD8+ T cell function inhibition. However, the study 
has weak spots; for example, no change was observed in 
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some of the effector T cell markers when T cells were co-
cultured with PD-L1 EVs of patients, and no correlation 
between those markers and PD-L1 was observed. Further 
studies are needed to examine the relationship between 
PD-L1 EVs and  CD8+ effector T cell activation in pediat-
ric patients with Wilms tumor.

Therapeutic use of EVs for pediatric kidney 
diseases

In addition to biomarker discoveries, EVs are a promising 
tool for new therapeutic approaches [54]. For instance, 
administration of mesenchymal stem cell (MSC)-derived 
EVs induced reduction of kidney inflammation, preven-
tion of kidney failure, and decreased kidney fibrosis in 
several  in vitro and  in vivo models [55]. In particular, 
EVs have been mainly studied in models of acute kidney 
injury with tubular damage, or of CKD with kidney fibro-
sis, whereas few studies investigated their specific effect 
on glomerular injury. We recently showed the beneficial 
effect of MSC-EVs on podocyte damage in a millifluidic 
model of glomerular filtration barrier in vitro [56]. Like-
wise, endothelial progenitor cell-derived EVs protected 
podocytes from apoptosis and prevented nephrin shedding 
induced by complement damage [57].

The utility of exogenous EV therapy in a progressive 
CKD setting is a new area of investigation. Recently, 
the renoprotective effect of amniotic fluid stem cell 
(AFSC)-derived EVs on glomerular endothelial injury 
in Alport syndrome [58], a progressive CKD character-
ized by ColIagen IV mutation leading to kidney failure 
was demonstrated [59]. A single administration of stem 
cell derived-EVs before onset of heavy proteinuria was 
able to prevent serum creatinine and albuminuria value 
increases in an X-linked mouse model of Alport syndrome, 
resulting in significantly improved kidney function up to 
28 weeks post-treatment relative to non-treated controls. 
This effect was similar to that observed by administration 
of the parent cells, AFSC [60]. In vitro, AFSC-EVs, due 
to the high abundance of their surface VEGFR1 expres-
sion, functioned as a trap for excess VEGF, preventing 
downstream activation of the canonical VEGF/VEGFR2 
signaling in glomerular endothelial cells. This indicates 
that modulation of VEGF within the glomeruli of Alport 
mice (highly elevated in the early stage of disease) may 
involve EV-dependent trapping of VEGF as one possible 
mechanism of action. In addition, AFSC-EVs contain a 
high abundance of other angiomodulatory miRNA cargo 
(miR-16.1, miR-93, miR23a, miR-27a, miR-221, miR-322 
and miR-145), which may have further contributing roles, 
and some of which are already under investigation [58].

EVs in the clinic

Further, a clinical trial was performed on patients with 
CKD [61]. In this phase II/III study, 40 patients with CKD 
stage III or IV were treated with two doses of umbilical 
cord MSC-EVs. The EV-treated group showed significant 
improvement in overall kidney function. Therefore, this 
clinical study strengthens the idea of the therapeutic use of 
EVs in kidney diseases and encourages other researchers 
to pay attention to this promising field for both adult and 
pediatric patients. Therapeutic EVs can also be engineered 
or combined with synthetic vesicles (EV hybrids) depend-
ing on the purpose, cargo content, target specificity and 
delivery method [62].

EVs in kidney transplantation

Some studies suggest that EVs have essential roles 
in immunization within kidney transplantation [63]. 
Although no clinical study has been conducted regarding 
the therapeutic use of EVs as a suppressor for allograft 
rejection, a paper recently collected and meta-analyzed 
the findings of preclinical models to investigate the benefi-
cial effects of EVs in transplantation [64]. This analytical 
review of seven preclinical studies investigated immune 
cell and MSC-EVs from syngeneic and allogeneic models 
regarding graft survival and kidney function. Although no 
beneficial effect was observed using MSC-EVs, syngeneic 
and allogeneic immune cell-derived EVs enhanced graft 
survival, suggesting the therapeutic use of EVs as a sup-
pressor of allograft rejection.

Conclusions

Kidney diseases are one of the fields of interest for EV 
researchers. Many preclinical and clinical studies focus 
on EV roles in different kidney diseases. Because urine is 
easy to collect, urinary EVs become an opportunity to find 
biomarkers of diseases. However, several challenges need 
to be solved for standardization and reproducibility of EV 
studies [65]. Especially for pediatric disease studies, the 
urinary EV analysis might also be impacted by age differ-
ences with respect to the adult population. We found a lim-
ited number of pediatric studies, primarily for biomarker 
discoveries, whereas no study related to therapeutic use of 
EVs in pediatric kidney disorders or transplantation is pre-
sent. We strongly recommend that researchers investigate 
EVs in pediatric kidney diseases for diagnosis and therapy.
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