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Abstract— The presence of microplastics in the forage and 

feedstuffs of domestic animals represents an imminent threat to 

the entire food chain that reaches humans as the particulates 

could pass the intestinal barriers contaminating blood and 

animal products. Until now, there is not a simple, quick, 

sustainable, and reliable method to detect microplastics in feeds. 

The objective of this work was to investigate the ability of Near- 

Infrared Spectroscopy to detect microplastics in ruminant feeds. 

Two types of instruments were tested using five feedstuffs (corn 

silage, mixed hay, rye grass silage, soy grain and total mixed 

ration). Two types of crumbled contaminants (low-density 

polyethylene and polystyrene) were accurately mixed at 0, 1, 3 

and 5 mass mg g-1. The pool of the five matrices examined by 

the benchmark instrument (714-3333 nm) allowed an accuracy 

around 0.8 mg g-1 and a detection limit around 1 mg g-1 

however, in separate calibrations, the errors could be halved. A 

short range of wavelength (714-1070 nm) or a smart NIRS 

instrument have prevented an acceptable discrimination of the 

concentrations. Following these preliminary results, any 

validation on other samples and with different and powerful 

NIRS tools is encouraged. 

Keywords— NIRS; SCÏO; feeds; microplastics; Low Density 
Polyethylene; Polystyrene. 

I. INTRODUCTION 

Animal welfare is increasingly important to society [1]. 
Ruminant welfare must be of crucial interest as the number of 
herds is constantly growing to meet the demand for meat and 
milk [2]. 

One problem that is poorly investigated in ruminant 
welfare is plastic pollution in livestock farms and particularly 
in feedstuffs. In fact, a huge amount of plastic materials are 
used to store ruminant feeds, especially dairy cows’ ones. For 
example, low-density polyethylene (LDPE) films are widely 
used to cover horizontal silos and to wrap and tie bales [3]. In 
addition, it is also necessary to consider plastics coming from 
outside the farms that may pollute the feeds through wind, 
rain, etc. Plastics undergo to a systematic fragmentation 
driven mainly by ultraviolet radiation and mechanical 
abrasion, thus generating small plastic fragments (< 5 mm), 
called microplastics (MPs) [4]. MPs can be divided into two 
main categories: primary MPs that are directly immitted in the 

environmental and secondary MPs originating from the 
fragmentation of large plastic litter [5]. 

Recent studies have demonstrated the presence of MPs in 
cow blood and sheep feces, showing that ruminants ingest 
MPs [6, 7]. In fact, a pilot study proved their presence in cow 
and pig feeds. Moreover, it also demonstrated the MPs 
presence in meat and milk showing that they can pass into 
animal products and could also be a problem for human health 
[8]. 

Until now, most MPs detection methods have been time 
consuming, requiring many steps and the use of reagents or 
enzymes. In addition, they are extremely heterogenous 
depending on the nature of the matrix analyzed [9]. 

The actual analysis of MPs includes primarily microscopic 
and micro-spectroscopic techniques (micro-Raman; micro-
FTIR spectroscopy) which can only be used in absence of 
contaminating organic and inorganic materials [10]. With 
these techniques MPs were detected after different steps: 1) 
sampling (collection and preparation of the samples); 2) 
extraction of MPs from the samples; 3) quantification and 
identification of MPs [11, 12, 13]. Moreover, for feeds, as they 
are considered complex samples, because they have 
constituents that are difficult to remove and are composed of 
multiple elements, the MPs extraction could be even more 
complex and could require different steps of organic matter 
degradation [13]. There are currently no specific analytical 
methods to detect MPs in feeds. They were extracted from 
feeds just by van der Veen et al. [8], but this protocol is not 
specific for feeds, and involves the use of ungreen solvents 
like methanol and tetrahydrofuran [14]. 

To overcome these problems, one possible solution could 
be the use of the Near-Infrared Spectroscopy (NIRS). NIRS 
has been used for decades as an innovative technique in 
agriculture, becoming the most common in analytic process, 
including detection of contaminants and analysis of feeds and 
dairy products. The new generation of portable and handheld 
devices allow to perform the analyses during the production 
to evaluate results [14]. NIR spectroscopy works in the 
electromagnetic spectrum from 667 to 2500 nm by measuring 
light scattered off and through a sample. NIR spectra are 
characterized by the broad overlapping bands of overtone and 
combination vibrations for a limited number of molecular 
vibrations (C–H, O–H, N–H). It can be used to quickly 



determine properties of materials without altering the sample. 
Therefore, NIRS used in combination with chemometric 
methods represent an important instrument for classification 
tasks and quantitative analyses. As it has the lower sensitivity 
to water and the possibility to work with quartz materials for 
fibers and optical elements, it can be used for the classification 
of most common synthetic polymers. Paul et al. [9] verified 
that NIRS is an ideal technology to detect microplastics in 
soils; it can be applied for the automated sorting of plastic 
waste [15], often in combination with hyperspectral imaging 
[16]. Karlsson et al. [17] demonstrated the potential of three 
different hyperspectral imaging devices working in the NIR in 
combination with multivariate data analysis for the mapping 
of MPs on filters. The NIRS for MPs has also been studied by 
other authors in soil [18, 19] and in waters [20]. However, up 
to now no study has investigated its use to detect MPs in feeds. 

The aim of this study was to investigate the ability of NIRS 
to detect MPs at different concentrations in some ruminant 
feeds. 

II. MATERIALS AND METHOD 

Four feeds and a total mixed ration (TMR) were used to 
test the NIRS’ ability to identify the different concentration of 
two MPs polymers. The feeds were chosen among the most 
commonly used in the farm which were: corn silage, rye grass 
silage, total mixed ration, soy grain mixed hay and TMR. They 
were dried at 60 °C and grinded with a 4 mm sieve (mixed hay 
and soy grain with a 2 mm sieve). 

The two chosen MPs polymers were the LDPE and the 
Polystyrene (PSE). They were reduced under 5 mm and added 
to the feeds in the following percentages: 0.0, 0.1, 0.3 and 0.5 
% (equivalent to 5, 3, 1 and 0 mass mg g-1, respectively) 
(Figure 1). 

The samples were examined in reflectance mode by a 
benchmark instrument IdentiCheckTM FT-NIR-IR system 

(PE, Perkin-Elmer, Beaconsfield, England) in the 714-3333 
nm range, with 2751 absorbance points, as described in [21]. 
Each absorbance spectrum was the average of 26 scans and 
each sample was mixed up and replicated 10 times. The 
absorbance spectra were imported by GRAMS/AITM 7.02 in 
the Win-ISI III (Infrasoft International, Port Matilda, PA, 
USA) software and processed, after standardization and first 
derivation, by means of the modified Partial Least Squares 
method. The stability of the models was assessed by a cross-
validation, allowing elimination of outliers exceeding a 
critical ‘T-Student’ = 2.5 and ‘Global H’ = 10 values [22]. 

Another smart NIRS instrument was used, the SCÏOTM v 
1.2 molecular sensor (Consumer Physics Inc., Tel Aviv, 
Israel), scanning through a blue light the samples over the 740-
1070 nm NIR range, was used. The 331 reflectance points of 
the spectra were processed by using the Win-ISI III software 
within each feed type but the R2 in calibration mode was set 
up averaging the prediction per each repeated sample. The 
full-range NIR-IR spectra of the PE instrument was also cut 
at the 714-1070 nm (PE\) to compare the quality of the smart 
NIRS instrument. 

The percentages of pollution were fitted as raw values, 
disregarding the MPs polymers in the five feeds and grouping 
them all together as a total and within each of them. 
Otherwise, the relevance of the MPs polymers in the NIR 
spectra was assessed by directly fitting three dummy variables 
(1 = none, 2 = LDPE, 3 = PSE) in the total feeds model. The 
relative percentage difference parameter (RPD = SD/SECV) 
was retained as indicator of performance. Moreover, some 
spectral features of the SCÏOTM were studied in each feed 
differentiating the MPs polluted from the feeds by the ratio 
ln(R_MPs/R_Feed) where R is the reflectance. Moreover, two 
simple regression models were built, selecting the best 
parameters for discriminating the type and the quantity of 
MPs, for each feed. 

III. RESULTS AND DISCUSSION 

The NIR spectrum of MPs at 1 ÷ 5 mg g-1 concentration is 
clearly identifiable in the NIR-IR spectrum (714-3333 nm, PE 
tool) of the fodder (mixed hay and silages), soy grain and total 
mixed ration.  

In a total dataset, the feed source, the two types of MPs 
polymers and the concentrations are perceived by the NIR 
spectra at a similar level that is higher for the PE than PE\ 
(Table 1).  

In the separate datasets of the five feeds the cross-validate 
standard error (SECV) from the full spectra (PE), for the MPs 
concentration descends from 0.63 mg g-1 to a half average 
value (0.35 mg g-1), that increased to 1.13 mg g-1 and 0.64 mg 
g-1) when using the reduced spectra (PE\).  

The Fig. 2 reports the calibration plot corresponding to the 
0.92 R2 for the total concentration of Tab. 1 with a Standard 
Error in Calibration (SEC) of 0.50 mg g-1, and the R2 cross-
validate (1-VR) reduced to 0.80. 

The analysis of the full spectra (PE) in the total of the 
samples gives a RPD for the concentration of 2.2, a value 
however apt to “approximate” quantitative prediction [22]. 
Otherwise, with the cut spectra the RPD falls to 1.4, a value 
not able to a prediction, due to the excessive heterogeneity of 
the matrices used for calibration. As can be seen in Tab. 1, a 
calibration for each matrix improves performance for both 
used ranges (PE, PE\). 

FIGURE 1. Grinded mixed hay polluted at different concentrations of LDPE: 
0, 1, 3, 5 mg g-1. 
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 The SCÏOTM performances seems fairly good, provided 
that the sample was triplicated, the prediction averaged and 
paired to the assigned data. In fact (Tab. 2) the average R2 is 
0.69 but the error (SEC) is, on average, limited to 0.79 mg g-1 
value that approaches the average value of 0.84 SECV 
obtained from the PE\ of the 5 feeds. In the Fig. 3 is shown the 
plot of the measured vs predicted microplastic concentration 
from the hay dataset using the SCÏOTM instrument. The 
Standard Error in Calibration is 1.16 mg g-1. 

The present results are resumed in an accuracy, around 0.8 mg 
g-1, as shown by the SECV for the total concentration. The 

detection limit at the zero concentration is calculated to be 
around 0.4 mg g-1 as highlighted in Fig. 1. 

These values are better than the results of Paul et al. [10] on 
the MPs in the soil that showed a 10 mg g-1 accuracy and a 
detection limit of ~15 mg g-1. Similar results were obtained by 
Huang et al. [11] with a spectroscopic low-cost ultra-
gravimetric method for quantifying MPs in soils and compost 
that showed accuracy from 0.6 to 0.9 mg g-1 also using limited 
low-cost instruments as observed in the present work about 
the SCiOTM instrument. 

A systematic feature of the spectra obtained from polluted 
samples is a different reflectance pattern. As shown in the Fig 
4, the ratio ln(R_MPs/R_Feeds) for the 3 mg g-1 contaminated 
feeds is higher than the 1 mg g-1, equivalent in all the five 
tested feeds.  

This result derives from a higher reflectance of the blue light 
flashed by the SCÏOTM all along the spectral range, when the 
feed is more contaminated. As expected, thanks to its complex 
organic composition, the raw feeds are prone to be more 

TABLE 1. Results of the calibration and cross validation of the theses on the NIR spectra of the devices (PE = Perkin Elmer, 714-3333 nm; PE\ = PE, 
714-1070 nm). 

 

Feed 
Theses / 

Pollution 
Instr. N 

Mean 

mg g-1 

SD 

mg g-1 

SEC 

mg g-1 
R2 

SECV 

mg g-1 
1-VR RPD 

Total 

Feeds 
PE 325 3.15 1.38 0.33 0.94 0.56 0.84 2.5 

PE\ 314 3.16 1.35 0.78 0.66 0.87 0.59 1.6 

MPs Type 
PE 325 1.34 0.63 0.18 0.92 0.28 0.81 2.3 

PE\ 329 1.36 0.62 0.38 0.63 0.42 0.54 1.5 

Concentration 
PE 323 2.36 1.81 0.50 0.92 0.81 0.80 2.2 

PE\ 326 2.39 1.81 1.23 0.54 1.29 0.49 1.4 

Corn silage Concentration 
PE 65 2.63 1.86 0.17 0.99 0.49 0.93 3.8 

PE\ 62 2.48 1.84 0.66 0.87 1.13 0.62 1.6 

Mixed hay Concentration 
PE 61 2.52 1.76 0.10 1.00 0.39 0.95 4.5 

PE\ 61 2.67 1.80 0.46 0.93 0.75 0.83 2.4 

Rye grass 
silage 

Concentration 
PE 61 2.48 1.81 0.11 1.00 0.46 0.94 3.9 

PE\ 60 2.42 1.79 0.56 0.90 0.87 0.76 2.1 

Soy grain Concentration 
PE 60 2.50 1.79 0.14 0.99 0.35 0.96 5.1 

PE\ 60 2.47 1.80 0.47 0.93 0.64 0.87 2.8 

Total mixed 
ration 

Concentration 
PE 87 1.95 1.92 0.31 0.97 0.63 0.89 3.1 

PE\ 84 1.93 1.91 0.57 0.91 0.81 0.82 2.3 

SD = Standard Deviation; SEC = Standard Error in Calibration mode; R2 in calibration mode; SECV = Standard Error in Cross Validation mode;      
1–VR = R2 in cross validation mode; RPD = SD / SECV Relative Prediction Deviation [22]. 

TABLE 2. Results of the calibration of the MPs concentration (in mg g-1) 
on the NIR spectra of the device SCÏOTM (740-1070 nm) with average 

prediction per repeated sample. 
 

Feed N 
Mean 

mg g-1 

SD 

mg g-1 

SEC 

mg g-1 
R2 

Corn silage 43 1.49 1.18 0.39 0.93 

Mixed hay 41 1.64 1.16 0.90 0.65 

Rye grass silage 40 1.63 1.19 1.07 0.38 

Soy grain 41 1.51 1.14 0.86 0.65 

Total mixed ration 43 1.56 1.18 0.75 0.84 

Average  1.57 1.17 0.79 0.69 

SD = Standard Deviation; R2 in calibration mode SEC = Standard Error 
in Calibration mode 

FIGURE 2. Plot of the measured vs predicted microplastic concentration 
from the total dataset using the benchmark instrument with the full spectra 

714-3333 nm. The Standard Error in Calibration was 0.50 mg g-1. 
 

 



absorbing the radiation than the pure plastic material, more 
reflective. 

Considering the set of wavelengths in the SCÏOTM spectrum 
selected first by a stepwise regression (Fig. 5) for the five 
feeds no special spectral range is concerned. The type of 
plastic is effectively represented in the NIR spectra, but it fits 
less than the percentage of pollution, as shown by an average 
of R2 0.40 and 0.53, respectively. Note that this pattern is 
inversed for the rye grass (Rye). 

IV. CONCLUSION 

The direct scan of raw samples of common animal feeds 
and TMR prepared by standard methods for a NIRS 
examination can detect a MPs pollution at least up to 1 mg g-

1 (~1 g kg-1) within the range of 0 – 0.5 mg g-1. A specific 
calibration for a single feed would greatly improve the ability 
of NIRS to discriminate polluted samples.  

The real difficulty in creating a database to be used for the 
identification of microplastics in feeds consists in finding 
certainly free-plastic feeds. Currently, the diffusion of 
microplastics is such which seems to be almost impossible to 
find free-plastic feeds in farms. Following these preliminary 
results, any validation on other samples/feeds and with 
different and powerful NIRS tools is encouraged.  

 

FIGURE 4. Ratio ln(R_MPs/R_Feed) for 1 and 3 mg g-1. 
 
 

 

FIGURE 3. Plot of the measured vs predicted microplastic concentration 
from the hay dataset using the SCIÖTM (740-1070 nm). The Standard Error 

in Calibration was 1.16 mg g-1. 
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FIGURE 5. Plot of the wavelength in the SCIO spectrum (740-1070) nm selected first by a stepwise regression for % MPs and Type 
vs. the r2, separately for the five feeds. 

 

 


