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Abstract
Pseudodifferential operators on the half-space associated with classical symbols of
order zero without transmission property are shown to belong to the so-called edge
algebra.

1 Introduction

This paper concerns the analysis of pseudodifferential operators on smooth manifolds
with boundary and their underlying symbols. Actually, the notion of pseudodifferential
operators on manifolds with boundary is not uniquely defined and must be specified
according to a particular problem or a specific context. Since, roughly speaking, the
interesting effects occur near the boundary, we shall focus in this paper on the analysis
of operators and symbols in the local model, i.e., the half-space R

1+q
+ = {(r , y) ∈

R× R
q | r > 0} where q is a non negative integer.

In the context of classical boundary value problems (like the Dirichlet problem
for the Laplacian), solution operators can be described in the framework of Boutet
de Monvel’s calculus, which was introduced in [1]. Here, to define pseudodifferential
operators, one employs an embedding of the underlying manifold in a smooth sur-
rounding space. In the local model, the half-space is embedded in the full spaceR1+q .
One considers symbols which have the so-called transmission property (see [9] for a
detailed discussion) with respect to the boundary r = 0. The associated operator on
the half-space is then formed via the Fourier transform combined with the extension-
by-zero operator and the operator of restriction from the full to the half-space; see
Sect. 2 for more details. This passage from symbol to the operator we shall refer to
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as truncation quantization. As it turns out, such operators preserve smoothness of
functions up to the boundary. This is why the natural function spaces in this context
are the usual Bessel potential spaces (restricted to the half-space).

Recently, in a series of papers [6–8], Grubbmodified this approach in order to study
the fractional Laplacian (and similar operators) on bounded domains. In this context,
symbols have a so-called μ-transmission property; the before mentioned transmis-
sion property in Boutet de Monvel’s calculus corresponds to the case μ = 0. There
arise function spaces not referring to smoothness up to the boundary anymore but to
smoothness modulo a weight-factor rμ.

In this work we study the truncation quantization for zero order symbols which do
not possess any kind of transmission property. To this end we interpret the boundary
as an edge, respectively the half-space as a wedge, and employ an alternative intrinsic
quantization based on the Mellin transform in the direction normal to the boundary
(i.e., in r -direction). This quantization does not make reference to a surrounding space
and has its origin in the so-called edge calculus for operators on manifolds with edges
with corresponding edge degenerate symbols, see for instance [20]. The main result
is Theorem 6.6 where operators based on the truncation quantization are expressed in
terms of the intrinsic quantization and thus are shown to be particular elements of the
edge-calculus on the half-space. As a particular consequence one finds that truncated
operators act in a natural scale of so-called edge Sobolev spaces; we refer the reader
again to the introductory Sect. 2 for more details.

The present paper is closely related to our previous article [21] where the same
kind of operators are discussed. Here we focus on a more detailed analysis of Mellin
representations of so-called decoupled symbols which in turn is based on a Mellin
representation of operators on the half-axis which is interpreted as a manifold with
conical singularity in the origin. The latter result originates from the work of Eskin [5]
which was refined by Rempel and Schulze in [16] and [19], respectively; see also Liu
and Schulze [14]. Since these results are quite intricate, we make an effort to present
a self-contained and relatively short proof for the case of the half-axis, see Sect. 4.
In this connection we also make some useful observations on naturally occurring
meromorphic Mellin symbols which are quotients of translated Gamma functions, see
Theorem 3.8 and its proof in the Appendix. Though we shall not enter in details, let
us remark that it is essentially this meromorphic structure which determines the map-
ping properties of truncated operators on functions with asymptotics at the boundary
which, in general, will be more complex than smoothness or weighted smoothness
up to the boundary. Let us mention in this context the work Liu and Witt [15] where
the authors, based on the previously mentioned Mellin representation, construct alge-
bras of operators on the half-axis that act between function spaces with prescribed
asymptotic behaviour.

Boundary value problems for pseudodifferential operators have been studied in the
past by means of different approaches. A basic intention has always been to under-
stand the parametrices to elliptic problems for differential operators. In addition, there
are numerous modifications of elliptic boundary value problems, such as transmission
problems, Sobolev-type problems, problems with global projection conditions, prob-
lems in non-compact configurations with exit conditions at infinity, elliptic complexes,
or combinations of such situations. In recent years increased the interest in ellipticity
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on spaces (“manifolds”) with singularities, such as cones or polyhedral domains or
domains with edges. The (inter)faces in such configurations may be regarded as gen-
eralisations of a boundary and, for obvious reasons, some intrinsic approach seems
to be advisable, such as the method of using Mellin operators, if necessary with
operator-valued symbols and with additional parameters in higher singular cases. The
present investigation is also an attempt to draw attention to the singular analysis and
pseudodifferential ideas, both of interest for applications and for problems of the
above-mentioned kind.

2 Motivation: truncated operators in the edge algebra

Let us motivate here, on an informal level, some of the key ideas of this paper. We start
with the reformulation of pseuso-differential operators on a (Euklidean) product-space
as pseudo-differential operators with operator-valued symbols. We refer the reader to
Sect. 7.2 for a short review of the theory of such operators.

Leta(r , y, ρ, η)be a pseudo-differential symbol (detailed definitions of the relevant
symbol classes will be provided in the subsequent sections) with variables (r , y) ∈
R
1+q and corresponding covariables (ρ, η). The associated pseudo-differential oper-

ator A = op(a) is given by

(Au)(r , y) = (2π)−(1+q)

∫∫
ei(r ,y)(ρ,η)a(r , y, ρ, η)̂u(ρ, η) dρdη,

where û denotes the Fourier transform of the function u ∈ S (R1+q). Nowwe identify
functions of variables (r , y) as functions of the variable y taking values in functions
of the variable r ; for example, S (R1+q) is identified withS (Rq ,S (R)). Then

(Au)(·, y) = [op(a)u](y) = (2π)−q
∫

eiyηa(y, η)̂u(η) dη,

where u(y) = u(·, y) and a(y, η), for every (y, η), is the pseudo-differential operator
on R given by

[a(y, η)v](r) = [op(a)(y, η)v](r) = (2π)−1
∫

eirρa(r , y, ρ, η)̂v(ρ) dρ.

In this sense, we have now A = op(a) with an operator-valued symbol a. If a is a
symbol of order zero (and has suitable behaviour in (r , y), for example, is compactly
supported), it can be shown that

a ∈ S0(Rq × R
q; Hs(R), Hs(R)), s ∈ R. (2.1)

In a similar way we can consider operators on a half-space: Let r+ denote the operator
of restriction to R

n+ of distributions defined on R
n , while e+ denotes the operator of

extension by zero from the half-space to the full space (whenever such an operation
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makes sense, for example as operator L2(Rn+)→ L2(Rn). We use the same notation
e+ and r+ for different dimensions n. With a as above we associate the operator A+ =
r+op(a)e+ (initially defined on S (R

1+q
+ ) = S (R1+q)

∣∣
R
1+q
+

) and then, similarly as

before, we re-write A+ as op(a+), where

a+(y, η) = r+a(y, η)e+ = r+op(a)(y, η)e+ =: op+(a)(y, η);

note that in the last formula the operators of extension and restriction are in dimension
1. As a matter of fact, for a+ there is no simple analogue of (2.1). In case a has order
zero and satisfies the transmission property with respect to r = 0, it can be shown that

a+ ∈ S0(Rq × R
q; Hs(R+), Hs(R+)), s > −1/2, (2.2)

and that A+ is an element of Boutet de Monvel’s algebra of boundary value problems
(see [18] for a short introduction). From (2.2) and the general theory of operators
with operator-valued symbols one can derive the well-known fact that A+ preserves
smoothness up to the boundary, i.e., A+ acts continuously in the Bessel potential space
Hs(R

1+q
+ ) for every s > −1/2.

If a violates the transmission property the situation is more complicated. In this
paper we analize the case of zero-order symbols and we will show, in particular, that

a+ ∈ S0(Rq × R
q ;Ks,0(R+),Ks,0(R+)), s ∈ R, (2.3)

with the cone Sobolev spaces Ks,0(R+), see Sect. 7.1.2. The abstract theory of
operator-valued symbols then shows that A+ acts continuously in the scale of so-
called edge Sobolev space

Ws,0(R
1+q
+ ) :=Ws(Rq ,Ks,0(R+)), s ∈ R,

(see Sect. 7.2 again). In fact, in this paper we shall demonstrate a much stronger result
than (2.3), namely that a+(y, η) is a so-called edge symbol, see Theorem 6.6. Hence,
for every zero-order symbol, A+ is an element of the edge algebra on the half-space.
This allows to obtain further mapping properties (and others) of A+ from the theory of
pseudo-differential operators on manifolds with edges; we refer the reader to existing
literature like [13, 19], and [20].

3 Symbols and pseudo-differential operators

We shall introduce various symbol classes which we will employ throughout this
paper. Let E be a Fréchet space with topology give by a system of semi-norms p j ,
j ∈ N.
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3.1 Fourier symbols

Definition 3.1 Denote by Sν(Rm, E), ν ∈ R, the space of all smooth functions a(w) :
R
m → E such that, for every N ∈ N,

‖a‖N := sup
{
p j (D

α
wa(w))〈w〉|α|−ν | w ∈ R

m, |α| + j ≤ N
}

< +∞.

Passing to the intersection over all ν ∈ R we obtain the space of regularizing
symbols that coincides with the space of rapidly decreasing, E-valued functions,

S−∞(Rm, E) := ∩
ν∈R Sν(Rm, E) = S (Rm, E).

A function a(w) ∈ C∞(Rm \ {0}, E) is called (positively) homogeneous of degree
μ ∈ C if

a(λw) = λμ a(w) ∀ w �= 0 ∀ λ > 0.

The space of all such symbols is denoted by S(μ)(Rm \ 0, E). By restriction in w

to the unit sphere, we may identify S(μ)(Rm \ 0, E) with C∞(Sm−1, E) and thus
obtain a Fréchet topology. In the following definition, and throughout the paper, we
let N0 = {0, 1, 2, . . .} be the set of non-negative integers.
Definition 3.2 A symbol a ∈ SReμ(Rm, E) is called classical of order μ ∈ C if there
exists a sequence of homogeneous symbols a(μ−k) ∈ S(μ−k)(Rm \ 0, E), k ∈ N0,
such that

ra,N (w) = a(w)− χ(w)

N−1∑
k=0

a(μ−k)(w) ∈ SReμ−N (Rm, E)

for every N ∈ N0 (in case N = 0 the sum is considered to be 0). Here, χ(w) is an
arbitrary (fixed) zero excision function, i.e., χ ∈ C∞(Rm) vanishes in a neighborhood
of the origin and 1− χ has cpmpact support. The space of all such classical symbols
is denoted by Sμ

cl(R
m, E).

The homogeneous components a(μ−k) are uniquely determined by a. The projective
topology with respect to the maps

a �→ a(μ−k) : Sμ
cl(R

m, E) −→ S(μ−k)(Rm \ 0, E) ∼= C∞(Sm−1, E), k ∈ N0,

a �→ ra,N : Sμ
cl(R

m, E) −→ Sμ−N (Rm, E), N ∈ N0,

turns Sμ
cl(R

m, E) into a Fréchet space.
If V ⊂ R

n is some open set, replacing in the above constructions E by the Fréchet
space C∞(V , E) yields the spaces

Sμ

(cl)(V × R
m, E) := Sμ

(cl)(R
m,C∞(V , E)). (3.1)
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In the particular case E = C we shall simply write Sμ

(cl)(V × R
m).

Remark 3.3 It is often very useful to use the fact that Sμ

(cl)(V ×R
m, E) can be identi-

fied with the space C∞(V ) ⊗̂π Sμ

(cl)(R
m, E), where E1 ⊗̂π E2 denotes the completed

projective tensor-product of two Fréchet spaces E1 and E2. In particular, by a result
of Pietsch, given an arbitrary symbol a ∈ Sμ

(cl)(V × R
m, E) there exist bounded

sequences (p j ) ⊂ C∞(V ), (b j ) ⊂ Sμ

(cl)(R
m, E), and an absolutely summable numer-

ical sequence (λ j ) such that

a =
+∞∑
j=0

λ j p j b j ,

see [17]. In many situations this result allows to reduce the analysis of general symbols
to that of “product-symbols” of the form a = pb with b ∈ Sμ

(cl)(R
m, E) and p ∈

C∞(V ).

3.2 Holomorphic andmeromorphic Mellin symbols

Definition 3.4 Denote by Mμ

O(Rm, E),μ ∈ R, the space of all holomorphic functions
h(z) : C→ Sμ

cl(R
m
w, E) (or, in case m = 0, with values in E) such that

hδ(τ, w) := h(δ + iτ,w) ∈ Sμ
cl(R

m+1
(τ,w), E)

locally uniformly in δ ∈ R. If E = C, we simply write Mμ

O(Rm). In case m = 0 we
simply write Mμ

O(E) and Mμ

O, respectively.

This is a Fréchet space in the obvious way. The space of regularizing symbols is
denoted by

M−∞O (Rm, E) := ∩
μ∈R Mμ

O(Rm, E).

For the definition of meromorphic symbols we shall need the following definition; in
it we shall use the projection πC : C× N0 → C defined by πC(z, n) = z.

Definition 3.5 A set P ⊂ C × N0 is a called a (discrete) asymptotic type for Mellin
symbols if πC : P → C is injective and πC(P) ∩ {z ∈ C | |Re z| ≤ c} is finite for
any choice of the constant c > 0.

In other words, an asymptotic type P is a set of the form

P = {(p j , n j ) ∈ C× N0 | j ∈ J }, (3.2)

where either J is finite or J = Z and Re p j →±∞ if j →±∞; moreover, p j �= pk
if j �= k. Therefore, if h is a meromorphic function on C with poles in πC(P) and
χ ∈ C∞(C) is a zero excision function, it makes sense to define
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ĥ(z) := h(z)
∏

p∈πC(P)

χ(z − p), (3.3)

since on any compact set only a finite number of factors is different from 1.

Definition 3.6 Let P be an asymptotic type as in (3.2). Denote by M−∞P (Rm, E) the
space of all meromorphic functions h : C → S−∞(Rm

w, E), having poles at most in
the points p j of order at most n j + 1 and such that

ĥδ(τ, w) := ĥ(δ + iτ,w) ∈ S−∞(Rm+1
(τ,w), E)

locally uniformly in δ ∈ R, cf. (3.3). If E = C, we simply write Mμ

P (Rm). In case
m = 0 we simply write Mμ

P (E) and Mμ

P , respectively.

Also this is a Fréchet space and thus it makes sense to define

Mμ

P (Rm, E) := Mμ

O(Rm, E)+ M−∞P (Rm, E) (3.4)

as a non-direct sum of two Fréchet spaces. As above, replacing E byC∞(V , E) yields
the spaces

Mμ

P (V × R
m, E) := Mμ

P (Rm,C∞(V , E)). (3.5)

Of particular importance for us will be the cases V = R+×U and V = R+×U with
U ⊂ R

m an open set.
The following Example 3.7 and Theorem 3.8 introduce symbols which are funda-

mental in the subsequent considerations.

Example 3.7 Let P = {( j, 0) | j ∈ Z}. Then

g±(z) := 1

1− e∓2π i z
∈ M0

P , g(z) := eiπ z

1− e2π i z
∈ M−∞P ,

cf. [19, Example 1.1.52] for instance; see also [5]. Observe that g+(z)+ g−(z) ≡ 1,
g+(z)g−(z) ≡ −g2(z), and g±(z + 1) ≡ g±(z).

Theorem 3.8 With �(z) being the usual Gamma-function, let us define

fm(z) := �(1− z)

�(1− z + m)
, m ∈ C. (3.6)

Then fm ∈ M−mPm
where the asymptotic type Pm satisfies

(i) Pm = ∅ if m ∈ Z and m ≤ 0,
(ii) Pm = {( j, 0) | j = 1, 2, . . . ,m} if m ∈ Z and m ≥ 1,
(iii) Pm = {( j, 0) | j = 1, 2, 3 . . .} if m /∈ Z.

Moreover, fm in case (i) has simple zeros in every integer −m + 1 ≤ k ≤ 0, in case
(i i) it has no zeros at all, while in case (i i i) it has simple zeros in k + m, k ∈ N.

The previous theorem is frequently used in the literature; for convenience of the
reader, we are going to give a self-contained proof in the appendix.
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4 Mellin representation of truncated operators onR+

Given a symbol a(r , ρ) ∈ S0cl(R × R), independent of r for large values of r , we
consider the “truncated" operator

op+(a) : L2(R+) −→ L2(R+),

defined by

op+(a)u = r+(op(a)e+u), u ∈ L2(R+),

where e+ : L2(R+) → L2(R) denotes the operator of extension by zero, r+ :
L2(R) → L2(R+) the operator of restriction; moreover, op(a) is the usual pseudo-
differential operator onR associated with a. Note that op+(a) = op+(b) for any other
symbol b(r , ρ) ∈ S0cl(R× R) satisfying b(r , ρ) = a(r , ρ) whenever r > 0.

In the present section we will show that op+(a) has a particular representation
as a Mellin pseudo-differential operator, i.e., belongs to the so-called cone algebra.
The result itself is known from [19, Theorem 2.1.26], however we shall give here a
more concise proof which constitutes the base for the analysis of truncated symbols
in relation with the edge algebra in Sect. 6.3.

4.1 Truncated operators and the cone algebra onR+

For a precise formulation of the representation theoremwe need to recall the definition
of the cone-algebra on the half-axis. Set

�δ := {z ∈ C | Re z = δ}, δ ∈ R, (4.1)

and recall that with a symbol h(r , z) ∈ Mμ

P (R+) such that πCP ∩ � 1
2−γ = ∅ we

associate the Mellin pseudo-differential operator opγ

M (h) given by

[opγ

M (h)u](r) := 1

2π i

∫
� 1

2−γ

r−zh(r , z)Mu(z) dz,

where M denotes the Mellin transform defined by

(Mu)(z) =
∫ +∞
0

r zu(r)
dr

r
.

There exists an extensive literature on Mellin pseudo-differential operators; see for
example [12]. In the sequel a function ω ∈ C∞0 (R+) is called a cut-off function if it is
constant 1 in some neighborhood of the origin. The notation ω ≺ ω′ with two cut-off
functions ω and ω′ means that ω′ is constant 1 in a neighborhood of the support of ω

or, equivalently, that ω and 1− ω′ have disjoint supports in R+.
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Definition 4.1 Let γ, μ ∈ R and j, k ∈ N. Then

Lμ− j (R+, g), g = (γ, γ − μ, (−k, 0]),

is the space of all operators A of the form

A = ω AM ω′ + (1− ω) Aψ (1− ω′′) + M + G, (4.2)

where ω,ω′, ω′′ ∈ C∞0 (R+) are cut-off functions such that ω′′ ≺ ω ≺ ω′ and with

(i) a Mellin operator AM = r−μ+ j opγ

M (h) with holomorphic Mellin symbol

h(r , z) ∈ Mμ− j
O (R+),

(ii) a pseudo-differential operator Aψ = op(a) with symbol a(r , ρ) ∈ Sμ− j
cl

(Rρ; S0(Rr )),
(iii) a so-called smoothing Mellin operator

M = ω

{
k− j−1∑

�=0
r−μ+ j+� opγ�

M (h�)

}
ω′,

where h� ∈ M−∞R�
are meromorphic Mellin symbols and γ − j − � ≤ γ� ≤ γ

with πCR� ∩ � 1
2−γ�
= ∅,

(iv) a Green operator G ∈ CG(R+, g) (cf. Section7.1.5 in the appendix).

With A ∈ Lμ(R+, g) as above one associates the so-called conormal symbols,

σ
μ−�
M (A)(z) = 1

�! (∂
�
r h)(0, z)+ h�(z), 0 ≤ � ≤ k − 1. (4.3)

Note that Lμ− j−1(R+, g) ⊂ Lμ− j (R+, g) for every j . Moreover, one defines

Lμ− j (R+, (γ, γ − μ, (−∞, 0])) := ∩
k∈N Lμ− j (R+, (γ, γ − μ, (−k, 0])).

The terminology cone algebra originates from the fact that this class is closed under
compositions, i.e., given A ∈ Lμ− j (R+, (γ, γ−μ, (−k, 0])) and B ∈ Lν−�(R+, (γ−
μ, γ−μ−ν, (−k, 0])) then BA ∈ Lμ+ν− j−�(R+, (γ, γ−μ−ν, (−k, 0])).Moreover,
there exists a notion of ellipticity in the cone algebra, which is defined in terms of the
invertibility of associated principal and conormal symbols; the ellipticity of an element
A ∈ Lμ(R+, (γ, γ − μ, (−k, 0])) is then equivalent to the existence of a parametrix
B ∈ L−μ(R+, (γ −μ, γ, (−k, 0])), i.e., B is an inverse of Amodulo Green operators.
For details let us refer the reader to [19].

Now the announced theorem reads as follows:

Theorem 4.2 Let a(r , ρ) ∈ S0cl(R× R) be independent of r for large r . Then

op+(a) ∈ L0(R+, g) for g = (0, 0, (−∞, 0]). (4.4)
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If the homogeneous components a(− j)(r , ρ) of a(r , ρ) of order − j have the form

a(− j)(r , ρ) = {a+j (r)θ+(ρ)+ a−j (r)θ−(ρ)
}
(iρ)− j , a±j (r) ∈ C∞(R), (4.5)

where θ±(ρ) denotes the characteristic function ofR± ⊂ R, the sequence of conormal
symbols of op+(a) is given by

σ−�
M (op+(a))(z) =

∑
j+k=�

1

j !
(
∂
j
r a
+
k (0)g+(z)+ ∂

j
r a
−
k (0)g−(z)

)
fk(z). (4.6)

For the definition of the functions g± and fk recall Example 3.7 and Theorem 3.8,
respectively.

The proof shall be given in the following Sect. 4.2.

4.2 Proof of Theorem 4.2

For cut-off functions ω′′ ≺ ω ≺ ω′ we have

op+(a) = ωop+(a)ω′ + (1− ω)op(a)(1− ω′′)+ G

where G has an integral kernel belonging toS (R+×R+), hence both G and G∗ map
L2(R+) into S (R+) = S 0

T (R+) where T = {(− j, 0) | j ∈ N} ∈ As(0, (−∞, 0]).
ThusG is a Green operator. Therefore we can concentrate on the operatorωop+(a)ω′.

The symbol a(r , ρ) has an asymptotic expansion

a(r , ρ) ∼
∞∑
k=0

χ(ρ)
{
a+k (r)θ+(ρ)+ a−k (r)θ−(ρ)

}
(iρ)−k, (4.7)

where χ(ρ) is an arbitrary excision function.

Definition 4.3 With μ ∈ C and δ > 0 define

lμ±(ρ) = lμ±(ρ, δ) = (δ ± iρ)μ, ρ ∈ R.

In the expansion (4.7) we avoid the singularity of (iρ)−k at ρ = 0 by inserting the
asymptotic expansion

χ(ρ)(iρ)−k ∼
∞∑
j=k

( −k
j − k

)
(−δ) j−kl− j

+ (ρ, δ),

see (2.1.61) in (the proof of) [19, Lemma 2.1.12] for further details. Hence, if we set

c±j (r , δ) =
j∑

k=0

( −k
j − k

)
(−δ) j−ka±k (r), (4.8)
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the symbol

q(M)(r , ρ) := a(r , ρ)−
M∑
j=0

χ(ρ)
{[
c+j (r , δ)θ+(ρ)+ c−j (r , δ)θ−(ρ)

]
l− j
+ (ρ)

}
(4.9)

belongs to S−(M+1)(R+ × R).

Remark 4.4 For purposes below let us remark that c±0 = a±0 and

a±k (r) =
k∑
j=1

(
k − 1

k − j

)
(−δ)k− j c±j (r , δ), k ≥ 1.

This can be obtained for example by inserting above the expansions

l− j
+ (ρ, δ) =

∞∑
�=0

(
�+ j − 1

�

)
(−δ)�χ(ρ)(iρ)− j−�, j ≥ 1,

and then comparing coefficients with the expansion (4.7).

For simplicity of presentation, in the sequel we shall often suppress δ from the
notation.

Let us now analize the operators ωop+(χθ±l− j
+ )ω′. Choose a cut-off function ω0

with ω0 ≡ 1 on the supports of ω and ω′. Then

ωop+(χθ±l− j
+ )ω′ = ωop+(θ±)ω0 ω′0op+(l− j

+ )ω′ + R (4.10)

with

R = ωop+(χθ±)(1− ω0)op
+(l− j
+ )ω′ + ωop+((1− χ)θ±)(1− ω0)op

+(l− j
+ )ω′;

here we have employed the relation

op+(χθ±l− j
+ ) = op+(χθ±)op+(l− j

+ ) (4.11)

as operators L2(R+)→ L2(R+), j ∈ N; this relation holds true, since the holomor-
phicity of l− j

+ in the lower complex half-plane yields that op(l− j
+ ) leaves the space

e+L2(R+) ⊂ L2(R) invariant and therefiore (1 − r+)op(l− j
+ )e+ = 0 on L2(R+).

Since ω and 1− ω0 have disjoint supports, 1− χ is compactly supported, and using
that op+(l− j

+ ) and its adjoint mapS (R+) into itself, it follows that R has an integral
kernel inS (R+ × R+).

The following result is due to [5]; a proof can also be found in [19], Proposition
2.1.4.
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Lemma 4.5 With the meromorphic Mellin symbols g±(z) from Example 3.7,

op+(θ±) = op0M (g±).

Combining (4.9), (4.10), and Lemma 4.5 we find that

ωop+(a)ω′ =
M∑
j=0

ω op0M (h j ) ω0 op
+(l− j
+ ) ω′ + RM , (4.12)

h j (r , z) := c+j (r)g+(z)+ c−j (r)g−(z), (4.13)

with a remainder RM that has a compactly supported integral kernel inCm(R+×R+),
where m = m(M)→+∞ as M →+∞.

For the following result in case of real order μ see Proposition 4.1.15 in [19].

Proposition 4.6 Let μ ∈ C, γ > −1/2, m ∈ N, and ω,ω′ be arbitrary cut-off
functions. Then, if N = N (μ,m) ∈ N is taken sufficiently large,

[ωop+(lμ+)ω′u](r) = ωr−μ
N−1∑
k=0

(
μ

k

)
(rδ)k[opγ

M ( fk−μ)ω′u](r)+ (GNu)(r) (4.14)

for every u ∈ C∞0 (R+), where GN is an integral operator with integral kernel from
C2m
0 (R+ × R+) inducing continuous maps

GN : K0,γ (R+)→ rmCm
0 (R+) (4.15)

(for the definition of the functions fk−μ recall Definition 3.6).

Proof Let us first consider μ with Reμ < −1/2. Fix u ∈ C∞0 (R+) and let r > 0. For
simplicity of notation set u′ = ω′u. Then

[ωop+(lμ+)ω′u](r) = ω(r)[(F−1lμ+) ∗ e+u′](r) = ω(r)(e+g ∗ e+u′)(r),

where we have used the fact that the inverse Fourier transform of lμ+ is the regular
distribution with L1-density e+g where g(r) = r−μ−1e−δr/�(−μ). Using the Taylor
expansion of e−δr we can write

g(r) = 1

�(−μ)

N−1∑
k=0

(−δ)k

k! r−μ−1+k + gN (r), (4.16)

where gN ∈ C∞(R+) and e+gN belongs to C2m(R) with holomorphic dependence
on μ ∈ {z | Re z < M}, M ∈ N, provided N > 2m + M + 1.

Let ω̃ such that ω̃ ≡ 1 in a neighborhood of the support of ω and write gN =
g0N + g∞N := ω̃gN + (1− ω̃)gN . Then the support of e+g∞N ∗ e+u′ is contained in that
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of (1− ω̃) (note that e+u′ is supported in R+), hence ω(r)(e+g∞N ∗ e+u′)(r) ≡ 0 for
every u ∈ C∞0 (R+). If we define GN by

(GNu)(r) = ω(r)(e+g0n ∗ e+u′)(r)

then GN has the required properties. In fact, by a simple application of Hölder
inequality, u �→ e+u′ extends to a continuous map K0,γ (R+) → L1(R), hence
GN : K0,γ (R+)→ L1(R+) continuously. Moreover, e+g0n ∗e+u′ belongs toC2m(R)

and is supported in R+, hence its restriction to R+ belongs to rmCm(R+) by Tay-
lor expansion. The continuity of (4.15) follows from the closed graph theorem. The
integral kernel of GN is

kN (r , s) = ω(r)e+g0N (r − s)ω′(s), r , s > 0,

which is the restriction of a C2m(R× R)-function to R+ × R+.
Now let us focus on the terms of the finite sum in (4.16). Consider first the case

γ = 0.

ω(r)(e+r−μ−1+k ∗ e+u′)(r) = ω(r)
∫ r

0
(r − s)−μ−1+ku′(s) ds

= ω(r)
∫ +∞
1

(t − 1)−μ−1+k t−(k−μ)u′
(r
t

) dt

t

= ω(r)(bk−μ�u′)(r), (4.17)

where � denotes the Mellin-convolution and bν(r) := θ[1,+∞)(r)(r − 1)ν−1r−ν with
θ[1,+∞) denoting the characteristic function of the interval [1,+∞). Note that bν ∈
L2(R+) whenever Re ν > 1/2. Since the Mellin transform induces an isomorphism
M0 : L2(R+)→ L2(�1/2), we can write

bk−μ�u′ = (M−1
0 hk−μ)�u′ = op0M (hk−μ)u′

with

hν(z) = (M0bν)(z) =
∫ +∞
1

r z−ν(r − 1)ν−1 dr
r

=
∫ 1

0
t−z(1− t)ν−1 dt = B(1− z, ν) = �(1− z)�(ν)

�(1− z + ν)
= �(ν) fν(z),

where B(ζ, w) is the beta-function. Altogether we have obtained the claimed result
for all μ with Reμ < −1/2. For the other μ we will argue by holomorphic extension.

Fixing u ∈ C∞0 (R+) and r > 0, the left-hand side of (4.14) is an entire function
of μ. As we shall see below, the same is true for any term in the finite sum on the
right-hand side. Given M ∈ N and choosing N > 2m+M + 1, we have shown above
that (GNu)(r) depends holomorphically on μ with Reμ < M . Since (4.14) holds
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true for Reμ < −1/2, it thus holds true for Reμ < M by the identity theorem for
holomorphic functions. Let us show now that

[op0M ( fm)u′](r) =
∫

�1/2

t−z fm(z)(M0u
′)(z)d̄z

is an entire function of m. To this end it suffices to show that ∂m fm(z)(M0u′)(z)
belongs to L1(�1/2) locally uniformly in m ∈ C. Since M0u′ ∈ S (�1/2) and

fm(z) = fm+L(z)
L−1∏
�=0

(1− z + m + �)

for every L ∈ N, it is enough to consider m with Rem ≥ 1. For these m,

fm(1/2+ iτ) = 1

�(m)

∫ +∞
0

eitτ e−t/2(1− e−t )m−1 dt,

cf. (7.7) and (7.5). Using that supt≥0 |(1− e−t )m−1| ≤ 1 uniformly for Rem ≥ 1 we
conclude that

sup
τ∈R
|∂kτ fm(1/2+ iτ)| ≤ ck

|�(m)|

for suitable constants ck . Hence ∂kz fm ∈ L∞(�1/2) locally uniformly inmwithRem ≥
1. Finally, an elementary calculation shows that

∂m fm(z) = ∂z fm(z)+ ψ(1− z) fm(z),

where ψ(w) = �′(w)/�(w) is the digamma function. Noting that |ψ(1/2 − iτ)| ∼
1+ log〈τ 〉 we obtain our claim.

To complete the proof it remains to observe that

op0M ( fk−μ)u = opγ

M ( fk−μ)u, γ > −1

2
,

for every u ∈ C∞0 (R+), since fk−μ is holomorphic in the half-plane Re z > 0 and
using standard properties of Mellin pseudodifferential operators. ��

Corollary 4.7 For every integer L ≥ 1,

ωop+(lμ+)ω′ = ωr−μ

L+�Reμ�−1∑
k=0

(
μ

k

)
(rδ)kop0M ( fk−μ)ω′ + RL (4.18)
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(in case L+�Reμ� ≤ 0, the finite sum is defined to be zero), where RL ∈ L (L2(R+))

has the mapping properties

RL : L2(R+) −→ KL,0;∞
OL

(R+), R∗L : L2(R+) −→ KL,0;∞
TL

(R+),

where OL ∈ As(0, (−L, 0]) is the empty asymptotic type while

TL = {(−�, 0) | � = 0, 1, . . . , L − 1} ∈ As(0, (−L, 0]) (4.19)

denotes Taylor asymptotics of depth L.

Proof Starting out from the identity (4.14) we obtain (4.18) with

RL = ωr−μ
N∑

k=max(0,L+�Reμ�)
(rδ)kop0M ( fk−μ)ω′ + GN ,

wherewe can choose N as big aswe like. Taking N large enough,GN has the indicated
mapping properties. The same is true for the other terms, using standard mapping
properties of Mellin pseudodifferential operators with meromorphic symbols. ��

Inserting the representation (4.18) for everyμ = − j in (4.12) and arguing similarly
as in the proof of the previous corollary, we find

ωop+(a)ω′ =
L−1∑
j=0

L− j−1∑
k=0

(− j

k

)
ω op0M (h j ) ω0 r

j (δr)kop0M ( fk+ j ) ω′ + SL (4.20)

for every positive integer L , where SL ∈ L (L2(R+)) is a remainder satisfying

SL , S∗L : L2(R+) −→ KL,0;∞
TL

(R+)

with TL being as in (4.19).

Proposition 4.8 Let L > 0 be an arbitrary integer number and

b j (r , z) := {a+j (r)g+(z)+ a−j (r)g−(z)} f j (z), j ∈ N, (4.21)

with f j (z) as in Example 3.7. Then, for any two cut-off functions ω,ω′,

ωop+(a)ω′ = ω

L−1∑
j=0

r jopM (b j )ω
′ + CL ,

where CL ∈ L (L2(R+)) is a remainder satisfying

CL : L2(R+) −→ KL,0;∞
TL

(R+), C∗L : L2(R+) −→ KL,0;∞
PL

(R+), (4.22)
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where TL is as in (4.19) and PL ∈ As(0, (−L, 0]) is the asymptotic type defined as

PL = {(−�, 1) | � = 0, 1, . . . , L − 1}. (4.23)

Before proving this result let usmake a remark. Evidently, themap a �→ b j = b j (a)

is a continuous map from S0cl(R × R) to S0cl(R × �1/2). Consequently, the mapping
a �→ CL = CL(a) is continuous with values in L (L2(R+)). If we denote by X
the subspace of L (L2(R+)) consisting of all operators satisfying (4.22) then X is a
Fréchet space in an obvious way. By the closed graph theorem the map a �→ CL(a) :
S0cl(R× R)→ X is then continuous, too.

Proof For convenience of notation let us set fk j :=
(− j
k

)
fk+ j (where f00 = 1). We

shall show below that (4.20) implies that

ωop+(a)ω′ ≡ ω

L−1∑
j=0

L− j−1∑
k=0

r j (δr)kop0M (h j )op
0
M ( fk j ) ω′

= ω op0M (h0) ω′ +
L−1∑
�=1

r�
∑

j+k=�,
j≥1

δkop0M (h j fk j ) (4.24)

modulo a remainder of the described type (note that fk0 = 0 for all k ≥ 1). Since

f�− j, j (z) = (−1)�− j
(

�− 1

�− j

) �∏
p=1

(p − z)−1 = (−1)�− j
(

�− 1

�− j

)
f�(z)

for all 1 ≤ j ≤ �, we find that

∑
j+k=�,
j≥1

δkh j fk j =
�∑

j=1
δ�− j h j f�− j, j =

�∑
j=1

(
�− 1

�− j

)
(−δ)�− j (c+j g

+ + c−j g
−) f�.

Thus the claim holds true due to Remark 4.4.
It remains to show (4.24). Since multiplication with a function from C∞0 (R+)

preserves KL,0;∞
TL

(R+), it is enough to analyze the operators

Akj := ω op0M (g±) ω0 r
j+kop0M ( fk j ) ω′.

Since g±(z + N ) ≡ g±(z) for every integer N , we can write

Akj := ω r j+kop0M (g±) ω0 op
0
M ( fk j ) ω′ + Ckj



Truncation quantization in the edge calculus Page 17 of 40    69 

with

Ckj := ω
(
op0M (g±)− op j+k

M (g±)
)
r j+k ω0︸ ︷︷ ︸

=:C±k j

ω′0 op0M ( fk j ) ω′,

whereω′0 is chosen such thatω0ω
′
0 = ω0.By [20,Remark 2.3.70] and the pole structure

of g±, both C±k j and (C±k j )∗ map L2(R+) into S 0
T (R+) with the Taylor asymptotic

type T = {(− j, 0) | j ∈ N0} ∈ As(0, (−∞, 0]). HenceCkj has the required mapping

property. Moreover, C∗k j = ω′ op0M ( f (∗)
k j ) ω′0(C

±
k j )
∗ with

f (∗)
k j (z) = fk j (1− z) ∈ M−∞{(−�,0)|0≤�≤ j+k−1};

thus standard mapping properties of Mellin operators yield that also C∗k j has the
required mapping property. Next, we write

Akj := ω r j+kop0M (g±)op0M ( fk j ) ω′ + Ckj + r j+kC̃k j

with

C̃k j := ω op0M (g±) (1− ω0) op
0
M ( fk j ) ω′.

Using [20, Lemma 2.3.73], both C̃k j and its adjoint map L2(R+) into S 0
T (R+). The

same is then true for r j+kC̃k j . This completes the proof. ��
Given an arbitrary asymptotic type Q for Mellin symbols, we have the decompos-

tion

Mμ

Q = Mμ

O + M−∞Q

for every μ ∈ R, cf. (3.4). Applying such a decompostion to the symbols g±(z) and
f j (z), we obtain a decomposition

b j (r , z) = b0j (r , z)+ b−∞j (r , z),

with b0j (r , z) ∈ M− j
O (R+) and b−∞j (r , z) ∈ M−∞Q j

(R+), where

Q j = {(�, 0) | � ∈ Z \ [1, j]} ∪ {(�, 1) | � = 1, . . . , j}. (4.25)

For the following observation we shall employ the so-called kernel cut-off operator
(see [19, Section 1.3.1], for instance). It is a C∞(R+)-linear map

V : ∪
μ∈R Sμ

cl(R+ × �1/2) −→ ∪
μ∈R Mμ

O(R+) (4.26)
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that restricts to continuous maps Sμ
cl(R+ × �1/2) → Mμ

O(R+) for every μ and has
the property that (I − V )(a) ∈ S−∞(R+ × �1/2) and (I − V )(a) ∈ M−∞O (R+) if
a ∈ Mμ

O(R+). The symbol classes Sμ(R+ × �δ) are defined using the identification
of�δ withR given by δ+ iτ �→ τ ; similarly other symbol classes involving a complex
line �δ are obtained.

Lemma 4.9 Let ak ∈ S−kcl (Rn, E). Then the series
∑∞

k=0 ak converges absolutely in
S0cl(R

n, E) if and only if
∑∞

k=� ak converges absolutely in S−�(Rn, E) for every �.

Proof Let a( j)
k denote the homogeneous components of ak . Then absolute convergence

of the series in S0cl(R
n, E) means:

(i) For every continuous seminorm ‖ · ‖ of C∞(Sn−1, E) and every j the series∑∞
k=0 ‖a( j)

k ‖ is finite.
(ii) Let χ be a zero excision function. For every � and every continuous seminorm ‖ ·‖

of S−�(Rn, E) the series
∑∞

k=0
∥∥∥ak − χ

∑�−1
j=0 a

( j)
k

∥∥∥ is finite.
However, the series in (i) is always finite since it is equal to the sum

∑ j
k=0 ‖a( j)

k ‖.
The series in (ii) is equal to

∑�−1
k=0
∥∥∥ak − χ

∑�−1
j=0 a

( j)
k

∥∥∥+∑∞k=� ‖ak‖. The first term
in this expression is always finite. This yields the claim. ��

Proposition 4.10 There exists a Mellin symbol h(r , z) ∈ M0
O(R+) and symbols

h̃ j (r , z) ∈ M− j
O (R+) and h̃−∞j ∈ M−∞O (R+) such that, for every integer L,

h(r , z)−
L−1∑
j=0

r j b0j (r , z) = r L h̃L(r , z)+
L−1∑
j=0

r j h̃−∞j (r , z).

Proof Let us consider, by restriction, b0j as an element of S− j (R+×�1/2). Let χ be an
excision function and χ j (1/2+ iτ) = χ(τ/c j ) with c j > 0. By a diagonal sequence
argument we can choose an increasing sequence of c j with c j →∞ as j →∞ such
that the series fk :=∑∞j=k r j−kχ j b0j converge in S−kcl (R+ × �1/2) for every k.

Now define h̃k = V ( fk) ∈ M−kO (R+). Then

h̃0 −
L−1∑
j=0

r j b0j = V
(
f0 −

L−1∑
j=0

r jχ j b
0
j

)

︸ ︷︷ ︸
=V (r L fL )=r L h̃L

+
L−1∑
j=0

r j{V ((1− χ j )b
0
j )− (I − V )(b0j )

}
.

The claim follows by choosing h = h̃0 and h̃−∞j = V ((1− χ j )b0j )− (I − V )(b0j ).��
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Define d̃ j (r , z) := b−∞j (r , z) − h̃−∞j (r , z) ∈ M−∞Q j
(R+). Then, by construction

of h(r , z) and Proposition 4.8,

G̃k := ωop+(a)ω′ − ωop0M (h)ω′ − ω

k−1∑
j=0

r jop0M (d̃ j )ω
′

= −r L ωop0M (̃hL)ω′ + ω

L−1∑
j=k

r jop0M (d̃ j )ω
′ + CL

for arbitrary L ≥ k. Since the d̃ j are smoothing symbols and L can be chosen arbitrarily
large, we conclude that

G̃k : L2(R+)→ K∞,0;∞
Tk (R+), G̃∗k : L2(R+)→ K∞,0;∞

Pk
(R+), (4.27)

i.e., G̃k ∈ CG(R+, gk) is a Green operator. Now let d̃ jk(z) := ∂kr d̃ j (0, z)/k! be the
Taylor-coefficients of d̃ j (r , z) in r = 0 and d�(z) :=∑ j+k=� d̃ jk(z). Thenwe observe
that

ω

k−1∑
j=0

r jop0M (d̃ j )ω
′ = ω

k−1∑
j=0

r jop0M (d j )ω
′ + G̃ ′k

with a remainder G̃ ′k satisfying (4.27). Summing up, we obtain the representation

op+(a) = ωop0M (h)ω′ + (1−ω)op(a)(1−ω′′)+ω

k−1∑
j=0

r jop0M (d j )ω
′ +Gk, (4.28)

where Gk is a Green operator satisfying (4.27). Hence op+(a) belongs to the cone
algebra as claimed.

The formula (4.6) for the conormal symbols follows directly from construction. In
fact, for 0 ≤ � ≤ k − 1,

σ−�
M (op+(a))(z) = 1

�! (∂
�
r h)(0, z)+ d�(z)

= 1

�!∂
�
r

(
h(r , z)+

k−1∑
j=0

r j d̃ j (r , z)− rk h̃k(r , z)
)∣∣∣

r=0

= 1

�!∂
�
r

∣∣
r=0

k−1∑
j=0

r j b j (r , z) =
∑

i+ j=�

∂ ir b j (0, z)

i ! ; (4.29)

substitution of the explicit expression of b j (r , z), cf. (4.21), yields (4.6).
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4.3 A parameter-dependent extension

Let us extend the above construction to the case of symbols a(y, η, r , ρ) that depend
on an additional parameter (y, η) ∈ U × R

q . Specifically, we require that

a(y, η, r , ρ) ∈ S0cl(Uy × R
q
η, S0cl(Rr × Rρ))

in the sense of Sect. 3.1. The homogeneous components of a(y, η, r , ρ) as a classical
symbol in the variables (r , ρ), are then of the form

a(− j)(y, η, r , ρ) = {a+j (y, η, r)θ+(ρ)+ a−j (y, η, r)θ−(ρ)
}
(iρ)− j (4.30)

with a±j (y, η, r) ∈ S0cl(U × R
q ,C∞(R)); for every N ∈ N,

a(y, η, r , ρ)− χ(ρ)

N−1∑
j=0

a(− j)(y, η, r , ρ) ∈ S0cl(U × R
q , S−N (R× R)).

Following the steps in Sect. 4.2, we obtain the following variant of Proposition 4.8.

Proposition 4.11 Let a(y, η, r , ρ) ∈ S0cl(U×Rq , S0cl(R×R)). Then there exist symbols
h(y, η, r , z) ∈ S0cl(U ×R

q , M0
O(R+)) and d̃ j (y, η, r , z) ∈ S0cl(U ×R

q , M−∞Q j
(R+))

such that, for every positive integer k,

ω op+(a)(y, η) ω′ = ω op0M (h)(y, η) ω′ + ω

k−1∑
j=0

r jop0M (d̃ j )(y, η) ω′ + g̃k(y, η),

where g̃k(y, η) ∈ S0cl(U × R
q ,L (L2(R+))) with

g̃k(y, η) ∈ ∩
s,σ∈R S0cl(U × R

q;L (L2(R+),Ks,0;σ
Tk

(R+))),

g̃k(y, η)∗ ∈ ∩
s,σ∈R S0cl(U × R

q;L (L2(R+),Ks,0;σ
Pk

(R+))).

Moreover, the symbols d̃ j (y, η, r , z) have the form

d̃ j (y, η, r , z) = a+j (y, η, r)d̃+j (z)+ a−j (y, η, r)d̃−j (z), d̃±j (z) ∈ M−∞Q j
, (4.31)

while

h(y, η, r , z) =
∞∑
j=0

r j
(
a+j (y, η, r)V

(
χ(τ/c j )h

+
j

)
(z)+ a−j (y, η, r)V

(
χ(iτ/c j )h

−
j

)
(z)
)

(4.32)
with absolute convergence in S0cl(U × R

q , M0
O(R+)), where h±j (1/2 + iτ) ∈

S− j
cl (�1/2), V is the kernel cut-off operator, and (c j ) ⊂ (0,+∞) is a numerical

sequence tending to +∞ sufficiently fast.
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5 The edge algebra on the half-space

LetU ⊂ R
q be an open set. Givenweight-data g = (γ, γ−μ, (−N , 0])with γ, μ ∈ R

and N ∈ N, the space of edge symbols

Rμ(U × R
q , g), g = (γ, γ − μ, (−N , 0]),

is a particular subspace of the space Sμ(U × R
q;Ks,γ (R+),Ks−μ,γ−μ(R+)) of

operator-valued symbols; see Sect. 7.2 of the appendix for an introduction to the under-
lying concept of operator-valued symbols.

Edge symbols are at the base of the so-called edge algebra, which is a calculus
of pseudo-differential operators on manifolds with edges (here, in the special case of
manifolds with boundary). For further details we refer the reader to the literature, for
example [19, 20].

5.1 Green symbols

Green symbols are operator-valued symbols taking values in the class of Green oper-
ators on R+, cf. Section7.1.5 of the appendix.

Definition 5.1 Given g = (γ0, γ1, (−θ, 0]) and asymptotic types P0 ∈ As(−γ0,

(−θ, 0]) and P1 ∈ As(γ1, (−θ, 0]), we define

Rμ
G(U × R

q ; g)P0,P1 ⊂ Sμ
cl(U × R

q ;K0,γ0(R+),K0,γ1(R+))

as the space of all symbols g(y, η) that satisfy

g(y, η) ∈ Sμ
cl(U × R

q;K0,γ0(R+),Ks,γ1
P1

(R+)ρ),

g(y, η)∗ ∈ Sμ
cl(U × R

q;K0,−γ1(R+),Ks,−γ0
P0

(R+)ρ),

for every choice of s, ρ ∈ R; here ∗ indicates the pointwise adjoint. The space Rμ
G(U×

R
q; g) is obtained by passing to the union over all asymptotic types.

Let us consider a function k(y, η; r , s) ∈ Sμ+1
cl (U × R

q , E) with

E = S
γ1
P1

(R+) ⊗̂π K0,−γ0(R+) ∩ K0,γ1(R+) ⊗̂π S
−γ0

P0
(R+),

where the notation is as in Proposition 7.2 below. Define g(y, η) by

(g(y, η)u)(r) =
∫ ∞
0

k(y, η; [η]r , [η]s)u(s) ds.

Then g(y, η) ∈ Rμ
G(U × R

q ; g)P0,P1 . Moreover, its principal symbol is the integral
operator with kernel k(μ+1)(y, η; |η|r , |η|s), where k(μ+1) is the principal symbol of
k. Similarly to Proposition 7.2 it can be shown that any Green symbol g(y, η) ∈
Rμ
G(U × R

q; g)P0,P1 is of this form.
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5.2 Edge degenerate symbols andMellin quantization

A symbol p(r , y, ρ, η) ∈ Sμ
cl(R+ × U × R

1+q
(ρ,η)) is called edge-degenerate if there

exists a symbol p̃(r , y, ρ̃, η̃) ∈ Sμ
cl(R+ ×U × R

1+q
(ρ̃,η̃)

) such that

p(r , y, ρ, η) = p̃(r , y, rρ, rη). (5.1)

To any symbol a(r , y, ρ, η) ∈ Sμ
cl(R+ ×U ×R

1+q
(ρ,η)) there exists an edge degenerate

symbol p(r , y, ρ, η) of the same order μ such that

a(r , y, ρ, η)− r−μ p(r , y, ρ, η) ∈ S−∞(R+ ×U × R
1+q
(ρ,η)); (5.2)

in fact, the symbol p̃ associated with p is uniquely determined modulo S−∞(R+ ×
U × R

1+q
(ρ̃,η̃)

) and has the asymptotic expansion

p̃(r , y, ρ̃, η̃) ∼
∞∑
j=0

χ(ρ̃, η̃)r j a(μ− j)(r , y, ρ̃, η̃).

Throughout the paper it will be useful to use the following definition: If ω is a cut-off
function then define

ωη(r) = ω(r [η]), r ≥ 0, η ∈ R
q . (5.3)

The following result essentially follows from the fact that the difference in (5.2) is
smoothing on R+ together with the presence of functions of the form (1−ωη) which
localize the operator away from r = 0; we skip presenting all technical details.

Proposition 5.2 Let a(r , y, ρ, η) ∈ Sμ
cl(R+×U ×R

1+q
(ρ,η)) and let p(r , y, ρ, η) be the

edge-degenerate symbol associated with a. Moreover, let σ, σ ′ be cut-off functions.
Then

g(y, η) := σ(1− ωη){op+(a)(y, η)− r−μop(p)(y, η)}(1− ω′η)σ ′

belongs to Rμ
G(U × R

q , (γ, γ, (−∞, 0]))O,O for every γ ∈ R.

We will say that h(r , y, z, η) = h̃(r , y, z, rη) with h̃(r , y, z, η̃) ∈ Mμ

O(R+ ×
U × R

q
η̃
) is a Mellin quantization of an edge-degenerate symbol p(r , y, ρ, η) =

p̃(r , y, rρ, rη) if for some (and then for all) γ ∈ R

opγ

M (h)(y, η)− op(p)(y, η) ∈ S−∞(U × R
q , L−∞(R+))

where L−∞(R+) is the space of smoothing operators on R+, i.e, those operators with
an integral kernel belonging to C∞(R+ × R+).
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5.3 Edge symbols

We define Rμ
M+G(U ×R

q , g), g = (γ, γ −μ, (−N , 0])), as the space of all symbols
of the form m(y, η)+ g(y, η) with arbitrary g ∈ Rμ

G(U × R
q , g) and

m(y, η) = ωη

N−1∑
j=0

j∑
|α|=0

r−μ+ jop
γ jα
M (h jα)(y)ηαω′η, (5.4)

where ω,ω′ denote arbitrary cut-off functions and ωη, ω
′
η are as in (5.3). Moreover,

h jα(y) ∈ C∞(U , M−∞R jα
) with arbitrary asymptotic types R jα and weights γ jα ∈ R

such that γ − j ≤ γ jα ≤ γ and Re p �= 1
2 − γ jα for every (p, n) ∈ R jα .

The space of edge symbols Rμ(U ×R
q , g), g = (γ, γ − μ, (−N , 0]), consists of

all symbols of the form

a(y, η) = σ
{
ωηr
−μopγ

M (h)(y, η)ω′η + (1− ωη)r
−μop(p)(y, η)(1− ω′′η)

}
σ ′

+ (1− σ)op(q)(y, η)(1− σ ′′)+ m(y, η)+ g(y, η)

wherem+g ∈ Rμ
M+G(U×R

q , g), p(r , y, τ, η) = p̃(r , y, rτ, rη) is edge-degenerate

of order μ, h is a Mellin quantization of p, and q(r , y, τ, η) ∈ Sμ
cl(R × U × R

1+q
τ,η ).

Moreover, σ, σ ′, σ ′′, and ω,ω′, ω′′ are arbitrary cut–off functions satisfying ω′′ ≺
ω ≺ ω′ and σ ′′ ≺ σ ≺ σ ′.

Using the representation of m(y, η) as in (5.4), we associate with an edge symbol
a(y, η) the conormal symbols

σ
μ− j
M (a)(y, z, η) = 1

j !∂
j
r h(r , y, z, rη)

∣∣∣
r=0 +

j∑
|α|=0

h jα(y, z)ηα, (5.5)

where j = 0, . . . , N − 1.
As already mentioned,

Rμ(U × R
q , g) ⊂ Sμ(U × R

q ;Ks,γ (R+),Ks−μ,γ−μ(R+)).

Moreover, given a(y, η) ∈ Rμ(U × R
q , g) and an asymptotic type P ∈

As(γ, (−N , 0]) there exists an asymptotic type Q ∈ As(γ − μ, (−N , 0]) such that

a(y, η) ∈ Sμ(U × R
q;Ks,γ

P (R+),Ks−μ,γ−μ

Q (R+));

the asymptotic type Q is determined by the Green part of a and the conormal symbols
of a.
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6 Truncated operators on the half-space

The main scope of this section is to show that if a(y, r , ρ, η) ∈ S0cl(U ×R+×R
1+q
(ρ,η))

is independent of r for large r then op+(a)(y, η) is an edge symbol, i.e.

op+(a)(y, η) ∈ R0(U × R
q
η, (0, 0, (−∞, 0]));

cf. Theorem 6.6, below. In order to keep the exposition more lean, we shall focus on
the case of y-independent symbols. Having verified this special situation, the general
case easily follows by the tensor-product argument outlined in Remark 3.3, using the
fact that

S0cl(U × R+ × R
1+q
(ρ,η)) = C∞(U ) ⊗̂π S0cl(R+ × R

1+q
(ρ,η)).

6.1 First observations for the analysis of truncated operators

Let a(r , ρ, η) ∈ Sμ
cl(R×R1+q

(ρ,η)) be independent of r for large r . If σ, σ ′, σ ′′ are cut-off
functions on the half-axis with σ ′′σ = σ ′′ and σσ ′ = σ , then we have

op+(a)(η) = σop+(a)(η)σ ′ + (1− σ)op(a)(η)(1− σ ′′)+ g(η), (6.1)

where

g(η) := σop+(a)(η)(1− σ ′)+ (1− σ)op+(a)(η)σ ′′

has an integral kernel k(η, r , r ′) ∈ S (R
q
η,S (R+×R+)) due to the disjoint supports

of σ , 1− σ ′ and 1− σ , σ ′′, respectively.
Similarly, for any choice of cut-off functions ω′′ ≺ ω ≺ ω′, we find

σop+(a)(η)σ ′ = σ
{
ωηop

+(a)(η)ω′η +
+(1− ωη)op(a)(η)(1− ω′′η)

}
σ ′ + g(η) (6.2)

with a Green symbol

g(η) ∈ Rμ
G(Rq

η, (0, 0, (−∞, 0]))T ,T

with T = {(− j, 0) | j ∈ N0} being the Taylor asymptotic type; here, ωη is defined
by ωη(r) = ω(r [η]) and analogously for the other cut-off functions.

Observing Proposition 5.2, the crucial term in the analysis of op+(a)(η) is thus the
operator family

ωηop
+(a)(η)ω′η. (6.3)
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6.2 Decoupling of parameter-dependent symbols

Given a symbol a(r , ρ, η) ∈ Sμ(R× R
1+q
(ρ,η)), μ ∈ R, define

a(η, r , ρ) := a([η]−1r , [η]ρ, η). (6.4)

We shall prove the following result:

Proposition 6.1 The mapping a �→ a induces a continuous operator

Sμ
cl(R× R

1+q
(ρ,η)) −→ Sμ

cl(R
q
η, Sμ

cl(R× R)). (6.5)

If χ(ρ) is an arbitrary zero excision function we have, for every N ∈ N,

a(η, r , ρ) ≡ χ(ρ)

N−1∑
k=0

{
a+k (r , y, η)θ+(ρ)+ a−k (r , y, η)θ−(ρ)

}
(iρ)μ−k

mod Sμ
cl(R

q
η, Sμ−N (R× R)) (6.6)

with coefficients

a±k (η, r) = [η]μ−k
∑

�+|α|=k
a±�α([η]−1r)ηα,

a±�α(r) = 1

α!e
±i(�−μ+|α|)π/2(∂α

η a(μ−�))(r ,±1, 0), (6.7)

where a(μ−�) is the homogeneous component of degree μ− � of a and θ±(ρ) denotes
the characteristic function of R±.

For the proof we need the following two lemmas.

Lemma 6.2 The mapping a �→ a defines a continuous operator

Sμ(R× R
1+q
ρ,η ) −→ Sμ(Rq

η, Sμ(R× R)). (6.8)

Proof Clearly there exist constants C1,C2 > 0 such that

C1〈ρ〈η〉, η〉 ≤ 〈ρ[η], η〉 ≤ C2〈ρ〈η〉, η〉 ∀ (ρ, η).

Then the result follows easily from chain-rule and the identity 〈ρ〈η〉, η〉 = 〈ρ〉〈η〉. ��
Lemma 6.3 Let p(η, ξ) ∈ Sμ(R

q
η, Sμ(Rm

ξ )) and assume that there exists a sequence

of symbols p j (η, ξ) ∈ Sμ− j
cl (R

q
η, Sμ− j

cl (Rm
ξ )) such that, for every N ∈ N,

p(η, ξ)−
N−1∑
j=0

p j (η, ξ) ∈ Sμ−N (Rq
η, Sμ−N (Rm

ξ )).
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Then p(η, ξ) ∈ Sμ
cl(R

q
η, Sμ

cl(R
m
ξ )).

Proof To show that p(η, ξ) belongs to Sμ
cl(R

q , Sμ
cl(R

m)) it suffices to show the exis-
tence of sequences

q� ∈ Sμ−�
cl (Rq , Sμ

cl(R
m)), � ∈ N,

and

rN ,�(η, ξ) ∈ Sμ−N (Rq , Sμ−�
cl (Rm)), �, N ∈ N,

such that, for every choice of M, N ∈ N,

(
p(η, ξ)−

N−1∑
�=0

q�(η, ξ)

)
−

M−1∑
j=0

rN , j (η, ξ) ∈ Sμ−N (Rq , Sμ−M (Rm)). (6.9)

This is satisfied by defining q� = p� and rN ,� = 0 for 0 ≤ � < N and rN ,� = p� for
� ≥ N . For example, if M > N , the left-hand side in (6.9) equals

(
p(η, ξ)−

N−1∑
�=0

q�(η, ξ)

)
−

M−1∑
j=N

p j (η, ξ) = p(η, ξ)−
M−1∑
�=0

q�(η, ξ),

hence belongs to Sμ−M (Rq , Sμ−M (Rm)). ��
Proof of Proposition 6.1 We only need to show that a(η, r , ρ) ∈ Sμ

cl(R
q
η, Sμ

cl(R×R));
the continuity is then a consequence of Lemma 6.2 and the closed graph theorem.

Let c(r) ∈ C∞(R). Then c(η, r) := c(r [η]−1) belongs to S0cl(R
q ,C∞(R)). In fact,

a Taylor expansion of c centered in r = 0 together with Lemma 6.2 shows that the

homogeneous components of c(η, r) are given by c(− j)(η, r) = (∂
j
r c)(0)
j ! (r |η|−1) j . By

a tensor-product argument, cf. Remark 3.3, it remains to study the case when a does
not depend on the variable r .

Let a(μ−�)(ρ, η) be the homogeneous components of a(ρ, η); then

rN (ρ, η) := a(ρ, η)− χ0(ρ, η)

N−1∑
�=0

a(μ−�)(ρ, η) ∈ Sμ−N (R
1+q
(ρ,η)), (6.10)

where χ0(ρ, η) is a zero excision function. It will be convenient to introduce the
symbols

a�(ρ, η) := χ0(ρ, η)a(μ−�)(ρ, η) ∈ Sμ−�(R
1+q
(ρ,η)).

We may choose χ0 such that χ0(ρ, η)χ(ρ/[η]) = χ(ρ/[η]) or, equivalently,

χ0([η]ρ, η)χ(ρ) = χ(ρ), (ρ, η) ∈ R
1+q . (6.11)
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Substituting ρ by [η]ρ in (6.10), we find

a(η, ρ) =
N−1∑
�=0

a�(η, ρ)+ rN (η, ρ).

Due to Lemma 6.2, rN (η, ρ) ∈ Sμ−N (Rq , Sμ−N (R)). Moreover, (1− χ)(ρ)a�(η, ρ)

is compactly supported inρ and is homogeneous of degreeμ−� in η for large |η|, since
a�(η, ρ) = a(μ−�)(|η|ρ, η) provided |η| is large. In particular, (1 − χ)(ρ)a�(η, ρ) ∈
Sμ−�
cl (Rq , S−∞(R)) for every �.
We shall now show that

χ(ρ)a�(ρ, η) = χ(ρ)a(μ−�)([η]ρ, η) ∈ Sμ−�
cl (R, Sμ−�

cl (Rq));

the identity holds true due to (6.11). By Taylor-expansion in η of a(μ−�)(ρ, η) for
ρ �= 0 we find

a(μ−�)([η]ρ, η) =
∑
|α|≤L−1

1

α! [η]
μ−|α|−�(∂α

η a(μ−�))(ρ, 0)ηα

+
∑
|γ |=L

ηγ

L!
∫ 1

0
(1− t)L [η]μ−�−L(∂γ

η a(μ−�))
(
ρ, t

η

[η]
)
dt

Evidently,

∑
|α|= j

1

α! [η]
μ−�− j (∂α

η a(μ−�))(ρ, 0)ηα ∈ Sμ−�
cl (Rq , S(μ−�− j)(R)), (6.12)

hence multiplication with χ(ρ) yields a element in Sμ−�
cl (Rq , Sμ−�− j

cl (R)) which is
homogeneous of degree μ− �− j for large ρ. The second term, after multiplication
with χ(ρ), yields a symbol in Sμ−�

cl (Rq , Sμ−�−L(R)); note the homogeneity of degree
μ− � in η for large |η|.

Now Lemma 6.3 yields a(η, ρ) ∈ Sμ
cl(R

q , Sμ
cl(R)).

The homogeneous component with respect to the variable ρ of degree μ − k of
a(η, ρ) is obtained by summing up all terms from (6.12) with j + l = k; this yields
the expression

[η]μ−k
∑

�+|α|=k

1

α! (∂
α
η a(μ−�))(ρ, 0)ηα.

To find the expansion (6.6) it remains to observe that

(∂α
η a(μ−�))(ρ, 0) = (∂α

η a(μ−�))(ρ/|ρ|, 0)|ρ|μ−�−|α|, ρ �= 0,
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and
|ρ|z = e−sign(ρ)i zπ/2(iρ)z, z ∈ C, 0 �= ρ ∈ R. (6.13)

This completes the proof. ��

6.3 Operators of zero order

Let a(r , ρ, η) ∈ S0cl(R×R
1+q
(ρ,η)) be given. Denote by a(−�)(r , ρ, η) the homogeneous

component of degree−�. The symbol a(r , ρ, η) is, for every fixedη, a classical symbol
in (r , ρ) and we have

a(r , ρ, η) ≡ χ(ρ)

N−1∑
k=0

{
a+k (r , η)θ+(ρ)+ a−k (r , η)θ−(ρ)

}
(iρ)−k

mod C∞(Rq
η, S−N (R× R)) (6.14)

with coefficients

a±k (r , η) =
∑

n+|α|=k
a±nα(r)ηα,

a±nα(r) = 1

α! (±i)
n+|α|(∂α

η a(−n))(r ,±1, 0).
(6.15)

We associate with a the decoupled symbol

a(η, r , ρ) ∈ S0cl(R
q
η, S0cl(R× R)),

cf. (6.4) and Proposition 6.1. We now apply Proposition 4.11 to the symbol a(η, r , ρ)

and find, for every positive integer k, a representation

ω op+(a)(η) ω′ = ω op0M (h)(η) ω′ + ω

k−1∑
j=0

r jop0M (̃d j )(η) ω′ + g̃k(η), (6.16)

with Mellin symbols h(η, r , z), d̃ j (η, z) and remainder g̃k(η) as described in Propo-
sition 4.11.

Theorem 6.4 Let a(r , ρ, η) ∈ S0cl(R×R1+q
(ρ,η)) andω,ω′ be arbitrary cut-off functions.

Moreover, let h(r , z, η) = h̃(r , z, rη) for h̃(r , z, η̃) ∈ M0
O(R+ × R

q
η̃
) be a Mellin

quantisation of a. Then, for every positive integer k,

ωη op
+(a)(η) ω′η = ωηop

0
M (h)(η) ω′η + ωη

k−1∑
j=0

r j

⎛
⎝∑
|α|≤ j

op0M (dα j )η
α

⎞
⎠ω′η + gk(η)
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for Mellin symbols dα j (z) ∈ M−∞Q j
and Green symbols gk(η) ∈ R0

G(Rq , gk)Pk ,Tk ,
gk = (0, 0, (−k, 0]); here Tk, Pk ∈ As(0, (−k, 0]) are as in (4.19) and (4.23), respec-
tively, while Q j is as in (4.25).

Proof Starting point is the above formula (6.16). By conjugation with κ[η], where κ

denotes the group action from (7.1), we obtain

ωη op
+(a)(η) ω′η = κ[η]

(
ω op+(a)(η) ω′

)
κ−1[η]

= ωη op
0
M (H)(η) ω′η + ωη

k−1∑
j=0

r jop0M (d̃ j )(η) ω′η + κ[η]̃gk(η)κ−1[η] ,

(6.17)

where H(r , z, η) = h(η, r [η], z) and d̃ j (r , z, η) = [η] j d̃ j (η, r [η], z).
According to (4.31) there exists d̃±j (z) ∈ M−∞Q j

such that

d̃ j (η, r , z) = a+j (η, r)d̃+j (z)+ a−j (η, r)d̃−j (z)

with the coefficients a±j (η, r) from (6.7). From (6.15) it follows that

[η] ja±j (η, r [η]) = a j (r , η), (6.18)

hence

d̃ j (η, r , z) = a+j (r , η)d̃+j (z)+ a−j (r , η)d̃−j (z).

By substituting a±j (r , η) by its Taylor-polynomial in r of degree k − 1− j and rear-
ranging summands one shows that

ωη

k−1∑
j=0

r jop0M (d̃ j )(η) ω′η = ωη

k−1∑
j=0

r j

⎛
⎝∑
|α|≤ j

op0M (dα j )η
α

⎞
⎠ω′η + g′k(η)

with resulting symbols

dα j (z) =
j∑

i=|α|

1

( j − i)!
{
∂
j−i
r a+i−|α|,α(0)d̃+i (z)+ ∂

j−i
r a−i−|α|,α(0)d̃−i (z)

}

and a Green symbol g′k(η) of the required form.
Now consider the term gk(η) := g′k(η)+ κ[η]̃gk(η)κ−1[η] . Since the above represen-

tation is valid for every choice of k, we find that

gk(η) = ωη

2k−1∑
j=k

r j

⎛
⎝∑
|α|≤ j

op0M (dα j )η
α

⎞
⎠ω′η + g2k(η).
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The first term on the right-hand side is easily seen to be a Green symbol as required.
Now let Xk denote the Fréchet space of all operators A in L (L2(R+)) such that
A : L2(R+) → S 0

Tk
(R+) and A∗ : L2(R+) → S 0

Pk
(R+). By Proposition 7.2 any

such A is an integral operator with integral kernel

kA(r , s) ∈ S 0
Tk (R+) ⊗̂π L2(R+) ∩ L2(R+) ⊗̂π S 0

Pk (R+);

the map is continuous. Correspondingly, g̃2k(η) is represented by an η-dependent
kernel

k(η, r , s) ∈ S0cl
(
R
q
η;S 0

Tk (R+) ⊗̂π L2(R+) ∩ L2(R+) ⊗̂π S 0
Pk (R+)

)
.

But then κ[η]̃gk(η)κ−1[η] is represented by the integral kernel

k(η, r , s) = [η]k(η, [η]r , [η]s).

hence, as explained after Definition 5.1, gk(η) is a Green symbol as required.
It remains to consider the term ωη op0M (H)(η) ω′η in (6.17). Recall that h(η, r , z)

has a representation of the form (4.32) with coefficients a±j (η, r). By (6.18) and (6.15)

it follows that H(r , z, η) = H̃(r , z, rη), where

H̃(r , z, η) = H(r , z, η/r)

=
∞∑
j=0

∑
�+|α|= j

r j−α
(
a+�α(r)ηαV (χ(τ/c j )h

+
j )+ a−�α(r)ηαV (χ(τ/c j )h

−
j )
)
.

By possibly enlarging the constants c j , we may assume from the very beginning that
this series converges in C∞(Rq , M0

O(R+)).
By Mellin quantization,

op0M (h)(η)− op+(a)(η) ∈ S (Rq
η, L−∞(R+)),

where L−∞(R+) is the space of all operators having an integral kernel belonging to
C∞(R+ × R+). Therefore

ωη

{
op0M (h)(η)− op0M (H)(η)

}
ω′η ∈ S (Rq

η, L−∞(R+)).

Since this is true for any choice of cut-off functions, we obtain

op0M (h)(η)− op0M (H)(η) ∈ C∞(Rq
η, L−∞(R+)).

This implies (h− H)(r , z, η) ∈ C∞(R
q
η, S−∞(R+×�1/2)); the same is then true for

(̃h − H̃)(r , z, η) = (h − H)(r , z, η/r). Hence

h̃ − H̃ ∈ C∞(Rq
η, S−∞(R+ × � 1

2
)) ∩ C∞(Rq

η, M0
O(R+)) = C∞(Rq

η, M−∞O (R+));
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the latter identity holds true since

S0cl(R+ × � 1
2
) ∩ S−∞(R+ × � 1

2
) = S−∞(R+ × � 1

2
)

and

M0
O(R+) ∩ S−∞(R+ × � 1

2
) = M−∞O (R+).

Due to the following Lemma 6.5, applied to f̃ := h̃ − H̃ , replacing the symbol H by
h in (6.17) generates only Green remainders of the indicated form. This finishes the
proof. ��
Lemma 6.5 Let f̃ (r , z, η̃) ∈ C∞(Rd

η̃ , M−∞O (R+)) and f (r , z, η) := f̃ (r , z, rη). Let
k ∈ N be a positive integer. Then

ωη opM ( f )(η) ω′η = ωη

k−1∑
j=0

r j

⎛
⎝

j∑
|α|=0

opM ( fα j )η
α

⎞
⎠ω′η + rk(η),

where fαk = 1
k!∂

k−|α|
r ∂α

η̃ f̃ (0, z, 0) ∈ M−∞O and a Green symbol rk(η) ∈ R0
G(Rd

ζ ,

gk)O,O, gk = (0, 0, (−k, 0]).
The proof is straight-forward by applying a Taylor expansion of f in the r -variable

and using standardmapping properties ofMellin operators with holomorphic symbols.
Combining Theorem 6.4 with (6.1) and (6.2), we obtain the desired representation

of truncated operators in the edge algebra (where we now include in the statement the
y-dependence of the symbol as explained in the beginning of this section):

Theorem 6.6 Let a(y, r , ρ, η) ∈ S0cl(U ×R+ ×R
1+q
(ρ,η)) be independent of r for large

r . Then op+(a)(y, η) is an edge symbol, i.e.

op+(a)(y, η) ∈ R0(U × R
q
η, (0, 0, (−∞, 0])),

cf. Section5. The conormal symbols are given by

σ−�
M (op+(a))(y, z, η) =

∑
j+k=�

(
a+jk(y, η)g+(z)+ a−jk(y, η)g−(z)

)
fk(z),

where fk(z) and g±(z) are as in (3.6) and Example 3.7, respectively, and

a±jk(y, η) = (±i)k
j !

∑
n+|α|=k

1

α! (∂
α
η ∂

j
r a(−n))(y, 0,±1, 0)ηα,

where a(−n)(y, r , ρ, η) is the homogeneous component of degree −n of a.
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Note that the formula for the conormal symbols follows directly from (4.6) in
Theorem 4.2, using (6.14) and (6.15).
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7 Appendix

In this appendix we provide some background from the theory of pseudo-differential
operators onmanifoldswith conical singularities (here the half-axisR+) andmanifolds
with edges (here the half-space Rq × R+). There is a vast literature available where
the reader can find more details, for example [2–4, 10, 14, 19, 20].

7.1 Sobolev spaces on the half-axis

We recall definitions and some properties of certain function/distribution spaces on
R+.

7.1.1 Bessel potential spaces

We denote by Hs(R) = Hs
2 (R), s ∈ R, the standard L2-Sobolev spaces, consisting

of those tempered distributions u ∈ S ′(R) whose Fourier transform is a measurable
function with

‖u‖Hs (R) := ‖〈·〉s û‖L2(R) < +∞.

The subspace of those distributions whose support is a subset of R+ := [0,+∞) is
denoted by Hs

0 (R+),

Hs
0 (R+) = {u ∈ Hs(R) | supp u ⊆ R+}, s ∈ R.

Obviously, Hs
0 (R+) is a closed subspace of Hs(R). Similarly, one defines Hs

0 (R−)

with R− := (−∞, 0]. Moreover,

Hs(R+) = {v ∈ D ′(R+) | ∃ u ∈ Hs(R) : u|R+ = v}

http://creativecommons.org/licenses/by/4.0/
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is obtained by the restriction of Sobolov distributions from R to R+; it carries the
norm

‖v‖Hs (R+) = inf{‖u‖Hs (R) | u ∈ Hs(R), u|R+ = v}.

Obviously,

Hs(R+) ∼= Hs(R)/Hs
0 (R−).

7.1.2 Cone Sobolev spaces

The change of variables r = e−t induces an isomorphism ϑ : D ′(R+)→ D ′(R) by

〈ϑu, ϕ〉 = 〈u, ϕ(− ln r)/r〉, ϕ ∈ D(R).

Then we define

H s, 12 (R+) := ϑ−1Hs(R), ‖u‖
Hs, 12 (R+)

= ‖ϑu‖Hs (R).

Multiplication with powers rγ−1/2 yields the spaces

Hs,γ (R+) := rγ− 1
2Hs, 12 (R+), ‖u‖Hs,γ (R+) = ‖r 1

2−γ u‖
Hs, 12 (R+)

.

Note that for k ∈ N we have

u ∈ Hk,γ (R+) ⇐⇒ r
1
2−γ (r∂r )

j u ∈ L2(R+, dr/r) ∀ 0 ≤ j ≤ k.

Now let ω ∈ C∞0 (R+) be a cut-off function, i.e., ω ≡ 1 near r = 0. Then

u ∈ Ks,γ (R+) : ⇐⇒ ωu ∈ Hs,γ (R+) and (1− ω)u ∈ Hs(R)

with norm

‖u‖Ks,γ (R+) = ‖ωu‖Hs,γ (R+) + ‖(1− ω)u‖Hs (R+)

defines the Hilbert spaces Ks,γ (R+), s, γ ∈ R. Up to equivalence of norms, this
construction is independent on the choice of ω. We also consider spaces with power-
weight at infinity, namely Hs,ρ

0 (R+) = 〈t〉−ρHs
0 (R+), Hs,ρ(R+) = 〈t〉−ρHs(R+) as

well as Ks,γ (R+)ρ = 〈r〉−ρKs,γ (R+) with obvious definition of the corresponding
norms.
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7.1.3 Spaces with asymptotics

Let γ ∈ R and θ > 0. An asymptotic type P ∈ As(γ, (−θ, 0]) is a finite subset
P ⊂ C × N0 such that 1/2 − γ − θ < Re p < 1/2 − γ for every (p, k) ∈ P .
Moreover, the projection πC : P → C on the first component is assumed to be
injective. Let

E(p,k)(R+) = span
{
r−p, r−p log r , . . . , r−p logk r

}
, (p, k) ∈ C× N0,

and then

EP (R+) = ⊕
(p,k)∈P

E(p,k)(R+);

these are finite-dimensional subspaces of C∞(R+). With an arbitrary cut-off function
ω, let

Ks,γ
P (R+)ρ = ωEP (R+)⊕ ∩

γ ′<γ+θ
Ks,γ ′

P (R+)ρ;

this is a Fréchet space continuously embedded in Ks,γ (R+)ρ . In case P = O = ∅
being the empty asymptotic type, we set, by convention, EO(R+) = {0}. Inoltre,
scriviamo

S
γ

P (R+) = ∩
s,ρ>0

Ks,γ
P (R+)ρ.

A subset P ⊂ C×N0 is said to belong to As(γ, (−∞, 0]) provided Re p < 1/2− γ

for every (p, k) ∈ P and

PN := {(p, k) ∈ P | Re p > 1/2− γ − N } ∈ As(γ, (−N , 0])

for every N ∈ N. Then we define

Ks,γ
P (R+)ρ = ∩

N∈NK
s,γ
PN

(R+)ρ, S
γ

P (R+) = ∩
N∈NS

γ

PN
(R+).

Example 7.1 (Taylor asymptotics) Smoothness up to r = 0 is encoded by a specific
asymptotic type: If T = {(− j, 0) | j ∈ N}, then T ∈ As(γ, (−∞, 0]) for every
γ > 1/2 and S

γ

T (R+) = S (R+) = S (R)
∣∣
R+ .

7.1.4 Duality

The standard L2(R+)-inner product induces non-degenerate sesqui-linear pairings

Hs,ρ(R+)× H−s,−ρ
0 (R+) −→ C, Ks,γ (R+)ρ ×K−s,−γ (R+)−ρ −→ C
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which allow for the following identification of dual spaces:

Hs,ρ(R+)′ = H−s,−ρ
0 (R+), (Ks,γ (R+)ρ)′ = K−s,−γ (R+)−ρ.

7.1.5 Green operators onR+

Green operators are particular regularizing (smoothing) operators. Given a weight-
datum g = (γ0, γ1, (−θ, 0]) with θ > 0 or θ = +∞ and asymptotic types P0 ∈
As(−γ0, (−θ, 0]) and P1 ∈ As(γ1, (−θ, 0]), we let

CG(R+, g)P0,P1 ⊂ L (K0,γ0(R+),K0,γ1(R+))

be the set of all operators G which satisfy

G : K0,γ0(R+) −→ S
γ1
P1

(R+), G∗ : K0,−γ1(R+) −→ S
−γ0
P0

(R+).

The space CG(R+, g) is obtained by passing to the union over all possible choices of
asymptotic types P0 and P1.

The most elementary example of a Green operator G ∈ CG(R+, g)P0,P1 is

(Gu)(r) =
∫ ∞
0

k(r , s)u(s) ds

with an integral kernel of the form k(r , s) = k1(r)k0(s) with k1 ∈ S
γ1
P1

(R+) and

k0 ∈ S
−γ0

P0
(R+), where, by definition, P = {(p, k) | (p, k) ∈ P}. In particular,

k belongs to the tensor product S γ1
P1

(R+) ⊗ S
−γ0

P0
(R+). We have the following

generalization of this observation, cf. [23, Theorem 4.4]:

Proposition 7.2 CG(R+, g)P0,P1 coincides with the set of all integral operators u �→∫ +∞
0 k(·, s)u(s) ds with kernel

k(r , s) ∈ S
γ1
P1

(R+) ⊗̂π K0,−γ0(R+) ∩ K0,γ1(R+) ⊗̂π S
−γ0

P0
(R+).

In case g = (γ0, γ1, (−∞, 0]) with infinite weight-interval, this is equivalent to

k(r , s) ∈ S
γ1
P1

(R+) ⊗̂π S
−γ0

P0
(R+).

7.2 Abstract edge Sobolev spaces and operator-valued symbols

Let E be a Hilbert space and let κλ = κ(λ), λ > 0, be a strongly continuous group of
operators on E . In particular, κλκσ = κλσ and κ−1λ = κ1/λ.
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Definition 7.3 Ws(Rq , E) denotes the space of all E-valued tempered distributions u
whose Fourier transform is a regular distribution and

‖u‖Ws (Rq ,E) =
( ∫

Rq
〈η〉2s‖κ−1〈η〉 û(η)‖2E dη

)1/2

is finite; the latter norm defines a Hilbert space structure onWs(Rq , E).

Example 7.4 On all previously introduced spaces on the half-axis R+ we consider the
“standard” group action defined by

(κλu)(r) = λ1/2u(λr), u ∈ C∞0 (R+), (7.1)

(extended in the usual way to distributions on R+).

Using the group action from (7.1) it is known that

Ws(Rq , Hs(R+)) ∼= Hs(R
1+q
+ ), Ws(Rq , Hs

0 (R+)) ∼= Hs
0 (R

1+q
+ ),

for every s. We define

Ws,γ (Rq × R+)ρ :=Ws(Rq ,Ks,γ (R+)ρ), (7.2)

the so-called edge Sobolev spaces on the half-space Rq × R+.

Definition 7.5 For j = 0, 1 let E j be a Hilbert space with group action κ j . With
Sμ(Rq×Rq; E0, E1)wedefine the space of all smooth functions a(y, η) : Rq×Rq →
L (E0, E1) with

‖κ1
1/〈η〉{Dα

η D
β
y a(y, η)}κ0〈η〉‖L (E0,E1) ≤ Cαβ〈η〉μ−|α|

uniformly in (y, η) ∈ R
q × R

q .

Pseudo-differential operators op(a) = a(y, D) associated with such operator-
valued symbols are defined as in the scalar case, i.e.,

[op(a)u](y) =
∫
Rq

eiyηa(y, η)̂u(η)d̄η, u ∈ S (Rq , E0).

Theorem3.14of [22] implies that op(a) extends continuously to the associatedSobolev
spaces, i.e.,

op(a) :Ws(Rq , E0) −→Ws−μ(Rq , E1), s ∈ R.

To extend the notion of classical (or poly-homogeneous) symbols to this set-up, we
introduce the spaces S(μ)(Rq × (Rq \ {0}); E0, E1) as the space of smooth functions
a(y, η) : Rq × (Rq \ {0})→ L (E0, E1) which are homogeneous of degree μ, i.e.,

a(y, λη) = λμκ1
λa(y, η)κ0

1/λ
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and which satisfy uniform estimates

‖κ1
1/|η|{Dα

η D
β
y a(y, η)}κ0|η|‖L (E0,E1) ≤ Cαβ |η|μ−|α|

for every order of derivatives α and β. If χ(η) is a zero-excision function then
χ(η)a(y, η) belongs to Sμ(Rq × R

q; E0, E1).

Definition 7.6 A symbol a ∈ Sμ(Rq × R
q ; E0, E1) is called classical if there exist

homogeneous symbols a(μ− j) ∈ S(μ− j)(Rq × (Rq\{0}); E0, E1), j ∈ N0, such that

a(y, η)− χ(η)

N−1∑
j=0

a(μ− j)(y, η) ∈ Sμ−N (Rq × R
q ; E0, E1)

for every choice of N (for some zero-excision function χ). The space of all such
symbols is denoted by Sμ

cl(R
q × R

q; E0, E1).

In the previous discussion we have considered symbols depending on y ∈ R
q , with

all estimates being uniform with respect to y. Instead, one may also consider a smooth
dependence on y ∈ U for open subsets U ⊂ R

q , asking all estimates to be locally
uniformly in y; we leave the obvious details to the reader. This yields the spaces

Sμ(U × R
q; E0, E1), Sμ

cl(U × R
q; E0, E1). (7.3)

7.3 A proof of Theorem 3.8

In the following Lemma, given a function f defined on R+, we denote by e+ f the
function defined on R that coincides with f on R+ and which vanishes on R−.

Lemma 7.7 Let Rem > 0. For ϕ ∈ S (R+) define ϕm(t) = tm−1ϕ(t), t > 0, and

aϕ(τ ) = F (e+ϕm)(τ ), τ ∈ R.

Then aϕ ∈ S−mcl (R) and the map ϕ �→ aϕ : S (R+)→ S−mcl (R) is continuous.

Proof Let ω ∈ C∞0 (R+) be a cut-off function. Write

e+ϕm = e+(ωϕm)+ e+((1− ω)ϕm).

The second term on the right-hand side belongs to S (R), hence so does its Fourier
transform; the first term is compactly supported, hence its Fourier transform is a
smooth function. Hence aϕ ∈ C∞(R) and it suffices to consider χaϕ for an arbitrary
zero excision function χ .

Inserting a Taylor expansion of ϕ centered in t = 0, we find that

e+(ωϕm) = e+
(

ω

N∑
k=0

ϕ(k)(0)

k! tm+k−1
)
+ rN ,
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where rN is compactly supported inR+ and t�rN ∈ C [Rem]+N+�(R) for every integer
� ≥ 0. Then

τ [Rem]+N+�D�
τ r̂N (τ ) = F (D[Rem]+N+�

t (t�rN ))(τ ), � ≥ 0,

is bounded as a Fourier transform of an L1-function. Therefore, r̂N is a symbol belong-
ing to S−[Rem]−N (R).

Let a be a complex number with Re a > −1 and a /∈ N0. Then

χF (e+(ωta)) = χF (e+ta)+ χF (e+((1− ω)ta)).

By [11, Example 7.1.17],

F (e+ta) = �(a + 1)e−iπ(a+1)/2(τ − i0)−(a+1),

hence

[χF (e+ta)](τ ) = �(a + 1)χ(τ)
(
θ−(τ )eiπ(a+1)/2 + θ+(τ )e−iπ(a+1)/2)|τ |−(a+1),

where θ± denotes the characteristic function of R±. Moreover,

τ k D�
τF ((1− ω)ta)(τ ) = F (Dk

t ((1− ω)ta+�))(τ )

is a bounded function for every � and every k ≥ Re a+�+1. It follows that χF ((1−
ω)ta) is a rapidly decreasing function. Altogether we conclude that aϕ ∈ S−mcl (R)

with homogeneous components

σ (−m−k)(aϕ)(τ )=�(m + k)
ϕ(k)(0)

k!
(
θ−(τ )eiπ(m+k)/2+θ+(τ )e−iπ(m+k)/2)|τ |−(m+k).

The continuity of ϕ �→ aϕ is a simple consequence of the continuity as a map
S (R+)→ S ′(R) and the closed graph theorem. ��
Proof of Theorem 3.8 Clearly f0(z) = 1 and, as an immediate consequence of the
relation �(z + 1) = z�(z),

fm(z) =
{∏m

j=1 1
j−z form ∈ N \ {0},∏−m

j=1(1− j − z) for − m ∈ N \ {0}. (7.4)

It remains to consider the case m ∈ C \ Z. To this end it is convenient to make the
substitution w = 1− z, i.e., consider

hm(w) := fm(1− w) = �(w)

�(w + m)
(7.5)
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and to set Q = {(− j, 0) | j = 0, 1, 2 . . .}. Obviously, fm ∈ M−mPm
is equivalent to

hm ∈ M−mQ . For the latter it suffices to verify that

w · . . . · (w + k)hm(w)

∣∣∣
w=σ+iτ ∈ Sk+1−mcl (Rτ ) (7.6)

locally uniformly in σ > −k−1 for every given k ∈ N. Choosing N ∈ N so large that
m̃ := m − (k + 1)+ N has positive real part and using the above mentioned standard
property of the �-function, we find

w · . . . · (w + k)hm(w) = w · . . . · (w + m + N − 1)hm̃(w + k + 1).

Since w · . . . · (w + m + N − 1) ∈ MN
O , in order to verify (7.6), it thus suffices to

show that hm(σ + iτ) ∈ S−mcl (R) locally uniformly in σ > 0 whenever Rem > 0.

In this case, using the beta-function B(x, y) = �(x)�(y)
�(x+y) , we have

hm(w) = 1

�(m)
B(z,m) = 1

�(m)

∫ 1

0
sz(1− s)m−1 ds

s
, Rew > 0.

After the change of coordinates s = − log t and inserting w = σ + iτ , σ > 0, we
obtain

hm(σ + iτ) = 1

�(m)

∫ +∞
0

e−i tτ e−σ t (1− e−t )m−1 dt

= 1

�(m)

∫ +∞
0

e−i tτ tm−1ϕ(σ, t) dt, (7.7)

where ϕ(σ, t) = e−σ t
( 1−e−t

t )m−1 is a smooth function of σ > 0 with values in
S (R+). Thus Lemma 7.7 implies that hm(σ + iτ) ∈ S−mcl (Rτ ) with smooth depen-
dence on σ > 0. ��
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