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Abstract
Understanding the dynamics of complex molecular processes is often linked to the study of
infrequent transitions between long-lived stable states. The standard approach to the sampling of
such rare events is to generate an ensemble of transition paths using a random walk in trajectory
space. This, however, comes with the drawback of strong correlations between subsequently
sampled paths and with an intrinsic difficulty in parallelizing the sampling process. We propose a
transition path sampling scheme based on neural-network generated configurations. These are
obtained employing normalizing flows, a neural network class able to generate statistically
independent samples from a given distribution. With this approach, not only are correlations
between visited paths removed, but the sampling process becomes easily parallelizable. Moreover,
by conditioning the normalizing flow, the sampling of configurations can be steered towards
regions of interest. We show that this approach enables the resolution of both the thermodynamics
and kinetics of the transition region for systems that can be sampled using exact-likelihood
generative models.

1. Introduction

The exponential increase in computational power experienced by computers since the advent of molecular
simulations has radically changed basically all aspects of the study of statistical mechanics via numerical
experiments. Simulations of rare events have also benefited from such improvements, but progress in this
area has relied even more on methodological developments rather than the exploitation of raw computing
power. This is due to the intrinsic nature of rare events, which are phenomena that occur infrequently, but
happen quickly if they occur. The resulting disparity between the long waiting times and the fastest time
scales in the system is often so large that such processes cannot be simulated even on the fastest computers
with straightforward methods. Examples are omnipresent in physics, chemistry and biology and include
nucleation processes [1, 2], protein folding [3, 4], dynamics of ions in solution [5–8] and chemical
reactions [9, 10]. All of these processes exhibit transitions between stable states separated by high energetic
and/or entropic barriers. Resolving the thermodynamics and kinetics at the barrier top is the key challenge
for understanding the rare event.

Over the years, many enhanced sampling methods were developed to focus the computational effort on
regions of interest in phase space. For instance, when one aims to resolve the thermodynamic properties of a
system, umbrella sampling [11] received widespread recognition. In this approach, a harmonic bias is added
to the potential energy function, efficiently restricting the sampling to certain regions of configuration space.
In contrast, when investigating the kinetics of a rare event, a properly weighted set of unbiased reactive
trajectories is desired. Transition path sampling (TPS) [12] is an efficient strategy to achieve this goal by
performing a Markov chain Monte Carlo simulation in trajectory space. A basic scheme for generating a new

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acf55c
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acf55c&domain=pdf&date_stamp=2023-9-22
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2640-1761
https://orcid.org/0000-0002-7131-3210
https://orcid.org/0000-0002-9762-9125
https://orcid.org/0000-0003-0268-6547
https://orcid.org/0000-0001-9166-6235
mailto:christoph.dellago@univie.ac.at
https://doi.org/10.1088/2632-2153/acf55c


Mach. Learn.: Sci. Technol. 4 (2023) 035050 S Falkner et al

path based on a previous one is the shooting move [13], where a point on the previous trajectory is randomly
selected, possibly perturbed, and then integrated forward and backward in time until a stable state is reached.
If the newly generated trajectory connects the stable states, it is accepted and used for the generation of the
next path.

Despite improvements introduced by different shooting schemes [14–16], the foundation of these
sampling approaches is the generation of a new path from the previous one. Therefore, these algorithms are
inherently sequential and correlations between subsequently visited paths are inevitable. Even though a high
acceptance rate may be achieved, a strong similarity between subsequent paths degrades the efficiency of
sampling.

With recent developments in the field of generative neural networks [17–19], the sampling of
independent equilibrium configurations from the Boltzmann distribution came into reach. In particular,
normalizing flows [19, 20] have already been applied in physical sciences to solve a multitude of problems.
These include free energy calculations [21], exploration of configuration space [22, 23], finding minimum
energy paths [24], force field parametrization [25] and lattice field theory [26–29]. These models are of
particular interest since they allow for unbiased estimation of physical observables [30]. More recently,
conditioned flow-based models have been successfully applied in the context of physical problems to enhance
sampling in systems studied using lattice field theory [31–33]. In this work, we propose a parallel sampling
scheme to explore the reactive path space based on normalizing flows in the form of Boltzmann
generators [22] for the generation of shooting points. The flow model is conditioned to steer the generation
to regions of interest, which at the same time allows for the accurate reconstruction of free energy profiles.

The proposed path sampling scheme (see figure 1) starts by sampling points from a multivariate Gaussian
distribution. These points are then transformed into shooting points using a conditioned Boltzmann
generator. From these, trajectories are obtained by integrating forward and backward in time until a stable
state is reached. The resulting paths are reweighted to obtain a properly weighted transition path ensemble.
In the following, we will describe this algorithm in detail and demonstrate it using some illustrative models.

1.1. Flexible length TPS
The path ensemble targeted by our sampling procedure includes all reactive trajectories connecting stable
states. Each trajectory is defined as a sequence of configurations X(τ) = {x0,x∆t,x2∆t, . . . ,xτ}, where τ is the
length of the path and is a multiple of the timestep∆t. Transition paths connect two given stable states, A
and B, and they are required to have exactly one point in each of these states. Consequently, transition
pathways have varying lengths τ .

Transition paths are sampled proportional to their statistical weight PAB [X(τ)]. Here we consider the
probabilities within a small region dXτ in path space. Accordingly, the probability of a reactive path X(τ) can
be expressed as:

PAB [X(τ)]dX
τ =

1

ZAB
HAB(x0,xτ )

τ/∆t−1∏
i=1

h̃(xi∆t) P [X(τ)]dX
τ , (1)

where HAB(x0,xτ ) is unity if the trajectory connects states A and B in any order and is zero otherwise. More
explicitly, this function is defined as

HAB(x0,xτ ) =


1 if hA(x0)hB(xτ ) = 1

or hA(xτ )hB(x0) = 1;

0 otherwise.

(2)

Here, hA and hB are population functions that return one if a point lies in state A and B, respectively, and
vanish otherwise. The function h̃(x) is defined as:

h̃(x) =

{
0 if hA(x) = 1 or hB(x) = 1;

1 otherwise,
(3)

and acts as a constraint to focus attention only on values of τ that are comparable to a natural transition
time. The normalizing factor ZAB has the form of a partition function:

ZAB =
∑
τ

ˆ
dXτ HAB(x0,xτ )

τ/∆t−1∏
i=1

h̃(xi∆t)P [X(τ)] . (4)
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Figure 1. Schematic overview of the parallel path sampling algorithm starting from neural network-generated shooting points.
From left to right: (1) sampling from the Gaussian latent space, (2) transformation into the shooting point distribution via a
neural network, (3) integration of the equations of motion forward and backward in time, (4) reweighting of transition paths to
obtain an unbiased ensemble.

Assuming Markovian dynamics, the dynamical path probability P [X(τ)]dXτ is defined based on the
equilibrium probability of the starting point peq(x0) and the short-time transition probabilities
p(xi∆t → x(i+1)∆t):

P [X(τ)] dXτ = peq(x0)

τ/∆t−1∏
i=0

p(xi∆t → x(i+1)∆t)dX
τ . (5)

1.2. Parallel path sampling
Shooting moves are an integral part of most path sampling schemes. Their efficiency relies on the fact that
shooting points in a region of high p(TP|x), which is the probability of generating a transition path (TP)
given a certain configuration x, lead to an efficient exploration of the path ensemble. Using Bayes’ theorem,
the transition path probability can be written as [34]:

p(TP|x) = p(x|TP)p(TP)
peq(x)

, (6)

where p(x|TP) is the density of x in the ensemble of points on transition paths, p(TP) is the fraction of time
the system spends on transition paths and peq(x) is the equilibrium probability density of x. Consequently,
the transition path probability of x is defined up to a proportionality constant p(TP) by the ratio of its density
in the ensemble of points on paths p(x|TP) and the equilibrium ensemble peq(x). The scalability of TPS with
shooting moves is limited by the inherently sequential nature of the sampling. The previous trajectory is
indispensable for the generation of the new trajectory. To combine the efficiency of shooting moves with the
possibility of parallel sampling, we propose an alternative algorithm to sample the transition path ensemble.

The basis of the scheme is a set of shooting points generated before the actual path sampling starts. These
configurations can be sampled from an arbitrary distribution denoted as pSP(x), where SP stands for shooting
point. From these shooting points, trajectories are obtained by integration forward and backward in time
until a stable state is reached. As a result, the generation of paths becomes embarrassingly parallel because the
trajectories are generated independently from each other. Fleeting trajectories initiated using configurations
from pSP(x), however, do not correspond to a properly weighted transition path ensemble. It is important to
note that this applies for any case where paths are generated from a set of in-advance-sampled points, no
matter if the shooting point distribution is the result of a flow-based transformation or is obtained by
well-known enhanced sampling methods. One difference are the missing population functions to distinguish
paths that connect stable states from ones that end in the same state in both directions. Even more critically,
paths that dwell a long time in high probability regions of pSP(x) are sampled preferentially. Accordingly, a
reweighting factor Ω[X(τ)] has to be included when calculating the expectation values of path observables:

⟨A [X(τ)]⟩ ≈
∑N

i=1Ω[X(τ)i ]A [X(τ)i ]∑N
i=1Ω[X(τ)i ]

. (7)

A similar path reweighting has already been successfully applied in other studies, e.g. in works by Daru and
Stirling [35] and Menzl et al [36] for the calculation of rate constants.

To derive an expression for Ω[X(τ)i ] in the context of our parallel sampling scheme, we first consider the
generation probability of a trajectory obtained from an a priori sampled shooting point. By means of a
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shooting move, a given trajectory can be generated from any of its points. Therefore, the total generation
probability is the sum of the independent generation probabilities from each point on the trajectory:

Pgen [X(τ)] dX
τ = dXτ

τ/∆t∑
k=0

[
pSP(xk∆t)

peq(x0)

peq(xk∆t)
×
[
hA(x0)+ hB(x0)

][
hA(xτ )+ hB(xτ )

]
×

τ/∆t−1∏
j=1

h̃(xj∆t)

τ/∆t−1∏
i=0

p(xi∆t → x(i+1)∆t)

]
. (8)

The weight of reactive paths in equation (8) differs from the corresponding weight in the transition path
ensemble (equation (1)) by the factor:

Ω[X(τ)] =
1

ZAB

τ/∆t∑
k=0

pSP(xk∆t)

peq(xk∆t)

−1

. (9)

A full derivation of the generation probability and of the reweighting factor is given in the Supplementary
information (SI). Since we are solely interested in properly weighting a path relative to all others, the partition
function ZAB can be omitted. This leads to a tractable relative reweighting factor to recover a properly
weighted transition path ensemble given a collection of trajectories generated from a distribution of shooting
points. In the simplest case, one can choose the equilibrium distribution peq(x) as the shooting point
distribution so that pSP(x)≡ peq(x) with the caveat that points already lying in a stable state must be sorted
out. The reweighting factor then reduces to (τ/∆t+ 1)−1/ZAB. In this case, reactive paths are weighted by
their inverse number of points. When all shooting points lie on a dividing surface and have weights according
to the equilibrium distribution, the above reweighting factor reduces to the inverse number of crossings of
the path with the surface, which agrees with the findings of Best and Hummer [34, 37]. Given an infinite
number of samples from pSP(x) as a set of shooting points, ergodicity in transition path space is guaranteed if
every configuration with a non-zero probability in peq(x) also has a non-zero probability in pSP(x).

1.3. Targeted sampling using Boltzmann generators
Enhanced sampling revolves around the efficient exploration of low probability regions in configuration
space. In standard equilibrium simulations, these regions are often not visited frequently enough to make
accurate predictions about the thermodynamics of the system. Therefore, one common approach in
enhanced sampling methods is to restrict the sampling to the region of interest and thereby focus
computational resources. Often this is achieved by applying a bias towards the region of interest. For
example, in umbrella sampling this bias is introduced in the form of a harmonic bias potential, which is
added to the potential energy function of the system. This bias is defined using a collective variable, here
denoted as r(x), a bias center r̄ and a force constant k:

Ubias(x, r̄) = U(x)+
k

2
[r(x)− r̄]2 . (10)

By the addition of the bias potential, configurations with a collective variable value close to r̄ will be
sampled more often. The resulting configuration ensemble is referred to as an umbrella window. In the
canonical ensemble, the probability of observing a configuration x given an applied bias potential centered at
r̄ can be expressed as:

pbiased(x|̄r) =
1

Zx
exp

{
−β

[
U(x)+

k

2
(r(x)− r̄)2

]}
, (11)

Zx =

ˆ
dx exp

{
−β

[
U(x)+

k

2
(r(x)− r̄)2

]}
. (12)

Boltzmann generators, as proposed by Noé et al [22], provide a way to obtain uncorrelated samples from
such a distribution. They belong to the class of flow-based generative models and they allow to obtain
unbiased samples from a given target distribution after reweighting. This unique feature makes them
well-suited for our parallel path sampling scheme.
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Figure 2. Schematic overview of the split coupling flow architecture used in this work. The input z (red) is split in two parts z1
and z2. An identity transformation is applied to z1. Using z1 as an input to a feed-forward neural network (gray), scaling and
shifting parameters S and T for the transformation of z2 to x2 (blue) are obtained. Subsequently the process is repeated in the
other direction to obtain the fully transformed output x. If a conditioned transformation is desired, the condition c is appended to
the input of the feed-forward layer (yellow).

In flow-based models, a neural network learns an invertible coordinate transformation between an easy
to sample latent distribution pz(z) and a complex data distribution px(x):

x= f(z;θ), (13)

z= f−1(x;θ), (14)

where x and z represent samples from the data space (denoted as a whole by x) and from the latent space
(denoted as a whole by z), respectively, while θ represents the set of trainable network parameters that
parameterize the transformation f.

The architecture of Boltzmann generators is based on a split-coupling flow using RealNVP blocks as
proposed by Dinh et al [38]. Split-coupling flows allow to compute the determinant of the transformation’s
Jacobian efficiently [38]. Therefore, the distribution of neural-network generated samples can be expressed
via the change of variable theorem:

qx(x) = pz
[
f−1(x;θ)

]
|det Jf−1(x;θ)|, (15)

qz(z) = px [f(z;θ)] |det Jf(z;θ)|, (16)

where q represents the distributions generated by the network in the corresponding spaces, which will be, in
general, different from p. The determinant of the Jacobian is tractable thanks to the particular construction
of the network, as shown schematically in figure 2. The input is split into two parts, x1 and x2. While an
identity transformation is applied to one part, the other one is scaled and translated with parameters that are
a function of the first. The generated distribution qx(x) is, in general, only an approximation to the
Boltzmann distribution. However, since the probability of a generated sample can be obtained using
equation (15), a statistical weight can be assigned to each generated configuration in order to correct for the
bias and to recover the exact distribution. A simple choice for this reweighting factor is represented by the
ratio between the reference and generated probability [22]:

ω(x) =
px(x)

qx(x)
. (17)

For further discussions on the unbiased estimation of observables using flow-based models, we refer to the
seminal work of Nicoli et al [30].

The generation of samples with probabilities according to equation (11) for a single bias center is possible
in the framework of Boltzmann generators. However, it is rarely the case that a single window provides
sufficient information on the rare event of interest. For this reason, the generation of samples should be
possible at arbitrary bias centers.

Conditioning the transformation applied by the normalizing flow enables sampling at different bias
centers using a single neural network. A simple scheme to condition a split-coupling flow architecture was
proposed by Ardizzone et al [39] in relation to image generation. These ideas were then applied to physical
problems in the context of lattice field theory by Gerdes et al [31] and Singha et al [32, 33]. In the model
proposed by Ardizzone et al [39], the transformation is conditioned by concatenating the condition data c to
the coupling layer network input, as indicated in figure 2. For the purpose of generating configurations at
different bias centers with weights given by equation (11), the condition vector c corresponds to the bias
center r̄. This approach leaves the latent space distribution unconditioned and it imposes the condition
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directly on the transformation which is then reflected on the generated distribution. The change of variable
theorem then takes the form

qx(x|̄r) = pz
[
f−1(x|̄r;θ)

]
|det Jf−1(x|̄r;θ)|, (18)

qz(z|̄r) = px [f(z|̄r;θ)|̄r] |det Jf(z|̄r;θ)|. (19)

For all systems studied here, we use a multivariate Gaussian as a latent distribution pz(z) as in regular
Boltzmann generators.

The training loss functions are formulated based on the forward and reverse Kullback–Leibler (KL)
divergences between the generated and reference distributions. Conditioning of the transformation can then
be incorporated in the definition of the loss functions for the training. In training by example, samples from
different umbrella windows are transformed into Gaussian-distributed samples. Here, the training loss Lfwd
is given by the conditional forward KL-divergence between the reference and generated data distribution
KL [px(x|r)||qx(x|r;θ)] (full derivation in SI):

Lfwd = Er̄Ex
[
logpx(x|r)− logqx(x|̄r)

]
= Er̄Ex

[
1

σ2
||f−1(x|̄r;θ)||2 − |det Jf−1(x|̄r;θ)|

]
+ const.. (20)

During training, the expectation values Er̄Ex are approximated using a set of configurations at discrete bias
positions on the collective variable. These discrete positions should cover the regions of interest on the bias
coordinate.

Training in the other direction, the training by energy, works by sampling from the latent Gaussian
distribution and transforming to the desired umbrella windows. The conditional reverse KL-divergence
between the reference and generated latent distribution KL [pz(z|r)||qz(z|r;θ)] is then minimized leading to
the loss function Lrev (full derivation in SI):

Lrev = Er̄Ez
[
logpz(z)− logqz(z|r;θ)

]
= Er̄Ez

[
βU( f(z|̄r;θ))+β

k

2
[r( f(z|̄r;θ))− r̄]2 − |det Jf(z|̄r;θ)|

]
+ const.. (21)

Therefore, training on the reverse KL-divergence is performed by selecting bias centers of interest and
sampling from the latent distribution. Latent points and corresponding bias centers are then transformed
and parameters of the network are optimized with respect to equation (21). During training by energy, the
network can be trained at different temperatures by adjusting the variance of the Gaussian latent space
distribution [22]. The final loss function for the training can be computed as

L= λfwdLfwd +λrevLrev, (22)

where λfwd and λrev are weights used to tune the focus of the training. For a comprehensive discussion on the
forward and reverse KL-divergence in flow-based sampling, we refer to [40].

2. Results

2.1. Resolving the barrier region
We first test the conditioned Boltzmann generators on a simple two-dimensional model [16] (figure 3(A),
system parameters in SI). Here, the conditioning of the Boltzmann generator greatly improves the resolution
of low probability regions in configuration space, as shown in figure 4 where the reaction coordinate
r(x) = x(0) + x(1) was used for the double well system. Analogous to umbrella sampling, a bias potential is
applied to force the system to regions that are rarely seen in equilibrium at a given temperature. In the case of
the original Boltzmann generator, low probability states can be included in the generated distribution by the
introduction of a reaction coordinate loss [22]. Here, the entropy of samples projected on a reaction
coordinate was maximized during training. While this is sufficient to encourage a broad sampling of the
target distribution and to prevent a mode collapse, it does not allow a targeted sampling of low probability
regions. For an accurate free energy estimate and especially for the generation of transition states, the
sampling of specific low probability regions in configuration space must be enhanced. Due to the
conditioning of the transformation, the generator can be steered to focus on certain regions in
configurations space. In the following, we use the term network-generated configurations for samples
generated by the conditioned Boltzmann generator if not stated otherwise.
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Figure 3. Overview of the model systems including the state definitions. The potential energy surface of the two-dimensional
double well [16] (A) and the bistable double well model (B). For the polymer model (C), only the stable states are depicted.

Figure 4. Training configurations and network-generated configurations for the two-dimensional model systems. (A), (C) The
training data consist of samples at different bias centers along the reaction coordinate. Each bias center is indicated using a
different color. (B), (D) Samples from a Gaussian (latent space, left) are transformed using the conditioned Boltzmann generator
to obtain configurations at arbitrary bias centers which are not necessarily present in the training data (generated data, middle).
Ground truth data (reference data, right) from MCMC simulations are shown for comparison. The conditioned transformation
enables generation at bias centers different from the training data. Configurations from different bias centers are indicated by
distinct colors.

From network-generated configurations at different bias centers, accurate free energy profiles can be
reconstructed. Using the weighted histogram analysis method [41], the free energy as a function of the
reaction coordinate can be obtained. While the generator is trained using configurations from discrete
windows, the network architecture and the process of training by energy allow the sampling at arbitrary bias
centers (figure 4). For this reason, an accurate free energy estimate can be obtained by increasing samples or
increasing the window count even if the training data alone is not sufficient for the free energy
reconstruction, as shown in figure 5. In addition, the ability to train the conditioned Boltzmann generator at
different temperatures allows for the reconstruction of free energies at different values of kBT, see figure 5. A
targeted sampling is not possible for the standard Boltzmann generator, for which the reconstructed free
energy lacks sufficient samples at the barrier top given the same total number of generated configurations.

2.2. Exploring path space
The ability to sample independent configurations in targeted regions of phase space opens up new
possibilities to investigate rare events, as generated points can serve as shooting points for trajectories. Initial
tests that employ this path sampling scheme are performed on a bistable double well model using the
reaction coordinate r(x) = x(0). The potential energy function is constructed in a way such that two reaction
channels separated by an energy barrier connect the two stable basins (figure 3(B), system parameters in SI).

With the trained network at hand, we compare three different path sampling methods: TPS using
two-way shooting with randomized velocities (standard TPS) [13], TPS with a bias on the shooting point
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Figure 5. Free energy reconstruction F[r(x)] from network-generated configurations for the double well model shown in
figure 3(A). The upper panel shows the free energy profile at constant temperature estimated using reference data, training data
(see figure 4(A)) and network-generated configurations. We compare free energies obtained from a standard Boltzmann generator
(Standard BG) via reweighting with the free energy obtained from conditioned generation and weighted histogram averaging. In
the lower panel, the conditioned network was used to estimate free energy profiles at different temperatures. A reference profile is
shown for each temperature as a solid line, the profiles obtained from network-generated configurations are shown as points.

Figure 6. Performance comparison of standard TPS (blue), shooting range TPS (orange) and sampling from generated shooting
points (green) in the bistable double well model (A) and polymer model (B). For all algorithms, sampling was performed (A) 50
and (B) 30 times. Each line represents a single path sampling run whereas the solid black line indicates the average over these
runs. The absolute error of p(x|TP) as a function of the number of trials (first row) measures the deviation from a reference path
ensemble at a given trial. The second row shows the running average of the reaction channel indicator function g(X) in (A) and in
(B) the running average of the path length τ(X). The expected value is given by the dashed black line. As a measure of the
correlation between paths, the autocorrelation function of the indicator function g(X) (A) and path length τ(X) (B) is shown in
the third row.

selection [16] and path sampling from network-generated shooting points. Shooting range TPS is included
since it is the closest Markov chain-based scheme to the proposed path generation from presampled, biased
shooting points. In shooting range TPS, the selection probability psel of a shooting point on the previous
path is biased via an arbitrary, user-defined function of a reaction coordinate. For the comparison to the
network-based scheme, we use a Gaussian centered at the top of the barrier.

The results of these initial tests show that in contrast to sampling from generated shooting points, both
standard TPS and shooting range TPS struggle to estimate the ratio between paths in the upper and lower
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reaction channel correctly (figure 6(A)). To obtain a quantitative measure of this ratio, we define an indicator
function g(X) that describes whether the path follows the upper or lower reaction channel. The function
returns unity if the path follows the upper channel and vanishes otherwise. With reference to figure 4(D), the
function g(X) is given by

g(X) =

{
1 if X̄y(τ)> 0;

0 otherwise,

where X̄y is the average of the y component of the trajectory over the single transition path.
The expectation value of g(X) over all reactive paths is 1/2 since the dynamics and the state definitions

are symmetric. For standard TPS and shooting range TPS, the average value of the indicator function
oscillates around the expected value. Since correlations between sampled paths are unavoidable with
shooting moves, subsequently sampled paths are likely to remain in the same reaction channel. A switch to
the other channel is only observed infrequently as indicated by the integrated autocorrelation times. This
leads to the oscillating behavior of the average indicator function. In comparison, the path sampling from
generated shooting points produces independent paths in the upper and lower reaction channel, leading to
fast convergence of the average value of the indicator function, as shown in figure 6(A).

To further compare the performance of the different path sampling schemes, a reference path ensemble is
sampled by means of 250000 trials using two-way shooting TPS with randomized velocities. The difference
between the reference path ensemble and a path ensemble at trial n can then be obtained by comparing the
discretized density of configurations on transition paths p(x|TP) as in [16]. The neural-network based
sampling scheme outperforms standard TPS and shooting range TPS when looking at this difference
between the path ensemble at trial n and the rigorously sampled reference ensemble. Moreover, due to the
reweighting of generated configurations and paths, a proper distribution of paths can be obtained even if the
generated shooting points are biased towards one reaction channel.

To test the scalability of the approach to higher dimensional systems, we consider a polymer model of
N = 7 beads in two dimensions, as illustrated in figure 3(C). The interaction between beads includes a
non-bonded Lennard–Jones interaction, a bond stretching term and an angular term (details of the potential
and simulation parameters in SI). Two stable states can be identified in this system, an extended and a
compact configuration (figure 3(C)). Since the states are solely identified by the radius of gyration and the
Lennard–Jones interaction energy, all possible bonding permutations are included in the states. Not only
does the transition between these states take place infrequently but it also occurs via different reaction
channels, making it an ideal test system for rare event sampling.

Just like in the two-dimensional model case, we benchmark standard TPS, shooting range TPS and path
sampling from network-generated shooting points on the transition from extended to circular states in the
polymer model. As a coordinate for the shooting range bias and generation of initial points, we choose the
radius of gyration RG of the polymer. To compare the configuration density in the path ensemble at trial n
with the reference ensemble for the different methods (figure 6(B)), we discretize the configuration space of
the polymer (see SI for further details). In contrast to sampling from generated shooting points, some
standard and shooting range TPS runs show slow or non-existent convergence towards the reference path
ensemble. This effect may be explained by looking at the average transition path lengths or the
autocorrelation function of the path length. Path sampling runs that do not converge to the reference
ensemble come with an over- or underestimated average path length. Combined with the long correlation
times of the path length, it can be concluded that standard TPS and shooting range TPS are prone to get
stuck in a faster or slower reaction channel compared to the typical reaction channel. Since sampled paths
from generated shooting points are uncorrelated, all reaction channels are visited independently in
proportion to their statistical weight. This leads to a consistent convergence to the reference ensemble and an
accurate estimate of the average path length.

2.3. Finding transition states
The conditioning of the Boltzmann generator also allows for a closer study of the bias coordinate. A free
energy profile can be reconstructed from configurations at different bias centers as already shown for the
double well. This also applies to the polymer model, where the Boltzmann generator learns the correct free
energy profile along the reaction coordinate even with improperly weighted training data (figure 7(A)).

While the position of the barrier top can give initial information on the position of possible transition
states, the central quantity of interest is the transition path probability p(TP|r(x)), i.e. the conditional
probability for a point x to be on a transition path given the value of the reaction coordinate r(x). Usually
one obtains this measure by producing multiple fleeting trajectories from configurations with the specific
reaction coordinate value [34]. An immediate drawback of this approach is that fleeting trajectories need to
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Figure 7. Estimation of the potential of mean force (PMF) and transition path probability from network-generated
configurations for the polymer model. Comparison between the PMF reconstructed from long replica-exchange umbrella
sampling runs as a reference, the training data and network-generated (upper panel). The lower panel shows a comparison of the
transition path probability along the radius of gyration estimated using fleeting trajectories (reference), using standard TPS in
combination with umbrella sampling (standard TPS) and using path sampling from generated shooting points together with a
network-based free energy reconstruction (conditioned BG).

be produced separately from the path sampling run, making the calculations expensive. Alternatively, one
could estimate p(TP|r(x)) up to a proportionality constant using Bayes’ theorem [34]:

p(TP|r(x))∝ p(r(x)|TP)
peq(r(x))

. (23)

However, since it is not trivial to extract information on the equilibrium distribution peq(r(x)) from the
transition path ensemble, the calculation of p(TP|r(x)) using the Bayesian approach requires additional
simulations and is therefore usually less efficient than estimation via fleeting trajectories. Moreover, both
distributions p(r(x)|TP) and peq(r(x)) come with an uncertainty when estimated from simulation data and
this uncertainty propagates to the estimated transition path probability.

The path sampling from network-generated shooting points proposed in this work allows for both the
accurate reconstruction of the free energy and for the calculation of the path distribution along the reaction
coordinate. To demonstrate this, we compare the calculation of p(TP|RG(x)) for the polymer model using
the Bayesian approach (figure 7(B)) with the results obtained using the standard approach employing
fleeting trajectories. In the following comparison, we compute error estimates by performing simulations in
replicas and by using Gaussian error propagation. We first estimate p(TP|RG(x)) from 10 independent runs
each with 25000 fleeting trajectories as a reference. As a second baseline, we use the reference path ensemble
(same as in figure 6(B)) and the reference free energy (same as in figure 7) to estimate the transition path
probability. Here the resulting error does not allow for accurate determination of transition state regions on
the reaction coordinate. In comparison, using the data from the Boltzmann generator (figure 7(A) and the
right column in figure 6(B)) leads to a more accurate estimate of the transition path probability. The
advantage of this approach is that the calculation is inexpensive since the trained network enables fast
estimation of free energy profiles and efficient TPS.

3. Discussion and conclusion

In this work, we introduced the conditioning of Boltzmann generators for enhanced sampling of low
probability regions in configuration space. The conditioned generators can be used, in the first place, to
obtain more accurate free energy profiles. Secondly, we proposed a path sampling scheme based on a set of
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presampled, network-generated shooting points. While Boltzmann generators were a natural choice for this
proof of concept, the sampling scheme, including the path reweighting factor derived in equation (9), can be
generalized to any exact-likelihood generative model that allows for computing the density of a generated
sample. Recently proposed stochastic normalizing flows [42], smooth flows [43] or equivariant normalizing
flows [21] can easily be adopted depending on the system to study.

From our experiments we see that the sampling acceleration and the computational cost of the workflow
proposed here are both highly dependent on the physical system and on the observables of interest. The
overall efficiency of the approach is negatively impacted by complex and multi-modal systems since they
require larger network sizes and more configurations in the training set. On the other hand, long transition
times or strong correlations between paths in TPS-based methods can quickly compensate the cost of
additional energy evaluations required for training a flow. This is due to the numerical integration of the
equations of motion requiring a full force evaluation per timestep. Finally, the accuracy required for the
estimation of configuration or path observables is also a crucial factor, since training of a flow-based model is
a one-time investment and only breaks even for longer sampling runs.

It is important to note that, for both use cases—free energy reconstruction and path sampling—we based
our algorithm on a reaction coordinate r(x). In the systems discussed, this coordinate is either trivial to find
or could be obtained by educated guessing. Only after the training of the network and the whole path
sampling process, it is possible to obtain a measure of the quality of the chosen reaction coordinate, e.g. by
estimating the probability to generate a transition path. This approach is not straightaway transferable to
more complex systems as reaction coordinates often turn into a less intuitive combination of order
parameters [44, 45]. A direct approach to tackle this problem may be to use existing algorithms for reaction
coordinate optimization such as the algorithm proposed by Peters and Trout [14, 46] or to use a
reinforcement learning scheme as proposed by Jung et al [47]. Also, even though a reaction coordinate is
often challenging to find, a reasonable order parameter may sometimes be more apparent. Here the
difference is that an order parameter may distinguish between different states of the system but does not
necessarily have a defined, compact region linked to a high probability to generate a transition path.
Therefore, as an alternative to prior reaction coordinate analysis, the functional form of the bias potential
could be adapted. Instead of a harmonic bias centered on a specific region on the coordinate, one could
realize the biasing via a history-dependent bias potential as employed in metadynamics [48]. With this
approach, low probability states along the whole reaction coordinate could be sampled eliminating the need
for centering the shooting points on a specific region.

For the future, we see the approach of using generative neural networks for rare event sampling as
especially useful if prior knowledge of a reaction coordinate exists and multiple orthogonal reaction channels
complicate the sampling.
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