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Abstract—Conditional Generative Adversarial Networks
(cGANs) are increasingly popular web-based synthesis services
accessed through a query API, e.g., cGANs generate a cat image
based on a “cat” query. However, cGAN-based synthesizers
can be stolen via adversaries’ queries, i.e., model thieves.
The prevailing adversarial assumption is that thieves act
independently: they query the deployed cGAN (i.e., the victim),
and train a stolen cGAN using the images obtained from the
victim. A popular anti-theft defense consists in throttling down
the numbers of queries from any given user. We consider a more
realistic adversarial scenario: model thieves collude to query
the victim, and then train the stolen cGAN. CLUES is a new
collusive model stealing framework, enabling thieves to bypass
throttle-based defenses and steal cGANs more efficiently than
through individual efforts. Thieves collect queried images, and
train a stolen cGAN in a federated manner. We evaluate CLUES
on three images datasets, e.g., MNIST, FashionMNIST and
CelebA. We experimentally show the scalability of the proposed
attack strategies against the number of thieves and the queried
images, the impact of a classical noise-based defense, a passive
watermarking defense and a JPEG-based countermeasure.
Our evaluation shows that such collusive stealing strategy gets
close to 4 units of Frechet Inception Distance from a victim
model. Our code is readily available to the research community:
https://zenodo.org/records/10224340.

I. INTRODUCTION

Data synthesizers are increasingly offered as a service
on the web to augment the data quantity and diversity. In
a nutshell, users issue queries to such a service (i.e., one
generating animal images) and receive the corresponding
images back. We list several popular examples in Table I.
At their core, such synthesizers exploit generative models
and conditional generative adversarial networks (cGANs) [47],
used to synthesize images [19], [62], music [18], generic [36]
as well as specialized time series [61], tabular data [64],
[71], videos [15], [46] and more. cGANs consists of two
networks, the generator GT and discriminator DT , both of
which are iteratively and jointly trained (see Fig. 1). Only the
generator is used in the deployed service. Training cGANs
is extremely challenging, requiring a large number of input
samples (e.g., real images) and computation power to tune
the hyperparameters. Consequently, deployers face the chal-
lenge to keep key model information, e.g., model architecture
and weights, confidential and inaccessible by the users (i.e.,
black-box model deployment [54]), as well as shielded from
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Fig. 1: Two-step model stealing: ➊ query victim’s generator model
GT via a condition prompt (plus an identification token needed to
access the service) and collect the synthesized outputs, ➋ optimize
stolen generator model GA to produce the same result.

compromised nodes serving the model to prevent unauthorized
access, misuse, and privacy compromises [56].

Despite the efforts of hiding the machine learning models
behind such services, there is the risk that adversarial par-
ties steal the models through querying the services. Several
stealing attacks [35], [66] have already proven effective on
classification models. A recent study [32] has shown a stealing
attack effective on deployed GANs generators. In their case,
the thief first sends a request and receives the corresponding
synthesized image from the victim’s GAN generator with
no regards for the attacker’s topology (this aspect is later
discussed further in this section). We extend the attack to
incorporate GANs/cGANs (see Fig. 1). In our example, the
attacker prompts the victim with a “cat” class to obtain a
picture of a cat generated by GT . Afterwards, the query inputs
(i.e., condition prompts) and outputs (i.e., generated images)
are used by the thief as inputs to train a generator GA such
that, for a set of classes, the quality of its synthesized images is
as close as possible to the deployed victim cGANs generator’s.

Generally speaking, the strength of such stealing attacks
highly depends on the number of adversarial queries, i.e.,
high number of synthesized images, for better quality of the
stolen model. A typical defense strategy to minimize the risk

1

https://orcid.org/0000-0002-1354-9604
https://orcid.org/0000-0003-1493-6603
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0003-1574-6721
https://orcid.org/0000-0003-1144-3707
https://zenodo.org/records/10224340
Robert Birke
Authors’ copy of Simon Queyrut, Valerio Schiavoni, Lydia Y. Chen, Pascal Felber and Robert Birke (2024). CLUES: Collusive Theft of Conditional Generative Adversarial Networks. In proceedings of the 43rd International Symposium on Reliable Distributed Systems (SRDS 2024). In press.



Victim
(target model)

 2

3

6
 

Attacker
(stolen model)

4

'ship''car'
 

  

1 'cat'

5

Fig. 2: Colluding stealing strategy to evade query throttling: colluding
agents query the victim’s target generator GT ➊ which answers with
synthesized images ➋. Each agent i computes δi, the gradient of the
loss between the victim’s and local model’s generated samples ➌ and
sends it to a central server ➍; it averages all received gradients to
update the central model GA

c (·|θ) ➎. Finally, the updated weights
θ are sent back to all agents as starting local model for the next
federated learning round ➏.

of model theft is thus to limit the queries per user. This is
widely adapted by cloud service providers including those
hosting generative AI services [12], [14], [25] and typically
implemented by attaching a client-identifier token to each
query so that providers can throttle abuses of their endpoints.

Despite the threats of such attacks, the prevailing as-
sumptions in state-of-the-art approaches [32] are twofold: (i)
malicious users have large communication and computation
capacities to retrieve high number of samples from the victim
and train the stolen model; and (ii) they act independently
without any collusion.

In reality, adversarial parties are largely heterogeneous
and, henceforth, differ in their computing capacities, typically
orders of magnitude below the machines serving the victim
models (i.e., the model owners). To effectively and efficiently
steal the victim model while at the same time overcome
throttling defensive mechanisms, model thieves can resort
instead to collusive stealing, a new model theft tactic that we
contribute in this work. In collusive stealing, several agents
(i.e., the model thieves) cooperate during both the query
phase as well as the training of the stolen generator. To the
best of our knowledge, existing literature has largely ignored
collusive stealing attacks. However, as we show next, these
can stealthily undermine the defenses of services leveraging
trained (c)GANs.

In this paper, we investigate collusive stealing attacks on
cGANs, as they are among the most prevailing image genera-
tive models used. The victim generator of cGANs is accessed
through public API queries. Users specify the class labels (e.g.,
“cat”) and receives in return the queried images. The victim
server imposes a limit on the number of queries per user.
We consider that model thieves have limited computation and
communication capacities.

We contribute CLUES, the first collusive stealing strategy

TABLE I: Observed per-free-account rate limits of some popular data
synthesizers (image generation). Quantities marked with an asterisk
(∗) denote daily limits and those marked with a dagger (†) were the
obtained quantities after we voluntarily stopped querying.

Service provider Rate limit Service provider Rate limit
Replicate [9] 100 Microsoft Designer [8] 400

DatumBox [4] 1000∗ ImageFX [7] 1200∗

AI/ML API [3] 1307 Dream by Wombo [5] 2109†

Eden [6] 3333 thisxdoesnotexist [10] 5000†

for deployed cGANs, where multiple thieves jointly train a
stolen cGANs via queried images. Further, CLUES contributes
an optimization algorithm that minimizes the L1 distance (i.e.,
the total absolute pixel-to-pixel difference for each channel)
between images generated by the victim and stolen cGANs.
Considering the heterogeneous nature of model thieves and
aiming for high system scalabiltity, we propose a colluding
strategy based on model federation (see Fig. 2). Each thief
first collects the queried images. Then, it trains a stolen
generator with other thieves in a federated manner [45].
Model federation parallelizes querying the victim according to
imposed limits and also the stolen generator’s training effort.

As victims can hardly discern thieves from normal users,
collusive stealing easily circumvents defenses based on query
limits. To lower the risk of model theft, we propose a strategy
that perturbs the generated image with defensive noise. We
leverage the fast gradient sign method FGSM [27] to craft
noise that does not visually impair the output images but
pushes the stolen model optimization towards maximum loss,
disrupting query-based model training.

Our evaluation across three popular datasets (e.g., MNIST,
FashionMNIST and CelebA) shows that CLUES can suc-
cessfully steal a victim model, and that, even for a con-
strained number of queries, the collusion of agents steadily
outperformed agents working alone. We explore the mitigating
effects of a noise-based defense and a passive watermarking
defense against our proposed scheme.

Our contributions can be summarized as follows:
• CLUES, the first collusive stealing strategy, demonstrating

the realistic and stealthy threat against deployed image
generating services (see §III);

• a new optimization algorithm to train a stolen generator by
minimizing the L1 distances of images between the victim
and stolen models (see §III-C);

• a colluding strategy to parallelize both model querying and
training of a stolen generator in a federated manner amongst
the thieves (see §III-D);

• a noise-based defense strategy, leveraging gradient inversion
to disrupt the training of a stolen generator (see §V);

• an adaptive stealing which counters the defense (see §V-B).
Roadmap. In §II we explain the mechanism behind condi-

tional GAN services. We detail the architecture of CLUES in
§III. §IV presents our experimental results. §V describes de-
fenses and counter-attacks (adaptive stealing) against CLUES
and the corresponding costs. We survey related work in §VI,
before concluding and presenting future work in §VII.
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II. BACKGROUND ON GAI SERVICES

In this section, we first describe how generative models are
served through API. Then we detail the internals of cGANs.

Generative AI Services. Modern generative AI services
allow to synthesize images, music, tables and other types of
data based on some user friendly prompt, e.g., a class label,
plus some randomness, e.g., a noise vector. The power of the
models behind such services is deeply connected to their size
and size of training data [33]. Consequently, (i) large trained
generators, i.e., model architecture and weights, are an asset
to be protected, and (ii) inference at scale requires abundant
resources. Deploying such models in the Cloud can cater to
both. In this work, we consider the classic scenario of a cloud
service provider exposing an extensively trained generative
model via a freely accessible or paid API service (e.g., ML-as-
a-Service [1], [2], [11]). In particular we focus on black-box
model serving which, in contrast to white-box model serving,
hides any model details (model layers, functions or weights)
and inference activity (gradients, activations or any numerical
value/measure created during inference) from API invocations.
Only the final synthesized data is returned as result.

In such a setup, a malicious end-user aims to train a stolen
model which behaves indistinguishably to, i.e., synthesizes
data of same quality as, the victim model. The malicious user
could be endowed with a generator of similar architecture,
constructed through metamodel techniques [51] or obtained
by a wild guess using a side channel (if the target disclosed
the genus of their model on their website, for example). He
could also have a model of a different architecture yet fulfilling
the same tasks. He repeatedly queries the deployed model and
iteratively updates his local model to match the output of the
service (see Fig. 1 for a description of the workflow). If a
sufficient number of queries is completed, the malicious client
can successfully train a generator with equivalent performance
to the model being queried, effectively stealing the model.

To diminish the effectiveness of the efforts of malicious
users, service providers use query throttling as common de-
fense mechanism. As a mere illustrative example, we gathered
rate limits through empirical observation while requesting the
free plans of various online generative APIs. We solicited
endpoints for four hours each and recorded the number of
samples obtained until the generation service ceased (we chose
to halt [10] at 5000 to align with the scope of our evaluation).
The results are presented in Table I. However, in contexts
involving individual-restricted queries, e.g., only input-output
interactions are permitted, malicious users can parallelize data
acquisition by creating multiple (trial) accounts for the service.
CLUES is relevant in such scenarios.

We assume that CLUES operates under the most strin-
gent assumptions regarding attackers. In particular, the victim
model is enclosed within a black box that exposes a generative
API hiding any model internals. As a result, the victim
holds a target generative model of good performance whose
weights and architecture cannot be attained through any other
method or side channel. This incentivizes the attacker to
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Fig. 3: Basic workflow for cGANs training: ➊ G is fed a noise vector
z and a condition y to produce a fake image xfake. Next, fake xfake and
real xreal samples are randomly fed to D ➋ alongside the condition.
During training, D should recognize real from fake data, so it is
rewarded when it correctly classifies x as real or fake ➌.

allocate resources and employ a suitable strategy to match the
performance of the target model by training its own model.

While our study primarily deals with conditional GANs, we
emphasize that CLUES is not limited to vanilla GANs or other
conditional models. Instead, our objective is to formulate a
strategy that proficiently extracts the performance of a target
generative model by employing a combination of recurrent
queries and orchestrated collaboration among thieving agents.

Conditional Generative Adversarial Networks (cGANs)
are a type of generative model used to produce synthetic
samples, typically images, based on a class label y and a
noise vector z of dimension nz . The choice of nz is critical
for both training and inference, as it affects the complexity
of the mapping between the latent (noise) space and images.
Noise dimension influences the balance between exploration
and exploitation: adjusting the noise level allows control over
the generator’s exploration of potential outputs.

cGANs comprise two contrasting models, namely a gener-
ator G and a discriminator D. The goal of G is to produce
realistic image-label pairs able to fool D. The goal of D is
to discern fake from real example-label pairs. It learns to
accept correctly matched pairs while rejecting mismatched
pairs and fake examples (see Fig. 3). G is a differentiable
function, implemented as a deep neural network (DNN). It
is parameterized by θg designed to learn how to synthesize
realistic examples, xfake = G(z|y; θg) for each class label y
inside a training dataset of images xreal of assumed underlying
conditional distribution preal. For brevity, we write G(z|y).
To learn a conditional distribution pg of the generator G
over xreal, we sample z from a prior distribution pz , such as
Gaussian distribution or uniform distribution. During training,
the generated (fake) images xfake, along with real images
xreal and their labels, are randomly fed to a discriminator D,
another DNN which assesses the likelihood of each image
being either fake or real. Similarly, D is parameterized by θd
and we abbreviate it as D(x|y; θd) = D(x|y). The output of
D is a single scalar value for each input image, indicating
the probability of whether the input is real or fake (i.e., the
probability that xfake is drawn from preal rather than pg). The
output is a continuous value, often in the range [0, 1], where
values closer to 1 represent high confidence in the input being
real, and values closer to 0 represent high confidence in the
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input being fake. Within the generator, the prior input noise z
and the conditional variable y are amalgamated into a shared
hidden representation. As such, for the sake of conciseness, we
often note G(z|y) = G(y). Once trained, the discriminator is
dropped and only the generator is deployed as a service. The
intent of the malicious user is to clone the victim’s generator
rather than using the queried data to train a new generator.

III. ARCHITECTURE OF CLUES

The goal of CLUES is to enable multiple thieves to collude
and replicate a target conditional generative model and achieve
high-quality synthesis. During the attack, they collectively
train a generator to mimic the target generator.

A. System and Adversary model

The victim (or target) model GT is a generative model
deployed and hosted remotely, e.g., accessed via a wide-area
network and exposed through an API. It is considered to
be inside a black box: given input (query), returns output
(generated sample). Thieves collude to reproduce GT . Since
it is assumed that the potentially malicious client has control
over the random seed to ensure generation consistency, we
allow the clients to query the victim with their own noise.
We consider i colluding agents (participating nodes are not
byzantine with respect to one another), which repeatedly query
the generative API under a constraint on the number of queries,
typically set by the victim. Agents can exchange updates of
the shared model with a central server but cannot interact with
one another. Colluding agents share a common model GA

c

whose authoritative version is held by a central server and
regularly broadcast to the agents for inference. The central (or
aggregating) server interacts with all thieves individually. Each
time agents receive an answer to their query, they may use this
sample to compute the gradients to send to the central server.

B. Architecture of CLUES

Each thief node must have access to the desired service
API and establish a connection with the central server. They
then send enough information upwards about their device and
API access such that the central server assigns the agents
a task they can handle computationally, memory-efficiently,
and budget-wise. The agreement between the agents and
the central server on communication protocols, as well as
the overall federation approach, is a design specific to each
use case, with many documented instances [16]. This step
is nonetheless crucial as it contributes to establishing and
orchestrating the attacking strategy to be followed by the
central server. It enables the central server to become aware
of available resources and ensures adherence to the limitations
of each device’s memory capacity and allocated API query
budget. This strategy includes but is not limited to: fraction
of participating devices, update round frequency, convergence
criteria (i.e., when to stop the theft), number of local epochs
to be carried on the workers, etc.

Agents interact with the central server but not with one an-
other because they do not know each other and have an interest

in remaining anonymous from one another; e.g., in the case of
a botnet, the primary communication channels are between the
bots and the central server. Establishing direct communication
between individual bots presents additional challenges (e.g.,
synchronization protocols, topology optimization) and brings
potential benefits (e.g., improved querying efficiency, sharing
computing resources), which are left for future work.

C. Optimization problem

We formally model the stealing process of CLUES where
Na agent sends Nq/a queries each consisting of a label-
noise pair (y, z) to the target victim generator GT . In turn,
it sends the responses x = GT (z|y) back to the agents, thus
constituting a local dataset. Given an underlying conditional
distribution preal which is explicitly or implicitly determined
by GT (and the strategy of CLUES try to reproduce), i.e., a
sample x collected from GT given y is generated by preal.
With these assumptions, GA

c aims at minimizing the risk:

min
θc

R(G) = E
(x,y)∼preal

[ℓ(x,GA
c (z|y; θc))].

When dealing with images, ℓ = ∥·∥1 is the pixel-by-
pixel L1 distance. In the case of CLUES, GA

c iteratively
optimizes its parameters θc by averaging the gradients received
from each federated agent (indexed by i) and computed as
∇θi

∥∥x−GA
i (z|y; θi)

∥∥
1
= ∇θi

∥∥GT (z|y)−GA
i (z|y; θi)

∥∥
1
.

We note that this objective function enforces the stolen
generator GA

c to imitate the output of the victim generator in
an exact fashion. Another alternative to make use of queried
images is to train cGAN from scratch, using both generator
and discriminator networks. Such an alternative has several
disadvantages. Firstly, the cGAN training intends to capture
the underlying distribution of the data sets and learns to
generate images that are similar but not identical to the real
images. Secondly, the GAN training is difficult to train and
suffer from the instable convergence and mode collapse [27].

D. Collusive Model Stealing

Due to aggregation delay at the central server and commu-
nication latency, thieves’ GA

c versions differ from the central
node’s. We denote each thief i’s model as GA

i , parameterized
by θi.

Overview. Algorithm 1 and 2 describe the server and agent-
side of collusive stealing process. The aim is to minimize the
empirical risk of an architecture GA

c with a constraint on the
number of queries Nq/a at the disposal of each of distributed
Na agent. Broadly speaking, it leverages FedSGD [45] where
in rounds each agent queries the target GT with label and
noise, computes the loss between the reply and previous round
model output in order to perform gradient computation, and
sends the gradients to the central server for updates to the
stolen model. FedSGD guarantees good model convergence
at the cost of high communication costs stemming from the
frequent exchanges of gradients and model weights. However,
as an alternative to transmitting voluminous datasets to a
centralized server, it solely conveys model updates, thereby
yielding substantial reductions in both bandwidth consumption
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Algorithm 1: CLUES server

Input: Na, GA
c (·|θc), optimizer

Variables: {δi}1≤i≤Na
, ∆

Result: θ∗c = argminθc
R(GA

c )
1 foreach round do
2 foreach i ∈ [[1, Na]] do
3 sendAgent(i, GA

c (·|θc))
4 foreach i ∈ [[1, Na]] do
5 δi ← getUpdate(i)
6 ∆← 1

Na

∑Na

i=1 δi
7 θc ← optimizer(θc,∆)
8 return θc

Algorithm 2: CLUES i-th agent
Input: Nq/a, py , pz , B
Variables: (GA

i , δi, x, z, y,Di)
1 while True do
2 GA

i ← getModelFromServer()
3 δi = 0
4 b← min(B,Nq/a)
5 foreach j ∈ [[1, B]] do
6 if j ≤ b then
7 (y, z)← (rand y ∼ py, rand z ∼ pz)
8 x← queryTarget(z, y)
9 Di ← Di ∪ (x, y, z)

10 else
11 (x, y, z)← sample(Di)
12 δi ← δi +∇θi

∥∥x−GA
i (z|yj)

∥∥
13 Nq/a ← Nq/a − b
14 sendToServer(δi)

and server load [45]. Additionally, past queries are saved in a
local datastore Di so they can be reused over multiple rounds
and increase the data efficiency in terms of API requests.

We emphasize that the strategy outlined in Algorithm 1
and 2 is entirely data-type agnostic. No assumptions are made
regarding the nature of the generations, which encompass the
full range of data types supported by conditional generators
(which, in turn, are not confined to cGANs).

Stealing parameters. As stated previously, it is the task of
the initiator of the collusive stealing effort to set the protocol
to be followed for the theft. System, performance and security
measures are involved in this choice, but for the general and
formal outline of CLUES, these stealing strategy parameters
are listed as inputs of Algorithm 1 and 2 .

To send queries we need to sample prompts (or labels) y
and noises zi from the prompts and noise distributions, namely
py and pz . Choosing py should be done as to mitigate class
imbalance in the queried images. Processing rounds is orga-
nized in batches of queries of size B. The batch size B plays
a role in achieving the desired tradeoff in convergence and
communication overhead, influencing the overall efficiency of
the theft. Moreover, a batch sufficiently small to be held in

memory can speed computations. Model weights and biases
are drawn from a uniform or Gaussian distribution: CLUES
in addition supports also more sophisticated initialization
methods [29]. CLUES is independent from the choice of the
optimizer which encompasses also the choice of the learning
rate and various tunable parameters of the optimizing function.

Starting a new round. The central server initiates each new
round by sending GA

c (Alg. 1-line 2-3) and then waits for new
gradients from each agent (Alg. 1-line 4-5).1

Querying the victim model. Each agent receives a copy of
GA

c (Alg. 2-line 2). Based on the remaining query budget, the
agent decides how many b queries to send and process out of
B (Alg. 2-line 4). For each query, the agent samples noise z
and prompt y vectors (i.e., the desired class of the generated
sample) from py and pz (Alg. 2-line 7) and queries the victim
to obtain a reference sample x (Alg. 2-line 8). x together with
y and z are stored in a local datastore Di (Alg. 2-line 9). If
the query budget is depleted, the next sample, i.e., j > b, is
randomly drawn from Di instead (Alg. 2-line 11).

Computing per batch gradient. The agent uses the sample
x to compute the loss with respect to a locally generated coun-
terpart based on (z, y) and accumulates the derived gradient
locally for the whole batch B. (Alg. 2-line 12). Once a whole
batch has been processed, the agent updates the query budget
(Alg. 2-line 13) and sends back to the central server the final
gradient (Alg. 2-line 14).

Server aggregating clients’ gradients. Once the server
has received all gradients, they are averaged as ∆ (Alg. 1-
line 6). In case of failure from one of the participants (e.g.,
an agent sends corrupted gradients or is no longer trusted by
the central server), such gradients can be discarded, and the
weighting value Na is decremented by one. ∆ in turn is passed
to the optimizer to update the model parameters θc (Alg. 1-
line 7). After that iteratively a new round starts repeatingly
optimizing the central model (GA

c ) to gradually approximate
the performance of the target model (GT ).

IV. EVALUATION

We present here our extensive performance evaluation using
both simulations and a full-fledged prototype. We postpone
to §V an evaluation and discussion of defenses and counter-
defenses. Our experiments intend to answer the following
questions: (Q1) Can CLUES steal the generator networks of
target cGAN model? (Q2) What are the trade-offs in FID
performance of CLUES’s collusive stealing?

A. Implementation details

We leverage PyTorch v2.1 and Flask v3.0 to expose a REST-
based API in real-world deployments. The code, models,
and detailed instructions to reproduce all our experiments
are available at https://zenodo.org/records/10224340. The ar-
chitecture and the implementation of the layers inside the
various mentioned DNN models levereged by CLUES are best
described on the official website of PyTorch [13]. Experiments
in this section were run on a Tesla V100S 32GB.

1In simulation the get_update() directly calls the agent side computations.
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TABLE II: CLUES’s side experimental setup on three datasets.

GA
c Training hyperparameters

MNIST/FashionMNIST CelebA
#rounds: 900 Batch size: 128 #rounds: 600 Batch size: 64
Loss: L1 nz: 100 Loss: L1 nz: 100
Learning rate: 0.922/0.0012 Learning rate: 0.0032
Optimizer: Adam Optimizer: Adam
β1, β2: 0.5, 0.999 β1, β2: 0.5, 0.999
Filters: 8 image size: 32 Filters: 124 image size: 64
pz , py: uniform pz , py: uniform

Experiment hyperparameters
MNIST/FashionMNIST CelebA

Num. runs per (Nq/a, Na): 10 Num. runs per (Nq/a, Na): 5
(except Na = 50: 5 runs) (except Na = 1: 10 runs)
Loss: L1 Loss: L1

B. Evaluation setup

We consider several scenarios with varying numbers of
federated agents (up to 50), subject to constraints on Nq/a

across three datasets, namely MNIST [24] (10 classes), Fash-
ionMNIST [63] (10 classes) and CelebA [43] (2 classes),
given the predominance of image generation’s application
domain for cGANs. To reflect real-world conditions imposing
throttling limitations (§III), we limit the dataset collection
process to conform to diverse querying thresholds Nq/a (from
100 up to 5000 samples from different classes as to meet
reasonable values we observed and listed in Table I). We
vary the number of thieves Na to observe the impact on theft
performance, i.e., on the quality of the image output from the
stolen model GA

c held by the central (aggregating) node of the
federated attack. The outcomes are outlined in Table III and
described in the remaining of this section.

Victim model. The victim Generator GT and Discrimi-
nator DT are convolutional neural networks following the
implementation of [47]. We encourage readers to refer to
the supplementary material refered to in §IV-A for a more
in-depth understanding of the generator’s and discriminator’s
architecture and training parameters. Both the Generator and
Discriminator are trained using Binary Cross-Entropy Loss
and the Adam optimizer with the same learning rates. For each
of the three datasets, MNIST (6e4 samples), FashionMNIST
(6e4 samples) and CelebA (over 2e5 samples), we train a
victim model with hyperparameters detailed in the supplemen-
tary material. Training (Fig. 1) happens before launching the
CLUES stealing attack. For each of the three datasets, DT is
dropped and GT is fixed, acting as a query-in-answer-out API
all throughout the theft.

Stolen model GA
c . The attacker ignores the exact victim’s

generative architecture. GT is anticipated to be very sophis-
ticated. This expectation is grounded in the knowledge that
the developers responsible for the API constitute dedicated
teams with specialized expertise, resources, and extensive
datasets. The utilization of a larger model is inferred from the
presumption that a substantial dataset necessitates a model of
greater size to be efficiently exploited as larger models often
generalize better [33]. As such, we implement this scenario by

TABLE III: Best FID (mean±st.dev.) by the stolen model over 900
rounds for several numbers of thief-agents Na and number of queries
per agent Nq/a.

MNIST
Baseline; Victim FID = 40.76

Nq/a 1 10 50
100 184.02±16.48 150.63±10.74 172.20±15.95
250 150.54±9.72 126.25±7.35 159.10±5.63
500 133.67±9.24 121.45±7.42 120.32±2.38

1000 100.1±7.81 96.62±5.82 89.77±4.01
1500 73.27±8.33 72.11±6.21 77.52±3.08
3000 53.73±4.40 44.53±4.26 55.61±4.15

FashionMNIST
Baseline; Victim FID = 36.71

Nq/a 1 10 50
100 96.17±5.50 97.65±6.76 119.02±3.21
250 92.99±4.17 89.64±4.02 92.33±6.81
500 86.33±3.98 83.63±4.34 83.16±3.15

1000 77.71±5.06 73.85±6.10 73.66±4.72
1500 65.13±6.12 67.7±5.31 64.88±3.33
3000 61.15±1.92 58.43±2.38 62.18±2.90

CelebA
Baseline; Victim FID = 28.40

Nq/a 1 10 50
500 104.98±6.48 100.99±5.74 100.41±5.65

1000 99.02±2.42 98.25±3.11 98.4±3.08
2000 96.79±4.01 95.9±5.26 95.69±3.38
3000 94.34±3.81 93.17±3.64 95.17±3.23
4000 91.35±5.33 91.41±3.21 91.60±3.18
5000 90.8±4.18 88.8±5.02 91.78±4.22

endowing the thief with a cGAN architecture with a smaller
dimensionality of its feature space. Specifically, it features
fewer output filters for each of the convolutional layers inside
GA

c . Table II details the chosen hyperparameters and all used
(Nq/a, Na) pairs (including number of runs per pair). Notice
the number of rounds is large enough to allow each agent
to go through several epochs of their Nq/a, e.g., 7 times for
CelebA as 600 > 7 · (5000/64). For the pairs of each dataset,
to mitigate bad sampling of the noise and labels (i.e., pz and
py), we run CLUES several times against GT . Rather than
considering the GA

c of the last round as the best model to return
from the theft (Alg. 1-line 8), we systematically take the best
Frechet Inception Distance (FID) reached by GA

c throughout
the rounds of training.

Frechet Inception Distance (FID). In this study, we use
the Frechet Inception Distance [50] (or score) to assess the
performance of the stealing process. In a nutshell, FID evalu-
ates image quality and diversity, indicating that the Generator
should produce images spanning various recognizable classes.
FID score estimates divergence, extracting features using an
Inception v3 network [60], and modeling data distribution (in
our case, 2048 samples) using a Gaussian distribution with
mean and covariance. We compute FID every 100 rounds
between a batch of 2048 samples generated by GA

c when fed
uniformly sampled y labels and a fixed batch of 2048 samples
drawn from the training set of the victim (i.e., real images).
For reference, we also compute the FID of 2048 samples
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Fig. 4: Outputs from stolen model against a CelebA-trained victim.

generated by the victim GT when its training is over for each
dataset (also shown in Table III). Note that the optimization
problem from §III-C is equivalent to the minimization of the
difference between (i) the FID of GT ’s output distribution with
the distribution of real images and (ii) the FID of GA

c ’s output
distribution with the distribution of real images. In summary:
lower FID indicates that the distribution of features in the
generated images is closer to the distribution of features in
real images i.e., lower FIDs indicate more successful stealing.

C. Can CLUES steal a cGAN with distributed agents?

Table III shows the best FID obtained on average (next to
the corresponding standard deviation values) over several runs.
The exact number of run is reported in Table II, for each
(Nq/a, Na) pair for all the three datasets. For any Na, as the
quantity of training data Nq/a increases, the FID consistently
lowers, indicating a learning pattern. With many queries per
thief, for MNIST we reach a FID of 44.5, very close to the
FID of the victim, i.e., 40.76. Due to more complex feature
distributions in FashionMNIST and CelebA, performance of
the theft decreases because Nq/a remains negligible when
compared to the amount of data used for training the target.
The best GA

c obtained for FashionMNIST came close to target
by 12 units of FID and 60 units of FID in the case of CelebA.

Figures 4-7 display some samples generated by the best GA
c

over the rounds (in terms of FID) and a sample generated
by GT . Visual likeness of attacker-generated samples with
victim sample improves as Nq/a increases and confirms the
performance of the stolen cGAN.

A 1 : Even with a small number of queries (< 3×103), CLUES
can train a generator GA

c of nearly identical performance
of the target GT (trained on over 6 × 104 samples in the
case of MNIST). Overall, FID values display improvement in
performances as Nq/a increases, confirming the effectiveness
of the stolen generator.

D. Trade-offs of CLUES’s distributed stealing

Table III shows that federated stealing with Na=10 agents
consistently outperforms the scenarios of a lonely thief (Na=

TABLE IV: Mean best FID and standard deviation achieved by the
stolen model over 900 rounds across a range of the number of thief-
agents Na and number of queries per agent Nq/a for the case where
the victim applies an FGSM mask on its output images (lower values
favor the thief).

MNIST
Baseline + FGSM (ϵ = 0.1); Victim FID = 43.46

Nq/a 1 10 50
100 181.97±9.42 166.44±3.81 174.30±7.44
250 164.69±4.69 155.08±4.28 162.44±2.94
500 143.51±5.16 145.81±3.69 150.64±4.89

1000 122.12±2.22 117.36±2.85 132.36±3.45
1500 102.86±3.63 98.82±4.95 111.03±4.27
3000 68.32±6.24 64.19±2.94 72.54±4.01

FashionMNIST
Baseline + FGSM (ϵ = 0.03); Victim FID = 41.66

Nq/a 1 10 50
100 167.48±8.70 175.92±5.26 179.79±8.17
250 159.33±5.22 165.28±6.90 155.52±7.21
500 135.2±3.97 129.54±6.65 136.02±10.81

1000 116.41±3.89 107.24±7.25 118.34±6.51
1500 97.08±4.12 95.80±3.84 98.82±7.05
3000 91.52±3.04 88.15±5.12 93.47±6.88

1) sending gradients. This is the proof of the generalization ca-
pabilities of the generator, due to the larger variety of samples
collected (i.e., victim is queried 10×), a well-known benefit of
federated learning [39]. Notice that experiments for which the
Nq/a·Na product is equal systematically favor low Na because
it constrains the central model to a training behavior that
resembles mini-batch gradient descent (GD), i.e., updates after
each batch, whereas a high Na means a similar model (i.e.,
not updated) computes gradients over ever smaller batches,
and thus converges more slowly throughout the epochs of
which there are fixed numbers (§IV-B). On average, Na=10
improves by 13.96 points in FID over Na = 1 in MNIST,
2.78 in FashionMNIST and 1.46 in CelebA. However, in
other cases, we did observe a deterioration of performance
compared to the Na = 1 and Na = 10 counterparts, e.g., for
FashionMNIST at Nq/a = 100, Na = 50 is worse than the
less-agents case by over 20 units of FID. We explain this
by the tradeoff between generalization capabilities endowed
by a much larger pool of samples and speed of convergence
of the stolen model. The large dataset improves the overall
learning process of GA

c , but it still fails to learn the noise-
to-image mapping within the given rounds using an optimizer
that is fit for faster convergence. On average, Na=50 offered
an improvement of only 8.37 points in FID over Na = 1 in
MNIST, 1.42 in FashionMNIST and 0.71 in CelebA.

A 2 : Distributed stealing with Na > 1 improved the quality
of the stolen generator by up to 14 points in FID compared
to the Na = 1 case. The improvement brought by involving
several participants tend to decrease when Na is too high.
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TABLE V: Mean best FID and standard deviation achieved by the
stolen model over 900 rounds across a range of the number of thief-
agents Na and number of queries per agent Nq/a for the case where
the victim applies an FGSM mask to its outputs as a defense but the
agents run the queried images through JPEG before computing their
gradients (lower values favor the thief).

MNIST
Baseline + FGSM + JPEG; Victim FID = 43.46

Nq/a 1 10 50
100 188.92±18.32 158.73±11.46 171.62±14.03
250 158.2 ±10.91 148.09±9.34 166.34±7.22
500 141.02±10.20 132.94±10.65 134.57±5.56

FashionMNIST
Baseline + FGSM + JPEG; Victim FID = 41.66

Nq/a 1 10 50
100 97.01±4.90 102.31±6.36 123.98±3.17
250 94.72±6.47 91.44±5.89 99.18±10.48
500 90.53±3.33 86.31±5.29 85.09±3.41

V. DEFENSE AND ADAPTIVE STEALING

In this section we intend to answer the following questions:
(Q3) Can victims effectively defend against CLUES using
adversarial perturbations? (Q4) Can victims effectively defend
against CLUES using watermarking?

Watermark is widely adopted to protect the copyright of
documents and images, but its effectiveness against functional
stealing is questionable. We explore victim fingerprinting in
§V-C. Recent gradient-based watermarking [38] for classi-
fication models hinders thieves from learning input-output
mappings; there, adversarial perturbations in synthetic images
impede proper learning of victim diffusion models.

The Fast Gradient Sign Method (FGSM) [27] is an attack
that perturbs a data sample x to craft adversarial examples
(inputs to a machine learning model intentionally designed
to cause the model to misclassify the input data) by nudging
x towards a higher loss for a model through gradient ascent
with an magnitude factor ϵ. To validate FGSM defensive
capacities, we let victim model apply a FGSM mask (we
chose ϵ = 0.01 as the generated mask barely affects the
victim yet heavily penalizes GA

c ) on its generated outputs
before returning the image to the querying node. We deploy
the same experiments as earlier (§IV-D) for MNIST and
FashionMNIST, but now the victim uses the LeNet-5 [41]
in its ReLU variant to compute the defensive overlay, layed
over each of its responses. Table IV presents our results. We
observe the following: firstly, the FGSM mask significantly
reduces the performance of the model that attempts to copy it.
For MNIST, the resulting FID of the attacker was increased by
19.61 on average. For FashionMNIST, it increases by 48 points
in FID. The standard deviation for the runs also increased
(+2.89 for MNIST and +1.71 for FashionMNIST) indicating
a less reliable training process. Secondly, this defense does not
a priori completely counter the distributed stealing, since FID
scores continue to improve as Nq/a increases: this suggests
that FGSM alone is not sufficient and additional mitigation
techniques are beneficial. All in all, the victim was able to

TABLE VI: Setup for the experimental test-bed.

CPU (Cores) Memory GPU
Agent AMD EPYC 7302P (32) 32 GB -
Server Intel Xeon E3-1270 v6 (8) 64 GB -
Victim Intel Xeon Skylake IBRS (16) 258 GB ✓
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Fig. 5: Geo-distributed attack using CLUES and FSGM defense over
FashionMNIST. Results with 1 or 3 thieves. FID score achieved by
the stolen cGAN at each 100 rounds averaged over 5 runs.

hinder the theft process using the FSGM mechanism, whilst
sacrificing relatively little performance: the FID of GT ’s
output distribution was increased by only 2.7 for MNIST and
4.95 for FashionMNIST.

A. Geo-distributed deployment: attack and defense

We validate how the distributed stealing and the FGSM
protection behaves by mean of a geo-distributed deployment.
We deploy 1 victim server and 3 thieves, connected over a
WAN network. Table VI reports the hardware characteristcs of
these nodes. Agents run off-the-shelf hardware. The round-trip
network latency between the agents and the server is 13.3ms.
The average response time for one batch of queries consist-
ing of 128 label-noise pairs is 0.42 s and 0.43 s, with and
without FSGM (indicating a relatively neglectable overhead in
applying this defense). Fig. 5 depicts the evolution of the FID
during 900 rounds. We observe how the 3-thieves distributed
attack leads to a better stolen cGAN (i.e., lower FID), and that
the FSGM defense effectively leads to overall poorer results
(i.e., higher FID). Note that the stealing process in this setting
occurs within minutes, which is several orders of magnitude
shorter than the typical time it takes for a commercial model
to be updated, mainly due to operational costs.

B. Adaptive Stealing Attack

To countermeasure adversarial masks applied to the outputs
by the victim, attackers can launch an adaptive attack based
on input transformation. One notable example of such counter-
attack applies the classical JPEG compression algorithm to the
received image, as shown to be effective in counter-balancing
the effects of adversarial attacks [28].2 Both methods are
deployed in parallel: FGSM by the victim, and JPEG as an

2We note that JPEG is not safe from all types of perturbations [58].
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Fig. 6: FGSM defense and adaptive stealing attack: Instead of directly
sending its generation GT (y) to the querying agent, the victim
harnesses some model f (which is typically a publicly available
classifier; in our case, LeNet-5) to craft an adversarial example ➊.
As a countermeasure the attacker preventively runs a compression
scheme ➋ on GT (y).

adaptive attack (see Fig. 6). To apply this adaptive attack, a
thief runs through JPEG the adversarial samples received by
the victim has sent him. Due to time constraints, we only show
results for a subset of the parameters, e.g., for Nq/a=100, 250
and 500. Table V and Fig. 7 show these results. We observe
how, in terms of FID score, results improve (overall lower FID
scores), while however going higher than the application of the
FGSM mask (9.14 FID lost on average for MNIST and 3.29
for FashionMNIST). The reasons are twofold: (i) since JPEG
uses lossy compression, it lowers the quality of the sample
against which the agent computes update gradients; (ii) FGSM
introduces noise on the picture that cannot be un-made unless
the mask is known, further degrading the sample quality.

A 3 : Using a single step of FGSM, the victim was able
to severely alter the quality of the stolen model’s outputs.
However, it did not stop the learning process since the FID
of the thief improves when increasing Nq/a. Additionally, the
federated thieves can recover some performance by running
the adversarial samples through JPEG.

C. Defense through sample watermarking

Studies have proposed various strategies to combat deep-
fakes, including the use of adversarial watermarks [34],
steganography GANs [49], adaptive blind image watermark-
ing [31], and visible watermarking using GANs [48]. These
techniques demonstrate applications in scenarios where only
generated images are accessible, such as verifying the own-
ership of GANs. Diverging from the previous sections where
we used a direct defense aiming at undermining the training
process of the colluding thieves, we consider a passive ap-
proach consisting in embedding an artificial fingerprint inside
the victim’s outputs to watermark the stolen model. For each
dataset, we trained an image steganography encoder E and
decoder D, using E to embed fingerprints into the training
data, training a generative model with its original protocol, and
finally decoding the fingerprints from the generated deepfakes.
Because the model being trained in our scenario is that of the
thieves, the training data being encoded are actually the query-
replies of the service API, i.e., the victim’s outputs (see Fig. 8).
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Baseline + FGSM 
10 501 : 10 501

50
0

10
00

30
00

10 501 :

50
0

10
00

30
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Fig. 7: Thief generated images of two classes in baseline and when the
victim applies a FGSM mask on its outputs. Victim generations are
shown on the lower end. For the FGSM case, the absolute magnitude
of each pixel’s adversarial modification is represented in green.

In practice, the decoder for the artificial fingerprints along
with the fingerprinting encoder and the unique fingerprints
assigned to different models, is privately maintained by the
model inventor or the entity responsible for maintaining the
generative model. This setup allows the model inventor to have
control over the decoding process and enables them to verify
the origin of generated content in case of potential misuse
or attribution needs. In this case, the victim’s defense is the
liability of the thief generator provided by model attribution
which solely consists in the ability of the decoder to recover
the finger print from thief-generated-samples. Fingerprints are
represented as binary vectors of length n=100 as per [67]. We
use bitwise accuracy between the embedded fingerprint and the
one recovered by D to evaluate the detection accuracy.

For various pairs of (Nq/a, Na) we run CLUES 5 times
with different fingerprints and queries (135 runs in total) for
900 rounds and retained the best average bitwise accuracy
over 2048 samples generated by GA

c every 100 rounds. Further
details about our implementation and experiment parameters
can be found in the supplementary material refered to in
§IV-A. We found that the detector could never recover the
embedded fingerprint with a bitwise accuracy exceeding 60%
(50% is the accuracy of random guessing). A potential reason
for this poor performance lies in the fact that the thief
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Fig. 8: Watermarking defense: (step ➊) During the stealing process,
the victim-generation GT (y) is fingerprinted with an encoder E be-
fore responding to the querying user. Thieves train with fingerprinted
samples (not shown) and become watermarked. Once the central
attacking server reaches a satisfactory stolen model GA

c (step ➋),
it deploys it to generate samples with an embedded fingerprint
unbeknownst to the thieves. The victim then feeds the samples to
a decoder D, which recovers a fingerprint. This fingerprint allows
for a claim of ownership over GA

c in the event of a match.

generator is not trained in its original protocol as described
in §II whereas it is seen as a prerequisite by [67].

A 4 : Using a watermarking scheme as a passive defense, the
victim was not able to recover its fingerprints in the samples
generated by the stolen models.

VI. RELATED WORK

Machine learning models publicly hosted are under con-
tinuous threat [17], [21], [55]. Several studies [52] focus on
attacks and defenses against model stealing. However, model
extraction attacks have been studied and demonstrated mainly
on classifier models (e.g., decision trees, logistic regressions,
SVMs, DNNs) [35], [54]. To the best of our knowledge, we are
the first to showcase effective model stealing attacks against
cGANs in a distributed and federated manner. In the reminder,
we summarize model stealing applied to GANs and cGANs,
to other types of learning models, and other types of stealing
attacks. Attempts to tackle the model stealing problem under
a crypto-analytics perspective [20] is out of scope.

Stealing GANs & cGANs. A few studies demonstrate how
to launch model stealing attacks against GAN models [32],
[59] in a centralized manner. GANs are scrutinized against
other privacy vulnerabilities. We note how membership infer-
ence attacks [22], [70] are particularly severe, in particular
given how GANs are applied to domains such as medical
imaging [65], where malicious users can partially reconstruct
the medical history of patients. Attribute inference attacks on
GAN try to infer private attributes of a data record based on
other public attributes that are easily accessible. However these
alone do not allow for a full model reconstruction.

Stealing other types of models. Several studies exist about
stealing classifiers based on DNNs [23], [66]. These attacks
assume having access to the real data to query the target
classifier, achieving high fidelity and accuracy. The data-free
stealing attacks [37], [72] consider more realistic scenarios
where attackers need to generate the synthetic images for
querying the target models. To protect against such attacks,
typical defenses include prediction poisoning [53] or adver-
sarial perturbations [69], along the same lines shown in §V.
In [26], authors explain how to launch a model stealing attack
against decision tree models, specifically optimized for face-
recognition. Simple counter-measures [42] include a privacy-
aware decision tree training algorithm, as well as revealing
only rounded confidence values.

Authors of [57] demonstrate how to steal graph neural
networks models or their internal links [68]. To protect against
such attacks, authors show the effectiveness of deceptive
perturbations [57]. Additional types of stealing attacks against
diverse models exist, e.g., against deep reinforcement learning
models [23], collaborative inference [30], BERT-like language
processing [40] or even ensemble models [44].

VII. CONCLUSION AND FUTURE WORK

While synthetic data generation services are increasingly
widespread, the concerns and risks of generative models
being stolen increases. We consider a realistic adversarial
scenario, with multiple model thieves colluding to steal a
target victim model. We propose CLUES, the first collusive
stealing strategy designed for conditional generative adver-
sarial networks (cGANs), consisting of two phases, namely
querying victim cGANs and training stolen cGANs. To train
the stolen cGAN, we design an optimization algorithm that
minimizes the distance of synthetic images between the victim
and the stolen cGAN. We contribute a distributed model
attack, where thieves train the stolen cGAN in a federated
manner by aggregating local model updates periodically. We
evaluate CLUES on several datasets of different degrees of
complexity, demonstrating the effectiveness of our proposed
collusive model stealing. Our experimental results highlight
that the stolen cGANs can achieve FID scores as good as the
victim cGAN. Based on our findings, we examine the efficacy
of defense mechanisms in deploying generative models, while
highlighting the overheads of potential counter-measures.

We plan to extend this work along these directions. First,
we aim to investigate an asynchronous paradigm where the
aggregating server does not wait for all thieves’ local updates,
potentially speeding up the outcome but at the expense of
straggler nodes’ computing cycles. Secondly, we will consider
generators for additional data types (i.e., audio, text), utilizing
widely adopted diffusion-based models.
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