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A B S T R A C T

Background: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the
progressive loss of motor neurons in the brain and spinal cord. The fact that ALS’s disease course is highly
heterogeneous, and its determinants not fully known, combined with ALS’s relatively low prevalence, renders
the successful application of artificial intelligence (AI) techniques particularly arduous.
Objective: This systematic review aims at identifying areas of agreement and unanswered questions regarding
two notable applications of AI in ALS, namely the automatic, data-driven stratification of patients according to
their phenotype, and the prediction of ALS progression. Differently from previous works, this review is focused
on the methodological landscape of AI in ALS.
Methods: We conducted a systematic search of the Scopus and PubMed databases, looking for studies on
data-driven stratification methods based on unsupervised techniques resulting in (A) automatic group discovery
or (B) a transformation of the feature space allowing patient subgroups to be identified; and for studies on
internally or externally validated methods for the prediction of ALS progression. We described the selected
studies according to the following characteristics, when applicable: variables used, methodology, splitting
criteria and number of groups, prediction outcomes, validation schemes, and metrics.
Results: Of the starting 1604 unique reports (2837 combined hits between Scopus and PubMed), 239 were
selected for thorough screening, leading to the inclusion of 15 studies on patient stratification, 28 on prediction
of ALS progression, and 6 on both stratification and prediction. In terms of variables used, most stratification
and prediction studies included demographics and features derived from the ALSFRS or ALSFRS-R scores,
which were also the main prediction targets. The most represented stratification methods were K-means,
and hierarchical and expectation-maximisation clustering; while random forests, logistic regression, the Cox
proportional hazard model, and various flavours of deep learning were the most widely used prediction
methods. Predictive model validation was, albeit unexpectedly, quite rarely performed in absolute terms
(leading to the exclusion of 78 eligible studies), with the overwhelming majority of included studies resorting
to internal validation only.
Conclusion: This systematic review highlighted a general agreement in terms of input variable selection for
both stratification and prediction of ALS progression, and in terms of prediction targets. A striking lack of
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validated models emerged, as well as a general difficulty in reproducing many published studies, mainly
due to the absence of the corresponding parameter lists. While deep learning seems promising for prediction
applications, its superiority with respect to traditional methods has not been established; there is, instead,
ample room for its application in the subfield of patient stratification. Finally, an open question remains on
the role of new environmental and behavioural variables collected via novel, real-time sensors.
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1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative
disorder characterised by the progressive loss of motor neurons in the
brain and spinal cord. Its heterogeneity, due to the interaction of many
different, mostly unknown genes and pathophysiological processes, is
one of the main obstacles to the development of effective therapies [1].
Moreover, the inability to make accurate predictions of disease pro-
gression hampers the possibility to effectively plan therapeutic and
supportive interventions, and therefore to optimise schedules of med-
ical appointments and evaluations. The possible solutions proposed to
address ALS’s extreme prognostic variability are substantially two: the
search for reliable biomarkers that could reduce diagnostic delay and
improve personalised medicine [2], and the development of robust
predictive models based on clinical and biological data [3]. At present,
the main prognostic model of ALS survival is based on a European
multi-centre study (N = 11,475) [4]. Several papers have also been
published addressing ALS disease progression prediction and patient
stratification, based on machine learning methods and, more in general,
on artificial intelligence (AI). Although their reported performance is
promising, the adoption of these methods in clinical practice is limited
by a series of challenges that are typical of the use of AI in practical
scenarios. In particular, a fundamental aspect that needs to be taken
into account is the ability of these methods to generalise, i.e., to work
well on previously unseen subjects whose data have not been used to
train the model. Therefore, it is crucial that models be suitably tested
on independent datasets.

In this work, we present a systematic review of the literature focused
on models and methods to stratify ALS patients and predict disease
progression, highlighting the variables used, the different prediction
outcomes or stratification categories, as well as the methodological
framework used to validate the models. In total, more than 2800 reports
were screened, and 49 studies included in the systematic review: 15
on patient stratification, 28 on progression prediction, and 6 on both
stratification and progression prediction. We aim at identifying areas of
agreement and unanswered questions, highlighting how AI can address
open issues in the field, and at suggesting directions for future research.

2. Methods

2.1. Search strategy and selection criteria

We conducted a systematic review of AI and statistical methods for
patient stratification and prediction of ALS progression. Specifically,
we focused on data-driven stratification methods based on unsuper-
vised group discovery or on profile-identifying transformations, and on
strictly predictive models of ALS progression that had been (internally
or externally) validated.

We searched the Scopus and PubMed databases, and applied the
following inclusion criteria (for detailed keyword lists, please see the
Supplementary Materials, Section S-1).

1. English-language journal articles or conference papers published
between January 1st, 2012 and June 25th, 2021.

2. Name of the disease present in its extended form, i.e., ‘‘amy-
otrophic lateral sclerosis’’, in either the title or abstract.

3. Indication that stratification or prediction of progression had
been conducted (e.g., via the presence of keywords such as
2

‘‘prediction’’, ‘‘stratification’’, or ‘‘profiling’’). p
4. Indication that AI, machine learning, or statistical methods had
been used (e.g., via keywords such as ‘‘model’’, ‘‘risk score’’,
or ‘‘deep learning’’), or that environmental variables had been
considered.

5. Mention of human subjects (e.g., via keywords such as ‘‘patient’’
or ‘‘subject’’) and no terminology related to animal models of
ALS (e.g., via keywords such as ‘‘animal testing’’ or ‘‘mice’’).

Then, we excluded all reports that passed the initial selection via query,
but had at least one of the following characteristics.

A1. Unavailable full text.
A2. Study on ALS vs. controls.
A3. Study on ALS vs. other diseases or in the context of other

diseases.
A4. Animal studies or in-vitro models.
A5. No ALS or no patients with ALS (e.g., focus on caregivers).
A6. Not English language.
A7. Not journal or conference paper.
A8. Review, meta-analysis, or study protocol.
A9. Study on ALS patients, but not focused on stratification or pre-

diction of progression (e.g., onset prediction, lesion segmenta-
tion, electroencephalography studies).

A10. Treatment efficacy or side effects study.

Finally, we only retained studies describing the following.

B1. Data-driven stratification methods based on unsupervised tech-
niques resulting in (A) automatic group discovery (e.g., clusters
or trajectories); or (B) a transformation of the feature space
allowing a patient subset to be characterised according to indi-
vidual features, patterns, components, or spatial densities.

B2. Prediction methods subject to, at least, (A) internal validation
via an estimate of the generalisation error (e.g., cross-validation
or bootstrap) or via a hold-out set, i.e., a portion of the initial
dataset that was not used for model development but set aside
for evaluation; or (B) external validation on a different dataset
from the one used for model development.

.2. Data analysis

All authors contributed to devising the queries and further re-
inement steps; ET and CR ran the queries and removed duplicate
same DOI) and retracted entries; ET, EL, MV, HA, IT, CR, ASM,
NC, RB, DFS, AG, GB, DP, AD, PF, SM, and BDC read, evaluated,
nd classified the studies according to the presence of stratification
r prediction-of-progression methods. These authors initially read a
andomly-assigned subset of reports checking for clear-cut reasons for
xclusion and providing a preliminary classification. In case of doubts
r ambiguities, at least another author, almost always from another
nstitution, provided his or her opinion. ET, EL, and MV considered
ll the opinions and resolved all the remaining conflicts. During the
ata collection process, HA, ASM, ENC, RB, DFS, and SM thoroughly
xamined the reports classified as describing stratification methods; ET,
L, MV, IT, CR, AG, and BDC those describing prediction-of-progression
ethods. Furthermore, GB and PF examined the reports specifically

ocused on deep learning; and DP, PB, and AD those about environ-
ental variables. Overall, at least two authors read each document. We

ollected the following data from each included study: dataset, dataset
vailability, sample size, variable categories, use of longitudinal data,

rediction outcome, prediction method category, prediction validation
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type, prediction validation scheme, prediction validation metric, strat-
ification method category, stratification criteria category, and number
of stratified groups.

We collected the aforementioned information in a main table (Ta-
ble 1) sorted by Aim, with stratification-only studies at the beginning,
tudies dealing with both stratification and prediction of progression in
he middle, and prediction-only studies at the end.

Starting from the main table (Table 1), we produced a number
f pivot tables to further describe the selected studies from multiple
elevant points of view: the variables used for stratification (Table S-2,
eported in the Supplementary Materials) and prediction of progres-
ion (Table S-4, reported in the Supplementary Materials); the specific
ethods used (Tables S-1 and S-3, respectively, reported in the Supple-
entary Materials); the splitting criteria and number of groups found

n stratification studies (Table 2); the outcomes (Table 3), validation
chemes (Table 4), and metrics (Table 5) found in prediction studies.
ach pivot table expands the categories reported in the main table into
ore detailed subcategories.

.3. Risk of bias

We identified the following main sources of risk of bias: the limited
umber of available datasets (correlated to the low prevalence of ALS),
he types of laboratory and other tests that are performed in routine
are vs. in the context of exploratory studies, and the overwhelming
endency to publish meaningful rather than inconclusive results. These
isks, while non-negligible, are mitigated by the fact that this systematic
eview does not aim at quantifying a clinically-relevant endpoint, but
t describing the current state of the art of the methodology, which, by
efinition, includes all the above-mentioned aspects.

.4. Registration information and study protocol

Details of the protocol for this systematic review were registered on
ROSPERO (ID: CRD42021288026) and can be accessed at www.crd.
ork.ac.uk/PROSPERO/display_record.asp?ID=CRD42021288026 [53].

.5. Role of the funding source

The study was supported by the Horizon 2020 project BRAIN-
EASER (Bringing Artificial Intelligence home for a better care of
myotrophic lateral sclerosis and multiple sclerosis). BRAINTEASER
as received funding from the European Union’s Horizon 2020 research
nd innovation programme under grant agreement No. GA101017598
start date 01/01/2021).

The funder of the study had no role in study design, data collection,
ata analysis, data interpretation, or writing of the report.

. Results

.1. Report screening and filtering

Report screening and filtering are summarised in Fig. 1. The queries
elected 2837 reports in total (1402 from PubMed and 1435 from
copus). After removing duplicates (1230 reports) and retracted articles
3 reports), 1604 reports were retained for the first screening phase.
uring the first screening phase, 13 reports were excluded because

t was not possible to retrieve their full text. The remaining 1591
eports were assessed for eligibility to be included in the analysis.
uring this step, 1352 reports were excluded because they met one
f the exclusion criteria reported in Section 2.1 (A2–A10). In total,
39 studies were selected in this initial screening step: 127 studies on
LS patient stratification with no prediction of progression, 63 studies
ith prediction of ALS progression but no patient stratification, and 49

tudies with both patient stratification and prediction of progression.
3

he selected studies were then filtered according to criteria B1 and B2.
112 studies were excluded from patient stratification with no prediction
of progression because they did not meet criterion B1. Of the studies
initially assigned to both stratification and prediction of progression, 7
studies were moved to the set of on prediction of progression without
stratification based on B1, and other 36 studies were removed from
the analysis because neither B1 nor B2 were satisfied. Finally, 42
studies were excluded from those on prediction of ALS progression
without patient stratification because they did not meet criterion B2. In
total, 49 studies were included in the systematic review: 15 on patient
stratification without prediction of progression, 6 on both stratification
and prediction of progression, and 28 on prediction of progression
without patient stratification (including the aforementioned 7 studies
with prediction of progression but non-data-driven stratification; see
criterion B1). The characteristics of each study included in the system-
atic review are summarised in Table 1. Fig. 2 reports the identified
works stratified by publication year and aim.

3.2. Data-driven stratification methods

In this section, we summarise the current trends in data-driven
stratification of ALS patients. Specifically, we, first, focused on the
splitting criteria most frequently used in the literature, and the resulting
number of groups, which may serve as a useful starting point for further
studies. Then, we compiled an exhaustive list of the methodologies used
to identify or characterise the groups, as well as the variables upon
which the clustering was based.

In doing so, a total of 21 studies on ALS stratification were selected,
with 15 of them meeting only stratification criteria, and 6 including
both stratification and prediction. As mentioned above, the main topics
of analysis were the splitting criteria for stratification, the number
of groups discovered, the data-driven methods applied, and the input
variables.

A summary of the splitting criteria is presented in Table 2. Eight
studies (38%) identified between 2 and 6 groups based on functional
decline measures, such as the decrease in ALSFRS in a given time
period, the rate of bulbar decline, and the ALSFRS-R trajectory. Two
studies (10%) found 3 patient groups according to SNIP respiratory
measurements and FVC trajectories. Two studies (10%) also performed
stratification according to survival measures, namely survival rate, time
until death, tracheostomy, or NIV. Stratification according to clinical
profiles was performed in three studies (14%), with two of them
encountering 3 groups based on cognitive and behavioural profile, as
well as one study performing a 3-way stratification through prognos-
tic, respiratory, and functional profiling. Additionally, one study (5%)
found 4 patient groups according to a stimuli response measure, and
another (5%) found 3 groups based on biomarker pathology. Finally,
4 studies (19%) had composite splitting criteria, typically combining
ALSFRS-R values with other clinical measures to discover 3 or 4 groups.

The methods used for group discovery are referenced in Table S-1
reported in the Supplementary Materials and in Fig. 3(a). Clustering
techniques, specifically K-means, and hierarchical and expectation-
maximisation clustering, were the most commonly employed (7 studies,
33%), followed by dimensionality reduction techniques (4 studies,
19%) and survival models (4 studies, 19%). UMAP and principal com-
ponent analysis were used to find spatial density and profile-based
groups, respectively. The ENCALS survival model is a tool for survival
time prediction, while RECPAM is a tree-based model that identifies
survival risk groups. Mixed effects models (2 studies, 10%) and mixture
models (2 studies, 10%) were applied for trajectory group identifica-
tion. Trajectory model D50 (2 studies, 10%) maps ALSFRS decline and
identifies disease phases at a given point in time.

Input variables used in the stratification approaches are presented
in Fig. 4(a) and in Table S-2 of the Supplementary Materials. Most
stratification studies (16, 76%) made use of ALS-specific variables such
as the ALSFRS or ALSFRS-R scores, subscores, slopes, and individual
questions, as well as onset site. Diagnostic delay and the revised El
Escorial criteria were used in 4 studies (19%), while the remaining

features were typically study-specific. Demographic features, namely

http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42021288026
http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42021288026
http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42021288026
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Table 1
List of papers included in the systematic review. For each paper, reported data include: the reference, the aim of the paper (S = stratification; P = prediction of progression; S, P
= stratification and prediction), the name or the source of the dataset used, the type of data availability, the dataset’s sample size, the type of variables used, and if longitudinal
variables were used as input features. For papers on prediction of progression the table further reports the outcome of the model, the method category, as well as validation’s
type, scheme, and metric. For papers on stratification, instead, the method category, the criteria category, and the number of groups are reported. For the definition of acronyms,
please see the List of acronyms section.

Ref Aim Dataset Data

Availability

Sample

Size

Variable

Categories

Longitu-

dinal

Data

Prediction of

progression

Stratification

Outcome Method

Category

Validation

Type

Validation

Scheme

Validation

Metric

Method

Category

Criteria

Category

N

groups

[5] S Data of patients

followed at

King’s College

MND Clinic

(London, UK)

Upon request/

private

31 Demographics,

ALS-specific

variables, Other

clinical

measurements,

Previous

pathologies or

comorbidities

No Survival

models

Survival 2

[6] S Data of patients

followed at Jena

University

Hospital (Jena,

Germany)

Upon request/

private

145 ALS-specific

variables

Yes Trajec-

tory

models

Functional

decline

2

[7] S Data of patients

followed at the

Carlo Besta

Neurological

Institute (Milan,

Italy)

NA 102 Previous

pathologies or

comorbidities

No Dimen-

sionality

reduc-

tion

Clinical

profile

3

[8] S Prospective

population-based

registry of

Puglia, Italy

NA 94 Demographics,

ALS-specific

variables,

Previous

pathologies or

comorbidities

No Survival

models

Multiple

criteria

3

[9] S Data of patients

followed at

Beaumont

Hospital (Dublin,

Ireland)

NA 89 Clinical

Measurements

No Cluster-

ing

Stimuli

response

4

[10] S Data of patients

autopsied at

Houston

Methodist

Hospital

(Houston, TX,

USA)

NA 57 ALS-specific

variables

No Cluster-

ing

Biomarker

pathology

3

[11] S Data of patients

followed at the

Carlo Besta

Neurological

Institute (Milan,

Italy)

NA 71 Previous

pathologies or

comorbidities

No Dimen-

sionality

reduc-

tion

Clinical

profile

3

[12] S Japanese

Consortium for

Amyotrophic

Lateral Sclerosis

Reasearch

(JaCALS) registry

NA 465 ALS-specific

variables

Yes Mixed

Effects

Models

Functional

decline

4

[13] S French register

of ALS (FRALim)

NA 322 Demographics,

ALS-specific

variables

No Survival

models

Multiple

criteria

4

[14] S Data of patients

followed at the

University of

Bari Aldo Moro

MND Centre

(Bari, Italy)

NA 100 Demographics,

ALS-specific

variables,

Clinical

Measurements

No Survival

models

Respira-

tory

function

3

(continued on next page)
4
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Table 1 (continued).
[15] S NA NA 54 Clinical

Measurements

Yes Mixed

Effects

Models

Functional

decline

2

[16] S Data of patients

followed at Jena

University

Hospital (Jena,

Germany)

Open 156 ALS-specific

variables

Yes Trajec-

tory

models

Functional

decline

3

[17] S Trophos, Exonhit

and the Pooled

Resource

Open-Access ALS

Clinical Trials

(PRO-ACT)

datasets, data of

patients followed

at Pitié

Salpètrière

Hospital

Assistance

Publique des

Hôpitaux de

Paris (Paris,

France)

Open 3756 Demographics,

ALS-specific

variables,

Anthroprometrics

No Dimen-

sionality

reduc-

tion

Functional

decline

3

[18] S ONWebDUALS

dataset (Lisbon

patients only)

NA 473 ALS-specific

variables

Yes Cluster-

ing

Functional

decline

3

[19] S PRO-ACT, Penn

Integrated Neu-

rodegenerative

Disease Database

Open 7461

(PRO-

ACT),

837

(Penn)

ALS-specific

variables,

Clinical

Measurements

Yes Mixture

models

Respira-

tory

function

3

[20] S, P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal).

Upon request/

private

1360 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

No FVC Classifi-

cation

Internal Repeated

K-fold

cross-

validation

Sensitivity,

Specificity,

AUROC

Cluster-

ing

Clinical

profile

2-4

[21] S, P The Trophos and

the Exonhit

datasets from

the Northeast

ALS Consortium.

PRO-ACT. Data

of patients

followed at Pitié

Salpètrière

Hospital

Assistance

Publique des

Hôpitaux de

Paris (Paris,

France)

Open 5220 Demographics,

Clinical

measurements,

Anthropometrics

(Prediction only),

ALS-specific

variables

No Survival Classifi-

cation

External External

dataset

Accuracy,

Sensitivity,

Specificity,

Precision,

F1, Balanced

accuracy,

AUROC

Dimen-

sionality

reduc-

tion

Survival 3

[22] S, P PRO-ACT. Open 2424 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics

(Stratification

only),

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

FVC

Regres-

sion

Internal Holdout

set

R-squared,

RMSE,

Expected/

observed

comparison

Cluster-

ing

Multiple

criteria

4

(continued on next page)
gender and age at onset or baseline, were also commonly used (9
studies, 43%). Nine studies (43%) include other clinical measurements,
most commonly FVC (7 studies, 33%), pulse and blood pressure (3
studies, 14%), with the remaining features being study-specific. Five
5

studies (24%) used anthropometric variables, 4 (19%) of which in-
cluding weight. Laboratory measurements and presence of previous
pathologies and comorbidities were included in 2 (10%) and 4 (19%)
studies, respectively.
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Table 1 (continued).
[23] S, P PRO-ACT. The

Irish National

ALS Register.

The Piemonte

and Valle

d’Aosta

Amyotrophic

Lateral Sclerosis

(PARALS)

register.

Open 10723

(PRO-

ACT),

1479

(Irish

National

ALS

Register

and

PAR-

ALS)

Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

Survival

Regres-

sion,

Survival

Internal

and

External

Holdout

set,

External

dataset

C-index,

RMSE,

Pearson’s

correlation

Cluster-

ing

Multiple

criteria

4

[24] S, P PRO-ACT. Open 338 ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R

Classifi-

cation

Internal Holdout

set

AUROC Mixture

models

Functional

decline

2

[25] S, P PRO-ACT. Open 2590 ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R

Classifi-

cation

Internal Holdout

set

Accuracy,

F1, MAE

Cluster-

ing

Functional

decline

4-6

[26] P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal).

Upon request/

private

1375 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

Yes FVC Classifi-

cation

Internal Repeated

K-fold

cross-

validation

Sensitivity,

Specificity,

AUROC

[27] P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal).

Upon request/

private

1214 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

FVC

Proba-

bilistic

graph

Internal K-fold

cross-

validation

Accuracy,

Sensitivity,

AUROC

[28] P The Piemonte

and Valle

d’Aosta

Amyotrophic

Lateral Sclerosis

(PARALS)

register.

Upon request/

private

683 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

Yes Survival Classifi-

cation

Internal Holdout

set

AUROC,

AUPRC

[29] P PRO-ACT. Upon request/

private

3772 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

FVC

Classifi-

cation,

Proba-

bilistic

graph

Internal K-fold

cross-

validation

Accuracy

[30] P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal)

Upon request/

private

1220 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

Yes FVC Classifi-

cation

Internal Repeated

K-fold

cross-

validation

Accuracy,

Sensitivity,

Specificity,

AUROC

[31] P PRO-ACT. Open 4957 Demographics,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R, FVC,

Survival

Proba-

bilistic

graph

Internal K-fold

cross-

validation

AUROC,

Expected/

observed

comparison

(continued on next page)
3.3. Predictive models of ALS progression

In this section, we present an overview of the literature landscape of
predictive models of ALS progression with the double aim of describing
the current trends in this field, and providing a synthesis of the main
coordinates needed for the development of a new model building upon
6

the existing state of the art. Hence, first we focused on the clinical
outcomes that are most frequently predicted, both to summarise the
most relevant aspects of ALS’ prognosis, and to highlight potential
gaps. Then, we analysed the used methodologies, identifying the most
relevant frameworks (e.g., classification, survival analysis) for each

outcome, as well as the variables selected as predictors. Finally, given
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Table 1 (continued).
[32] P Data of patients

treated at the

University of

Pennsylvania

Comprehensive

ALS Center

(Philadelphia,

PA, United

States).

Upon request/

private

765 Demographics,

ALS-specific

variable

No Survival Classifi-

cation

Internal

and

External

K-fold

cross-

validation,

External

dataset

Sensitivity,

Specificity,

Precision,

NPV,

AUROC,

Chi-squared

test,

Hosmer–

Lemeshow

test

[33] P Data from the

Gene Expression

Omnibus (GEO)

repository

(GSE112676 and

GSE112680).

Open 396 Demographics,

ALS-specific

variable

No Survival Survival Internal Repeated

K-fold

cross-

validation

C-index

[34] P Data of patients

treated at the

San Raffaele

Hospital in

Milan (Milano,

Italy).

Upon request/

private

149 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

No Survival Survival Internal K-fold

cross-

validation

AUROC

[4] P Data of patients

treated in 14

specialised ALS

centres in

Belgium, France,

the Netherlands,

Germany,

Ireland, Italy,

Portugal,

Switzerland, and

the UK.

Upon request/

private

11475 Demographics,

ALS-specific

variables,

Previous

pathologies or

comorbidities

No Survival Survival Internal

and

External

Leave-one-

dataset-out

cross-

validation

AUROC,

Calibration

plot,

Calibration

slope

[35] P Data of patients

treated at the

Sunnybrook

Research

Institute

(Toronto,

Canada).

Upon request/

private

64 Clinical

measurements

No ALSFRS

or

ALSFRS-

R

Classifi-

cation

Internal Repeated

K-fold

cross-

validation

Accuracy

[36] P Data of patients

treated at the

Emory ALS

Clinic (Emory

University

Hospital, Atlanta,

GA, United

States).

Upon request/

private

801 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

No Survival Regres-

sion,

Classifi-

cation

Internal K-fold

cross-

validation

AUROC,

R-squared,

RMSE

[37] P Data of patients

treated at

Department of

Neurology, West

China Hospital

of Sichuan

University

(Chengdu,

Sichuan

province, China).

Upon request/

private

553 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

No Survival Classifi-

cation

Internal Holdout

set

AUROC

[38] P PRO-ACT. Open 4346 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes FVC Regres-

sion

Internal

and

External

K-fold

cross-

validation,

External

database

R-squared,

RMSE

(continued on next page)
7
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Table 1 (continued).
[39] P PRO-ACT. Open 9924 Demographics,

Quantitative

laboratory

measurements,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

FVC

Proba-

bilistic

graph

Internal Holdout

set

MSE,

Expected/

observed

comparison

[40] P PRO-ACT. Open 8635 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R,

Survival

Regres-

sion,

Classifi-

cation

Internal K-fold

cross-

validation

AUROC,

Normalised

RMSE

[41] P PRO-ACT. Open 3742 Demographics,

Clinical

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R

Regres-

sion

Internal

and

External

Holdout

set,

External

dataset

RMSE

[42] P Data of patients

treated at the

NEMO

(NEuroMuscolar

Omnicentre)

Clinical Centre.

Upon request/

private

428 Demographics,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

No Survival Survival Internal

and

External

Holdout

set,

External

dataset

AUROC,

Expected/

observed

comparison

[43] P The Irish

National ALS

Register.

Upon request/

private

204 ALS-specific

variables

No Survival Survival Internal

and

External

Holdout

set,

External

dataset

Precision,

NPV,

Expected/

observed

comparison

[44] P PRO-ACT. Open 1822 Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R

Regres-

sion

Internal Holdout

set

RMSE,

Pearson’s

correlation

[45] P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal).

Upon request/

private

517 Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables

Yes FVC Classifi-

cation

Internal Repeated

K-fold

cross-

validation,

Holdout

set

AUROC

[46] P PRO-ACT. Open 1822 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

Anthropometrics,

ALS-specific

variables,

Previous

pathologies or

comorbidities

Yes ALSFRS

or

ALSFRS-

R

Regres-

sion

Internal Holdout

set

RMSE,

Pearson’s

correlation

[47] P PRO-ACT. Open 1197 Anthropometrics,

ALS-specific

variables

Yes ALSFRS

or

ALSFRS-

R

Classifi-

cation

Internal Holdout

set

Accuracy

(continued on next page)
the importance of validating new predictive models and comparing
them to existing benchmarks, we focused on the validation techniques
and metrics used to measure model performance in the literature.
8

The selected studies on ALS progression prediction were in total 34
(28 prediction of progression only, and 6 stratification and prediction).
As previously stated, these studies were analysed with a focus on
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Table 1 (continued).
[48] P The South-East

England

Amyotrophic

Lateral Sclerosis

(SEALS)

population

register.

Upon request/

private

713 Demographics,

ALS-specific

variables

No Survival Survival Internal Holdout

set

Expected/

observed

comparison

[49] P Database of the

ALS Clinic in

Lisbon, Medical

Academic Centre

of Lisbon

(Lisbon,

Portugal).

Upon request/

private

1110 NA Yes FVC Classifi-

cation

Internal Holdout

set

AUROC

[50] P Patients treated

at the clinic for

motor neuron

diseases of the

University

Medical Center

Utrecht (UMCU)

Upon request/

private

268 Demographics,

Clinical

measurements,

ALS-specific

variables,

Previous

pathologies or

comorbidities

No Survival Classifi-

cation

Internal Holdout

set,

External

dataset

Accuracy

[51] P PRO-ACT. Open 1936 Demographics,

Clinical

measurements,

Quantitative

laboratory

measurements,

ALS-specific

variables

Yes Survival Classifi-

cation

Internal K-fold

cross-

validation

Accuracy,

AUROC,

C-index,

MAE

[52] P Data of patients

treated at the

outpatient clinic

for motor

neuron diseases

of the University

Medical Center

Utrecht (Utrecht,

the Netherlands).

Upon request/

private

135 Demographics,

Clinical

measurements,

ALS-specific

variables,

Previous

pathologies or

comorbidities

No Survival Classifi-

cation

Internal Holdout

set

Accuracy
the considered outcome, the method used, the input variables, the
validation method and the performance metrics.

The considered outcomes are summarised and referenced in Table 3.
Twelve studies (35%) focused on the prediction of ALSFRS or ALSFRS-
R score, subscores, or slope, with prediction horizons ranging between
3 and 36 months. Twelve studies (35%) considered some outcomes
related to the respiratory function and interventions, e.g., FVC, need of
NIV, respiratory insufficiency, or tracheostomy. A few studies focused
on predicting progression trajectories (2 studies, 6%) or a slow/fast
progression class (1 study, 3%). Death was considered as a target
outcome in 16 studies (47%).

Concerning the methodology used, 8 studies (24%) approached the
problem as a regression task (prediction of a numerical outcome). The
approaches more commonly used for regression problems were linear
regression and GLM (3 studies, 38%), random forest (8 studies, 100%),
and other tree-based models (5 studies, 63%). SVM was used only in
2 studies (25%). Nineteen studies (56%) focused on a classification
problem (prediction of a categorical outcome). The methodologies
most commonly used for tackling classification problems were logistic
regression (8 studies, 42%), naïve Bayes (5 studies, 26%), SVM (4
studies, 21%), random forest (9 studies, 47%), and other tree-based
methods (6 studies, 32%). One study considered an ensemble classifier
including naïve Bayes, logistic regression, and decision trees. Five
studies (26%) investigated deep learning approaches based on deep
neural networks (NN), e.g., LSTM, recurrent NN, convolutional NN,
and dense multilayer NN. In 7 studies (21%), the prediction task was
framed as a survival analysis task, with most of the studies using the
Cox proportional hazard model (5 studies, 71%). Finally, 3 studies (9%)
9

proposed a probabilistic graphical model based on dynamic Bayesian
networks. The methods used for predicting progression are referenced
in Table S-3 of the Supplementary Materials and in Fig. 3(b).

Table S-4 of the Supplementary Materials and Fig. 4(b) show the
full list of variables that were used as inputs to at least one of the
analysed predictive models. These variables included demographics
(e.g., age, ethnicity, gender), clinical measurements collected during
routine visits (e.g., pulse, blood pressure, respiratory rate), quantitative
laboratory measurements (e.g., white blood cell count, albumin, choles-
terol, triglycerides levels), anthropometric measurements (e.g., height,
weight), ALS-specific variables related to disease onset and progression
(e.g., ALSFRS scores, need of NIV, FVC), and previous pathologies or
comorbidities (e.g., diabetes, frontotemporal dementia, cardiovascular
diseases). The variables most frequently used were age at onset, ALSFRS
(or ALSFRS-R) score, and onset site, used by 74%, 71%, and 68% of the
models, respectively. The frequency of use of the other variables was
below 50%, with most variables used by just one or two models.

Internal or external validation was one of the inclusion criteria of
this systematic review. As summarised in Table 4, 25 studies, i.e., 74%
of the total, included only an internal validation, performed on a
holdout dataset (12 studies, 48%), via K-fold cross validation (6 studies,
24%), or via a repeated K-fold cross-validation scheme (7 studies, 28%).
One study (3%) included only an external validation. Just 8 studies,
i.e., the 24% of the total, included both internal and external validation.

The performance metrics used for model assessment are reported in
Table 5. For regression models, model performance was most frequently
assessed by the root mean squared error (100%), followed by Pearson’s
correlation (50%) and R-squared (38%). For classification models, all
the studies assessed discrimination ability, most commonly using the
area under the receiver-operating characteristic curve (AUROC; 68%).
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Fig. 1. PRISMA flowchart summarising the steps of the screening process with details about the number of reports selected by the initial query, the number of reports excluded
at each screening step, and the number of studies finally selected for the review.
Other discrimination metrics were: accuracy (47%), sensitivity and
specificity (26%), mean absolute error (16%), precision (11%), F1-score
(11%), negative predictive value (NPV, 5%), area under the precision–
recall curve (5%) and C-index (5%). The calibration of the models was
assessed only by one study using the Hosmer-Lemeshow test. Survival
models were assessed using C-index (29%), AUROC (43%), precision
(14%), and NPV (14%) as discrimination metrics. Four survival stud-
ies (57%) also assessed model calibration using expected/observed
comparison or calibration plot and slope. Finally, the performance
metrics used for probabilistic graphical models were: AUROC (67%),
expected/observed comparison (67%), accuracy and sensitivity (33%),
and mean squared error (33%).
10
4. Discussion

Neurodegenerative diseases such as ALS are characterised by multi-
morbidity and progressive impairment involving all neurological func-
tions. Patients have to manage an increasing need for care at home
and alternated periods in hospitals, leading to feelings of uncertainty
regarding their future (e.g., in terms of timing of disease phases), often
exacerbated by increasing psychological and economic burdens. At the
same time, clinicians would benefit from additional tools aimed at sup-
porting their patients through the phases of the disease, e.g., as an aid
to personalise treatment regimens or get alerts on urgent interventions,
and aid clinical trial design and analyses.
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Fig. 2. Number of identified studies by publication year. Studies on prediction of progression only are displayed in light green, studies on stratification and prediction of progression
in dark green, and studies on stratification only in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Table 2
Summary of the splitting criteria used in the identified stratification models. In particular, splitting criteria are grouped in more general splitting criteria categories
(first column). Then, for each specific criterion, the number of groups considered is reported as well as the references to the papers using that criterion. Finally,
the last column reports the number of papers using each criterion and, in brackets, the percentage of papers using each criterion, relative to the total number
of stratification papers (i.e., 21). For the definition of acronyms, please see the List of acronyms section.

Splitting criteria
category

Splitting criteria Nr. of
groups

Ref. Counts (%)

Functional decline
ALSFRS value decline 2–6 [17], [18], [24], [25] 4 (19%)
Bulbar decline 2 [15] 1 (5%)
ALSFRS-R trajectory 2–4 [6], [12], [16] 3 (14%)

Respiratory function SNIP value 3 [14] 1 (5%)
FVC modelled trajectory 3 [19] 1 (5%)

Survival 1-yr survival rate 3 [21] 1 (5%)
Time to composite outcome (death,
tracheostomy, NIV >23h)

5 [5] 1 (5%)

Clinical profile

Cognitive/Behavioural profile 3 [7], [11] 2 (10%)
Prognostic profile 2 [20] 1 (5%)
Functional profile 2 [20] 1 (5%)
Respiratory profile 4 [20] 1 (2%)

Stimuli response Average auditory mismatch negativity
(MMN) delay

4 [9] 1 (5%)

Biomarker pathology TDP-43 pathology 3 [10], 1 (5%)

Multiple criteria Multiple criteria, such as:
ALSFRS/ALSFRS-R, FVC.

3–4 [8], [13], [22], [23] 4 (19%)
Thus, being able to predict the progression path of ALS patients
is extremely important to improve prognostication and intervention-
timing in routine clinical practice. Moreover, clinical trials could be
more effectively designed, e.g., by ensuring the allocation of equivalent
expected-outcomes populations to the various intervention arms of a
trial, or by allowing a more accurate estimation of the required sample
size as well as particular needs for the follow-up. Similarly, stratifica-
tion of patients allows for analysing differences in disease management
and medical complications between groups and provides relevant infor-
mation to optimise disease management strategies, including end-of-life
decisions.
11
4.1. Main results and future directions

In this work, we systematically reviewed the literature on models
to stratify ALS patients and predict disease progression. In total, more
than 2800 reports were screened, and 49 studies were included in
the systematic review: 15 on patient stratification without progression
prediction, 28 on progression prediction without patient stratifica-
tion, and 6 on both stratification and progression prediction. Differ-
ently from previous works, we specifically focused on data-driven
stratification methods based on unsupervised group discovery or on
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Fig. 3. Summary of the identified stratification (panel a) and prediction of progression methods (panel b). The coloured bubbles in the right part of each panel represent the
different method categories; the size of each bubble is proportional to the number of studies using a method of that category; intersections between bubbles represent studies using
methods of more than one category. The word clouds to the left of each panel represent the specific methods used by the identified studies; the colour of the word corresponds
to the method category; the size of the word is proportional to the number of studies using that method. For the definition of acronyms, please see the List of acronyms section.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
profile-identifying transformations, and strictly predictive models of
ALS progression.

4.1.1. Patient stratification: summary and perspectives
As for stratification models, we analysed the input variables, the

splitting criteria, and the modelling methodology. The most com-
monly used variables for stratification found in the literature were:
demographics (age at onset or baseline, gender) and anthropometrics
(weight, height, BMI); ALS-specific variables, such as functional scores,
affected regions at onset and throughout the disease course, family
history, treatments, and genetic markers; clinical measurements, mostly
12
related to cardiac and respiratory functions, as well as laboratory
measurements; and neuropsychological measures assessing cognition
and behavioural changes throughout the disease course.

Splitting criteria were most commonly based on functional decline
measures, such as the decrease in ALSFRS score in a given time period,
rate of bulbar decline and FVC trajectory. Few studies also performed
stratification according to survival measures such as time until death,
tracheostomy, or NIV support.

Methods used for stratification included unsupervised clustering for
automatic group discovery, dimensionality reduction for uncovering
patient profiles and spatial-density-based groups, statistical models
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Fig. 4. Summary of the input variables used by the identified stratification (panel a) and prediction of progression (panel b) models. In each word cloud, the colour of the word
corresponds to different categories of input variables, while the size of the word is proportional to the number of studies using that particular input variable. For the definition
of acronyms, please see the List of acronyms section. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 3
Summary of the outcomes considered in the identified prediction of progression models. For each specific outcome the table reports the references, the number of papers and the
percentage of papers (relative to the total number of prediction of progression papers, i.e., 34) using that specific outcome. For the definition of acronyms, please see the List of
acronyms section.

Outcome
category

Outcome Ref. Counts (%)

ALSFRS or ALSFRS-R
Value at given time points (6, 12, 36 months) [27], [29], [25], [41] 4 (12%)
12 months slope of change [22], [40], [47] 3 (9%)
3 to 12 months slope [23], [44], [46] 3 (9%)

ALSFRS subscores
(e.g. bulbar, respiratory, motor)

Value at given time points (6, 12, 36 months) [20], [27], [35] 3 (9%)

Death Yes/No [32], [33], [4], [36], [42] 5 (14%)

FVC Value [38] 1 (3%)
Change between 3 to 12 months [22] 1 (3%)

Need of NIV

After 90 days [26], [20], [30], [49], [45] 5 (14%)
After 180 days [26], [30], [45] 3 (9%)
After 365 days [26], [30], [45] 3 (9%)
Without window [33], [4] 2 (6%)

Patient score trajectories over
time

Evaluated at 12, 24, 36, 42 months [31], [39] 2 (6%)

Respiratory insufficiency Defined as initiation of NIV, FVC < 50% of
predicted, tracheostomy placement, or death

[32] 1 (3%)

Slow/Fast disease progression Evaluated at 6 or 12 months [24] 1 (3%)

Survival

12 months [21], [23] 2 (6%)
18 months [23] 1 (3%)
24 months [23] 1 (3%)
36 months [37] 1 (3%)
No window [40], [48], [50], [52], [34], [43],

[28], [51]
9 (26%)

Tracheostomy Yes/No [33], [4], [42], [43] 4 (12%)
(e.g., mixed effects, mixture models) for trajectory clustering, models
for survival risk, and trajectory models defining groups according to
disease stage. Even though deep learning techniques have been applied
to electronic health records to uncover clinical patient stratification or
trajectories in other neurodegenerative disorders such as Alzheimer’s
and Parkinson’s disease, their use for patient stratification in ALS seems
13
to have been neglected. As regards temporal data usage, most tech-
niques focus on patient trajectory grouping. However, other strategies,
combining temporal and static information to uncover patient groups
with similar characteristics and disease evolution, might be explored.
For example, biclustering and triclustering techniques could be applied
to identify specific patterns from the patients’ follow-up data. Rigorous
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Table 4
Summary of the validation methods used for assessing the identified prediction of progression models. In particular, for each validation type
(internal, external or both) and scheme, the references of the papers adopting it are reported, together with their number and percentage
(relative to the total number of prediction of progression papers, i.e., 34). For the definition of acronyms, please see the List of acronyms
section.

Validation
type

Validation
scheme

Ref. Counts (%)

Internal
Holdout set [28], [22], [37], [39], [44], [24],

[46], [47], [48], [49], [25], [52]
12 (35%)

K-fold cross-validation [27], [29], [31], [34], [40], [51],
[36]

6 (18%)

Repeated K-fold cross-validation [26], [20], [30], [33], [35], [45] 7 (21%)

External External dataset [21] 1 (3%)

Both
Holdout set External dataset [23], [41], [42], [43], [50] 5 (15%)
K-fold cross-validation External dataset [32], [38] 2 (6%)
Leave-one-dataset-out cross-validation [4] 1 (3%)
Table 5
Summary of the performance metrics used for assessing the identified prediction-of-progression models. In particular, the table lists the
performance metrics used for each model category. The specific references of the papers using each performance metric are reported in the
third column. Finally, the last column reports the number of papers using each performance metric and, in brackets, the percentage of models
in the corresponding model category that use that particular performance metric. For the definition of acronyms, please see the List of acronyms
section.

Method category Performance metric Reference paper Counts (%)

Regression
RMSE [22], [23], [36], [38], [40], [44], [41], [46] 8 (100%)
Pearson’s correlation [22], [23], [44], [46] 4 (50%)
R-squared [22], [36], [38] 3 (38%)

Classification

AUROC [26], [20], [28], [21], [30], [32], [36], [37],
[40], [45], [24], [49], [51]

13 (68%)

Accuracy [21], [29], [30], [35], [47], [50], [51], [25],
[52]

9 (47%)

Sensitivity [26], [20], [21], [30], [32] 5 (26%)
Specificity [26], [20], [21], [30], [32] 5 (26%)
MSE [51], [25], [29] 3 (16%)
Precision [21], [32] 2 (11%)
F1-score [21], [25] 2 (11%)
NPV [32] 1 (5%)
AUPRC [28] 1 (5%)
C-index [51] 1 (5%)
Chi-squared test [32] 1 (5%)
Hosmer–Lemeshow test [32] 1 (5%)

Survival

Expected/observed
comparison

[42], [43], [48] 3 (43%)

AUROC [34], [4], [42] 3 (43%)
C-index [33], [23] 2 (29%)
Precision [43] 1 (14%)
NPV [43] 1 (14%)
Calibration plot [4] 1 (14%)
Calibration slope [4] 1 (14%)

Probabilistic graph

AUROC [27], [31] 2 (67%)
Expected/observed
comparison

[31], [39] 2 (67%)

Accuracy [27] 1 (33%)
Sensitivity [27] 1 (33%)
MSE [39] 1 (33%)
validation of stratification groups is missing from the literature. While
clustering-based techniques can make use of internal metrics to eval-
uate robustness, other approaches mostly rely on assessing statistical
differences between the resulting groups. Thus, possible routes towards
improving the reliability and interpretability of stratification mod-
els would be the development of problem-specific metrics, preferably
backed by clinical insight and external model validation, e.g., applying
the stratification method to different cohorts and evaluating similarity.

After stratification, groups are often compared by means of statisti-
cal differences of clinical variables or used to train models of survival
time, of time-to-composite-endpoint, or of functional or respiratory
decline. An open question is whether stratification may be useful as
14
a preliminary step to train predictive models on separate clusters of
subjects, the hypothesis being that focusing on groups of patients
with similar characteristics or disease courses could aid in uncovering
disease mechanisms and dependencies among variables. This is of
particular relevance in the case of diseases with highly heterogeneous
presentations such as ALS. However, it must be noted that stratification,
in general, leads to a reduction in sample size, which may ultimately
render prognostic prediction strategies on some groups unfeasible.

4.1.2. Prediction of progression: summary and perspectives
As for predictive models, we analysed the input variables, the target

clinical outcome to be predicted, and the modelling methodology. The
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most used input variables included demographics, age at onset, onset
site, and ALSFRS (or ALSFRS-R) at baseline. The most common clinical
outcomes considered by these models were: the ALSFRS (or ALSFRS-R)
score and its decrease over time, the FVC value (crucial to determine
the need for NIV), and the occurrence of relevant events related to
disease progression, i.e., NIV, FVC < 50%, tracheostomy or death. The
most common modelling techniques explored in the literature were:
RFs, other tree-based models (e.g., AdaBoost and XGBoost), SVM, LR,
the Cox model, and BN models. Only a handful of studies attempted
to use deep-learning techniques. The choices of architecture for these
neural networks were mainly guided by the nature of the input features,
with several models selecting LSTM networks to handle the longitudinal
data from patient history, and others combining multiple blocks of fully
connected layers to merge features from different sources. Only one
model employed convolutional techniques.

The classification framework was the most common modelling
choice. Only a few studies framed the problem as a survival analysis to
account for time-to-event directly. More in general, even though these
models can predict single survival or intervention endpoints, there is
a distinct lack of tools able to model the entire disease course over
time, considering all the dynamic variables and their relationships.
This is also the case for deep-learning models, even though many
novel architectures have been proposed in the last few years: from
straightforward extensions of the Cox proportional hazard model with
non-linear risk [54], to more powerful methods that can model com-
plex non-proportional survival functions and handle multiple adverse
events [55,56], which are often present in ALS datasets. Whether this
new generation of models can outperform classical methods on ALS
survival prediction has yet to be investigated.

Despite the number of published models, few of them are reported
together with their parameter values or are externally validated on data
not used for training, whereas the validation step would be extremely
important to assess model generalisability and, thus, applicability to
real-life scenarios. Moreover, since data availability is often an issue
within a specific research project given the low prevalence of the
disease, models and their parameters should be available so as to allow
external validation or recalibration of the models on new populations.

Many of the models proposed in the literature to predict disease
progression (as well as to stratify patients) are developed using clinical
trial datasets. The development of predictive models using clinical trial
data has two important limitations. First, the patients participating
in clinical trials are usually selected according to specific inclusion
criteria and, thus, are not representative of the general ALS population.
Second, clinical trials are generally focused on specific aspects of the
disease and, as such, they collect particular variables to test specific
hypotheses. The result is that they include predictive variables that
are specific to the particular trial’s settings and are not commonly
collected during routine patient visits. These models are, then, difficult
to implement in clinical practice, with real-world data, where access
to such complex or specific variables is limited. On the other hand,
the inclusion of new environmental and behavioural variables such as
pollution data or data from wearables would be of interest. Air quality
data should be collected at different granularities, both at a macro-
scopic level from public stations and at a microscopic level from either
portable/wearable sensors or a city grid of low-cost sensors, exploiting
a flexible framework that can adapt to the progressive impairments
experienced by ALS patients. Integrating continuous and quantitative
measurements collected through sensors, both as disease evolution
descriptors and as outcomes, might help extending the qualitative
monitoring scales currently used in the clinic to assess the functional
status of the patients.

5. Conclusion

The inherent promise of the use of AI in medicine and health
care is that it will improve the general interpretation of data and
15
related clinical significance with consequent effects on patient care
and policy: suggesting diagnosis, prognosis, and treatment; optimising
health cost analysis and distribution; defining mitigation policies; and
promoting behavioural and societal changes. However, in order to meet
these goals, several characteristics that go far beyond the statistical
description of a method should be considered [57], describing the key
requirements that AI systems should meet in order to be trustworthy.
Among others, an appropriate assessment of AI models is perhaps the
most important aspect: suitable train/validate/test frameworks should
be used to assess model performance and ability to generalise, i.e., the
ability to make correct judgments on unseen data in a well-defined
domain of validity and in a reproducible way. Even though further con-
siderations about AI applicability go beyond the scope of this work, this
review highlighted that this type of information is seldom available in
the scientific literature, limiting the impact of the practical application
of AI methods in health care.

List of acronyms
AI artificial intelligence
ALS amyotrophic lateral sclerosis
ALSFRS ALS functional rating scale
ALSFRS-R revised ALS functional rating scale
AUPRC area under the precision–recall curve
AUROC area under the receiver operating

characteristic curve
BART Bayesian additive regression tree
BMI body mass index
BN Bayesian network
BRAINTEASER Bringing Artificial Intelligence Home for

a Better Care of Amyotrophic Lateral
Sclerosis and Multiple Sclerosis

C-index concordance index
CNN convolutional neural network
CNS-LS Center for Neurologic Study-liability scale
DBN dynamic Bayesian network
DT decision tree
EEG electroencephalography
EHR electronic health record
ENCALS European network for the cure of ALS
ENPA neuropsychological examination for

aphasia (Italian & esame
neuropsicologico per l’afasia)

FBI frontal behavioural inventory
FTD frontotemporal dementia
FVC forced vital capacity
GB gradient boosting
GLM generalised linear model
LMN lower motor neuron
LR logistic regression
LSTM long short-term memory
MAE mean absolute error
MiToS Milano-Torino ALS staging system
MMN mismatch negativity
MRC Medical Research Council
MRI magnetic resonance imaging
NB naïve Bayes
NIPPV nasal intermittent positive pressure

ventilation
NIV non-invasive ventilation
NN neural networks
NPV negative predictive value
PBA pseudobulbar affect
PRO-ACT pooled resource open-access ALS clinical

trials
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RAVLT Rey auditory verbal learning test
RECPAM recursive partitioning and amalgamation
RF random forest
RMSE root mean squared error
RNN recurrent neural network
SNIP sniff nasal inspiratory pressure
SVM support vector machine
UMAP uniform manifold approximation and

projection
UMN upper motor neuron
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