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Abstract

In the last decade, space-based experiments like AMS-02 and the Fermi-LAT have turned astropar-
ticle physics of Galactic cosmic rays and gamma rays into a precision discipline. We can use the
newly available data to learn more about our Galactic and extragalactic environment. A major
motivation to investigate astroparticle messengers is the indirect search for dark matter signatures.

Cosmic-ray antiprotons constitute one very interesting messenger in astroparticle physics. The
combination of the antiproton flux data with its parent nuclei, proton and helium, allows to un-
derstand cosmic-ray propagation of light nuclei. We perform global fits to the data from AMS-02
and derive constraints on the key parameters of a cosmic-ray propagation model including diffusion
and reacceleration. The results are compatible with expectations from other analyses performed on
boron-to-carbon ratio.

The analysis of cosmic-ray antiprotons requires precise knowledge of the secondary antiproton
production cross sections. We update and compare the most recent cross-section parametrizations by
exploiting newly available data from the fixed-target experiments NA61 and LHCb. Furthermore, we
derive the uncertainties on these cross-section parametrizations and the secondary antiproton source
term. These exceed the uncertainties of the antiproton flux measurement by AMS-02. Consequently,
we provide guidelines for future cross-section measurements concerning the most relevant kinematic
parameter space.

Cosmic-ray antiprotons are a sensitive probe for dark matter annihilation or decay in our Galaxy.
Performing a global fit to the cosmic-ray data of protons, helium, and the antiproton-over-proton
ratio, we find a hint for the annihilation of dark matter in the energy spectrum of cosmic-ray
antiprotons. The putative dark matter particles have a mass between 30 and 200 GeV and a cross
section times velocity at the order of 3 × 10−26 cm3/s. We investigate how this hint is affected
by systematics arising from uncertainties in the production cross sections of secondary antiprotons
and correlations in the systematic uncertainties of the cosmic-ray data itself. After accounting for
systematic uncertainties, we find a significance of 2.7σ for the dark matter hint. On the other hand,
cosmic-ray antiprotons provide strong upper bounds on the annihilation cross section of heavy dark
matter particles with masses above 200 GeV. These bounds are competing and complementary to
constraints from gamma rays.

A complemental strategy to search for dark matter in cosmic rays is to look for low-energy
antinuclei. We explore the prospects to detect a signal in the fluxes of antideuteron or antihelium
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corresponding to the dark matter hint in cosmic-ray antiprotons. These fluxes constitute the largest
possible dark matter signals in antinuclei which are compatible with cosmic-ray antiprotons. We
find that the potential dark matter signal in antideuteron lies within the expected sensitivities of
GAPS and AMS-02, while the antihelium signal is significantly below the sensitivity of AMS-02 at all
energies. Moreover, we update the predictions of the secondary and tertiary fluxes of antideuteron
and antihelium. They are out of reach for both detectors.

Finally, also gamma rays provide an excellent prospect to indirectly search for dark matter. The
best prospects to find a signal is to search in regions with either a large dark matter density or a
low astrophysical background. Promising sites are the Galactic center, dwarf spheroidal galaxies,
or the extragalactic gamma-ray sky. However, a robust understanding of potential dark matter
signals requires a good characterization of the background from astrophysical sources. We exploit
two unique tools to investigate the properties of gamma-ray sources with small fluxes and at high
latitudes: the one-point statistics of photon counts applied to Fermi-LAT data and the recent
measurement of the angular correlations in the unresolved gamma-ray background. Within a model
of the gamma-ray luminosity function of blazars we compare the properties of the extragalactic
gamma-ray sky with resolved blazars at large fluxes. We find that the emission of gamma-rays at
high latitudes and small fluxes is consistent with a pure blazar population.
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Sommario1

Negli ultimi decenni, esperimenti su satelliti come AMS-02 e Fermi-LAT hanno reso la fisica astro-
particellare dei raggi cosmici galattici e dei raggi gamma una disciplina di precisione. I nuovi dati
sperimentali ci permettono di approfondire la nostra conoscenza dell’ambiente galattico ed extraga-
lattico. Inoltre, una delle motivazioni principali per studiare i messaggeri astrofisici sono le ricerche
indirette di segnali di materia oscura.

Tra i raggi cosmici elettricamente carichi, gli antiprotoni sono tra i messaggeri più rilevanti.
Combinando le misure dei flussi di antiprotoni e dei suoi nuclei progenitori, protoni ed elio, è possibile
studiare la propagazione della componente di nuclei leggeri nei raggi cosmici. Abbiamo realizzato
dei fit ai dati di AMS-02 ed ottenuto dei vincoli sui parametri più importanti che determinano
la propagazione dei raggi cosmici, includendo la diffusione e la riaccelerazione. I risultati sono
compatibili con quelli attesi da analisi basate sulla misura del rapporto boro su carbonio.

Lo studio degli antiprotoni nei raggi cosmici richiede una conoscenza precisa delle sezione d’urto
di produzione degli antiprotoni secondari. Abbiamo aggiornato e confrontato le più recenti parame-
trizzazioni di tali sezioni d’urto utilizzando misure ottenute dall’esperimento a bersaglio fisso NA61e
da LHCb. Inoltre abbiamo determinato le incertezze su tali parametrizzazioni e sul termine di sor-
gente che determina la produzione degli antiprotoni secondari. Tali incertezze superano quelle sul
flusso di antiprotoni misurato da AMS-02. Di conseguenza, abbiamo definito delle linee guida per
esperimenti futuri di misura di sezione d’urto relativamente allo spazio dei parametri delle variabili
cinematiche.

La componente di antiprotoni nei raggi cosmici permette di sondare la presenza di annichilazioni
o decadimenti di materia oscura nella nostra Galassia. Attraverso un fit globale alle misure di
protoni, elio e rapporto antiprotoni su protoni nei raggi cosmici, abbiamo trovato una possibile
evidenza di annichilazioni di materia oscura nello spettro energetico degli antiprotoni. Il segnale è
compatibile con particelle di materia oscura con una massa tra 300 GeV e 200 GeV e una sezione
d’urto di annichilazione dell’ordine di 3× 10−26 cm3/s. Abbiamo analizzato in quale misura questo
indizio di eccesso dipenda dalle incertezze sistematiche nella sezione d’urto di produzione degli
antiprotoni secondari e dalla correlazione delle incertezze sistematiche nelle misure stesse dei raggi
cosmici. Tenendo conto di tali incertezze sistematiche abbiamo quantificato l’evidenza del segnale

1Translated to Italian by M. Taoso.
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di materia oscura ad un livello di 2.7σ. Per masse delle particelle di materia oscura superiori a
200 GeV, le osservazioni di antiprotoni nei raggi cosmici permettono di ottenere dei limiti molto
stringenti sulla sezione d’urto di annichilazione. Questi limiti sono compatibili e complementari a
quelli ottenuti attraverso osservazioni dei raggi gamma.

La ricerca di antinuclei a bassa energia costituisce un’ulteriore e complementare ricerca di materia
oscura attraverso i raggi cosmici. Abbiamo analizzato la possibilità di rivelare un segnale di materia
oscura, corrispondente a quello evidenziato nelle misure di antiprotoni, nei flussi di antideuterio o
antielio. Questi sono gli osservabili più promettenti per ricerche di materia oscura attraverso misure
di antinuclei, compatibilmente con le osservazioni di antiprotoni. Abbiamo trovato che il segnale di
antideuterio si colloca sopra la soglia di rivelabilità attesa per GAPS e AMS-02, mentre il segnale di
antielio è sotto la soglia di rivelabilità di AMS-02 a qualunque energia. Inoltre abbiamo aggiornato
le predizioni sui flussi secondari e terziari di antideuterio ed antielio. Tali segnali sono fuori dalla
possibilità di rivelazione sia per GAPS che per AMS-02.

Anche i raggi gamma possono essere utilizzati per ricerche indirette di materia oscura. La stra-
tegia di ricerca più efficace consiste nel focalizzarsi in regioni ad alta densità di materia oscura
oppure con una bassa emissione di fondo astrofisica. Regioni promettenti sono il centro galattico,
le galassie nane sferoidali o la radiazione di fondo extragalattica. Un requisito fondamentale per
effettuare queste ricerche è caratterizzare preventivamente l’emissione di fondo derivante da sor-
genti astrofisiche. Abbiamo utilizzato due tecniche per studiare le proprietà delle sorgenti di raggi
gamma a basso flusso e situate ad alte latitudini. La prima consiste nel considerare la funzione
statistica di correlazione ad un punto, applicata ai conteggi di fotoni misurati da Fermi-LAT. Il
secondo metodo considera misure recenti della funzione di correlazione angolare del fondo gamma
extragalattico. Utilizzando un modello di luminosità delle sorgenti blazars, abbiamo confrontato
le proprietà dell’emissione gamma extragalattica con la popolazione di blazars risolte ed ad alto
flusso. Abbiamo concluso che l’emissione gamma ad alte latitudini e a bassi flussi è compatibile con
l’ipotesi che tale emissione sia prodotta prevalentemente da sorgenti blazars.
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Zusammenfassung

Die genauen Messungen von kosmischer Strahlung und Gammastrahlung durch die Weltraumexpe-
rimente AMS-02 und Fermi-LAT haben die Astroteilchenphysik in den letzten zehn Jahren zu einer
Präzisionsdisziplin gemacht. Wir nutzen die kürzlich veröffentlichen Daten, um mehr über unsere
galaktische und extragalaktische Umgebung zu erfahren. Unsere Hauptmotivation in dieser Arbeit
ist die Suche nach Dunkler Materie.

Dabei sind hochenergetische Antiprotonen besonders interessante Botenteilchen. Wenn wir die
Informationen von Antiprotonen mit denen von Protonen und Helium kombinieren, können wir
mehr über die Propagation kosmischer Strahlung von leichten Kernen lernen. Wir führen globale
Parameter-Fits zur Charakterisierung der wichtigsten Parameter im Propagationsmodell, welches
Diffusion und Wieder-Beschleunigung erlaubt, durch. Unsere Resultate für die leichten Kerne sind
mit den Ergebnissen für schwerere Kerne, wie z.B. aus den Untersuchungen des Verhältnisses von
Bor zu Kohlenstoff, kompatibel.

Die Analyse von Antiprotonen in der kosmischen Strahlung setzt die genaue Kenntnis des Wir-
kungsquerschnitts zur Produktion von sekundären Antiprotonen voraus. Wir vergleichen und ver-
bessern die aktuellen Parametrisierungen des Wirkungsquerschnitts mit Hilfe von neuen experimen-
tellen Daten der Experimente NA61 und LHCb. Dabei bestimmen wir außerdem die Unsicherheit,
die sich aus dem Wirkungsquerschnitt auf den Quellterm von kosmischen Antiprotonen ergibt. Diese
Unsicherheit übersteigt die der Antiprotonenflussmessung durch das AMS-02 Experiment. Daher
erarbeiten wir Richtlinien für zukünftige Experimente zur Messung des Wirkungsquerschnitts für
Antiprotonenproduktion. Wir bestimmen den kinematischen Parameterbereich größter Priorität.

Außerdem könnte die Annihilation von möglichen Teilchen Dunkler Materie zu einem zusätzli-
chen Fluss von Antiprotonen führen. Somit können wir kosmische Antiprotonen dazu nutzen, um
indirekt nach Dunkler Materie zu suchen. In unseren Fits an die Daten aus Protonen, Helium und
Antiprotonen finden wir einen Hinweis auf die Annihilation von Dunkler Materie. Das mögliche
Dunkle-Materie-Teilchen benötigt eine Masse zwischen 30 und 200 GeV und einen Wirkungsquer-
schnitt für die Annihilation in der Größenordnung von 〈σv〉 ∼ 3 × 10−26 cm3/s. Wir untersuchen,
wie der Hinweis auf dieses mögliche Teilchen von systematischen Unsicherheiten beeinflusst ist. Im
Detail schauen wir uns die Unsicherheiten aus dem Wirkungsquerschnitt für die Produktion se-
kundärer Antiprotonen an und die Auswirkungen von Korrelationen in den AMS-02 Daten. Nach
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Berücksichtigung aller Unsicherheiten hat unser Antiprotonsignal für Dunkle Materie eine Signi-
fikanz von 2.7σ. Oberhalb einer Masse von 200 GeV ergeben sich starke obere Schranken für die
Größe des möglichen Annihilationwirkungsquerschnitts. Diese sind vergleichbar mit den Schranken
aus Gammastrahlung und tragen somit zu einem zuverlässigen Verständnis bei.

Die Suche nach einem niederenergetischen Antiatomkern in kosmischer Strahlung stellt eine
komplementäre Strategie dar, um mögliche Signale von Dunkler Materie zu entschlüsseln. Wir un-
tersuchen ob der Hinweis auf Dunkle Materie in den Antiprotonen ein messbares Signal für Anti-
deuterium und Antihelium hinterlassen würde. Ein solches Signal ist der größtmögliche Fluss an
Antikernen, der die Beschränkungen aus Antiprotonen nicht verletzt. Nach unseren Berechnungen
ist der Fluss von Antideuterium für AMS-02 und das geplante Experiment GAPS in Reichweite,
wohingegen wir kein Signal für Antihelium in AMS-02 erwarten. Wir erneuern außerdem die Vor-
hersagen für den sekundären und tertiären Fluss von beiden Antikernen, diese liegen außerhalb des
Messbereichs aktueller Experimente.

Auch Gammastrahlung wird dazu verwendet, um nach Dunkler Materie zu suchen. Dabei kon-
zentriert sich die Suche auf Bereiche, in denen entweder ein großes Signal oder ein kleiner astrophy-
sikalischer Hintergrund erwartet wird. Interessante Bereiche sind das galaktische Zentrum, Zwerg-
galaxien und die extragalaktische Gammahintergrundstrahlung. Jedoch ist auch hier jeweils eine
genaue Betrachtung des astrophysikalischen Hintergrunds vorausgesetzt. Wir nutzen zwei spezielle
statistische Methoden, um mehr Informationen über kleine Punktquellen herauszufiltern, die sich
weit außerhalb der galaktischen Scheibe befinden. Dazu schauen wir uns zum einen die Statistische
Verteilung von Photonen an einem Punkt an und zum anderen interpretieren wir die Winkelkorre-
lationen in der isotropen Gammahintergrundstrahlung. Unsere Erkenntnisse interpretieren wir in
einem Blazarmodell für die Helligkeitskurve von Gammastrahlung. Das Ergebnis zeigt, dass die
Gammastrahlung von schwachen Punktquellen konsistent mit einer reinen Population von Blazaren
ist.
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Chapter 1

Motivation

Our fundamental understanding of nature at small scales is based on the Standard Model of particle
physics (SM) physics [10–15], which was formulated in the 1960s. The interactions of elementary
particles, distinguished into quarks and leptons, are described by quantum field theories respecting
gauge symmetries. Here the fundamental forces of electromagnetic, weak, and strong interactions
are mediated by gauge bosons. The masses of the elementary particles are introduced through
spontaneous symmetry breaking by the Higgs mechanism. The SM has experienced tremendous
success in the last 50 years. A huge number of measurements, at various experiments and in a large
range of energies are in agreement with SM predictions. Experimentalists and theoreticians have
continuously driven the comparison to an increasing precision.

On the other hand, at very large scales the evolution of the Universe is dominated by gravity,
which is described by General Relativity. The theory of General Relativity was already formulated at
the beginning of the 20th century [16,17]. Also, the story of General Relativity is a long story of suc-
cess. For example, in the last years the century-old prediction of gravitational waves was confirmed
experimentally and very recently the first image of a black hole was recorded. The combination of
General Relativity with the cosmological principle, i.e. the assumption that the Universe is homoge-
nous and isotropic at large scales, leads to the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric and the Friedmann equation [18–24], which describe the expansion of the Universe:

H2(a) =

(
ȧ

a

)2

= H2
0

[
Ω0,ra

−4 + Ω0,ma
−3 + Ω0,ka

−2 + Ω0,Λ

]
(1.1)

ä

a
= −4πG

3
(ρ+ 3p) (1.2)

Here H is the Hubble rate which is defined in terms of the scale factor a and its time derivative
ȧ. Furthermore, H0 is the Hubble constant today, G is the gravitational constant, ρ is the energy
density and p is the pressure in the Universe. The energy density of the universe can be split
into four components i: matter (subscript m), radiation (r), dark energy (Λ), and curvature (k).
The coefficients Ω0,i are defined as the ratios of the energy density of the different components
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1.1. Dark Matter

i with the critical energy density,1 Ω0,i = ρ0,i/ρ0,crit. Cosmological observations point to a flat
(Ω0,k = 0) Universe. Then, they are well explained within the remaining so-called Λ Cold Dark
Matter (ΛCDM) model [25].

One of the main questions in contemporary physics concerns the link between the SM and
the theory of gravity. At this moment, the two theories stand separated. While the first is a
quantized theory the latter is classical. It is not clear how to combine the two theories into a unified
picture. Moreover, the ΛCDM model in cosmology requires that the energy contribution of todays
Universe exhibits a contribution of about 25% of so-called Dark Matter (DM) and about 70% of
so-called dark energy. However, we lack a fundamental understanding of theses dark components
in our Universe. In this thesis, we discuss various strategies to unveil the properties of DM with
astroparticle messengers.

The remainder of this thesis is structured as follows. In the next section we give a brief in-
troduction to particle DM and in Chapter 2 and 3 introduce Galactic Cosmic Rays (CRs) and
gamma rays, respectively. The results of this thesis are presented in Part II. We start with the
derivation of antiproton production cross sections in Chapter 4. In Chapter 5 we perform global
fits to CR protons, helium and antiprotons in order to constrain CR propagation and learn more
about DM. Then, in Chapter 6 we investigate the prospects to observe antinuclei in CRs and in
Chapter 7 we use gamma rays to constrain the luminosity function of blazars. Finally, we conclude
and give perspectives in Part III.

1.1 Dark Matter

Unveiling the nature of DM poses one of the fundamental open questions in contemporary physics.
Despite various hints and anomalies in different observables no clear non-gravitational evidence for
DM has been established so far. However, a consistent model of DM is expected to leave char-
acteristic signatures in different observables. By exploiting the complementarity of these different
observables, we can obtain a better understanding of the nature of DM which can either lead to
improved constraints or, eventually, point to the properties of DM.

1.1.1 Gravitational evidences for dark matter

The gravitational evidence for the existence of DM is overwhelming. The success of DM, with
respect to theories of modified gravity is its power to explain at the same time various observations
at very different spatial scales. In the following, we shortly review the key observations and refer
to [26–28] for more detailed reviews.

The historically first evidence for DM comes from the observation of internal motion in galaxy
clusters [29, 30] and in spiral galaxies [31]. Measuring the velocity dispersion of a galaxy cluster,
its mass can be estimated from the viral theorem. The estiamted mass typically exceeds the visible
baryonic matter by a factor of approximately 5. On the other hand, from classical mechanics2 the

1The critical energy density today is defined as by ρ0,crit = 3H2
0/(8πG).

2In these gravitationally bound systems effects of general relativity can be neglected.
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Chapter 1. Motivation

rotational velocity within a spiral galaxy is expected to scale as v ∼
√
GM(r)/r, where r is the

distance from the gravitational center, G is the gravitational constant, and M(r) is the total mass
enclosed in a sphere of radius r. In particular for distant objects where M(r) exhibits the total
mass of the system the velocities are expected to decrease as v ∼ r−

1
2 . Instead, measurements of

the so-called rotation curves show that the velocities stay mostly constant or even increase. These
observations point towards an additional non-visible halo of matter, which extends beyond the scale
of the visible baryonic matter.
Another line of evidence comes from the observation of colliding galaxies [32]. After the collision
the mass distribution, determined from gravitational lensing, and gas distribution, seen via X-ray
emission, do not coincide. The standard explanation is that the gas components interact, slow
down, and emit X-rays, while the non-interacting (or at most weakly interacting) DM component
continues uninfluenced.
Furthermore, structure formation points to the existence of DM. In order to explain the amount
of structures observed in the current Universe requires a dominant amount of DM. The amount of
structure in the Universe is encoded in the matter power spectrum. On large scales, this matter
power spectrum can be derived from linear perturbation theory and compared to data [33,34], while,
at smaller, non-linear scales, N -body simulations are performed. Also these simulations are only
able to reproduce the structure of the Universe if there is a dominant contribution of DM [35,36].
Finally, the observations of temperature fluctuations in the Cosmic Microwave Background (CMB)
are extremely well reproduced in the ΛCDM model. The CMB exhibits photons which arrive
from the last scattering surface at recombination of electrons and protons in the early Universe
at a redshift of z ≈ 1100. A fit of the ΛCDM model to the latest measurements of temperature
fluctuations in the CMB by the Planck satellite shows that 84% of the matter in our Universe today
is categorized as DM [25,37].

In summary, these observations point to DM candidates with some generic properties: A good
DM candidate should be cold, i.e. non-relativistic, (or act like a cold particle) and provide the correct
relic density observed today. It should be neutral and stable, exhibit a small self-interaction, and
can not have a large coupling to the SM. The candidate has to comply with several constraints
from astroparticle physics, particle physics, and cosmology.

1.1.2 Dark matter distributions

Cold DM is expected to form hierarchical structures. Over-dense regions of matter are able to de-
couple from the cosmic expansion and collapse into gravitationally bound regions, which are called
DM halos. A DM halo can contain substructures of DM clumps, also called sub-halos. The proper-
ties of DM halos are expected to be (almost) independent of their size. To first approximation DM
halos are spherically symmetric and described by the radial energy density profile. We distinguish
two different types of profiles which are commonly studied in the literature. The first type is cored
DM density profile like the Burkert profile [38]:

ρBurkert(r) =
ρc

(1 + r/rc)(1 + r2/r2
c )
, (1.3)
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1.1. Dark Matter

which is flat towards the halo center and decreases with r−3 at r � rc. So, the core radius rc
determines the radial extension of the flat core at the halo center. These cored profiles are the
preferred DM distributions from the observation of rotation curves in dwarf galaxies. On the other
hand, N -body simulations [35, 36] prefer a cuspy DM density profile with a slope of the order of
∼ r−1 towards the halo center. There are three different parametrizations which are frequently used
in literature. The Navarro–Frenk–White (NFW) profile [39] is a broken power law where the radial
density profile evolves exactly with r−1 for radii smaller than the characteristic halo radius rh and
with r−3 for r � rh:

ρNFW(r) = ρh
rh
r

(
1 +

r

rh

)−2

. (1.4)

In a generalized version of the NFW (gNFW) profile, the density in the inner halo scales with r−γ ,
while the behavior in the outer part remains fixed to r−3:

ρgNFW(r) = ρh

(rh
r

)γ (
1 +

r

rh

)−3+γ

. (1.5)

An alternative profile, which also describes well the results of N -body simulation, is the Einasto
profile [40]:

ρEinasto(r) = ρa exp

(
− 2

α

[(
r

ra

)α
− 1

])
. (1.6)

It is typically slightly softer towards the very central region of the DM halo.

We can use the Galactic DM halo for a comparison of the different profiles. The local DM
density at the position of the sun can be derived from the motion of local stars and from the
mapping of the rotation curve as function of galactocentric radius. In [41], it is determined to
ρsun = 0.43+0.11

−0.10 GeV/cm3. We show the different DM density profiles3 in Fig 1.1.

1.1.3 Dark matter candidates

Theoretically motivated models of DM range from extremely light particles, like fuzzy DM (∼
10−22 eV) or axions (∼ 10−5 eV), to primordial black holes (up to 1065 eV). The enormous freedom
in the DM mass spanning 80 orders of magnitude reflects the lack of non-gravitational evidence for
DM.

The baryonic matter in our Universe is described by the SM. One apparent reasoning for the
nature of DM is to explain it by a yet undiscovered elementary particle which could be weakly
coupled to the SM. Some DM candidates have an additional motivation from particle physics. For
example, the axion provides a viable DM candidate and, at the same time, solves the strong CP
problem in quantum chromodynamics [42–45]. Another prominent example is supersymmetry [46,
47], which is an extension of the SM where each SM fermion (boson) receives a partner boson

3In Fig 1.1 we adopt the following parameters. NFW: rh = 20 kpc; gNFW: rh = 20 kpc, γ = 1.2; Einasto:
α = 0.17, ra = 28.44 kpc; Burkert: rc = 5 kpc or rc = 5 kpc.
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10−1 100 101

r [kpc]

10−1

100

101

102

ρ
[G

eV
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Einasto

Burkert (rc = 5 kpc)

Burkert (rc = 10 kpc)

Figure 1.1: We compare different DM density profiles. They are normalized to a local DM density
of 0.43GeV/cm3 at the solar position of rsun = 8 kpc.

(fermion). From a particle physics perspective the supersymmetry could solve the hierarchy problem
between the electroweak and the Planck scale. Furthermore, supersymmetry allows to achieve a
unification of gauge couplings at high energies. If the lightest supersymmetric particle is stable, it
represents a suitable DM candidate. There are many further well motivated DM candidates. For a
more complete review we refer to [48–50] and references in there.
Independently from the specific Beyond the Standard Model of particle physics (BSM) realization,
one of the most attractive class of DM candidates are the so-called Weakly Interacting Massive
Particle (WIMP)s which have masses from a few GeV to 100 TeV and annihilation cross section at
the scale of the SM weak interaction. The appeal of these candidates is that a WIMP mass and
cross section automatically leads to the freeze-out of the DM particles in the early Universe and
gives the correct DM relic density observed today. The formalism is detailed in the next section.

1.1.4 Dark matter relic density and the freeze-out mechanism

The freeze-out mechanism for DM is the one of the most popular mechanisms to explain the relic
DM density which is observed today. Here we present the mechanism for a cold DM particle, which
is non-relativistic at the time of freeze-out. A more general derivation of the mechanism is given
in [26]. We assume that the DM particles interact frequently with other particles from the SM model
in the early Universe DM. The annihilation of the DM particle χ and its antiparticle χ̄ into (at
least) one of the SM particles X and its antiparticle X̄ is denoted as

χ+ χ̄↔ X + X̄. (1.7)
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Figure 1.2: Sketch of the solution of Eq. (1.12) to visualize the freeze-out mechanism.

We note that this reaction can occur in both directions. The number density, nχ, of the DM particles
is described by a Bolzmann equation, which takes the following form in the FLRW metric:

dnχ
dt

+ 3Hnχ = 〈σv〉
[
n2
χ − (neq

χ )2
]
, (1.8)

where H is the Hubble parameter, 〈σv〉 is the thermally averaged cross section times velocity of
the reaction in Eq. (1.7), and neq

χ is the density of the DM particle in thermal equilibrium. We
assume that the effects of Bose condensation or Fermi degeneracy can be neglected such that the
equilibrium density is given by a Bolzmann distribution,4

nχ = g

(
mχT

2π

) 3
2

exp
(
−mχ

T

)
, (1.9)

where g is the internal degree of freedom (dof) of χ, mχ its mass, and T is the average temperature
in the Universe. We expect that in the early Universe the interaction rate, Λ = 〈σv〉nχ, dominates
over the expansion rate H and enforces the DM density to stay close to the equilibrium density,
nχ ≈ neq

χ . As the Universe expands the density nχ and consequently the interaction rate quickly
decreases. At some point, the right-hand side of Eq. (1.8) can be neglected. In this case, the DM
density per co-moving volume becomes constant, nχ/a3 = const, in other words, DM freezes out.

4We remind that we assume the non-relativistic limit, T � mχ.
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Chapter 1. Motivation

Now we will quantify the freeze-out a bit better. In the radiation dominated Universe, we can
link temperature and time by using the Friedmann Eqs. (1.1) and (1.2) equations:5

t =

√
45

16π3g∗
mPT

−2. (1.10)

Here g∗ is the effective dof of the sum of all relativistic particles. It is common to rewrite the
Bolzmann equation in terms of the dimensionless quantities x = T/m and Y = n/s, where s is the
entropy density given by:

s =

√
2π2

45
g∗sT

3. (1.11)

Here g∗s denotes the effective dof for the entropy evolution in the Universe.6 A short calculation
yields:

dYχ
dx

= −〈σv〉 g∗s√
g∗
mχmP

√
π

45

[
Y 2
χ − (Y eq

χ )2
]
. (1.12)

Furthermore, it is useful to rewrite this differential equation in terms of the difference ∆ = Yχ−Y eq
χ :

d∆

dx
= −dY eq

χ

dx
− 〈σv〉 g∗s√

g∗
mχmP

√
π

45
∆
[
∆ + 2Y eq

χ

]
. (1.13)

We can solve this equation in two limits, before and after freeze-out, which occurs at x = xf :

• At early times (x < xf ), the DM particles are at equilibrium with the other particles and we
expect Yχ ≈ Y eq

χ and d∆/dx ≈ 0. In this limit we deduce from Eq. (1.13):

∆ ≈
√
g∗

g∗s

1

〈σv〉mχmP

√
45

π

x2

2
. (1.14)

• After freeze out (x > xf ), we can neglect the equilibrium density Y eq
χ � Yχ. By integrating

Eq. (1.13) from x = xf to infinity we obtain7:

Yχ(x =∞) ≈
√
g∗

g∗s

1

〈σv〉mχmP

√
45

π
xf . (1.15)

We can estimate xf from the condition ∆(xf ) ≈ Y eq
χ (xf ) in Eq. (1.14), which gives:

xf ≈ log

(
2
√

45

(2π)
7
2

mχmP〈σv〉
)
. (1.16)

5We have to use ρr = π2/30 g∗T
4, pr = ρr/3, and a(t) ∼ t 12 .

6In the early Universe, we can approximate g∗ = g∗s.
7We assume that 〈σv〉 does not depend on velocity or temperature, as expected for s-wave annihilation.
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1.1. Dark Matter

For a typical DM particle with a mass of mχ = 100 GeV and a cross section at the order of the
SM weak interaction of 〈σv〉 = 3× 10−26 cm2/s we obtain xf ≈ 26 and8

Yχ(x =∞) ≈ 11

〈σv〉mχmP
. (1.17)

Finally, the relic density of today is given by:

Ω0,χ =
s0

ρ0,crit
Yχ∣∣∣

x=∞

≈ 0.25 (1.18)

where s0 is the entropy density today9 and ρ0,crit is the critical energy density of the Universe. The
obtained relic density10 of Ω0,χh

2 = 0.12 matches very well the relic density observed by the Planck
satellite which is also 0.12 [25]. A sketch of the solution of the Bolzmann Eq. (1.12) is shown in
Fig. 1.2.

The coincidence that a SM weak annihilation cross section for a DM particle with a mass of be-
tween a few GeV and ∼ 100 TeV gives automatically the correct DM relic density is known as WIMP
miracle. Finally, we note that the thermally averaged cross section 〈σv〉 is similar but not necessarily
identical to the annihilation cross section for the indirect search of DM. The velocity distribution
at DM at freeze-out and in the Galactic halo today differs considerably. If the DM annihilation
cross section depends on velocity, 〈σv〉 at freeze-out and 〈σv〉 today can be significantly different.
Nonetheless, the thermally averaged annihilation cross section of freeze-out gives an orientation for
the order of magnitude of relevant annihilation cross section for indirect detection.

1.1.5 Strategies to search for particle dark matter

The search for DM is an interdisciplinary effort and an unambiguous answer concerning the nature
of DM can only be achieved by combining the information of different observations from particle
physics, astrophysics, and cosmology. The search for particle DM is typically structured into three
different strategies: direct, indirect, and collider-based searches. In the first case, the idea is to
investigate the possibility of a direct interaction between a DM particle and a nucleus. The cross
section of this interaction strongly depends on the coupling of the DM particle to the SM: in
particular on differentiates between spin-dependent and spin-independent coupling which lead to
sizeable differences in the cross-section constraints. Various underground experiments try to measure
the recoil energy of nuclei due to the scattering off DM. The second option is to search for indirect
signatures of DM in astrophysical observables. The hypothesis is that DM can either decay or self-
annihilate into SM final states. In both cases one expects characteristic signatures in gamma rays,
CRs, and neutrinos. The expected signatures strongly depend on the mass of the potential DM
particle and the SM final states. The question which cosmic messengers are most promising to find
or constrain a DM model depends on the discrete BSM realization. Finally, the DM particles might
be produced directly in collider experiments, as for example at the Large Hadron Collider (LHC).

8We use g∗(xf ) = g∗s(xf ) ≈ 80.
9The entropy density is given by Eq. (1.11) with values of today, g∗s = 3.94 and T = 2.73 K.

10We use the typical notation in cosmology with h = H0/(100 km/(s Mpc)) ≈ 0.7 .
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Chapter 1. Motivation

Typical signature of a BSM model are events with missing transverse energy due to the escape of
DM particles or resonances at the mass of mediator particles. Closely related to the production of
DM at colliders is the production of DM in the early Universe.

Schematically, the three strategies are summarized in Fig. 1.3, which displays a Feynman diagram
for the interaction between a DM particle χ and some SM particle X. The diagram can be read in
three directions corresponding to collider searches (right to left), indirect detection (left to right),
and direct detection (bottom to top). The diagram nicely visualizes the connection between the
different search strategies. However, the explicit connection depends on the concrete BSM models
which then determine the interaction hidden in the blob of Fig. 1.3. In this thesis, we will mainly
focus on indirect detection strategies of DM which are discussed for CRs and gamma rays in Secs.
2.5 and 3.2, respectively.

�X̄

�X �χ

�χ̄

Collider and early Universe

Indirect detection

Di
re

ct
 d

et
ec

tio
n

Figure 1.3: Feynman diagram showing a generic interaction of DM particles χ with SM particles
X.
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Chapter 2

Astroparticle physics of Galactic cos-
mic rays

CRs are high-energy charged particles originating from Galactic and extragalactic sources. They
propagate in the turbulent magnetic field and on their journey may interact with the (extra-)galactic
distribution of gas and the background fields of radiation. Today, CRs are measured over roughly
13 orders of magnitude in energy spanning form a few tens of MeV to above 1019 eV. In first approx-
imation, above ∼ 10 GeV the flux of CRs follows a steeply falling power law with a spectral index
varying between 2.7 and 3.1. Figure 2.1 summarizes some recent flux measurements of individual
CR species at low energies and the over-all particle flux at higher energies.

The extraterrestrial origin of cosmic-rays was established in 1912 by Victor Hess who conducted
balloon flight to altitudes above 5 km. Thereby, he measured an increase of the ionization with
altitude [51]. Today, this increase of ionization is understood as the effect of CR air showers produced
by the interaction of very high-energy particles with the atmosphere of the Earth. At the time of
Victor Hess, however, it was not yet clear that the “cosmic radiation” was actually due to charged
particles. It was only by 1932 that CRs could be identified as charged particles due to the latitude
effect [52]. It was realized that the ionization was minimal at the equator and then increased towards
the north and the south poles due to the latitude-dependent deflection in the Earth’s magnetic field.
From those years on, CR became a very interesting field of research. At that time, CRs were the
only source of high-energy particles and therefore exploited to study particle physics. Many particles
were first discovered in CRs; among them the positron in 1932 [53], the muon in 1937 [54], and later
also pions and kaons [55,56].

There are two fundamentally different strategies to measure the spectrum of CRs. At low ener-
gies, up to a few hundred TeV, it is possible to perform a direct measurement of the CR fluxes above
the Earth’s atmosphere. Detectors are either sent to extremely high altitudes in balloon experi-
ments or directly sent to space and mounted on satellites or the International Space Station (ISS).
Typically, those detectors are spectrometers, calorimeters, Cerenkov counters, and/or transition-
radiation detectors. Although each individual strategy is sufficient to obtain CR energy spectra,
modern experiments like PAMELA and AMS-02 exhibit a combination of these sub-detectors to

13
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Figure 2.1: Summary of Glactic CR fluxes. Below an energy of few TeV there are direct and
precise measurements of individual scpecies. We show the measurement of some nuclei [57–59]
and leptons [60, 61] by AMS-02, PAMELA and DAMPE. Furthermore, we display the antiproton
measurement by AMS-02. At high energies the identification of individual species is far more
challenging. The black line summarize the trend of the all-particle flux [62], which at the highest
energies is of extragalactic origin. The figure is taken from [63].

exploit the advantages of cross-calibrating the instruments. Furthermore, the combination of the
various sub-detectors allows a precise determination of the flux of individual CR species and iso-
topes. We note that the magnets on-board the modern experiments provide an important advantage
compared to older experiments. Figure 2.1 shows that the CR flux drastically drops when going to
higher energies. While at 10 GeV there are 25 particles per square meter and second in an energy
bin with a width of 10%, this number drops to roughly 1 particle per hour at 10 TeV. At the highest
energies above 1EeV the flux drops below 1 particle per square kilometer and year. The restrictions
in size and weight of space-based experiments result in upper limits for the acceptance of those
detectors. Thus, the detection strategy at above a few hundred TeV is very different. One exploits
the Earth’s atmosphere as a calorimeter and measures either the ultra violet light emitted along
the shower using fluorescence detectors or the electromagnetic and muonic component of the shower
with (typically Cerenkov) detectors at the surface. A good example is the Pierre Auger Observatory
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Chapter 2. Astroparticle physics of Galactic cosmic rays

in Argentina which uses both strategies to determine the CR fluxes up the highest energies.
In general one distinguishes Galactic and extragalactic CRs by the features in the energy spec-

trum of Fig. 2.1. Below 10 GeV CRs are strongly affected by solar wind, the so-called solar modu-
lation effect, which we will discuss in a few more details below. Then, between 10 GeV and about
10 PeV the spectrum (of the dominant proton and helium fluxes) follows a single power law with
spectral index about 2.7. Above 10 PeV the CR spectrum softens. The transition is commonly
known as CR-knee. The physical origin of the knee is under discussion. The most favoured expla-
nations are that either the Galactic sources of CRs are not able to accelerate particles to higher
energies and/or the Galactic magnetic fields are not strong enough to contain the CRs within the
Galaxy. In any case, CRs below the knee are considered to be Galactic. Above a few EeV the
spectrum hardens again, commonly called ankle. At these extremely high energies the spectrum is
considered to be of pure extragalactic origin. Finally, there is a sharp cutoff at ∼ 5 1019 eV. A cutoff
around this energy is expected because those extremely high-energy particles start to interact with
CMB photons. For example, a CR proton interacting with a CMB photon can produce a ∆+ or ∆
resonance which then decays, respectively, into a proton or neutron and a pion:

p+ γCMB −→ ∆+/∆ −→ p′/n+ π0/π+.

The effect was first discussed by Greisen, Zatsepin, and Kuzmin and is often called Greisen-Zatsepin-
Kuzmin (cutoff in cosmic rays) (GZK) cutoff [64, 65]. The energy threshold for the interaction is
inferred from the fact that the Center-Of-Mass (CM) energy has to be larger than the sum of proton
and pion masses. A short calculation for head-on collisions yields:

p
p

+ p
γ

= p
p′

+ p
π

(2.1)

⇒(Eγ + Ep)
2 − (Eγ − pp)2 = s ≥ (mp +mπ)2

⇒ Ep >∼
m2
π + 2mpmπ

4Eγ
.

Here Ei, pi, and mi are energy, momentum and mass of the contributing particles, respectively,
while p

i
denotes a four-vector. In the last line we used that pp ≈ Ep and Eγ � Ep. With a

photon energy of Eγ = 0.23meV =̂2.7K and proton/pion masses of 940/140MeV, the cutoff energy
is estimated to approximately 300EeV. Note that this is only a first-order estimate. More detailed
calculations have to account for the energy spectrum of the CMB photons. Finally, we note that it
is very difficult to distinguish the GZK cutoff from a cutoff due to the maximal acceleration power
of astrophisical sources. In the literature, both scenarios are discussed.

2.1 Galactic cosmic rays

In the remainder of this chapter we will focus on Galactic CRs, more specifically, on CRs in the range
between the GeV level and a few hundred TeV. In the last decade, space-based experiments like
PAMELA and AMS-02 provided measurements of CR leptons [60, 66–70] and nuclei [57–59, 71–74]
with unprecedented precision in this energy range making astrophysics of CRs a precision disci-
pline. For many species, the measurement accuracy is pushed to the level of a few percent. The
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2.1. Galactic cosmic rays

most precise measurement of CR antiprotons [75] is provided by AMS-02 with a precision below 5%
between 2 GeV and 100 GeV. On the one hand, the precise data offers the unique opportunity to
improve our knowledge and modeling of CR sources and propagation, even allowing to investigate
unconventional scenarios like non-power-law and non-isotropic diffusion. On the other hand, sys-
tematic uncertainties in the modeling become substantially important since they potentially bias
our conclusions. Systematics arise, for example, from the scarcity and lack of precision of secondary
production cross sections, uncertainties in the gas densities and composition of the InterStellar
Medium (ISM), and our limited understanding of solar modulation. Technically, one distinguishes
between particles which are accelerated at astrophysical sources, so called primaries, and those pro-
duced by interactions with the ISM during propagation, so called secondaries. Electrons, protons,
helium and also carbon and oxygen mostly belong into the first category, while lithium, beryllium,
boron, and the antinuclei are prominent representatives of the secondaries. In principle, all sec-
ondaries are expected to contain a small primary contribution from the spallation of the heavier
primaries within the astrophysical sources, however, from the analysis of the CR this contribution
has to be small and until now there is no clear evidence for such a contribution. The composition of
Galactic CRs is dominated by protons with about 90% and helium which contributes roughly 10%.
The fraction of leptons and heavier nuclei is much smaller, both give approximately a contribution
of 1%.

Before describing in more detail the various concepts of modeling Galactic CRs we define the
CR flux, which is the number-flux of particles through an area A per time t, in the total energy
interval E to E + dE, and arriving from the solid angle dΩ:

φE(x, E, t, θ, φ) =
d4N

dAdt dE dΩ
. (2.2)

We use the subscript E to denote that we mean the energy-differential flux. In addition to this
definition there are two further definitions of the flux which are very commonly used in this field:
(i) a flux which is differential in kinetic-energy per nucleus, T/n, and (ii) a flux which is differential
in rigidity, R = p/|Z|. Depending on the application either of the definitions can be advantageous.
For example, if a primary CR spallates to a secondary on the ISM the kinetic-energy per nucleon
remains constant. On the other hand, the propagation of CRs in magnetic fields depends on the
rigidity of a particle. From a measurement point of view, spectrometers (like AMS-02 or PAMELA)
determine the rigidity of the CR while calorimeters (like CREAM) determine the total energy of a
particle. We shortly summarize the relations:

φT/n =
dE

d(T/n)
φE = AφE , (2.3)

φR =
dE

dR
φE = |Z| p

E
φE , (2.4)

φR =
d(T/A)

dR
φ(T/n) =

|Z|
A

p

E
φ(T/n). (2.5)

Here A and Z are mass and charge number of the CR species. Sometimes, in the following, we will
drop the subscripts E, R, and T/n to avoid an overload of notation. In those cases the functional
dependence of the flux indicates which of the three definitions is intended.
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E1
E1’

E2’E2

Figure 2.2: Sketch of the scattering of a CR on a magnetic wave leading to the second order Fermi
acceleration.

2.2 Cosmic-ray acceleration

The steep power, observed in the local CR spectrum, suggests that the injected energy spectrum
already at at the sources follows a power law. Moreover, the observation of a power law hints that
the underlying acceleration mechanism is scale-invariant. Today, the generally accepted mechanism
as first described by Fermi [76] relies on an iterative scattering of the CRs on magnetic waves. We
assume that the energy gain at each scattering is proportional to the energy before scattering. So,
at each iteration step we obtain: Ei+1 = (1 + ξ)Ei. Furthermore, the probability Pesc of the CR to
escape the acceleration process after each iteration step is constant. Then, the number of particles
with an energy larger than En = E0 · (1 + ξ)n is given by

N(> En) ∼
∞∑
k=n

(1− Pesc)
k ∼ (1− Pesc)

n ∼ E−αn (2.6)

and α = − log(1−Pesc)
log(1+ξ) . Hence, the energy-differential flux is proportional to a power law with a

spectral index of

γ = 1 + α = 1− log(1− Pesc)

log(1 + ξ)
≈ 1 +

Pesc

ξ
. (2.7)

Now we first relate the energy gain ξ and the scattering on magnetic waves moving at the Alfven
speed, vA. In Fig. 2.2 the situation is sketched for a CR which enters the system of the wave under
an incident angle θ and then scatters to an angle θ′ before leaving the wave. Note that the angle
θ′ for convenience is defined in the rest frame of the wave while θ is the angle in the system of the
Galaxy. We perform the following calculation in the limit where the CR is relativistic (p ≈ E) and
the velocity of the wave is very small compared to the speed of light (β = vA/c � 1). Then, the
energies and angles before and after the scattering are related by:

E′1 = γ(E1 + βp1,‖) ≈ γE1γ [1 + β cos(θ)] (2.8)

E2 = γ(E′2 + βp′2,‖) ≈ γE′2γ [1 + β cos(θ′)].
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Figure 2.3: Sketch of diffusive shock acceleration of CRs as viewed from an observer in the
unshocked medium (left) and an observer moving with the shocked medium (right).

Since the scattering is magnetic the energy in the system of the wave is unchanged, E′1 = E′2, and
we obtain:

ξ =
E2 − E1

E1
= γ [1 + β cos(θ)] [1 + β cos(θ′)]− 1 (2.9)

≈ β[cos(θ) + cos(θ′)] + β2[1 + cos(θ) · cos(θ′)].

To obtain the average gain in the Galaxy we have to average over the two angles θ and θ′. Since θ′

is randomly distributed after the scattering we expect 〈cos(θ′)〉 = 0. On the other hand, the rate
of particle entering in the system of the wave depends on the relative velocity of the CR and of
the wave and the probability distribution for cos(θ) becomes P (cos θ) = 1/2 (1 + vA/vCR cos(θ)) ≈
1/2 (1 + β cos(θ)), which results in 〈cos(θ)〉 = β/3. Finally, the energy gain per scattering is given
by:

〈ξ〉 ≈ 4

3
β2. (2.10)

This scattering is known as second order Fermi mechanism since it is proportional to v2
A. For

characteristic Alfven velocities of to 50 km/s and structures of the magnetic field such that a
scattering occurs at the parsec scale (about every 3 years) the acceleration of a CR from 1 GeV
to 10 PeV (CR knee) would take more than 1 billion years, which is several orders of magnitude
above the escape time of CRs in the Galaxy. In summary, the second order Fermi mechanism is not
responsible for the acceleration of CRs to the highest energies. However, it can reaccelerate CRs
during the propagation. As discussed in more details below this can affect the CR spectrum below
a few tens of GeV.

The acceleration of CRs at astrophysical sources occurs in a special environment at shock fronts.
In this environment, the acceleration is more efficient since backwards scattering (cos(θ) < 0) is
impossible. Shock fronts are for example observed around Supernova Remnants (SNRs). Figure 2.3
shows the situation from an observer at rest in the shocked and in the unshocked medium. From both
perspectives, the medium on the opposite side of the shock front is moving towards the observer.
So, only forward scattering is allowed, which has to be encoded when averaging over cos(θ) and
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Figure 2.4: Sketch of diffusive shock acceleration of CRs as viewed from an observer on the shock
front.

cos(θ′). The probability densities are given by P (cos θ) = 2 cos(θ) and P (cos θ′) = 2 cos(θ′) while
cos(θ) and cos(θ′) are restricted to be larger than 0. So, 〈cos(θ)〉 = 〈cos(θ′)〉 = 2/3 and we obtain:

〈ξ〉 ≈ 4

3
β. (2.11)

Since in this case ξ depends linearly on β it is also called first order Fermi acceleration. Finally,
we have to determine the escape velocity. Looking at Fig. 2.4 we see that the shocked medium is
moving away from the shock front at v′′1 = 1/4 vs. Hence, in the shocked medium the CR tends to
drift away from the shock front. The escape probability is then given by the ratio of the drift rate
and the rate of crossing the shock front. The crossing rate is proportional to the CR speed divided
by 4. The factor 4 arises from averaging the CRs moving towards the shock front over cos(θ′′).
Since the CR speed is approximately equal to the speed of light, the escape probability is given by

Pesc =
4 v′′1
c
. (2.12)

Inserting Eq. (2.11) and (2.12) into the Eq. (2.7) results in

γ = 1 +
4
v′′1
c

4
3β

= 1 +
3

v′′2/v
′′
1 − 1

. (2.13)

In the last step, we have replaced β by the difference of v′′2 and v′′1 . In a perfect shock, the kinetic
gas theory dictates that the ratio v′′2/v′′1 is equal to 4 and that γ becomes 2. In practice, if the shock
is not ideal, γ can be slightly larger than 2.

For further details on this topic we refer to [77–79] and references therein.

2.3 Cosmic-ray propagation

In the following we explain how the propagation of CRs in our Galaxy is typically described. We
are usually not interested in a single particle but rather in the phase-space density fi(x,p, t) of each
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CR species i, namely, the number of particles per volume and momentum, d6N/d3xd3p. We are
interested in the evolution of the phase-space density given by the Liouville’s theorem which states
that the phase-space density is constant along its trajectory up to a potential source term, qi:

dfi(x,p, t)

dt
=
∂fi
∂t

+ v · ∂fi
∂x

+ ṗ · ∂fi
∂p

= qi(x,p, t) ṗ = qi

(
E(x, t) +

v ×B(x, t)

c

)
. (2.14)

Here ṗ is given by the Lorentz force. Notice that in practice there are no electric fields, E, in
our Galaxy. They are cancelled immediately by the charged particles in the plasma. However,
the motion of the charged plasma particles creates magnetic fields, B. They are described by the
Maxwell equations. It is immediately obvious that this set of coupled differential equations is highly
non-linear and the solution of the system is non-trivial. The Eq. (2.14) in combination with the
Maxwell equations is well known in literature as Vlasow equation. Typically, it is necessary to
either fix the electric and magnetic field to infer the behavior of single particles and the phase-space
density or to fix the phase-space density to infer properties of the electromagnetic fields.

2.3.1 Diffusion equation of cosmic rays

We now take the pragmatic and phenomenological approach and describe CR propagation by diffu-
sion. Intuitively, this can be justified since CRs undergo a random walk in the turbulent component
of the Galactic magnetic fields. On average, one expects that the flux of CRs is negatively propor-
tional to gradient of the CR density:

ji(x,p, t) = −D∇fi(x,p, t). (2.15)

If we combine this equation with current conservation,

∂fi(x,p, t)

∂t
+∇ · ji(x,p, t) = q̃i(x,p, t), (2.16)

we obtain the diffusion equation:

∂fi(x,p, t)

∂t
−∇ ·D∇fi(x,p, t) = q̃i(x,p, t). (2.17)

Here D is the diffusion coefficient. In principle, D can be time, position, and momentum dependent.
Furthermore, if diffusion is not isotropic D might be a matrix,

D =

 D⊥ DA 0
−DA D⊥ 0

0 0 D‖

 . (2.18)

In this case, D‖ describes the diffusion parallel to a regular magnetic field, D⊥ perpendicular to the
field, and DA would account for possible drift effects. However, for CR nuclei it is often sufficient to
assume an isotropic and spatially homogeneous diffusion coefficient. The most commonly adapted
form of the diffusion coefficient is a power law in rigidity:

D = βD0

(
R

R0

)δ
. (2.19)
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Here D0 is the normalization of the diffusion coefficient and β is the velocity divided by the speed
of light. The spectral index, δ, characterizes the energy-dependence of the diffusion coefficient.
In general, we expect a rise of the diffusion coefficient with energy (δ > 0) since the trajectories
of higher-energy particles are less bent in magnetic fields. Consequently, diffusion has to proceed
faster. The exact value of δ depends on the spectrum of turbulence of the magnetic field. The two
most common theories of magnetic turbulence are Kolmogorov or Kraichnan and predict a value of
δ = 0.33 and 0.5, respectively. These values should be taken as indications, while the exact value
of δ has to be inferred from CR measurements, see discussion below.

Most attempts to describe CR propagation in our Galaxy rely on an modified version of the
diffusion Eq. (2.17). This approach goes back to the Galactic halo model proposed by Ginzburg
and Syrovatskii [80]. The adjustments account for further processes that CRs might encounter in
the Galaxy [81]. An extensive discussion of CR diffusion is found in [82]. We will now state the full
diffusion equation and then discuss the meaning of every single term:

∂ψi(x, p, t)

∂t
= qi(x, p)︸ ︷︷ ︸

(i)

+∇ ·Dxx∇ψi︸ ︷︷ ︸
(ii)

−∇ · (V ψi)︸ ︷︷ ︸
(iii)

(2.20)

+
∂

∂p
p2Dpp

∂

∂p

1

p2
ψi︸ ︷︷ ︸

(iv)

− ∂

∂p

(
dp

dt
ψi

)
︸ ︷︷ ︸

(v)

− ∂

∂p

(p
3

(∇ · V )ψi

)
︸ ︷︷ ︸

(vi)

− 1

τf,i(x, p)
ψi −

1

τr,i(p)
ψi︸ ︷︷ ︸

(vii)

.

Here we already assumed that the phase-space density mentioned above is isotropic in momentum,
fi(x,p, t)→ fi(x, p, t). Local measurements of Galactic CRs confirm this isotropy. The CR density
ψi is related to the phase-space density fi by ψi(x, p, t) = 4πp2fi(x, p, t). In detail, the various
terms of Eq. (2.20) describe:

(i) The source term specifies the location and energy spectrum of CRs injected in our Galaxy.
This includes the astrophysical sources of primary CRs, which are typically characterized
as (broken) power laws in rigidity. Furthermore, the source term includes the injection of
secondary CRs which are produced by the interaction of primary CRs with the ISM. The
source term of secondaries, therefore, depends on the density of the ISM, the primary CR flux,
and the production or fragmentation cross section. We will discuss secondary CR and their
importance in more detail below.

(ii) Spatial diffusion is the heart of the diffusion equation. Dxx is the diffusion coefficient
discussed above, which is typically a power law in rigidity. The subscript xx is used to
distinguish it from reacceleration which is described by the diffusion in momentum space.

(iii) During propagation CRs might be reaccelerated in the turbulent magnetic fields. Effec-
tively, this can be described by diffusion in the CR momentum. The coefficient of diffusive
reacceleration Dpp is related to the spatial diffusion Dxx via the velocity vA of Alfven magnetic
waves [83, 84] as

Dpp =
4 (p vA)2

3(2− δ)(2 + δ)(4− δ) δ Dxx
. (2.21)
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It was noted in [85] that this process inserts a significant amount of energy into the CR system,
which might damp the turbulence of the magnetic fields. This damping could lead effectively
to an increase of the spatial diffusion coefficient as already suggested in [86].

(iv) Convective winds drive CRs away from the Galactic plane. The winds introduce a current
V (x)ψ(x, p, t). Together with the current conservation we obtain the term∇·V (x)ψ(x, p, t).
Typically, we assume that the convective winds are perpendicular to the Galactic plane since
they are generated by astrophysical sources in the Galactic plane like supernova explosions.

(v) Continuous energy losses are described by the term dp/dt =
∑

k dpk/dt, summing over the
various contributions k. The dominant processes of energy losses depend on the CR energy
and the species. In particular, energy losses are very different for nuclei and leptons. More
details are given below.

(vi) Adiabatic energy loss are caused by a non-zero divergence of V (x).

(vii) The catastrophic loss of particles by decay or fragmentation with decay and interaction
times τr and τf , respectively. Note that the mean fragmentation time depends on the density
of the ISM and the inelastic cross section resulting in a space and energy dependence. The
proper decay time, on the other hand, depends only on energy.

Equation 2.20 provides a chain of coupled differential equations. The fragmentation of heavier
primary nuclei on the ISM produces secondary CRs. Thus, the source term of the secondaries
depends on the flux of the heavier primary CRs. In practice, one solves the chain of equations from
heavy elements to lighter elements. Often one assumes that the CRs in our Galaxy are in a steady
state, i.e. ψi is time-independent. Then the left-hand side of Eq. (2.20) becomes zero. Usually, one
adopts cylindrical boundary conditions at which the CRs escape from the so-called diffusion halo,
practically, this means to enforce ψ = 0 at the boundary. The CR density ψ is related to the CR
flux by

φR(x, R, t) =
dN

dAdtdR dΩ
=
βc

4π
ψ(x, p(R), t)

dp

dR
=

βc

4π|Z|ψ(x, p(R), t). (2.22)

The solution of the CR diffusion equation can be obtained by using numerical codes like Gal-
prop [87,88], Dragon [89], or Picard [90]. Alternatively, it is possible to solve simplified approx-
imations of Eq. (2.20) analytically or to exploit semi-analytical tools like Usine [91].

2.3.2 Analytic solution of the diffusion equation

It is very instructive to solve a simplified version of the diffusion equation analytically to get an idea
of the generally expected behaviours of the full equation. If we concentrate on CR nuclei, we might
neglect energy losses and reacceleration at first approximation. Furthermore, we assume that the
convection velocity is constant and perpendicular to the Galactic disc. We adopt one-dimensional
diffusion model, namely, we assume an infinity expanded disk at z = 0 and a boundary condition
with free escape at z = ±L. The one-dimensional model is a reasonable approximation for CRs at
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the solar position which is at 8 kpc Galactocentric radial distance while typical boundaries of the
diffusion halo in two-dimensional models are at about 20 kpc.On the other hand, typical values for
the height of the diffusion halo, L, range from 2 to 15 kpc. Since, the height of the Galactic disc,
h, is very small compared to L it is possible to compress the fragmentation to z = 0, namely,

Γf (x, p) =
∑

i∈H,He

nISM,i(x)vσin,CR+i(p) (2.23)

−→ 2hδ(z) 〈nISM,Hv〉(σin,CR+H(p) + 0.1 · σin,CR+He(p))︸ ︷︷ ︸
=Γf (p)

, 1

where nISM denotes the density of Hydrogen or helium, σin is the inelastic cross section, and h is
the height of the Galactic disc. Similarly the source term is confined to the disk. Finally, assuming
steady-state we obtain:

D · ∇2ψ(z)− ∂z (sign(z)vcψ(z)) = 2hδ(z)q0(R)− 2hδ(z)Γf (p)ψ(z). (2.24)

In the following, we will sketch the analytic solution, taking advantage of the symmetry with respect
to the Galactic plane, f(z) = f(−z). First, let us note that we have removed all energy-changing
processes form the equation, so we can suppress the energy-dependence of ψ in our notation. Note,
however, that an energy-depend diffusion coefficient, D, and energy-dependent fragmentation cross
section will induce a parametric energy dependence of ψ. For z > 0 the equation reduces to
∂2
zψ(z)− vc/D ∂zψ(z) = 0, which is solved by

ψ(z) = A+B

[
exp

(
vc|z|
D

)
− 1

]
. (2.25)

The two coefficients A and B are fixed through the boundary conditions

ψ(z = L) = 0 and (2.26)

J∂zψ(z)K ∣∣
z=0

= lim
ε→0

ε∫
−ε

dz ∂2
zψ(z) =

2

D
[(vc + hΓf )ψ(0)− q0h] . (2.27)

Here |[∂zψ(z)]|z=0 denotes the jump condition in the first derivative of ψ(z). In the second step of
Eq. (2.27) we have inserted Eq. (2.24) and assumed that ψ is continuous and bounded at z = 0. It
is easy to show that these two conditions lead to

A =
q0

vc
h + vc

h
1

exp(vcD/L)−1 + Γf
and (2.28)

B = − 1

exp(vcD/L)− 1
A. (2.29)

Note that the flux at z = 0 is given by φ(0) = A. Let us investigate three limits:
1Compared to Eq. (2.20) we replaced the mean fragmentation time by the fragmentation rate Γf = 1/τf . In the

second step of Eq. (2.23) we assumed that the helium density in the ISM is 10% of Hydrogen density.
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• Diffusion domination: In this limit, we can expand A around vcD/L� 1 and then neglect
fragmentation and convection. We obtain ψ(0) = q0 hL/D. The ratio of phase-space density
ψ and source term q0 determines a characteristic time scale for diffusion of CRs in the Galaxy,
we define τdiff = hL/D. If diffusion is the dominant process affecting CRs this coincides with
the escape time of the CRs from our Galaxy, which is true for nuclei above approximately
10 GV. For typical values of the diffusion coefficient at 10 GV of D = 0.3 kpc2/Myr and a
halo (disc) height of 10 kpc (0.1 kpc) the diffusion time is τdiff = 3.3 Myr. Since D increases
with energy the diffusion time decreases and vice versa. These time scales can be understood
as mean residual time of the CR in the Galaxy.

• Convection domination: In this case, we obtain τconv = h/vc. For typical convection
velocities of 15 km/s ≈ 0.015 kpc/Myr we obtain τconv = 6.6 Myr. So, convection might
become the dominant process at low energies when τconv drops below τdiff .

• Fragmentation domination: This means that we can neglect convection and diffusion.
We obtain τf = 1/Γf . Also, these losses due to fragmentation are typically only important
at low energies. We note that it strongly depends on the nucleus if and at which energies
fragmentation domination is reached. In general, heavier nuclei are much more affected by
fragmentation since inelastic cross sections grow roughly with AD1 withD1 between 2/3 to 1.0.
We note that at low energies of about 1 GeV/n the fragmentation of nuclei is very important.
As a result, different nuclei probe different volumes in the diffusion halo [92].

From Eq. (2.28) we understand that the total escape time of all relevant sub-processes is approxi-
mately obtained by

1

τesc
≈
∑
k

1

τk
. (2.30)

Then the CR flux is given by φ(R) = q0(R)/τesc(R). Sometimes the escape time is also called effec-
tive propagation time and denoted τeff . In the literature, the approximation φ(R) = q0(R)/τesc(R)
is discussed as the so-called leaky box model [82, 93]. We note that the local CR flux depends only
on the ratio of D/L in this simplified model, so it is not possible to constrain the diffusion coeffi-
cient and halo height separately. To lift the degeneracy it is necessary to exploit the information of
radioactive CR isotopes which decay at time scales comparable to the escape time.

It is also possible to find analytic solutions of the two-dimensional setup. One adopts cylindrical
symmetry with Galactocentric radial distance, r and distance from the Galactic plane z and uses
boundary condition with free escape at r = rmax and z = ±L. For a more detailed discussion on
different analytic solutions refer to [94]. Here we repeat only the solution which will be used later
in Chapter 6. The diffusion equation in cylindrical coordinates reads

∂ψ(r, z)

∂t
−D ·∇2ψ(r, z) + ∂z (sign(z)ψ(r, z)vc) = q(r, z)− 2hδ(z)Γfψ(r, z) (2.31)

and ∇2 =
1

r
∂2
r r + ∂2

z
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The solution at the solar position is given in terms of Bessel functions by:

ψ(r, z)∣∣
r=rsun,z=0

=

∞∑
n=1

J0

(
ξn
rsun

rmax

)
exp

(
−vcL

2D

)
yn(L)

An sinh(SnL/2)
(2.32)

with

Qn =
4

J2
1 (ξn)r2

max

rmax∫
0

dr rJ0(ξnr/rmax)q(r, z), (2.33)

yn =

Z∫
0

dz exp

(
vc(Z − z)

2D

)
× sinh(Sn(Z − z)/2)Qn,

An = 2hΓf + vc +DSn coth(SnL/2),

Sn =
(
v2

c/D
2 + 4ξ2

n/r
2
max

)1/2
.

Here J0 and J1 are the zero- and first-order Bessel functions, while ξn is the n-th zero of J0. We
stress that this solution allows sources located in the disc of the Galactic plane as well as in the
diffusion halo.

2.4 Nuclei in cosmic rays and the role of secondaries

The most important process affecting the propagation of CR nuclei can be understood from the time
scales of the single processes in Eq. (2.20). In Fig. 2.5 we show the time scales for the propagation
of CR protons. The propagation parameters are inferred from the fit of an analytic one-dimensional
model to the recent CR data of the boron-to-carbon ratio provided by the AMS-02 experiment [74].
Details on this fit are provided in [95]. This model allows for diffusion, reacceleration, and con-
vection. Furthermore, losses from nuclear interaction are taken into account. As expected, at high
energies diffusion dominates all other processes and convection becomes important below a kinetic
energy of Tp <∼ 10 GeV. Only, at very small energies of Tp <∼ 0.2 GeV the continuous energy losses
due to Coulomb scattering and ionization become relevant (τloss). Diffusive reacceleration (τDR) is
sub-dominant at all energies. Note, however, that the conclusion on reacceleration depends on the
exact realization of the CR diffusion model. If the model would allow for larger values of Alfven ve-
locities, diffusive reacceleration would be more important at low energies. The effective propagation
time, τeff , which comprises all subprocesses, is on the order of Myrs.

2.4.1 Primaries versus secondaries

Primary CRs are accelerated and injected into the diffusion halo at astrophysical sources. For
nuclei, SNRs are the supposed dominant source of primary CRs. At the shock front of the SNR
CRs can be accelerated up the observed energies. The energy budget of CRs can be sustained with
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2.4. Nuclei in cosmic rays and the role of secondaries

Figure 2.5: Comparison of the characteristic time scales of various relevant processes for the
propagation of CR protons. The figure is taken from [95].

the observed rate of supernova explosion of approximately three per century. Therefore, the source
term of primary CR nuclei is expected to follow the distribution of SNR in our Galaxy. Usually
one assumes that an effectively time-independent source term can be separated into an energy-
dependent component and a spatial component, q(x, p) = qxx(x)qp(p). If we furthermore assume
that the source distribution is cylindrically symmetric it can be parametrized by

qxx(r, z) =

(
r

r0

)α
exp

(
−β r − r0

r0

)
exp

(
−|z|
z0

)
, (2.34)

which follows the observed radial distibution of SNR in our Galaxy [96, 97]. Typical parameter
values are α ∼ 1.6, β ∼ 4 with a flattening above r & 10 kpc and a cutoff above r & 30 kpc.
Moreover, the sources are exponentially constrained to the disk with a mean width of z0 ∼ 0.2 kpc.
The energy-dependent part qp is typically modeled as (broken) power law in rigidity but the exact
spectral index and potential breaks are not known from first principles and have to be inferred from
data.

Secondary CRs are not produced at the astrophysical sources. We can identify them by compar-
ing the abundance of elements in CRs with the abundance in the solar system. Figure 2.6 shows the
relative abundances of all elements from protons to iron compared to silicon. For primary elements
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Figure 6. CRIS elemental GCR spectra during solar maximum. Arbitrary scale
factors have been applied to the intensity of each element for presentation of the
spectral shapes. The dashed curves are the result of a cosmic-ray propagation
model calculation. The solid curves show the fits used to determine relative
abundances. The dotted line at 160 MeV nucleon−1 shows where relative
abundances are reported (Table 1).

factor of 0.27 than that measured at solar minimum, allowing
for a comparison of the absolute intensity levels in the two time
periods. The composition is energy dependent, and this energy
was chosen because the CRIS sensitivity for all species between
boron and nickel overlaps at this point.

The relative abundances were determined by individually
fitting each spectrum of seven intensity data points with a
parabola in log(Intensity) versus log(Energy/nucleon). Cobalt
did not have sufficient statistics for a good fit, so manganese
was used as a template for the shape and only the overall
normalization was fitted. The results of the fits are indicated by
the solid curves in Figures 5 and 6. The relative abundances were
taken from the ratios of the fit curves at 160 MeV nucleon−1.
The uncertainties in the relative abundances were taken to
be similar to those of the data themselves, with a statistical
contribution based on the total number of counts. The residual
systematic uncertainties will tend to cancel when comparing
adjacent elements. In most cases, the statistical uncertainty is
much smaller than the systematic contribution.

Our observed GCR abundances for solar minimum are plotted
in Figure 7, supplemented with GCR observations for Z < 5
reported elsewhere (see Wang et al. 2002; de Nolfo et al. 2006).
The data are given at 160 MeV nucleon−1 and are normalized
to Si ≡ 1000. These abundances are compared with solar
system abundances given by Lodders (2003). The odd-Z heavy
nuclei, as well as a few notable even-Z nuclei (Be, Ca, Ti, and
Cr), show significant GCR overabundances. This well known
property of cosmic-ray abundances demonstrates the effect of

Table 1
CRIS Relative Elemental Abundances at 160 MeV Nucleon−1

Element Solar Minimum Solar Maximum

B 1803.8 ± 10.4 1986.4 ± 11.3
C 7337.0 ± 18.4 6780.2 ± 18.4
N 1713.7 ± 8.4 1836.1 ± 9.0
O 7082.6 ± 16.0 6520.6 ± 15.6
F 101.8 ± 1.9 123.6 ± 2.1
Ne 998.7 ± 5.6 1050.4 ± 5.8
Na 189.6 ± 2.4 211.5 ± 2.5
Mg 1368.2 ± 6.1 1367.3 ± 6.0
Al 202.7 ± 2.3 226.3 ± 2.4
Si 1000.0 ± 5.0 1000.0 ± 4.8
P 26.2 ± 0.8 34.2 ± 0.8
S 157.0 ± 1.9 181.2 ± 1.9
Cl 24.9 ± 0.7 38.4 ± 0.9
Ar 58.8 ± 1.1 78.5 ± 1.2
K 41.6 ± 0.9 62.5 ± 1.1
Ca 124.8 ± 1.5 155.8 ± 1.6
Sc 26.0 ± 0.7 35.2 ± 0.8
Ti 100.4 ± 1.4 125.6 ± 1.5
V 45.7 ± 0.9 54.7 ± 0.9
Cr 98.8 ± 1.3 109.7 ± 1.3
Mn 61.4 ± 1.1 71.4 ± 1.1
Fe 653.7 ± 3.5 742.1 ± 3.4
Co 3.7 ± 0.3 4.6 ± 0.3
Ni 27.8 ± 0.7 33.8 ± 0.7

Notes. Values are normalized to Si. Only the statistical uncertainties are given.
The absolute intensity for silicon at 160 MeV nucleon−1 is (107.4 ± 3.3) ×
10−9 (cm2 s sr MeV nucleon−1)−1 for solar minimum and (29.1 ± 0.9) × 10−9

(cm2 s sr MeV nucleon−1)−1 for solar maximum.

Figure 7. Comparison of GCR solar minimum abundances (filled circles)
with solar system abundances (open circles). The CRIS solar minimum results
reported in this paper (Table 1) are used for the Z ! 5 GCR abundances. For
Z < 5, the GCR data come from Wang et al. (2002) and de Nolfo et al. (2006).
The solar system abundances are taken from Lodders (2003).
(A color version of this figure is available in the online journal.)

the interstellar fragmentation of heavier elements into secondary
cosmic rays, which fills in the abundances of the rarer elements.

6. DISCUSSION

6.1. Solar Minimum Primary-element Spectra

Figure 8 shows selected CRIS primary-element spectra during
the 1997–1998 solar minimum period. Spectra from various
experiments during the 1976–1978 minimum are plotted for

Figure 2.6: Comparison of nuclei abundances in CRs and the solar system. The figure is taken
from [98].

the two abundances agree with each other while for secondary elements the CR abundance signif-
icantly exceeds the solar abundance. The reason is that the secondary elements are not produced
during thermonuclear fusion in the stellar cycle. Hence, they are far less abundant in the solar
system. In CRs, however, the secondaries can be produced by the interaction of primary CRs with
the ISM Therefore, their abundance is increased. From Fig. 2.6 we identify that p and He as well as
C, N, and O are primary CRs while Li, Be, and B are secondary. Furthermore, some of the sub-iron
elements are secondaries.
The source term of secondaries is given by:

qi(Ti) =
∑
k>i

∑
j={p,He}

4π nISM,j φk(Tk)σk+j→i(Tk)
∣∣∣
Tk
Ak

=
Ti
Ai

(2.35)

Here σk+j→i denotes the fragmentation cross section of species k into i on the ISM component j,
φk is the CR primary flux, and nISM,j is the density of the ISM. We have assumed that the kinetic
energy per nucleon (T/A) is constant during the fragmentation, which is a good approximation up
to a few percent precision [99]. At large energies the cross section is approximately independent of
energy. Then the source term of the secondary CRs equals the energy behaviour of the parent flux.
Consequently, the secondary source term adopts the energy spectrum of the propagated primary CR
flus and thus it is harder than the primary source term. The cross sections for secondary production
are measured at high-energy experiments, however, the precision of these cross sections lags behind
the precision of recent CRs observations by AMS-02 [100].

Note that when we talk about primary CRs we mean “dominantly primary”. All primary nuclei
contain also a secondary component from the fragmentation of heavier elements. Furthermore,
there are speculations about a primary component in typical secondary species. They would be
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produced by spallation of the primaries directly at the vicinity of the sources and then participate
in the acceleration process [101–104]. Typically, this kind of primary component is not supported
by the B/C ratio but it could become important at high energies at the order of one TV because
the primary source terms are softer than the secondary source terms [105,106].

2.4.2 Primary-to-secondary ratios

Primary-to-secondary ratios in CRs constrain the behaviour of propagation. To understand the
principle let us take another a look at the analytic one-dimensional diffusion model discussed above.
At high energies, where diffusion is dominant, the flux of primaries is given by

φprim(T/A) ≈ c

4πA

qprim(T/A)hL

D(T/A)
. (2.36)

Then source term and flux of the secondary become

qsec(T/A) ≈ 4π nISM φprim(T/A)σprim→sec and (2.37)

φsec(T/A) ≈ c

A

nISM φprimσprim→sec(T/A)hL

D(T/A)
, (2.38)

such that the secondary-to-primary ratio turns out to be

φsec(T/A)

φprim(T/A)
≈ c

A

nISM σprim→sec hL

D(T/A)
. (2.39)

The standard ruler to constrain propagation parameters in the diffusion models is the boron-to-
carbon ratio. Boron is produced from the spallation of carbon and heavier species on the ISM.
AMS-02 has measured the B/C ratio with high precision between 2 GeV and a few TeV [72]. It
roughly follows a power law above a few tens of GeV with a spectral index between -0.3 and -0.5.
We can conclude that the diffusion coefficient behaves as D ∼ Rδ with δ in the range of 0.3 to 0.5,
which is in agreement with the theoretical expectations. In more detailed analyses it is possible
to infer not only the diffusion coefficient but it also possible to constrain further processes like
convection, reacceleration, and potential breaks in the diffusion coefficient. Recent analyses of the
AMS-02 data require a detailed understanding of the various systematic uncertaintes as for example
discussed in [95,107].

2.4.3 Cosmic-ray clocks

Radioactive isotopes in CRs can be used to break the degeneracy of L and D. They are also
called CR clocks. To understand how this works we go back to our simple analytic one-dimensional
diffusion equation, Eq. (2.24). In the limit of only diffusion and decay it reads D · ∇2ψ(z) =
2hδ(z)q0(R)− Γr(p)ψ(z). The solution at z = 0 is given by

ψ(z)∣∣
z=0

=
q0 h√
ΓrD

tanh

(
ΓrL

2

D

)
. (2.40)
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In a decay dominated regime the characteristic decay time is τdecay = h/
√

ΓrD. The decay rate Γr
is energy-dependent because of the time dilation of the relativistically moving CRs. If γ = E/m
is the Lorentz factor and τ0,r the mean decay time of the CR species at rest, the decay rate is
Γr = 1/(γτ0,r). The 10Be isotope is radioactive and has a lifetime about 2 Myr, which is suitable to
constrain the halo size. Historically, the ratio of 9Be/10Be is considered as standard ruler, however,
the experimental measurements of this ratio are scarce and restricted to very low energies.2 We stress
that solid conclusions at low energies are difficult since many propagation effects become important
such as cross section, solar modulation, reacceleration, and convection. An alternative might be
to consider the Be/B ratio which is measured precisely by AMS-02 [72]. A recent analysis hints
towards L ∼ 6 kpc. However, this result might be affected by systematic uncertainties in the Be
production cross section [110]. Taking this systematic uncertainties into account the result becomes
less reliable, although remaining compatible with standard assumptions for L. In particular, it still
excludes very small halo heights of L <∼ 2 kpc.

2.4.4 Observation of the spectral break at 300 GeV

The precise measurement of the CR proton and helium fluxes by PAMELA [57] revealed a spectral
break in the power law at a rigidity of about 300 GV. This observation is confirmed by the AMS-02
experiment [58,59]. Moreover, AMS-02 has acquired sufficient statistics to observe a similar break in
the heavier primary spectra of carbon and oxygen [73]. The difference of spectral indices above and
below the break is approximately 0.1. On the other hand, the secondary fluxes of lithium, beryllium,
and boron exhibit a break at the same rigidity, but the change of spectral index is roughly twice
as large as for the primaries. This can be explained by a break in the diffusion coefficient [111]. In
principle, a break in the energy spectra of CRs could originate from the injection spectrum or from
diffusion coefficient. The generic argument to support the latter is that the break in the secondaries
is more pronounced than in the primaries. This is expect if there is a change in the diffusion coeffi-
cient since secondaries experience diffusion twice, once as primary and a second time as secondary,
i.e. after spallation.
The observation of this break in the diffusion coefficient could be explained within models of self-
generated turbulence [112, 113] due to the streaming instability of CRs. This would decrease the
diffusion coefficient at low energies, below the observed break, and leave it unchanged above. Be-
cause of the decreased diffusion coefficient at low energies advection of CRs becomes more important
(at about 10 GV) which would lead to another break in the observed spectrum. So, effectively this
models would lead to two breaks in the propagation processes of CRs. Recently, it was noted that
a model of self-generated diffusion could also be used to explain the origin of a diffusion halo with
a half-height at the order of a few kpc [114].

2We note that also some further radioactive nuclei are explored in literature. In particular, the ratios of 26Al/27Al,
36Cl/Cl, and 54Mn/Mn are considered [108,109].
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Figure 2.7: Relative contribution of various channels to the total secondary antiprotons source
term in CRs as function of the antiproton kinetic energy, Tp̄. The dominant contributions are given
by the pp, pHe, and Hep channels. More details on how to obtain this results are given in Sec 4,
see Fig. 4.6. The figure is taken from [3].

2.5 The special role of cosmic-ray antiprotons

Antiprotons take a special role in the ensemble of CRs. Their dominant production mechanism is
of secondary origin, namely, antiprotons are produced by the interaction of primary CRs with the
ISM. However, the production mechanism differs significantly from the production of secondary
nuclei like lithium or boron. The latter are produced by fragmentation of heavier nuclei on the ISM.
In these fragmentation reactions the kinetic energy-per-nucleon of the secondary and primary stays
constant as discussed in the previous section. Antiparticles, on the other hand, have to be created
in pair of particle and antiparticle. The dominant production reactions of CR antiprotons are the
inelastic interaction of CR protons or helium on the ISM which consists of hydrogen and helium.
In the following, we will call antiprotons produced in the interaction of the CR species i and the
ISM component j “produced in the ij channel”. Explicitly, antiprotons produced from a CR proton
and ISM Hydrogen are attributed to the proton-proton (pp) channel and the underlying reaction is
p+p→ p̄+X. Figure 2.7 shows the relative contribution of the different production channels to the
total antiproton source term. The pp channel makes up 50% to 60% of the total antiproton source
term, while the pHe and Hep channels each contribute 15% to 20%. The production of antiprotons
by heavier CR nuclei or the heavier components in the ISM give only a small and almost negligible
contribution at the percent level.

Before we give a more detailed derivation of the antiproton source term, we have to remark on
one subtlety: In the total source term of antiprotons, we count not only the antiprotons directly
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produced at the interaction vertex of CR and ISM particles, commonly called prompt antiprotons,
but also all particles which decay into antiprotons within typical propagation time-scales of CRs.
In particular, this includes antineutrons and antihyperons. It will be discussed below how to relate
antineutrons and antihyperons to the prompt antiproton production.

2.5.1 Derivation of the antiproton source term

The source term of CR antiprotons in the ij channel, namely, the number of antiprotons produced
per time, volume, and energy in the interaction of a CR species i and an ISM component j, is given
by [7, 115,116]:

qij(Tp̄) =

∞∫
Tth

dTi 4π nISM,j φi(Ti)
dσij
dTp̄

(Ti, Tp̄). (2.41)

Here Ti and Tp̄ are the kinetic energy of the CR projectile and the produced antiproton, respectively.
Furthermore, nISM is the ISM density, φi is the CR flux, and dσij/dTp̄ is the energy-differential
antiproton production cross section in the ij channel. The factor 4π corresponds to an angular
integration of the isotropic CR flux. The lower bound, Tth, in the energy integration is the threshold
energy to produce a proton-antiproton pair in the CR-ISM collision, which, in the case of the pp
channel, this energy is given by Tth = 6mp ≈ 5.63 GeV.

The energy-differential antiproton production cross section in Eq. (2.41) can be related to the
fully-differential cross section measured in high-energy experiments. These cross sections are typi-
cally stated in the Lorentz-invariant form

σinv = E
d3σ

dp3
(
√
s, xf , pT), (2.42)

where E is the total energy and p the momentum of the produced antiproton. The production cross
section depends on three kinematic variables: The CM energy of the collision,

√
s, and two param-

eters to state the energy and direction of the produced antiproton.3 Commonly used parameters
are the so-called Feynman scaling variable xf = 2p∗L/

√
s and the transverse momentum pT . The

superscript ∗ denotes that a variable is taken in the CM frame. In some cases, we will replace the
Feynman scaling xf with the radial scaling xR = E∗p̄/E

max,∗
p̄ , with the maximal antiproton energy

given by Emax,∗
p̄ = (s− 8m2

p)/(2
√
s). 4

To obtain the energy-differential cross section in Eq. (2.41) from the Lorentz-invariant cross section
in Eq. (2.42) we, first, have to relate the kinematic variables from the CM frame, {√s, xf , pT}, to
kinetic variables in the ISM frame. The standard choice of variables are the kinetic energy-per-
nucleon of the projectile, Ti/A, the kinetic energy of the produced antiproton Tp̄, and the angle of
the produced antiproton with respect to the incoming projectile, θ.

3Note that the cylindrical symmetry of the collision reduce the kinematic parameters of the produced antiproton
from 3 to 2.

4A derivation of this formula is given in the App. A of [7].
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Let us for a moment focus on the pp channel. Then, the Lorentz transformation between the
CM and ISM frame relating the energy and the longitudinal momentum of the antiproton is given
by: (

Ep̄
pp̄,L

)
=

(
γ∗ γ∗β∗

γ∗β∗ γ∗

)(
E∗p̄
p∗p̄,L

)
. (2.43)

Here β∗ is the velocity of (each of) the proton(s) in the CM frame and γ∗ =
(
(1− (β∗)2

)−1/2 is the
corresponding Lorentz factor. In terms of proton energy and momentum of the projectile proton,
the two variables can be expressed as

β∗ = p∗p/E
∗
p =

√
Ep −mp

Ep +mp
=

√
s− 4m2

p

s
and (2.44)

γ∗ = E∗p/mp =

√
Ep +mp

2mp
=

√
s

2mp
,

and the CM energy is given by

s = 4E∗p = 2Epmp + 2m2
p. (2.45)

More details are given in App. B of [7].
After the Lorentz transformation the energy-differential cross section is obtained by an angular
integration:

dσ

dTp̄
(Tp, Tp̄) =

∫
dΩ

d3σ

dEp̄d Ω
(Tp, Tp̄, θ) =

∫
dΩ p2

p̄

dpp̄
dEp̄

d3σ

p2
p̄ dpp̄ dΩ

= pp̄

∫
dΩσinv(Tp, Tp̄, θ).(2.46)

Here dΩ = dϕd(cos θ) denotes the integral over the solid angle. In the last step we used the relation
dpp̄/dEp̄ = Ep̄/pp̄. If the angular integral has to be evaluated numerically it is preferable to replace
the angle θ with the pseudo-rapidity η using cos θ = tanh η.

In Fig. 2.8 we show the energy-differential antiproton production cross section as function of the
kinetic energy of the proton projectile and the antiproton product. As expected, the antiprotons
are produced only above a threshold in the proton energy of 5.63 GeV and they respect energy
conservation, namely, the antiproton energy always stays below the energy of the projectile proton.
Furthermore, at Tp̄ <∼ 1 GeV the production of antiprotons from protons with low energies (close to
Tth) is suppressed because of a decreasing phase space.

2.5.2 A comment on the contribution of antineutrons and antihyperons

As already mentioned above, antiprotons in CRs can originate from the decay of an intermediate
antineutron or antihyperons (Λ̄ and Σ̄) with typical mean lifetimes of 881.5 s and ∼ 10−10 s,
respectively, which are negligibly small compared to the time scales of CR propagation at the order
of a few Myrs, see above. Therefore, the production cross section in Eq. (2.46) has to refer to
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Figure 2.8: Energy-differential antiproton production cross section in the pp channel as function
of proton and antiproton kinetic energies. The cross section is derived from the parametrization of
Ref. [117]. The figure is taken from [7].

the sum of antiprotons, antineutrons, and antihyperons. However, at the fully-differential cross
section level only the prompt antiproton component is measured. We assume that the production
of antineutrons and antihyperons is proportional to the antiproton production which is a reasonable
assumption given their similar baryonic structure. Traditionally, the production of antiprotons and
antineutrons was considered to be identical, until an enhancement of antiproton production was
observed in the reaction of p+ n→ p̄+X with respect to p+ p→ p̄+X [118]. As argued in [117],
due to symmetry, the same enhancement of about 30%±20% is expected in p + p → n̄ + X with
respect to p + p → p̄ + X. We denote the enhancement of antineutron production with respect to
antiproton production with ∆IS. This so-called isospin violation was further studied and compared
to data sets at various CM energies by [119] as displayed in the left panel of Fig. 2.9. According to
this analysis the enhancement is 10% to 20% at low energies and decreases to 0 at high energies.

On the other hand, the production ratio of Λ̄/p̄ increases from 30% at
√
s ≤ 10 GeV to 60%

at
√
s ≥ 100 GeV, see right panel of Fig. 2.9. To obtain the number of antiprotons from the

decay of antihyperons we assume a constant production ratio of Σ̄/Λ̄ ≈= 0.33 and branching ratios
of Br(Λ̄ → p̄ + π) = 0.64 and Br(Σ̄ → p̄ + π) = 0.52. Then the enhancement of antiproton
production due to an antihyperon contribution is given by ∆Λ = 0.81 · Λ̄/p̄. Finally, if we assume
that antiproton and antineutron production from antihyperons are equal, the total cross section for
antiproton production in our Galaxy is related to the prompt antiproton production cross section
by

σGalaxy
inv = σinv · (2 + ∆IS + 2∆Λ). (2.47)
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Figure 2.9: The left panel shows the enhancement of antineutron production with respect to
antiproton production, ∆IS, as function of CM energy, while the right panel shows the ratio of
anti-Λ-to-antiproton production. Both figures are taken from [119].

2.5.3 Scaling of the proton-proton to the proton-nucleus channels

In principle, we would like to have independent determinations of antiprotons in the pp and the
significantly contributing pHe, Hep and HeHe channels. Unfortunately, there are not enough cross
section measurements to follow this procedure in the pHe channels. Only very recently the first ever
measurement of antiproton production cross sections on He was provided by the LHCb experiment.
They used a fixed He target and proton projectiles at 6.5 TeV to measure antiprotons produced at
momenta between 12 and 110 GeV and transverse momenta between 0.4 and 4.0 GeV [120]. The
contribution of this parameter space to the source term of CR antiprotons is very small. Therefore,
the common approach is to rescale the pp channel to pA and AA. To understand the relation
between the pp channel and the channels including a heavier nucleus as projectile and/or target
we use the picture that a nucleus is built from a number of A nucleons. Then, the production
of antiprotons can be traced back to an interaction of a single nucleon in the target with a single
nucleon in the projectile. Therefore, at very first approximation one expects a scaling of the cross
section which is linear in A for both, projectile and target (c.f. [3] and references in there):

σA1A2
inv (

√
s, xf , pT) ≈ A1A2σ

pp
inv(
√
s, xf , pT). (2.48)

From the above picture, it is obvious that the appropriate CM frame is the nucleon-nucleon frame
and that the kinematic variables

√
s and xf refer to this nucleon-nucleon frame.5 In practice, there

are shielding effects such that the scaling is slightly smaller than linear. We will discuss this in more
detail in Chapter 4.

Historically, there have been different strategies to determine the rescaling factor. In Ref. [121]
the authors performed a fit to various data sets from pBe up to pPb interactions. However, for the
purpose of antiproton production in CRs we are interested in the scaling factor of pHe which might
differ significantly from the scaling of pPb given the large difference in mass number: AHe = 4 and

5Specifically, this means that in Eqs. (2.44) and (2.45) the energy Ep and the momentum of the pp of the projectile
(in the ISM frame) have to be replaced by EA/A and pA/A.
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APb = 208. In Ref. [119] the author relies solely on the rescaling to pC for which precise data is
available from the NA49 experiment [122]. We will adopt this procedure and in Chapter 4 and,
furthermore, include the first-ever measurement in the pHe channel by LHCb to cross check our
approach.

2.5.4 The energy-differential antiproton production cross section

There are mainly two different methods to obtain the energy-differential antiproton production
cross section. The first method exploits analytic parametrizations of the Lorentz invariant cross
section, Eq. (2.42). The analytic parametrizations are fitted to various data sets of antiproton
production cross sections in proton-proton, proton-nucleus, and nucleus-nucleus collisions. The
energy-differential cross section is derived as described in the previous paragraph. Historically, this
approach was introduced by the Tan& Ng [123] in 1983 and since then continuously improved by
various groups [116, 117, 119, 121].6 The two latest parametrizations were stimulated by the very
precise new measurements of the antiproton production cross sections in the pp channel by the
NA49 experiment at CERN [124]. Apart from the NA49 data, the parametrizations are adjusted
to several data sets from fixed-target and collider experiments over a large range of CM energies
spanning from about 6 GeV up to 2.7 TeV, which allows a robust prediction of the antiproton source
term from 1 GeV up to the TeV range. In Chapter 4 we will provide an update of the two latest
parametrizations including new cross section measurements by NA61 [125] in the pp channel and
LHCb [120] in the pHe channel.

The second option is to tune Monte Carlo (MC) event generators to the available cross section
data, and then to extract the energy-differential cross section directly from running the MC. This
was, for example, performed with DTUNUC [126,127] which was designed specifically to take effects
at low energies into account and provided the cross sections for the pp, pHe, Hep, and HeHe. More
recently Kachelriess et al. [128,129] (hereafter KMO) exploited the MC generators EPOS-LHC and
QGSJET-II-04 to obtain the cross sections for all pp, p-nucleus (pA), and nucleus-nucleus (AA)
channels. These MC generators were originally developed for very high energy interaction as, for
example, occurring in CR air showers or at the LHC at CERN. Therefore, the authors specifically
trained their MC to describe also the data of the NA49 experiment which are taken at a CM energy
of 17.3 GeV (158 GeV proton energy in the ISM frame). This allows robust predictions of the
antiproton source term down to an energy of approximately Tp̄ ∼ 10 GeV. However, there is a clear
disadvantage with respect to the analytic parametrizations which can be trusted down to the level
of 1 GeV.

In Fig. 2.10 we present a comparison of the different methods and parametrizations to obtain the
energy-differential cross section. The three panels show that there are significant deviations between
the various cross section determinations. While at intermediate projectile energies of Tp ∼ 100 GeV
and antiproton energies of Tp̄ ∼ 20 GeV the cross sections agree reasonably at the level of 30% to
50%, the deviation for Tp ≥ 1 TeV increase above a factor of 2. Furthermore, there is a significant
deviation of the cross sections at low antiproton energies, Tp̄ ≤ 1 GeV, where the deviation can
increase to a factor of a few. Finally, we observe that the KMO cross section at low Tp̄ always

6Note that [119] is an update of [116].
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Figure 2.10: Comparison of the energy-differential antiproton production cross section of different
analytic parametrizations from di Mauro [117], Winkler [116], Duperray [121], and Tan&Ng [123]
with the MC approach of KMO [128]. The left panel shows the cross section in the pp channel as
function of Tp̄ at three fixed Tp of 20 GeV, 450 GeV, and 6.5 TeV, while the central panel shows the
same cross section as function of Tp at fixed Tp̄ of 0.5 GeV, 20 GeV and 0.5 TeV. The right panel is
equivalent to the left panel, but for the pHe channel. The figures are taken from [7].

overpredicts the antiproton production cross section with respect to the analytic parametrizations
and we remind again that at this energies the MCs are not tuned to data. Therefore, the analytic
approaches are more trusted.

2.5.5 Feynman and radial scaling invariance of the cross section

By radial scaling we mean that the inclusive cross section to produce a single particle a becomes
independent of

√
s at large

√
s if expressed as function of xR = E∗a/E

∗,max
a and pT , more specifically:

σinv(
√
s, xR, pT) −−−→

s→∞
σinv(xR, pT). (2.49)

This hypothesis was studied in detail in [130] for different inclusive cross section in proton-proton
collisions to pion, kaons, protons, and antiprotons. They concluded that radial scaling works well
above

√
s >∼ 10 GeV. Furthermore, they compare radial scaling to the previously suggested Feynman

scaling [131], namely:

σinv(
√
s, xf , pT) −−−→

s→∞
σinv(xf , pT). (2.50)

As discussed in [130], at high
√
s Feynman scaling and radial scaling coincide, but radial scaling

is valid down to lower energies. Therefore, radial scaling is commonly used to parametrize the
antiproton production cross sections since it was introduced by Tan&Ng [123].

However, in the latest update of [119] it was shown that the scaling invariance of the antiproton
production cross section is broken above

√
s >∼ 50 GeV for two reasons: Firstly, the total inelastic

cross section in pp keeps rising and does not reach a plateau at high
√
s, in contrast to Feynman’s

assumption. Secondly, above
√
s >∼ 50 GeV the pT -distribution of the cross section becomes softer

as demonstrated in Fig. 2.11. Only by modeling both of these effects the total antiproton cross
section is correctly reproduced.
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Figure 2.11: Transverse momentum distribution of the prompt antiproton production cross section
at different CM energies. The distribution continuously softens with increasing

√
s. The figure is

taken from [119].

2.5.6 Signatures of dark matter in cosmic-ray antiprotons

Next to the secondary component there might be a primary contribution of CR antiprotons due to
the annihilation or decay of a DM particle into SM particles. As discussed in Sec. 1.1 our Galaxy
is surrounded by a DM halo which extends significantly beyond the diffusion volume of CR. If the
annihilation or decay occurs inside the diffusion halo we might expect a antiproton signature. In
principle, one expects a contribution also in all other species but the signal-to-background ratio for
antiprotons is superior compared to most other species. The reason is simple: while primaries, as
for example, protons are accelerated and injected by astrophysical sources like SNR, antiprotons
are secondary and dominantly produced by interaction of protons with the ISM. The ratio of
antiprotons-to-protons in CRs is about 10−4. So, if protons and antiprotons are produced by DM
annihilation or decay in similar amounts the signal in protons would be suppressed with respect to
antiprotons at the level of 10−4.
The search for DM with CR belongs into the branch of indirect detection. In the case of annihilating
DM particles, the source term of antiprotons is given by:

q
(DM)
p̄ (x, R) =

1

2

(
ρ(x)

mDM

)2∑
f

〈σv〉f
dNf

p̄

dR
. (2.51)

Here mDM and ρ(x) are DM mass and energy-density, respectively. The sum runs over all possible
DM annihilations channels into SM final states. Then 〈σv〉f denotes the corresponding velocity
averaged annihilation cross section and dNf

p̄ /dR is the rigidity spectrum for a single DM in the
channel f . We note that the factor 1/2 corresponds to Majorana fermion DM. In case of Dirac
fermions it would be replaced by 1/4. Furthermore, the rigidity spectra dNf

p̄ /dT , depend on the DM
mass as well as on the details of kinematics, fragmentation and decay of the annihilation products.
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Figure 2.12: Comparison of a hint for DM annihilation into a pair of bb̄ quarks from different
analysis [2,134,135] and limits on the DM annihilation cross section [5,136]. For more details refer
to the text. This figure is taken from [137].

The challenge in CRs is that it is not possible to distinguish individual sources. Due to prop-
agation of CRs in the turbulent magnetic fields of the Galaxy all directional information is lost.
Hence, the local flux observed at Earth is almost isotropic. Thus, searching for DM comes back to
the investigation of specific features in the energy spectrum. Moreover, due to diffusion CRs mostly
probe the local DM density. They are not sensitive to the shape of the DM density profile at the
Galactic Center (or other DM subhalos) [5, 132, 133] which can be an advantage compared to the
indirect search of DM with gamma-rays. While the pointing towards expected high DM densities
with gamma-rays increases the signal-to-background ratio also the model dependence on the DM
density profile at the halo center becomes significant. On the other hand, the size of potential
DM signals strongly depend on the half-height of the diffusion halo, L. In this sense, the search for
DM with CRs and gamma-rays provides an important complementarity.

Antiprotons have been suggested and used to search and constrain DM by several groups in the
past [133,138–150]. Recently, a potential signal of DM was observed in the CR antiproton spectrum
measured by AMS-02 [8,134–136,151]. The current situation is summarized in Fig. 2.12. The best-
fit region for the potential DM particle points to a DM mass, mDM, around 80 GeV and velocity
averaged annihilation cross section, 〈σv〉, close to the thermal cross section around 3×10−26 cm3/s,
if we assume that two DM particles annihilate into a pair of bb̄ quarks. The contours in Fig. 2.12
display the 2σ best fit region7 in the plane of DM mass and annihilation cross section for three

7We note that the contour of Cui, et al. (2018) [134] refers to a 95% Confidence Level (C.L.), which is approximately
2σ.
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recent analysis [2, 134, 135]. Furthermore, we display the DM limits for each analysis framework.8

Additionally, we display the limit on DM annihilation from Reinert, et al. (2017) [136]. This
analysis does not find a significant hint for a DM annihilation but the limit around mDM ∼ 80 GeV
increases significantly, such that all contours lie (at least partly) below the limit. The contours and
limits have been rescaled to a local DM density of ρsun = 0.3 GeV/cm3. Finally, we note that the
comparison should still be viewed as approximate since the different analyses adopt slightly different
values for the halo half-height, L, which affects the value of 〈σv〉. In [135] the halo height is fixed
to three different values between 3 kpc and 6 kpc, while [134] and [2] marginalize over L in a fit.
For example, in [2] L can vary freely in the range from 2 kpc to 10 kpc, while in [136] L is fixed to
4.1 kpc. A recent analysis [152] finds that antiprotons are consistent with a pure secondary origin
based on the argument of goodness of fit.9 We note however the difficulty to correctly estimate
the correlated uncertainties involved and the fact that the analysis does not explicitly insert a DM
signal to investigate a potential improvement between prediction and data. We will discuss the
potential DM signal and important systematic uncertainties in more details in chapter 5.

2.6 Antideuteron and antihelium in cosmic rays

In principle, one we might observe also charged antinuclei, like antideuteron or antihelium, in CRs.
However, no antinuclei have been detected so far. We do not expect primary astrophysical sources to
produce antinuclei. At the same time, the expected secondary signals, namely, due to production by
the interaction of CR proton and helium with the ISM, are below current experimental sensitivities.
Next to this secondary component we will discuss potential DM signals. These are very interesting
for antinuclei. At low energies, we expect a very good DM signal to secondary background ratio for
antinuclei, much better than for antiprotons. Therefore, the potential observation of a low-energy
antinucleus is often considered as smoking gun to find DM signals in CRs.

The coalescence model for the nucleon fusion was first applied to antimatter production in our
Galaxy by [153]. Shortly later the potential to probe DM with low-energy antideuteron was sug-
gested in [154]. Since then antideuteron and antihelium have been studied extensively in literature
and the production mechanisms for DM signal as well as for the secondary background was contin-
uously refined in [155–164]. The propagation of antideuteron in our Galaxy was carefully studied
in [165]. The current most constraining limits for the flux of antideuteron in CRs are provided by
BESS experiment [166]. The upper limit on the flux is at 1.9×10−4 m−2 s−1 sr−1 (GeV/n)−1 at low
energies around 1 GeV/n. The limits on the antihelium-to-helium flux ratio are at 6.9 × 10−8 be-
tween 1 and 14 GV rigidity [167]. This situation will change in the next years. The AMS-02 detector
born on the ISS is expected to improve significantly the limits for antideuteron and antihelium.
However, we stress that the analysis of AMS-02 data is very challenging since an extremely good
background suppression is required. A dedicated experiment to search for low-energy antideuteron,
the GAPS experiment [168–170], is expected to perform the first balloon flights in Antarctica in the
season 2021/2022. The GAPS experiment is based on a unique detection technique for antineuclei

8The DM limit from Cuoco, et al. (2017) is taken from Ref [5].
9The goodness of fit in this analysis refers to a chi-squared test.
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which relies on the intermediate formation of an exotic atom. The de-excitation and subsequent
annihilation of the exotic atom inside the detector provides a very characteristic signal.

2.6.1 The coalescence model for antinuclei

In the following, we review the analytic coalescence model which in the context of CRs was first
discussed in [153]. The coalescence model is the same for secondary production and production
from DM annihilation or decay. The formalism and all equations shown in this paragraph apply to
the most simple case, i.e. antideuteron production. We will state explicit formulas for antihelium in
the next paragraphs. Our general picture for the production of antideuteron is that we produce one
pair of pp̄ and a second pair of nn̄. In the analytic model, we assume that these pairs are produced
independently from each other. After production the p̄ and n̄ can coalesce to D̄ if they have very
similar momenta.

Let us introduce a short notation for the Lorentz invariant multiplicity:

E
d3N

dk3
(
√
s,~k) = f(

√
s,~k). (2.52)

At this moment, this notation might apply for the production of either p̄, n̄, or D̄. In any case, E
denotes the total energy of the produced particle and ~k its three-momentum. Furthermore,

√
s is

the CM of the process. Hence, f(
√
s,~k)d3k indicates the number of particles produced in a single

interaction. Then, the number of antideuterons produced in this interaction will be given by the
product of the antiproton and the antineutron production cross section convoluted with a factor
C(~kp̄,~kn̄), describing the coalescence probability:

fD̄(
√
s,~kD̄)dk3

D̄ =

∫
dk3

p̄dk
3
n̄ C(~kp̄,~kn̄)fp̄(

√
s,~kn̄)fn̄(

√
s,~kn̄). (2.53)

Here the integration has to be carried out such that the differential dk3
D̄

remains on the right-hand
side of Eq. (2.53). We will specify what this means in a moment. Momentum conservation during
coalescence dictates ~kD̄ = ~kp̄ + ~kn̄. The appropriate linearly independent variable is the difference
of proton and neutron momentum, ~kp̄ − ~kn̄ = ~∆. Note that the functional determinant of the
transformation (~kp̄,~kn̄) → (~kD̄,

~∆) is equal to 1/8 .10 Hence, we rewrite dk3
p̄dk

3
n̄ = 1/8 dk3

D̄
d∆3.

Now, it is clear that the integral in Eq. (2.53) is meant to be taken over d∆3. If we assume that
coalescence is homogeneous, we obtain

fD̄(
√
s,~kD̄)dk3

D̄ = dk3
D̄

∫
d∆3 C(~∆)

8
fp̄(
√
s,~kD̄/2 + ~∆) fn̄(

√
s,~kD̄/2− ~∆). (2.54)

We remind that coalescence takes places if ~kp̄ ≈ ~kn̄. So, the coalescence factor, C(~∆), has to be 0
for large |~∆|. In practice, we can approximate |~∆| � |~kD̄| which leads to

ED̄ fD̄(
√
s,~kD̄) =

{∫
d∆3 ED̄

Ep̄En̄

C(~∆)

8

}
Ep̄ fp̄(

√
s,~kD̄/2) En̄ fn̄(

√
s,~kD̄/2). (2.55)

10 In literature there is a second common definition ~kp̄−~kn̄ = 2 ~∆′. With this definition the functional determinant
is equal to 1. We will come back to this at the end of this section.
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Note that the term in the curly brackets of Eq. (2.55) is Lorentz invariant, because the left-hand
side is Lorentz invariant as well as the term Ep̄ fp̄ En̄ fn̄ on the right-hand side. We choose now to
calculate this integral in the D̄ rest frame. Since |~∆| � mp ≈ mn we can assume Ep̄ ≈ mp and
En̄ ≈ mn. By definition we can use ED̄ = mD. In the rest frame of D̄ we expect the coalescence
factor to be isotropic, C(~∆) = C(|~∆|). If, finally, we approximate this coalescence factor with a step
function, which is equal to 1 for |~∆| < pC and 0 otherwise, we obtain:

fD̄ =

{
mD̄

mp̄mn̄

4π

3

p3
C
8

}
fp̄ fn̄. (2.56)

The parameter pC is commonly called coalescence momentum. Its physical interpretation is the
following: if the p̄ and the n̄ are produced with a momentum difference smaller than pC they always
coalesce and form D̄, while for a momentum difference larger than pC the two antinucelons never
coalesce. Finally, we address one subtlety which concerns the conservation of energy. If the pp̄ pair
is produced from a CM energy of

√
s the available energy to produce the nn̄ pair has to be reduced,

and vice versa. We can take this into account at a superficial level by assuming that the two pairs
are created after each other. Explicitly, we define

fp̄ fn̄ =
1

2

(
fp̄(
√
s,~kD̄/2) fn̄(

√
s− 2Ep̄,~kD̄/2) + (p̄↔ n̄)

)
(2.57)

We note that Eq. (2.57) is symmetric under the exchange of p̄ and n̄. The value for the coalescence
momentum has to be derived from measurements. Typical values of pC in the analytic coalescence
model vary between 160 MeV and 250 MeV.

2.6.2 Secondary production of antinuclei

We now adapt the coalescence model discussed in the previous section in order to give explicit equa-
tions for the secondary production of antinuclei. We start with the most simple case of antideuteron
production in the interaction of a CR proton with a proton of the ISM. The Lorentz-invariant cross
section is linked to the multiplicity defined in Eq. (2.52) by

E
d3σ

dk3
(
√
s,~k) = σtotf(

√
s,~k). (2.58)

If we insert Eq. (2.58) into Eq. (2.56) we obtain:

ED̄
d3σD̄
dk3

D̄

=
1

σtot

{
mD̄

mp̄mn̄

4π

3

p3
C
8

}
Ep̄

d3σp̄
dk3

p̄

En̄
d3σn̄
dk3

n̄

. (2.59)

Above we have considered only the reaction p+ p→ D̄ +X. If we replace either the projectile
or the target by a heavier nucleus the antiproton and the antineutron productions are enhanced,
both roughly by a factor A0.7. However, if the antineutron and the antiproton are be produced from
different nucleons inside heavier projectile or target, they would be too far separated to coalesce.
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Therefore, it is reasonable to assume that the production of antideuteron is enhanced only by a single
factor of approximately A0.7. Actually, this result is also obtained by simply replacing all pp cross
section in Eq. (2.59) with pA cross section. We note the factor 1/σtot which rescales approximately
with A−0.7. In Fig. 2.13 we show the D̄ source term from the most important CR+ ISM→ D̄+X
channels. The dominant channel is the pp channel, but also the pHe and Hep channels are important.
The ranking is equivalent to the antiproton production discussed in the previous section.

Furthermore, we might produce secondary antideuterons from CR antiprotons. If we replace the
CR projectile by an antiproton, we have to replace all p+p→ p̄+X cross sections by p̄+p→ p̄+X.
Due to the lack of measurements, the latter is often approximated with the p + p → p + X cross
section. In general, the antiproton channel is suppressed by the small p̄/p ratio in CRs which is of
the order of 10−4. Nonetheless, this channel is important at low energies because the pp and pA
channels are kinematically suppressed. Figure 2.13 shows that the antideuteron production in the
antiproton channel is important below ∼ 1 GeV/n, while it is negligible above a few GeV/n.

The generalization of the coalescence model to heavier antinuclei is straight forward. We only
state the explicit result for antihelium, 3He, (or equivalently tritium) which is the next-heavier
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antinucleus:

EHe

d3σHe

dk3
He

=
mHe

m2
pmn

(
1

σtot

4π

3

p3
C
8

)2

Ep̄
d3σp̄
dk3

p̄

Ep̄
d3σp̄
dk3

p̄

En̄
d3σn̄
dk3

n̄

, (2.60)

where antiproton and antineutron cross sections are evaluated at ~kp̄ = ~kn̄ = ~kHe/3. The generaliza-
tion of Eq. (2.57) to 3He is given by:

d3σp̄
dk3

p̄

d3σp̄
dk3

p̄

d3σn̄
dk3

n̄

=
1

3

[
d3σp̄
dk3

p̄

(√
s,~kp̄

) d3σn̄
dk3

n̄

(√
s− 2Ep̄,~kn̄

) d3σp̄
dk3

p̄

(√
s− 2Ep̄ − 2En̄,~kp̄

)
+ (p̄↔ n̄ p̄) + (p̄ n̄↔ p̄)

]
. (2.61)

We note that for an arbitrary antinucleus the production cross section scales approximately with
coalescence factor

BA =
mA

mA
p

(
1

σtot

4π

3

p3
C
8

)(A−1)

. (2.62)

Beside the analytic coalescence model, an alternative approach is discussed in literature, which
is based on MC generators. Typically, these MC generator do not directly provide the yield of
antideuterons. Instead the coalescence has to be implemented as an afterburner to the MC. In
more details, this means that one checks on an event-by-event basis whether an antiproton and
antineutron are close enough in momentum space. Again, if the difference is less than a threshold
coalescence momentum an antideuteron is formed. The advantage of a MC coalescence model is
that correlations between antiproton and antineutron production are taken into account. We note,
however, that the standard MC generators are not tuned to correctly reproduce these correlation
and, therefore, might be wrong. Indeed, different MC generators can produce different results.
In any case, the coalescence momentum in MC-based approach has to be tuned to data. It is
not a first-principle method. We stress that a certain coalescence momentum should not be taken
from one (for example the analytic) and then be used in another (for example MC-based) model.
Recently, the coalescence momentum has been tuned to a large set of pp and pA data [171]. The
authors find that the coalescence momentum is energy-dependent, c.f. Fig. 2.14. They explore
different MC generators and find a good agreement between data and MC for EPOS-LHC and
FTFP-BERT. Furthermore, they explore one analytic coalescence model. We note, however, that
the two MC generators are tuned to higher energies than those relevant for CRs. Furthermore, in
the analytic model the CM correction of Eq. (2.57) is not applied in the analysis of [171]. Neglecting
this correction could explain (a part of) the energy-dependence seen in Fig. 2.14.

Finally, we remind that definition of ~∆ is a pure convention. If instead we would define 2 ~∆′ =
~kp̄ − ~kn̄ the factor 1/8 would disappear in Eq. (2.59). Since, however, the physical result must
be independent of our convention we have to redefine also the coalescence momentum accordingly,
p′C = pC/2. In literature, both conventions are used.
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2.6.3 Antinuclei from dark matter annihilation

The antideuteron yield from DM decay or annihilation is expected to peak at low energies, where
the secondary production of antideuteron is kinematically forbidden. In order to produce an an-
tideuteron in a pp collision we have to create a pp̄ and a nn̄ pair. The minimal requirement for
the CM energy is therefore

√
s ≥ 6mp and subsequently E = (s − 2m2

p)/(2mp) ≥ 17mp in the
fixed-target frame. Note that this threshold is much larger compared to the antiproton production
threshold at E ≥ 7mp. On the other hand, DM annihilation or decay is expected to take place at
rest. Hence, low energies are not suppressed.

The source term of antideuterons from annihilating DM particles is given by Eq. (2.51) if we
replace the energy spectrum dNf

p̄ /dR by dNf
D̄
/dR. As usual, dNf

i /dR and dNf
i /dE are related by

the factor dR/dE = 1/|Z|E/p. We can adapt and rephrase the formalism of the previous paragraph
to obtain this energy spectrum if we rewrite

d3N

dk3
=

1

4πk2

dE

dk

dN

dE
=

1

4πkE

dN

dE
. (2.63)

Inserting this relation into Eq. (2.59) reveals
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. (2.64)
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Figure 2.15: Comparison of the DM energy spectrum derived from the analytic coalescence model
(blue dashed-dotted line) with two MC-based approaches (solid black and red dashed lines). In this
example, the energy spectrum, which is proportional the source term, is derived for DM annihilation
with mDM = 100 GeV into a pair of bb̄-quarks. The figure is taken from [159].
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The equivalent result for antihelium three is given by:

dNHe
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pmn

3

(
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)2
dNp̄

dEp̄

dNp̄

dEp̄

dNn̄

dEn̄
. (2.65)

Figure 2.13 displays the DM source term for a typical WIMP annihilation. More precisely, in this
case the DM source term corresponds to the DM hint found in CR antiprotons. We use a DM mass
of 71 GeV and a velocity averaged annihilation cross section of 〈σv〉 = 2.6−26 cm3/s. Note that
propagation will enhance the DM term with respect to the secondary term.

Finally, we want to elaborate again a bit more on the difference between the analytic coalescence
model and a MC-based approaches. The analytic approximation is expected to work reasonably well
whenever the antiproton and antineutron production is roughly spherical. But this is not the case
for DM annihilation or decay in all SM final states. For example, when DM annihilation produces
a pair of Z or W bosons the antiproton and antineutron production will be boosted along the
direction of the bosons and the spherical approximation, applied in Eq. 2.63, does not work well.
On the other hand, the spherical approximation is expected to work reasonably for the annihilation
into light quarks or b-quarks. In the context of DM, the analytic and MC-based approaches have
been compared extensively in [159]. An example is shown in Fig. 2.15. The energy spectra can
have a very different shape. We note, however, that the D̄ yield between 0.1 GeV/n and 1 GeV/n,
where the experiment GAPS will conduct measurements, is very similar. This similarity is expected
since both coalescence models are tuned to data from the ALEPH experiment, which measured
antideuteron production from the Z-boson decay [172] with momenta between 0.62 and 1.03 GeV,
i.e. a very similar energy range. Finally, we remark that the results derived from MC generators
suffer from uncertainties. For example, the DM energy spectra derived with Pythia and Herwig
can give results [173] different up to a factor of a few.

2.7 Solar Modulation

At low energies of E <∼ 50 GeV CRs are deflected and decelerated by solar modulation. The effect
on the CR spectrum strongly depends on energy. While the CR fluxes at low energies are strongly
affected by solar modulation the effect becomes smaller with increasing energy. Furthermore, the
strength of solar modulation depends on the activity of the sun which which undergoes a 11-year
cycle. Furthermore, at each peak of the solar cycle the magnetic field of the sun reverses its
direction. Solar modulation can be described by a Fokker-Planck equation which is adjusted to
the solar environment and solar magnetic field. These equations are typically solved by numerical
codes [174–176]. Recent progress in the better understanding of solar modulation is achieved by two
experimental observations. First, the VOYAGER probe has left the heliosphere and measured the
Local InterStellar (LIS) of various CR species at low energies. The combination of this data with
the modulated data taken at the Top Of the Atmosphere (TOA) by AMS-02 and PAMELA strongly
constrains the properties of solar modulation. Secondly, the measurement of time-dependent CR
fluxes released by PAMELA [177, 178] and recently also by AMS-02 [179, 180]. In particular, we
remark that these observations revealed a charge-sign dependence of the solar modulation.
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Despite of the success of numerical codes to describe solar modulation, a common approach when
studying Galactic CR is to use the so-called force-field approximation [181]. In this approximation,
one assumes that the propagation of CRs in the heliosphere is dominated by diffusion and solar
winds. Under the further assumption of spherical symmetry and neglecting adiabatic energy losses,
one obtains the steady state solution of the Fokker-Planck equation:

E = ELIS − |z|eϕ (2.66)

φE(E) =
E2 −m2

E2
LIS −m2

φE,LIS(ELIS), (2.67)

Here z is the charge number,11 e the elementary charge, and m the mass of the CR. The force-field
approximation describes solar modulation by a single effective parameter ϕ, commonly called Fisk
potential or solar modulation potential. Since solar modulation is time-dependent we expect that
ϕ is a function of time. Then, the modulation potential can be approximately derived from the
anticorrelation between the solar activity and the neutron flux at Earth [182, 183]. Nonetheless,
this procedure is affected by large systematic uncertainties, in particular, originating from different
assumptions on the LIS spectra of CRs.

Recently, also semi-analytical models are proposed to, on the one hand, capture more details of
the solar environment achieving a physically motivated and better description of solar modulation
and, on the other hand, still profit from fast evaluation which are required in global fits in large
parameter scans [184].

11In this thesis, we focus on nuclei and, therefore, typically do not distinguish between charge number z and atomic
number Z.
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Astroparticle physics of gamma rays

3.1 Origin of gamma rays

Gamma rays up to an energy of about 1 TeV are precisely measured by satellite-based exper-
iments [185–188]. The Fermi-LAT [188] experiment provides the most recent and precise mea-
surement. It has been taking data for more than 10 years and covers the entire sky. At higher
energies up to ∼ 100 TeV, the gamma-ray measurements can be complemented with ground-based
observations from Cherenkov telescopes [189–191]. The observed gamma-ray emission can be ex-
plained by the sum of (i) Galactic diffuse emission, (ii) Galactic and extragalactic resolved (mostly
point-like) sources, and (iii) the Unresolved Gamma-Ray Background (UGRB), which remains af-
ter subtracting (i) and (ii) from the total gamma-ray emission.1 The Galactic diffuse emission
of gamma rays is caused by the interaction of CRs with the interstellar gas and radiation fields.
The dominant production mechanisms of the diffuse emission are the decay of π0 mesons and
bremsstrahlung [192]. Furthermore, various individual astrophysical objects are able to produce
gamma rays. They are detected as (mostly) point-like sources. The Fermi-LAT experiment has
detected a total number of 5065 sources in an energy range between 50 MeV and 1 TeV. They are
listed in the most recent Fourth Fermi-LAT Catalog (4FGL) catalog which is based on eight years of
data and contains all sources detected at a C.L. above 4σ [193]. The most numerous Galactic point
sources are Pulsars and SNRs, while blazars (see Sec. 3.3 for more details) comprise the largest
population of resolved extragalactic sources. For convenience, we define the Extragalactic Gamma-
ray Background (EGB), which includes all extragalactic point sources and the UGRB. Next to
blazars, the Fermi-LAT has detected Misaligned Active Galactic Nucleus (mAGN), radio galaxies,
and Star-Forming Galaxy (SFG)s [193, 194]. In particular, mAGN and SFG are intrinsically faint
but extremely numerous. Observations of these sources at other wavelengths and extrapolations to
gamma rays suggest that these objects can contribute significantly to the observed UGRB [195–201].

1In literature, the UGRB is often called isotropic gamma-ray background (IGRB) because at first glance it is
almost isotropic. We instead refer to the UGRB since in Sec. 3.5 we use use the measurement of the angular power
spectrum of the UGRB, i.e. small anisotropies, to learn more about its properties.
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3.2 Dark matter searches with gamma rays

If DM particles can annihilate into SM particles we expect a gamma-ray signal. The signal will
strongly depend on the fundamental interaction between the DM particles and the SM. Unless
the DM particles directly annihilate or decay into gamma rays, the dominant production arises
from pion decays. We note that there can be indirect production of gamma-rays, in particular,
for leptonic final states. In this case, gamma-rays might be produced from synchrotron or inverse
Compton processes. For these production mechanisms, we expect a broad energy spectrum. On the
other hand, if the DM particles directly annihilate or decay into a pair of gamma rays we would try
to observe a so-called gamma-ray line, i.e. a very strongly peaked (line-like) signatures at E = mDM

or E = mDM/2 for annihilating or decaying DM, respectively. The strategies to search for DM with
gamma rays is different compared to charged CRs: gamma rays point towards the direction of their
source since they are not deflected by the Galactic magnetic fields. Therefore, the search can be
focussed on selected environments, where a large DM signal is expected. We will briefly discuss
two attractive environments in the following paragraphs, first the Galactic center and second the
so-called Dwarf Spheroidal Galaxys dSphs.
The expected gamma-ray flux per energy arriving from a specific Point Spread Function (ROI) is
given by:

dS

dE
=

1

2m2
DM

∑
f

dNf
γ

dE

〈σv〉f
4π

∫
ROI

dΩ

∫
l.o.s.

ds ρ2 (s, θ, φ)

︸ ︷︷ ︸
J-factor

, (3.1)

where mDM is the DM mass, f the SM final state, 〈σv〉 the velocity averaged annihilation cross
section, and ρ is the DM energy density. If s denotes the distance from the observer, the DM density
can be expressed as a function of the distance s and two angles, θ and φ. The factor 1/2 corresponds
to self-conjugate DM and the factor 1/4π arises from the distance correction of the flux. Note that
the flux seen by an observer at the distance s is given by S0/(4πs

2), if S0 is the flux emitted by
a source. The factor s2 cancels with the functional determinant, dV = s2 dsdΩ. Equation (3.1) is
applicable only for Galactic (or close by) sources. For far away, extragalactic sources it is necessary
to take redshift effects on the photon energy into account and to consider the absorption of high-
energy gamma rays by the Extragalactic Background Light (EBL). The ROI and line of sight (l.o.s.)
integrals in Eq. (3.1) is commonly called J-factor. The result of the J-factor can depend significantly
on the assumption of the DM density profile of the considered source. A cuspy density profile, like
the NFW or the Einasto profile, often gives very different result compared to cored density profiles,
like a Burkert profile (see Eqs. 1.4 to 1.3). This is very important for analyses which focus on the
central region of a DM halo, as for example Galactic center.

3.2.1 Dwarf spheroidal galaxies

A dSph is a low-luminosity galaxy with an old star population and a small contribution of dust.
Typically, it exhibits a spheroidal shape and contains a large DM contribution compared to baryonic
matter. This DM contribution can be deduced from the stellar motion in the dSph. Because of the
relatively high DM density, dSphs present a good target to search for DM signals in gamma rays.
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The non-observation of such signals places strong constraints on DM annihilation [202–205]. The
best limits on the DM annihilation cross section are derived from recent Fermi-LAT data by using
the methods of template fitting [205]. These are templates for the gamma-ray background derived
from the modeling of the Galactic gamma-ray sources, which take into account all the astrophysical
processes as for example arising from diffuse emission of pion decays or bremsstrahlung, and a DM
template, which is a function of mDM, 〈σv〉, and SM final state. A combined fit of the background
nuisance parameters and the two DM parameters for each final state provides the DM limit. In the
analysis, the Fermi-LAT collaboration marginalizes the fit-likelihood over the J-factor uncertainty
of each dwarf. Along with this analysis [205], the Fermi-LAT collaboration published for each dSph,
k, the likelihoods to observe a specific energy flux. In total, the Fermi-LAT collaboration analyzed
45 dSphs (28 kinematically confirmed dwarfs and 17 candidates). These likelihoods as a function
energy-flux, SE,i, are provided in 24 energy bins, i. The likelihood for each dSph is denoted with
L(k)(Ei, SE,i). We can use this likelihoods derive DM limits as follows. The energy-flux in each
energy bin is given by:

S
(k)
E,i

(
mDM, 〈σv〉, J (k)

)
=

Emax,i∫
Emin,i

dE
dS

dE

(
E,mDM, 〈σv〉, J (k)

)
, (3.2)

where dS/dE is defined in Eq. (3.1). It is common practice to take the uncertainty of the observed
J-factors, J (k)

obs, into account. Following the analysis in [204], we define:
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Here, σJ,k is the normalization uncertainty of the observed J-factor. Finally, the combined likelihood
of multiple dSphs is given by the product of the individual likelihoods, where each likelihood is
marginalized over the J-factor:

LdSphs

(
mDM, 〈σv〉

)
=
∏
k

L̃(k)
(
mDM, 〈σv〉, J (k)

)∣∣∣∣
J(k)=J

(k)
max

. (3.5)

In other words, J (k)
max maximizes each individual likelihood L̃(k) for fixed mDM and 〈σv〉. More

information about the J-factors is given in [206–208]. In practice, it is sufficient to use the 5–10
dSphs with the largest J-factors to derive the DM limits, since the remaining dwarfs give almost
no additional constraining power. We remark that using the published likelihoods provided by
the Fermi-LAT collaboration gives only an approximate description of the full likelihood which
would be obtained from the template fit as described above. But the approximate method based
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on the provided likelihoods was shown empirically to give the same results as those obtained with
the full template fit [205]. The analysis by the Fermi-LAT collaboration focuses on a ROIs of
10◦×10◦ around each dSph. This is large enough to include the entire DM halos around the dSphs.
Therefore, the J-factor does not depend much on the adopted DM density profile. We note that,
four of the dSphs (Reticulum II, Tucana III, Tucana IV, Indus II) show small excesses at the level
of ∼ 2σ (local). These excesses are compatible with a DM particle annihilating with a thermal cross
section [205,209,210].
Finally, we note that the DM limits from dSphs are affected by systematic uncertainties. For
example, more freedom in the background flux estimation can significantly weaken the DM limits,
especially for heavy DM particles [211,212].

3.2.2 The Galactic center excess

Several groups have reported an excess of the gamma-ray flux from the Galactic center [213–215].
The energy spectrum of the Galactic Center Excess (GCE) peaks at about 2 GeV (in the usual flux
times energy squared representation) and quickly drops to 0 below 1 GeV and above a few tens of
GeV. Spatially the GCE coincides with the direction of the Galactic center and follows a steep radial
profile below a few degrees. The signal extends to at least 10◦ away from the Galactic center and is
approximately circular. The analyses to detect the GCE typically rely on the method of template
fitting, namely, the observed gamma-ray map at the vicinity of the Galactic center is fitted with
spatial and spectral templates. The templates contain the diffuse emission which is produced by
bremsstrahlung and π0 decay, inverse Compton emission, the Fermi Bubbles (depending on the
ROI), and an isotropic diffuse background. In addition there is one template which describes the
excess. In the template fit the normalizations of the individual templates are slightly adjusted to
match the data. Resolved sources are usually masked during this fit. We note that the GCE is
subdominant with respect to the Galactic contributions. For an ROI of 10◦ the GCE only produces
about 10% of the gamma-ray flux, while the dominant flux is provided by bremsstrahlung, π0 decay,
and inverse Compton emission.

There are different attempts to explain the origin of the GCE. One possible scenario are the
annihilations of potential DM particle in the Galactic halo. This option has been studied extensively
in literature [213–228]. The GCE is fitted well by DM annihilation of a typical WIMP with masses
between a few GeV and 200 GeV and thermal annihilation cross sections between 10−27 GeV/cm3

and 10−25 GeV/cm3. The exact DM masses and cross sections depend on final states of the
elementary annihilation process. In the case of DM annihilation, the spatial morphology of the
GCE is well described by a gNFW DM density profile (see Eq. 1.4) with γ ∼ 1.2 [214]. Apart
from DM, several astrophysical origins of the excess have been discussed, such as an unresolved
population of point sources [218, 223, 227, 229–235]. One appealing possibility is a population of
unresolved (millisecond) pulsars. Intriguingly, the energy spectrum of gamma rays emitted from
a pulsar and the spectrum of a ∼ 40 GeV WIMP annihilating into a pair of bottom-quarks look
extremely similar [218]. Two different techniques have been explored to support the point-source
hypothesis. The first technique is based on the so-called wavelet mechanism [236], which allows
to test if the flux from the Galactic center is as homogeneous as expected from DM annihilation,
and the second technique is based on photon-count statistics [237] to identify unresolved point
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sources (see also Sec. 3.4). We note that, recently, the stability of the second method is discussed
controversially [238,239].

There are different methods proposed to search for counterpart signatures of a putative point
source population, e.g. one might search for the expected radio signals of a pulsar distribution [240]
or for the gravitational-wave signal produced by binary objects at the Galactic center [241]. An
alternative to the traditional template fitting was discussed in [242], which uses a sky factoriza-
tion with adaptive constrained templates. This method allows to compensate imperfections in the
adopted templates which might arise from an incomplete modeling. We note that this method
finds a preference for a bulge-like shape of the GCE which would point to a stellar origin [243].
Further discussed scenarios include an enhanced diffuse emission from the Galactic center due to
an increased abundance of leptons [244–248] or molecular clouds at the vicinity of the Galactic
center [249].

3.3 Active galactic nuclei

An Active Galactic Nucleus (AGN) is the central region of a galaxy with a tremendous amount of
non-stellar emission at various wavelengths, including gamma rays [193,196,250–253]. At the center
of an active galaxy a supermassive black hole accretes surrounding matter which is located in a disc.
The available energy is then emitted in the form of two relativistic jets. Depending on the orientation
of these jets we divide AGNs into two classes: if one of the relativistic jets points towards us, we call
it a blazar, while we talk about a mAGN otherwise [254]. Blazars constitute the most numerous
population of individually resolved extragalactic gamma-ray sources of the Fermi-LAT [193]. In
general blazars are sub-divided into two categories, Flat Spectrum Radio Quasars (FSRQs) and BL
Lacertae objectss (BLLacs). The first exhibit a high radio luminosity, which originates from the
edge-elongated radio lobes [255], while the latter have a low radio luminosity, which is produced
mostly in the center and the jets. In gamma rays, the two populations have slightly different
spectral indices. The energy spectrum of FSRQ is a slightly softer (Γ ∼ 2.4) compared to BLLacs
(Γ ∼ 2.1) [198].

3.3.1 Gamma-ray luminosity function and spectral energy distribution of blazars

We model blazars and their emission of gamma rays by the Gamma-ray Luminosity Function (GLF),
which is the number of blazars per unit of luminosity L, co-moving volume Vc, and photon spectral
index, Γ:

Φ(L, z,Γ) =
dNBL(L, z,Γ)

dLdVc dΓ
. (3.6)

The GLF then depends on luminosity, redshift, and photon spectral index. Note that in a ho-
mogeneous and isotropic Universe the redshift dependence of the GLF should be understood as an
evolution of the blazar distribution in time rather than in space. We define in the following the GLF
and Spectral Energy Distribution (SED) in the specific model suggested in [201]. This model does
not distinguish between the two blazar classes (BLLac and FSRQ) in order to have a larger sample
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and better constrain the GLF. After discussing the specific model we will give some comments how
to generalize.

The SED, dN/dE is defined as the number of photon in the energy bin [E,E+dE] which would
be observed at our detector per unit time and unit area, if there was no absorption of gamma-ray
photons by the EBL. We assume that this SED follows a smoothly broken power law in energy

dN

dE
(E) = K

[(
E

Eb

)γa
+

(
E

Eb

)γb]−1

, (3.7)

where Eb is the break position and γa (γb) is the spectral photon index below (above) the break.
Moreover, E is the observed energy of the photon. In our specific model the three parameters γa,
γb, and Eb are tuned to the Fermi-LAT observations. The two spectral indices γa and γb are fixed
to 1.7 and 2.6, respectively and the break position is related to the observed photon spectral index
by log(Eb/(GeV) = 9.25− 4.11 Γ. From Eq. (3.7) we conclude that the flux of observed photons in
the energy bin [Emin, Emax] is given by:

S(Emin, Emax) =

Emax∫
Emin

dE
dN

dE
exp

(
−τ [E (1 + z), z]

)
. (3.8)

Now, the last factor of the integrand takes into account the absorption of photons in the EBL.
It is useful to define the photon energy in the rest frame of the source, Er = (1 + z)E. The
luminosity, L, in the rest frame of the blazar and in the energy range 0.1 GeV to 100 GeV is defined
as

L =

100 GeV∫
0.1 GeV

dEr Er
dNγ(Er)

dEr
, (3.9)

where dNγ/dEr is the number of emitted photons by the blazar per unit time and per rest-frame
energy. It is related to the SED through

dNγ(Er)

dEr
= 4πχ2 dN(E)

dE
∣∣∣
E= Er

1+z

, (3.10)

where χ is the co-moving distance defined as χ =
∫ z

0 dz′/H(z′). In a flat and homogenous Universe,
the Hubble rate H(z) is given by H(z) = H0 [Ω0,r(1 + z)4 + Ω0,m(1 + z)3 + Ω0,Λ]1/2. Here Ω0,i, i ∈
{r,m,Λ} denote the radiation, matter, and dark energy density in the Universe of today and
H0 is the current Hubble rate. Note that in Eq. (3.10) the factor (1 + z) which arises from the
transformation of E → Er cancels with a second factor from the change of frequency between rest
and observer frame.2

According to [201] the parametrization of the GLF is factorizable into a redshift dependent and
a redshift independent part, such that we may write:

Φ(L, z,Γ) = Φ(L, 0,Γ)× e(L, z). (3.11)
2In our compact notation we hide that both, N and N , are differential in time.
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Here we adopt the Luminosity-Dependent Density Evolution (LDDE) of the GLF, e(L, z), although,
we note that this is not the only modeling used in literature. At redshift z = 0, the GLF is
parametrized as a broken power law in luminosity and it follows a Gaussian distribution in photon
spectral index:

Φ(L, 0,Γ) =
A

ln(10)L

[(
L

L0

)γ1

+

(
L

L0

)γ2
]−1

exp

[
−(Γ− µ(L))2

2σ2

]
, (3.12)

The parameter A is an overall normalization factor, the indices γ1 and γ2 govern the power-law
behavior in luminosity and µ(L) and σ are the mean and dispersion of the distribution in Γ,
respectively. The mean spectral index is allowed to have a logarithmical dependence on luminosity:

µ(L) = µ∗ + β

[
log

(
L

erg s−1

)
− 46

]
. (3.13)

For the LDDE we adopt the functional form:

e(L, z) =

[(
1 + z

1 + zc(L)

)−p1(L)

+

(
1 + z

1 + zc(L)

)−p2(L)
]−1

(3.14)

with

zc(L) = z∗c (L/1048)α, (3.15)
p1(L) = p∗1 + τ (log(L)− 46), (3.16)
p2(L) = p∗2 + δ (log(L)− 46). (3.17)

The GLF and SED models contain a large number of free parameters. In [201] these parameters
are determined by fitting the model to the Fermi-LAT catalog data, which is complemented with
redshift information of follow-up observations of the blazars in the catalog.

We conclude this section with a few comments:

• Next to the LDDE in literature two further redshift evolutions are investigated. They are
called primarily luminosity evolution and primarily density evolution. The result of Ref. [201]
is that in the context of gamma rays the LDDE provides the best description of the available
data.

• In literature, the SED is sometimes modeled as a simple power law, which is a slight simplifi-
cation compared to the model presented above. In this case one replaces the SED in Eq. (3.7)
by dN/dE = KE−Γ.

• The model above attempts to combine FSRQs and BLLacs into a single framework. Sometimes
it might be better to separate the two source classes into two different models. Then, the
functional form of each model typically resembles the combined model discussed in this section,
but the adopted parameter values may differ significantly.

• For a more general overview on the topic we refer to the review [256] and references therein.
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3.4 Photon statistics

The statistics of gamma-ray point sources can be used to constrain the source-count distribution
below the flux threshold for the detection of individual sources. The method is commonly used in
X-ray astronomy [259–263]. Its prospects to distinguish blazars from a potential DM signal was
studied in [264]. Then, it was first applied to gamma-ray data in [257] and later refined by [258,265].
The typical goal pursued with the One-Point Probability Distribution Function (1pPDF) method
is to constrain the source-count distribution of extragalactic point sources.

Before giving a detailed description of the method in the next section, we will briefly summarize
the main idea. If the gamma rays were solely produced by diffuse processes, we would expect
that the probability distribution for the observation of photons in each pixel of the sky would be
governed by a Poisson statistics. If, however, the detected gamma rays (partly) originate from point
sources, we expect that the Probability Distribution Function (PDF) is distorted with respect to
Poisson distribution. In particular, this distortion leads to a higher probability to observe a large
number of photons in a single pixel. The best way to visualize this effect is to count the number of
pixels with a certain number of photons, k, and then produce a histogram of the results as function
of k. This histogram is an estimator for the 1pPDF. An example is displayed in Fig. 3.1 where
the histogram is deduced from Fermi-LAT data. The analysis is restricted to high latitudes to
minimize the effect of Galactic foregrounds. The various lines in Fig. 3.1 show different components
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of the model which was fitted in order to reproduce the observed histogram. The model takes into
account Galactic diffuse emission, an isotropic background flux, and an extra-galactic source-count
distribution shaped as a broken power law. The final PDF (green line) is the convolution of the
three distinct components. We note that the point sources are in particular constrained by the tail
of the distribution at large k.

The important refinement of [258, 265] is that the theoretical model is no longer fitted to a
histogram but the PDF is evaluated individually for each pixel. This allows to properly take into
account small variations of the PDF which may arise from the pixel-dependence of the detector
acceptance and from the pixel-dependence of the strength of the Galactic foreground emission.
Figure 3.2 shows an important result of [258], which is the measurement of the source-count dis-
tribution, dN/dS, as a function of flux, S. It is very well visible that the method of photon
statistics is capable of constraining the source-count distribution to approximately one order of
magnitude smaller fluxes with respect to standard techniques for individual source detection. The
dN/dS of individually detected point sources (red and grey data points) quickly drops below a
threshold of S ∼ 2 · 10−10 cm−2s−1 while photon statistics still constrain the dN/dS down to
S ∼ 2 · 10−11 cm−2s−1.

Finally, we note that the method of photon statistics was also applied to the Galactic center to
infer information about the origin of the GCE [237]. However, the stability of the method in the
complicated environment of the Galactic center is still under discussion [239,266]. We note that for
the extragalactic sky the method was extensively tested and found to provide stable results [258,
265,267].

3.4.1 Formalism of the one-point probability density function

The formalism of the 1pPDF is summarized in [257, 258]. We present a personal adaptation of the
formalism. In the following we want to answer the question: What is the probability to observe
exactly k photons in a certain pixel? Here a pixel is a very small fraction of the observed gamma-ray
sky. The symbol k is a random variable and our goal in the following is to relate the probability
to observe exactly k photons, typically denoted pk, to the probability distribution function of of
photon sources. We will start to explore some simple examples and, then, step-by-step arrive at a
more realistic description which can be applied to the gamma-ray sky.

1. First, we imagine that there is only a single source class. This is an artificial class which only
exists in a thought experiment. We assume that each source in this class always contributes
exactly one photon in our detector. Furthermore, the number of sources n1 per pixel shall
follow a PDF which is Poisson distributed. The mean of the Poisson distribution is denoted
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x1.3 So, the probability to observe exactly n1 sources in one pixel is given by:

P (n1) =
(x1)n1

n1!
exp(−x1). (3.18)

Since our source class is constructed such that each source contributes exactly one photon,
the number of observed photons is equal to the number of sources. The random variables k
and n1 are related by k = n1. Consequently, the probability to observe exactly k photons is
given by:

P (k) = p
(1)
k =

(x1)k

k!
exp(−x1). (3.19)

2. Now, we imagine to have two source classes, both of them contributing exactly one photon.
The number of sources for each class, n(1)

1 and n(2)
1 , follows a Poisson distribution with mean

values x(1)
1 and x(2)

1 , respectively. The probability to observe exactly k = n
(1)
1 + n

(2)
1 photons

is the convolution of the two Poisson distributions:

p
(1+2)
k =

k∑
k′=0

p
(1)
k′ p

(2)
k−k′ =

k∑
k′=0

(
x

(1)
1

)k′
k′!

exp
(
−x(1)

1

)
·

(
x

(2)
1

)(k−k′)

(k − k′)! exp
(
−x(2)

1

)
. (3.20)

At this step it is convenient to introduce the generating function P(t) which contains all the
information of the PDF. We define

P(t) =

∞∑
k=0

pk · tk (3.21)

such that we can obtain pk by

pk =
1

k!

dkP(t)

dtk
∣∣∣
t=0

. (3.22)

With the generating function we can rewrite Eq. (3.20) as

P(1+2)(t) = P(1)(t) · P(2)(t) =

∞∑
k=0

p
(1)
k tk ·

∞∑
k′=0

p
(2)
k′ t

k′ =

∞∑
k=0

[
k∑

k′=0

p
(1)
k′ p

(2)
k−k′

]
tk, (3.23)

where in the last step we have applied the Cauchy product.
3We provide an explicit example for a source class which emits exactly one photon per source. Let us say our

source class is the sum of all inverse Compton events. Then, the number of inverse Compton events pointing towards
a single pixel, namely the number of sources, follows a Poisson distribution. Hence, the number of photons from
inverse Compton events in each pixel follows the same Poisson distribution. In the 1pPDF formalism, we denote the
number of sources with n1 and the mean of the Poisson distribution with x1. In this example the number of sources
and observed photons is identical.
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3. Let us take again one source class. However, now each source in this class contributes exactly
m photons in our detector. The number of sources nm again follows a PDF which is Poisson
distributed and has a mean value denoted xm. Then, the number of observed photons is
k = mnm and the probability to observe exactly k photons is given by:

p
(m)
k =

{
(xm)(k/m)

(k/m)! exp(−xm) , k = 0,m, 2m, 3m, ...

0 , otherwise.
(3.24)

In terms of generating functions we can write

P(m)(t) =

∞∑
nm=0

p(m)
nm t

mnm =

∞∑
nm=0

(xm)nm

(nm)!
exp(−xm) (tm)nm = exp (xm t

m − xm) . (3.25)

4. Finally, we can move to the general case where we allow, at the same time, to have sources
with any number of m photons per pixel. The number of sources nm in each class is Poisson
distributed with mean xm, respectively. Hence, the total number of observed photons in a
pixel is k =

∑
mm · nm. We saw in example 2 that we can write the generating function of

the final PDF as the product of the individual PDFs. Therefore, we obtain:

P(t) =

∞∏
m=0

P(m)(t) = exp

(∑
m

[xm t
m − xm]

)
. (3.26)

This is a very important result. We have reduced our original question for the probability to
observe k photons to the determination of the expectation values xm. The calculation of xm
is straightforward as soon as we have a source-count distribution.

In the following, our goal is to give an explicit formula for xm, which is the mean number of
sources per pixel emitting exactly m photons. With this, at least formally, our problem is solved
since we can calculate the probabilities pk from Eqs. (3.22) and (3.26). We note, however, that
calculating the k-th derivative becomes computationally very expensive for large k4. In practice, it
is better to calculate pk from a recursive scheme, i.e the generalization of (3.20):

q
(1)
k = p

(1)
k (3.27)

q
(m)
k =

k∑
k′=0
step m

p
(m)
k′ q

(m−1)
k−k′ . (3.28)

Then, pk is given by the limit pk = limm→∞ q
(m)
k , which in practice can be truncated as soon as

m is larger than the largest relevant k. Below, we introduce a superscript (p) to denote the pixel
dependence of our quantities. Let S be the flux, namely, the number of photons in the energy bin
[Emin, Emax] traversing a unit area per unit time. The differential source-count distribution dN/dS

4The number of terms in in the k-th derivative grows approximately with 2k.
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denotes the number of sources per solid angle in the flux bin [S, S + dS]. We assume that dN/dS
is isotropic for extragalactic sources and, therefore, does not depend on the pixel. However, the
number of photon counts C(p)(S) may depend on the pixel, since the exposure of the detector can
depend on the pixel. The probability that a source with flux S emits exactly m photons follows a
Poisson statistics:

pm(S) =
[C(p)(S)]m

m!
exp(−C(p)(S)). (3.29)

Hence, the expectation value xm is given by

xm = Ωpix

∞∫
0

dS
dN(S)

dS
pm(S), (3.30)

where Ωpix is the pixel size in steradian. For completeness, we define C(p)(S) which depends on the
exposure, E(p)(E):

C(p)(S) =

Emax∫
Emin

dE
dS(E)

dE
· E(p)(E) ≈ S

∫ Emax

Emin
dE E−Γ · E(p)(E)∫ Emax

Emin
dE E−Γ

. (3.31)

In the last step, we have approximated the energy-differential flux by a power law with spectral
index Γ. For practical calculations this approximation with Γ = 2.4 is sufficient.

There are two subtleties which have not yet been addressed. First, the finite angular resolution
of the detector means that only a fraction f of the flux is observed in one pixel while the remainder
is detected in neighboring pixels. To take this effect into account we have to know the average
distribution function of the fractional photon flux, ρ(f). The behavior of ρ(f) depends on the pixel
size and the Point Spread Function (PSF) (angular resolution) of the detector. We remark that
the PSF is usually energy-dependent and, therefore, also ρ(f) adopts this energy dependence. The
distribution ρ(f) peaks at smaller f if the pixel size is reduced or the PSF worsens. This effect of
angular resolution can be taken into account by convolving Eq. (3.30) with ρ(f):

xm = Ωpix

∞∫
0

dS

1∫
0

df ρ(f)
dN(S)

dS

[f C(p)(S)]m

m!
exp(−f C(p)(S)). (3.32)

We note that ρ(f) should be normalized such that the sum of all fraction is equal to 1, namely,∫ 1
0 df ρ(f) = 1. To obtain the average distribution function one conducts a simple MC simulation,
where one simulates sources at random positions in the sky, folds the arriving photons with the
PSF, and counts the fraction of photons from each source arriving in the same pixel.
Let us now address the second subtlety. So far, we assumed that the gamma-ray sky solely contains
point sources. However, in practice there is also diffuse emission from the interaction of Galactic CRs
and, potentially, a Galactic and/or extragalactic isotropic component. We have already discussed
all the relevant formalism to include the diffuse emission. To make this explicit we remind that from
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our statistical perspective a diffuse emission is nothing else than a distribution of sources which emit
exactly one photon per pixel. In our formalism, the diffuse components can simply be added to x1

(footnote3 explains the relation for the inverse Compton emission). For completeness, we define the
additional component:

x
(p)
diff =

∫
Ωpix

dΩ

Emax∫
Emin

dE
dSdiff(E)

dE
· E(p)(E) (3.33)

In the following, we will shortly discuss two models for the source-count distribution. First, a generic
phenomenological model where the number of sources as function of flux follows a power law and
then, in a second step, we will introduce a more physically motivated model where the number of
point sources per flux interval is given by the GLF of blazars.

Source-count distribution modeled as multiple-broken power law

One possibility is to assume that the source-count distribution is given by a power law in the flux,
S, with multiple breaks. If we allow for a number of Nb breaks located at Sbj , j = 1, 2, . . . , Nb, the
multiple-broken power law is defined as

dN

dS
(S) ∝



(
S
S0

)−n1

, S > Sb1(
Sb1
S0

)−n1+n2
(
S
S0

)−n2

, Sb2 < S ≤ Sb1

...
...(

Sb1
S0

)−n1+n2
(
Sb2
S0

)−n2+n3 · · ·
(
S
S0

)−nNb+1

, S ≤ SbNb

(3.34)

where S0 is a normalization constant. Moreover, nj are the indices of the power-law components.
To complete the definition of the multiple-broken power law we define the overall normalization
factor AS such that AS = dN/dS (S0). Note that in order to obtain a finite total flux we have to
impose n1 > 2 and nNb+1 < 2.

Source-count distribution derived from the gamma-ray luminosity function of blazars

A more physically motivated approach is to use the blazar GLF and SED to model the source-count
distribution:

dNBL

dS
=

1

4π

∫
dz

∫
dΓ

dNBL(S, z,Γ)

dS dz dΓ
. (3.35)

The factor 1/4π appears because conventionally, although suppressed in the notation, dN/dS is
differential in solid angle. We can relate Eq. (3.35) to the blazar GLF as defined in Eq. (3.6)
through

dNBL(S, z,Γ)

dS dz dΓ
=

∣∣∣∣∂(L, Vc,Γ)

∂(S, z,Γ)

∣∣∣∣ Φ(L, z,Γ) =
dVc
dz

dL

dS
Φ(L, z,Γ), (3.36)
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where ∂(L, Vc,Γ)/∂(S, z,Γ) is the Jacobian matrix. In a flat and homogeneous Universe, co-moving
volume and redshift are related by dVc/dz = 4πχ2(z)/H(z). Furthermore, we obtain dL/dS = L/S.
To understand the last relation we remind that both, L and S, are strictly proportional to one single
free parameter, K from Eq. (3.7).

3.5 Angular correlation of gamma rays

Above we explained the 1-point PDF method for gamma rays which derives the probability to
observe a certain number of photons in a specific pixel. However, the 1-point PDF discards all the
directional information of the extragalactic sources contained in the gamma-ray map. The next
logical step is to investigate angular correlations and the power spectrum. The power spectrum is
known to be a very powerful tool to compare physics models with theoretical prediction. The most
prominent example is probably the power spectrum of the CMB which is extremely important to
constrain cosmological models [25]. Although, the gamma-ray flux is measured much less precisely
compared to the temperature fluctuations of the CMB, we can still obtain a deeper insight when
investigating the Angular Power Spectrum (APS) of gamma rays. The APS is expected to contain
signatures of astrophysical sources and potentially from DM annihilation or decay. The expected
signals from DM were first calculated in [268] while the importance of astrophysical sources was
realized slightly later in [269,270]. The formalism to calculate the expected signals, in particular of
DM, relies on the halo model [271,272]. In the halo model one approximates the DM distribution by
an ensemble of spherical DM halos which follow the linear power spectrum of matter with a certain
bias. The approximation is arranged such that the true power spectrum of matter (as for example
obtained from numerical simulations) is well reproduced by the halo model. In the last years, due to
the increased precision of the gamma-ray data provided by the Fermi-LAT experiment the APS and
cross correlations have become a popular object of study. In this context, the APS has been used to
provide constraints on DM annihilation and decay [273]. The most recent measurement of the APS
by the Fermi-LAT is provided in [274]. This updates the previous measurements [275, 276]. The
formalism to calculate the APS of gamma rays from DM is well summarized in [277]. Our focus in
the next section lies on the derivation of the APS in gamma rays for the astrophysical sources such
as blazars which are the dominant source of the observed APS in gamma rays. However, before
focussing on astrophyscial sources, we note that the cross-correlation of the gamma-ray flux with
other observables, in particular, gravitational tracers of the matter distribution in our Universe is
a powerful tool to search for DM [277–280]. This is a very interesting and active field of research
since a lot of precise new data is becoming available from cosmology experiments [281].

3.5.1 Formalism to calculate auto- and cross-correlation signals

In the following we will explain the general formalism to calculate the auto- and cross-correlation of
astrophysical sources. All equations are first given for the specific example of the gamma-ray flux
and the cross-correlation in different energy bins. For simplicity, we consider a single source class
which, in practice, for example could be blazars. At the end of this section we will generalize to
more than a single source class. The gamma-ray flux in the energy bin [Emin,Emax] arriving from the
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direction ~n is given by:

S(~n) =

∫
dχ χ2︸︷︷︸

(i)

∫
dL

d2NBL

dVc dL
(~x,χ,L)︸ ︷︷ ︸

(ii)

(3.37)

×
Emax(1+z)∫

Emin(1+z)

dEr
dNγ
dEr

(Er,L)︸ ︷︷ ︸
(iii)

1

4πχ2(1 + z)︸ ︷︷ ︸
(iv)

exp
[
− τ (Er,z)

]
︸ ︷︷ ︸

(v)

.

Here χ denotes the co-moving radial distance which is used interchangeably with redshift z or time.
The integrand has to be evaluated at ~x = χ~n. The different factors arise as follows:

(i) This is the typical factor which appears in the l.o.s. integral. The number of sources in a small
cone with opening angle dΩ increases with distance squared. We note again that the flux S(~n)
is differential in dΩ.

(ii) We assume that the distribution of blazars depends on the gamma-ray luminosity, L. Then,
the differential distribution of blazars, namely, the number per volume and luminosity, is
labeled by d2NBL/dVcdL. The subscript c is used to denote the co-moving volume.

(iii) Number of photons per energy and unit time interval emitted by a single source. For sources
which are far away from the position of the detector we have to take into account that the
energy changes with redshift. The rest-frame energy, Er, is is then related to the observed
energy, E, by Er = (1 + z)E. The energy spectrum may depend on the luminosity of the
source since the relation between luminosity and energy spectrum is given by:

L =

∫
dEr Er dNγ/dEr. (3.38)

(iv) This factor captures two effect. Firstly, the flux decreases with the distance of the source
leading to the factor 4πχ2. The factor 1 + z takes into account that the time interval between
emission and detection changes.

(v) For high-energy photons the Universe becomes opaque. This term describes the absorption of
photons as function of redshift (distance) and emitted energy.

We note that in literature often the product of (iii) and (iv) is called dN/dEr = 1/(1 + z)dN/dE
(c.f. Eq. (3.10)). However, this is a constructed quantity: It describes the number of photons per
energy, unit area, and time which would be observed at the detector if no photons were absorbed
in the EBL. Reordering Eq. (3.37) we obtain:

S(~n) =

∫
dχdL

d2NBL

dVcdL
(~x,χ,L)

︸ ︷︷ ︸
=g(~x,χ,L)

1

4π (1 + z)

Emax(1+z)∫
Emin(1+z)

dEr
dNγ
dEr

(Er,L) exp
[
− τ (Er,z)

]
︸ ︷︷ ︸

=W̃ (χ,L)

. (3.39)
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The integrand in Eq. (3.39) can be divided into the source field, g(~x,χ,L), and the window function,
W̃ (χ,L). We stress that only the source field depends on space (or direction), while the window
function depends only on redshift and luminosity. Furthermore, the window function is up to a
normalizing factor 1/χ2 equal to the flux of a single source with luminosity L at co-moving distance
χ. We define Ss(χ,L) = W̃ (χ,L)/χ2. Here we are mainly interested in the fluctuation of the gamma-
ray flux, δS(~n) = S(~n)− S̄, where S̄ = 〈S(~n)〉 denotes the ensemble average. In practice, due to the
homogeneity and isotropy of the Universe this is equal to averaging the flux over the whole sky. We
note that S̄ does not depend on direction. We expand the flux fluctuations in spherical harmonics:

δS(~n) = S̄

∞∑
`=0

∑̀
m=−`

a`mY`m(~n). (3.40)

Consequently, the coefficients a`m are defined by:

a`m =
1

S̄

∫
d2~n δS(~n)Y ∗`m(~n) (3.41)

=
1

S̄

∫
d2~ndχdL

g(~x,χ,L)− ḡ(χ,L)

ḡ(χ,L)︸ ︷︷ ︸
=f(~x,χ,L)

ḡ(χ,L)W̃ (χ,L)︸ ︷︷ ︸
=W (χ,L)

Y ∗`m(~n).

In Eq. (3.41), we have defined the normalized source field f(~x,χ,L) and the normalized window func-
tion W (χ,L). Next, we replace the normalized source field with by its Fourier transform, f(~x,χ,L) =∫

d3~k
(2π)3 f̂(~k,χ,L) exp(i~k·~x), and use the Rayleigh expansion, exp(i~k·~x) = 4π

∑
`′m′ i

`′j`′(k·χ)Y ∗`′m′(k̂)Y`′m′(~n),
where j` are the spherical Bessel functions. From Eq. (3.41), we obtain:

a`m =
i`

S̄

∫
dχdL

d3~k

2π2
f̂(~k,χ,L) j`(k·χ) W (χ,L)Y ∗`m(k̂). (3.42)

If we consider two different energy bins [E(i)
min,E

(i)
max] and [E(j)

min,E
(j)
max], we can define the APS as the

expectation value of
〈
a

(i)
`ma

(j)∗
`m

〉
:

C
(ij)
` =

1

S̄iS̄j

∫
dχdχ′ dLdL′

d3~k

2π2

d3~k′

2π2

〈
f̂(~k,χ,L)f̂∗(~k′,χ′,L′)

〉
Y ∗`m(k̂)Y`m(k̂′) (3.43)

×j`(k·χ) j`(k′·χ′) W
(i)(χ,L) W (j)(χ′,L′)Y ∗`m(k̂)Y`m(k̂′).

In our specific case, the blazars which are the source of the flux in the energy bin i are also the source
of the flux in the energy bin j. Therefore, we do not use any superscript on f , which is however
important if i and j have different sources fields. We define the power spectrum P (k,χ,χ′,L,L′) of two
individual sources with luminosities L, L′, and at distances χ, χ′ by

〈f̂(~k,χ,L)f̂∗(~k′,χ′,L′)〉 = (2π)3δ(~k−~k′)P (k,χ,χ′,L,L′), (3.44)
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where δ denotes the Dirac delta function. If we insert Eq. (3.44) into Eq. (3.43) we obtain:

C
(ij)
` =

1

S̄iS̄j

2

π

∫
dχdχ′ dLdL′ d3~k j`(kχ) j`(kχ′) W

(i)(χ,L) W (j)(χ′,L′) P (k,χ,χ′,L,L′)Y ∗`m(k̂)Y`m(k̂)

=
1

S̄iS̄j

2

π

∫
dχdχ′ dLdL′ dk j`(kχ) j`(kχ′) W

(i)(χ,L) W (j)(χ′,L′) P (k,χ,χ′,L,L′) δ``δmm︸ ︷︷ ︸
=1

.(3.45)

Finally, we use the Limber approximation [282] and obtain:

C
(ij)
` =

1

S̄iS̄j

∫
dχ

χ2
dLdL′ W (i)(χ,L) W (j)(χ,L′) P (k=`/χ,χ,L,L′). (3.46)

From the last equation we see that the calculation of the APS requires the knowledge of the nor-
malized window functions and the power spectrum of individual sources. The normalized window
functions are already defined in Eq. (3.41).

Let us investigate now the power spectrum and write down explicitly the ensemble average
〈f(~x,χ,L)f(~x′,χ,L′)〉. Since both fields, f , are evaluated at the same co-moving distance, χ, we will
subsume this dependence in the following.

〈
f(~x,L)f(~x′,L′)

〉
=

〈
g(~x,L)g(~x′,L′)

〉
ḡ(L)ḡ(L′)

− 1. (3.47)

We can assume that blazars are point sources and write the source field g(~x, L) as a sum of point-like
seeds at positions ~xa:

g(~x,L) =
∑
a

δ(~x− ~xa)δ(L− La). (3.48)

With Eq. (3.48) we can write the two-point correlation function as:〈
g(~x,L)g(~x′,L′)

〉
=

〈∑
a

δ(~x− ~xa)δ(L− La)
∑
b

δ(~x′ − ~xb)δ(L′ − Lb)
〉

(3.49)

=

〈∑
a

δ(~x− ~xa)δ(L− La)δ(~x′ − ~xa)δ(L′ − La)
〉

+

〈∑
a

δ(~x− ~xa)δ(L− La)
∑
b 6=a

δ(~x′ − ~xb)δ(L′ − Lb)
〉

= ḡ(L) δ(~x− ~x′) δ(L− L′) + ḡ(L) ḡ(L′)
[
1 + ξ(2)(~x,~x′,L,L′)

]
.

In the last line, we have defined the two-point correlation function of two different sources ξ(2)(~x,~x′,L,L′).
Often, one uses the simplifying assumption that the correlation function is proportional to the linear
correlation function of matter. The normalization factor, also called bias and denoted b(L), may
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depend on the luminosities of the sources. We rewrite ξ(2)(~x,~x′,L,L′) ≈ b(L) b(L′) ξlin(|~x−~x′|). Inserting
everything into Eq. (3.47) we obtain:〈

f(~x,L)f(~x′,L′)

〉
=

1

ḡ(L)
δ(~x− ~x′) δ(L− L′) + b(L) b(L′) ξlin(|~x−~x′|). (3.50)

Finally, using the Fourier transform of Eq. (3.50) the power spectrum of Eq. (3.46) becomes:

P (k,χ,L,L′) =
1

ḡ(L)
δ(L− L′) + b(L) b(L′)Plin(k=`/χ), (3.51)

where Plin(k) is the linear power spectrum of matter. Putting everything together we obtain:

C
(ij)
` =

1

S̄iS̄j

∫
dχdLg(L,χ) χ2 S(i)

s (L,χ)S(j)
s (L,χ) (3.52)

+
1

S̄iS̄j

∫
dχχ2

[∫
dL b(L) S(i)

s (L,χ)

] [∫
dL′ b(L′) S(j)

s (L′,χ)

]
Plin(k=`/χ).

For the gamma-ray flux of blazars, at ` >∼ 50 the second term in Eq. (3.51) is negligible. Astrophys-
ical sources are point-like and, therefore, the probability to find two sources at a specific distance
is relatively small. On the other hand, for extended sources (like DM halos) this probability is
boosted and the so-called 2-halo term is important. Here, the dominant first term is also called
Poisson noise, which is independent of `. We denote this constant term by C(ij)

P . In the case of
astrophysical sources and gamma-ray fluxes, the ensemble average of the source field is usually
called GLF denoted with φ(L,χ), which we will adopt in the following. If we change the integration
variable form co-moving distance to redshift and use dχ = 1/H(z) dz the Poisson noise is given by:

C
(ij)
P =

1

S̄iS̄j

∫
dz

χ2(z)

H(z)︸ ︷︷ ︸
= 1

4π
dVc
dz

∫
dLφ(L,z) S(i)

s (L,z)S(j)
s (L,z). (3.53)

Several comments are in order:

• Typically, the GLF of astrophysical sources depends not only on the luminosity and redshift
but also on at least one additional parameter characterizing the spectral energy distribution of
the sources. The most common parameter is the index, Γ, of the spectral energy distribution
which is often modeled as simple power law: dN/dE ∼ E−Γ. The extension of the formalism
is trivial. Each function which depends on L also depends on Γ. Moreover, every integral in
L is replaced by an integral in L and Γ, every Dirac delta functions in L is replaced by the
product of delta functions in L and Γ.

• If the seeds of the source filed in Eq. (3.48) are not point-like, we would write g(~x, L) =∑
a

∫
d3y δ(~y−~xa)δ(L−La)gs(~x−~y, L). The final results of in Eq. (3.53) would then contain

factors of the Fourier transform of gs. For example, DM halos are not point-like but extended
sources.
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• The formalism is also used to calculate the flux of DM annihilation or decay. In the so-called
halo model the DM density is approximated by the sum of DM halos which, in that case, form
the seeds of the source field. Then, the GLF is replaced by the halo-mass function dN/dm
and the luminosity, L, by the halo mass, m. The separation of the power spectrum into two
terms, cf. Eq. (3.51), are commonly denoted 1-halo and 2-halo term. An explicit derivation
of the formalism for DM is used for example in Ref. [277].

• For the cross-correlation of different sources, each (normalized) source field carries an index i
or j.

• If the APS contains more than one relevant source class the total power spectrum is given by
the sum of auto- and cross-correlation. Explicitly, for two source classes i and j the total C`
would be written as C` = C

(ii)
` + C

(jj)
` + 2C

(ij)
` .
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Chapter 4

Antiproton production cross sections in
cosmic rays

In Sec. 2.5 we discussed the special role of antiprotons in CRs. They are produced by the interaction
of the primary p and He flux with p and He in the ISM. One main ingredient, and consequently also
source of uncertainty, to predict the antiproton flux or its progenitor the antiproton source term is
the production cross sections of antiprotons in the nuclear interactions CR + ISM→ p̄+X. In the
following, we will first update and compare the latest analytic cross section parametrizations by [117]
and [119] in the pp channel. Here, we use the newly available data by the NA61 experiemnt [125].
Afterwards, we update the rescaling of the pp to the pA channel where we include for the first time
the recent measurement of antiproton production in the pHe channel by LHCb [120, 283]. Finally,
we derive the uncertainty on the antiproton source term due to nuclear cross sections and derive the
interesting parameter space which should be covered by future high-energy experiments to improve
predictions for the antiproton source term. The results of this section are based on the papers [3,7].

4.1 Fitting the proton-proton channel

4.1.1 Parametrization of the antiproton production cross section

We exploit in the following fits: i) the parametrization by Di Mauro et al. [117] (their Eq. (12) ,
hereafter Param. I) and ii) the parametrization by Winkler [119] (Param. II). Both parametrizations
are provided for the Lorentz invariant cross section, Eq. (2.42), as function of the kinematic variables√
s, xR, and pT. We remind that these kinetic variables refer to the CM frame. Param. I depends

on 8 free parameters, denoted as C = {C1...C8}
σinv(

√
s, xR, pT) = σin(1− xR)C1 exp(−C2xR) (4.1)

×
[
C3

(√
s
)C4

exp(−C5pT) + C6

(√
s
)C7

exp
(
−C8p

2
T

)]
.

Here σin is the total inelastic cross section which depends on the CM energy as stated in [117]
(Appendix B). We note that this parametrization does not strictly enforce radial scaling invariance

69



4.1. Fitting the proton-proton channel

at high energies. It incorporates the increase at large
√
s dictated by the total inelastic cross section

and it allows for some freedom in pT as function of
√
s. On the other hand, Param. II depends on

6 parameters C = {C1...C6}. It is given by

σinv(
√
s, xR, pT) = σinRC1(1− xR)C2

[
1 +

X

GeV
(mT −mp)

]− 1
C3X

, (4.2)

where the transverse mass is defined as mT =
√
p2
T +m2

p. We use the parametrization of the total
inelastic cross section stated in [119]:

σin = cin,1 + cin,2 log
(√
s
)

+ cin,3 log2
(√
s
)
, (4.3)

with the best-fit parameters cin,1 = 30.9 mb, cin,2 = −1.74 mb, and cin,3 = 0.71 mb. The factor R
changes the cross section behavior at small

√
s < 10 GeV, explicitly it is given by

R =

1 ,
√
s ≥ 10 GeV[

1 + C5

(
10−

√
s

GeV

)5
]

exp

[
C6

(
10−

√
s

GeV

)2
(xR − xR,min)

]
, elsewhere

(4.4)

with xR,min = mp/E
max∗
p̄

1. Finally, the parameter X is defined as

X = C4 log2

( √
s

4mp

)
. (4.5)

At this point, it is interesting to comment again on the radial scaling invariance and its regime of
validity. For low energies,

√
s < 10 GeV, the scaling is broken explicitly by the

√
s dependence of

the factor R in Eq. (4.4). Then up to about 50 GeV scaling invariance is restored. To verify this
from Eq. (4.2), we have to note that the last factor in the limit of small

√
s (equivalently small X)

behaves as[
1 +

X

GeV
(mT −mp)

]− 1
C3X −−−→

X→0
exp

(
−mT −mp

C3

)[
1 +

(mT −mp)
2

2C3

X

GeV
+O(X2)

]
. (4.6)

So, for small
√
s and small pT one obtains the typical exponential behavior in mT − mp. At a

value of pT = 1.0 GeV the correction from the exponential behavior reaches 10% at approximate√
s = 50 GeV. This correction increases for larger

√
s and larger pT. However, the dominant amount

of antiprotons is produced at small pT as we will see in Sec. 4.4. The second violation of scaling
invariance at high energies is due to the increase of σin with CM energy, cf. Eq. (4.3). In the
following, we will update Param. II at low energies using the newly available data from NA61
which are taken at a

√
s between 7.7 and 17.3 GeV. Since, this data is not expected to modify the

1Note that this parametrization of R differs from the parametrization used in [119] where the bracket (xR−xR,min)
is squared. However, the effect of using or not using the square is very small down to Tp̄ of 1 GeV. Furthermore,
we refit the parametrization in the following and we find a good agreement with the available data. Also below√
s = 10 GeV.
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Chapter 4. Antiproton production cross sections in cosmic rays

behavior at high energies we fix the parameter C4 = 0.038, which is responsible for the breaking of
scaling invariance above

√
s >∼ 50 GeV, to the best-fit value of [119]. The remaining five parameters

will be varied freely in the fit.
If we want to calculate the total source term in our Galaxy we have to add antineutrons and

antihypereons which subsequently decay into antiprotons. Following the analysis of [119] we take
this into account by rescaling the prompt production cross section as stated in Eq. (2.47). For
completeness we repeat the formulae for isospin asymmetry and hyperon production factor. They
are explicitly given by

∆IS =
cIS

1

1 + (s/cIS
2 )c

IS
3

, (4.7)

with cIS
1 = 0.114, cIS

2 = (144 GeV)2, and cIS
3 = 0.51 and

∆Λ = 0.81

(
cΛ

1 +
cΛ

2

1 + (cΛ
3 /s)

cΛ4

)
, (4.8)

with cΛ
1 = 0.31, cΛ

2 = 0.30, cΛ
3 = (146 GeV)2, and cΛ

4 = 0.9. We adopt this rescaling for both,
Param. I and Param. II.

4.1.2 Data sets to constrain antiproton production in the proton-proton channel

At intermediate energies, where the radial scaling is expected to work well, the cross section p+p→
p̄+X is constrained best by the data from NA49 [124] and NA61 [125]. Both experiments take data
at
√
s = 17.3 GeV and their measurement agrees within uncertainty. However, while NA49 only

provides data at this single energy, NA61 additionally provides measurements of the cross section
at
√
s = 7.7 GeV, 8.8 GeV, and 12.3 GeV. These additional measurements allow, first, to verify our

assumption of scaling invariances down to 10 GeV and, second, to constrain a part of the behavior at√
s < 10 GeV, where the radial scaling is violated. However, the lowest cross section measurement

of NA61 is taken at 7.7 GeV. The gap between this measurement and the production threshold at
4mp = 3.75 GeV should be constrained by additional data. So, we complement the NA49 and NA61
measurements with the data taken by Dekkers et al. [284] at

√
s = 6.1 and 6.7 GeV. Furthermore,

in the case of Param. I, we add the data taken by the BRAHMS experiment at
√
s = 200 GeV [285]

in order to fix the cross section behavior at high energies. On the other hand, for Param. II we only
use NA49, NA61, and Dekkers since the high-energy behavior is kept fixed.
Finally, we have to address one subtlety: the modern experiments NA49 and NA61 provide a
measurement of the prompt antiproton production cross section. In other words, they correct
their measurement by excluding the contribution from intermediate hyperon states which decay
inside of the detector volume, but have displaced vertices. However, for older measurements the
situation is less clear. The typical assumption is that this kind of correction was not applied. To
account for the effect in our analysis we subtract the antihyperon contribution ∆Λ(

√
s) from the

Dekkers and BRAHMS data before fitting the cross section parametrizations. A similar treatment
for antineutrons is not required. Because of their large lifetime of 881.5 s they always decay outside
the detector. All data sets we use in the fit of the pp channel are summarized in Tab. 4.1.
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Table 4.1: Summary of all pp data sets, their available CM energies, and references. Furthermore,
we explicitly state for which parametrization (I and/or II) the data set will be used in the fit and
which scale uncertainty σscale is adopted.

Experiment
√
s [GeV] σscale I II Ref.

NA49 17.3 6.5% × × [124]
NA61 7.7, 8.8, 12.3, 17.3 5% × × [125]
Dekkers et al. 6.1, 6.7 10% × × [284]
BRAHMS 200 10% × [285]

4.1.3 Methods to fit the cross section parametrization to the proton-proton channel

In order to fit the two parametrizations to the available data sets listed in Tab. 4.1 we perform a
χ2-fit. The Minuit package from the Root2 software framework is used to minimize the χ2 and
to obtain the correlated uncertainties in the form of a covariance matrix. In the fit, we account for
the statistical and systematic uncertainty which are added in quadrature, and an additional scale
uncertainty σscale. The scale uncertainty allows to move up or down all the data points of each
experiment simultaneously. For the NA49 experiment the scale uncertainty is 6.5%. It originates
from the luminosity uncertainty of the proton beam. We assume that all other data sets are affected
by a similar uncertainty. The adopted scale uncertainty for each experiment are stated in Tab. 4.1.
If this uncertainty is not stated with the measurement it is estimated from the mean size of the
systematic uncertainty. In order to map the scale uncertainty into the χ2-definition we introduce a
scale factor ωk for each data set k. These parameters acts as nuisance parameters in the fit.

The total χ2 as function of cross section parameters C and nuisance parameters ω consist of two
terms

χ2(C,ω) = χ2
stat(C,ω) + χ2

scale(ω), (4.9)

where the first term contains the χ2 of each single data point and the second term determines the
constraints on the nuisance parameters ω according to the scale uncertainties. Explicitly, the first
term is given by

χ2
stat(C,ω) =

L∑
k=1

∑
ik

(
ωkσinv,ik − σinv(C,√s(ik)

, xR
(ik), pT

(ik)
)2

ω2
kσ

2
ik

. (4.10)

Here ik denotes the i-th data point of the data set k. Consequently, σinv,ik is the Lorentz invariant
cross section measured at this data point and σik is the corresponding quadratic sum of statistical
and systematic uncertainty. Furthermore, σinv(C,√s(ik)

, xR
(ik), pT

(ik) denotes the evaluation of the
cross section parametrization (I or II) at the kinematic variables of the data point ik. Note that each

2https://root.cern.ch
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Table 4.2: Fit quality of the two fits in the pp channel of Param. I and II. The first row reports
the χ2 and the dof of the complete fit, while the additional rows show the contribution to the χ2 of
each single data sets.

with Param. I with Param. II
χ2/dof 534.7/411 464.7/394
χ2

BRAHMS (data points) 27.6 (21) -
χ2

Dekkers(data points) 9.8 (10) 8.3 (10)
χ2

NA49 (data points) 211.4 (143) 179.0 (143)
χ2

NA61 (data points) 286.0 (249) 277.4 (249)

data set is rescaled by the factor ωk. In order to constrain this factor within the scale uncertainty
σscale,k we use the second term of Eq. (4.9):

χ2
scale(ω) =

L∑
k=1

(ωk − 1)2

σ2
scale,k

. (4.11)

4.1.4 Results on the antiproton production in the proton-proton channel

We fitted the Param. I and II to the data sets summarized in Tab. 4.1 accounting for the statistical,
systematic and scale uncertainties as described above. Both parametrization provide a good fit to
the available data sets. They result into a χ2/dof of 1.30 and 1.18 for Param. I and II, respectively.
We note that the reduced χ2s for all the individual data sets converge to values close to 1. The
exact values are stated in Tab. 4.2.
The best-fit parameters and the 1σ uncertainty for both parametrizations are summarized in
Tab. 4.2. Moreover, the table contains the best-fit values of the scale parameters ωk for each
data set k. To obtain the full covariance matrix of all cross section and nuisance parameters we
use the HESSE algorithm of the Minuit package. The matrices are provided in the Appendix of
Ref. [3]. We note that the NA61 data tends to converge to a scale factor slightly smaller than
1, while all other experiments have a scale factor which is slightly larger than 1. These nuisance
parameters are expected to be compatible with 1 within the scale uncertainties σscale,k. This is the
case for both fits and all data sets. The posterior uncertainties of the nuisance parameters are only
slightly smaller than σscale,k, hinting that there is no tension among the various data sets. Therefore,
we conclude that both parametrizations result in a good fit of available and most relevant data sets
in the pp channel.

Now, we can use the two cross section parametrizations to derive the energy-differential cross
section for antiproton production in the pp channel. The comparison of our refitted parametrizations
with the original parametrizations, Refs. [117, 119], and the MC approach KMO [128] is shown in
Fig. 4.1. The cross section is given as function of the kinetic energy of the antiproton, Tp̄, at three
fixed proton energies of Tp = 20 GeV, 450 GeV, and 6.5 TeV. All lines correspond to the prompt
production of antiprotons in the pp channel, i.e. they do not include antineutrons or antihyperons.
In order to obtain the uncertainty at the cross section level, we exploit the covariance matrix of
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4.1. Fitting the proton-proton channel

Table 4.3: Best-fit parameters and uncertainties for the fit of Param. I and II of the p+p→ p̄+X
cross section. The full correlation matrices are provided in the appendix of [3].
(∗) We remind that the parameter C4 is fixed, i.e. not included in the fit, in Param. II (see text for
details).

with Param. I with Param. II
C1 3.50± 0.64 (5.02± 0.22)× 10−2

C2 5.59± 0.85 7.790± 0.077
C3 (4.00± 0.73)× 10−2 (1.649± 0.012)× 10−1

C4 −0.251± 0.071 (3 .800 ± 0 .057 )× 10−2
(∗)

C5 2.651± 0.097 (4.74± 2.59)× 10−4

C6 (3.78± 0.53)× 10−2 3.70± 0.64
C7 (4.3± 4.3)× 10−2 -
C8 2.695± 0.047 -
ωBRAHMS 1.115± 0.079 -
ωDekkers 1.051± 0.068 1.090± 0.090
ωNA49 1.059± 0.039 1.061± 0.044
ωNA61 0.936± 0.036 0.932± 0.038

each fit. For example, to obtain our 2σ band we sample 1000 realizations of the cross section
and nuisance parameters, C and ω. Then, we insert each parameter realization into Eq. (4.9) and
compute the χ2. If the χ2 difference with respect to the best-fit χ2 is smaller than 4, we compute
the energy-differential cross section as given by Eq. (2.46). The 2σ uncertainty band is the envelope
of all realizations with ∆χ2 ≤ 4. We observe that the two parametrizations agree well within the
uncertainties bands. Also, the original analytic parametrizations show a reasonable agreement with
the refitted parametrizations. However, the MC approach by KMO significantly differs from all
other parametrization at small energies, Tp̄ <∼ 10 GeV and Tp <∼ 20 GeV. This deviation was already
noted in the introduction, Sec. 2. We remind again than at small energies of

√
s < 10 GeV the MC

generators are not tuned to data and, therefore, should be less trusted.

Finally, we compute the local source term of CR antiprotons in the pp channel by solving the
integral of Eq. (2.41). We assume a hydrogen density of nISM = 1 cm−3. The local proton flux
is taken from a fit of the measured proton flux by AMS-02 [58]. Solar modulation is demodulated
within the force-field approximation for which we adopt a Fisk potential of ϕ = 600 MV. Note that
antiprotons are only produced by CR protons above the threshold energy Tp ≥ 6mp. In Fig. 4.2 we
compare the source term of prompt antiprotons for our two parametrizations and the same literature
estimations as before. The shaded band again denotes the 2σ uncertainty from our fit of the cross
sections. The lower panel of Fig. 4.2 displays the ratio of the source terms with respect to the best
fit of Param. II. We observe that Param. I and II agree well within uncertainties. The agreement
is particularly good between Tp̄ = 10 GeV and a few hundred GeV. Towards lower energies the
deviation between the two parametrizations increases to 10% at 1 GeV, and similarly above 1 TeV
the deviation increases to 10%. Note that at very high energies, Tp̄ >∼ 1 TeV, Param. II is more

74



Chapter 4. Antiproton production cross sections in cosmic rays

100 101 102 103 104
[ ]

10 35

10 34

10 33

10 32

10 31

/
[

/
]

= =

=
.

(×
)

Param. I
Param. II
di Mauro
Winkler
KMO

Figure 4.1: The energy-differential cross section dσ/dTp̄(p + p → p̄ + X) for prompt antiproton
production at fixed proton energies, Tp = 20 GeV, 450 GeV and 6.5 TeV. The dashed (solid) line
and the red (blue) band are the result of our analysis for Param. I and Param. II. The shaded
uncertainty band displays the 2σ confidence interval. We report for comparison some literature
estimations: di Mauro [117], Winkler [119], and KMO [128]. The figure is taken from Ref. [3].

trustworthy. It is specifically tuned to data up to CM energies of 2.7 TeV and takes violations of
the radial scaling invariance explicitly into account, while Param. I is only fitted to data sets up to√
s = 200 GeV. It was already noted in [117] that Param. I should be trusted up to Tp̄ ∼ 500 GeV

The uncertainty bands of both parametrizations are about 8% between Tp̄ = 10 GeV and a few
hundred GeV and then increase at smaller or larger Tp̄. In particular, we note that the uncertainty
band of Param. II increases to 15% at 1 GeV. The reason for this increase at low energies is that
the cross section shape is no longer determined by the radial scaling invariance since the invariance
is broken at

√
s < 10 GeV. The uncertainty in the shape of the cross section translates into a

shape uncertainty at the source term level. On the other hand, the uncertainty of the bands at high
energies, Tp̄ >∼ 10 GeV is mostly a normalization factor. The original analytic parametrizations agree
with our updates within uncertainties. Again, we note that the MC approach KMO significantly
overpredicts the antiproton source term at Tp̄ <∼ 10 GeV.

4.2 Fitting the proton-nucleus channel

In Sec. 2, we showed the contributions of the various channels to the total source term of CR
antiprotons. The pp channel dominates with a contribution of 50% to 60% at all energies, while the
rest is provided by pA channels. In practice, the most important proton-nucleus channels are the
pHe and Hep channels, they make up 15% to 20% each. Heavier channels contribute at the percent
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Figure 4.2: Antiproton source term in pp channel and its uncertainty from nuclear cross sections
derived from our fits of Param. I (red dashed) and Param. II (blue solid), respectively. For compar-
ison, we show the antiproton source term from previous parametrizations (cf. Fig 4.1). The shaded
uncertainty bands display the 2σ uncertainty. In the lower panel we show the ratio of the source
term to the best fit of Param. II. So, by definition the solid blue line is equal to 1. The figure is
taken from Ref. [3].

level. Thus, our goal in the following is to find a good parametrization for the pHe and Hep. Since
data is very scarce we cannot find a standalone parametrization of these channels. Instead, we rely
on a rescaling from the pp channel exploiting the very precise data in the pC data by NA49 and
the recent measurement in the pHe channel by LHCb. We will not include data of heavier nuclei
as done in [121], since our focus lies on the light nuclei relevant in CRs. If, on the other hand, a
precise determination of cross section with heavier nuclei like iron or lead is required this analysis
should be redone including further data sets.

4.2.1 Rescaling of the proton-proton to the proton-nucleus channels

Before going into details, we remind our simple picture for the parametrization of pA channels that
in practice the scattering occurs between the projectile proton and either one proton or one neutron
in the nucleus. Therefore, in the following all kinematic variables and the definition of the CM
frame refer to the nucleon-nucleon frame. One important difference between the pp channel and the
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pA channel (or better proton-nucleon channel) are symmetries. Both reaction establish a cylindrical
symmetry around the beam axis. However, only the pp channel is symmetric under reflection along
the beam axis in the CM frame. The shielding effects in the pA channel and enhancements in the pn
channel with respect to pp due to isospin violations break the reflection symmetry. Therefore, the
appropriate kinematic variables in the pA channel is not the radial scaling, xR, since the use of xR

indirectly assumes reflection symmetry. In other words, we cannot distinguish between antiproton
production in forward or backward direction using xR. Therefore, instead of xR we will the Feynman
scaling xf which is proportional to the longitudinal momentum and, hence, distinguishes forward
(xf > 0) and backward (xf < 0) production. The cross-section asymmetry is actually visible in the
NA49 pC data [122]. To describe this asymmetry we use the fact that the antiproton production can
be split into two contributions, one originating from the projectile and the other originating from
the target nucleon. The consequence is that the projectile produces antiprotons mostly in forward
direction and the target mostly in backward direction. This kind of splitting is observed also in
pion production. The so-called projectile overlap function Fpro characterizes the fraction of particles
produced from the projectile. It depends only on xf and was measured and tabulated in [122] from
pion production. We repeat the definition of Fpro(xf ) for completeness in Tab. 4.4. The target
overlap function is inferred by Ftar(xf ) = 1 − Fpro(xf ) = Fpro(−xf ). Separately, adjusting the
projectile and target overlap function in the pA channels allows to incorporate an effective forward-
backward asymmetry. This approach was already pursued in [119]. Finally, we define our rescaling
factor for the pA channel. The rescaling is done at the level of the fully-differential Lorentz-invariant
cross section:

σpAinv(
√
s, xf , pT) = fpA(A, xf ,D) σppinv(

√
s, xR, pT). (4.12)

Table 4.4: Definition of the projectile overlap function Fpro(xf ). The table is copied from [122].

xf Fpro xf Fpro

-0.250 0.0000 0.250 1.0000
-0.225 0.0003 0.225 0.9997
-0.200 0.0008 0.200 0.9992
-0.175 0.0027 0.175 0.9973
-0.150 0.010 0.150 0.990
-0.125 0.035 0.125 0.965
-0.100 0.110 0.100 0.890
-0.075 0.197 0.075 0.803
-0.050 0.295 0.050 0.705
-0.025 0.4 0.025 0.6

0.000 0.5
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Table 4.5: Data sets used to fit the antiproton production in the pA channel. We compare the
CM energies,

√
s, and scale uncertainties σscale. Furthermore we state which data set is used in the

four fits discussed in the result section and give references.

√
s [GeV] σscale I-A I-B II-A II-B Ref.

NA49 17.3 6.5% × × × × [122]
LHCb 110 6.0% × × [120]

Here A is the mass number of the nucleus and D = {D1, D2} are the two fit parameters which will
be adjusted to data in the following. Explicitly, the factor fpA is given by:

fpA = AD1

[
AD2

(
1 +

N

A
∆IS

)
Ftar(xf ) + Fpro(xf )

]
. (4.13)

The first factor AD1 determines the overall enhancement of the pA cross section with respect to the
pp case. In our simple picture, where individual nucleons interact and produce the antiprotons, we
expect D1 to be close to 1. On the other hand, AD2 gives the enhancement of the target production
with respect to the projectile. The summand N

A∆IS corrects for the fact that the production of
antiprotons in a pn interaction is enhanced with respect to pp. N is the number of neutrons in the
target nucleus.

The fit procedure is analogous to the procedure described in the pp channel. The definition of
χ2 can be copied from Eqs. (4.9) to (4.11), if the fit parameters C are replaced by D. We note that
in the following fits the parameters C are fixed to the best-fit values of the previous section and only
the two new parameters D are included in the fit. Consequently, the sum over data sets k runs only
over the new pA data. As in the pp case we allow one nuisance parameter, ω, to rescale each data
set.

4.2.2 Data sets to constrain antiproton production in the proton-nucleus channels

We use the data of NA49 in the pC channel and the LHCb data in the pHe channel. They are
both fixed-target experiments where the projectile proton is accelerated to 158 GeV and 6.5 TeV,
respectively. Both experiments provide very precise data of the prompt antiproton production,
namely, any contribution from antihyperons has been removed. The two data sets are summarized
in Tab. 4.5.

4.2.3 Results on the antiproton production in the proton-nucleus channels

In this section we discuss the result of four fits of the factor fpA. Our goal is, first, to determine a
good parametrization of fpA for Param. I and II and, second, to determine the impact of the newly
available LHCb data. In detail, the four fit setups differ in the parametrization of the pp channel
(I and II) and the data included in the fit. We will refer to the fit as I-A or II-A if it includes only
the pC data of NA49, while we will refer to I-B and II-B if it contain additionally the LHCb data.
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The results of all four fits are summarized in Tab. 4.6 and 4.7. Let us first focus on the fits
I-A and II-A, without LHCb data. We see that the rescaling of both parametrizations provides a
good fit of the pC data. The reduced χ2s are 1.3 and 1.1, respectively. The parameters of D1 and
D2 are almost independent of the parametrizations and converge to 0.83 and 0.15. This meets our
expectations that D1 is close to 1 and D2 a small asymmetry (see above).

Now, we would like to determine the impact of the LHCb data. The first step is to use our fit
results I-A and II-A to predict the cross section at the kinematic variables where LHCb takes its
data points. Then we use the prediction to calculate the χ2 of the LHCb data set. Our results
are χ2

LHCb = 1266 and 212 for Param. I-A and II-A, respectively, for 136 data points. Here it is
already visible that Param. II fits the LHCb data much better than Param. I. In fact, this result is
not very much surprising. The LHCb data is taken at very large

√
s = 110 GeV. At those energies

we are far beyond the regime where radial scaling is applicable. So, the observation that Param. II
fits better with the LHCb data is probably due to the fact that the underlying pp cross section at√
s = 110 GeV works better for Param. II than for Param. I. To strengthen our conclusion that

Param. II works better with LHCb data we now look at the results of the fits I-B and II-B which
include the LHCb data in the fit setup. We obtain reduced χ2s of 8.4 and 1.4, respectively, for
Param. I-B and II-B. The large χ2 of I-B is due to the LHCb data. A closer look at the comparison
of the best-fit parametrizations I-B and II-B with the LHCb data, as presented in Fig. 4.3, reveals

Table 4.6: Summary of the fit quality of fpA for the different Param. I and II, and for the different
data sets A (NA49 pC) and B (NA49 pC, LHCb pHe). The first row contains the χ2 and the dof,
while the second and third rows show the separate contributions from the pC and pHe data sets.
The number of data points for each data set is displayed in brackets. The italic numbers are not
the result of the fit but a χ2 calculation of the predicted cross section where the parameters D are
fixed to the best-fit of Param. I-A and II-A.

Param. I Param. II
A B A B

χ2/dof 153.0/118 1296.3/253 131.2/118 326.3/253
χ2

NA49 153.0 (121) 155.3 (121) 131.2 (121) 131.8 (121)
χ2

LHCb 1266 (136) 1141 (136) 212.4 (136) 194.5 (136)

Table 4.7: Fit results of the four different fits discussed in the result section.

Param. I Param. II
Parameter A B A B
D1 0.830± 0.012 0.825± 0.012 0.825± 0.012 0.828± 0.012
D2 0.149± 0.013 0.167± 0.012 0.154± 0.013 0.145± 0.012
ωNA49 1.000± 0.025 1.001± 0.024 1.000± 0.025 0.997± 0.024
ωLHCb - 0.900± 0.015 - 1.034± 0.018
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Figure 4.3: Comparison of LHCb data to the fit with Param. I-B (left) and Param. II-B (right).
The grey band corresponds to 2σ uncertainty in the fit. The LHCb data agree better with Param. II
and, therefore, they select this model for the high-energy behavior of the Lorentz invariant cross
section. The figure is taken from Ref. [3].

that the problem is related to the pT-shape of the underlying pp parametrizations3. For Param. II-B
the LHCb data is fitted reasonably at all pT, while for Param I-B there is a significant mismatch
between best fit and data at pT ∼ 1.5 GeV. We observe that the best-fit parameters D1 and D2 are
not largely affected by adding the LHCb data. Consequently, we infer that in general the rescaling
of pp to pHe and pC works as expected. The important point however, is that before LHCb data
we entirely relied on an interpolation between pp and pC. Here, with the new data, we show for
the first time that this interpolation is correct for pHe. This is a very important conclusion of
this analysis, although the kinetic parameter space in which LHCb takes its measurements is only
marginally relevant for CRs. Finally, we note that the LHCb select the cross-section parametrization
(Param. II) which has the slightly harder trend at high energies. This is an important conclusion
of this chapter.

Before calculating the energy-differential cross section and the source terms in the pHe and Hep
channels we would like to extend Eq. (4.13) to the more general case of nuclei as projectile. The
straight forward extension4 is

fA1A2 = AD1
1 AD1

2

[
AD2

1

(
1 +

N1

A1
∆IS

)
Fpro(xf ) +AD2

2

(
1 +

N2

A2
∆IS

)
Ftar(xf )

]
, (4.14)

where the subscript 1 denote the projectile and 2 the target. We checked that the parametrization
of Eq. (4.14) is self-consistent within the current uncertainties. Namely, we calculated the resulting

3The pT shape is not changed by fpA.
4Note that there is actually one subtlety in the extension. It is not certain how (or if) the antiproton production in

neutron-neutron scattering is enhanced with respect to the proton-proton case. In the formula the neutron-neutron
scattering is enhanced by the isospin asymmetry twice. We will not elaborate this issue further, since the effect is
very much suppressed. It appears only in the HeHe channel and even heavier channels.
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Figure 4.4: Energy-differential antiproton production cross section in the pHe (left) and Hep (right)
channels. All lines correspond to the prompt antiproton production. The cross section are shown
as function of antiproton kinetic energy for three representative fixed projectile kinetic energies per
nucleon, Tpro/n = 20 GeV, 450 GeV, and 6.5 TeV. The dashed red line and solid blue correspond
to our Param. I-B and II-B. The shaded bands denote the 2σ statistical uncertainty of our fit. We
compare with predictions from literature of Winkler [119] and KMO [128]. The figure is taken from
Ref. [3].

antiproton source term of the Hep channel in two different ways. The first way is to use Eq. (4.14).
The second way (which is the “correct” and self-consistent way) is more involved: we used the
cross-section parametrization of the pHe channel and transformed this to the ISM frame. Then to
get the Hep channel we performed a Lorentz transformation to the frame where the p is at rest.
Finally, we performed the integrations to obtain the energy-differential cross section and source
term. Compared to the cross section induced uncertainty of the source term the deviation between
the two methods is negligible. All plots in the following exploit on the first way which requires less
computation.

Figure 4.4 shows the energy-differential cross section for prompt antiproton production in the pHe
(left) and the Hep (right panel) channel as obatained from our fit. We compare with the literature
estimations from [119,128]. As before the MC approach deviates significantly at Tp̄ <∼ 10 GeV. The
uncertainty bands of our fits display the 2σ uncertainty. To obtain the band we proceed as follows.
We sample 1000 realizations of the full parameter set (C +D) from the covariance matrices. From
there we compute the total χ2, which is the sum of the pp and the pA fit. Finally, we require that
the total χ2 difference is smaller or equal to 4 and individually that the χ2 of the pp channel is
smaller than 4. In this way we ensure that the pp fit remains a prior to the pA fit, or in other words,
we make sure that the C parameters in the band are not driven by the pA data. The size of the
uncertainty band is similar to the pp case. This is expected since the pp channel is the prior of all
heavier channels. Note that all uncertainties from pp directly translate into the heavier channels.

We calculated the source term of prompt CR antiprotons in the pHe and Hep channels from the
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Figure 4.5: Source term of CR antiprotons in the pHe (left panel) and Hep (right panel) channels.
We show the best fit of Param. I-B and II-B. Uncertainties are given at the 2σ confidence interval.
For details on the literature comparison refer to Fig. 4.4. The figure is taken from Ref. [3].

energy-differential cross section of Fig. 4.4. The results are shown in Fig. 4.4 which is very similar
to the pp channel, Fig. 4.2. In the calculation of the pHe channel, we use an ISM density of He
which is 0.1 cm−3, while in the Hep channel we use a fit of the helium flux measured by AMS-02 [59]
and corrected for solar modulation in the force-field approximation as before. In our calculation we
assume that the helium flux is 100% 4He, which is of course an approximation. In reality a fraction
of 10–15% of the helium flux is 3He. Finally, we note that the source term in the Hep channel is
softer than in the pp and pHe channel. This is related to the fact that the proton flux is harder
compared to the helium flux measured by AMS-02.

4.3 The total antiproton source term

In this paragraph, we will derive the total source terms of CR antiprotons. We use all the information
of the previous paragraphs on the prompt antiproton production cross section and then add the
contribution from antineutrons and antihyperons as discussed in Sec. 2.5. Here we calculate the
source term of various CR-ISM combinations, in particular, also combination with heavier nuclei
in the CR species. The results are shown in Fig. 4.6. The four dominant channels, pp, pHe, Hep,
and HeHe, are given individually, while the contribution of heavier channels are grouped into: all
channels with CNO, MgNeSi, LiBeB, or Fe in the CR initial state. The CR fluxes in the calculation
are taken from [74] (Li, Be and B), [73] (C and O), [286] (N). For all heavier nuclei we use the
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Figure 4.6: Source terms of CR antiprotons and separate CR-ISM contributions, derived from
Param. II-B. The shaded bands denote the 2σ uncertainty due to prompt antiproton production
cross sections. The lower panel shows the relative uncertainty of the total source term. The shaded
band is again the 2σ uncertainty due to prompt antiproton production cross sections, while the
open band shows the additional uncertainty from isospin violation and hyperon decay. Fig 2.7 is
derived from this plot. The figure is taken from Ref. [3].

oxygen ratios in [287] and multiply with the oxgen flux from AMS-02. The local ISM density
contribution from nuclei heavier than He is taken from [288]. We observe that all CNO channels
are equally important as the HeHe channel. This is interesting since the HeHe channel is usually
taken into account in analyses of CR antiprotons while the CNO channels are often neglected. Even
the contribution of MgNeSi and Fe are above 1%. While the contribution of heavier ISM or the
secondaries LiBeB are in principle interesting since they result in a different shape of the source
term, they are always reduced to 1%.
In the lower panel of Fig. 4.6 we show the relative uncertainty of the total cross section. At the
2σ level the uncertainty from the prompt cross-section parametrization is ±8% at Tp̄ >∼ 5 GeV. It
increases to ±15% at 1 GeV (shaded band). To obtain the total uncertainty due to cross section
(open band) we have to add uncertainty of the antihyperon factor and the isospin violation term.
These uncertainties are taken from [119] (cf. also to Fig. 2.9). All in all, we obtain an uncertainty
on the total source term of ±20% at 1 GeV and ±12% at Tp̄ >∼ 5 GeV.
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4.4 Requirements for future cross section measurements

In the previous section we fitted the antiproton production cross section and derived the uncertain-
ties which are imposed on the source term. If we now compare the uncertainties of the antiproton
flux measured by the AMS-02 experiment with the uncertainties of the source term we realize that
there is a mismatch in accuracy5. AMS-02 measures antiprotons with an accuracy of about 5% be-
tween 1 GeV and 100 GeV, while the source term uncertainties range from 12% to 20% depending on
the exact energy. This simple argument shows that further effort is required to improve our knowl-
edge on antiproton production cross sections if we do not want to be limited in the interpretation
of the current antiproton flux measurements by nuclear physics.

In this section we will answer the question at which energies and which transverse momenta (or
equivalently angles) future measurements should be performed. The answer will be guided by two
principles:

1. The uncertainty on the source term (and consequently on the flux) of CR antiprotons shall
be equal or smaller than the uncertainty of the currently best measurement of the flux by the
AMS-02 experiment.

2. The cross section should be measured first and most precise in the kinetic parameter space
which gives the largest contribution to the source term.

However, before really going to the topic it is instructive to first analyse the fraction of the source
term which is covered by current cross-section experiments. We first focus on the pp channel and
comment on the pA channels towards the end of this section.

4.4.1 Fractional contribution of the source term

Here we derive the fraction of the source term which is determined by the measurement of a given
experiment. We call this fraction source term contribution in the following. To obtain this quantity
we calculate the source term (in the pp channel) while restricting the kinetic variables

√
s, xf , and

pT to the parameter space which is covered by the experiment. Explicitly, this restricted source
term qpp,exp is obtained by replacing the energy-differential cross section in Eq. (2.41) by(

dσpp
dTp̄

)
exp

(Ti, Tp̄) = pp̄

∫
dΩ

(
E

d3σij
dp3

)
(pi, pp̄, η)ωexp(

√
s, xf , pT). (4.15)

Note that this equation is equivalent to Eq. (2.46) apart from the factor ωexp(
√
s, xf , pT) which is

equal to 1 if the kinematic variables (
√
s, xf , pT) are within the region measured by the experiment

and 0 otherwise. Then the source term contribution of an experiment is defined as the ratio of the
restricted source term and the total source term, qpp,exp/qpp. From the previous section we know
that the NA61 experiment provides the most precise and relevant data in the pp channel. The
source term contribution of this experiment is shown in Fig. 4.7. The NA61 experiment helps to

5Note that the relative uncertainty of source term and propagated flux are identical at first approximation. This
will be addressed more carefully in the following.
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Figure 4.7: The solid line shows the source term contribution of the NA61 experiment in the pp
channel. If we assume that the Lorentz invariant cross section does not depend on

√
s between

10 GeV and 50 GeV (radial or Feynman scaling [119]), we obtain the dotted contribution.

determine the source term between Tp ∼ 0.5 GeV to 60 GeV. The contribution shows two peaks at
2.5 GeV and 10 GeV with a contribution of ∼50% and 60%, respectively. Between the two peaks
the contribution drops to 40%. The peak at ∼ 10 GeV comes from the parameter space which is
directly measured by the NA61 experiment. Since, the pp channel is symmetric in under xf → −xf
we obtain the second peak at 2.5 GeV6. The fact that the source term contribution at low energies
is smaller than at higher energies can be explained from kinematics. Antiprotons at very small
Tp̄ ∼ 1 GeV can be produced in the interaction of protons with almost any energy above Tth. On
the other hand, antiprotons at higher energies are more constrained by Tp̄ < Tp. It is instructive to
take another look at Fig. 2.8. The dotted line in Fig. 4.7 gives the contribution if we use additionally
to the NA61 measurement the theoretical argument of radial scaling. In this case, we can extend the
“measured” parameter space of NA61 from

√
s = 17.3 GeV to 50 GeV, which is the upper CM energy

to which radial scaling invariance is valid. We observe an improvement, in particular, of the source
term contribution of the second, high-energy peak. The source term fraction probed by the NA61
data is now approximately 80% between 10 GeV and 100 GeV. Note that from this exercise we can
understand very well why the uncertainty of the source term in Fig. 4.6 increases significantly below
Tp̄ <∼ 5 GeV: This kinematic regime is not well covered by the precise measurement of NA61. So,
already at this point we have the hint that additional measurements at CM energies below 7.7 GeV
(NA61 lowest

√
s) would be important to obtain a more precise source term at Tp̄ <∼ 5 GeV.

The only measurement in the pHe channel is currently provided by the LHCb experiment. Here

6The source term contribution of the NA61 experiment shown in [3] differs from this figure, since there the xf
symmetry was not exploited.
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Figure 4.8: The solid (dashed) line shows the source term contribution of the LHCb experiment
to the pHe (Hep) channel. The experiment measures antiprotons produced in the interaction at
single

√
s = 110 GeV. We assume that it possible to extrapolate the knowledge of the source term

to a range from 100 GeV to 120 GeV.

antiproton data is taken at pp̄ between 10 GeV and 110 GeV for production in a collision of 6.5 TeV
protons on fixed-target helium. In the proton-nucleus channels the xf symmetry is broken, but we
can use the fact that the transformation xf → −xf relates the pHe channel with the Hep channel.
In other words, we can take the measurement in the pHe channel as an indirect constraint of the
Hep channel. The source term contribution of the LHCb experiment to the total source term in
the pHe and Hep channel are shown in Fig. 4.4 (note the logarithmic y-axis). As expected, the
contribution in the pHe peaks between Tp̄ = 10 GeV and 110 GeV. It reaches a maximum of 2.5
pre-mill. The contribution in the Hep channel peaks at 80 GeV and 2 TeV and reaches at most
3.5%. This shows the importance of additional measurements in the helium channels if we do not
want to rely on rescaling from carbon or on large extrapolations in the kinematic parameter space.

4.4.2 Prescriptions on antiproton cross-section data for precise theoretical antiproton
flux predictions

In the following, we will systematically answer the question which cross-section measurement are
required if we want to fully exploit the information of the currently most precise antiproton flux
measurement by AMS-02. In other words, we want to determine the antiproton production cross
section at least as precise the CR antiproton flux measurement by AMS-02. We will give advice on
the kinetic parameter space which should be covered and on the accuracy which should be reached.
To obtain this answer we invert the calculation of the source term from the Lorentz invariant cross
section. At each step of the calculation we keep track of the uncertainty we want to obtain which
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Figure 4.9: Relative uncertainty of the CR antiproton flux measurement by the AMS-02 experi-
ment [75]. We add statistical and systematic uncertainties in quadrature. The figure is taken from
Ref. [7].

is guided by the accuracy of the AMS-02 flux measurement.
To start our discussion we have a closer look at the precision of the AMS-02 measurement of

CR antiprotons. Figure 4.9 shows the relative uncertainty of the AMS-02 measurement as function
of Tp̄. The data points and uncertainties are taken from [75]. We account for statistical and
systematic uncertainties by adding them in quadrature. The antiproton flux is measured at an
accuracy of about 5 percent between Tp̄ = 2 GeV and 100 GeV. It increases to 30% at 1 GeV and
at 350 GeV. For the following calculation we parametrize this relative uncertainty with the solid
black line. Note that the relative uncertainty of the CR flux and the source term are identical at
first order. This can be seen from the theoretical description of Galactic CRs. The source term
and local interstellar flux are related by propagation which is typically described in terms of a
diffusion equation. This equation (Eq. (2.20)) links the source term and the flux linearly, namely,
an increase of the source term by 5% will increase the flux by 5%. At low energies this simple
argument only works approximately since reacceleration and energy losses might smear out a bit
the relative uncertainty. We checked this potential effect by propagating source terms with peaked
Gaussian energy spectra using Galprop7 [87, 88]. We found that the approximation of constant
relative uncertainty for the source term and flux

σrel
q (Tp̄) ≡

σq(Tp̄)

q(Tp̄)
≈ σφp̄(Tp̄)

φp̄(Tp̄)
, (4.16)

is valid in the energy range above 1 GeV. However, one subtlety arises from solar modulation. The
link between flux and source term established above is valid for the local interstellar flux while
AMS-02 measures the TOA flux which is affected by solar modulation. If we treat solar modulation
in the force-field approximation we can correct the effect on the relative uncertainty. It amounts to
a shift in energy: σrel

q (Tp̄) = σrel
φ (Tp̄ + e ·ϕ), where Tp̄ is the flux measured by AMS-02 and ϕ is the

Fisk potential. We fix ϕ = 600 MV.
In the following, we will derive the maximal allowed uncertainty of the cross-section measurement

such that we do not overshoot σrel
q (Tp̄) as dictated by the AMS-02 experiment. The first question

7http://galprop.stanford.edu/
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which has to be answered is how to distribute the relative uncertainty on the various CR-ISM
channels. We decide that all channels should be measured with the same relative accuracy:

σrel
q (Tp̄) = σrel

qij (Tp̄). (4.17)

With this information we can focus on the pp channel and extend to the pA channels at the end of
this section. We begin by deriving the contribution of the source term from each parameter point.
The relation of the source term and the invariant cross section is given by:

q(Tp̄) =

∞∫
d log(T )

log(Tth)

∞∫
0

dη
8π2 pp̄ nISM T φ(T )σinv(Tp̄, T, η)

cosh2(η)︸ ︷︷ ︸
≡I(Tp̄,T,η)

. (4.18)

From here we define the containment

x(Tp̄, T, η) =
1

q(Tp̄)

∫
d log(T ′)dη′ I(Tp̄, T

′, η′)

I(Tp̄,T ′,η′)>I(Tp̄,T,η)

, (4.19)

which by definition varies between 0 and 1. Let us understand the meaning of the containment x
at an example. The parameter space with x(Tp̄, T, η) < 0.9 contains 90% of the source term. This
argument can be inverted: if a one searches a volume which contains 90% of the source term, we can
select x(Tp̄, T, η) < 0.9. Note that here the definition of the volume is defined through Eq. (4.19).
In general, there are infinitely many different volumes which contain 90% of the source term. The
definition of x selects a specific volume, which minimizes the area in the log(T )-η-plane for each
fixed Tp̄. Certainly, this choice is a bit arbitrary, but the two variables log(T ) and η respect the
natural scaling of the cross section and the CR proton flux. Furthermore, the integrand I(Tp̄, T, η) is
strongly peaked in one single maximum. Using different variables could change the volume slightly,
but not drastically. In practice, we compute x(Tp̄, T, η) on a 3-dimensional grid with 400 grid
points in each direction. It was checked that the results are not affected by the choice of the gird.
Figure 4.10 visualizes the containment x at one fixed Tp̄ = 50 GeV. We show the isocontours at
x = 0.9, 0.99, and 0.999. In the calculation, we used the cross-section parametrization of [117], but
the results do not depend on the parametrization (see below). From Fig. 4.10 we understand that
90% of the antiprotons at Tp̄ = 50 GeV are produced from protons with energies of Tp from 90 GeV
to 3 TeV and with a pseudorapidity η between 4.1 and 7.1. As expected, the isocontours increase
while x increases until at x = 1 the entire plane is covered.

Now, we want to connect the relative uncertainty of the source term with the accuracy require-
ment on the Lorentz invariant cross section. Our guiding idea for this connection is the principle (2)
from the beginning of this section, Sec. 4.4. We want to measure the cross section well where the
contribution to the source term is large. Note the containment function x provides the possibility
to implement this requirement. We simply have to define a connection between x and σrel

inv such
that σrel

inv increases while x increases. At this point, we have to decide a functional form for σrel
inv(x)

which is almost arbitrary up to the fact that it should be monotonically increasing . Furthermore,
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Figure 4.10: Isocontours of the containment function x(Tp̄, T, η) at fixed antiproton kinetic en-
ergy of 50 GeV. The three contours correspond to x = 0.9, 0.99 and 0.999. More details on the
interpretation are given in the text. The figure is taken from Ref. [7].

there is our principle (1) which requires

1∫
0

dx σrel
σinv

(x, Tp̄) = σrel
q (Tp̄). (4.20)

The integral over x is a short notation for the integration over Tp and η.
We choose the functional form of σrel

inv(x) to be a step function:

σrel
σinv

(x, Tp̄) =

{
3% x < xt(Tp̄)

30% elsewhere.
(4.21)

It means that we want the measure the cross section with a 3% accuracy at the most relevant
parameter space and with 30% accuracy everywhere else. The threshold value xt for the transition
of σrel

inv from 3% to 30% is fixed by the requirement of Eq. (4.20). The step-values of 3% and 30%
are guided by the smallest uncertainties which we currently find in cross-section measurement of
NA49 or NA61 and the spread of different cross-section parametrizations, respectively. Nonetheless,
we will discuss how our results depend on the choice of the step-values. Finally, we have all the
ingredients to compute σrel

inv(Tp̄, Tp, η). The result will be a contour in the 3-dimensional parameter
space where the σrel

inv changes from 3% to 30%. In the first step, these kinematic variables correspond
to the ISM frame or in the context of cross-section measurement fixed-target experiments. To obtain
σrel

inv as function of CM variables, either
√
s, pT, xR or

√
s, pT, xf , we simply transform the contours
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Figure 4.11: Parameter space of the p+ p→ p̄+X cross section which should be determined by
cross-section experiments in order to reach the accuracy of the recent antiproton flux measurement
of AMS-02. The cross section should be measured with 3% accuracy within the blue contours and
known with 30% accuracy outside. The two panels contain the same information, but the left panel
uses the fixed-target kinetic variables and the right panel CM frame variables. The figure is taken
from Ref. [7].

to the new kinetic variables. Here one has to pay attention when transforming to xR: The relation
between Tp, Tp̄, η and

√
s, pT, xR is not bijective. As discussed before xR does not differentiate

between forward and backward production of antiprotons. The transformation of one contour from
Tp, Tp̄, η leads to two contours in

√
s, pT, xR. In practice, these overlap and can be merged to a

single contour which will be shown in the results.

4.4.3 Results

Figure 4.11 shows the parameter space in the pp channel which should be covered by (future)
cross-section measurements to predict the antiproton flux with an uncertainty which is equal to or
smaller than the uncertainty of the recent AMS-02 flux measurement. To achieve this the cross
section should be measured with an accuracy of 3% within the blue contours and 30% outside the
contours. The contours are provided for kinetic variables in the fixed target frame (left panel)
and in the CM frame (right panel). In a fix target experiment, the beam energy of the protons
should vary from 10 GeV to 7 TeV and antiprotons should be measured in the range between 1 GeV
and 300 GeV with a pseudorapidity between 2 and 8. We observe that with increasing antiproton
energy the experiment should use larger beam energies and cover larger values of pseudorapidity,
i.e. antiprotons which are more forward directed. This is expected since Tp > Tp̄ and the larger
the proton energy the more pronounced is the peaks of the cross section in forward direction. The
contours at Tp̄ = 1.1 GeV and above 100 GeV become smaller since there the relative uncertainty of
the AMS-02 flux measurement increases to about 30%. In the CM frame the experiments should
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Figure 4.12: Effect of different systematics on the contours in Fig. 4.11 in the fixed target frame,
exemplary shown at Tp̄ = 50 GeV in the fixed target frame (left panel) and fixed

√
s in the CM

frame (right panel). The standard setup (cross-section parametrization from [117] and inner/outer
uncertainty of 3%/30%) is compared to: (i) changing the default cross-section parametrization to
Winkler [119] or Duperray [121], (ii) changing the inner/outer uncertainties to 2%/30% or 3%/100%,
and (iii) performing the analysis in the pHe channel. The figure is taken from Ref. [7].

cover a
√
s from 5 GeV to 110 GeV. Then the antiprotons should be measured with a transverse

momentum between 0.4 GeV and 2 GeV and xR should vary be between 0.02 and 0.8.
The results can be affected by different systematic uncertainties. Our first check is the depen-

dence of the results on the cross-section parametrization adopted in the calculation. Next to our
default [117] we test two further parametrizations from [119, 121]. The comparison is displayed in
Fig. 4.12, where we show the effect of various systematics on, exemplary, the contour at Tp = 50 GeV
in the fixed target frame (left panel) or a contour at fixed

√
s = 40 GeV (right panel). As expected,

different cross-section parametrizations affect our results only marginally. On the other hand, dif-
ferent choices of the inner/outer uncertainties can increase or decrease the contours significantly. By
increasing the uncertainty of the outer regime the contour increases while decreasing the uncertainty
in the inner regime decrease the size of the contour. We not that this increase and decrease is more
pronounced at the upper boundary of both η and Tp. In the CM frame the contours changes only
at the boundary of large xR.

One of the currently most precise determination of the antiproton production cross section is
provided by the NA49 experiment. The best measured data points reach a statistical uncertainty
below 3%. In Fig. 4.13 we compare the NA49 data points which are taken at

√
s = 17.3 GeV with

our requirements derived above. We observe that the measurement of NA49 covers a large fraction
of our requirement contour. In particular, the more important part of the contour at large xR and
intermediate pT is covered well. But overall only three data points stay below our requirement of
3%. Some of the other points inside the contour even exceed 30% uncertainty. Note that on top of
the statistical uncertainty there is a 6.5% scale uncertainty for all the points. If this scale uncertainty
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Figure 4.13: Statistical measurement uncertainty of the experiment NA49 [124] compared to our
standard requirement, 3% accuracy inside the contour and 30% outside. The points with green
border color fulfil our 3% requirement.

was included in the plot none of the points would fulfil our requirements. The comparison of further
data sets with our requirements is given in the appendix of Ref. [7]. We conclude that the precision
of current experiments is not yet sufficient to predict the CR antiproton source term at the same
accuracy as the AMS-02 flux measurement. This conclusion is in agreement with the result of the
cross section fits in the first part of this chapter.

Finally, let us extend our result to the case of the pA (and AA) channels. We expect that the
results from the pp channel are directly applicable to all pA channels. The reason is that at first
order the antiproton production can be viewed as pp for each pair of two nucleons from projectile
and target. This is confirmed in Fig. 4.12 for the pHe channel. Note, however, that there is one
subtlety for the pA channels in the CM frame. Since the pA is not necessarily symmetric each point
in the xR-pT plane corresponds actually to two experimental measurement points, one in forward
and one in backward scattering. Alternatively, to break this degeneracy we can view the parameter
space in the xf -pT plane as shown in Fig. 4.14. All these results are also valid in the most general
case of the AA channel, if in Fig. 4.11 the kinetic energy of the proton is replaced by the kinetic
energy-per-nucleon of the projectile nucleus.

4.5 Forecasts for cross-section measurements by
COMPASS++/AMBER

The COMPASS experiment is a multipurpose experiment build to investigate the hadron structure
by performing hadron spectroscopy with high-intensity muon and hadron beams. It is located at
CERN and uses the particle beams of the Super Proton Synchrotron (SPS), which is the preaccel-
erator to the Large Hadron Collider. Recently, it was noted that the detector is capable to measure
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Figure 4.14: Same results as in Fig. 4.11 (right panel) but presented in the pT-xf plane instead of
the pT-xR plane. This presentation has advantages if the results are used in the pA channels. The
figure is taken from Ref. [3].

the antiproton production cross section of nuclear collisions in the pp and the pHe channel. The
available proton beam in the fixed-target experiment reaches from

√
s = 50 GeV to 280 GeV. For

all CM energies, antiprotons can be identified in a momentum range from 10 GeV to 45 GeV. The
angular distribution might be determined up to a maximal pseudorapidity of η = 5.5. The minimal
pseudorapidity is approximately η = 28. With this information we can forecast how valuable a fu-
ture cross-section measurement by the COMPASS++/AMBER collaboration would be in order to
improve the determination of the antiproton production cross section. The first feasibility study of
the COMPASS collaboration was performed this year and a Letter of Intent to which I contributed
will be published at the beginning of this year. In case of approval, the COMPASS++/AMBER
collaboration could perform measurement starting from 2022.

The pp the measurements by COMPASS++/AMBER will be in a similar kinetic parameter
space as NA49 and NA61. Therefore, we do not expect large improvements in the determination of
the cross section and its uncertainty in this channel. Nevertheless, a measurement in this channel
would provide an important independent cross check of the previous determinations by NA49 and
NA61. More important is the fact that COMPASS can provide measurements also in the pHe
channel. Figure 4.15 shows the expected source term contribution of COMPASS++/AMBER for
various detector setups in which the cross section would be measured in different ranges of proton
beam momenta of i) 100 GeV to 190 GeV, ii) 50 GeV to 190 GeV, and iii) the full range from 50 GeV
to 250 GeV. We observe that COMPASS++/AMBER would determine the source term in the pHe
channel at a level up to 70% between an antiproton energy of about 10 GeV to 100 GeV. This is
a significant improvement compared to the current only measurement of LHCb which only covers
a per-mill level at this energies. Note that the energy range of 10 GeV to 100 GeV is particular

8This information was provided in private communication with Michela Chiosso and Paolo Zuccon.

93



4.5. Forecasts for cross-section measurements by COMPASS++/AMBER

100 101 102 103

Tp [GeV]

10 4

10 3

10 2

10 1

100

101

so
ur

ce
 te

rm
 c

on
tri

bu
tio

n

COMPASS, pHe, p = 100 190 GeV
COMPASS, pHe, p = 50 190 GeV

COMPASS, pHe, p = 50 250 GeV
LHCb, pHe, s = 100 120 GeV

100 101 102 103

Tp [GeV]

10 4

10 3

10 2

10 1

100

101

so
ur

ce
 te

rm
 c

on
tri

bu
tio

n

COMPASS, Hep, p = 100 190 GeV
COMPASS, Hep, p = 50 190 GeV

COMPASS, Hep, p = 50 250 GeV
LHCb, Hep, s = 100 120 GeV

Figure 4.15: Source term contribution in the pHe (left) and Hep (right) channel which could be
reached with a cross-section measurement in the future by the COMPASS++/AMBER collabora-
tion. For comparison we display the source term contribution of the LHCb experiment (Fig. 4.8).

important for CRs which are measured precisely by AMS-02 in this regime. In the Hep channel the
measurement could cover 20% of the source term below Tp̄ <∼ 10 GeV, which is fully complementary
to the LHCb constraints which cover Tp̄ between 100 GeV and 2 TeV. Finally, we note that the
best coverage of the source term is obtained if COMPASS++/AMBER measures the antiproton
production cross section down to a proton beam momentum of p = 50 GeV. So, achieving this
low-energy measurement should be given priority. On the other hand, measuring the cross section
additionally at p = 250 GeV improves the coverage only marginally.
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Chapter 5

A closer look at dark matter signatures
in cosmic-ray antiprotons

The space-based experiments PAMELA and AMS-02 with a precision at a level of a few percent have
pushed CR physics into a precision discipline. The CR fluxes of nuclei and leptons are provided with
a precisions at the percent level which is a challenge for our theoretical modeling, but at the same
time opens the possibility to understand further details about CR propagation and the opportunity
to search for new phenomena such as DM. Global fits have proven great potential to study CR
propagation models and simultaneously searches of exotic sources like the annihilation of a potential
DM candidate. In this chapter, we will focus on the role of CR antiprotons. It is generally accepted
that the bulk of antiprotons observed by the AMS-02 experiment is in good agreement with the
prediction of secondary antiprotons originating form the spallation of CR proton and helium on the
ISM [149, 152]. However, it was pointed out in previous analyses that there is a small anomaly in
the antiproton flux measured by AMS-02 at Tp̄ of about 10 GeV to 20 GeV [6,8,151]. This anomaly
could be explained by the annihilation of DM into hadronic SM final states. Depending on the exact
final state the mass of the potential DM candidate can vary between 40 GeV and 130 GeV. For all
final states the thermally-averaged annihilation cross section, 〈σv〉, is of the order of 3×10−26 cm3/s
which is in agreement with the typical expectation for a thermal WIMP. Beside the potential DM
signal at ∼ 100 GeV, the precise antiproton data can be used to derive strong constraints on DM
annihilation cross section in our Galaxy. These constraints are competitive and complementary to
constraints from gamma-ray observations of dSphs or the Galactic center.

In Sec. 5.1, we specify the model to describe CR propagation in our Galaxy and the methods
adopted to perform global fits to CR data sets. We define a default setup for two fits to the CR
data of proton, helium, and antiproton-over-proton. In the first fit our CR model does not include
antiprotons from DM annihilation and in the second model antiprotons from DM annihilation are
included. We present the result of the fits in the default setup, which then serve as reference
point for further investigations. In the default setup we find a ∼ 3σ hint for a DM signal in CR
antiprotons. In Sec. 5.2, we investigate how the potential DM signal in CR antiprotons is affected by
systematic uncertainties. We will focus on two effects: first, the systematics due to the uncertainties
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in the production cross sections of secondary antiprotons and, second, the uncertainty originating
from the correlations of systematic uncertainties in the AMS-02 data itself. In Sec. 5.3 we test
the compatibility of the DM hint in antiprotons with the GCE and interpret the results within
the singlet scalar Higgs portal model. In Sec. 5.4 we will adopt a more conservative approach and
interpret results in terms of upper limits on the annihilation cross section of DM. We will briefly
discuss an application of these limits in the case of a specific, so-called minimal DM model. This
chapter is based on the three papers [2, 5, 6].

5.1 Global fits to cosmic-ray proton, helium, and antiproton data

In this section, we perform a total of four fits to the data of CR protons, helium and antiproton-
over-proton ratio. These fits correspond to two different setups which we label default setup and
extended setup. In each setup, we will perform one fit in which our CR model includes a flux
of antiprotons from DM annihilation and one fit without DM annihilation. We label these fits
default setup with DM, default setup without DM, extended setup with DM, and extended setup
without DM. There are two main goals of this section. First, we want to derive constraints on CR
propagation parameters and, second, we want to investigate the properties of a potential DM particle
annihilating into CR antiprotons. Constraints on CR propagation from antiprotons have also been
derived in [9,289]. In the default setup, we will use data of the AMS-02 experiment [58,59,75] in a
combination with recent data from the VOYAGER probe [290]. The combination of AMS-02 and
VOYAGER data allows to disentangle CR propagation and solar modulation effects at low energies.
In the extended setup, we will complement the proton and helium data with measurements by the
CREAM experiment [291] at high energies. We summarize the four fits and the exploited data sets
in Tab. 5.1. In Sec. 5.1.1 we present the CR model, in Sec. 5.1.2 we present the technical details of
the fit setups, and in Sec. 5.1.3 we present the fit results.

Before going to the details of the fit, we briefly justify the choice of data sets. Protons, helium
and antiprotons form an almost independent subset within the CR nuclei. We note that our se-
tups include secondary antiprotons1, protons, deuterons, and 3He. Antiprotons are predominantly
produced by the spallation of CR protons and helium. The contribution from nuclei like CNO are
subdominant at the percent level. Furthermore, the secondary components of proton (or deuteron)
and helium from the spallation of nuclei heavier than He is fairly negligible. Secondary protons have

1We also include tertiary antiprotons, which are inelastically scattered secondary antiprotons.

Table 5.1: Summary of CR data sets used in the four fits of Sec. 5.1.

AMS-02 VOYAGER CREAM
fit name p He p̄/p p He p He

default setup without DM × × × × ×
default setup with DM × × × × ×

extended setup without DM × × × × × × ×
extended setup with DM × × × × × × ×
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no contribution from heavier nuclei, they are inelastically scattered protons, which lost a significant
amount of their original energy by scattering off the ISM. The contribution of the secondary 3He
is mostly due to the spallation of 4He. Only a fraction of up to 30% is expected to originate from
heavier CRs. Thus, in the total He flux, where the contribution of 3He always stays below 15%, the
fraction of secondary He from spallation is below 5%. Deuteron is produced by spallation of 4He.
All in all, the secondary components of protons, helium, and antiprotons from elements heavier
than 4He are only at the level of a few percent. Unless specified differently, in the following of this
chapter the proton flux denotes the sum of primary protons, secondary protons and deuterons, and
the helium flux is the sum of 3He and 4He.

5.1.1 Model for cosmic-ray propagation and solar modulation

The propagation of CRs in our Galaxy is described by diffusion as encoded in Eq. (2.20). We
assume a cylindrical symmetry of the Galaxy and, consequently, use the two spatial coordinates
r and z which are the Galactocentric radial distance and the distance from the Galactic plane,
respectively. The source term of the primary protons and helium is divided into a spatial and an
energy-dependent part. The spatial part is parametrized by Eq. (2.34) with the parameters α = 0.5,
β = 2.2, r0 = 8.5 kpc, and z0 = 0.2 kpc.2 For the energy-depend part of the source term we adopt
a broken power law in rigidity

qR(R) =

(
R

R0

)−γ1
(
R

1/s
0 +R1/s

2R
1/s
0

)−s(γ2−γ1)

. (5.1)

Here R0 is the position of the break and γ1 and γ2 are the spectral indices below and above the
break, respectively. The parameter s regulates the smoothing of the break: the larger s the smoother
is the break. In our setup, spatial diffusion is isotropic and homogeneous. The rigidity-dependent
diffusion coefficient Dxx is taken as broken power law in rigidity:

Dxx(R) =

βD0

(
R

4 GV

)δ if R < R1 and

βD0

(
R1

4 GV

)δ ( R
R1

)δ2
otherwise ,

(5.2)

where δ and δ2 are the indices below and above the break positioned at the rigidity R1. Furthermore,
D0 is the overall normalization and β = v/c the velocity of the CRs. This break allows to describe
the CR softening observed by PAMELA and AMS-02 at a rigidity of about 300 GV. As discussed in
Sec. 2.3 data favours to have this break in diffusion rather than in the injection spectrum since the
break is more enhanced in secondaries compared to primary CRs. We allow for reacceleration which
is parametrized in terms of the speed of Alfven magnetic waves, cf. Eq. (2.21). We note that this
formula shows an explicit dependence on the spectral index of the diffusion coefficient. We use the
value δ (not δ2) at all rigidities. Moreover we allow convection perpendicular to the Galactic plane.

2This are the default values of Galprop v56. They differ slightly from the values obtained in the analysis of
SNRs [96, 97]. However, it was shown in [9] that the spatial dependence of the source term distribution has only a
negligible effect on the local CR fluxes.
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It is described by a constant convection velocity, V (x) = sign(z) v0,c ez.3 Finally, we remind that
CRs are affected by various continuous, adiabatic, and catastrophic energy losses. Their description
follows the default implementation in Galprop.

We use a modified version of Galprop 56.0.2870 and Galtoollibs 8554 to derive steady state
solutions of the diffusion equation. We assume free escape of the CRs at the boundaries of the
diffusion halo at r = 20 kpc and z = ±zh5. The solution of the diffusion equation is calculated on
a three-dimension grid in r, z, and kinetic energy-per-nucleon. We adopt grid steps of ∆r = 1 kpc
and ∆z = 0.1 kpc. The grid in kinetic energy-per-nucleon extends from 1 MeV to 107 MeV and
changes logarithmically with a constant step factor of 1.4. The most important modification we
have done to the Galprop code concerns the antiproton production cross sections. We include the
cross-section parametrizations of di Mauro et al. [117] (referred to as Param. MD in the following)
and Winkler [119] (Param. MW) We exploit the updated parameter values derived in the previous
chapter. The required energy-differential cross section dσij(Ti, Tp̄)/dTp̄ can either be read from a
table or calculated from the analytic parametrizations on the fly. Furthermore, we implement the
option to use a smoothly-broken power law for the injection spectra of CR primaries, see Eq. (5.1).

Besides the standard astrophysical CR production we allow for a primary contribution of CR
antiprotons from DM. Its source term is given by Eq. (2.51). In the first part of this chapter,
we will consider the generic example of pure annihilation of DM particles into bottom quarks,
DM DM→ bb̄, which serves as an illustrative example. The antiproton energy spectra in Eq. (2.51)
are taken from [292], which we implemented in Galprop. We assume that the DM distribution
in our Galaxy follows an NFW density profile (see Eq. 1.4) with a characteristic halo radius of
rh = 20 kpc. The profile is normalized to a local DM density ρsun = 0.43GeV/cm3 [41] at the solar
position rsun = 8 kpc.

At low energies, CRs are affected by solar modulation. We describe this phenomenon within
the force-field approximation in which the solar effect on the flux is described by a single, time-
dependent parameter, ϕ. The local CR fluxes are linked to the TOA fluxes by Eq. (2.66). Since
recent observation revealed a charge-sign dependence of solar modulation we adopt two independent
solar modulation potentials, one value for proton and helium and a second value for antiprotons.
Furthermore, in our default setup we restrict the fit to rigidities above 5 GV, since these rigidities are
not so strongly affected by solar modulation. For example, below 3 GV the time dependent helium-
to-proton ratio measured by AMS-02 shows an increase after May 2015 which is not expected and
cannot be described within the force-field approximation. Furthermore, the time-dependent proton
flux reveals crossings of fluxes at different times, e.g. at 4 GeV for Bartels Rotation 2460 (November
2013) and Bartels Rotation 2476 (March 2015), which is also not expected within the force-field
approximation.

3We note that the discontinuous parametrization of the convection velocity formally leads to a non-conservation
of the flux at z = 0. But the parametrization can be seen as an approximation of a continuous parametrization like
sign(z) ≈ tanh(az) for a� 1.

4https://galprop.stanford.edu/download.php
5In Chapter 2, the halo height was typically called L, while in this chapter we will denote it with zh.
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5.1.2 Technical details of the default setup

The default setup of our fits is similar to the setups already used in [8, 9]. Here we repeat the key
ingredients and point out some important differences. Our fit includes the AMS-02 flux data of
protons and helium [58, 59] measured in the period from May 2011 until November 2013 and the
antiproton-to-proton ratio [75] measured over a period from May 2011 until May 2015. The data
sets are complemented with the proton and helium data taken by VOYAGER [290] and, in some
cases, also with the data taken by CREAM [291]. The log-likelihood of the CR fit is given by the
sum of the log-likelihoods of the single experiments e and species s:

−2 log(LCR) = χ2
CR =

∑
e,s

∑
i,j

(
φ

(e)
s,i − φ(m)

s,e (Ri)
)((

V(e,s)
)−1
)
ij

(
φ

(e)
s,j − φ(m)

s,e (Rj)
)
. (5.3)

Here φ(e)
s,i denotes the CR flux of species s measured by the experiment e at the rigidity point Ri

and φ(m)
s,e (Ri) is the same flux calculated in our model. The superscript m encodes the dependence

of this flux on the model parameters (more details given below) for both, CR propagation and solar
modulation. The subscript e and s denote the dependence of the model flux on the experiment and
the species. For example, when fitting the VOYAGER data the solar modulation potential is always
0, while for AMS-02 it takes different values for proton and helium, on the one hand, and antipro-

tons, on the other hand. Finally, V(e,s)
ij = δij

[
σ

(e)
s,i

]2
is the covariance matrix of the experimental

uncertainties. In the default setup, we assume that the systematic uncertainties of all experimen-
tal data points are uncorrelated, namely, the matrix is diagonal (δij denotes the Kronecker delta).

Systematic and statistical uncertainties are added in quadrature: σ(e)
s,i =

√(
σ

(e)
s,i,stat

)2
+
(
σ

(e)
s,i,sys

)2
.

Our CR model contains in total 15 (17) free parameters in the default fit without (with) DM. The
free parameters and the fit ranges are summarized in Tab. 5.2. Six parameters are used to describe
the energy spectra of the source terms of primary protons and helium. They adjust the smoothly
broken power laws of Eq. (5.1). The spectral indices above and below the break, γ1,p, γ1, γ2,p, γ2, are
varied individually for protons (subscript p) and helium (no subscript), while both injection spectra
share a common break at rigidity R0 and a common smoothing parameter s. CR propagation
is described by five parameters. These are normalization of the diffusion coefficient, D0, and the
spectral index, δ, at rigidities below the break R1. In the default setup, we restrict the fit to rigidities
between 5 GV and 300 GV. In this case, the parameters R1 and δ2 are not included as fit parameters.
Instead, they are fixed to R1 = 300 GV and δ2 = δ−0.12, respectively. The further free parameters
are the convection velocity, v0,c, the velocity of Alfven magnetic waves, vA, and the half-height of the
diffusion halo zh. If DM is included in the fit the two additional parameters are the DM mass, mDM,
and the velocity averaged annihilation cross section, 〈σv〉. These 11–13 parameters discussed above
are sampled with the MultiNest package [293]. Therefore, we call them MultiNest parameters
in the following. We exploit flat priors except for mDM and 〈σv〉, which adopt priors proportional
to 1/mDM and 1/〈σv〉, respectively6. In the standard case, we use 500 live points, an enlargement
factor of efr=0.7, and a stopping criterion of tol=0.1. A single fit in this setup requires about

6Note that these priors imply flat priors in log of the corresponding variable.
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Table 5.2: Summary of free fit parameters and the corresponding fit ranges.

parameter fit range de
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γ1 1.2 – 1.8 × × × ×
γ1,p 1.2 – 1.8 × × × ×
γ2 2.3 – 2.6 × × × ×
γ2,p 2.3 – 2.6 × × × ×

R0, [GV] 1.0 – 10.0 × × × ×
s0 0.1 – 0.9 × × × ×

D0, [1028 cm2/s] 0.5 – 10.0 × × × ×
δ 0.2 – 0.5 × × × ×

vA, [km/s] 0.0 – 30.0 × × × ×
v0,c, [km/s] 0.0 – 60.0 × × × ×
zh, [kpc] 2.0 – 7.0 × × × ×

mDM, [GeV]) 10 – 105 × ×
〈σv〉, [s/cm3]) 10−27 – 10−23 × ×

δ2 0.3 – 0.6 × ×
R1, [GV] 100 – 500 × ×

ϕSM,AMS-02,p,He, [MV] > 0 × × × ×
ϕSM,AMS-02,p̄, [MV] > 0 × × × ×

Ap > 0 × × × ×
AHe > 0 × × × ×

Ap,CREAM > 0 × ×
AHe,CREAM > 0 × ×
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200 000 evaluations of the likelihood function. The remaining four fit parameters are treated in a
different way in order to speed up the fitting procedure. The flux prediction for those parameters is
decoupled from the MultiNest parameters. Therefore, it is possible to marginalize the likelihood in
these so-called linear parameters on-the-fly for each fixed set of MultiNest parameters. In detail,
the four parameters are: the solar modulation potential for proton and helium, ϕSM,AMS-02,p,He, the
modulation potential for antiprotons, ϕSM,AMS-02,p̄, and two normalizations of the proton and helium
fluxes, calledAp andAHe, respectively. Note that a re-normalization of the proton and helium flux by
Ap and AHe can approximately be absorbed into the isotopic abundance, namely, the normalization
of the primary source term.7 During the on-the-fly marginalization we impose a weak Gaussian
constraint on the difference of ϕSM,AMS-02,p,He−ϕSM,AMS-02,p̄ of 100 MV. Otherwise, no constraints
on the values for solar modulation or normalization are assumed. We will interpret the results of our
fits in the frequentist framework.8 Uncertainties on single parameters will be calculated from the
one-dimensional likelihood profile. The 1σ (nσ) confidence level then corresponds to the condition
∆χ2 = 1 (∆χ2 = n2) with respect to the minimum χ2. Furthermore, we will derive likelihood
contours for each combination of two fit parameters given by the two-dimensional χ2-distribution.
The 1, 2, and 3σ C.L.s are given at ∆χ2 = 2.30, 6.18, and 11.83. Finally, we remark on a subtlety
concerning solar modulation. We use the proton, helium and antiproton-over-proton data in our fit.
The proton flux appears twice, first directly and a second time in the antiproton-to-proton ratio.
Since the two data sets correspond to (slightly) different measurement periods, in principle, one
would have to allow for two different solar modulation potentials. However, we use the p̄ flux and
the p̄/p ratio of [75] to obtain the proton flux in the same period. Then, we fit the ratio of this
proton flux and the original proton flux with a smooth function. To obtain the effective proton
and helium flux which correspond to the same period as the p̄/p ratio, we multiply both fluxes with
the smooth function. In this way, we are able to reduce the number of required solar modulation
potentials to two, as already assumed during all the discussion above. For more details we refer
to [2].

5.1.3 Results of the fits in the default and extended setup

We perform two fits in the default setup, one with and another one without DM. The results of
theses two fits are summarized in Figs. 5.1 to 5.3. In more detail, the Fig. 5.1 shows the best-
fit result of our default fit without DM for the proton and helium flux compared to the AMS-02
and VOYAGER data. Furthermore, we display the residuals of the AMS-02 data points in the
lower panels. The AMS-02 data are very well fitted in the rigidity range from 5 GV to 300 GV.
Furthermore, the VOYAGER data points agree well with the LIS flux, i.e. the flux without solar
modulation. We note that the plots of the corresponding fit with DM look very similar to the shown

7We note that there is a subtle difference between the isotopic abundances and the normalization factors Ap and
AHe. While the first act only on the primary proton and helium fluxes the latter also change the normalization of
secondary proton and helium. Therefore, the isotopic abundances of proton and helium where adjusted in an iterative
procedure to obtain Ap ≈ 1 and AHe ≈ 1.

8We note that intrinsically MultiNest is a Bayesian tool. In [9], we have compared the frequentist and Bayesian
interpretation of on CR fit and found that the conclusion are not affected by the framework. Concerning the size of
uncertainties the frequentist approach is slightly more conservative.

101



5.1. Global fits to cosmic-ray proton, helium, and antiproton data

Figure 5.1: Comparison of the best-fit proton and helium fluxes with AMS-02 and VOYAGER
data. The two plots are taken from a fit setup without DM. The rigidity range of the fit for AMS-02
data is restricted from R = 5 to 300 GV (between the dotted lines). The dashed line labeled φ� = 0
marks the CR fluxes without solar modulation which should be compared with the VOYAGER
data. The lower panel shows the residuals of the AMS-02 data with respect to our best fit. The
figure is taken from [2].

plots without DM and, we, therefore, do not show the plots explicitly. Taking a closer look at the
residuals reveals a common problem when fitting the CR data of AMS-02. The agreement between
data and model is too good when looking at the sizes of the data point’s uncertainties. In other
words, the χ2/dof is significantly smaller than 1. The most probable solution for this issue is that
the systematic uncertainties of the AMS-02 data points are correlated, although, this correlation is
not provided by the experiment. We will discuss possible correlations and potential effects on the
significance of the DM hint in the following section.
In Fig. 5.2 we display the comparison of our best-fit results of the antiproton-over-proton ratio in the
setup without DM (left panel) and and with DM (right panel). In general, we note that the AMS-02
data is fitted well within our model in both cases. However, the measured flux in the fit without
DM shows a small excess between 10 and 20 GV, which is in particular visible in the residuals. The
right panel shows that this excess can be filled with a potential DM signal. This signal corresponds
to a DM mass of about 75 GeV and a thermal cross section, 〈σv〉 = 3× 10−26 cm3/s. These values
are obtained for a DM particle annihilating into a bb̄ pair. However, we note that the annihilation
of DM into all hadronic channels exhibits similar features. Indeed, it is possible to fit the antiproton
excess in all hadronic channels if one allows to slightly adjust the DM mass. For a more detailed
discussion we refer to Sec. 5.3. The statistical significance of the potential DM signal can be inferred
from the χ2 difference. In this case, we obtain a ∆χ2 of 12.7 which corresponds to a frequentist
significance of 3.1σ. We remark that the search for a DM signal in the antiproton data relies on
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Figure 5.2: Same as Fig. 5.1 but for the antiproton-to-proton ratio. The left (right) panel shows
the case without (with) DM. Furthermore, we show the individual contribution from tertiary
antiprotons and DM. The figure is taken from [2].

the characteristic shape of the DM energy spectrum which for our best-fit DM mass shows a sharp
cut-off at about 20 GV. Such a sharp signature is not expected in the secondary or tertiary fluxes
of astrophysical origin.
In Fig. 5.3 we display a triangle plot which shows the best-fit values and uncertainties of all free
model parameters in the fit. On the diagonal, we show the χ2-profile for all the MultiNest
parameters. The two inlaid plots show the χ2-profile for the solar modulation potential of p and
He as well as the difference between the p and He potential with respect to the p̄ potential. The
panels below the diagonal show the best-fit regions for each combination of two parameters. The
contours display the 1, 2, and 3σ regions derived from the two-dimensional χ2 distribution as
explained above. The results are shown and compared for the fit with (red) and without (black
contours and line) DM. We note that the two fits prefer a very similar best-fit region which is
expected since DM is a subdominant contribution to the p̄ spectrum. Our fits prefer to have no
or only a very small amount of convection which is limited to v0,c

<∼ 10 km/s, while they require
reacceleration. The Alfven velocities converge to about 20 km/s. The half-height of the diffusion
halo zh and normalization of the diffusion coefficient D0 are not constrained individually, but, as
expected (see Sec. 2.3), their ratio is well constrained to ∼ 0.028 kpc/My. This value agrees well
with the constraints from CR antiprotons found in [289]. Recent analysis of the B/C data find values
of D0/zh ∼ 0.017 [107, 136] which is a 40% below our values. We stress however that differences
of this size can easily arise from differences in the (radial) source distribution and the description
of the interstellar gas distribution. The spectral index of the diffusion coefficient δ converges to
values between 0.3 and 0.45, which is roughly in agreement with expectations from the B/C ratio
which points to values between 0.4 and 0.5 [107, 294, 295]. We note that the fit with DM prefers
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5.1. Global fits to cosmic-ray proton, helium, and antiproton data

Figure 5.3: Triangle plot containing the results of the two fits in the default setup with and
without DM. The black and red contours show the 1σ to 3σ regions of the fits without and with
DM, respectively. The diagonal shows the χ2 profiles plotted each single fit parameter. The two
inlaid plots display the χ2 profiles of the solar modulation potential for AMS-02 p, He and its
difference to the potential of p̄, respectively. The figure is taken from [2].

slightly smaller values of δ compared to the fit without DM. The values of δ and γ2 (or γ2,p) are
strongly correlated. We remind that the CR flux behavior at high energies follows φ ∼ R−γ2−δ. So,
the precise measurements of the proton and helium fluxes basically fix the sum of γ2 + δ. This also
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explains why the fit converges to different values for γ2,p and γ2, the difference γ2,p − γ2 ≈ 0.05
agrees with the difference in slope measured for the proton and helium flux by AMS-02. The slopes
γ1 and γ1,p below R0 are less well constrained because the behavior of the fluxes at low energies is
more degenerate with the various propagation effects. Finally, we note that the solar modulation
potentials of protons/helium and antiprotons converge to the same value within uncertainties. If
any, there is a slight preference for ϕSM,AMS−02,p̄

<∼ ϕSM,AMS−02,p,He. From a theoretical point of
view, the charge-sign dependence of solar modulation is expected to depend on the polarity of the
solar magnetic field. Since there is a change of the polarity in 2013, which is in the middle of the
measurement period of AMS-02, it is not entirely clear whether to expect a smaller or a larger value
of the solar modulation potential for protons or antiprotons.

Finally, we remind that the analysis discussed here is an update of the previous analysis [8] which
found a larger statistical significance for a DM signal of 4.5σ. We will now list the most important
differences with respect to this analysis and step-by-step discuss the impact on the significance. In
detail, we

(i) removed the CREAM data from our default setup and restricted the fit range of the AMS-02
data to a maximal rigidity of 300 GV,

(ii) changed the default antiproton production cross section from Tan&Ng [123] to the Param. MW
[119] which shows a much better agreement with data in particular at high energies,

(iii) introduced two different solar modulation potentials for p and He, on the one hand, and p̄, on
the other hand, in order to take the charge-sign dependence of solar modulation into account.

Step-by-step these changes affect the ∆χ2 between the fit with and without DM as follows: the ∆χ2

is (i) reduced from 25 to 21, (ii) reduced from 21 to 11, and (iii) finally increased again from 11 to
12.7. We note that the most severe change of significance is obtained when updating the Tan&Ng
cross-section parametrization with the more recent Param. MW. This demonstrates the importance
of the secondary antiproton production cross sections for the correct interpretation of the AMS-02
data. We will continue the discussion in the next section.

Concerning the compatibility of AMS-02 and CREAM data (point (i)) we conducted one further
test. We included again the CREAM and the AMS-02 data above 300 GV in the fit, but at the same
time allowed a bit more freedom in the setup. This is the so-called extended setup. We included
four additional parameters in the fit which modify the behavior at high rigidity: Firstly, we allowed
the parameters R1 (break position in the diffusion coefficient) and δ1 (spectral index above R1)
to vary freely. Furthermore, we allowed a free normalization for the proton and helium data of
CREAM. The physical motivation for a slightly normalization of AMS-02 and CREAM data is
the uncertainty of the energy scale measurement, in particular, for the calorimetric measurement
of CREAM. The results of this extended setup show, firstly, that CREAM and AMS-02 data are in
good agreement if the energy-scale uncertainties are included in the fit and, secondly, they justify
the values adopted for R1 and δ1 in the default setup. The ∆χ2 between the fit with and without
DM is 15.1 corresponding to a significance of 3.5σ. We summarize the results of all four fits in the
default setup and the extended setup in Tab. 5.3. Finally, we study how the significance for DM is
affected by the AMS-02 data below 5 GV by gradually decreasing the cut rigidity Rcut from 5 GV
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Table 5.3: The best-fit parameters of the fits with and without DM in the default and extended
setup. More details are given in the text.

parameter default setup extended setup
XS parametrization Param. MW Param. MW

DM incl. excl. incl. excl.
γ1 1.71+0.02

−0.25 1.72+0.04
−0.12 1.64+0.05

−0.12 1.72+0.02
−0.11

γ1,p 1.78+0.003
−0.19 1.75+0.03

−0.10 1.73+0.04
−0.06 1.73+0.05

−0.07

γ2 2.41+0.03
−0.002 2.38+0.01

−0.02 2.44+0.01
−0.02 2.38+0.01

−0.01

γ2,p 2.45+0.03
−0.002 2.42+0.01

−0.02 2.48+0.01
−0.02 2.41+0.01

−0.01

R0, [MV] 6950+330
−1640 7380+910

−1450 6519+1045
−824 7695+563

−1375

s0 0.38+0.06
−0.04 0.34+0.05

−0.04 0.38+0.06
−0.01 0.37+0.04

−0.03

D0, [1028 cm2/s] 5.43+0.45
−3.17 2.90+1.33

−1.21 3.46+2.46
−1.19 1.97+1.27

−3.81

δ 0.38+0.01
−0.03 0.42+0.02

−0.01 0.35+0.02
−0.01 0.42+0.01

−0.02

vA, [km/s] 18.0+2.1
−1.4 16.2+1.0

−2.5 18.59+0.00
−3.25 15.81+0.87

−1.99

v0,c, [km/s] 0.08+9.09
−0.08 0.52+2.32

−0.51 0.35+4.94
−0.14 0.79+2.19

−0.77

zh, [kpc] 6.45+0.30
−4.26 3.58+2.36

−1.52 3.36+3.47
−1.13 2.47+1.58

−0.43

log(mDM/[GeV]) 1.89+0.03
−0.08 1.88+0.05

−0.00

log(〈σv〉/[s/cm3]) −26.16+0.78
−0.04 −25.56+0.20

−0.47

δ2 0.23+0.01
−0.00 0.30+0.02

−0.02

R1, [GV] 344+26
−20 338+49

−40

ϕSM,AMS-02,p,He, [MV] 616+71
−72 625+55

−85 566+19
−71 567+19

−66

ϕSM,AMS-02,p̄, [MV] 604+112
−114 561+135

−112 577+43
−82 561+35

−106

χ2
AMS-02,p 3.2 2.6 4.9 7.0

χ2
AMS-02,He 4.0 4.8 10.4 12.0
χ2
AMS-02,p̄ 11.1 22.1 12.2 20.0
χ2
Voager,p 3.2 3.8 2.7 3.6

χ2
Voager,He 1.3 1.9 3.4 4.1

χ2
CREAM,p 1.0 1.0

χ2
CREAM,He 1.0 2.9
χ2
ϕSM

0.0 0.4 0.0 0.0
χ2
CR 22.9 35.6 35.6 50.7

χ2/dof 22.9/143 35.6/145 35.6/177 50.7/179
∆χ2 12.7 15.1

DM significance 3.1σ 3.5σ
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Table 5.4: Fit quality without (second column) and with (third column) DM for for decreasing
Rcut. The last two columns contain the absolute ∆χ2 between the fits with and without DM and
the corresponding significance of the potential DM signal.

χ2/ndf
Rcut [GV] excl. DM incl. DM ∆χ2 DM significance

5 35.6/145 = 0.245 22.9/143 = 0.160 12.7 3.1σ
3 52.7/160 = 0.329 34.2/158 = 0.216 18.5 3.9σ
2 68.2/172 = 0.396 57.1/170 = 0.336 11.1 2.9σ
1 105.4/182 = 0.579 105.6/180 = 0.586 -0.2 –

to 1 GV. We observe that the significance first increases to 3.9σ at Rcut = 3 GV and then decreases
again to 2.9σ and 0 at Rcut = 2 GV and 1 GV, respectively. We note, however, that the fit quality,
namely the χ2/dof, increases gradually when decreasing Rcut. The increase is particularly strong
between 2 GV and 1 GV, hinting that there might be a more general problem of our CR propagation
modeling or our solar modulation modeling at very low rigidities. All values are given in Tab. 5.4.
In any case, we notice that our default cut rigidity is not tuned to maximize the significance for
DM.

In summary, we have demonstrated that light nuclei (p, He, and antiprotons) precisely measured
by AMS-02 can be used to derive solid bounds on the CR propagation parameters. This subset of
light nuclei is independent from heavier nuclei and, thus, provides an important reference for the
standard B/C analyses. In general, our bounds are compatible with expectations from B/C. A more
detailed comparison between light nuclei and heavier nuclei, including B/C, is left to further studies.
Compared to many previous studies of CR propagation we pushed the standards of the analysis to
a new level. We consider CR antiprotons together with their parent nuclei, p and He, and present
a consistent model for all of them. In order to better constrain solar modulation, we include at the
same time VOYAGER and AMS-02 data. We treat solar modulation consistently for AMS-02 data
sets which span slightly different measurement periods and consider the possibility of charge-sign
dependent solar modulation. Furthermore, we have realized the importance of secondary antiproton
production cross section to derive robust constrains on the spectral index of the diffusion coefficient.
In a second step ,we have added a DM signal in CR antiproton. We find a hint for the annihilation
of DM particles into bb̄ final states with mDM ∼ 75 GeV and a thermal annihilation cross section.
We stress that we marginalize over a total of 15 parameters describing CR propagation in order
to take uncertainties consistently into account. In the next section, we investigate two systematic
uncertainties which can affect both, the derivation of CR propagation parameters and the DM hint
in antiprotons.

5.2 Scrutinizing the evidence for DM in cosmic-ray antiprotons

In this section, we will study two sources of systematic uncertainties and their impact on the signif-
icance of the potential DM signal. We start with a discussion of the production cross sections for
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secondary antiprotons. The derivation of these cross sections from collider data and its uncertainty
was investigated in Chapter 4. In the second part of this section, we will discuss the impact of
correlations in the AMS-02 data. Although the extremely precise data of AMS-02 is dominated by
systematic uncertainty, a covariance matrix of these uncertainties is not provided by the experi-
ment. We emphasize that the data the AMS-02 data of proton and helium fluxes are dominated by
systematics in the whole energy range from 1 GV to 3 TV, while the antiproron-to-proton ratio is
dominated by systematics only the intermediate energy range from 1.8 GV to 50 GV. We will first
explain a data-driven method to obtain a covariance matrix of the CR data itself and then analyze
the impact on our fit results

5.2.1 Antiproton production cross sections

Updating the Galprop default cross sections to the latest parametrizations described in Chapter 4
reduces the significance of the potential DM signal to about 3σ. We propose two methods to
incorporate the uncertainty of secondary antiproton production in the CR fit, namely, the covariance
matrix method and the joint fit method.

Covariance matrix method

This methods relies on the propagation of errors in the cross-section parametrizations to the flux of
CR antiprotons. It was first suggested and applied in [136]. The goal is to derive a covariance matrix
from the cross-section fit which can be applied directly at the level of the antiproton flux. We use
the covariance matrices of the cross-section fit (appendix of Ref. [3]) and sample N = 1000 random
combinations of cross-section parameter sets. We denote a single realization of the parameter set
with the index k. For each realization of cross-section parameters, we compute the source term of
CR antiprotons, q(k)

p̄ (Ri), from Eq. (2.41). Here, Ri is the rigidity at the i-th data point. Finally,
we extract the covariance matrix of the i-th and j-th data points by:

V(qp̄,rel)
XS,ij =

1

N − 1

N∑
k=1

(
q

(k)
p̄ (Ri)

q
(best fit)
p̄ (Ri)

− 1

)(
q

(k)
p̄ (Rj)

q
(best fit)
p̄ (Rj)

− 1

)
. (5.4)

Note that in formulas, tables and figures cross section is abbreviated XS. If we assume that the
relative uncertainties at source-term and flux level are identical,9 the covariance matrix for the
antiproton flux, φ(AMS-02)

p̄,i , by:

V
(
φAMS-02
p̄/p

)
XS,ij = V(qp̄,rel)

XS,ij φ
(AMS-02)
p̄/p,i φ

(AMS-02)
p̄/p,j . (5.5)

In the fit, we replace the covariance matrix in the log-likelihood definition of Eq. (5.3) by the sum
of the AMS-02 measurement uncertainties and the cross-section covariance matrix.

V
(
φAMS-02
p̄/p

)
ij = V

(
φAMS-02
p̄/p

)
XS,ij + δij

[
σ

(AMS-02)
p̄/p,i

]2
. (5.6)

9This is a very good approximation, confer to Chapter 4 for more details.

108



Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

Finally, we stress that the covariance matrix method uses one disputable assumption. All uncertain-
ties are propagated in terms of a covariance matrix, in other words, one assumes that the likelihood
can be approximated by a multivariate Gaussian distribution. But the true likelihood could be
much more complicated. Therefore, we propose a second method below.

Joint fit method

In the second method, we fit at the same time all the CR parameters and the parameters of the cross-
section parametrization to, simultaneously, the CR flux measurements of AMS-02 and VOYAGER
and the cross-section data from colliders. We will apply this method to the Param. MW (Eq. (4.2)).
If we would take all 6 cross-section parameters into account, the already large parameter space
of 11–13 MultiNest parameters would increase to 17–19. To avoid the challenge of such a large
parameter space, we select 3 cross-section parameters which govern the main uncertainty in the
shape and normalization of the cross-section parametrization: the over-all normalization, C1, and
the two parameters which change the shape of the cross section below

√
s = 10 GeV, C5 and C6

from Eq. (4.4). All other cross-section parameters are fixed to the best-fit values listed in Tabs. 4.3
and 4.7. The fit is performed to the same data sets as in Chapter 4. However, in contrast to the
procedure in the previous chapter, we fit at the same time the data in the pp and the pA channels.
As before, we use one nuisance ω for each data set with a Gaussian prior of width σω as stated
in Tabs. 4.1 and 4.5. The nuisance parameters are treated as linear parameters in the fit, namely,
they are marginalized on-the-fly for each set of MultiNest parameters. The likelihood for the
cross-section part is given by:

−2 log(LXS) =
∑
e

∑
i

ωeσ(e)
inv,i − σ

(m)
inv (
√
si, xRi, pTi)

ωeσσ(e)
inv,i

2

+
∑
e

(
1− ωe
σωe

)2

, (5.7)

where e denotes the experiments (this time of cross-section measurements) with data points i,
and m denotes the cross-section parametrization. Furthermore, σ(e)

inv and σ
σ

(e)
inv

are the measured
Lorentz-invariant cross section and its uncertainty, respectively. The total likelihood for the joint
fit is given by the product of the likelihoods from Eqs. (5.3) and (5.7). Finally, we remind that
this method correctly takes into account uncertainties beyond the Gaussian approximation, which
is a clear advantage compared to the covariance matrix method. On the other hand, adding the
3 cross-section parameters significantly complicates the fit such that additional computation time
is required. The number of likelihood evaluation of the fit in the default setup is roughly 200 000
while the joint fit requires approximately 500 000 likelihood evaluations to converge.

Results

In order to investigate the impact of cross-section uncertainties on the parameter estimation of CR
propagation parameters and on the significance of the potential DM hint, we perform in total 8
fits. These fits correspond to 4 different setups concerning the antiproton production cross section.
Then, each setup is fitted with and without a DM contribution. All results are summarized in
Tab. 5.5.
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Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

In the first cross-section setup, we change the default parametrization from Param. MW to
Param. MD. The results are very similar to the default setup, which is expected since the two cross-
section parametrizations give similar results, see Chapter 4. The best-fit χ2 of 34.2 is marginally
smaller compared to the default fit which gives a χ2 of 35.6. The residuals are shown in the first
row of Fig. 5.4. They look very similar to the residuals of our default setup shown in Fig. 5.2. The
best-fit propagation parameters (D0, δ, vA, v0,c, and hh) of both this fit are compatible with the
results in the default setup. The contours in Fig. 5.5 (upper left panel) overlap in all parameters.
Indeed, they look almost identical, except for the convection velocity. It converges to zero in both

XS Param. MD, without DM XS Param. MD, with DM

Cov.Mat., XS Param. MW, without DM Cov.Mat., XS Param. MW, with DM

Cov.Mat., XS Param. MD, without DM Cov.Mat., XS Param. MD, with DM

Joint XS+CR Fit, without DM Joint XS+CR Fit , with DM

Figure 5.4: We display the residuals to the antiproton-to-proton flux ratio of AMS-02 for each of
our 8 fits which are used to study the impact of cross-section uncertainties on the significance of the
potential DM hint. The residuals plots on the left side contain 4 different cross-section setups. They
do not incorporate any DM contribution, while the residual plots on the right-hand side corresponds
to the same cross-section setup, but for them a DM signal is injected. Compared to the default
setup we changed (top to bottom): (i) the default cross-section parametrization to Param. MD, (ii)
applied the covariance matrix method with Param. MW, (iii) applied the covariance matrix method
with Param. MD, and (iv) exploit the joint fit method using the Param. MW. The figure is taken
from [2].
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5.2. Scrutinizing the evidence for DM in cosmic-ray antiprotons

setups, but the upper constraint is a bit weaker when using the cross-section Param. MD. The
significance for the DM signal reduces slightly from 3.1σ to 3.0σ.
The second and third setup, apply the covariance matrix method using the Param. MW and
Param. MD as a baseline, respectively. For Param. MW the best-fit χ2 without DM slightly reduces
to 33.9, while the χ2 in the fit with DM contribution remains constant at ∼ 23. Consequently the
significance for DM is reduced to 2.9σ. On the other hand, for Param. MD the covariance matrix
method neither impacts the χ2 of the fit with nor the one without DM contribution. The residuals
in Fig. 5.4 look very similar to the default setup, however, we note one subtlety. Since the covariance
matrix encodes a normalization uncertainty of the cross section, it is possible that the whole data
are shifted up or down with respect to the best-fit. This is visible in particular for Param. MW

Figure 5.5: For each of our 4 different cross-section setups we compare the best-fit results for the
propagation parameters with the default setup in a small triangle plot. The contours correspond
to the 1σ, 2σ, and 3σ C.L. derived from the two-dimensional χ2-distribution. The figure is taken
from [2].
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Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

Figure 5.6: For the joint fit (without DM) we show the part of the triangle plot which contrasts
the CR and cross-section parameters. The black contours display the 1σ, 2σ, and 3σ C.L. of the
two-dimensional χ2-distribution and the black lines in the panels on the very right show the χ2

profile for the cross-section parameters (the y-axis ranges from 0–10). The figure is taken from [2].

Figure 5.7: We compare the χ2-profile of for the three cross-section parameters for the fit with
(red dashed line) and without DM (black solid line). Furthermore, we display the χ2-profile for the
cross-section data only (blue dotted line), namely, the χ2 is then defined by Eq. (5.7). The figure is
taken from [2].

without DM and Param. MD with DM. Figure 5.5 shows that the propagation parameters are not
affected by the covariance matrix approach which takes the cross-section uncertainties into account.
Note that the effect of changing the cross-section parametrization (first setup) is larger than taking
the cross-section uncertainty into account.
Finally, the fourth setup contains the joined fit based on Param. MW. The residuals in Fig. 5.4 are
not affected by accounting for the cross-section uncertainties. The difference in the best-fit χ2 with
and without DM in this case reduces slightly compared to the other setups. We obtain ∆χ2 = 10.7
which corresponds to a significance of 2.7σ for the potential DM signal. The propagation parame-
ters in Fig. 5.5 (lower right panel) remains unchanged compared to the default setup. The joint fit
allows to investigate whether there are degeneracies between CR propagation and the cross-section
parametrization. In Fig. 5.6 we present the part of the triangle plot which contrasts the CR prop-
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102 103

[ ]

10 27

10 26

10 25

[
/]

Default Setup
MW, cov. method
MW, joint fit

Limit dSphs , Albert (2016)
GCE, Calore (2014)

Figure 5.8: Best-fit contours in the plane of DM mass and velocity averaged annihilation cross
section at the 1 and 2σ C.L. obtained from the different methods to include the uncertainties in
the antiproton production cross section. For comparison we display the 2σ best-fit region of the
GCE [214] and the current DM annihilation limits obtained from the observation of dwarf spheroidal
galaxies [205]. The figure is taken from [2].

agation parameters and the parameters describing the antiproton production cross section. The
triangle demonstrates that there are no strong or complicated degeneracies in the parameter space.
We can investigate this conclusion a bit further by looking at the individual χ2-profiles. Figure. 5.7
compares the χ2-profiles of fitting only the cross section, χ2

XS is defined by Eq. (5.7), with the
χ2-profiles of the joint fit with and without DM contributions. We observe, that the χ2-profiles
for all three cross-section parameters are compatible. Especially, for the parameters C1 and C6 the
agreement between the profile of the cross section and the joint fit profiles is very good, which means
that C1 and C6 are entirely constrained by the cross-section data. For the parameter C5 there is a
very good agreement between the joint fit with DM and the cross-section χ2-profile. The χ2-profile
of the fit without DM prefers slightly smaller values of C5, so there is a small degeneracy. However,
we remark that the χ2-profile of the cross-section fit and the joint-fit without DM are very well
compatible at the 1σ level.

We find a DM signal in all our setups and conclude that the DM hint is not related to un-
derestimated uncertainties in the production cross section of secondary antiprotons. Taking the
uncertainties into account decreases, however, slightly the significance of the DM signal from 3.1σ
to 2.7σ. We compare the best-fit regions for the DM hint from our different cross-section setups
in Fig. 5.8. We conclude that the best fit region does not depend on the cross-section uncertain-
ties. All setups and methods converge to the same best-fit region around a DM mass of 70 GeV
and an annihilation cross section between 〈σv〉 = 3 × 10−27 cm3/s and 9 × 10−26 cm3/s. We note
the compatibility of the antiproton excess with the GCE [214] which will be explored in detail in
Sec. 5.3. Furthermore, we display the current limit on the DM annihilation cross section derived
from the observation of dwarf spheroidal galaxies with the Fermi-LAT detector [205]. Our potential
DM signal is at the boundary of, but mostly below, the dwarf limits.
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Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

The results of this paragraph are somehow in tension with the analysis of [136] which finds a
global significance of 1.1σ if cross-section uncertainties are considered. The origin of the different
conclusion is not entirely clear. We note, however, some important differences between [136] and
the analysis described in this Chapter:

• We perform a global fit of CR primaries and secondaries (p, He, and p̄/p), while [136] exploits
only the information of secondary fluxes (p̄ and B). In this case, the primary fluxes are not
fitted within the CR propagation model, but rather directly taken from the experimental
measurements and then used calculate the source term of the secondaries. We note that
fitting the primaries, especially protons, at the same time as fitting the secondaries gives tight
constraints on reacceleration.

• The systematic uncertainties of the AMS-02 measurement partly cancel in the ratio leading
to smaller relative uncertainties in the fit.

• The analysis of [136] relies on a CR propagation setup with a one-dimensional Galaxy. We,
however, use a two-dimensional setup of the Galaxy and exploit the spatial dependence of
CR fluxes in our Galaxy.

• We use a numerical solution of the diffusion equation of CRs while [136] relies on an analytic
approximation. The treatment of reacceleration in the analytic model is different. It is con-
fined to the Galactic Plane, while in the full numerical setup reacceleration occurs throughout
the entire diffusion halo.

A more detailed exploration of the differences and their impact on the conclusion is under investi-
gation.

5.2.2 Correlations in the systematic uncertainties of AMS-02 data

Space-based detectors measure CR fluxes at unpreceded precision with the immediate consequence
that the systematic uncertainties in the measurement become more and more important. The proton
and helium fluxes measured by AMS-02 are dominated by systematic uncertainties in the whole
energy range from 1 GV to a few TV, while for the antiproton-to-proton ratio the statistical and
systematic uncertainty have a similar weight, with a slightly larger systematic uncertainty between
2 GV and 50 GV. The commonly adopted treatment is to assume that systematic uncertainties
are uncorrelated, namely, statistical and systematic uncertainties are added in quadrature. We also
adopted this scheme in the previous section. As a result we obtain fit results with a χ2/dof which
are much smaller than one. In our standard setup, the χ2/dof of protons is between 0.06 and 0.1 and
the one of helium between 0.25 and 0.5. The problem with these small values of χ2 is that we cannot
say anything about the goodness of fit. Moreover, one might also wonder whether the significance
of the potential DM signal can be affected by correlation in the AMS-02 data. We will investigate
the impact of possible correlation scenarios in this chapter. However we stress that a proper and
reliable treatment of systematic uncertainties would require a detailed analysis of the experimental
collaboration which knows exactly the response and systematic uncertainties of the detector. So
far, there is no such analysis by the AMS-02 collaboration, but recently there are attempts to model
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the covariance matrixes of AMS-02 measurements from a theoretical perspective. Correlations are
found to be one of the most important systematic uncertainties [95,107,152].

Methods to investigate the impact of correlated AMS-02 data

We will use two different strategies to take the effect of correlations in the AMS-02 data into account.
In the first approach, we assume that the AMS-02 overestimated the uncorrelated systematic uncer-
tainty. As a consequence, we fix the systematic uncertainty of the fluxes or flux ratios to 1%. Then
we add this 1% uncertainty to the statistical uncertainty in quadrature. The remaining systematic
uncertainty is assumed to be a pure normalization uncertainty. We remind that we marginalize over
the normalization of proton and helium fluxes in our default fit setup, such that we can neglect
any scale uncertainty in the data. This approach was already followed in [296]10. This approach is,
however, adhoc and its reliability is not entirely certain. Therefore, we suggest a second, data-driven
method.

In the second approach, we try to derive constraints on the correlation in the AMS-02 data
from the data itself, which is possible since the data establish one sample realization of the covari-
ance matrix. For example, if we assume that the true CR flux is a smooth function but the flux
measurement by AMS-02 introduces a systematic uncertainty with correlation of a few neighboring
data points, we would expect to observe simultaneous upward or downward fluctuations of a few
neighboring data points. In the following, we will use exactly this idea and derive limits on the
correlation matrix.
We assume that the covariance matrix of the AMS-02 flux or flux ratio can be written as the sum
of three components:

V = Vstat + Vshort + Vlong . (5.8)

The first term, Vstat, contains the statistical uncertainties provided by the AMS-02 collaboration
and the remaining two terms contain the systematic uncertainties, which may exhibit two kind of
correlations, one correlation on short energy scales (up to ∼ 10 neighboring data points, c.f also
Eq. (5.9)), Vshort, and one on long energy scales (more than ∼ 10 neighboring data points), Vlong. We
will only be able to constrain the correlations at short scales with the method presented below. But
we stress that correlations at short energy scales are the most important concerning the significance
of the potential DM signal. They could in principle be able to fake a sharp signal as the one
expected from DM annihilation. On the other hand, long correlations are, for example, an overall
normalization or a slope. We assume that the contribution of Vlong can be absorbed in our fit by the
CR propagation parameters and the nuisance parameters, Ap and AHe. For the covariance matrix
with short correlation length, Vshort, we take the following ansatz:

Vshort,ij = exp

(
−|i− j|

α

`corr
α

)
f2σsys,iσsys,j , (5.9)

where i and j are the i-th and j-th data point of the AMS-02 flux or ratio, and σsys,i and σsys,j are
the respective systematic uncertainties. Finally, we have three free parameters which describe the

10This approach was suggested in a private conversation with the AMS-02 group in Aachen.
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shape of the covariance matrix. They determine the length (in terms of neighboring data point)
of correlation, `corr, the fraction of systematic uncertainty which exhibits short correlations, f , and
one parameter which alters the shape of the correlation matrix, α. In order to determine Vshort we
require a description of the true CR flux or ratio. We assume that this is can be obtained by fitting
a smooth function to the measured CR flux or ratio. For the smooth function we adopt a broken
power law with three smooth breaks11 for the antiproton-to-proton ratio and the helium flux, and
a power law with 4 breaks for the proton flux. We denote the difference of this smooth function
and the measured AMS-02 flux or ratio at the rigidity Ri as xi. Note that fitting a smooth function
absorbs long correlations. So, we can neglect them when defining the likelihood to determine the
short covariance matrix:

− log(L) =
1

2
log (det [Vstat + Vshort(`corr, f, α)]) +

1

2
x · [Vstat + Vshort(`corr, f, α)]−1 x + const . (5.10)

The first term arises from the normalization of the multivariate Gaussian while the second term
corresponds to the usual χ2 definition. The reliability of the constraints from our method is verified
in a toy MC. We apply the method on the AMS-02 data, separately to protons, helium, and the
antiproton-to-proton ratio, since, in principle, the correlation of different measurements may change.

11The functional form is the generalization of Eq. (5.1).

Figure 5.9: Triangle plots for the fit of the covariance matrices using Eq. (5.10) for the proton
flux (left panel), the helium flux (central panel), and antiproton-over-proton flux ratio (right panel).
The figure is taken from [2].

Table 5.6: Based on the fit results of Fig. 5.9 we use three benchmark scenarios summarized in
this table to investigate the impact of correlations in the AMS-02 data.

`corr = 0 `corr = 5 `corr = 10

data set p He p̄/p p He p̄/p p He p̄/p
f 0.062 0.080 0.30 0.079 0.103 0.30 0.082 0.101 0.30
α 0.63 0.81 1.00 0.20 0.21 1.00 0.20 0.20 1.00

117



5.2. Scrutinizing the evidence for DM in cosmic-ray antiprotons

Our results are presented in in Fig. 5.9. The constraints on the covariance matrix of protons and
helium are very similar. In both cases, there is a preference for a small value of α and a slight
preference for a small correlation length, `corr. However, at 2σ the value of `corr is not constrained
for both fluxes. We obtain good constraints on the fraction of the systematic uncertainty which is
allowed to have a small correlation length. For protons this fraction is restricted between 5% and
10% while for helium it is restricted between 5% and 15%. For the antiproton-to-proton ratio we
obtain less strict constraints from the data since statistical uncertainties are non-negligible. But we
conclude that the fraction of a correlated systematic uncertainty should be below ∼ 30% at a 90%
C.L. Since, we cannot point to a single preferred covariance matrix with our data-driven method we
will explore three benchmark scenarios with `corr fixed to 0, 5, and 10, respectively. The other two
parameters are obtained as follows. For proton and helium we adopt the best-fit values of α and f
at the specific choice of `corr. In the case of the antiproton-to-proton ratio we proceed differently.
Here the preferred value of f would converge to 0. But we want to test the impact of correlation
on our DM signal. Therefore, we adopt values of f at the upper bound of the 90% C.L. We adopt
f = 0.3 for each benchmark scenario. The parameter alpha is fixed to 1. The three benchmark
scenarios and the adopted parameters are summarized in Tab. 5.6.

Results

We perform 8 fits to investigate the impact of correlation in the AMS-02 data. These 8 fits corre-
spond to 4 different choices of the covariance matrices. Then, for each choice we perform one fit with
and one without DM contribution. We have described the 4 different setups of covariance matrices
in the previous section. In the first setup, we fix the systematic uncertainty of all AMS-02 data sets
to 1%. The remaining three setups exploit the covariance matrices obtained from our data-driven
method with benchmarks of the correlation lenght chosen set to `corr = 0, 5, and 10. The results of
all the fits are summarized in Figs. 5.10 and 5.11, and in Tab. 5.7.

First, we have a look at the results of the fit where we fix the systematic uncertainties to 1%,
which effectively reduces all uncertainties in the fit. In this setup, the fit without DM converges
at a χ2/dof of 77.4/143 which is still significantly smaller than one. The contribution from the
antiproton-over-proton ratio to this χ2 is 44.0 which matches very well the number of data points of
42. So, the problem arises from the proton and helium fits, which converge to a χ2 of 7.6 and 9.8,
respectively, which is far too small for a number of about 50 data points each. The best-fit region
of the propagation parameters is compatible with the default setup. The comparison of the best-fit
propagation parameters to the default setup is shown in Fig. 5.10 (upper left panel). The fit with
DM converges to a best-fit χ2 of 47.4, hence, we obtain a ∆χ2 of 30 or, equivalently, a significance
of 5.1σ. The best-fit values of the DM mass and the annihilation cross section are consistent with
the default setup as shown in Fig. 5.11.

We now discuss the results of the three benchmark scenarios taken from the data-driven method.
A DM signal improves the ∆χ2s of the fits by 34.1, 17.6, and 18.0 for the benchmarks at `corr = 0, 5
and 10, respectively. These values correspond to a significance of 5.5σ for `corr = 0 and 3.8σ for the
other two benchmarks. We note, however, that in all three cases the best-fit χ2/dof is significantly
larger than 1. It varies between 1.6 and 2.0. The contribution of the antiproton-over-proton to the
χ2 is reasonable while a too large contribution comes from the proton and helium fit. So, now we
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Figure 5.10: Similar to Fig. 5.4. We display the 1–3σ contours of the 2-dimensional χ2-distribution
for a choice of propagation parameters. The panels display the comparison of our default setup and
the 4 different choices of correlation matrices for the treatment of systematic uncertainties. The
upper left panel corresponds to the setup where we fix systematic uncertainties to 1%. The remaining
three panels show the comparison with our data-driven method with a benchmark correlation length
of `corr = 0 (upper right), 5 (lower left), 10 (lower right). The figure is taken from [2].

seem to underestimate their uncertainties. Indeed, the relative uncertainties of proton and helium
are very small now. The relative uncertainty of the systematic uncertainty in the AMS-02 proton
flux measurement is approximately 2%. Our data-driven method, shows that only about 10% of
this uncertainty should be considered in the fit. In other words, we reduce the effective uncertainty
of the proton flux to 0.2%, which seems to be slightly underestimating. Nevertheless, we observe a
few interesting results. When we compare the benchmark setup with `corr = 0 with the two setups
of `corr = 5 and 10 we observe that the correlation of a few neighboring bins reduces the significance
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102 103

[ ]
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Figure 5.11: Similar to Fig. 5.8. We show the 1–3σ best-fit contours in the plane of DM mass and
velocity averaged annihilation cross section of the default setup and two cross checks with different
correlation assumption. First, the scenario where we fix systematic uncertainties to 1% and, second,
the benchmark setup with `corr = 5. The contour of the DM interpretation of the GCE [214] and
the DM limit from dwarf spheroidal galaxies [205] are shown for comparison. The figure is taken
from [2].

of the potential DM from 5.5σ to 3.8σ. So, the effect of correlation works as anticipated in the
introduction of this chapter. The best-fit contours of the CR propagation parameters shrink with
respect to our default setup. Especially, we observe that the preferred value of the halo half-height
converges to very small values of zh <∼ 3 kpc, which are disfavored from the observation of leptons
at low energies [115, 297, 298] and the recent analysis of the beryllium-to-boron ratio [110]. The
best-fit region for the corresponding DM signal is shown in Fig. 5.11 for `corr = 5. The contours for
`corr = 0 and 10 look very similar to `corr = 5. So, in all three benchmark scenarios the preferred
DM mass shifts to slightly smaller values. The fact that the fits prefer only slightly larger values of
〈σv〉 is directly related to the preferred region of zh. We remind that zh and 〈σv〉 are anticorrelated.

Finally, we stress that all results of this paragraph should be taken with caution. We use educated
guessing and some data constraints in order to obtain four different benchmark scenarios for the
correlation of uncertainties in the AMS-02 data. By no means do we claim that our benchmarks
establish a full representation of the all allowed covariance matrices or that the true covariance
matrix is contained in our benchmarks. We consider this chapter as a proof of concept. Correlations
in the AMS-02 data can have an important effect on the parameter estimation and the significance
of the potential DM signal. We conclude nonetheless, if we adopt the realistic assumption that
only a fraction of the systematic uncertainty is correlated on short energy scales, we rather seem to
increase the significance of the DM hint.
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5.3 Probing dark matter annihilation with antiprotons and gamma
rays

In Secs. 5.1 and 5.2, we have investigated a possible hint of DM annihilation in CR antiprotons. Here,
we will explore the compatibility of this potential CR antiproton excess with the GCE. Moreover,
we will extend the study of Sec. 5.2, where we presented results for bb̄ final states, to further SM final
states. This section is structured as follows. In Sec. 5.3.1 we briefly recap the setup of our global
CR fits and present their results. Then, in Sec. 5.3.2 we explain the setup of the GCE fit and limits
form dSphs. We present the results of a joint fit to CR antiprotons and gamma rays. Finally, in
Sec. 5.3.3 we interpret our results within the singlet scalar Higgs portal model. This section is based
on the paper [6].

5.3.1 Cosmic-ray fits for individual dark matter annihilation channels

We perform global fits to CR proton, helium, and antiproton data, allowing for a DM contribution
in antiprotons which gives rise to a characteristic signal as described in Eq. (2.51). The setup of
the CR is the same as in [8] and very similar to the one described in Sec. 5.4.1. The only small
difference is that in this section we exploit the production cross section of secondary antiprotons
from [123], which is the default cross section implemented in the Galprop package. We take
the DM energy spectra, dNf

p̄ /dR, which are tabulated in [292]. However, these tables are only
provided for on-shell production of the W - or Z-bosons. We extend the tables to lower masses
and allow off-shell production of one gauge boson. This off-shell production can be relevant be-
cause the decay widths of the two gauge bosons are relatively large. Off-shell gauge bosons are
denoted with an asterisk superscript. We generated the spectra of ZZ∗ and WW ∗ final states with
Madgraph5_aMC@NLO [299] and Pythia 8.215 [300], where we adopt the default settings and
choose a scale of Q = mDM. We note that the choice of scale introduces an uncertainty on the energy
spectra of 15% to 30%, which, however, does not significantly affects our final results. Furthermore,
we have checked that our spectra for on-shell WW and ZZ production, i.e. for mDM>mW and
mDM>mZ , respectively, are in agreement with the tables of [292]. Off-shell production is typically
not relevant for the Higgs boson or top-quark production because the respective decay widths are
very small. We assume an NFW profile (see Eq. 1.4) for the DM distribution in our Galaxy with a
characteristic halo radius rh = 20 kpc, and a characteristic halo density ρh, such that the local DM
density is normalized to 0.43 GeV/cm3 [41] at the solar position of 8 kpc distance from the Galactic
Center.

The results of the CR fits are presented in Fig. 5.12. We find that a DM signal can improve
the CR fit for all the considered SM final states. The best fit without DM contribution converges
to a χ2/dof of 71/165 (see Ref. [8]) while the fits with DM contribution give a best-fit χ2/dof of
46/163 (bb̄), 48/163 (hh), 50/163 (gluons and/or light quarks), 50/163 (WW ∗), 46/163 (ZZ∗), and
59/163 (tt̄), respectively. The fits show an improvement in ∆χ2 between 20 an 25 which, formally,
corresponds to a significance of 4 to 4.5σ. The tt̄ channel forms the only exception. It is gives a
slightly smaller ∆χ2 of 12 which corresponds to a significance 3σ. All values are summarized in
Tab. 5.8. We note that these results are affected by systematic uncertainties. We have discussed
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Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

the impact of the antiproton production cross section and correlations in the AMS-02 data in
Chapter 5. Especially, a more recent description of the antiproton production cross section and its
uncertainties can reduce the significance of the potential DM signal to about 3σ in the bb̄ channel.
We expect that all channels are affected by this systematics similarly. However, we do not expect
the smaller significance to change the general conclusions of this section. The best-fit region for
the potential DM signal depends on the SM final state: In general, lighter SM final states prefer a
lighter DM particle. The best-fit DM mass for annihiliation into two gluons or a pair of light quarks
converges to mDM ∼ 35 GeV, while the tt̄ final state requires a DM masse close to the production
threshold of the top quark pair at 173 GeV. The required DM annihilation cross sections varies
between 〈σv〉 = 2× 10−27 cm3/s and 2× 10−25 cm3/s. The annihilation cross sections depends on
the DM mass: the lager the DM mass the larger 〈σv〉. This trend is in agreement with the DM
interpretation of the GCE [226].

5.3.2 Joint fit of antiprotons and gamma rays

In the joint fit of CRs and gamma-rays, we aim to fit simultaneously the excess in CR antiprotons and
the GCE. Furthermore, we will include DM limits of dSphs. The GCE is a excess in the gamma-
ray spectrum around the Galactic center at a few GeV [213–215]. Despite viable astrophysical
explanations a DM origin of the excess is not excluded. For more details we refer to Sec. 3.2. We
exploit the energy spectrum of the GCE and the correlated uncertainties provided in [226]. The
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Figure 5.12: Hint for DM annihilation in the antiproton spectrum derived from a global fit of
CRs. We exploit different SM final states: gg (cyan), WW ∗ (green), bb̄ (red), ZZ∗ (blue), hh
(pink) and tt̄ (orange). The results are presented in the plane of DM mass and velocity averaged
annihilation cross section. The contours denote the 1, 2, and 3σ C.L. of the preferred DM mass
and the annihilation cross section. The figure is taken from [6].
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5.3. Probing dark matter annihilation with antiprotons and gamma rays

fit takes into account an uncertainty on the J-factor of the ROI analyzed in [226], J40◦ . The ROI
of [226] extends over a 40◦× 40◦ square centered around the Galactic Center. The Galactic plane is
masked for latitudes of |b| < 2◦. We take into account an uncertainty on our model of σrel = 10%.
The uncertainty on the model comes from systematic differences in the gamma-ray energy spectra
from DM annihilation derived with different Pythia versions. The likelihood of the GCE fit is
defined by:

−2 log(LGCE) = log
(

det
[
VGCE
ij + δij [σrel S

(m)(Ei)]
2
] )

(5.11)

+
∑
ij

(
S

(GCE)
i − S(m)(Ei)

)(
VGCE
ij + δij [σrel S

(m)(Ei)]
2
)−1 (

S
(GCE)
j − S(m)(Ej)

)
+

[log(J40◦)− log(J40◦,norm)]2

[σlog J ]2
+ const .

Here S(GCE)
i is the gamma-ray flux in the i-th energy bin as provided by [226] and VGCE is the

corresponding covariance matrix, while S(m)(Ei) is the flux calculated in our model:

S(m)
(
Ei,mDM, 〈σv〉, J40◦

)
=

Emax,i∫
Emin,i

dE
dS

dE

(
E,mDM, 〈σv〉, J40◦

)
(5.12)

with dS/dE defined in Eq. (3.1). The energy spectra of gamma-rays are obtained with the Pythia
8.209 event generator [300]. The difference of these spectra compared to spectra generated with
Pythia 6 [301] is of the order of 10%. We incorporate this uncertainty in the likelihood by set-
ting σrel to 0.1. Finally, we marginalize over the uncertainty in the J-factor. The uncertainty on
log(J40◦) was derived in [302]. We use this result and adopt a Gaussian distribution for log(J40◦)
(log-normal in J40◦) with a mean value of log(J40◦,norm) = 53.54 and a width of σJ = 0.43. For more

Table 5.8: Summary of the best-fit χ2s of the individual fits of CRs and the GCE as well as the
joint fits The number of dof for the CR and GCE fit are 163 and 22, respectively.

individual fits joint fit
channel χ2

CR χ2
GCE χ2

CR χ2
GCE

gg 50.3 20.8 52.0 31.6
bb̄ 45.8 21.2 47.9 23.5

WW (∗) 50.4 25.6 54.6 25.6
ZZ(∗) 45.6 25.0 45.8 25.9
hh 47.6 25.8 48.4 25.8
tt̄ 59.5 41.1 59.5 41.1
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Chapter 5. A closer look at dark matter signatures in cosmic-ray antiprotons

details, we refer to [302]. All in all, the fit of the GCE contains 3 free parameters: the DM mass,
mDM, the annihilation cross section, 〈σv〉, and the J-factor, J40◦ .
In order to join the CR fit with the GCE fit we proceed as follows. We use the results of the
CR fits performed in Sec. 5.3.1 and extract the χ2-profile in mDM and 〈σv〉, which we denote
χ̃2

CR(mDM, 〈σv〉). Note that by extracting the profile we marginalize over a total of 11 CR propaga-
tion parameters. In Sec. 5.3.1, we fixed the local DM density to ρsun,norm = 0.43 GeV/cm3. Now,
we want to marginalize over the uncertainty of the local DM density. Thus, we re-interpret the
extracted CR χ2-profile and define the final CR likelihood by:

−2 log(LCR)
(
mDM, 〈σv〉, ρsun

)
= χ̃2

CR

(
mDM , 〈σv〉 ρ2

sun

ρ2
sun,norm

)
+

(
ρsun − ρsun,norm)

σρsun

)2

. (5.13)

We adopt an uncertainty on the local DM density of σρsun = 0.15 GeV/cm3. In the joint fit of
CRs (p, He, and p̄/p) and the GCE, there is one subtlety concerning the DM density profile. When
calculating J40◦ , we assume a gNFW DM density profile (see Eq. 1.5) with γ = 1.2± 0.08 while in
the CR we use the normal NFW profile (γ = 1.0). However, the CR flux is virtually not affected by
difference of an NFW and a gNFW profile. In Sec. 5.4, we investigated impact of the DM density
profile on the CR limits by changing the cuspy NFW profile to a cored Burkert profile with core
radius of rc = 5 kpc and we found that the limits where affected by less than 30%. The differences
between NFW and gNFW are much smaller. In this sense, it is justified to explore an NFW profile
in the CR fit, while using a gNFW profile in the GCE fit.

Finally, we take into account the constraints on DM annihilation from the observation of dSphs.
We proceed as described in Sec. 3.2 and use the likelihoods defined in Eqs. (3.3) to (3.5). We
exploit the information of eleven dSphs: the seven brightest confirmed dwarfs from [205] as well as
Willman 1, Tucana III, Tucana IV and Indus II. We note that four of these dSphs exhibit small DM
excesses at the level of 2σ. These excesses are compatible with DM annihilation at a thermal cross
section [205,209,210]. We remind that we marginalize the likelihood over the measured J-factor of
each dSph. The joint likelihood is the product of the individual likelihoods of Eqs. (3.5),(5.11) and
(5.13): Ljoint = LCR · LGCE · LdSphs.

The results are summarized in Fig. 5.13 and Tab. 5.8. The best-fit region of the CR fit for
each SM final state is presented by the red contours. These contours span a slightly larger range
in 〈σv〉 compared to the contours in Fig. 5.12 since here we additionally marginalize over the local
DM density. The blue contours show the best-fit region of the GCE fit. Combining the CR
and GCE likelihoods results in the green contours. Finally, adding the constraints from dSphs we
obtain the black contours. We observe that, in principle, all hadronic channels provide a good
fit and, thus, are able to explain, at the same time, the CR antiproton excess and the GCE.
However, looking at the χ2s in Tab. 5.8, the best results are achieved for the bb̄, WW ∗, ZZ∗, and
hh channels, while the annihilation into two gluons (or a pair of light quarks) and a top-quark pair
are slightly disfavored. Finally, we note that the joint fit prefers values for the local DM density of
ρsun = 0.55± 0.15 GeV/cm3, which is slightly larger than our prior. Values of ρsun < 0.3 GeV/cm3

would make it more difficult to explain simultaneously the GCE and the antiproton excess. We
note, however, that our setup constrains the half-height of the diffusion halo to a range between 2
and 7 kpc in the fit. A larger value of zh, which is still allowed, would boost the DM signal in CR
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Figure 5.13: Results of the joint fit of the CR antiproton excess and the GCE. We display the
best-fit region for the individual CR (red) and GCE (blue) fits as well as the joint fit with (black)
and without (green) limits from dSphs. The contours refer to the 1, 2, and 3σ C.L. The figure is
taken from [6].
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antiprotons compared to the secondary background. This could also be used to push ρsun again to
smaller values.

5.3.3 Interpretation within the singlet scalar Higgs portal model

We now turn to a specific BSM model which provides a suitable DM candidate: the singlet scalar
Higgs portal model [303–305].12 In addition to the SM there is only one scalar field S. The analysis
in this section is very similar to Ref. [302], to which we refer for more detailed description. The
main difference of this section and [302] is that here we include the DM hint in CR antiprotons. In
order to make S stable we have to impose the Z2 symmetry S → −S. Then the Lagrangian of the
Higgs portal model before electroweak symmetry breaking is given by:

L = LSM +
1

2
∂µS∂

µS − 1

2
m2
S,0S

2 − 1

4
λSS

4 − 1

2
λHS S

2H†H . (5.14)

A short calculation yields

L ⊃ −1

2
m2
S S

2 − 1

4
λS S

4 − 1

4
λHS h

2S2 − 1

2
λHS vhS

2 (5.15)

after electroweak symmetry breaking. Here we assume H = (h + v, 0)/
√

2 and v = 246 GeV.
The physical mass of the scalar particle is given by m2

S = m2
S,0 + λHS v

2/2. From Eq. (5.15) we
see that, in principle, our model exhibits three free parameters: mS , λS , and λHS . However, the
DM phenomenology is not affected by the quartic self-coupling term 1

4λS S
4.13 So, we can focus

on the two parameter mS = mDM and λHS describing the DM mass and coupling to SM Higgs,
respectively.

In principle, the Lagrangian in Eq. (5.15) gives rise to two possible annihilation channels. First,
two scalars S may annihilate into two Higgs bosons, which is possible through a four-point vertex
and with an intermediate S in a p-wave process. This channel is only available if mS > mh.
However, the DM masses, which describe well the GCE and the DM hint in CR antiprotons, are
below 100 GeV. In this case, the only option is the second channel, where two scalars annihilate
into two SM final states via s-wave annihilation with an intermediate Higgs boson. The branching
ratios for this reaction depend only on the mass of the scalar particles. As shown in [302] (their
Fig. 2), for mS up to about 65 GeV the dominant annihilation channel is bb̄. For larger masses
(up to mS = mh) the scalars annihilate mostly into W - and Z-boson pairs. We implement the
mass-dependent branching ratios in our fit setup.

In the following, we perform a fit of the singlet scalar Higgs portal model. Thus, the free fit
parameters are two parameters mS = mDM and λHS defined in eq. (5.15). They can be related to
the velocity averaged annihilation cross section required in the GCE, CR, and dSph likelihoods. As
in the previous section, we include the local DM density, ρsun, and the J-factor of the GCE analysis,
J40◦ , as nuisance parameters. Furthermore, we consider the possibility that the scalar S exhibits
only a fraction R of the total DM content in the Universe, R = ΩS/ΩDM. This might be the case

12For a more detailed and recent review of the singlet Higgs portal model, which is studied extensively in literature,
we refer to [306,307].

13We note that is term is important for the stability of the electroweak vacuum.

127



5.3. Probing dark matter annihilation with antiprotons and gamma rays

if the phenomenology of a dark sector is richer than the simple scalar field discussed here. In more
detail, if the parameter R is equal to 1, S explains the entire DM content in the Universe. For
R < 1, we assume that the clustering of S follows the clustering of the remaining DM, namely,
today and in our Galaxy we require ρS(~x) = R · ρDM(~x).

The Higgs portal model can be constrained with additional observations from particle physics,
cosmology, and direct detection. The final likelihood of the fit is given by the product of the
individual likelihoods: LHP = LCR · LGCE · Lconstraints.14 We take into account constraints from
the Higgs invisible decay width, direct detection searches, the DM relic density, and searches for
gamma-ray lines in the inner Galaxy. The individual constraints are briefly summarized below:15

• We are interested in the mass regimemDM < mh/2, where the Higgs can decay into two scalars,
h→ SS. The branching ratio for the invisible Higgs decay is constraint by LHC measurements
to BRinv . 0.23 [308]. This constraint leads to an upper limit on the Higgs-scalar coupling
λHS as function of mS .

• The scalar particle can scatter off nuclei via a spin-independent cross section, which is pro-
portional to λ2

HS/m
2
DM. Thus, we can consider upper bounds on the scattering cross section

from direct detection experiments. We exploit the limits from LUX [309].16 The local energy
density of the scalar is given by ρS,sun = Rρsun.

• The Higgs portal model predicts gamma-ray lines from the annihilation of two scalars. We
derived the annihilation cross section 〈σv〉γγ from an Higgs effective Lagrangian as detailed
in [302]. Then, we use the constraints on gamma-ray lines from the Galactic halo published
by the Fermi-LAT collaboration [312].

• We require that our model provides the correct DM relic density of ΩDMh
2 = 0.1198 ±

0.0015 [37]. In order to calculate the relic density as function of mS and λHS we use mi-
crOMEGAs [313] which is linked to CalcHEP [314]. If the scalar S only establishes a
fraction R < 1 of the total DM density we require: ΩDMh

2 = ΩSh
2 /R.

We present the results of the fit in Fig. 5.14. It includes the CR antiproton flux, the GCE,
and constraints from dSphs, invisible Higgs decays, direct detection, gamma-ray lines, and the DM
relic density. There are two regions in the parameter space which are able to explain the potential
CR excess and the GCE equally well. These two regions comply with all the constraints mentioned
above. In the first region, the scalar requires a mass of 62.5 GeV to 63 GeV and a coupling of
λHS ∼ 2× 10−2. The small values for λHS are required to in order to fit the GCE and antiproton
signals. The values required in our fit are smaller than recent limits derived from vector-boson
fusion at LHC [315]. However, in the first region the singlet scalar is not able to reproduce the
entire DM content in the Universe. The maximal fraction of S to DM is about 30%. We note

14We note that Lconstraints contains also the dwarf limits LdSphs.
15More details are provided in [302].
16We note that there are more recent and slightly more constraining limits by [310,311]. However, we do not expect

this to change the general conclusions of this section.
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Figure 5.14: Triangle plot of the fit to CR antiprotons, the GCE, and all other constraints on the
parameter space within the Higgs portal singlet scalar model. The black, blue and light blue points
lie within the 1, 2, and 3σ region around the best-fit point (denoted by a white dot), respectively.
The figure is taken from [6]. We note that r� = rsun and J = J40◦ .
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that the parameter R introduces a non-trivial interplay between the GCE and CR antiproton signal
which scale with R2 and the constraint from direct detection which scales with R.

In the second region, it is possible to have R = 1. Thus, S could be the only DM particle. In
order to achieve this we require a scalar mass strictly at the Higgs resonance, mS ≈ mh/2, and a
coupling λHS of the order of O(10−3) to O(10−4). The even smaller values of λHS with respect to
the first region are required in order to comply with the constraints from the DM relic density. As
observed in the previous section, there is a slight preference to decrease the J-factor of the Galactic
center and to enhance the local DM density. The best fit-values and 1σ uncertainties of the two
regions are summarized in Tab. 5.9.

In summary, we present a UV-complete BSM model which is able to explain, at the same time,
the DM hint in CR antiproton and the GCE. It is compatible with all current constraints from
direct detection and collider experiments. BSM models with a Higgs portal are attractive since they
are the only renormalizable theories where DM directly couples to the SM.

5.4 Limits on heavy dark matter from cosmic-ray antiprotons

In this section, we will take the more conservative approach and interpret the results of our fit to CR
proton, helium, and the antiproton-over-proton ratio in terms of upper limits on the annihilation
cross section of DM. Therefore, we concentrate on DM masses above 200 GeV. This section is
structured as follows. In Sec. 5.4.1 we describe the technical details and differences to the setup
discussed in Sec. 5.1 and, then, we present model-independent results for different SM final states
in Sec. 5.4.2. Finally, we briefly discuss the application of our limits in the context of minimal DM
models in Sec. 5.4.3.

5.4.1 Technical setup to derive dark matter limits from cosmic-ray antiprotons

The technical details of the fits performed in this section resemble the extended setup described
above in Sec. 5.1.1. However, there are a few small differences which we list in the following.

• We fix the solar modulation potential of AMS-02 antiprotons to the same value as for protons
and helium. This has only a very small effect since we exclude data below 5 GV in the fits.
Furthermore, we use the unmodified AMS-02 data for proton and helium, so the proton and
helium data correspond to a slightly different measurement period compared to antiprotons.

• The fits include the CREAM data of protons and helium, but we do not allow an individual
free normalization (nuisance parameter) for the CREAM data. Instead the normalizations are
fixed to the AMS-02 values.

• Our standard cross-section parametrization for secondary antiproton production in the pp
channel is [117]. We scale to the pA channels with the parametrization suggested in [121]. In
some cases, we will additionally test the cross-section parametrization of [119, 123, 128] and
compare the results.
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In order to estimate the uncertainties of the DM limits due to the adopted CR propagation
scenario, we will slightly modify our standard setup and additionally derive the DM limits in these
modified setups. In particular, we will investigate a diffusion model without convection and two
setups where we fix zh to 2 kpc and 10 kpc, respectively. Furthermore, we vary the rigidity cut on
AMS-02 data, which, in the standard setup, is set to 5 GV, and we try different parametrizations
of the secondary antiproton production cross section. The DM component is described with two
free parameters, the DM mass, mDM and the velocity averaged cross section, 〈σv〉. We investigate
different SM final states, thereby, assuming generic models where the DM particles annihilate with
a branching ratio of 100% into one pair of SM final states. We consider the following final states
in Eq. (2.51): f = q, c, b, t, g,W, Z, h, `, and ν, where q = u, d, s, ` = e, µ, τ , and ν = νe, νµ, ντ ,
and use the energy spectra tabulated in [292]. These tables take into account electroweak processes
in a model-independent way by using electroweak splitting functions [316, 317]. Because of the
electroweak processes also leptonic DM annihilations produce antiprotons and can be constrained
from our setup.

In order to calculate the upper limit on 〈σv〉 as function of DM mass and for each SM final state
we perform a fit with MultiNest and include 〈σv〉 and mDM as free parameters. We divided the
final MultiNest sample points into 20 bins in DM mass range from 200 GeV to 50 TeV, which are
equally-spaced in log(mDM). Then, we deduce the profile likelihood of 〈σv〉 in each bin and define
our limit at the 95% C.L. from the condition ∆χ2 = 3.84. Compared to the previous analysis of [6]
we exploit two strategies to improve the coverage of our parameter space. First, we exploit the
fact that the annihilation cross section, 〈σv〉, affects the DM flux linearly, namely, if we increase
〈σv〉 by a factor 2 also the DM flux of CR antiprotons is increased by a factor 2. We reevaluate
the likelihood on a grid in 〈σv〉 with 41 points logarithmically spaced between 〈σv〉 = 10−27cm3s−1

to 〈σv〉 = 10−23cm3s−1. Effectively this increases our coverage by a factor of 40. Secondly, we
combine the information of different MulitNest scans. The idea is that a good-fit point for one
final state can be a good fit point also for another final states since the energy spectra for example
of all hadronic final states are very similar for large mDM. So, we reevaluate the good fit points
of each scan also for all other final states. Together, these two strategies significantly improve our
coverage and, hence, make our results more robust.

5.4.2 Results and discussion

Figure 5.15 shows the upper limits on the DM annihilation cross section, 〈σv〉, obtained from a
global fit of CR protons, helium, and antiprotons as detailed in Sec. 5.4.1. We present the results
for annihilation into all possible pairs of SM final states. We note that the DM energy spectra of
some final states are indistinguishable for mDM > 200 GeV. Therefore, we present only one limit for
W/Z and for g/c final states. Furthermore, we find that the antiproton production from leptonic
channels is flavor-independent and the limit from neutrinos and charged leptons only differs by a
constant factor ν/` ' 0.4. We compare our limits from CR antiprotons with those from dSph
observations by the Fermi-LAT. The limits on 〈σv〉 from dSphs are derived from the likelihood
defined in Eqs. (3.3) to (3.5). In particular, we exploit the likelihood of the nine dSphs with the
largest confirmed J-factors as given in [207]. We remind that we marginalize over the J-factor of
each dSph according to its uncertainty given in [207]. We find that the limits from CR antiprotons in
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Figure 5.15: We present the upper limits on the DM annihilation cross section, 〈σv〉, at the 95%
C.L. for all annihilation channels into pairs of SM particles. The limits are derived from our global
fit of CR with a DM contribution in CR antiprotons (blue solid line) which we compare to the limits
from dSphs (red dashed lines). We note the different scales on the y-axis for leptonic and hadronic
annihilation channels. The figure is taken from [5].
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the hadronic channels are more constraining for heavy DM than the limits from dSph observations
by the Fermi-LAT. We notice that the limits in the Higgs and top-quark channels exhibit an
increase at mDM ∼ 200 GeV. The origin of this increase is that for those two channels a DM mass
of 200 GeV finds a small evidence for the DM signal discussed in Sec. 5.1, c.f. also to Fig. 5.12. The
charged lepton channel provides competitive limits for mDM

>∼ 1 TeV. The reason that the limit
from CR antiprotons improves between 200 GeV and 1 TeV is related to the fact that electroweak
corrections are enhanced logarithmically for large DM masses [296]. The same argument applies for
the neutrino channels. However, we note that our limits in the leptonic channels are significantly
weaker than the limits in the hadronic channels.

Finally, we quantify the systematic uncertainty on the CR limit arising from our choice of the CR
propagation setup. The discussion is focussed on W/Z final states but we note that the conclusions
are true for all (hadronic) channels. We use the same methodology as before but slightly modify
the setup for CR propagation changing the following assumption from the standard setup:

• We remove convection from our standard setup (labeled: no vc).

• Instead of varying half-height of the diffusion halo in the fit we fixed it to two benchmark
scenarios of zh = 2 kpc and 10 kpc, respectively.

• We include AMS-02 data down to rigidities of 1 GV in the fit.

• We investigate the impact of the antiproton production cross section by changing the standard
parametrization [117] to the parametrizations suggested in [119,123,128].

• We change the DM density profile from a cuspy NFW profile to a cored Burkert profile. For
the Burkert profile we adopt two different values for the core radius. We test rc = 5 kpc and
rc = 10 kpc.

Our results are summarized in Fig. 5.16. The upper left panel displays the various limits obtained in
different CR propagation setups. We observe that the uncertainties are bracketed between the setups
with fixed half-height of the diffusion halo at zh = 2 kpc and 10 kpc. The setup with zh = 10 kpc
provides the most constraining limit while the small halo half-height of 2 kpc corresponds to the
most conservative limits. In the following, we show the envelope of these limits as systematic

Table 5.10: J-factors for different DM density profiles. The ROI corresponds to the analysis by
H.E.S.S. to constrain DM annihilation from the Galactic DM halo [318].

density profile log10

(
JHESS/(GeV2 cm−5)

)
Einasto 21.66
NFW 21.41

Burkert (rc = 5 kpc) 20.05
Burkert (rc = 10 kpc) 19.34
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Figure 5.16: Similar to Fig. 5.15. We present the limits on the DM annihilation cross section, 〈σv〉,
at the 95% C.L. In the upper left panel we show the systematic uncertainty due to different setups
of the CR propagation and the additional uncertainty from the local DM density. The lines with
different cross-section parametrizations are labeled Tan&Ng [123], KMO [128], and Winkler [119].
In the upper right panel we compare all the hadronic annihilation channels and in the lower panel
we investigate the impact of the DM density profile on our results. We compare the CR limit with
the gamma-ray limits of dSphs and the Galactic center (H.E.S.S.). The figure is taken from [5].
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uncertainty. Furthermore, we note that our setup assumes a fixed value for the local DM density of
0.43 GeV/cm3. If we allow for an uncertainty in the local DM density of ±0.15 GeV/cm3 we obtain
the additional uncertainty shown in the light-blue band. In the upper right panel we compare the
DM limits of the various hadronic final states. As already mentioned, they give very similar results.
Finally, in the lower panel of Fig. 5.16 we show the impact of changing the DM density profile.
The CR limits are only mildly affected by the shape of the DM density profile at the Galactic
center. The limit derived with a Burkert profile and a core radius of rc = 5 kpc weakens the limits
by 20% to 30% compared to the NFW density profile, while a core radius of rc = 10 kpc would
weaken the limit by about a factor of 3. We compare the CR limits with the limits from dSph
observation by the Fermi-LAT and with the limits obtained from DM searches by the H.E.S.S.
experiment in the region around the Galactic center. In particular, heavy DM can be constrained
from the non-observations of gamma-ray of the H.E.S.S. experiment [318] which analyzed a circular
ROI of 1◦ centered around the Galactic center excluding the Galactic plane at latitudes |b| < 0.3◦.
The H.E.S.S. analysis assumes that the DM in our Galaxy follows the Einasto profile [40]. We can
compute and compare the J-factor in the H.E.S.S. ROI for different DM density profiles. The values
are summarized in Tab. 5.10. The results show that the J-factors and subsequently the limits on the
DM annihilation cross section crucially depend on the choice of the DM density profile. Assuming
a Burkert profile with rc = 10 kpc instead of the Einasto profile changes the J-factor and, thus,
the limit by more than two orders of magnitude. In this sense, our CR limits provide important
complementary information.

5.4.3 Constraints on minimal dark matter models

We now apply our limits to specific BSM models. We use the framework of so-called minimal DM,
where we add an electroweak fermion multiplet χ to the Lagrangian of the SM. The coupling of the
additional multiplet and the SM is determined by the covariant derivative Dµ. Then, the mass M
of the multiplet χ is the only free parameter. The Lagrangian is given by:

L = LSM + χ̄ (iD/ +M)χ . (5.16)

The hypercharge Y of the multiplet is fixed by the requirement that a suitable DM candidate has to
be electrically neutral [319]. The currently best constraints on electroweak fermions in minimal DM
scenarios are provided by indirect detection, making the antiproton limits derived in the previous
paragraph particularly interesting. The reason for the importance of the indirect detection is related
to the Sommerfeld enhancement of the DM annihilation cross section [320–334].

In the following, we will present results for three cases of different multiplets. Here we briefly
summarize the key properties and refer to [5] and references therein for more details.

• A fermion doublet: In this case, minimal DM represents the limit of a supersymmetric
theory with a higgsino DM candidate. The hypercharge of the doublet must be Y = 1/2.
The mass splitting between the neutral and charged particle, which is induced by loop effects,
is of the order of 340 MeV [335]. The neutral particle of the fermion doublet makes up the
observed relic density of DM for a mass of mχ ≈ 1050 GeV [335]. For smaller masses the
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thermal contribution of χ to the energy content of the Universe, Ωtherm, is smaller than the
measured abundance, Ωmeas. We define the ratio of the Ωχ to the measured abundance as
R = Ωχ/Ωmeas. The pure minimal DM model of a fermion doublet is excluded by direct detec-
tion experiments, since the Dirac fermions have a large spin-independent nucleon scattering
cross section. However in a complete supersymmetric model these limits can be circumvented
due to a mixing of the higgsino with its SM superpartners [336]. Our limits from indirect de-
tection presented below should be understood in such a supersymmetric model, as for example
discussed in [334,337]. Higgsino DM can be constrained by the non-observation of disappear-
ing charged tracks at the LHC. The 13 TeV run excludes DM masses up to 120 GeV [338–341].
In the following, we use the cross section and relic density prediction from [335]. The domi-
nant annihilation of the higgsino occurs in the WW and ZZ channel. Furthermore, there are
is loop induced annihilations into γγ and γZ final states giving rise to gamma-ray lines.

• A fermion triplet: The fermion triplet corresponds to the limit of a supersymmetric model
with wino DM which is extensively studied in literature [325,332,334,335,342–345]. We assume
that everything except for the wino multiplet is decoupled from the SM. The fermion triplet
requires a hypercharge of Y = 0. For Y = 0 the nucleon scattering cross section disappears
at tree-level rendering current direct-detection constraints unimportant. The mass splitting
between the neutral and charged particles due to loop effects is about 160 MeV [346–350].
LHC constraints on wino DM by disappearing charged tracks are sensitive up to masses of
about 460 GeV [338]. The relic density predicted in the wino model matches the observed DM
relic density for mχ ≈ 2.8 TeV [322, 323, 335]. We use the relic density prediction from [335]
and the prediction of the annihilation cross section for indirect detection into the channels of
WW (tree level) and ZZ, Zγ, γγ (loop-induced) from [324].

• A fermion quintuplet: As in the wino case, we require a hypercharge of Y = 0. The
observed relic density is reproduced for a pure quintuplet fermion of mχ ≈ 9.4 TeV [351]. We
use the cross section and relic density predictions from [351].

In Fig. 5.17 we compare the DM limits from CR antiproton to the three scenarios of minimal
DM. As a first step, we consider that the entire amount of DM comes from the minimal DM
particle, Ωχh

2 = Ωmeash
2 = 0.1198 [37]. We note that this requires either a non thermal production

mechanism or a non standard cosmological evolution of the Universe. Then, we compare the limits
on the annihilation cross section of the previous section with the predicted annihilation cross section
in the wino, higgsino, and quintuplet model. We define the cross section for annihilation in any
pair of vector bosons as 〈σv〉V V = 〈σv〉WW + 〈σv〉ZZ + 1

2〈σv〉Zγ . Since the antiproton DM limits
on the annihilation cross section into WW and ZZ are identical, we can directly take this limit
from Fig. 5.16 and apply it to V V . This interpretation of the results is shown in the left column of
Fig. 5.17. For comparison the limits from dSphs are also displayed. We can exclude wino DM up to
the thermal mass of 2.8 TeV, while higgsino DM is only excluded up to about 600 GeV. Quintuplet
DM is excluded in our benchmark scenario of CR propagation, but due to systematic uncertainties,
in a more conservative interpretation of the CR antiproton limit some mass regions might still be
allowed.
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Figure 5.17: We show the upper limits on the DM annihilation cross section (left column) at
the 95% C.L. for three cases of minimal DM models. The rows correspond to a wino (upper row),
higgsino (central row), and quintuplet (bottom row) DM model. The blue band display the upper
limit from AMS-02 antiprotons, which is compared to the limit from dSph observations by the
Fermi-LAT. The solid black line shows the predicted annihilation cross section into vector bosons
pairs V V . LHC excluded regions are marked in brown and the masses at which at which the
abundance of χ matches thermal production is marked with a green shaded band. In the right
column, we display the upper limits on the ratio R = Ωχ/Ωmeas. The dashed line represents the
prediction of the thermal abundance of χ. We show the limits from gamma-ray line searches by
H.E.S.S. for different assumptions on the DM density profile. For more details we refer to the text.
The figure is taken from [5].
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We turn now to the second interpretation of the limits. Here we assume that the minimal DM
candidate makes up only a fraction R = Ωχ/Ωmeas of the total DM content in the Universe. Thus,
we interpret our limits as an upper bound on the ratio R as shown in the right column of Fig. 5.17.
The remaining DM density is assumed to decouple completely from the minimal DM candidate, but
to have the same clustering properties (ρχ(~x) = R · ρDM(~x)). We show additionally the constraints
from dSphs and from the non-observation of gamma-ray lines [352]. These limits are taken from an
analysis at the Galactic center and, therefore, strongly depend on the assumption on the DM density
profile (see also Tab. 5.10). Thus, the CR antiproton limits provide very important complementary
information. In this interpretation, we can exclude thermal DM winos with masses ofmχ

>∼ 1.6 TeV.
Thermal higgsinos are not excluded and thermal quintuplet fermions are only excluded in a few mass
ranges, but not at mχ = 9.4 TeV, i.e. for Ωtherm = Ωmeas.
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Chapter 6

Prospects to detect antideuteron or an-
tihelium in cosmic rays

In Chapter 5 we have explored a potential signal for DM annihilation in CR antiprotons. Its exis-
tence and significance are, however, still discussed controversially in literature. Indeed the analysis
suffers from large systematic uncertainties such as the correlation of uncertainties in the AMS-02
data, Galactic propagation, and the antiproton production cross section. All of these systematic
uncertainties should be understood better in the future. In the meantime, the search for a low-
energy antinucleus in CRs offers direct option to cross-check the DM interpretation, since naturally
the production of antinucelons will result in the production of heavier antinuclei by coalescence.
The observation of a low-energy antinucleus, in particular antideuteron, would provide additional
information although its production from DM annihilation is highly suppressed compared to an-
tiprotons. The reason is that the secondary production is suppressed kinematically even further,
see Sec. 2.6. So, antideuteron is expected to have a favorable signal-to-background. However, it
is experimentally very challenging to explore the extremely low fluxes at which DM signals or sec-
ondary fluxes are expected. On the other hand, the AMS-02 experiment and the future experiment
GAPS are expected to (partly) explore the interesting parameter space. For more details we refer
to Sec. 2.6.

In this chapter, we will calculate the antideuteron and antihelium signal arising from the po-
tential DM hint in CR antiprotons and discuss the implications. Baseline for this calculation is the
analysis [8] (abbreviated CuKrKo in figures). Then, we will adopt a more conservative approach
and calculate the maximal antideuteron flux which is compatible with the DM limits from CR an-
tiprotons from the same analysis [8]. The results are compared with the expected sensitivities of
GAPS and AMS-02. This chapter is based on the paper [6].

6.1 Technical specification of the analysis

For our calculations we adopt the analytic coalescence model which is presented in Sec. 2.6 to obtain
the source terms of secondary and DM antideuteron or antihelium. Then, the source terms are
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6.1. Technical specification of the analysis

propagated to the antinuclei fluxes by solving the diffusion equation for CRs, Eq. (2.20), using the
Galprop code. Furthermore, we compare with the approximate analytic solution of the diffusion
equation discussed in Sec. 2.3.2. In the following of this section, we state the technical details of
the calculation, but we do not repeat any formulas. For a more general overview, we refer to the
respective section in Chapter 2.

Finally, we remark that in this chapter whenever we say antihelium we imply antihelium three.
If, instead, we mean antihelium four we will denote this explicitly.

6.1.1 Determination of the antideuteron and anithelium source terms

The secondary source term is given by Eq. (2.41), if we replace the antiproton production cross sec-
tion by the antinuclei production cross sections for antideuteron and antihelium given by Eq. (2.59)
and Eq. (2.60), respectively. The energy threshold for the projectile to produce antideuteron (ani-
helium) in a pp collision is Tthr = 16mp (Tthr = 30mp). Antiproton and antineutron production is
described with the analytic parametrization taken from [117]. This takes into account a 30% en-
hancement of antineutron production with respect to antiprotons. The parametrization is given for
pp collisions. For heavier projectiles or targets we scale with mass number to the power 0.7, in other
words, a factor A0.7. We include the contributions of the four most important channels: pp, pHe,
Hep, and HeHe. The contribution of heavier projectiles and targets is at the percent level and can
be neglected. Furthermore, we consider the contribution from p̄+p→ D̄+X and p̄+He→ D̄+X,
which requires a parametrization of the fully differential cross section of the reaction p̄+p→ p̄+X.
In the absence of good measurements and parametrization, we approximate this cross section with
the one of p+ p→ p+X and use the parametrization of [353]. The source term for antideuteron,
separately for each the individual channel, was already shown in Fig. 2.13. The corresponding figure
for antihelium looks very similar (see Ref. [4]).

Next to the secondary production there is also a so-called tertiary which becomes important at
low energies. Tertiaries are inelastically scattered secondaries. The source term is again given by
Eq. (2.41), however, now the cross section describes the inelastic but non-annihilating interaction
of the antinucleus on the ISM. This cross section is purely measured. For antideuteron we follow
the procedure suggested in [155]. We use the data from [354] for the scattering of antiprotons
on deuteron with additional meson production. From this we extract the total inelastic, but non-
annihlating, cross section of the reaction D̄ + p → D̄ + X. Then we assume that the functional
form of the fully-differential cross section is given by the p+ p→ p+X cross section parametrized
by [353]. For ISM component of helium in the initial state we scale this cross sections by 40.8. For
antihelium production we assume that the tertiary production cross section of antideuteron can be
scaled with a factor 3/2.

The source term for DM is calculated from Eq. (2.51), adapted for antideuteron or antihelium,
respectively, and the energy spectra are calculated in the analytic coalescence model from the
Eqs. (2.64) and (2.65). The energy-spectra for antiprotons are taken from the tables provided
in [292]. We assume that antiproton and antineutron production from DM is equal. Our baseline
scenario is that DM annihilates to 100% into a pair of bb̄ quarks. However, we will investigate also
other pure SM final states in the results section below. In principle, one can imagine that there
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Chapter 6. Prospects to detect antideuteron or antihelium in cosmic rays

is also a tertiary contribution for the DM flux. We take this into account but notice that it is
negligible compared to the primary DM flux. For the secondaries the situation is different because
of the very different shape in energy compared to the DM flux. The spatial distribution of DM is
assumed to follow an NFW density profile [39], (see Eq. 1.4), with a scale radius rh = 20 kpc.
The halo density, ρh, is normalized such that the local DM density at r = r� = 8 kpc is given by
0.43 GeV/cm3 [41]. We remind that CRs mostly probe the local DM density while they are not
very sensitive to a change of the DM density profile at the Galactic Center [5, 132, 133], see also
Sec. 2.5.6. For example, changing the cuspy NFW profile to a cored Burkert profile (see Eq. 1.3)
only changes the antinuclei fluxes from DM by an overall normalization of about 30%. This effect
is, however, degenerate with 〈σv〉 in the following sense: the normalization of antiprotons and
antideuteron/antihelium is changed simultaneously by the same amount. So, changing the NFW
profile to a Burkert profile decreases the antiproton signal in [8] such that a larger value of 〈σv〉 is
required. All in all, the effects cancel in our calculations.

As a benchmark, in this chapter we use a coalescence momentum which is tuned to the an-
tideuteron production in Z-boson decays at the ALEPH experiment [172]. This is expected to be
very close to the situation of DM annihilation because the initial state is non-hadronic. We adopt
the value of pC = (160±19) MeV which was found in the analysis of [159]. Recently, the ALICE ex-
periment measured the production of antideuteron, antihelium, and antitritium in pp collisions [355].
The results are presented in terms of the B2 and B3 parameters defined in Eq. (2.62). Explicitly,
they are given by:

B2 =
mD

mpmn

πp3
C

6
and B3 =

mHe

m2
pmn

(π
6
p3
C

)2
. (6.1)

ALICE provided the B2 factor at different CM energies,
√
s = 0.9, 2.76, and 7 TeV, and as function

of transverse momentum. Taking into account that in CRs the dominant contribution of secondaries
originates from small pT, we estimate that B2 should be taken between 0.01 and 0.02 GeV2. On
the other hand, the factor B3 is only provided at

√
s = 7 TeV. At small transverse momenta B3

varies between 1 × 10−4 and 3 × 10−4 GeV4. We can translate these BA factors into coalescence
momenta. Then, we obtain pC between 208 and 262 MeV for antideuteron (B2) and pC between
218 and 261 MeV for antihelium and antitritium (B3). We note that the coalescence momenta from
B2 and B3 are very similar. This is a very interesting and actually non-trivial result because pC is
a phenomenological parameters. We take this result as confirmation that the analytic coalescence
model correctly describes the scaling between antinuclei with different masses. In our default setup,
we will adopt the more conservative coalescence momentum of pC = 160 MeV. All results are addi-
tionally also presented for the larger coalescence momentum inferred from the ALICE measurement
of pC = 248 MeV.

Finally, we note that antihelium can be produced in two ways: first directly by the fusion of two
antiprotons and one antineutron. The second option is to produce tritium from one antiproton and
two antineutrons. Tritium will decay subsequently into antihelium during propagation. This sub-
tlety concerns only antihelium. Antideuteron can only be produced in a single way, by coalescence
of one antiproton and one antineutron.
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6.1. Technical specification of the analysis

6.1.2 Propagation of antideuteron and anithelium

Numerical solution of the diffusion equation

In the standard setup, we use Galprop to solve the diffusion equation and to calculate the an-
tideuteron and antihelium fluxes. Note that Galprop does not calculate antideuteron and an-
tihelium in its standard configuration. We have, therefore, implemented the relevant extensions
and consider the secondary, tertiary, and DM contribution for each antinucleus. We adopt the
same setup which is used in [8] and also described in Chapter 5. More specifically, we adopt a
2-dimensional Galaxy with cylindrical symmetry and a maximal radial extension of 20 kpc. We use
homogeneous and isotropic diffusion which is assumed to be a power law in rigidity. Furthermore,
we allow for reacceleration which is described by the speed of Alfven magnetic waves, vA, and a
constant convection velocity perpendicular to the Galactic plane, vc. We include DM annihilation
which is fully described with two free parameters, the DM mass, mDM, and the annihilation cross
section, 〈σv〉. We adopt the best fit parameters from the fit including DM from [8]. The values
of the propagation parameters are repeated in Tab. 6.1. We take into account the effect of solar
modulation. In the standard setup, we use the force-field approximation, Eq. (2.66), with a solar
modulation potential of 400 MV.

Analytic solution of the diffusion equation

We compare the results obtained with Galprop with the analytic diffusion model of [94]. Note
that this solution was already exploited for antideuteron [165] and antihelium [164]. The solution
of this model is stated in Chapter 2 in Eqs. (2.31) to (2.33). We adopt a maximal radial extension,
rmax = 20 kpc. The half-height of the Galactic disk is taken to be h = 0.1 kpc and the densities of
hydrogen and helium in the Galactic disc are 1 cm−3 and 0.1 cm−3, respectively. In contrast to the
numerical setup we do not propagate the parent nuclei p, He, and p̄, which is required to calculate
the secondary source terms of D̄ and He. Instead, we take these fluxes directly from AMS-02
data [58, 59, 75]. We reverse the effect of solar modulation within the force-field approximation
assuming a solar modulation potential of 600 MV. The annihilation cross section of antideuteron on
the ISM is the difference of the total and elastic antideuteron cross section: σann = σtot−σel. There
is, however, only a measurement of the total deuteron-antiproton cross section [356]. By symmetry

1We note that D0 is normalized at 4 GV in Galprop and at 1 GV in the MED and MAX configuration.

Table 6.1: Summary of the propagation parameters for different setups.

Parameter CuKrKo MED MAX
D0 [kpc2/Myr]1 0.326 0.0112 0.0765
δ 0.25 0.70 0.46
vc [km/s] 45 12 5
vA [km/s] 29
L [kpc] 5.4 4 15
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Chapter 6. Prospects to detect antideuteron or antihelium in cosmic rays

this has to be equal to the total antideuteron-proton cross section. Finally, we approximate the
annihilation cross section by assuming that it can be scaled from the p̄p cross section according to:

σD̄pann ≈
σD̄ptot

σp̄ptot

(σp̄ptot − σp̄pel ). (6.2)

Furthermore, we adopt a scaling factor of 40.7 for helium targets and 3/2 for the antihelium annihi-
lation cross section. The remaining propagation parameters are fixed to two benchmark scenarios
which are taken from [133]. This analysis has identified three sets of propagation parameters, com-
monly known as MIN, MED, and MAX. All of them are tuned to B/C data, but they give quite
different results for antiprotons from DM annihilation. We note that the MIN scenario is disfavored
by recent data from AMS-02 [110,115,297,298]. Therefore, we test only the MED and MAX setups,
whose parameters are stated in Tab. 6.1.

6.2 Results for secondary, tertiary and dark matter fluxes

We start by presenting the results on antideuteron and, then, in the second part of this section
comment on antihelium.

6.2.1 Predictions and limits for antideuterons

Figure 6.1 shows the antideuteron fluxes derived as specified in the previous section. We exploit
the analytic coalescence model to calculate separately the fluxes of secondaries, tertiaries, and DM.
Two scenarios are explored: our baseline scenario assumes a coalescence momentum of 160 MeV
(left panel) which is tuned to the Z-boson decay measured by ALEPH. On the other hand, we
explore also the larger coalescence momentum of 248 MeV (right panel) which is suggested by recent
measurements of ALICE in pp collisions. The DM flux corresponds to annihilation of a potential DM
particle into a pair of bb̄ quarks. The DM mass is set to 71 GeV and the annihilation cross section to
2.6×10−26 cm3/s, which matches the hint from CR antiprotons found in [8]. In the standard setup we
use the Galprop code (solid) lines. These results are cross checked against the analytic propagation
models in the MED and MAX configuration (shaded bands). Solar modulation is taken into account
within the force-field approximation. We assume a Fisk potential of 400 MeV, which is a realistic
value since the GAPS experiment is expected to take data during a period of low solar activity.
The secondary fluxes peak around 3–4 GeV/n and quickly decrease at smaller energies due to the
kinematic suppression discussed above. We note the difference between the Galprop propagation
setup and the MED/MAX setup in the secondary flux. The Galprop setup lies significantly above
the analytic setups at low energies, while there is a very good agreement at higher energies. The
origin of the difference is that continuous energy losses and reacceleration is neglected in our analytic
setups. Hence, the Galprop results are more reliable at low energies. At very low energies of about
0.4 GeV/n the tertiary flux becomes important and dominates over the secondary flux. So, this
tertiary flux is the true background for DM searches in GAPS energy bin. The DM fluxes peaks
at 0.1–0.2 GeV/n. In the conservative coalescence setup with a coalescence momentum of 160 MeV
the flux reaches a maximum of 3 × 10−6 (GeV/n)−1m−2s−1sr−1 and, therefore, lies within the
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Figure 6.1: Antideuteron fluxes as function of kinetic energy-per-nucleon. We show separately
the contribution from secondaries, tertiaries, and a potential DM signal. The DM flux corresponds
to the DM hint from CR antiprotons found in [8] (abbreviated CuKrKo), The putative signal
corresponds to the annihilation of a DM particle with a mass of mDM = 71 GeV and an annihilation
cross section of 〈σv〉 = 2.6 × 10−26 cm3/s into a pair of bb̄ quarks. The diffusion equation for
CR propagation is solved using Galprop (solid lines) with the propagation parameters found
in [8] (best-fit with DM). For comparison, we show the solution of the analytic propagation setup
of [133]. The shaded band comprises the MED and MAX scenarios. We investigate two values for
the coalescence momentum: pC = 160 GeV (left panel) and pC = 248 GeV (right panel). Finally, we
show the current antideuteron flux limit by BESS (95% CL) [166] and the expected sensitivities of
AMS-02 [168] and GAPS (99% CL) [357]. The figure is taken from [4].

sensitivities of both GAPS and AMS-02 which are expected at 2× 10−6 (GeV/n)−1m−2s−1sr−1. In
the analytic propagation setup, the MAX scenario lies within the experimental sensitivities while
the MED scenario lies slightly below. If, however, we assume that the larger coalescence momentum
of 248 MeV is applicable also for DM we increase the DM flux by approximately a factor 4. In this
case, also the MED propagation scenario is within the experimental range.

We perform various cross checks in order to investigate how our results are affected by systematic
uncertainties. For this we consider the whole best-fit region of the DM hint from [4]. The 2σ best-fit
contour is transferred into a contour in mDM and the average D̄ flux in the GAPS bin divided by
GAPS sensitivity. This average D̄ flux divided by GAPS sensitivity can be understood as follows.
If this quantity is larger than 1 GAPS will be able to detect the antideuteron flux while it will
not be sensitive to the flux if this quantity is smaller than 1. The results for the 2σ contours are
shown in Fig. 6.2. The blue contour in each panel corresponds to our baseline setup, namely, the
analytic coalescence model, a coalescence momentum of pC = 160 MeV, solar modulation with a
Fisk potential of 400 MV and CR propagation with Galprop. Almost the entire blue contour lies
within the expected experimental sensitive of GAPS. In the following, we will change each of these
four assumptions. We start by changing the coalescence model from the analytic to a MC-based
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Figure 6.2: The four panels display the average antideuteron flux in the GAPS energy range
divided by GAPS sensitivity of 2.0 × 10−6 m−2s−1sr−1(GeV/n)−1 [357] as function of DM mass.
We perform four different cross checks of systematic uncertainties arising from the choice of the
coalescence model (upper left), the coalescence momentum (upper right), solar modulation (lower
left), and the propagation setup (lower right). The blue contour corresponds to our standard setup
and refers to the 2σ best-fit region of the DM hint from [8]. More details are provided in the text.
The figure is taken from [4].

approach. The energy spectrum of the MC-based approach is taken from [159]. We note that
this MC-based is tuned to ALEPH data. We observe that the analytic and MC-based coalescence
models give very similar results (upper left panel of Fig. 6.2). This result was already hinted in
Sec. 2.6. It is expected since both coalescence models are tuned to ALEPH data. We remind that
the energy bin of ALEPH and GAPS approximately coincide and, therefore, our prediction for the
antideuteron yield in GAPS does not depend on the coalescence model. The situation will change
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Figure 6.3: This figure is very similar to Fig. 6.2. The blue contour shows our standard setup
for DM annihilation into bb̄ final states. We compare this with the results of DM annihilation in
different hadronic SM final states: gg, ZZ∗, hh, and tt̄. The 2σ best-fit regions are taken from
Fig. 5.12. The figure is taken from [6].

for different energy bins. For example, a MC-based coalescence model typically predicts higher
D̄ yields at higher energies and slightly lower yields at lower energies. Changing the coalescence
momentum from 160 to 248 MeV results in an increase of the D̄ yield by approximately a factor of
4 (upper left panel). This behavior is easily seen from Eq. (2.59): the production cross section (and
finally the flux) scales with p3

C . We remind that the situation of DM annihilation is expected to be
more similar to Z-boson decay which has a non-hadronic initial state. In this sense, the smaller
coalescence momentum of 160 MeV might be more appropriate for our prediction. Changing the
solar modulation potential between 300 and 500 MV only has a very small effect on the result (lower
left panel). The reason is that the DM flux is very flat around 0.1 GeV/n. On the other hand,
the propagation setup can significantly impact the result. If we change to the analytic propagation
model and use the MAX scenario, the entire contour is within the GAPS sensitivity range, while
the MED configuration would be entirely below. However, we do not investigate the antiproton

Table 6.2: Summary of the best-fit DM mass and the velocity averaged cross section for various
SM final states from [6] and [8].

Final state mDM [GeV] 〈σv〉 [10−26 cm3/s]

gg 34 1.9
bb̄ 71 2.6
ZZ∗ 66 2.4
hh 128 5.7
tt̄ 173 3.8
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Chapter 6. Prospects to detect antideuteron or antihelium in cosmic rays

yield of the MED and MAX propagation setup. Probably, in the MED scenario we would obtain
an antiproton yield below current DM limits and in the MAX scenario we would overproduce
CR antiprotons. Therefore, we stress that the Galprop setup provides the most reliable result.
So far we have always assumed pure annihilation of the DM particles into a pair of bb̄ final state.
But our results are not specific to this final states. It was shown in Sec 5.3 that the putative CR
antiproton excess can be fitted well with DM annihilation into basically any hadronic SM final state.
We use the results of [6] and transfer the 2σ best-fit contours of various hadronic final states into
the plane of DM mass and GAPS sensitivity. The results for the final states gg, ZZ∗, hh, and tt̄
are compared with our standard assumption of bb̄ final states in Fig. 6.3. All final states, except tt̄,
are at least partly within the detection range of GAPS.
Finally, we remark the compatibility of the potential CR antiproton excess and the GCE [213,214,
226, 358] in gamma rays. Although, there are possible astrophysical explanations, like for example
a population of unresolved millisecond pulsars, the DM hypothesis at the Galactic Center is not
yet excluded. The DM interpretation of the GCE points to very similar values for DM mass and
velocity averaged cross section as the DM hint in CR antiprotons. In this sense, our analysis shows
that antideuterons might also probe the DM interpretation of the GCE.

Now we take a more conservative perspective and calculate the maximal antidueteron flux which
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Figure 6.4: We transfer the DM limit from CR antiprotons derived in [6] to the maximal allowed
antideuteron flux. The y-axis shows the maximal allowed flux in the GAPS energy bin divided by
the GAPS sensitivity. For comparison, we show the contours of the potential DM signal (contours
surrounded with black line) from Fig. 6.2 (upper right panel).
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6.2. Results for secondary, tertiary and dark matter fluxes

can be expected without violating recent DM limits from CR antiprotons. We adopt our standard
setup and transfer the DM limit from [8] into the plane of DM mass and GAPS sensitivity. The
DM limit in [8] is derived from a MultiNest scan with free parameters of CR propagation and
two free parameters for DM, the DM mass and the velocity averaged cross section. We calculate
the antideuteron flux for each point in the MultiNest chain which is below the DM limit. Then,
we search in each slice of DM mass for the maximal antideuteron flux in the GAPS energy bin. In
Fig. 6.4, we report this maximal flux divided by the GAPS sensitivity. We provide the two curves,
one curve for pC = 160 MeV and a second curve for pC = 248 MeV. The shaded band represents
the systematic uncertainty arising from the adopted CR propagation setup (c.f. to the different
lines in Fig. 3 of Ref. [8]). The result shows that GAPS will explore a new parameter space for
mDM

<∼ 200 GeV, while at higher DM masses the detection of antideuterons by GAPS is already
excluded by CR antiprotons measured by AMS-02.

6.2.2 Predictions for antihelium

Finally, we apply all our tools on antihelium and calculate the fluxes from secondaries, tertiaries,
and DM sources. They are shown separately in Fig. 6.5. The role of the coalescence momentum
is even more important for antihelium than for antideuteron, since the production cross section
and, subsequently, the flux scales with pC to the sixth power. Therefore, the larger coalescence
momentum of 248 MeV implies a significant increase of the antihelium flux with respect to the
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Figure 6.5: Fluxes of 3He as function of kinetic energy per nucleon. We explore two different
propagation setups. The first is based on Galprop adopting the best fit parameters of [8] (left
panel). The second scenario is based on [133] in the MED configuration (right panel). The bands
display the uncertainty on the coalescence momentum which is varied between 160 MeV to 248 MeV.
We apply a correction due to solar modulation using the force-field approximation with a solar
modulation potential of φ = 600 MV. For comparison, we show the BESS limit (95% CL) [167] and
AMS-02 sensitivity (95% CL, scaled to 5 and 13 years) [359]. The figure is taken from [4].
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smaller coalescence momentum of 160 MeV. The difference is a factor of 14 as can be seen from
the width of the bands in Fig. 6.5. Note that previous publications typically relied on the smaller
coalescence momentum [164,360]. We observe that in the Galprop propagation setup (left panel)
the DM component seems to be enhanced with respect to the MED configuration (right panel).
Probably, this is due to the enhancement of antihelium in a diffusion setup with reacceleration
which was noted in [361]. We remind that we neglect reacceleration in the analytic propagation
setup. Our results show that the antihelium flux of secondaries and DM are significantly below the
current AMS-02 sensitivities. This is particularly interesting since AMS-02 observed a few particles
which are compatible with a 3He and 4He interpretation in the detector. If these candidates were
confirmed, the theoretical interpretation would depend on the isotope and the energy regime. At low
energies of 1 GeV/n the observation of 3He would strongly indicate a DM origin, while an observation
of 3He above a few GeV/n would point towards a secondary origin. A putative observation of 4He
could not be explained in our current models. Antihelium four should be suppressed compared to
antihelium three by approximately 3 orders of magnitude. If indeed the observation of 4He was
confirmed, this would challenge our current understanding of the Universe [362].
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Chapter 7

Testing blazar models with angular cor-
relations and photon-count statistics

Blazars represent the dominant population of resolved, i.e. individually detected by the Fermi-LAT,
extragalactic point sources in the gamma-ray sky [363]. In order to detect an individual source a
minimal flux of this source is required. If we continue to smaller individual fluxes per source,
further populations are expected to show up. These populations are, for example, mAGN and
SFG. Moreover, if we assume that DM particles can annihilate or decay and produce gamma-rays,
the corresponding signals from extragalactic DM halos could establish an additional population of
point-like sources. However, one can estimate the fluxes at which SFG and mAGN would contribute
significantly to the source-count distribution of gamma-ray sources. From these estimations neither
the 1pPDF method [265] nor the APS [281] are expected to be sensitive to SFG and mAGN. A
similar conclusion is true for DM. Therefore, it is reasonable to assume that our signals of the
1pPDF method [265] and the APS [269] in the unresolved flux regime are dominated by blazars. In
this sense, the 1pPDF method and the APS can be used to constrain the distribution of blazars in
the unresolved flux regime. We note that the sensitivity of the 1pPDF method to probe the source-
count distribution of blazar models was already hinted in [265]. In this chapter, we use the GLF
and SED model of blazars from [201]. In this model, we derive constraints on the blazar populations
from the unresolved flux regime by exploiting the 1pPDF method and the APS of gamma rays. We
compare these results with the constraints we obtained by refitting the blazar model to the latest
Fermi-LAT source catalog [363], i.e. in the resolved flux regime.

This chapter is structured as follows. In Sec. 7.1 we describe the technical specification to fit the
blazar model to our observables. In Sec. 7.2 we present our results individually for each observable
and, finally, in Sec. 7.3 we discuss the compatibility and complementarity of our results.

7.1 Model for the blazar populations

The GLF and SED model from [201] was already described in detail in Sec. 3.3.1. This model
contains a large number (17) of free parameters. In [201] these are fitted to data from the Fermi-LAT
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catalog which is complemented with some additional redshift information from spectroscopic and
photometric measurements as detailed in [364]. In other words, the model is constrained by the
information of individually resolved sources. Our goal is to constrain the model with additional
information in the unresolved regime, i.e. below the current detection threshold of the Fermi-LAT
for point sources. Therefore, we fit the blazar model with the 1pPDF method and to the APS.
In these fits, we will vary the parameters which control the general behavior of the GLF, so the
five free parameters are the normalization A of the GLF, the central value µ∗ of the distribution
of the photon spectral index Γ, the power-law index γ1 of the luminosity dependence at small L,
and the central values p∗1 and p∗2 which govern the redshift dependence of the LDDE model. The
remaining values are fixed to the best-fit values of [201]. Finally, we refit the blazar model to the
4FGL catalog data varying the same five free parameters. The technical details for each of the three
fits is provided in the following subsections.

7.1.1 The technique of the one-point probability distribution function

Our analysis is focussed on the energy range from 1 GeV to 10 GeV, where we have large statistics
and a good angular resolution of the Fermi-LAT detector. We assume that the total dN/dS is given
by blazars. Other sources are expected to be subdominant at the fluxes tested with the 1pPDF.
The dN/dS is computed from Eq. (3.35). We restrict the redshift integration between 0.01 and 5.0,
since there are no blazars at smaller distance and blazars at larger distances are below the sensitivity
of the 1pPDF method. The integration bounds of the photon spectral index, Γ, are chosen between
1.0 and 3.5. These bounds properly cover the range of observed blazars [363]. Our model includes
the diffuse gamma-ray emission from Galactic foregrounds and a generic isotropic distribution. The
normalization of the Galactic foreground emission, Agal, and the total isotropic flux, Fiso, serve as
nuisance parameters in the fit. Specifically, x(p)

diff is defined as

x
(p)
diff = Agal x

(p)
gal + x

(p)
iso (Fiso) (7.1)

with

x
(p)
gal =

∫
Ωpix

dΩ

Emax∫
Emin

dE
dS

(p)
gal(E)

dE
· E(p)(E), (7.2)

x
(p)
iso =

∫
Ωpix

dΩ

Emax∫
Emin

dE
dSiso(E)

dE
· E(p)(E) (7.3)

= Fiso ·
∫

Ωpix

dΩ

Emax∫
Emin

dE
EΓiso (1− Γiso)

E1−Γiso
max − E1−Γiso

min

· E(p)(E).

Here, dS
(p)
gal/dE is the energy-differential flux of the Galactic foreground emission. and the flux of

the isotropic component is modeled as power law, dSiso/dE ∝ E−Γiso . We remind that the total

154



Chapter 7. Testing blazar models with angular correlations and photon-count statistics

isotropic flux is defined as Fiso =
∫ Emax

Emin
dE Siso/dE. The parameter Γiso is fixed to 2.3, which is the

measured index of the diffuse isotropic background [365].
We exploit the Fermi-LAT gamma-ray data from 2008 August 4 (239,557,417 s MET) until

2018 December 10 (566,097,546 s MET) which are released at Pass 81. The event selection and
data processing was performed using the Fermi Science Tools (v10r0p5) 2. We select data passing
the standard quality selection criteria (DATA_QUAL==1 and LAT_CONFIG==1). We require events to
comply with the ULTRACLEANVETO cut and use the corresponding instrument response functions.
The corresponding PSF is used to determine the average distribution function of the fractional
photon flux, ρ(f), c.f. Eq. (3.31). In order to avoid significant PSF smoothing, the event sample
is restricted to the PSF3 quartile following [258,265]. The data is binned according to the HEALPix
equal-area pixelization scheme [366] with a resolution parameter κ = 7. This corresponds to a total
number of pixels given by Npix = 12N2

side and Nside = 2κ. To avoid unnecessary contamination
of the diffuse emission from the Galactic plane, we restrict the analysis to high latitudes, |b| > 30
deg. We use the official spatial and spectral template of the Interstellar Emission Model (IEM) as
provided by the Fermi-LAT Collaboration for Pass 8, gll_iem_v06.fits [367], to obtain dS

(p)
gal/dE.

The likelihood is defined as L(~Θ) =
∏Npix

p=1 p
(p)
k , where ~Θ denotes the fit parameters and p(p)

k is
defined in Sec. 3.4. We not that this likelihood corresponds to the method L2 in [258]. To sample
the likelihood we exploit the MultiNest package in a configuration with 1500 live points and a
stopping parameter of tol=0.2. All results in the following will be presented within the frequentist
framework.

7.1.2 The angular power spectrum technique

We define the APS of intensity fluctuations in gamma rays as Cij` = 1
2`+1

∑
m a

i
`ma

j∗
`m. This sum is

an estimator for the expectation value 〈ai`ma
j∗
`m〉 discussed in Sec. 3.5. The indices i and j denote

different energy bins. Furthermore, a`m are the coefficients of the expansion of the gamma-ray
intensity fluctuations in spherical harmonics: δSi(~n) =

∑
`m a

i
`mY`m(~n), with δSi(~n) = Si(~n)−〈Si〉.

We note that this definition differs from Eq. (3.40) by a normalization factor 〈Si〉. For i = j we refer
to the APS as energy auto-correlation, while for i 6= j we call it cross-correlation of the intensity
fluctuations in two different energy bins (short: energy cross-correlation).

For blazars, which are point-like and bright astrophysical sources, the APS signal is dominated
by the Poisson noise [269]. The Poisson noise is independent of `. In concordance with Eq. (3.53)
we define

CijP =
1

4π

∫ 5.0

0.01
dz
dV

dz

∫ 3.5

1
dΓ

∫ Lmax

Lmin

dLΦ(L, z,Γ)Sis(L, z,Γ)Sjs(L, z,Γ) (7.4)

× [1− Ω(Sthr(Γ))] .

1Publicly available at https://heasarc.gsfc.nasa.gov/\FTP/fermi/data/lat/weekly/photon/. More details
are found at https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/LAT_
DP.html

2https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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7.1. Model for the blazar populations

We adopt the integration bounds in luminosity of Lmin = 1043 erg/s and Lmax = 1052 erg/s
from [201]. Equation (7.4) resembles the definition of CP in Sec. 3.5 apart from the factor (1 −
Ω(Sthr(Γ)) which takes into account that resolved point sources are masked in the CP measurement.
Hence, Ω is the Fermi-LAT sensitivity to resolve a point source. This sensitivity depends on the
photon flux, Ss, of the source and its spectral index, Γ. Our benchmark model for Ω is a step func-
tion, which is equal to 0 for Ss < Sthr(Γ) and 1 otherwise. We determine the flux threshold, Sthr(Γ),
separately for the 4FGL [193] and the Third Catalog of Hard Fermi-LAT sources (3FHL) [368] cat-
alog. For each value of Γ we define Sthr(Γ) such that 98% of the sources in the respective catalog
are above the flux threshold. We cross-check, as discussed in more detail below, that the choice
of Ω does not impact our result. Furthermore, we stress that the Γ-dependence of Sthr is an im-
provement compared to previous analyses(e.g. [270]). We use the CP measurement of [274] which
is performed on 8 years of Fermi-LAT. The data is binned into 12 energy bins between 524 MeV
and 1 TeV. The measurement is based on Pass 8 data and events are selected from the event class
P8R3_SOURCEVETO_V2 and with PSF1+2+3. The masking procedure of resolved point sources is en-
ergy dependent: In the energy range from 0.5–14.5 GeV all sources from the FL8Y3 catalog are
masked, while from 14.5–120 GeV sources are masked both from the FL8Y and 3FHL catalogs.
Above 120 GeV sources are only masked if they are in the 3FHL catalog. Low Galactic latitudes
are masked to avoid a strong bias from the Galactic plane. The remainder of the Galactic diffuse
emission at high latitudes is modeled using the official IEM template, gll_iem_v6.fits [367]. For
a more detailed description of the analysis we refer to [274].

We perform the χ2-fit of the APS on the auto- and cross-correlation energy bins and define:

χ2
APS =

∑
i≤j

[(
CijP

)
meas
−
(
CijP

)
th

]2

σ2
CijP

, (7.5)

where the subscripts meas denotes the measured CP from [274] and the subscript th denotes the
theoretical CP which is calculated from Eq. (7.4). Moreover, σ2

CijP
is the measurement uncertainty of

the CP. The corresponding likelihood, L = exp(−χ2
APS/2), is sampled with the MultiNest package.

We use a configuration with 2000 live points, an enlargement factor of efr=0.7, and a stopping
parameter of tol=0.1.

7.1.3 The 4FGL and 4LAC catalogs for resolved blazars

We aim to compare the result in the unresolved regime with those from resolved sources. Therefore,
we analyze the most recent source catalog, the 4FGL catalog, complemented with redshift infor-
mation from the Fourth Catalog of Active Galactic Nuclei (4LAC) catalog [363]. Both catalogs are
based on 8 years of Fermi-LAT data. In the following, whenever we mention 4FGL we rather mean
4FGL complemented with redshift information from 4LAC . We note that the resolved sources in
the 4FGL catalog are the only observable in our setup with explicit redshift information. Since the
statistical methods of the 1pPDF and APS do not identify individual sources, they cannot directly

3The FL8Y is a preliminary version of the 4FGL catalog. We assume that the flux thresholds of the preliminary
FL8Y and the final 4FGL are identical.
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constrain the redshift-dependence encoded in the LDDE model. The source-count distributions
extracted from the 4FGL catalog is fitted varying the same five GLF parameters as above: A, µ∗,
γ1, p∗1, and p∗2. The total χ2

4FGL may be split into three contributions which arise from (i) the total
number of observed point sources, (ii) the number of associated4 blazars, and (iii) blazars with
redshift measurements:

χ2
4FGL = χ2

all + χ2
as + χ2

z. (7.6)

The first term serves as upper limit of the source-count distribution. In detail, we extract the
source-count distribution of all sources, (dN/dS)all,i, in 12 flux bins i. The bins are equally spaced
in log(S) and range from 10−12 × cm−2s−1 to 10−7 × cm−2s−1. In the context of the catalog fit,
S is always the flux in the energy bin from 1 GeV to 100 GeV. As before, we restrict the analysis
to high latitudes |b| > 30 deg. Here, the point sources are dominated by blazars, but some of the
unassociated sources could fall into a different source class. Therefore, when we fit the catalog
dN/dS of associated sources to our theoretical model we take it as an upper limit, formally defined
as:

χ2
all =

∑
i


[
(dN

dS )
all,i
−〈dN

dS 〉th,i
]2

σ2
all,i

, if 〈dN
dS 〉th,i>(dN

dS )
all,i

0 , otherwise.
(7.7)

Here 〈dN/dS〉th,i is the source-count distribution predicted by our GLF model. The 〈...〉 denote
the average dN/dS in each bin, i.e. the integral of the dN/dS (see Eq. (3.35)) in each flux bin i
divided by the bin width ∆Si.
In analogy to the first term, we define the second term which constrains the contribution of the
associated sources. However, instead of extracting the total source-count distribution, we count only
the dN/dS of associated blazars, denoted (dN/dS)as,i. In contrast to the first term, (dN/dS)as,i

serves as a lower limit in the fit, because we know that the association in the catalog is incomplete.
We define:

χ2
as =

∑
i


[
(dN

dS )
as,i
−〈dN

dS 〉th,i
]2

σ2
as,i

, if 〈dN
dS 〉th,i<(dN

dS )
as,i

0 , otherwise.
(7.8)

Note that by taking χ2
all as an upper limit and χ2

as as a lower limit, we avoid double counting in
Eq. (7.6).
The last term of Eq. (7.6) exploits the redshift information which is important to constrain the LDDE
model. In addition to binning our data in flux, we now also bin into 4 redshift bins, j: [0, 0.5], [0.5,
1.2], [1.2, 2.3] and [2.3,4]. The source-count distribution extracted from the 4FGL catalog is denoted
(dN/dS)z,ij . To obtain the corresponding source-count distribution of our model, 〈dN/dS〉th,ij , we
simply restrict the integration range of z in Eq. (3.35) to the respectived redshift bin. We note

4 In this chapter, associated means the sum of identified and associated blazars, more precisely, the 4FGL source
classes are BLL, BCU, FSRQ, bll, bcu, fsrq.
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Table 7.1: Best-fit parameters for each of the three applied techniques. For reference, in the last
column we report the values from [201].

Parameter 1pPDF CP 4FGL CP+4FGL Ref. [201]
log10(A/Mpc−3) −8.98+0.86

−0.49 −7.55+0.54
−5.60 −9.01+0.08

−0.19 −8.91+0.05
−0.16 −8.71+0.36

−0.47

γ1 0.652+0.44
−0.02 0.36+0.17

−0.23 0.65+0.16
−0.02 0.60+0.04

−0.01 0.50+0.14
−0.12

p∗1 3.26+2.74
−2.26 4.89+0.11

−0.75 2.80+1.37
−1.25 3.74+0.65

−1.47 3.39+0.89
−0.70

p∗2 −17.5+8.60
−2.54 −19.5+7.36

−0.50 −5.28+2.38
−0.67 −5.31+1.57

−0.68 −4.96+2.25
−4.76

µ∗ 1.78+0.34
−0.22 2.32+0.05

−0.09 1.79+0.32
−0.79 2.31+0.04

−0.02 2.22+0.03
−0.02

Agal 1.05+0.01
−0.01 - - - -

Fiso [10−7cm−1s−1sr−1] 1.18+0.11
−0.12 - - - -

k - 0.59+0.82
−0.09 - 1.13+0.06

−0.05 -
- ln(L)= -245276.1 χ2/dof =80.2/72 χ2/dof = 5.5/2 5 χ2/dof = 94.5/79 -

that the redshift measurements of the catalog are incomplete. Consequently, the χ2
z contribution is

taken as a lower limit:

χ2
z =

∑
i,j


[
(dN

dS )
z,ij
−〈dN

dS 〉th,ij
]2

σ2
z,ij

, if 〈dN
dS 〉th,ij<(dN

dS )
z,ij

0 , otherwise.
(7.9)

We observe that the sum of χ2
all +χ

2
z, which contains redshift information, mostly constrains the two

parameters p∗1 and p∗2, while the remaining three parameters, A, γ1 and, µ∗, are mostly constrained
by χ2

all + χ2
as. We have explicitly verified this expectation by performing two additional fits, where

either we use only χ2
all + χ2

as or we use only χ2
all + χ2

z . In this sense, effectively, we avoid double
counting in the χ2

4FGL definition.
Below the flux threshold, Sthr, the detection efficiency of point sources quickly drops to zero,

meaning that the catalog becomes incomplete. If the catalog is incomplete, the χ2
all cannot serve as

an upper limit. Hence, we exclude data points below the threshold of Sthr = 1.1× 10−10 cm−2s−1.
In other words, the sum over i in Eq. (7.7) is restricted to those flux bins which are above Sthr. The
likelihood parameters space is sampled again with the MultiNest package, using 2000 live points,
an enlargement factor of efr=0.7, and a stopping parameter of tol=0.1.

7.2 Results of fitting the blazar model

7.2.1 Results from the photon-count statistics analysis

We apply the 1pPDF technique discussed in Sec. 3.4 with the specifications from Sec. 7.1.1. The
results are shown in Fig. 7.1. The red solid line shows the best-fit model of the blazar model, while
the grey dashed line corresponds to a fit where the dN/dS is modeled as a multiple-broken power
law with three breaks as defined in (3.34). In both cases, the shaded bands mark the 1σ uncertainty
level. In the case of the blazar model, the fit contains the five model parameters, A, µ∗, γ1, p∗1, and p∗2,
and two nuisance parameters, Agal and Fiso. Their best-fit values and uncertainties are summarized
in Tab. 7.1. The best-fit parameters obtained with the 1pPDF technique are consistent at the 2σ
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Figure 7.1: Source-count distribution, dN/dS, obtained with the 1pPDF technique. We overlay
the results of fitting the blazar model form [201] (red solid line) with the results of fitting a multiple-
broken power law parametrization (grey dashed line) in the energy range from 1 GeV to 10 GeV.
The shaded bands correspond to the 1σ uncertainty, frequentist interpretation. For comparison, we
display the dN/dS of the resolved sources from the 4FGL catalog. The figure is taken from [1].

C.L. with the reference model [201] and at the 1σ C.L. with our refit of the model on 4FGL catalog
data, see Sec. 7.2.3. The best-fit of the multiple-broken power law converges to a normalization
parameter AS = 2.31+7.67

−1.22×109 cm2ssr−1; position of the breaks at Sb1 = 1.43+3.57
−0.93×10−8 cm−2s−1,

Sb2 = 5.2+8.08
−2.94 × 10−10 cm−2s−1, and Sb3 = 2.21+97.7

−1.18 × 10−13 cm−2s−1; and power-law indices of
n1 = 2.45+0.78

−0.48, n2 = 2.03+0.10
−0.10, n3 = 1.83+0.14

−0.15, and n4 = −0.32+2.18
−1.68. The reference flux is chosen

to be S0 = 5 × 10−9 cm−2s−1. The 1pPDF method with a multiple-broken power law is well-
tested [258, 265]. Hence, the good agreement between the dN/dS of the multiple-broken law and
the physical blazar model confirms our new technique. Both results are in good agreement with
the dN/dS data points extracted from the 4FGL catalog. So, our blazar model describes at the
same time the dN/dS in the resolved and unresolved flux regime, indicating that blazars are indeed
the dominating point sources in the flux regime tested by the 1pPDF. Finally, we note that the fit
of the multiple-broken power law provides important information concerning the sensitivity of the
1pPDF technique. The source count distribution (grey band) is well constrained down to fluxes of
about 8× 10−12 cm−2s−1, while the threshold of the catalog for resolved sources is at the order of
2–3×10−10 cm−2s−1. So, in the energy bin from 1 GeV to 10 GeV the 1pPDF measures the dN/dS
more than one order of magnitude below the catalog threshold. This sensitivity cannot be seen from
the blazar model fit.

5 We mention here a subtlety connected to the counting of the dof in the fit of the blazar model to the 4FGL
catalog. We adopt an upper limits (χ2

all) in 7 flux bins. With a total of 5 free parameters we obtain a dof of 2. The
subtlety is that in addition we use the redshift information as lower limit in the fit (effectively) 28 bins. Since the χ2
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Figure 7.2: Best-fit result of the blazar model to the CP as a function of the energy. The data
is taken from [274]. In the left panel we display the energy auto-correlation, while the right panel
shows the energy cross-correlation in one selected energy bin from 8.3 GeV to 14.5 GeV with all
others bins. The shaded bands correspond to the 1σ C.L. This figure is taken from [1].

7.2.2 Results from the angular correlation analysis

In the APS analysis, we use the same blazar model and setup as in the 1pPDF fit described above,
but the treatment of nuisance parameter changes. The uncertainty of Galactic foreground emission
is already marginalized in [274] and, hence, included in the uncertainty of the data points. However,
there is one important systematic uncertainty which is introduced in the CP measurement. It is
related to the fact that the threshold for masking point sources is only approximately known. We
take the uncertainty on Sthr into account by introducing the nuisance parameter k, which allows
to vary the value of Sthr by a factor between 0.5 to 2.0. Further cross-checks concerning the Sthr

are discussed later. In summary, the free fit parameters are A, µ∗, γ1, p∗1, and p∗2, and the nuisance
parameter k.
The results of our fit are shown in Fig. 7.2. We compare the measured CP data point with the blazar
model (light-blue lines) for the energy auto-correlation and all cross-correlation bins. In Fig. 7.2 we
only show the energy auto-correlation (left panel) and one example for the energy cross correlation
of the 8.3 GeV to 14.5 GeV bin with all others bins (right panel). The corresponding best-fit values
are summarized again in Tab. 7.1. They are well-compatible with the values obtained from the
1pPDF analysis above as well as with the reference values from [201]. Only the parameter p∗2 seems
to show a small tension between the 1pPDF and APS fits, one the one hand, and the reference
values from [201] and the 4FGL fit, on the other hand. We will comment on this again in the next
paragraph, but note already here that the significance of this tension is below 2σ.

of the best-fit point is only marginally affected by the lower limits, we decided not to count these dof in the table.
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In the context of the CP fit we have performed two cross checks. First, we have studied the effect
of the cut threshold, Sthr, and, second, we have investigated the possibility of a second population
in the APS. The catalog efficiency, Ω, in our benchmark model is assumed to be a Θ-like cut. But
certainly this is only an approximation. What actually occurs in reality is that the efficiency of
the Fermi-LAT detector to detect point sources gradually increases from 0 to 1 with increasing flux
of the sources. However, the exact shape and Γ dependence of the efficiency is not provided for
the 4FGL catalog. We test the impact of a smooth efficiency function on the results of the fit. In
order to do this we adopt a functional form of the efficiency, which then depends on one additional
parameters η:

Ωsmooth(Γ, η) = 1− 1

1 + [S/Sthr(Γ)]η
. (7.10)

The new parameter allows to control how quickly the efficiency grows from 0 to 1: the larger η the
steeper the growth. We have varied η between 2.5 and 4 and verified that our physical results (A,
γ1, p∗1, p∗2, µ∗) are stable against these changes of the functional form of the efficiency. In all our
fits the nuisance parameter k converges to a value close to 1.
Previous analyses have claimed evidence for two populations in the APS instead of a single popu-
lation [270, 274, 276]. We explicitly test this hypothesis by adding an additional component in our
fit. We assume that this additional component is governed by a power-law dN/dS and a power-law
SED. Explicitly, we parameterize dN/dS = APWL(S/S0)−βPWL and dN/dE ∼ E−ΓPWL . Then, we
varied the three parameters of the power-law component (APWL, βPWL, ΓPWL) on top of our six pa-
rameter of the benchmark setup. We find no evidence for the additional component. The extended
fit leads only to an small improvement of the χ2 which is below the 2σ C.L. This result justifies a
posteriori our initial assumption to base the analysis solely on one component, blazars. We note,
in particular, the difference between our setup and the analysis in [274]. We use a physical model
which allows for a distribution of Γ, while [274] assumes a single, fixed value of Γ. The evidence
for two populations in [274] probably originates from the fact that the effect of a distribution in Γ
is not investigated. The evidence for two population then mimics the fact that in reality there is a
distribution in Γ.

7.2.3 Results from the analysis of the 4FGL catalog

We fit the blazar model to the 4FGL catalog as described in Sec. 7.1.3. The free parameters in this
fit are again A, µ∗, γ1, p∗1, and p∗2.

The results are shown in Fig. 7.3. The lower black triangles refer to the source-count distribution
of all point sources (dN/dS)all,i. They are included as upper limits in the fit, c.f. Eq. 7.7. The
upper black triangles mark the associated blazars, (dN/dS)as,i, and serve as a lower limit, c.f.
Eq. 7.8. Finally, the colored upper triangles display the source-count distribution in each redshift
bin, (dN/dS)z,ij . Those data point have to be understood again as lower limit, c.f. Eq. 7.9. The
best-fit blazar model is represented by the solid lines. We note that, as expected, the model passes
between the upper and lower black triangles and lies above the colored data points. This fit is unique
in the sense that, in contrast to 1pPDF method and APS, it contains explicit redshift information.
It is therefore expected to provide the most reliable constraint on the LDDE model. The best-fit
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Figure 7.3: Results of fitting the blazar model using the 4FGL catalog. The shaded bands mark
the 1σ uncertainty. The data points with triangles pointing upwards and downwards correspond
to lower and upper limits, respectively. Open white data points are not considered in the fit since
they are below the flux threshold. The flux, S, refers to the energy range from 1 GeV to 100 GeV.
Further details are provided in the text. This figure is taken from [1].

parameters and uncertainties are summarized in Tab. 7.1. We observe indeed a better constraint
on the parameter p∗2. We mentioned before that there is a slight tension between the best-fit value
of the 4FGL at p∗2 = −5.28+2.38

−0.67 and smaller values which are slightly preferred by the 1pPDF and
APS fits. In this case, the value of the 4FGL fit should be more trusted because of the argument
hinted above.

7.3 Complementarity of the observables

The compatibly and complementarity of all the techniques to constrain the blazar model is best
shown in Fig. 7.4. The triangle plot displays the comparison the best-fit parameter regions for
the three methods. The various panels in the lower half of the triangle plot show contours of the
2-dimensional χ2-distribution for each combination of two fit parameters. The three contours in
each color mark the 1σ, 2σ, and 3σ C.L., which correspond to a ∆χ2 of 2.30, 6.18, and 11.83,
respectively. On the diagonal, we display the χ2-profile for each of the five fit parameters. The
figure shows that the three techniques are compatible at the 2σ level. The largest tension concerns
the parameter p∗2 which we have already commented above. The complementarity of the different
observables is, in particular, visible in the two lower left panels. While the APS fit constrains very
well the parameter µ∗, the normalization, A, and slope of the luminosity dependence, γ1, are mostly
constrained by the 1pPDF and the 4FGL catalog. This result is expected since the APS is the only
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Figure 7.4: Constraints on the blazar model parameters obtained with the 1pPDF method (red),
the APS (blue), and the 4FGL catalog (green). The panels on the diagonal show the likelihood
profile for each fit parameters (the y-axis of each panel ranges linearly from 0 to 10). The remaining
panels in the lower triangle show the 1, 2, and 3σ C.L. contours for each combination of the fit
parameters. This figure is taken from [1].

observable which includes explicit information about the behavior as a function of energy. Because
of this energy binning it constrains very well the overall behavior of the SED. On the other hand,
the 1pPDF and 4FGL directly measure the source count distribution. Thus, they are very sensitive

163



7.3. Complementarity of the observables

10 12 10 11 10 10 10 9 10 8 10 7

S [cm 2s 1]

10 13

10 12

10 11

10 10

S
2

dN
/d

S
[c

m
2 s

1 d
eg

2 ]

4FGL; all sources
4FGL; BLL, BCU, FSRQ

1pPDF 1 10 GeV, best fit
Cp, best fit
best fit from 4FGL

Figure 7.5: Comparison of the dN/dS prediction from the individual observables: 1pPDF, APS,
and 4FGL catalog. The solid lines show the best-fit model of each individual fit while the shaded
bands refer to the 1σ uncertainty level. The data points of the dN/dS are determined from the
4FGL catalog. The notation follows Fig. 7.3: lower triangles contain all source classes while upper
triangles are restricted to the source classes BBL, BCU, and FSRQ. The flux in this figure refers
to the energy bin from 1 GeV to 10 GeV. This figure is taken from [1].

to the normalization and flux- or luminosity-dependence6.
We can push the comparison of the three fits even one step further, namely, we can predict

for each fit the observables of the respective other methods. The results are shown in Figs. 7.5
and 7.6. Figure 7.5 shows the dN/dS provided by the best fits of the 1pPDF method, the APS,
and the 4FGL catalog. It is particularly interesting to have a closer look at the dN/dS prediction
of the APS results (blue band). The APS can be understood as second moment of the dN/dS
distribution. Therefore, it is the integral over the source-count distribution and does not directly
constrain its functional behavior. Nonetheless, the CP fit provides a good agreement to the 1pPDF
fit and 4FGL fit at small fluxes. We remind that the APS is measured only for S < Sthr and note
that the agreement of all three methods in this flux range is very good. We have explicitly checked
that at larger fluxes, S > Sthr the APS prediction agrees with the expectation (4FGL data points)
at the 3σ level. The agreement of 1pPDF method and 4FGL catalog with the expected dN/dS is a
trivial result since both are direct sensitive to measure the dN/dS. Furthermore, we have checked
that the APS and 1pPDF predictions do not violate the redshift constraints of the 4FGL catalog.
Now, we invert the idea and predict the APS from the best-fit models of the 1pPDF and 4FGL
catalog fits. The results are presented in Fig. 7.6. The uncertainty bands of the 1pPDF and 4FGL
are very large and agree (at 3σ) with the expectation (CP data points). The fact that some of

6We remind the flux-luminosity relation, dL/dS = L/S, as discussed at the end of Sec. 3.4.
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Figure 7.6: Comparison of the APS prediction from the individual observables: 1pPDF, APS,
and 4FGL catalog. The solid lines show the best-fit model of each individual fit while the shaded
bands refer to the 1σ uncertainty level. The CP data points are taken from [274]. In analogy to
Fig. 7.2 we display in the left panel the energy auto-correlation and in the right panel the energy
cross-correlation for one specific energy bin. This figure is taken from [1].

the predictions lead to a fairly large uncertainty band is another indication for the complementary
information of our observables.

Finally, we combine the contours of the APS and the 4FGL fits by performing a joint fit. The
information of the 1pPDF fit cannot simply be included in a joint fit, since this would lead to a
double-counting of the underlying data. In the case of APS and 4FGL, the 4FGL catalog contains
exactly the information of the gamma-ray sky which is masked in the APS measurement. So, there
is no double counting. The joint fit includes the usual five parameters of the blazar model and the
nuisance parameter k from the APS fit. The χ2 of the joint fit is the sum of the two individual
χ2s defined in Eqs. (7.5) and (7.6), respectively. The fit results are displayed in Fig. 7.7, which
visualizes the striking complementarity of the two observables. The best-fit contours of the joint
fit shrink, as expected, to the overlap of the two individual fits. The fit quality of the joint fit is
reasonable with a χ2/dof of 94.5/79. The separate contributions of the APS and 4FGL fits are 86.2
and 8.3, respectively. The best-fit parameters and 1σ uncertainties are summarized in Tab. 7.1.

In summary, we have used two statistical methods in order to constrain the gamma-ray emission
of point sources. These analyses are based on the recently provided Fermi-LAT data. We interpret
our results within the blazar model of [201] and demonstrate the complementarity of the different
techniques. Most importantly, we have used two techniques, which are sensitive to probe gamma-
ray point sources in the unresolved flux regime, the 1pPDF method and the APS of gamma rays.
We remind that these two techniques provide complementary information. While the first directly
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Figure 7.7: Triangle plot to compare the joint fit of CP+4FGL with the individual fits of the CP

and the 4FGL catalog. The blue and green contours are exactly the same as those shown in Fig. 7.4.

measures the source-count distribution, the latter can be understood as the second moment of
the source-count distribution. The blazar model of [201] is able to explain self-consistently and
with consistent parameters our observables in the unresolved (1pPDF and APS techniques) and
the resolved (4FGL catalog) flux regime. We take this as an indication that blazars are the only
important population of point sources in the flux regime probed by the 1pPDF method and APS.
Finally, we stress again that these statistical methods exploit gamma-ray information of faint sources
which are more than one order of magnitude below the flux threshold for individual detection in
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the 4FGL source catalog.
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Conclusions and perspectives

In this thesis, we have used recent precise measurements of CRs and gamma rays to understand the
Galactic and extragalactic Universe. Our main motivation to study these messengers is the indirect
search for DM, which often requires a better understanding of pure astrophysical phenomena.

We have investigated CR propagation with a particular focus on antiprotons and their primary
parents, proton and helium. The precise measurement of their fluxes by the AMS-02 experiment
allows to perform analyses at a new level of accuracy. We used the AMS-02 data of protons,
helium, and the antiproton-over-proton ratio to understand CR propagation of light nuclei and
derive constraints on the key parameters of the CR model which includes diffusion, reacceleration,
and convection. In particular, we find that the parameter δ, which describes the energy dependence
of magnetic turbulence in our Galaxy, is well constrained around a value of 0.4. The next logical
step will be to extend the methods developed and applied in this thesis to heavier nuclei. AMS-
02 provides the primary fluxes of carbon, nitrogen, and oxygen, as well as the secondary fluxes
of helium three, lithium, beryllium and boron. The comparison of the results from antiprotons
and light nuclei with those of heavier nuclei might help to answer open questions in CR physics. It
might be possible to investigate better the behavior of the diffusion coefficient, for example, whether
there are deviations from a pure power law at small rigidities and whether the approximation of
homogeneous and isotropic diffusion is justified. Related questions concern the robustness of our
conclusions on reacceleration and convection. More generally, one might even challenge common
assumption on the importance reacceleration for CR propagation. Furthermore, the combination of
various CR nuclei should allow to test the universality of CR injection, which is broken for proton
and helium, for helium and heavier primary nuclei. This might help to better understand the sources
of primary CR nuclei.

We have discussed the importance of the precise predictions of the secondary antiproton pro-
duction cross sections for the correct interpretation of CR antiproton data. We have updated and
compared the two most recent analytic cross-section parametrizations of antiproton production in
proton-proton and proton-nucleus interactions exploiting newly available data from the high-energy
experiments NA61 and LHCb. We found that the uncertainty of cross sections on the source term
prediction exceeds the uncertainty in the antiproton flux measurement by AMS-02 and, conse-
quently, provided guidelines for potential future measurements of antiproton production at collider
or fixed-target experiments. Other production cross sections in CRs face similar or even larger
uncertainties compared to antiprotons. It would hence be interesting to reinvestigate the secondary
production of leptons which in many cases relies on MC prediction and is not data driven. The
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situation for the production of secondary CR nuclei is even more involved. There is a huge number
of cross sections for different isotopes in the projectile initial states and the final state products.
A theoretical modeling is extremely challenging and data for many reactions is scarce. Therefore,
the robustness of results derived from CR nuclei heavier than helium will be closely related to the
understanding of nuclei inelastic and fragmentation cross sections.

Global fits to AMS-02 data of protons, helium, and the antiproton-over-proton ratio provide a
powerful tool to search for DM in our Galaxy. We assume that DM annihilation produces antipro-
tons with an energy spectrum depending on the elementary annihilation process. In our fits we
found a hint for DM annihilation into hadronic SM final states. The potential DM particle requires
a mass between 30 and 200 GeV, and an annihilation cross section of the order of 3× 10−26 cm3/s.
The significance of this putative signal in CR antiprotons is found to be at the level of 2.7σ after
accounting for uncertainties in the antiproton production cross section. Moreover, we have quan-
tified the impact of correlations in the systematic uncertainties of the AMS-02 flux data. Realistic
assumptions for the correlation seem to increase the significance. As the statistical precision of
long-term, space-based CR experiments increases, systematic uncertainties become more relevant.
These uncertainties are expected to exhibit strong correlations for all nuclei and leptons, which are
typically not stated by the CR experiments. Modeling correctly the correlations in the CR data
will be crucial to fully exploit the potential of the precise data and to prevent biased conclusions.
A more robust assessment of the potential DM signal in the future should rely on a more detailed
study of solar modulation. The time-dependent flux data of various leptons and nuclei by AMS-02
is expected to lead to better modeling of solar modulation beyond the force-field approximation.
Also, a consistent picture of CR propagation of the light and heavier nuclei, as mentioned in the
previous paragraph, would be important to increase the confidence in the putative signal.
If we interpret the results of our global fits to CR protons, helium, and the antiproton-over-proton
ratio in terms of upper limits on the annihilation cross section, we obtain strong bounds for hadronic
SM final states and DM masses above 200 GeV. The bounds are competitive and complementary
to constraints on DM from gamma-ray observation of dSphs and the Galactic center.

The search for low-energy antideuteron or antihelium in CRs is the most direct and complemen-
tary strategy to search indirectly for DM. We have derived the expected antinuclei fluxes which
correspond to the DM hint in CR antiprotons. This is the largest possible flux of antinuclei which
is consistent with CR antiproton data of AMS-02. We found that the expected antideuteron flux is
within the sensitivity of AMS-02 and the future experiment GAPS, while the antihelium flux stays
always below the AMS-02 sensitivity. Moreover, we have updated the predictions of the secondary
and tertiary fluxes of both antinuclei. They are out of reach for both experiments. The largest
uncertainty in the prediction of antinuclei fluxes are the coalescence models for the formation of
antinuclei from antiprotons and antineutrons. One important challenge, from the experimental point
of view, will be a measurement of the correlations in the simultaneous production of an antiproton
and an antineutron in proton-proton collisions or Z-boson decays, which could be used to improve
the coalescence models.

Furthermore, gamma rays provide an excellent prospect to search for potential DM signals. In
contrast to charged CRs, the indirect DM search in gamma rays can be concentrated on regions with
either a large DM density or a low astrophysical background, as for example the Galactic center
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or dSphs, respectively. Also gamma rays at high galactic latitude can be used to search for DM.
In any case, the expected DM signals are very small and challenging to detect. One interesting
approach is to correlate the extragalactic gamma-ray sky with gravitational tracers of matter, such
as provided by on-going and future experiments of galaxy surveys, weak lensing, or HI intensity
mapping. We have studied the properties of the extragalactic gamma-ray sky exploiting two unique
tools which provide information about gamma-ray sources with very small fluxes. More explicitly,
we have applied the technique of the one-point statistics of photon counts on recent Fermi-LAT data
at high latitudes and we have used the latest Fermi-LAT measurement of the angular correlations in
the UGRB to learn more about the properties of point sources at very small fluxes, which are below
the detection threshold of the Fermi-LAT. Comparing these properties to a model of the GLF of
blazars, we found that the emission of gamma rays at high latitudes and small fluxes is consistent
with a pure blazar population. A further refinement of the statistical tools, as for example a study
of the one-point statistics of photon counts in different energy bins, might allow an even better
understanding of blazar models at small fluxes. We can also imagine a comprehensive fit of the
one-point statistics, angular correlations, and cross correlations in the future.

The search for DM is an interdisciplinary effort and an unambiguous answer concerning the na-
ture of DM can only be achieved by combining the information of different observations. This thesis
is focussed on different signatures and strategies for indirect detection of DM with CRs and gamma
rays. These messengers from astrophysics provide complementary informations and constraints.
Finally, they have to be completed with information from particle physics and cosmology.
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