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A B S T R A C T   

This research investigates the nanoscopic features of Advanced High-Strength Steels (AHSS) through a bottom-up 
approach employing high-speed nanoindentation mapping (HSNM) to elucidate structure-property relationships. 
The influence of grain boundaries on nanomechanical properties was documented, highlighting the challenge of 
SEM-EBSD analysis in differentiating phases with identical crystal structures (BCC, FCC, etc.). Integrating SEM- 
EBSD with HSNM in the same region of interest is essential for detailed insights into phase/microstructure 
distribution and accurate grain boundary identification. A modular four-step analysis protocol, designed and 
validated on ferritic-bainitic TRIP steels (TBF), leverages machine learning-enhanced HSNM for significant ad-
vancements in AHSS design. The initial phase involves the application of the expectation-maximization algo-
rithm for probability distribution fitting of HSNM data, deriving primary mechanical phase statistics. This 
exclusively facilitates the correlation of elastic modulus and hardness for each phase/microstructure using 
nanoindentation data. Further refinement of phase/microstructure to mechanical property correlations was 
achieved through a supervised machine learning approach, ensuring precise association between EBSD and 
nanoindentation data. This includes detailed image analysis and clustering of nanoindentation data, enhancing 
the precision in phase recognition. This methodology addresses the critical challenges in developing 3rd Gen-
eration AHSS, aiming to fill the gap in accurately identifying and quantifying phases such as martensite, 
austenite, bainite, and ferrite, thereby reducing classification and measurement uncertainties. The approach 
contributes to the fundamental understanding of AHSS microstructures and provides a scalable framework for 
the comprehensive characterization of structural materials.   

1. Introduction 

TRIP (Transformation Induced Plasticity) steels belong to the cate-
gory of Advanced High-Strength Steels (AHSS). Their microstructure is 
characterized by a ferrite matrix interspersed with varying proportions 
of retained austenite, martensite, and bainite. The production of TRIP 
steels involves an isothermal process at an intermediate temperature, 
leading to bainite formation [1]. This specific thermal treatment is 
termed “austempering.” Bainite and ferrite predominance increases with 
higher silicon and aluminum contents. Conversely, the presence of 

martensite (unstable at room temperature) is reduced, while an increase 
in silicon and carbon content in the steel stabilizes the retained 
austenite, increasing its quantity [1]. 

In terms of mechanical performance, TRIP steels surpass many 
others. A notable feature is the transformation of retained austenite into 
martensite under mechanical strain [1]. This transformation is influ-
enced by the carbon content, which affects the chemical impetus for the 
conversion, the inherent transformation strain, and the flow character-
istics of the retained austenite. Dimatteo et al. [2] noted that an optimal 
carbon content (ranging between > 0.5 − 0.6% and < 1.8%) enhances 
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the TRIP effect, subsequently improving elongation [2,3]. With lower 
carbon content, austenite transforms almost instantly upon deformation, 
elevating the work hardening rate and formability during processes like 
stamping. Conversely, the retained austenite remains stable with higher 
carbon content, transforming only under strains exceeding typical 
forming levels. In such cases, the austenite converts to martensite during 
subsequent deformations, such as impacts. The dispersion of harder 
secondary phases within the softer ferrite matrix results in a significant 
work hardening rate, similar to what is observed in dual-phase (DP) 
steels [1]. In the automotive industry, TRIP steels are favored for their 
lightweight properties and are commonly used in Body in White (BIW) 
components, including cross and side members [1]. However, the 
intricate microstructure of TRIP steels, which underpins their excep-
tional macroscopic mechanical attributes, poses challenges for accurate 
characterization using conventional metallographic techniques. 

Therefore, understanding TRIP steels’ microstructure, properties, 
and phases is paramount [4]. In recent decades, innovative character-
ization methods, including nanoindentation, have revolutionized the 
study of materials with intricate microstructures that influence me-
chanical properties. Nanoindentation has emerged as a preferred tech-
nique for measuring material hardness at the nanoscale, offering insights 
into microstructures and their stress-induced transformations. Typical 
data analysis involves the Oliver W. and Pharr G. method [5], which, 
since 1992, has been the gold standard used to evaluate the 
nano-properties of materials [6–12]. Moreover, nanoindentation is a 
critical technique for assessing downcycling phenomena from a circular 
economy perspective, as described by Capricho [9]. 

Regarding steels nanomechanical properties, it has been shown that 
their nano-hardness values depend on two factors: (i) phases and 
microstructure originated by thermal treatments [13] and (ii) the 
orientation of the grains [14], changing according to the orientation of 
each type of phase/microstructure and its volume fraction. In the liter-
ature, the study of the phase/microstructure (P/M) relationships in 
steels and the assessment of their properties with nanoindentation is 
quite popular. Notably, efforts have been extensively focused on dis-
tinguishing P/M relationships of ferritic-bainitic TRIP steels and study-
ing their mechanical properties, including transformation-induced 
hardening, which is paramount to understanding potential failure 
initiation, whether mechanical or chemical [15–20]. 

However, a significant drawback in applying nanoindentation exis-
ted until recent technological developments. Indeed, classical grid 
nanoindentation provides (i) extremely localized, (ii) statistically 
limited, and (iii) time-consuming data [21,22]. However, recently, 
high-speed nanoindentation mapping (HSNM) [23], a cutting-edge 
technique, allowed for rapid mechanical property mapping over large 
areas with sub-micron-scale resolution. This method provides compre-
hensive datasets quickly, performing each nanoindentation and move-
ment to the next location in less than one second, ultimately capturing 
the material response over vast areas with thousands of measurement 
points on average. Such advancements have been instrumental in 
correlating mechanical contrasts with phase contrasts, offering a deeper 
understanding of material behavior [24,25]. 

Complementing nanoindentation, SEM-EBSD provides in-depth 
phase identification, distribution mapping, grain boundary character-
ization, texture analysis (degree of crystallographic preferred orienta-
tion), and local strain variation analysis [8,26–35]. EBSD could be a 
valid method to perform as paired with SEM-EDS. It offers a holistic view 
of inclusions and their crystallographic features. However, a significant 
challenge remains: traditional EBSD analyses struggle to distinguish 
between phases like ferrite, martensite, bainite, and pearlite, even with 
machine learning. 

As several studies demonstrate, coupling HSNM and EBSD represents 
a promising mean for P/M recognition [8,26–29]. This study proposes a 
multi-faceted analysis protocol, employing ML clustering on both im-
ages and high-speed nanoindentation data [36], to overcome most of the 
HSNM and EBSD coupling challenges for AHSS within the same Region 

of Interest (ROI) and shed light on structure-property relationships 
twofold. 

A curated combined dataset was produced to train machine learning 
models and predict the uncorrelated instances between the two 
methods. In contrast, grain boundary detection supported the analysis to 
detect the pure response owed to each microstructure. When nano-
indentation occurs along grain boundaries, the indented area will 
intercept more grains belonging to different phases/microstructures. 
Consequently, hardness and elastic modulus related to this measurement 
do not represent any phases/microstructures. So, all outcomes affected 
by the grain boundaries effect will be allocated as Grain Boundaries 
properties. 

The outcomes of the proposed methodology give complete spatial 
information on the distribution of phases within the identified ROI, 
transformation-induced changes after nanoindentation experiments, 
and, most notably for their design, the relative content of retained 
austenite. Moreover, the authors provide a series of testing strategies, 
applicability ranges, and a general methodology to couple multiple 
observations from different techniques at the nanoscale, capable of 
being applied to more general phase/microstructure/properties identi-
fication problems in materials science in a modular and scalable strat-
egy. Finally, validated characterization data outputs and transfer 
learning of such trained models can pave the way for acceleration in 
materials research of the 3rd generation AHSSs. 

2. Materials and methods 

2.1. Materials 

TBF-1180 steel, a specific grade of TRIP steel, was analyzed for its 
chemical composition (Table 1). A plate of 3×3 cm was cut to perform 
chemical composition analysis employing a Quantometer (Thermo-
Scientific ARL 3460 OES) using the normative ASTM E415–21 standard 
[37]. 

2.2. Methods 

To preliminary observe the alloy microstructure, a sample, hot- 
mounted in non-conductive-polyphenolic-resin (curing temperature 
180◦C, heating time 3 min, cooling time 1 min; pressure 200 bar) and 
mechanically polished using standard sandpapers, was etched with fresh 
Klemm I solution, and the corroded surface was observed by using the 
Zeiss Observer Z1m Optical Microscope. 

SEM-EBSD analysis (SEM Tescan FESEM 9000: 20 kV; 1 nA; EBSD 
Symmetry S2 Oxford Instruments; AztecCrystal provides data) was 
performed on an ad-hoc prepared TBF-1180 sample before nano-
indentation to avoid observing strain-induced crystal lattice changes in 
the structural mapping. The sample was cold-mounted in conductive 
resin and mechanically polished using standard sandpapers down to a 
final step involving 40 nm colloidal silica [38]. The same sample was 
used also for nanoindentation testing. Before EBSD analysis, carbon tape 
was placed around the sample surface, and mounting resin was used to 
improve the sample’s conductibility, hence the EBSP (electron back-
scatter diffraction pattern) resolution. The commercial “Re-classify” tool 
(AztecCrystal, Oxford Instruments) was used to perform the micro-
structure annotation in the EBSD map. This tool requires the user to 
create a featured map in which all the parameters chosen are used to 
implement a built-in machine-learning model. Once the map is made, 
the user assigns specific areas or points to the appropriate phase and 
microstructure based on visual map analysis. Each pixel will contain the 

Table 1 
Elemental analysis of TBF-1180.  

C Mn P S Si Al TiþNbþV CrþMo  

0.2  2.53  0.0088  0.0005  1.45  0.056  0.005  0.107  
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values of the various features under consideration, which will then be 
used by the software algorithm to complete the map in real-time. 
However, an inherent challenge with this approach is the potential for 
user bias. Subjective decisions during the examination can vary among 
users, leading to discrepancies in the resulting maps. Despite this 
drawback, the tool’s primary advantage lies in its ability to generate 
maps considering structures that cannot be recognized directly by the 
Kikuchi pattern. For this capability to be fully realized, the image must 
be high-resolution, and the phases/microstructures should be visually 
discernible. 

2.3. High-speed nanoindentation mapping 

Nanoindentation testing was conducted to identify the mechanical 
phase distribution in the TBF-1180 steel, complemented by EBSD 
mapping to provide a comprehensive understanding of the material’s 
microstructure. 

The mechanical mapping experiments employed the G200 nano-
indenter (KLA Corp.) equipped with a Berkovich tip (E = 1141 GPa; ν =
0.07). Before high-speed nanoindentation mapping, the load-depth 
response and the properties were examined via Continuous Stiffness 
Measurement (CSM) [5], also offering a preliminary point-to-point 
correlation with EBSD and, most importantly, acted as a calibration 
for the subsequent high-throughput, high-speed mapping using the Ex-
press Test protocol, retrieving the average load required to achieve a 
150 nm penetration depth on the softer phase. This step, therefore, 
involved performing a grid indentation of 16 (x-direction) by 25 (y-di-
rection) indents with a spacing of 1.5 μm and targeting a maximum 
depth of 150 nm. 

The tip was calibrated before testing on a standard fused quartz 
sample, employing a constant strain rate of 0.05. 

High-speed mapping using the Express Test available protocol was 
then performed on a different area of the TBF-1180 steel sample, where 
EBSD was also conducted. The Express Test allows for rapid and efficient 
spatial mapping. Each indent typically takes a significantly reduced 
amount of time (less than five seconds, down to 1 second), encom-
passing the time for surface approach, surface detection, loading, 
unloading, and positioning the sample for the subsequent indentation. 
This mapping utilized an array of 57 ×57 indents in load-control mode, 
targeting a load of 2.66 mN. 

To ensure a high probability of hitting the small available grains, we 
implemented a sampling criterion that considers, as a first approxima-
tion, the diameter (dp) enveloping the Berkovich-shaped indenter pro-
jected geometry (as a function of the depth (h)). 

Specifically, we could write that: 

h
r
= tan(12.95◦) (1)  

dp = 2r = 2
h

tan(12.95◦)
(2) 

This study used two-fold reasoning to select the indentation depth 
from CSM data (selecting the appropriate load in load-controlled mode): 
(i) avoiding artifacts in indentation data due to tip imperfections, 
microstructurally induced serrations, and pop-ins at shallow depths, and 
(ii) sampling following the abovementioned criteria. For the selected 
2.66 mN of target load, an average penetration depth of 146.6 nm was 
achieved, with a spacing of 1.51 μm, in line with the recommendations 
from Phani et al. on the achievable minimum spacing for nano-
indentation [39]. Therefore, a calculated projected probing diameter of 
1.3 μm is reported. 

The tip area function calibration and load-frame compliance are 
performed on fused silica samples, similarly to CSM protocols, while 
employing the dynamical conditions attained by the high-speed pro-
tocols, with strain rates approaching orders of 1 1/s. The hardness and 
elastic modulus for every indent are computed using the standard Oliver 

& Pharr method. 

2.4. Meta-analysis and workflow 

The meta-analysis was carried out with R language to perform (i) 
coordinates matching of the phase maps, (ii) machine learning opera-
tions related to image clustering, and (iii) training of supervised pre-
diction models. All computations were performed using 64-bit Windows 
11 Home (Intel ® Core™ i5–8250 U CPU @ 1.60 GHz, 1801Mhz 4 Cores, 
8 Logical Processors, and 24.00 GB RAM). R Studio is an open-source 
software and provides a coherent, flexible system for data analysis. 

The study delves into the structure-property relationship of the 
advanced high-strength steel (AHSS) TBF-1180 by juxtaposing the 
structural phase map obtained from EBSD with the nanomechanical 
phase maps derived from nanoindentation. Given the complexities of 
phase analysis in multiphase materials using nanoindentation mapping 
and clustering, a methodology that employs the conventional statistical 
approach of probability distribution analysis (PDA/PDF) was adopted. 
This method assigns properties to phases and accurately fits Gaussian 
distributions to the maximum depth histogram specific to the nano-
indentation grid, as detailed in [21]. 

Subsequent steps involve, based on structural phases, the refinement 
of these phase annotations. This is achieved by correlating each nano-
indentation point with its corresponding coordinates characterized by 
EBSD. The primary objective of this methodology is to align two images, 
each an outcome of distinct characterization techniques. In this context, 
the images are phase maps, and their correlation is established at 
approximately 2500 nanoindentation coordinates to derive the mate-
rial’s phase/microstructure (P/M) statistics. Nanoindentation aids in 
distinguishing between Bainite and Ferrite phases, a distinction that 
EBSD struggles with due to its inherent limitations. Conversely, EBSD 
refines the nanoindentation phase mapping by verifying the accuracy of 
martensite and retained Austenite detection. 

Ultimately, the EBSD-validated dataset is employed to train a 
machine-learning classification model. This model then corrects the 
values initially misidentified by nanoindentation as either Ferrite or 
Bainite, ensuring a thorough analysis of the region of interest based on 
the validated dataset. 

Lastly, Inverse Pole Figure (IPF) maps are employed for edge 
detection. This procedure can be integrated at any workflow stage to 
segregate the validated dataset from data associated with grain bound-
aries. A comprehensive overview of this study’s workflow is depicted in  
Fig. 1. 

3. Results 

3.1. Optical microscopy 

Initial insights into the microstructure of the studied TRIP TBF-1180 
steel were obtained through the colour tint etching technique [32,33]; in 
particular, Klemm I etching (which includes the use of saturated sodium 
thiosulfate and potassium bisulphate) was used—the image of the 
etched surface and after staining is shown in Fig. 2. 

Ferrite, bainite, martensite, and austenite can be observed, as re-
ported in the literature [1]. However, the interpretation highly depends 
on the metallographer judgment, making bainite and martensite 
indistinguishable. 

3.2. EBSD analysis 

The non-etched TBF-1180 sample was used to perform SEM-EBSD 
analysis. Micro-indentation marks were performed at the Region of In-
terest (ROI) boundaries to facilitate cross-correlations between the 
different techniques. In this case, an EBSD area was delimited, as shown 
in Fig. 3a. 

EBSD analysis of multiphase steels presents complexities, primarily 

F. Bruno et al.                                                                                                                                                                                                                                   
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because many phases/microstructures share similarities. Austenite can 
be easily distinguished by its FCC lattice. This resemblance between the 
BCC structure of ferrite, bainite (a micro-constituent from ferrite and 
cementite, intrinsically sharing characteristics with the ferrite matrix 
composed by), and martensite (TBC) leads to classification failures. 
Moreover, there are no means to deconvolute between upper bainite 
(formed by alternate lamellae of ferrite and cementite) and lower bainite 
(ferrite matrix with lamellar carbide precipitate). 

Nevertheless, their Kikuchi pattern is too similar. Indeed, if the 
martensite structure is not sufficiently stressed, the Kikuchi pattern will 
be close to the respective ferrite. A method that can distinguish ferrite 
and martensite consists of using band contrast, which exploits the 
different resolutions between the Kikuchi patterns. Kikuchi pattern 
quality will decrease if the martensite lattice is stressed along a crys-
tallographic direction, while the number of Kikuchi bands typical for 
ferrite will be lower. The carbide size in the bainite case is minuscule 
relative to the measurement area. As a result, the final Kikuchi pattern 
will display bands for both ferrite and cementite [21] [40]. However, the 
resolution of the ferrite Kikuchi bands will be more pronounced than 
that of carbides due to their significantly higher quantity, ultimately 

masking the bainite classification. 
In this study, the sample had a fine grain size, and the structures were 

not easily detectable by the eye. According to the “Re-Classify” ML tool, 
this hinders phases and microstructure recognition operations. One so-
lution would be to make smaller maps with higher resolution, which 
may result in electron drift phenomena due to the accumulation of 
charge on the sample surface from the presence of the carbides. 

Nonetheless, considering that martensite possesses low Band 
Contrast (BC) values, resulting in darker areas on the map, any dark 
feature with an acicular appearance has been identified as martensite 
during image analysis. The final phase/microstructure (P/M) image is 
presented in Fig. 3b, where bainite and ferrite remain indistinguishable. 

3.3. Nanoindentation analysis and meta-analysis of the ex-situ data 
outputs obtained in the same ROI 

Fig. 4 presents the nanoindentation response from CSM preliminary 
acquisitions. From the observation of the curves, two main evident 
phenomena are visible, both being the main reasons for the selection of a 
target depth for subsequent high-speed mapping of 150 nm: (i) micro-
structural features being exerted at the very first nanometers of surface, 
tip apex (20 nm nominal) related artifacts, geometrical errors and ser-
rations, preventing the usage of the region before 80 nm (visible as 
abrupt changes in the displacement response within the CSM curves) 
ultimately; (ii) there is no distinction between responses visible from the 
scatter of the elastic modulus data (as expected being the elastic 
response affecting the whole material ideally). 

Fig. 5 presents the corresponding 2D contour maps for the elastic 
modulus and hardness. The blue square in the image marks the Region of 
Interest (ROI) for EBSD and HSNM cross-correlation. 

From the observation of Fig. 5, it is noted that a distinguishable 
similarity pattern can be evidenced between its features and those 
within the presented EBSD phase map (Fig. 3b). This suggests that 
hardness is a robust descriptor for correlating structure with properties, 
as detailed in the discussion section, as per the limited extension of the 
plastic zone (compared to the elastic deformation) promoting a smaller 
cross-correlation during force transfer to individual microstructures 
(more negligible substrate/matrix influence) [41]. This is especially true 
given that steel microstructures typically possess relatively small 
thicknesses across all three dimensions of the reference volume. 

Data analysis employs machine learning algorithms to perform 
clustering, using the indentation hardness and modulus as descriptors in 
most cases. Such an approach is not always revealed to be representative 
of the actual phases/microstructures distribution. As per this study, in 
which four clusters corresponding to four phases/ microstructures 

Fig. 1. Mind map of the investigation: the workflow of meta-analysis of ex-situ produced nanoindentation and EBSD data was conducted within the same ROI.  

Fig. 2. Microstructure of steel revealed through Klemm I colour tint etching. 
The ferritic phase was stained with beige, bainite, and martensite, which 
remained indistinguishable – dark navy blue. The austenite grains and 
martensite-austenite isles remained white. The average grain size was between 
1 and 3 µm. 
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(Ferrite, Bainite, Martensite, and residual Austenite) have been identi-
fied, the clustering algorithm doesn’t always yield results consistent 
with theoretical expectations of properties. Indeed, while theoretically, 
the hardest phase should also have the higher modulus (case of 
martensite), in a clustering approach, the output might be contradictory 
considering the dependence and bias due to the high correlation of 
parameters. 

For statistical analysis and cluster allocation, this study focused on 
the maximum indentation depth, directly corresponding to a nano-
indentation raw data (therefore possessing the lowest cross-correlation 
factor among all the descriptors). 

Moreover, each phase has distinct deformation characteristics, 
allowing for their identification [42–44]. This statistical approach 
involved fitting four Gaussian curves, each representing a theoretically 
expected phase in the sample. Data pre-processing involves its trans-
lation into a probability distribution (PDA). Initial guessing of mean 
values and standard deviations was performed using a data-driven 
approach via k-means clustering. The process is illustrated in the sub-
sequent plot, while the initial values are presented in Table 2. 

The probability distribution analysis of the maximum depth histo-
grams, as shown in (Fig. 6), was refined using the expectation maximi-
zation optimization algorithm. This step ensures that the analysis avoids 
suboptimal solutions. Based on this, we identified ratios for each phase, 
which were then matched and annotated to specific data groups 
grounded in theoretical knowledge. 

Fig. 7 shows density scatter plots within the mechanical property 
dataspace, showcasing a distinct dense region where the EM-enhanced 

PDA results are mapped in two dimensions. This dense clustering 
effectively illustrates the overlap of ferrite and bainite phases, high-
lighting the challenges in distinguishing them due to their intertwined 
nature. In addition, the figure contrasts these results with EBSD analysis, 
which struggles to differentiate between ferrite and bainite in steel. This 
difficulty arises from their similar body-centered cubic crystal structures 
and closely related orientation to the parent austenite phase. Both 
phases appear chemically analogous under EBSD, focusing on crystal-
lography rather than chemical composition, reinforcing the necessity for 
multiple analytical approaches to study complex steel microstructures. 
This analysis represents the starting point of the methodology, directly 
correlating to the lack of distinguishable features visible in Fig. 12c. 

Table 3 presents the phase properties based on nanoindentation 
mapping from the statistical clustering approach with PDA fitting of 
Gaussian curves and optimized by the EM algorithm. 

A contour plot illustrating the mechanical phases was subsequently 
produced, as seen in Fig. 8. In this plot, each phase is represented by a 
numerical annotation: 1 for austenite (the softer phase), 2 for ferrite, 3 
for bainite, and 4 for martensite (the harder phase). 

3.3.1. Step 1: image correlation 

3.3.1.1. Step 1.1: refinement of phase assumptions. Image correlation is 
used in the first processing step to obtain a broader overview of surface 
mapping and use the vast amount of data points provided by the colour 
maps to refine assumptions about the phase distribution in the sample. 

Fig. 3. a) SEM-FSD Image of EBSD analysis area. b) EBSD analysis solved with “Re-classify” tool in AztecCrystal. In this image, different phases and microstructures 
can be pointed out: austenite (in blue: 4.41%), ferrite (in grey: 61.25%), and martensite (in red:34.34%). The step size is 0.257 µm. The rolling direction is across the 
vertical axis. White areas are related to the micro indentation marks and are excluded from the analysis. 

Fig. 4. Load vs. Displacement Into Surface, Hardness vs. Displacement Into Surface, Modulus vs. Displacement Into Surface curves (from left to right) from CSM 
measurements. 
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By exploiting nanoindentation maps and EBSD maps, the following 
combined maps (Fig. 9) were created from the overlap of those figures, 
averaging the RGB values for each matching coordinate. 

The corresponding images were processed using the R programming 
language to integrate the findings from both characterization tech-
niques. Given the vast array of color shades in the original images 
(amounting to tens of thousands), a direct analysis was daunting. The k- 
means clustering method is employed, allowing the categorization of the 

color shades into three principal clusters, each representing an AHSS 
TRIP phase. 

The rationale behind employing k-means clustering was to stream-
line the color spectrum. By doing so, the numerous shades in the EBSD 
phase/microstructure (P/M) maps were condensed down to just ten. 
Despite this simplification, these shades retained the image’s inherent 
detail. These latter were then grouped into three primary colors: red, 
blue, and grey, each denoting a distinct phase (Fig. 10). These refined, 
color-coded maps were then used in subsequent stages to align them 
with the nanoindentation phase map. 

3.3.1.2. Step 1.2: alignment of nanoindentation and EBSD maps. Aligning 
the results from both characterization techniques requires multiple steps 
centered around comparing phases via their coordinates:  

1. Begin with the image obtained from nanoindentation. 
2. Refine this image to distinguish individual data points, which facil-

itates the extraction of phase statistics. 

For the nanoindentation phase map, clustering distinguishes the 
colors indicative of each phase, leading to clear mechanical phase maps. 
The processing method for the nanoindentation phase map parallels that 
of the EBSD image. The k-means clustering technique segregates the 
image into 18 unique colors, retaining the original image’s intricacy. 

Fig. 5. (a) EBSD map with ROI depicted within the boundaries of the blue square, (b) overlap of the nanoindentation hardness 2D scatter plot and EBSD map in the 
same ROI, (c) indentation hardness map, (d) indentation modulus map. X and Y coordinates are presented in µm. 

Table 2 
Initial parameters of mean value (mu) and standard deviation (sd) for maximum 
depth parameter were calculated by single parameter k-means clustering. In 
contrast, the final parameters were derived after fitting the Gaussian PDA after 
the EM step.  

Cluster Depth 
mu 
(nm) 

Depth 
sd 
(nm) 

Depth 
mu 
(nm) 
[after 
EM 
step] 

Depth 
sd (nm) 
[after 
EM 
step] 

Phase 
annotation 

Phase 
ratio 
(%)  

1  154.4  5.7  151.2  4.9 Ferrite  38.7  
2  145.1  3.4  147.4  4.8 Bainite  39.5  
3  127.2  6.3  130.9  8.6 Martensite  19.9  
4  275.8  60.6  204.6  63.3 Austenite  1.9  

F. Bruno et al.                                                                                                                                                                                                                                   
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These 18 colors are then grouped into four primary shades, each rep-
resenting a phase: martensite, austenite, bainite, or ferrite. 

Subsequently, images for each of these phases were isolated. These 
isolated images were then superimposed onto the structural phase map 
from EBSD. Only data points with identical coordinates in both maps 
were retained in the final images, as shown in Fig. 11. Precisely, 21.12% 
of the data points matched martensite, 1.12% for austenite, and 56.16% 
for a combination of ferrite and bainite. Any unmatched data points 
were excluded from the final representation. 

3.3.2. Step 2: Data correlation with nanomechanical properties for each 
nanoindentation coordinate 

Refining the observations to match the coordinates of the actual 
nanoindentation events is essential to improve the accuracy of the P/M 
correlation approach. Contour maps may contain intermediate data 
representing the mean value between two color shades. This can fill in 
missing data but also introduces potential bias in phase correlations. 
This bias arises from the inclusion of synthetic data during contour plot 
creation. Leveraging the actual data from nanoindentation mapping 
(2519 points) and the exact correspondence of the coordinates in the 
EBSD map, it is possible to increase confidence in correlating the two 
maps. This step also facilitates validating the phase ratio and distribu-
tion in the specified ROI. Furthermore, it allows the extraction of the P/ 
M statistics related to the nanomechanical properties. Fig. 12 shows the 
scattered maps obtained through nanoindentation and the combined 
map produced by correlating it with the EBSD map. 

EBSD correlation was used to refine the nanoindentation phase sta-
tistics and curate the data based on the actual structural phase detected 
by diffraction. The corresponding statistics for the phases identified by 
EBSD are presented below (Table 4), first using the original EBSD labels 
and then using nanoindentation feedback to separate Bainite from 

Fig. 6. PDA analysis and fitting of histogram plot of the maximum indentation depth after the EM step; initial values for the EM step were provided via k- 
means clustering. 

Fig. 7. a) Modulus vs. Hardness plots elucidating the relationship between probed values in the mechanical properties space. b) 2D Gaussian representation of the 
PDA EM-optimized data fitting within the Hardness vs. Elastic Modulus (normalized values) space: the phase statistics are highlighted following Fig. 6 color coding. 

Table 3 
Phase statistics generated from nanoindentation mapping and PDA optimized by 
EM step.   

Martensite Bainite Ferrite Austenite 

E (GPa) 236.1 ± 44.1 230.6 ± 44.8 226.3 ± 46.1 172.2 ± 52.6 
H (GPa) 7.1 ± 1.0 5.5 ± 0.3 4.9 ± 0.3 3.1 ± 1.1  
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Ferrite. 
The procedure to deconvolute the two latter phases based on the 

mechanical response is illustrated below. Thus, the validation process 
includes using nanoindentation feedback on EBSD phase annotation to 
distinguish ferrite (softer) from bainite (harder), as shown in Fig. 13 and  
Table 5. At the same time, EBSD provides accurate validation of which 
mechanical phases agree with the structural phase distribution and en-
ables the calculation of the mean values of their nanomechanical 
properties). 

3.3.3. Step 3: train a supervised machine learning model using the validated 
and curated combined nanoindentation-EBSD dataset to classify the 
unknown instances of nanoindentation 

Discrepancies were noticed when comparing the EBSD and nano-
indentation data for the bainite and ferrite phases. Some nano-
indentation results expected to identify as Bainite or Ferrite were 
mapped as martensite or austenite by the EBSD structural map. 

Leveraging the insights from the validated dataset, a supervised 
classification model was implemented to classify the data that did not 
align between the two characterization methods. We trained a Random 
Forest Machine Learning model, setting the entry parameter to 6. This 
setting yielded the highest training accuracy of 61.5%. The model’s 
training and prediction processes relied on parameters like maximum 
depth, Elastic modulus, hardness, and an assigned label (validated by 
EBSD). One advantage of the Random Forest algorithm is that it doesn’t 

require data pre-processing or scaling since it’s not distance-based. 
During the model’s training phase, we introduced resampling and 
applied 20-fold cross-validation, repeated ten times, to enhance pre-
diction accuracy. 

The model’s predictions for the test (unvalidated) dataset showed 
that 86.7% was martensite. In contrast, 0.9% was incorrectly identified 
as bainite, another 0.9% as ferrite, and 11.5% was identified as 
austenite. These results align with our expectations given the nature of 
the classification problem: the dataset with unidentified instances pri-
marily came from bainite and ferrite misclassifications via nano-
indentation. As such, we anticipated most observations to be martensite 
or austenite—austenite is expected to be a minor portion based on a 1:9 
ratio compared to martensite in the EBSD phase distribution. This pre-
diction distribution strengthens our confidence in the model’s accuracy. 

In a further test on the uncorrelated data, consisting of 111 obser-
vations, the model successfully categorized the majority into Martensite 
and Austenite. Only two instances were misclassified as Bainite and 
Ferrite. Fig. 14 illustrates the nanoindentation phase scatter map, 
depicting its evolution from initial PDA clustering to its alignment with 
the structural phase map (post-validation) and the application of the 
classification model. Meanwhile, Table 6 documents the resultant 
properties by phase. It’s worth noting that this trained model can be 
repurposed, eliminating the need to reconstruct a machine-learning 
model from scratch. It offers a valuable tool for analyzing nano-
mechanical data and conducting phase identification based on a 
knowledge base correlating structural and mechanical data. The 
consistent accuracy of the model suggests no overfitting, further rein-
forcing its potential to predict unverified P/M instances accurately. 

3.3.4. Step 4: identification of the contribution of grain boundaries to the 
nanomechanical properties 

The final step of the proposed methodology was to take advantage of 
the rest of the EBSD data that could be used to extract more information 
on the phase correlation with the nanomechanical properties, for 
example, using the IPF map, which depicts the grain orientation in the 
ROI. The image was read as a dataset to perform edge detection and 
extract the grain boundary coordinates using the IPF image. The IPFX 
map image was converted to grayscale to conduct edge detection as a 
preparation step. The edge detection confirmed the grain size popula-
tion provisionally evaluated for the selected indentation depth valida-
tion. Indeed, two classes of grain sizes are present in this type of steel for 
bainite and austenite, varying between 1 and 3 μm, while that of the 
ferritic grains varies between 5 and 10 μm. For the same material (same 
processing parameters and same constitutive phases), the values are also 
backupped by Furnémont et al. [45]. Then, the subsequent grayscale 
image was clustered in 12 colors, from which the shades were allocated 
to grain boundaries and matrix. After refining the data based on the 
coordinates of the grain boundaries (Fig. 15), the nanoindentation data 
corresponding to the nanoindentation of a pure microstructure were 

Fig. 8. Mechanical phase map produced by PDA analysis for the preliminary 
annotation of nanoindentation data. X and Y coordinates are presented in µm. 

Fig. 9. Combined EBSD and nanoindentation phase maps; a) Hardness over EBSD, b) Modulus over EBSD, c) Phase over EBSD. X and Y coordinates are presented 
in µm. 
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reduced to 36.1% of the size of the initial nanoindentation dataset. 
The nanomechanical properties, categorized by each phase, are 

detailed below (Table 7). These properties were derived after correlating 
them with EBSD data, removing grain boundaries, and deconvoluting 
Ferrite and Bainite using nanoindentation. The grain boundary removal 
process significantly reduced the dataset from the original 2519 nano-
indentation data points to 907. 

Table 8 summarises the phase properties after all validation steps 
(nanoindentation, EBSD, machine learning supervision, removal of 
grain boundaries). Classification of the false data classified as Bainite or 
Ferrite by PDA analysis of nanoindentation data were predicted by 
training and using a random forest model, as described in step 3 in 
Section 3.3.3. 

4. Discussion 

4.1. Limitations and sources of bias for ex-situ correlation of 
characterization phase map outputs corresponding to the same ROI 

The proposed methodology presents a stepwise approach, combining 
the knowledge obtained for the same ROI by two characterization 
techniques, utilizing one structural characterization to validate the 
outputs of a mechanical characterization in phase mapping. The 
modular approach can be applied on demand to treat similar mapping 
outputs amongst other characterization methods or to combine more 
than two outputs generated in the same ROI. However, some sources or 
factors that can introduce bias in image correlation should be discussed. 

When a user is conducting a pixel-wise image comparison, if the user 
does not pick precisely the same (x, y) coordinates to compare the two 
image mapping outputs or introduces artificial (x, y) coordinate shift 
after cropping the two images of the mechanical characterization and 

the diffraction map. This can have an impact by introducing a drift 
associated with the image preparation for performing the subsequent 
one-by-one correlation in a pixel-wise comparison, thus affecting the 
correlation accuracy. 

Another limitation is the image quality used for the subsequent 
analysis. If the quality is poor, then the image dataset will consist of 
fewer data points by each, i.e., pixels per micrometer distance of (x, y), 
which results in fewer chances for the two different image datasets of the 
phase maps to match the exact pairs of (x, y) coordinates and to produce 
a more precise image correlation. Also, when correlating coordinates 
using a coding environment, to match the coordinates, a rounding 
process to a specific decimal number can be applied to simplify the 
correlation process. This inconsistency can be considered if precision 
issues arise, and more advanced analysis should be accounted for to 
overcome such bottlenecks. Moreover, when contour plots are 
compared, the synthetic values used to formulate the contour plot be-
tween subsequent locations typically use an average value that might 
not represent the actual materials’ properties due to the actual size 
variation of individual P/M, thus increasing the uncertainty of the 
correlation. 

The size of the dataset and the presence of grain boundaries could be 
another source of potential bias, specifically when the size of the dataset 
is relatively small, which cannot only affect the validation outcomes but 
also reduce the statistically representative character of the phase ratio 
quantification in the investigated ROI. In the present study, using about 
2500 data points from nanoindentation mapping could be considered a 
sufficient statistical sample. However, proportionally larger datasets can 
increase confidence in the phase mapping statistics. 

Recently, the challenge of filtering data corresponding to grain 
boundaries is a central aspect of this research. Our developed procedure 
addresses this challenge by considering the effects of removing 

Fig. 10. EBSD P/M original vs clustered map and individual P/M maps for each structural phase. X and Y coordinates are presented in µm.  
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Fig. 11. (a) original nanoindentation phase map image, (b) clustered image, (c) nanoindentation martensite map, (d) combined nanoindentation-EBSD martensite 
map, (e) nanoindentation austenite map, (f) combined nanoindentation-EBSD austenite map, (g) nanoindentation bainite map, (h) combined nanoindentation-EBSD 
bainite map, (i) nanoindentation ferrite map, (j) combined nanoindentation-EBSD ferrite map. X and Y coordinates are presented in µm. 
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substantial areas where boundaries could influence the indentation 
response, as depicted in Fig. 15. Moreover, the influence of the sur-
rounding microstructural context on the sole nanoindentation data is 
undeniable. These effects significantly impact the correlation with 
electron backscatter diffraction (EBSD) data, necessitating extensive 
filtering of regions surrounding grain boundaries. 

Despite meticulous efforts, the intrinsic properties of the probed 

volume and existing material defects remain unavoidable factors influ-
encing the results. However, strategies discussed in the paper aim to 
mitigate these effects by carefully correlating the data. Specifically, 
correlations are primarily based on contact depth, which directly relates 
to the hardness response of the material. This parameter offers a rela-
tively confined influence within the material compared to other nano-
indentation measurements. 

4.2. Technological impact of the phase quantification and scientific 
soundness of the approach 

A complete identification and quantification of different phases for 
AHSS is a mandatory step to advance the AHSS technology. Still, the lack 
of inclusive characterization techniques is becoming evident while the 
market moves to 3rd Generation AHSS. In addition, such methodologies 
are required in another application, specifically in detecting Unreacted 
Retained Austenite (URA) in ADI (Austempered Ductile Iron) cast iron. 
URA is detrimental to the material’s mechanical properties because it is 
a metastable phase that can transform in martensite and lead to cracks 
and failure of the component. Otherwise, detecting and quantifying URA 
by separating it by retained high-carbon stable austenite is almost 

Fig. 12. Nanoindentation scatter plots: (a) hardness map, (b) indentation modulus map, (c) phase map, (d) overlayed nanoindentation phase scatter map with EBSD 
(2519 data points in total). X and Y coordinates are presented in µm. 

Table 4 
Phase statistics derived from coordinate (x,y) annotation by EBSD. *Phase ratio 
here refers to the amount of data from nanoindentation observations labeled as 
specific phases and differs from EBSD phase ratio quantification.  

EBSD Martensite Batinite & ferrite 
combined 

Austenite 

E (GPa) 227.9 ± 46.2 230.0 ± 45.9 221.4 ± 47.5 
H (GPa) 5.6 ± 1.1 5.5 ± 1.0 5.3 ± 0.8 
Phase ratio (%)* 23.1 79.4 3.5  

* Phase ratio here refers to the amount of data from nanoindentation obser-
vations labeled as specific phases and differs from EBSD phase ratio 
quantification. 
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impossible, which is a desired phase. In this study, the correlation of a 
mechanical and diffraction characterization method to assess the exact 
ROI and leveraging the computational intelligence enabled us to reach a 
validated dataset and a model that can efficiently support the classifi-
cation of grain boundaries, martensite, and austenite. At the same time, 
it is possible to distinguish ferrite and bainite based on the established 
structure-property relationships in the machine learning model. 

Moreover, considering that the phase ratio of individual micro-
structures in steels is not readily available from steelmakers, the precise 
examination of the phase ratio with the proposed methodology can help 
overcome this limitation and knowledge gap. It should be noted that the 
phase ratios quantification compared to other TRIP steels studied in 

literature might disagree with this study; for example, the TRIP steels in 
the study of Jacques et al. do not contain any fraction of martensite, 
which is something connected to the chemistry and the thermal history 
[46] or use SEM assisted quantification, which can be limited under the 
imaging conditions adopted [47] where for example a higher phase ratio 
of austenite over martensite was detected. However, the precision of the 
detection, according to the present study, utilizes more data than oc-
casionally used in literature and presents a data-informed approach 
utilizing the outputs of two techniques to assess the structure and 
properties of these steels in a more objective outcome. Often, when 
EBSD and nanoindentation outputs are combined, there is not consid-
ered precisely what the grain boundary contribution to individual P/M 
nanomechanical properties would be [48], where it is estimated that the 
austenite properties are higher than ferrite properties in the studied 

Fig. 13. (a) Isolated EBSD map of the bainite and ferrite region, (b) scatter map of the nanoindentation Bainite and Ferrite region, and (c) combined nanoindentation 
and EBSD map of Bainite and Ferrite region. 

Table 5 
Phase statistics derived from coordinate (x, y) annotation by combined phase 
analysis data from nanoindentation and EBSD.  

Validation of EBSD grey 
ROI by nanoindentation 

Martensite Bainite Ferrite Austenite 

E (GPa) 227.9 ±
46.2 

232.1 ±
44.1 

226.7 ±
46.4 

221.4 ±
47.5 

H (GPa) 5.6 ± 1.1 5.4 ±
0.3 

4.9 ±
0.3 

5.3 ± 0.8 

Phase ratio (%) 23.1 39.3 40.1 3.5  

Fig. 14. (a) Initial nanoindentation scatter plot, (b) revised nanoindentation scatter plot, validated by EBSD and supervised by the RF machine learning model. X and 
Y coordinates are presented in µm. 

Table 6 
Nanomechanical properties after the phase annotation results are revised based 
on EBSD and Machine Learning.   

Martensite Bainite Ferrite Austenite 

E (GPa) 229.1 ± 46.7 232.0 ± 44.2 226.7 ± 46.4 222.3 ± 48.4 
H (GPa) 6.0 ± 1.4 5.4 ± 0.3 4.9 ± 0.3 5.3 ± 0.8 
Phase ratio (%) 44.5% 25.6% 25.3% 4.6%  
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dual-phase steel, without any attribution of the nanomechanical prop-
erties measured to the grain boundaries. However, in the latter study 
[47], where the grains’ existence has been taken into consideration, the 
hardness ranking of the P/M is quite similar to these study outcomes at 
the final stage of the proposed methodology (Table 8), where the ferrite 
presented the lower hardness, and martensite the higher. In contrast, 
Bainite and Retained Austenite have similar hardness, varying within 
the standard deviation. 

In addition, it is essential to note that in most cases, the 

measurements of the nanomechanical properties are affected by 
considerable variation of the reported literature values due to the effects 
of anisotropy [14,49–51], roughness, grain boundaries [52], sample 
preparation [53], neighboring constituents, residual stress [54], pile-up, 
time-dependent deformation, orientation, crystal plasticity, and hydro-
static stress [55]. This study has tackled several aspects; the innovative 
high-speed nanoindentation protocol, characterized by up to one indent 
per second, minimizes and even nullifies time-dependent effects on the 
measurement, such as thermal drift, creep or other time-dependent 
deformation phenomena that occur during loading. In contrast, using 
EBSD provided information about orientation, anisotropy, grain 
boundaries, and neighboring constituents, which have increased the 
credibility of the advanced high-strength TRIP steel evaluation. 

Finally, since in nanoindentation, the contact area is lower than the 
average grain size, from an industrial scale-up perspective, these out-
comes can help metallurgists understand both micro- and macro- 
mechanical properties, wherein indents have more significant contact 
areas and two or more grains can be intercepted in a single load. 

5. Conclusions 

This study successfully demonstrated the efficacy of integrating 
nanoindentation and EBSD for enhanced phase mapping, addressing 

Fig. 15. (a) IPF map from EBSD, (b) edge detection of the grain boundaries in IPF image within ROI, (c) clean EBSD phase map from grain boundaries, (d) initial 
nanoindentation scatter pattern with grain boundaries removed, (e) nanoindentation scatter pattern overlaid by EBSD and with grain boundaries removed and 
prediction of unvalidated values with machine learning (36.1% of initial raw data), (f) nanoindentation scatter corresponding to grain boundary location of indents. 
X and Y coordinates are presented in µm. 

Table 7 
Phase statistics following the validation of nanoindentation by EBSD and after the removal of grain boundaries (used as training dataset).  

Phase Martensite Bainite Ferrite Austenite Grain Boundaries 

E (GPa) 236.5 ± 42.6 228.9 ± 45.7 225.4 ± 45.2 163.3 ± 52.8 229.5 ± 46.5 
H (GPa) 7.1 ± 1.0 5.4 ± 0.3 4.9 ± 0.3 2.8 ± 1.1 5.5 ± 1.1  

Table 8 
Phase statistics following the validation of nanoindentation by EBSD and after 
removing grain boundaries after supervised learning of unclassified instances.  

Phase Martensite Bainite Ferrite Austenite Grain 
Boundaries 

E (GPa) 231.8 ±
43.8 

229.2 ±
45.8 

225.2 ±
45.3 

210.4 ±
51.7 

229.5 ± 46.5 

H (GPa) 5.9 ± 1.3 5.4 ±
0.3 

4.9 ±
0.3 

5.7 ± 1.2 5.5 ± 1.1 

Phase 
ratio 
(%) 

41.7% 25.2% 26.7% 6.4% —  
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nanoindentation’s challenge in retained austenite detection. At the same 
time, nanoindentation enabled the differentiation between Bainite and 
Ferrite, which was traditionally a limitation due to their similar BCC 
structures in EBSD. EBSD analysis enhanced the overall accuracy by 
validating martensite and retained Austenite predictions. Our approach 
introduced a statistical analysis for accurate phase mapping. It leveraged 
a validated dataset to train a machine-learning model for more precise 
classifications when there is uncertainty during phase segmentation. 
This combination optimized the region of interest analysis. It established 
a reusable dataset and machine-learning model for similar steel grades, 
presenting a promising framework for steel nanoscale design and 
pattern analysis of processing footprint. 

Anyway, further improvements are needed to reduce the standard 
deviation of values. Defects, voids, residual stress, and surrounding 
phases/microstructures negatively affect measurements’ accuracy. It is 
arduous to manage these phenomena from both experimental and sta-
tistical points of view. 
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