Doctoral Thesis

Lexical Resources as Semantic Layers on top of

Language Models

Polo delle Scienze della Natura
Computer Science Department

University of Turin

Davide Colla

Turin, July 20%, 2022

Supervised by Prof. Daniele P. Radicioni






To speak a language is to take on a world, a culture.

— Frantz Fanon

Language is a process of free creation; its laws and principles are fixed, but the
manner in which the principles of generation are used is free and infinitely varied.
Even the interpretation and use of words involves a process of free creation.

— Noam Chomsky






Abstract

Lexical resources are central to Natural Language Processing (NLP). Over the years,
lexical resources have been successfully employed to tackle many diverse NLP
tasks, such as Word Sense Disambiguation, Question Answering, Information Re-
trieval, Sentiment Analysis and many others. In the same spirit of lexical resources,
language models are a long-standing component of Natural Language Processing,
they are central to many different tasks. In the last years, language models have
attracted considerable attention, thus leading to a rapid evolution through neural
architectures, ending up with impressive models such as BERT and GPT-2. Such a
rapid evolution of language models plays a fundamental role in the development
of lexical resources. In this work two lexical resources are presented, that reflect the
evolution of neural architectures: LESSLEX and SE-MACAROON.

LESSLEX is a set of embeddings that extends the terminological embeddings
of ConceptNet Numberbatch by building semantic representations that co-exist in
the same semantic space with those acquired at the term level: for each term we
have thus the ‘blended’ terminological vector along with those describing all senses
associated to that term. LESSLEX has been extensively assessed on a wide variety of
tasks, such as word similarity, conceptual similarity, semantic similarity, contextual
similarity and semantic text similarity.

Focusing on the semantic similarity task —and on the metrics usually em-
ployed to compute semantic similarity— allowed us to make explicit the sense
identification task: semantic similarity accounts for similarity ratings only, con-
versely sense identification involves identifying which senses which actually un-
derlie that similarity score. We posit the sense identification as a natural and crucial
complement to the semantic similarity task.

Additionally, we developed a second lexical resource, SE-MACAROON. SE-
MACAROON contains vectorial representations built by integrating context sensi-
tive descriptions from BERT and the structured semantic information from Word-
Net. Different from the existing contextualized sense embedding techniques, SE-

MACAROON represents word senses as collections of word embeddings rather



than conflating all of its occurrences into a unique representation. Such feature
provides the resource with a sort of lexical memory, storing the ideal representa-
tions of a word sense taken in context, and collecting sense representations possi-
bly close to several contexts of usage. This allowed us to devise a novel approach
to WSD, exploiting multiple occurrences for each word sense and obtaining results
that directly compare to the state-of-the-art sense embeddings.

We eventually investigated the role of language models in a specific application
setting, where we explored how suited perplexity is as a marker for measuring co-
herence in spoken language. We also investigated whether perplexity can be used
as an automatic linguistic analysis tool to assist clinical diagnosis. The obtained
results seem to corroborate our chief hypothesis: distributional sense-level repre-
sentations allow to deal with lexicographic precision of semantic networks paired
to the flexibility proper to distributional resources. Additionally, such lexical re-
sources are built as a semantic layer sitting on top of language models: this yields
as output symbolic information tied to the terminological space defined by lan-
guage models representations. Such feature allows to compare terms and senses

descriptions inspiring novel strategies to address a growing number of NLP tasks.
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1 Introduction

Lexical resources are central to Natural Language Processing (NLP). Over the years,
lexical resources have been successfully employed to tackle many diverse NLP
tasks such as Question Answering (Esposito, Damiano, Minutolo, De Pietro, & Fu-
jita, 2020; Kaisser & Webber, 2007), Semantic Word Similarity (Jiang & Conrath,
1997; Speer, Chin, & Havasi, 2017), Relation Extraction (P. Li, Mao, Yang, & Li,
2019), Event Extraction (Ahn, 2006), Automatic Text Summarization (Pal & Saha,
2014; Tauchmann & Mieskes, 2020), Supersense Tagging (Ciaramita & Altun, 2006;
Flekova & Gurevych, 2016) and Word Sense Disambiguation (WSD) (L. Huang,
Sun, Qiu, & Huang, 2019; Levine et al., 2019; Navigli, 2009; Tripodi & Pelillo, 2017),
thereby determining further impulse in developing newer lexical resources. The
building rationale underlying such lexical resources may differ according to the
considered task: more general lexical resources such as WordNet (G. A. Miller,
1995) may serve as a base to develop domain specific resources (J. McCrae et al.,
2012) or to envision resources involving several different languages BabelNet (Nav-
igli & Ponzetto, 2010).

Dealing with lexical resources involves to cope with word senses representa-
tion, that is, building representations for the different meanings related to a word.
In the last decades the research took two parallel paths to represent word senses:
symbolic approaches, resulting in resources such as WordNet, and resources fol-
lowing the distributional hypothesis (Harris, 1954). Symbolic information expects
that the connection among lexical surface and meaning be made explicit, inter-
facing strings to concepts. Pioneering resources such as WordNet are significant
undertakings which arrange symbolic information about word senses —that is,
lexicographic information— in a machine-readable configuration, while adopting
the overall structure of semantic networks. Such resources have been exploited

as sense dictionary for many different NLP applications, such as text classifica-



4 INTRODUCTION

tion (Scott & Matwin, 1998), word sense disambiguation (Lesk, 1986), computing
semantic relatedness between pair of words (Patwardhan & Pedersen, 2006) and
text summarization (El-Kassas, Salama, Rafea, & Mohamed, 2021).

Different from symbolic knowledge bases, distributional resources represent
word senses through word embeddings: real valued vectorial representation for
words in a multi-dimensional semantic space. Word embeddings have proven to be
suitable for representing word meanings over a multidimensional Euclidean space,
where distance acts like a proxy for similarity, and where similarity can be inter-
preted as a metric. Word embeddings have been successfully applied to a broad
set of diverse NLP applications such as text classification (Lilleberg, Zhu, & Zhang,
2015), sentiment analysis (H. Liu, 2017), named entity recognition (Sienc¢nik, 2015)
and word similarity (Speer et al., 2017). Thanks to the emergence of deep neural
models for NLP, word embeddings started also to be exploited as initial weights
for such models (Goldberg, 2017): neural models implicitly develop word embed-
dings when training for the language modeling task (Bengio, Ducharme, Vincent, &
Janvin, 2003), thus pre-trained word embeddings may be exploited as initial word
representation for newer language models.

The evolution of language models plays a fundamental role in lexical resources
development as well as for many different NLP tasks, to the extent that newer NLP
evaluation benchmarks such as Glue (Wang et al., 2018) and SuperGlue (Wang et
al., 2019) need to be developed. Early language models estimate the probability
only for a small group of words, thus resulting in sparse representations based on
co-occurrences (C. Manning & Schutze, 1999). The introduction of neural networks
boost the language models development allowing implementing textual memory
together with dense representations (Devlin et al., 2018; Elman, 1990; Hochreiter &
Schmidhuber, 1997; Radford et al., 2019). Word embeddings produced by neural
models evolved according to the language model paradigm: whereas early neural
language models built fixed word embeddings, recently proposed context sensitive
representations have received considerable attention due to their versatility.

The focus of this work is the development of two lexical resources as seman-
tic layer on top of language models. The first proposed resource is LESSLEX, a

set of embeddings containing descriptions for senses rather than for words: while
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word embeddings typically describe terms, LESSLEX contains different distribu-
tional representations for different word senses from a semantic network’s vocab-
ulary. For example, given the WordNet entry for bank intended as “sloping land
(especially the slope beside a body of water)”, vectorial representations for river-
bank, riverside, bank, coast (i.e. all the synonyms of such meaning) are collected and
combined to build the representation related to such word sense. Additionally, rep-
resenting word senses allow dealing with multiple languages with a single charac-
terization: word embeddings are strictly linked to the language of the corpus, by
dealing with senses only a single vector for financial institution sense is needed, re-
gardless of the language. Since dealing with multiple languages with the same
representation is to date one of the chief challenges in lexical semantics, we de-
cided to address diverse languages exploiting the multilingual nature of BabelNet
and ConceptNet Numberbatch (Speer & Chin, 2016) thus generating distributional
vectors for BabelNet’s entries. LESSLEX vectors have been tested in a widely var-
ied experimental setting, comprising semantic similarity for word in context and
textual similarity, providing performances at least on par with state-of-the-art em-
beddings, and sometimes substantially improving on these.

Additionally, we tested LESSLEX vectors on semantic similarity task: the se-
mantic similarity task consists in computing a score to assess the proximity of the
meaning of two lexical items; in order to assess its accuracy, the computed seman-
tic similarity score is customarily compared against similarity ratings provided by
human annotators. Semantic similarity is a long-standing topic of investigation
(see, e.g., works by Baddeley (1966a, 1966b); Schaeffer and Wallace (1969)), and in
the last few years it has emerged as a central one: historically, this phenomenon is
related to various aspects, such as the growing needs for elaborating natural lan-
guage at large, and the wide availability of high quality word embeddings.

Assessing LESSLEX embeddings on semantic similarity task, allowed us mak-
ing a complementary task explicit: the sense identification task. Basically, this task
allows answering a —previously unseen, though— basic question: Which senses
actually lie at the base of the similarity rating? In this setting we explored whether
the semantic similarity task can be paired to such complementary task aimed at

identifying which senses are actually involved in the semantic similarity rating.
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In other words, we posit that sense identification is a natural and crucial comple-
ment to the semantic similarity. Addressing the sense identification task involves
redesigning classical similarity metrics taking into account word senses responsi-
ble for the similarity rating: metrics for the semantic similarity task are designed
to compute the similarity score only, sense identification task also requires expli-
cating the senses underlying the similarity rating. Therefore, we defined novel
semantic similarity metrics that favorably compare to the familiar cosine similarity
maximization, both in the semantic similarity task, and in the sense individuation
task: our novel metrics can be simply plugged into existing systems to replace the
maximization strategy.

The second proposed resource is SE-MACAROON, a set of sense embeddings
constructed on context sensitive representations from BERT. Different from LESSLEX,
SE-MACAROON relies on contextualized word embeddings computed through
BERT on a sense tagged corpus. Contextualized word embeddings have been em-
ployed effectively across several tasks in Natural Language Processing, as they
have proved to carry useful semantic information. Despite their nature, context
embeddings are still difficult to link to a structured knowledge base such as Word-
Net. The proposed approach builds sense embeddings extracting context sensitive
representation exploiting BERT language model on a sense labeled corpus. Dif-
ferent from state-of-the-art contextualized sense embeddings, such as ARES (Scar-
lini, Pasini, & Navigli, 2020b), that build unique fixed representation for each word
sense, our hypothesis is that word senses might be characterized more precisely
through a set of vectors representing the occurrences of the word sense in ideal con-
texts. Starting from SemCor (G. A. Miller, Chodorow, Landes, Leacock, & Thomas,
1994), the largest, manually curated, sense labeled corpus, we collected all the sen-
tences in which the word w occurs intended as the sense s, and built a set of context
sensitive embeddings through BERT. We assessed SE-MACAROON embeddings
in Word Sense Disambiguation (WSD) task, providing performances comparable
with state-of-the-art embeddings. We subsequently assessed the impact of the pro-
posed WSD approach, providing figures supporting our hypothesis.

Over the years, language models have been widely employed across several

NLP tasks, such as information retrieval (Berger & Lafferty, 1999; Hiemstra, 2001;
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D. R. H. Miller, Leek, & Schwartz, 1999), offensive language detection (Colla, Caselli,
Basile, Mitrovi¢, & Granitzer, 2020; Xu, Liu, Shu, & Yu, 2019), sentiment analy-
sis (Singh, Jakhar, & Pandey, 2021), spelling error correction (Ivanov, Musa, & Du-
lamragchaa, 2021), sentence classification (Ali Awan et al., 2021) and many oth-
ers. Despite the success language models have received, no general consensus on
the evaluation framework has been reached: the assessment may be cast to more
extrinsic setting, thus assessing the model on a higher-level task, or to a more in-
trinsic fashion by exploiting the perplexity metrics (Goldberg, 2017). Paired with
language models evolution, the analysis of human language has recently emerged
as a research field that may be helpful to analyze for diagnosing and treating men-
tal illnesses. In fact, in the last decade NLP techniques have become a common
tool to support research on psychotic disorders (Fritsch, Wankerl, & No6th, 2019).
Following this research line, perplexity has been recently proposed as an indicator
of cognitive deterioration (Frankenberg et al., 2019).

The final section of this thesis provides an exploration on this issue: Whether
the perplexity metrics can be interpreted as a semantic coherence marker, thereby
allowing us to employ language models in the early detection of psychotic disor-
ders. After having presented two resources, in this chapter we show how to employ
an intrinsic metrics (originally concerned with evaluating the ‘fit" of a language
model to actual language) to predict the insurgence of a broad class of cognitive im-
pairments, as these affect linguistic production. We tested whether the perplexity
computed employing a language model acquired based on speeches from healthy
subjects can be useful in discriminating healthy subjects from people suffering from
mental disorders. In this respect, we compared perplexity ratings obtained through
Bigrams and GPT-2 on a tripartite experiment: we first examined whether perplex-
ity can be deemed as reliable to analyze speech transcripts under an intra-subject
and discourse-level coherence perspective; we then assessed it by examining differ-
ent subjects, and compare perplexity scores as computed through LM built by em-
ploying different architectures; finally, we tested perplexity to discriminate healthy
subjects from subjects affected from Alzheimer Disease. The results seem to sup-
port our hypothesis proving the coherence of the perplexity metrics, especially on

language-specific trained models. Furthermore, we show that such language mod-
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els, after accurate pre-training process, together with the perplexity metrics might
be exploited as additional feature accounting for decision process.

LESSLEX and SE-MACAROON rely on different language models grasping
similar knowledge: the former supplies distributional and opaque knowledge which
can be exploited to establish distances both at the terminological and conceptual
level. Such knowledge is built upon static word representations comparable to
those provided by early language models. The latter one provides conceptual rep-
resentations that can be used to deeply analyze and understand senses underlying
words in textual data. Such representations are built by employing context sen-
sitive language models, thus obtaining different nuances of the same word sense
according to the lexicalization and the sentence in which it occurs. Although dif-
ferent in nature, both LESSLEX and SE-MACAROON build a semantic layer on top
of language models: representations supplied by these resources live in the same
semantic space, defined by their common grounding on WordNet. This feature is
deemed as helpful in contributing to the interpretability and transparency of such
models.

In what follows a compact list of the main research questions addressed, along

with the contributions of the thesis is provided.

* The chief research question addressed in the first part of the work is as fol-
lows: how symbolic knowledge can be integrated with distributional re-

sources to build sense embeddings?

LESSLEX sense embeddings were introduced. LESSLEX implements a novel
approach aimed at building static vector representation for senses as an inte-
gration between symbolic and distributional knowledge. Additionally, LESSLEX
sense embeddings share the same semantic space defined by the adopted dis-
tributional resource(Chapter 4)!. LESSLEX was experimentally proved as a
robust, wide-coverage resource. It was shown that the purely conceptual rep-
resentation delivered by LESSLEX allows to deal with multi- and cross-lingual

application settings with no need for retraining.

¢ The second research question addressed in this thesis is the following: How

'The work illustrated in Chapter 4 was published in: Davide Colla, Enrico Mensa and Daniele P.
Radicioni. LESSLEX: Linking multilingual Embeddings to SenSe representations of Lexical items
Computational Linguistics, 46(2), pages 289-333, June 2020.
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to exploit shared conceptual and terminological spaces to build novel and
more accurate metrics for semantic similarity? Is it possible to envisage a task
closely related to semantic similarity, which is focused on identifying which

senses are actually involved in the semantic similarity rating?

A novel task —the Sense Identification task— was individuated, underlying
and complementing the semantic similarity task. To these ends, an annotated
corpus was released, the Sense Identification Dataset (Chapter 5).> Two novel
metrics were proposed, R-sim and N -sim, aimed at addressing both seman-
tic similarity and sense identification; such metrics were observed to obtain
more accurate results than the popular cosine similarity maximization; in the

experimentation a pool of state-of-the-art sense embeddings was employed.

¢ The third research question addressed in this thesis is: Can multiple con-
textual vector descriptions be helpful in representing senses? Is it possible
to exploit such representations to deal with the Word Sense Disambiguation

task?

A novel approach for constructing contextual sense embeddings was intro-
duced, characterizing each word sense through multiple vector descriptions
(Chapter 6).> SE-MACAROON sense embeddings were built by conflating
WordNet and the BERT language model. A novel Word Sense Disambigua-
tion strategy was proposed; the multiple vectorial descriptions underlying
the SE-MACAROON embeddings improve accuracy over the more popular

average vector representations.

¢ The fourth research question addressed is whether language models can be
used to analyse linguistic deficits featuring the speech of cognitively impaired
subjects, and to assist specialists in the early diagnosis of specific disturbances

afflicting linguistic production, such as Alzheimer Disease.

A real-world application scenario involving language models was consid-

*The work illustrated in Chapter 5 was published in: Davide Colla, Enrico Mensa and Daniele P.
Radicioni. Novel metrics for computing semantic similarity with sense embeddings, Knowledge-
based systems, 206:106346, 2020; and in Davide Colla, Enrico Mensa, and Daniele P. Radicioni.
Sense identification data: a dataset for lexical semantics. Data in Brief, page 106267, 2020.

*The work presented in Chapter 6 has not been previously published. An extended version of the
research therein is under preparation.
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ered, where the perplexity metrics was employed as a semantic coherence
marker. In this study, evidence was provided that language models can be
employed to effectively assist specialists in the early detection of mental dis-

turbances and psychotic disorders (Chapter 7).

*A revised version of the work presented in Chapter 7 has been submitted to the Artificial Intelli-
gence in Medicine Journal, and successfully passed through two rounds of review.



2 Preliminaries

This work exploits the interaction between language models, vector-based repre-
sentations and semantic representations. In this Chapter we provide the essential
background to such topics. The Chapter is organized as follows: first we introduce
language models (Section 2.1), where we report on both N-grams (Section 2.1.1)
and neural language models together with the main traits of the neural architec-
tures actually employed to acquire such models (Section 2.1.2); the second part of
the Chapter is focused on lexical resources (Section 2.2) illustrating distributional

resources (Section 2.2.1) and semantic networks (Section 2.2.2).

2.1 Language Models

Language models are statistical inference tools that allows estimating the probabil-
ity of a word sequence W = {wy, ..., w;} (Goldberg, 2017; C. Manning & Schutze,
1999). For example, a language model is able to assign the probability to the sen-
tence I shot an elephant in my pajamas. More frequently, language models are em-
ployed to compute the probability of seeing a given word following a sequence of
words —usually called context—. For example, what is the probability of seeing
the word pajamas after the sequence I shot an elephant in my? The probabilities as-
signed by language models are the result of a learning process, i.e. the training
phase, in which the model is exposed to a particular kind of textual data —i.e. the
training corpus—. The goal of the training process is to teach the model to predict
sentences that closely resemble the sentences seen during learning.

Formally, the Language Modeling task is defined as the assignment of prob-

ability to any possible sequence of words W = {w;...w;}, so as to compute



12 PRELIMINARIES

p(W) (Goldberg, 2017). Such probability can be computed as

k
p(W) = Hp(wi’wlw--,wi—ﬂ, (2.1)

i=1
where the probability of each word is conditioned on the preceding context. De-
pending on the adopted language model as well as the assumptions on the condi-

tioning factor the probability of the sentence may be framed differently.

2.1.1 N-grams

The simplest idea is to consider words individually, that is, each word is a single
unit, this is what is called the unigram model. A unigram model considers no
preceding context, given the sequence of words W = {wj ... wy}, the probability of

the sequence is defined as:
k

p(W) = H p(wi),

i=1
where the probability of the i-th word p(w;) can be estimated by exploiting the
frequency of the word w; in the training corpus. The natural extensions of unigram
models, are the N-gram models, where N is an integer indicating the size of the
context, i.e. the preceding N — 1 words are exploited to estimate the probability of
the N-th term of the sequence (Jurafsky & Martin, 2014). Formally, in the N-gram

setting, the probability of the sequence W is defined as:

k
p(W) ~ [ [ p(wilwi-n1, wieng2, - wis1), 22)

i=1
where the probability of each word is conditioned on the preceding context. In this
case only blocks of few (exactly V) words are considered to predict the whole W:
we can thus predict the word sequence based on N-grams, that are blocks of two,
three or four preceding elements (bi-grams, tri-grams, four-grams, respectively).
Since the N-gram models are statistical models, their knowledge strictly depends
on the training corpus, that is, the probability distribution reflects the language
property of the training corpus itself. The natural consequence of estimating the

probability of the upcoming word, relying on the preceding N — 1 words, is that N-
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Figure 2.1: Typical neuron architecture. The input data are represented as a sequence of real valued
features x1, x2, the neuron applies the activation function f to the weighted sum of input
features and produces the output y.

gram models obtain better performances at representing the training corpus as N
increases, with the drawback of making the estimation of p(wy|w; ... wg_1) harder.
Increasing the context size, also, involves dealing with data sparsity drawback: the
larger the context the less likely it is to find more than one sequence with the same
length in the training corpus. That is, the probability for all the N-grams that does
not occur in the training corpus has to be estimated, this gives rise to plenty of
sequences with the same low probability and few sequences with high probability.
In order to deal with N-grams not occurring in the training corpus, called out-
of-vocabulary N-grams, language models have been provided with an additional
step of regularization, to allow a non-zero probability to unseen N-grams (Gale &

Church, 1994; Kneser & Ney, 1995).

2.1.2 Neural Networks and Neural Language Models

Neural networks are computational systems inspired by the human brain. The his-
tory of neural networks started with the McCulloch-Pitt neuron —or unit—, that
is, a computational model of human neurons, entirely described with propositional
logic (McCulloch & Pitts, 1943). Modern neural networks organize neurons into
layers, each unit is connected to each unit of the subsequent layer through synapses
or edges. Each layer of the network accepts as input the output of the preceding
layer, performs some transformation on the received data, and produces an output
according to the layer architecture. Different layers apply different transforma-
tions; edges, in turn, are usually provided with a weight, an integer expressing the
strength of the connection among two neurons, which is usually exploited to alter
data coming from the preceding layer. A graphical representation of a simple neu-

ron is depicted in Figure 2.1. A single unit receives as input real valued features,
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Figure 2.2: Multi-layer neural architecture. The input layer takes the input data x1, . . ., x4 and passes
the information to the first hidden layer. Hidden layers are stacked and connected to each
other to obtain a higher level of abstraction on data. The last hidden layer passes the
information to the output layer which computes the final representation yi, . .., y3 with a
different activation function.

x1,T2,...,%Tyn, which represent the input data, then, it combines the input features

through a weighted sum:
y=b+ Z Wi T
i=1

where w; are the weight of the edges connecting data with the input layer and b is a
bias term which is an additional term that allows shifting the data transformation
by adding a constant. Additionally, each neural unit is then provided with an acti-
vation function, that is, a non-linear function applied to the weighted sum of input

features and bias term. So the final output value y of a neural unit is:

= f(b + Z wixi)
i=1

where f is the activation function of the single neuron. Different activation func-
tions correspond to different transformation, and several functions may be em-
ployed depending on the addressed task.! Neurons are organized into layers, and
each layer may play a different role in the architecture, also according to the activa-
tion function. An example of a multi-layer neural network is depicted in Figure 2.2.

In particular, the layers can be partitioned in three macro-categories according to

'The most popular activation functions are: sigmoid function, Rectified Linear Unit (ReLU), the
hyperbolic tangent (tanh) and the SoftMax function.
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their position: (i) the input layer, which is dedicated to take input data, represented
as numerical features, and to pass information to the hidden layer; (ii) hidden layer,
made of non exposed units, is the heart of neural computation, all the major trans-
formations happen here, and all neural units of the layer share the same activation
function; (iii) output layer, is the final layer of the architecture, usually apply a dif-
ferent function, with respect to hidden layers, so to build the final representation.

The role played by hidden layers is fundamental in computing the final repre-
sentation. Each hidden layer provides additional abstraction to the neural model:
in fact, hidden layers can be stacked one on each other to obtain a higher abstrac-
tion level. Architectures provided with multiple hidden layers are usually called
deep neural networks. Since neural networks deal with real valued representations
of data, it is essential to extract features from data, which are texts in our case, and
map them to a numerical vector representation —usually called embedding— able
to fully grasp the key features from the input data. The role of vector representa-
tions is central to neural models: modern neural networks are provided with an
embedding layer, which is responsible for the creation of a fixed-length vector for
each element of the input sequence. It is worth noting that these vector represen-
tations mitigate the data sparsity problem by building a continuous space, each
word has its corresponding vector in the network space. Since language models
deal with textual data, we report on the most popular neural networks for Natural
Language Processing (NLP).

In general, dealing with sentences involves dealing with ordered sequences of
words: in order to fully seize the meaning of a sentence, a model should be able
to account for word ordering information. Given the relevance of modelling the
word order in sentences, one of the most employed architectures is the Recurrent
Neural Network (RNN). RNNs have been largely employed in text processing due
their ability of processing input data as sequences: that is, RNNs are able to grasp
and model word order (Elman, 1990). RNNs are particularly suited to process se-
quence data thanks to the internal loop they are provided with, that is, the input of
each unit is conditioned by the output of its own output at the preceding iteration.
Figure 2.3 shows a graphical illustration of a single RNN unit. The hidden state

encodes a memory for the context, it provides all the additional information that is



16 PRELIMINARIES

Yi
A

Hidden
State

RNN

X

Figure 2.3: RNN unit: takes z; as input, and computes the output representation y; as a composition
of z; and the hidden state of the preceding time step.
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Figure 2.4: Representation of an RNN unrolled.

exploited to compute the output of later time steps. An RNN model does not fix
a limit for the length of the input sequence, however, for a finite input sequence,
an RNN model can be represented as unrolled, a graphical illustration is shown in
Figure 2.4. In the unrolled setting we can see that the last hidden state depends on
the entire input sequence, in that the prediction of the next word is conditioned on
the previous words in the sentence. The ability of conditioning the prediction of
the next word to the preceding context, that is, dealing with sequences, is the most
appealing feature of the RNN architectures, nevertheless, these models struggle in
modeling the context when facing long range dependencies. More precisely, some
tasks can be addressed by accounting for the recent information only, for example
the five words before the next one. Conversely, to tackle other tasks, we need the
information from the whole sequence, for example, let us consider the sentence I
was born in Italy and then, to follow my work, I moved to Germany. However, my family
still lives in Italy., to predict the last word Italy we should exploit the information
at the beginning of the sentence, that is, the distance between the prediction and
the useful context is quite large. Unfortunately, however, RNNs are progressively

less suited to model dependencies as the intervening distance between dependents
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grows (Bengio, Simard, & Frasconi, 1994).

Given the difficulties in seizing long range dependencies, RNNs were quickly
replaced by the Long Short-Term Memory networks (LSTM) (Hochreiter & Schmid-
huber, 1997). LSTMs are RNNSs specifically devised to learn long range dependen-
cies; this is obtained by providing units with an explicit context memory that con-
veys the information about the preceding context through time. The context repre-
sentation is performed through two main operations: (i) forgetting information no
longer needed from the context and (ii) adding new information probably needed
for next word prediction. Both sub-tasks are addressed through specialized neural
units called gates, that manage the information flow through the memory state and
the output of the LSTM cell. These gates follow the same design pattern: a neu-
ral layer followed by a sigmoid activation; the output is then combined through
multiplication with the information to be filtered. The sigmoid function, combined
with point-wise multiplication, allows the gate to decide whether to retain infor-
mation (that is by setting the output to 1) or to forget the information, setting the
output to 0. More precisely, an LSTM unit is composed by three gates: the for-
get gate, which is responsible for deleting information no longer needed from the
context representation; the input gate, concerned with adding new information to
the context representation; the output gate, that is aimed at computing the output
representation, which coincides with the unit hidden state, by accounting for the
preceding hidden state and the new context representation. A graphical illustration
of an LSTM unit is provided in Figure 2.5.

LSTMs are particularly suited to deal with sequences and long range dependen-
cies. Despite their abilities, simple LSTM models can only work with fixed length
input sequences, but some tasks such as machine translation or speech recognition
are likely better expressed by dealing with sequences whose length is not fixed. The
Sequence-to-Sequence (525) model has been proposed in 2014 (Sutskever, Vinyals,
& Le, 2014) to overcome such limitations. The 525 model relies on LSTMs to map
a sequence z1,...,Z, of an arbitrary length to another sequence vy, ..., y, where
k may be different from n. In this setting, the input sequence is processed by an
encoder, which compresses the sequence to a fixed length vector representation C'.

The decoder is then initialized on the C' vector, and predicts the output token by
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Figure 2.5: Representation of an LSTM unit. Here, C;_; and h._; are the context representation and
the hidden state coming from the preceding unit, respectively. The input token is repre-
sented by x;. The output of the cell corresponds to its hidden state at the current time
step h¢. The updated representation of the context C; and the hidden state h; are then
forwarded to the next LSTM unit.

token, accounting for the previously predicted token at each time step. A graphical
representation of the 525 architecture is depicted in Figure 2.6.

Despite the ability of LSTM architectures to deal with long range dependencies,
these models still struggle in representing larger pieces of text and suffer from high
training time due to the recurrent connections which build these units. Addition-
ally, the S2S architecture suffers from the loss of informative load in compressing
the whole input sequence into a single fixed length vector representation. Trans-
formers (Vaswani et al., 2017), together with the attention mechanism (Bahdanau,
Cho, & Bengio, 2014) alleviate these problems by both increasing the amount of
exploited information from the context, and getting rid of the recurrent connec-
tions. The attention mechanism has been designed to alleviate the difficulties in
S2S models; this is done by allowing the decoder to directly exploit the encoder’s
hidden states rather than just using the final context representation provided by the
encoder itself. Adopting an attention mechanism allows the model to selectively fo-
cus on parts of the input that are likely the most useful. The attention mechanism is
particularly suited to address tasks which need to take decisions relying on parts of
the input data. An illustration of the attention mechanism fitted in the 525 setting
is depicted in Figure 2.7. Attention plays a key role in the Transformer architec-

ture, in particular, the model illustrated in Figure 2.7 follows the S2S design pattern
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Figure 2.6: Representation of an S25 setting. Here <EOS> represents the end of the sentence. The in-
put sequence 1, 2, 3 is processed by the encoder and compressed to the context vector
representation C. The context vector is then forwarded to the decoder which predicts the
output sequence y1, y2, y3, ya by taking as input the previously predicted token at each
time step.
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Figure 2.7: Attention mechanism in an 525 setting. Here each prediction of the decoder relies on both
the previously predicted token and a composition of the encoder hidden states.
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where the encoder processes the input sequence, the output is then forwarded to
the decoder which curates the output predictions. In this setting, we will refer to
the encoder-decoder model as the Transformer block. Since Transformers get rid
of recurrent connections, which allow models to deal with sequences, the encoder
represents the input through a combination of word representations and informa-
tion about the position of words in the input sentence. In so doing, the model is
able to account for ordering information. After this first operation, the encoder
block is made of an attention layer followed by a simple neural layer which is de-
puted to compute the context representation. As for encoder, the decoder block
combines the previously predicted word representations with the positional infor-
mation to keep track of the order of the words, and forwards these vectors through
an attention layer that selects the most useful information among the predictions.
After these first steps the decoder combines the information from previously pre-
dicted tokens with the context representation, from the encoder, through another
attention layer, and finally a simple neural layer is concerned with computing the
output representation. Most popular models consist of several Transformer blocks
stacked one on each other, this allows the model to increase its abstraction capabil-
ities, the more the number of stacked blocks the more abstract the representation
that can be calculated. A graphical illustration of a transformer block is provided
in Figure 2.8.

Neural language models (NLMs) are language models based on neural net-
works. Such models improve the language modeling capabilities of n-grams by
exploiting the ability of neural networks to deal with longer histories. Addition-
ally, neural models do not need regularization steps for unseen n-grams and ad-
dress the data sparsity curse of n-grams by dealing with distributed representa-
tion. The predictive power of neural language models is higher than n-gram lan-
guage models given the same training set. Despite the great improvement of neu-
ral language models on NLP tasks, these models are affected by higher training
time rather than n-gram language models. Since the introduction of Transformers,
such models have been widely adopted and improved to address diverse Natural
Language Understanding benchmarks such as GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019). With the introduction of highly-scalable Transformer
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Figure 2.8: High level representation of transformer block. The input sequence 1, x2, ...z, is com-
bined with positional information to account for ordering properties. The input is then
processed by the attention layer of the Encoder and a simple neural layer aimed at repre-
senting the whole input sentence. The Encoder output is then combined with previously
predicted tokens from the Decoder through another attention layer, and then, the last layer
computes the output representation for each input token.
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architectures two kinds of very deep NLMs emerged: causal (or left-to-right) mod-
els, primarily represented by the Generative Pre-trained Transformer (Radford et
al., 2019) where the objective is to predict the next word given a past sequence of
words; and masked models, where the objective is to predict a masked (i.e., hid-
den) word given its surrounding words, of which the most prominent example is
the Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2018). The difference in training objectives results in these two varieties of NLMs
specializing at different tasks, with causal models excelling at language generation
and masked models at language understanding. Models such as BERT (Devlin et
al., 2018) and GPT-2 (Radford et al., 2019) started a whole host of experiments and
triggered an intense research activity to improve such models (Brown et al., 2020;
Lanetal., 2019; Y. Liu et al., 2019; Raffel et al., 2019; Yang et al., 2019). Given the rel-
evance of the two mentioned models, we briefly report on both BERT and GPT-2
as precursors to more recent lines of NLP research as well as responsible for main

advances in addressing NLP benchmarks.

BERT

BERT is a large language model based on Transformers, but it differs in the training
objective: the key innovation is applying the bidirectional training of Transformers
to language modeling. Using BERT involves to deal with two different rather im-
portant phases: pre-training, where the model is exposed to unlabeled textual data
so as to learn the main features from the type of employed texts; and fine-tuning,
where the pre-trained model is fine-tuned to address a specific task by exploiting
labeled data. During the pre-training phase BERT is designed to address two unsu-
pervised predictive tasks: Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). The MLM is what gives BERT the bidirectional attribute: in this
setting, a small percentage of the input tokens —15% in the released models— is
masked and the training objective is to predict those masked tokens. For exam-
ple, the sentence I shot an elephant in my pajamas may be rewritten into I shot an
[MASK] in my pajamas and the BERT target is to predict the word elephant istead of
the [MASK] token. Unlike causal language models pre-training, the MLM objective

allows representing both left and right context thus making the training bidirec-
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tional at the cost of misaligning the pre-training with the fine-tuning: the [MASK]
token does not appear during fine-tuning. To mitigate the misalignment issue, the
pre-training process does not always replace the masked word with the [MASK] to-
ken; in some cases (20%), the word is replaced with another word randomly taken
from the dictionary or just left unaltered the word itself. The loss function is com-
puted by accounting for the masked tokens only, thus ignoring the prediction on
non-masked words. The NSP training objective has been devised to allow BERT
to learn the relationship between sentences. The NSP involves selecting pairs of
sentences A and B: in half of the cases the sentence B directly follows the sentence
A, while in the remaining half the sentence B is randomly selected within a textual
corpus. The purpose of the training objective is to learn whether sentence B directly
follows A or not. Since many NLP tasks involve learning the relationship between
sentences, such as, for example, Recognizing Textual Entailment (RTE) or Question
Answering (QA), the NSP objective is to strengthen the model by precisely learning
the relationship between pairs of sentences.

The BERT architecture follows the Transformer’s design pattern reported in
Figure 2.8; the difference is that BERT is made of stacked Transformers blocks, one
on another, to increase the abstraction level. Stacking Transformers blocks not only
allows dealing with more and more abstract representations, but also to reproduce
the NLP pipeline, that is, different BERT layers deal with different linguistic lev-
els (Tenney, Das, & Pavlick, 2019; Tenney, Xia, et al., 2019). In Figure 2.9 we report a
graphical illustration of the BERT model’s input as provided by the authors (Devlin
et al., 2018). Given that BERT has to deal with pair of sentences as well as masked
tokens, the authors, provided the model with two special tokens, the [CLS] token
is placed at the beginning of the first sentence and is used from following classi-
fication layers placed on top of BERT, while the token [SEP] is used as separator,
to mark the end of a sentence. The sentence embeddings reported in the figure
are used to distinguish between the sentence A and B for the NSP task, while the
positional information is accounted through the positional embeddings.

Once the pre-training of the model has been completed, the model may be fine-
tuned to address a specific NLP task. For each downstream NLP task a fine-tuning

process is needed, in particular, to specialize a pre-trained model is sufficient to
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Figure 2.9: Representation of the BERT model’s input. Token embeddings represent the word vec-
tors, positional embeddings represent encode the ordering information of words in sen-
tences. The segment embeddings are used to distinguish between the two input sentences.
The [SEP] special token is used to mark the end of a sentence, as separator, while the token
[CLS] can be used for classification purposes. Figure taken from (Devlin et al., 2018).

plug a classification layer on top of BERT relying on the encoded representation
for words as well as for the [CLS] token. For example, a sentence pair classification
task such as QA or RTE, a simple classification layer may be plugged on top of the
Transformer’s output relying on the [CLS] token. We refer the readers to Devlin et

al. (2018) for an exhaustive list of design pattern for different kind of task.

GPT-2

GPT-2 is a large language model based on Transformers and trained to predict the
next word given the preceding context (Radford et al., 2019). GPT-2, like traditional
language models, predicts one token at a time, and the new prediction is appended
to the input sequence for next time step. Inspired by P. J. Liu et al. (2018), which
proposed the Transformer-Decoder architecture, GPT-2 is made of stacked decoder
blocks only. More precisely, the Transformer-Decoder block is very similar to the
decoder of the Transformer architecture; it simply gets rid of the encoder block as
the contextual attention layer of the decoder. The GPT-2 architecture is portrayed
in Figure 2.10.

The GPT-2 model has been trained 40GB of Internet text carefully selected for
quality, that is a selection of documents curated or approved by humans. One main
trait featuring the training data selection is that many different domains have been
exploited as data sources; this allows the neural network to model language prop-
erties from each such domain, avoiding a strong polarization for a single one. Ad-
ditionally, it is worth noting that the number of stacked decoder blocks impacts on

performances, as the number of levels increases the language modeling capabilities
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Figure 2.10: Representation of GPT-2 architecture. The model is made of n stacked decoder blocks.
The input sequence y1,y2,ys, ... is processed by the n stacked encoders that form the
Transformer-Decoder block. The last decoder produces the next token y4 that is ap-
pended to the input sequence for the next time step. Each decoder is composed of an
attention layer dedicated to processing the input sequence, and a simple neural layer
that computes the output representation.

improve.

2.2 Lexical Resources

Since the purpose of this work is to build lexical resources on top of language mod-
els, we will briefly report on two families of lexical resources. In particular we are
interested in lexical resources aimed at representing word senses according to two
different principles: distributional resources, that represent word senses through
dense vectorial representations, and semantic networks that represent word senses

as vertices of a labeled graph.

2.2.1 Distributional resources

Pioneering works in the vector semantics area postulated that the meaning of a
word always related to the context in which it occurs, depending on its usage in a
language (Firth, 1935). This kind of meaning representation is known as the Distri-

butional Hypothesis (Harris, 1954). The distributional hypothesis states that words
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that occur in similar contexts tend to convey similar meanings, for example if the
word w; and the word wy, often occur in the same context, then they probably have
close meanings; if they are interchangeable in the same contexts of occurrence, then
they are synonyms. For example, in the sentences “We used the board to shut down
the power plant” and “We used the panel to shut down the power plant’, the words
board and panel are intended with the same meaning.

Several techniques have been devised to acquire the distributional profiles of
terms, usually in the form of dense unit vectors of real numbers over a contin-
uous, high-dimensional Euclidean space. In this setting each word can be de-
scribed through a vector, usually called word embedding, and each such vector can be
mapped onto a multidimensional space where distance (such as, e.g., the Euclidean
distance between vectors) acts like a proxy for similarity, and similarity can be in-
terpreted as a metric. As a result, words with similar semantic content are expected
to be closer than words semantically dissimilar. Early works in this family started
by generating vectors from co-occurrence matrices (Harman, 1993; Schiitze & Ped-
ersen, 1997), optionally treated with latent semantic indexing (Landauer, Foltz, &
Laham, 1998), or point-wise mutual information (Hindle, 1990). Historically, such
early distributional representations provided explicit (that is, directly meaningful
and human interpretable) information: the features of such vectors were composed
by, e.g., binary values, or probabilistic measures (Navigli & Martelli, 2019). The
number of dimensions of such vectors was determined by the size of the vocabu-
lary.

On the other side, in implicit or latent representations, features were used re-
sulting from Latent Semantic Analysis (LSA). LSA is a multidimensional associa-
tive model based on the distributional hypothesis: word meaning is encoded as
a multi-dimensional (usually 300 or 400 dimensions) vector obtained by elaborat-
ing large corpora to estimate the co-occurrence frequencies for each word. In order
to assess the quality of vectors built through LSA, such representations have been
assessed on synonymy tests in (Landauer & Dumais, 1997), finding that these em-
beddings performed comparably to school-aged children, when measuring sim-
ilarity between word pairs as the cosine similarity between their corresponding

embeddings. Given the interesting features of word embeddings, further energies
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have been invested in building vectorial representation through neural networks,
in particular it has been shown how NLMs implicitly develop word embeddings
when training for the word prediction task (Bengio et al., 2003). The research has
rapidly progressed demonstrating that word embeddings could be incorporated
into neural architectures for various NLP tasks (Collobert & Weston, 2007, 2008).
In particular, the use of pre-trained word vectors for initializing the embedding
layer of a task-specific network is an instance of multi-task learning, with language
modeling as a supporting task (Goldberg, 2017, p. 243).

Despite the impact of word embeddings on the NLP area, the design of such
representation implicitly includes a major limitation: it ignores the fact that words
can have multiple meanings and conflates all these meanings into a single repre-
sentation (Camacho-Collados & Pilehvar, 2018). Such limitation, also referred as
Meaning Conflation Deficiency, may affect the semantic understanding of an NLP
system that uses word embeddings at its core: word embeddings seem to be un-
able to grasp different meanings of a word, even if those meanings occur in the
training corpus (Schiitze, 1998; Yaghoobzadeh & Schiitze, 2016). Additionally, the
meaning conflation may affect the semantic modeling of word senses, for exam-
ple two semantically unrelated words similar to different word senses of the same
word may be pulled together (Neelakantan, Shankar, Passos, & McCallum, 2014a;
Pilehvar & Collier, 2016). In order to alleviate the impact of the meaning confla-
tion deficiency several directions have been taken, one of these research directions
is building word embeddings as representations sensitive to the context, what are
called contextualized word embeddings. In contrast to word embeddings which
represents words with a single static vector, contextualized word embeddings dy-
namically change depending on the context in which they appear. We will report

on the milestones of both kinds of representation in Chapter 3.

2.2.2 Semantic Networks

Another popular approach to characterize word senses is the adoption of seman-
tic networks. Semantic networks are knowledge bases in which the core unit, the
synset, represents a uniquely identified sense, which mostly reflects cognitively

grounded uses of a given term. Synsets are usually represented as vertices of a
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labeled graph, where edges represent semantic relationships intervening between
each two senses. In contrast to the conflated word embedding representations, se-
mantic networks contain unique entries for different word senses, thus constituting
the reference word sense dictionary, i.e. sense inventory, for many diverse NLP ap-

plications.

WordNet WordNet constitutes the most popular English word sense inventory,
manually curated by experts (G. A. Miller, 1995). Word senses are represented
through synsets, that are sets of synonyms expressing distinct word senses. In
WordNet, each lemma (word or multi-word expression), belongs to one or more
synsets, and word senses are represented as combination of word form, i.e. the lex-
icalization, and synset (usually referred to as sense-key). These nodes are provided
with a unique identifier, called synset id, and endowed with a gloss and various us-
age examples. For example, given the word bank, we might intend the word as the
river bank or the financial institution, depending on the context of usage. The river
bank word sense entry is defined as sloping land (especially the slope beside a body of
water), the synset is made of the term bank only and is identified by the synset iden-
tifier wn09213565n. Together with the definition two examples are reported: they
pulled the canoe up on the bank and he sat on the bank of the river and watched the currents.
The financial institution word sense is represented by the synset depository financial
institution, banking concern, banking company, bank identified by the id wn08420278n
and defined as a financial institution that accepts deposits and channels the money into
lending activities. The reported usage examples are he cashed a check at the bank and
that bank holds the mortgage on my home. °

WordNet is actually partitioned into four categories, modeled upon the four
open-class parts of speech: nouns, verbs, adjectives and adverbs. Each portion of
WordNet has its own relations connecting entities herein. Nouns are organized in
a lexical memory as hierarchies, verbs are organized by a variety of entailment re-
lations, while adjectives and adverbs are organized as N-dimensional hyperspaces:
each of these lexical structures reflects a different way of categorizing experience.
The WordNet version 3.0 contains 117, 659 synsets, 206, 949 senses (sensekeys) and

147, 306 different lemmas. Following WordNet several energies have been invested

2We refer to WordNet v. 3.0, available at http: //wordnet-rdf .princeton.edu/lemma/bank.
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in developing semantic networks or translating WordNet in different languages (Bond
& Paik, 2012; J. P. McCrae, Rademaker, Rudnicka, & Bond, 2020; J. P. McCrae,
Wood, & Hicks, 2017; Pianta, Bentivogli, & Girardi, 2002; Rudnicka, Witkowski,
& Kaliniski, 2015).

BabelNet BabelNet is a multilingual lexicalized semantic network, containing
about about 20 million entries and distributed in 500 different languages (Navigli &
Ponzetto, 2010).% The architecture of BabelNet is borrowed from WordNet: the net-
work was built by automatically linking Wikipedia pages to WordNet synsets, thus
exploiting the multilingual features of Wikipedia: each BabelNet’s node contains
multilingual lexicalizations for the same word sense, collected from Wikipedia.
More precisely, BabelNet’s generation apporach may be partitioned into three
steps: synsets mapping, multilingual expansions and synsets linking. In the first
step, WordNet and Wikipedia are combined by automatically acquiring a mapping
between synsets and Wikipedia pages: the conditional probability of a WordNet
synset given a Wikipedia page is computed through disambiguation contexts ob-
tained from the two resources. The precision of the first step is fundamental to
avoid duplicate word senses as well as building solid foundations to the multilin-
gual expansion. The second step is aimed at extending English synsets to mul-
tiple languages through both Wikipedia and machine translation. In this setting,
each synset, identified through a BabelNet synset id, is enriched with lexicaliza-
tions in multiple languages, thus representing each word sense as a collection of
lemmas in many different languages. The last step is aimed at building the net-
work between synsets. Relationships are inherited from WordNet and further ex-
panded by considering the degree of correlation between the two Wikipedia pages
connected to both nodes. The final resource consists in a semantic network in
which nodes (BabelNet synsets) offer multilingual lexicalizations and are linked
by all the WordNet relationships plus an underspecified relatedness relation inher-
ited by the Wikipedia page links. Further works have been focused on injecting

in BabelNet other information extracted from other resources such as WordNet

3The figures are referred to the BabelNet version 5.0, available at ht tps: //babelnet.org.
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2020 (J. P. McCrae et al., 2020), Omegawiki 4 Wiktionary”, Wikidata (Vrandeci¢
& Krotzsch, 2014), GeoNames ©, ImageNet (Deng et al., 2009), Open Multilingual
WordNet (Bond & Paik, 2012), BabelPic (Calabrese, Bevilacqua, & Navigli, 2020)
and VerbAtlas (Di Fabio, Conia, & Navigli, 2019).

*http://www.omegawiki.org/
5https ://www.wiktionary.org/
®http://www.geonames.org
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3 Related Work

In this Chapter we introduce the state-of-the-art approaches to word and sense
embeddings. The Chapter is organized as follows: in Section 3.1 the main con-
tributions to word embeddings are illustrated; both static word embeddings (Sec-
tion 3.1.1) and context sensitive word embeddings (Section 3.1.2) are surveyed. The
second part of the chapter (Section 3.2) elaborates on the main contributions to
sense embeddings : in Section 3.2.1 we review static sense embeddings, whilst in

Section 3.2.2 context sensitive sense embeddings are introduced.

3.1 Word Embeddings

Given the relevance of the embeddings in lexical resources as well as for neural
networks, several energies have been invested in finding an efficient approach to
embed words into vectorial representations. As mentioned, according to their un-
derlying constructive rationale, word embeddings might be partitioned into static
word embeddings and contextual word embeddings. Since both families of word
embeddings are relevant to our work, in this section we briefly report on both de-

sign paradigms.

3.1.1 Static Word Embeddings

One of the main contributions in word embedding techniques is provided by Word-
2Vec, the innovation lies in making the learning of word embedding efficient, en-
abling training of word embeddings on large-scale corpora (Mikolov, Chen, et al.,
2013). Word2Vec has been published in two different fashions: Skip-gram and Con-
tinuous Bag-Of-Words (CBOW). The difference among the two strategies lies in the
training objective: in the CBOW setting, given the context surrounding a word

wi, wij—1 and w;41, wy,, we have to predict the word at position w;; conversely, in
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Figure 3.1: Figure from (Mikolov, Chen, et al., 2013). Both CBOW and Skip-gram architectures.

CBOW predicts the word w; given its surrounding context (w;—2, wi—1, Wit1, wit2); Skpi-
gram predicts the context (w;—2, wi—1, Wit1, wit2) given the word w;.

Skip-gram setting, given the word w; we have to predict the surrounding context
wi, wi—1 and w41, w,. Both CBOW and Skip-gram training objectives are graph-
ically illustrated in Figure 3.1. Acquiring word embeddings from large text cor-
pora allows them to incorporate relation among words, such as the relation among
country and the relative capital, or the gender of words (Mikolov, Chen, et al., 2013;
Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Mikolov, Yih, & Zweig, 2013).

Another word embedding architecture that deserves to be mentioned is GloVe (Pen-
nington, Socher, & Manning, 2014). Such architecture belongs to a different line of
research: while Word2Vec model is acknowledged to be a predictive model, GloVe
belongs to the count-based family of models: that is, representations are learned
by applying dimensionality reduction techniques to the co-occurrence counts ma-
trix. In particular GloVe embeddings have been acquired through a training on 840
billion words from the Common Crawl dataset .

One of the latest contributions in prediction-based static word embeddings field
is fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017). Such model improves over
skip-gram architecture by learning N-gram embeddings rather than word embed-
dings. The intuition underlying this decision is that language relies heavily on
morphology and compositional word-building encodes information also in sub-
words, so this may be generalized to unseen words (Joulin, Grave, Bojanowski, &
Mikolov, 2016).

A different line of research goes in the direction of improving pre-trained word

Mttp://commoncrawl.org.


http://commoncrawl.org

RELATED WORK 33

embeddings by exploiting knowledge bases (Faruqui & Dyer, 2014). Such tech-
nique, called retrofitting, improves vectors quality in a post-processing step that
updates word representations by running a belief-propagation algorithm on a graph
constructed from lexicon-derived relational information. More precisely, given a
set of pre-trained word vectors Q= {q1,--.,¢n} such technique is aimed at refin-
ing such descriptions by accounting for the information provided by a knowledge
base. In particular, given a vocabulary V' = {wy,...,w,}, an ontology (2 that en-
codes the semantic relations between words in V' and the set of pre-trained word
vectors @ for words in V, the objective of the retrofitting is to learn the word vector
representations Q = {q1, ..., ¢, } such that the representation ¢; for the word w; is
close to its counterpart ¢; € Q and adjacent to the neighbours of w; in the ontology
(2. The refined word vectors are obtained through a learning process, since the ob-
jective is to achieve a word representation g; close to its pre-trained vector ¢; as well
as its neighbours ¢; Vj such that the words w; and w; are connected by a semantic

relation (4, j) € Q, the objective to be minimize is:

n
TQ) =) [%’H%‘ — Gl +> " € Bijlla - %‘HQ}
=1 (i:4)
where o and 3 tune the balance between the pre-trained vector and the ontology
association factors. It is worth noting that the selection of the vector distance met-
ric is not bounded, in this setting the Euclidean Distance has been adopted. The
retrofitting technique shown improvements in pre-trained word vectors quality, in
particular, the authors proved its beneficial effect on word similarity, syntactic re-
lation extraction, synonym selection and sentiment analysis. The retrofitting is also
at the core of ConceptNet Numberbatch (CNN) (Speer & Chin, 2016). In particu-
lar, CNN is built exploiting the “expanded retrofitting”, which adjusts the values
of existing word embeddings based on a new objective function that also takes a
knowledge graph into account: the authors applied the retrofitting separately to
multiple sources of embeddings, i.e. GloVe, Word2Vec and fastText adopting Con-
ceptNet as knowledge base (Speer et al., 2017): the results are then aligned on a
unified semantic space. More precisely, the authors exploited ConceptNet as 2

knowledge base, where only non negative relations have been retained —i.e., neg-



34 RELATED WORK

ative relations such as NotUsedFor or Antonym have been removed—. Additionally,
the vocabulary V' was constructed based on the different vector resources: since
multiple pre-trained embedding resources were adopted, the authors took all terms
appearing in the first 500, 000 rows of each such resource, and retained all the words
occurring in the first 200, 000 rows of at least one of them. Such terms are then com-
bined with the set of words contained in the 2 knowledge base. Subsequently, each
vectorial resource was refined though the expanded retrofitting technique so as to
obtain the unified embedding matrix M;. More precisely, for each source of embed-
dings Q (Word2Vec, GloVe) the authors obtained its inferred version Q by applying
retrofitting, then such representations were concatenated to the unified embedding
matrix M;. Given that multiple word representations were concatenated in the
unified matrix, each word is represented through a vector ¢; € R¥, that is, each em-
bedding is represented with k dimensions corresponding to features that may be
redundant. Therefore, the representations from 1/; were subject to dimensionality
reduction: such process was designed to learn a projection from k dimensions to
k' = 300 to remove the redundancy stemming from the concatenation. Addition-
ally, to deal with multiple languages, the authors calculated their own multilingual
distributional embeddings through fastText for words occurring in the OpenSubti-
tles2016 parallel corpus (Lison & Tiedemann, 2016) and employed such vectors as
input together with Word2Vec and GloVe. The latest version of CNN ? covers 78

different languages.

3.1.2 Contextualized Word Embeddings

As mentioned, despite their impact, word embeddings suffer from the meaning
conflation deficiency. In order to address such issue two parallel lines of research
have emerged: modeling sense representations and building context sensitive word
representations. In this section we focus on the latter family.

One of the pioneering works employing contextualized representation is the
sequence tagger from W. Li and McCallum (2005). Such model derives context sen-
sitive representations for each word based on word clustering, then integrates them

as additional features to a sequence tagger. The attention to context sensitive rep-

2https ://github.com/commonsense/conceptnet—numberbatch.


https://github.com/commonsense/conceptnet-numberbatch

RELATED WORK 35

resentations remained latent until the lights were turned on the limitations of word
embeddings. One of the earliest attempts to address the meaning conflation issue
is Context2Vec (Melamud, Goldberger, & Dagan, 2016). Such model represents the
context of a target word by extracting the output embedding of a multi-layer per-
ceptron built on top of a bi-directional LSTM language model. Context2Vec started
the research line in which contextualized embeddings are pre-trained on large un-
labeled data. At the test time word contextualized embeddings are then combined
to their static embedding and fed to the main model. Following such direction,
the prominent ELMo (Embeddings from Language Models) technique (Peters et
al., 2018) built context sensitive word embeddings through the pre-training of a
bi-directional language model on large text corpus. The difference with respect
to preceding works is that ELMo jointly maximizes the log likelihood of the for-
ward and backward directions, thus sharing and combining weights from both
directions. Similarly to ELMo, the Context Vectors (CoVe) model computes con-
textualized representations using a two-layer bidirectional LSTM network, in the
machine translation setting: CoVe vectors are pre-trained exploiting an LSTM en-
coder from an attentional sequence-to-sequence machine translation model (Mc-
Cann, Bradbury, Xiong, & Socher, 2017). The introduction of Transformers archi-
tecture (Vaswani et al., 2017) started two varieties of NLMs: predictive and bidi-
rectional language models (more on this in Chapter 2). In particular, bidirectional
NLMs such as BERT, exploit the encoder of Transformers to build context sensi-
tive word embeddings. Such models are pre-trained on more and more larger text
corpus, thus obtaining representation as much general as possible. Pre-trained lan-
guage models can subsequently be exploited to compute representations for words
in sentences: the embeddings produced by such models are then used to address
many diverse NLP tasks in many different languages (Lee et al., 2020; Qu et al.,
2019; Raffel et al., 2019; Souza, Nogueira, & Lotufo, 2019).

3.2 Sense Embeddings

In order to alleviate the meaning conflation deficiency of word embeddings, a par-
allel direction of research has emerged over the past years, which tries to directly

model individual meanings of words. In this section we focus on sense represen-
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tations relying on word embeddings. Since we partitioned word embeddings in
static and contextualized representations, we therefore partitioned sense representa-
tions according to the underlying word embeddings design paradigm. Addition-
ally, attempting to address the meaning conflation limitation, mainly two lines of
sense vector representations have emerged: in the first line, unsupervised, senses
are learned directly from text corpus or knowledge-based (E. H. Huang, Socher,
Manning, & Ng, 2012; Reisinger & Mooney, 2010; Vu & Parker, 2016), while in the
second approach senses are linked to pre-defined sense inventories. In this work

we focus on the latter type of representation.

3.2.1 Static Sense Embeddings

Provided that the evolution of word representations flows from static word embed-
dings to contextualized word embeddings, the first vector representations for word
senses have been introduced relying on static word embeddings.

One of the main contributions between the sense vectorial representations is
NASARI (Camacho-Collados, Pilehvar, & Navigli, 2015b; Pilehvar & Navigli, 2015).
In the same spirit of BabelNet, NASARI puts together two sorts of knowledge:
one coming from WordNet (originally handcrafted by a team of lexicographers),
based on synsets and on the intervening semantic relations, and one available in
Wikipedia, which is conversely the outcome of a large collaborative effort. Pages in
Wikipedia are considered as concepts. In NASARI embeddings each item (concept
or named entity) is defined through a dense vector over a 300-dimensions space.
NASARI vectors have been acquired by starting from the vectors trained on the
Google News dataset, provided along with the Word2vec toolkit. All NASARI
vectors share the same semantic space also with Word2vec, so that their represen-
tations can be used to compute semantic distances between any two such vectors.
Thanks to the structure provided by the BabelNet resource, the resulting 2.9M em-
beddings are part of a huge semantic network. NASARI includes sense descrip-
tions for nouns, but not for other grammatical categories.

Directly following NASARI, but with totally different building rationale, SENSEEM-
BED has been introduced, containing representations for the four main parts of

speech (nouns, verbs, adjectives and adverbs) (Iacobacci, Pilehvar, & Navigli, 2015).



RELATED WORK 37

The approach proposed by SENSEEMBED is aimed at obtaining continuous repre-
sentations of individual senses. In order to build sense representations, the au-
thors exploited Babelfy (Moro, Raganato, & Navigli, 2014) to disambiguate the
September-2014 dump of the English Wikipedia.” Subsequently, the Word2vec
toolkit has been employed to build vectors for 2.5 millions of unique word senses.
The obtained resource contains the representation for both terms —e.g., the em-
bedding for the term Bank— and word senses —e.g., the embedding representing
the meaning of bank intended as financial institution, endowed with the identifier
Bank-bn:00008364n—.

Given the negative impact of the meaning conflation deficiency implicitly coded
in word embeddings, DECONF has been introduced with particular attention to the
mentioned limitation (Pilehvar & Collier, 2016). DECONF is a sense representation
technique that starts from a semantic network and a set of pre-trained word em-
beddings. The proposed approach computes a list of “sense biasing words” for a
given word sense. The whole process is characterised by two phases: (i) the extrac-
tion of the most representative words that express the semantics of a synset, and
(ii) the sense representations learning. In the extraction phase, the control strategy
starts from a target synset y;, leverages the structure of the semantic network of
WordNet and produces as output an ordered list B; of semantically related terms
that provide a cue for the sense usage. The latter phase is aimed at learning the rep-
resentation of the word sense s; (the sense for term t): to these ends the procedure
deconflates the representation of all the lexicalizations of the sense s;, and biases
them towards the list B;. In order to generate the DECONF resource, the authors
chose WordNet 3.0 as semantic network and the 300-d Word2Vec word embeddings
trained on the Google News dataset. The final resource contains about 207 thou-
sand vectors for WordNet word senses, each such sense representation lives in the
same space which is also shared by the word embeddings.

Different from previous resources, SW2V (so named after ‘Senses and Words to
Vectors’) is a neural model devised to represent both term and sense vector repre-
sentations (Mancini, Camacho-Collados, Iacobacci, & Navigli, 2017). The proposed

approach jointly learns both representations by exploiting text corpora and seman-

*http://dumps.wikimedia.org/enwiki/.


http://dumps.wikimedia.org/enwiki/
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tic networks. Due to the temporal complexity of the state-of-the-art disambigua-
tion systems, the authors devised an unsupervised shallow word sense connectiv-
ity algorithm. Such algorithm exploits the connections of a semantic network and
associates a term with its top candidate senses according to the number of sense
connections and word context. Once the corpus of sense tagged words has been
generated, an extension of the Word2Vec’s CBOW model is employed. The exten-
sion of the CBOW model in order to deal with word senses follows the assump-
tion that since a word is a lexicalization of an underlying sense, an update of the
word embedding should entail a similar update of the sense representation, and
vice versa. The authors chose BabelNet as reference semantic network and its un-
derlying sense inventory; the pre-trained version of SW2V contains over 6 million
vectors representing both words and word senses, in the same spirit of SENSEEM-
BED.

Following SW2V, LSTMEMBED is a recently proposed model based on bidi-
rectional LSTM for learning embeddings of words and senses in the same semantic
space (lacobacci & Navigli, 2019). The model starts from a sense-tagged text, which
is processed with a bidirectional LSTM analyzing both the preceding and the poste-
rior context of a token s;, where s; is either a word or a sense tag. The output com-
puted by the LSTM on both directions is concatenated and linearly weighted with
a dense layer. Subsequently the model compares the output with the pre-trained
embedding vector of the target token s;. The training phase maximizes the simi-
larity among the output of the network and the pre-trained embeddings: the loss
is computed in terms of cosine distance.* LSTMEMBED pre-trained embeddings
contain about 2 millions vectors. The obtained resource is featured by three sorts
of representation: the word-sense representation —e.g., the vector for the sense
bn:00008363n, which refers to Bank, intended as “Sloping land, especially the slope
beside a body of water”—; the representation for a given lexicalization associated to
a given sense —e.g., for the pair Bank-bn:00008363n—; and the word embedding
—e.g., the vector for the term Bank—, possibly conflating all senses underlying the

given term.

*In order to generate the LSTMEMBED pre-trainied embeddings the authors chose the BabelNet 4.0
sense inventory. The BabelWiki corpus (Scozzafava, Raganato, Moro, & Navigli, 2015) has been
employed for both the training of the model and the representation of the objective embeddings;
the latter case has been addressed using the Word2Vec’s SkipGram model.
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3.2.2 Contextualized Sense Embeddings

The contextualized sense representations line of research follows directly from the
introduction of contextualized language models, and strongly relies on such rep-
resentations. Despite such language models provide context sensitive representa-
tions, they still lack semantic grounding to sense inventories.

The first attempt at demonstrating that contextual embeddings from pre-trained
language models can be enriched by exploiting sense inventories is Language Mod-
elling Makes Sense (LMMS) (Loureiro & Jorge, 2019a). LMMS is an approach for
generating sense embeddings relying on pre-trained contextualized language mod-
els that covers the entire WordNet 3.0 sense inventory. The proposed approach
computes a list of sense embeddings starting from annotations, i.e. a sense tagged
corpus. In particular, the sense vector is computed as the average of all the con-
textual representation for words tagged with the word sense: given n contextual
embeddings c; for a word sense s, the vector vy is computed as v, = %Z?:l Ci.
Since the sense tagged corpus covers only a small percentage of the WordNet vo-
cabulary, the authors improve sense inventory coverage exploiting WordNet struc-
ture: in order to build embeddings for higher-level abstractions, the average of the
embeddings of all lower-level constituents is employed. That is, the embedding of
an unseen word sense corresponds to the average of all its children representation.
LMMS pre-trained embeddings cover the entire WordNet vocabulary, thus con-
taining embeddings for 117,659 synsets corresponding to 206,949 unique senses.
Since LMMS is grounded to the WordNet sense inventory, the resource represent
vectors for English words only.

Following LMMS, SENSEMBERT has been introduced relying on the pre-trained
version of BERT large (Scarlini, Pasini, & Navigli, 2020a). SENSEMBERT is a knowledge-
based approach to produce latent semantic representations of word meanings in
multiple languages. The construction of SENSEMBERT relies on Babelnet, Wikip-
dia and NASARI sense embeddings together with the pre-trained BERT large
model. The proposed approach starts by collecting from Wikipedia all the sen-
tences that are suitable for characterizing a given word synset: this is done by ex-
ploiting the link between BabelNet and Wikipedia. Once contextual information

has been collected, the authors compute the contextualized word embedding of



40 RELATED WORK

each relevant word for the target synset: relevant words for each synset are iden-
tified exploiting NASARI lexical vectors, then contextualized representation for
such words are obtained through BERT large language model. Eventually, the
synset embedding is built by exploiting word representations together with their
rank in the NASARI lexical vector. In the same spirit of LMMS, synset repre-
sentation quality is improved by exploiting the semantic network structure. Since
the linking between BabelNet and Wikipedia involves nouns only, the proposed
approach build representations for nouns only. Thanks to the multilingual nature
of BabelNet, the authors exploited also the multilingual version of BERT to build
sense embeddings for multiple languages. SENSEMBERT pre-trained embeddings
contain vectors for 146, 313 senses.

ARES, so dubbed after context-AwaRe Embeddings of Senses, has been intro-
duced few months later, as the extension of SENSEMBERT (Scarlini et al., 2020b).
ARES is a semi-supervised approach to producing sense embeddings for the lex-
ical meanings within a lexical knowledge base that lie in a space that is compara-
ble to that of contextualized word vectors. The construction of ARES relies on
several resources: WordNet, SyntagNet (Maru, Scozzafava, Martelli, & Navigli,
2019), UKB (E. Agirre, de Lacalle, & Soroa, 2014) and BERT. The proposed ap-
proach starts collecting contexts for WordNet’s synsets exploiting BERT: given a
sense s and one of its lexicalizations [, the authors collected all occurrences of [ in
a corpus and computed their contextualized representation and clustered through
k-means. To such groups the UKB algorithm is exploited so as to label each cluster
with one of the senses for [. Each such cluster is then refined exploiting the collo-
cations from SyntagNet. Contextual information retrieved is then exploited so as
to build embeddings for WordNet’s synsets as a combination of embeddings com-
puted though BERT for sentences and collocations. ARES pre-trained embeddings
contain vectors for 206, 950 senses, covering 65% of WordNet’s vocabulary (77, 195
out of 117,659).

LMMS Reloaded (LMMS-R) is the most recent resource belonging to the con-
textualized sense embeddings family, it has been introduced as extension of LMMS

(Loureiro, Jorge, & Camacho-Collados, 2022). LMMS-R is a principled approach

for sense representation based on contextual NLMs trained exclusively with self-
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supervision. Following LMMS the synset embbedding for s is built by averaging
the contextualized representations for the lexicalization / in a sense-tagged corpus.
Such vectors are then refined exploiting the WordNet structure. LMMS-R allows
for a different characterization of multiple layers NLMs according to the task for
which the embeddings are designed. LMMS-R pre-trained embeddings for Word
Sense Disambiguation (WSD) cover the entire WordNet vocabulary, thus contain-
ing embeddings for 117, 659 synsets corresponding to 206, 949 unique senses. Since
LMMS-R is grounded to the WordNet sense inventory, the resource represents vec-

tors for English words only.



4 LESSLEX

LESSLEX (Linking multilingual Embeddings to SenSe representations of LEXical
items) is the first resource that we developed (Colla, Mensa, & Radicioni, 2020a),
consisting of a set of distributional vectors built by merging BabelNet and Concept-
Net Numberbatch. In this Chapter we will show that the adoption of distributional
sense representations can be beneficial to the resolution of various NLP tasks.

The Chapter is organized as follows: in Section 4.1 we introduce the main con-
trol strategy to build LESSLEX: we start by illustrating the procedure to select the
seed terms from the sense inventory (Section 4.1.1), then we present the approaches
aimed at extending such initial representations (Section 4.1.2); and finally, we report
on figures and features that describe LESSLEX embeddings (Section 4.1.3). After-
wards, in Section 4.2 we introduce the evaluation of LESSLEX vectors, reporting
on three different tasks: word similarity (Section 4.2.1), contextual word similarity
(Section 4.2.2) and semantic text similarity (Section 4.2.3). We conclude the Chapter

by discussing the results obtained in the whole experimentation (Section 4.2.4).

4.1 Building LESSLEX

The generation of LESSLEX relies on two resources: BabelNet and CNN. We briefly
recall them for the sake of self-containedness. BabelNet is a wide-coverage multi-
lingual semantic network resulting from the integration of lexicographic and ency-
clopedic knowledge from WordNet and Wikipedia. Word senses are represented as
synsets which are uniquely identified by Babel Synset identifiers (e.g., bn: 03739345n).
Each synset is enriched by further information about that sense, such as its possi-
ble lexicalizations in a variety of languages, its gloss (a brief description) and its
Wikipedia Page Title. Moreover, it is possible to query BabelNet to retrieve all the

meanings (synsets) for a given term. While the construction of BabelNet is by de-
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sign essential to our approach, in principle we could plug different sets of word
embeddings. We chose CNN word embeddings as our starting point for a num-
ber of reasons, and namely: its vectors are to date highly accurate; all such vectors
are mapped onto a single shared multilingual semantic space spanning over 78 dif-
ferent languages; it ensures reasonable coverage for general purposes use (Speer &
Lowry-Duda, 2017); also, it allows dealing in uniform way with multi-word expres-
sions, compound words (Havasi, Speer, & Alonso, 2007), and even flexed forms; it

is released under the permissive MIT License.

The algorithm for the generation of LESSLEX is based on an intuitive idea: to
exploit multilingual terminological representations in order to build precise and
punctual conceptual representations. Without loss of generality, we introduce our
methodology by referring to nominal senses, while the whole procedure also ap-
plies to verb and adjectival senses, so that in the following we will switch between
sense and concept as appropriated. Each concept in LESSLEX is represented by a
vector generated by averaging a set of CNN vectors. Given the concept ¢, we re-
trieve it in BabelNet to obtain the sets {T" (c),..., T'"(c)} where each T'(c) is the
set of lexicalizations in the language I for c.! We then try to extract further terms
from the concepts” English gloss and English Wikipedia Page Title (WT from now
on). The final result is the set 7 (c) that merges all the multilingual terms in each
T'(c) plus the terms extracted from the English gloss and WT. In 7 *(c) we retain
only those terms that can be actually found in CNN, so that the LESSLEX vector ¢
can be finally computed by averaging all the CNN vectors associated to the terms

in 7(c).

4.1.1 Selecting the sense inventory: seed terms

Since the generation algorithm creates a representation for conceptual elements (be
them nominal, verbal or adjectival senses), it is required to define which concepts
will be hosted in the final resource. For this purpose we define a set of terms that
we call seed terms. Seed terms are taken from different languages and different

POS (nouns, verbs and adjectives are presently considered), and their meanings

'We presently consider all the languages that are adopted during the evaluation: English (eng),
French (fra), German (deu), Italian (ita), Farsi (fas), Spanish (spa), Portuguese (por), Basque (eus)
and Russian (rus).
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applelspal applelital appleleng]

T apple, macintosh, apple.com, apple_computer, ... T apple, apple_trees, pomiculture, apple_core, ...
Tite apple, logo_apple, apple_computer, apple_inc., ... Tita mela, pomo, fiore_di_melo, buccia_di_mela, ...
Tere apple, logotipo_de_apple, apple_computer, ... T manzana, pero, flor_del_manzano, ...
TIra apple, logo_duwapple, apple_inc., ... T#m®  pomme, pomiculture, peau_de_pomme, ...
TPor apple, logotipo_de_apple, apple_inc., ... Tror maga, macieira, flor_da_macieira, ...
TIU 28, dyl_apple, 4kl il oS, T e ol S, e,
Tdeu apple, apple-logo, appl, ... Tdeu apfel, apfelbliite, apfelschale
Teus apple, apple_inc. Teus sagar
T apple, ¢upma_apple, nororurn_apple, ... T SAOIOKO
Wikititle  Apple (Inc.) Wikititle  Apple
Gloss Apple Inc. is a multinational company that [...] Gloss Fruit with red or yellow or green skin and [...]
_
melalital manzanalspal

Figure 4.1: Retrieval of two senses for five seed terms in three different languages.

(retrieved via BabelNet) constitute the set of senses described by LESSLEX vectors.
Due to the polysemy of language and to the fact that the seed terms are multilin-
gual, different seed terms can retrieve the same meaning. Seed terms do not af-
fect the generation of a vector, but they rather determine the coverage of LESSLEX,
since they are used to acquire the set of concepts that will be part of the final re-
source. Figure 4.1 illustrates this process for a few seed terms in English, Span-
ish and Italian. These terms provide two senses in total: bn:03739345n — Apple

spa

(Inc.) and bn:00005054n — Apple (fruit). The first one is the meaning for apple’”,
apple™ and apple™, while the second one is a meaning for manzana™*, mela™ and,
again, apple’s. Each synset contains all the lexicalizations in all languages, together
with the English gloss and the WT. This information will be exploited for building

Tt (Con03739345n) and T (Cun-00005054n) during the generation process.

4.1.2 Extending the set of terms

As anticipated, we not only rely on the lexicalizations of a concept to build its 7+,

but we also try to include further specific words, parsed from its English gloss and
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WT. The motivation behind this extension is the fact that we want to prevent 7
from containing only one element: in such case, the vector for the considered sense
would coincide with that of the more general term, possibly conflating different
senses. In other words, enriching 7 with further terms is necessary to reshape
vectors that have only one associated term as lexicalization. For instance, starting
from the term sunset”'¢ we encounter the sense bn:08410678n (representing the

city of Sunset, Texas). This sense is provided with the following lexicalizations:
T = {sunset™8}; TP* = {sunset’™}; T/ = {sunset’}.

However, out of these three terms only sunset”*$ actually appears in CNN, giving
us a final singleton 7+ = {sunset”8}. At this point no average can be performed,
and the final vector in LESSLEX for this concept would be identical to the vector
of sunset™® in CNN. Instead, if we take into consideration the gloss “Township in
Starr County, Texas"’, we can extract township™$ and append it in 7, thus obtaining
a richer vector for this specific sense of sunset. In the following Sections we de-
scribe the two strategies that we developed in order to extract terms from WTs and
glosses. The extension strategies are applied for every concept, but in any case, if
the final 7" contains a single term (|7 | = 1), then we discard the sense and we do

not include its vector in LESSLEX.

Extension via Wikipedia Page Title

The extension via WT only applies to nouns, since senses for different POS are not
present in Wikipedia. In detail, if the concept has a Wikipedia Page attached and if
the WT provides a disambiguation or specification (e.g., Chips (company) or Magma,
Arizona) we extract the relevant component (by exploiting commas and parentheses
of the Wikipedia naming convention) and search for it in CNN. If the whole string
cannot be found, we repeat this process by removing the leftmost word of the string
until we find a match. In so doing, we search for the maximal sub-string of the WT
that has a description in CNN. This allows us to obtain the most specific and yet
defined term in CNN. For instance, for the WT Bat (guided bomb) we may not have
a match in CNN for guided bomb, but we can at least add bomb to the set of terms in

T+,



46 LESSLEX

Table 4.1: List of the extraction rules in a regex style, describing some POS patterns. If a gloss or a
portion of a gloss matches the left part of the rule, then the elements in the right part are
extracted. Extracted elements are underlined.

Nouns
1. tobe NN+ — NN+
2. NN1 CC NN2 — NN1,NN2
3. DT = NN+ — NN+
Verbs
1. tobe VB — VB
. Sentence starts with a VB — VB
3. VBI1((CC |, VB2)+ — VB1, VB2+
Adjectives
1. Sentence is exactly JJ — JJ
2. not]J — (J] is dropped)
3. (relate|relating|related) to x NN — NN
4. JJ1CCJJ2 — JJLJJ2
5. J11,JJ2or JJ3 — 1,712, JJ3

Extension via gloss

Glosses often contain precious pieces of information that can be helpful in the aug-
mentation of the terms associated to a concept. We parse the gloss and extract its
components. By construction, descriptions provided in BabelNet glosses can origi-
nate from either WordNet or Wikipedia (Navigli & Ponzetto, 2012). In the first case
we have (often elliptical) sentences, such as (bn: 0002824 7n —door) “a swinging or
sliding barrier that will close the entrance to a room or building or vehicle”. On the
other side, Wikipedia typically provides a plain description like “A door is a panel
that makes an opening in a building, room or vehicle”. Thanks to the regularity of
these languages, with few regular expressions on POS patterns” we are able to col-
lect enough information to enrich 7. We devised several rules according to each
sense POS; the complete list is reported in Table 4.1. As an example, from the fol-
lowing glosses we extract the terms in bold (the matching rule is shown in square

brackets):

We adopted the Penn Treebank POS set: https://www.ling.upenn.edu/courses/Fall
_2003/1ing001/penn_treebank_pos.html.


https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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- [Noun-2] bn:00012741n (Branch) A stream or river connected to a larger one.
- [Noun-3] bn:00079944n (Winner) The contestant who wins the contest.

- [Noun-1] bn:01276497n (Plane (river)) The Plane is a river in Brandenburg, Ger-

many, left tributary of the Havel.
- [Verb-2] bn:00094850v (Tee) Connect with a tee.
- [Verb-3] bn:00084198v (Build) Make by combining materials and parts.

- [Adjective-3] bn:00106822a (Modern) Relating to a recently developed fashion

or style.

- [Adjective-4] bn:00103672a (Good) Having desirable or positive qualities espe-

cially those suitable for a thing specified.

In Figure 4.2 we provide an example of the generation process for three concepts,
provided by the seed terms gate"$ and gate'™. For the sake of simplicity, we only
show the details regarding two languages (English and Italian). Step (1) shows the
input terms. In step (2) we retrieve three meanings for gate”’s and one for gateit”,
which has already been fetched since it is also a meaning for gate®'¢. For each con-
cept we collect the set of lexicalizations in all considered languages, plus the ex-
tensions extracted from WT and gloss. We then merge all such terms in 7, by
retaining only those that can be actually found in CNN. Once the 7 sets are com-

puted, we access CNN to retrieve the required vectors for each set (3) and then we

average them, finally obtaining the vectors for the concepts at hand (4).

4.1.3 LESSLEX features

We now describe the main features of LESSLEX, together with the algorithm to com-
pute conceptual similarity on this resource. The final space in which LESSLEX vec-
tors reside is an extension of the CNN multilingual semantic space. Each original
CNN vector co-exists with the set of vectors that represent its underlying mean-
ings. This peculiar feature allows us to compute the distance between a term and
each of its corresponding senses, and such distance is helpful to determine, given

a pair of terms, in which sense they are intended. For example, in assessing the
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(1) gatelital gateleng]

T departure gate, gate T main gate, gate, gateway T NOT circuit, AND circuit, gate,
T gate, gate areoportuale T cancello, inferriata logic_gate, logic circuit :
Wikititle Gate (airport) Wikititle Gate T porte_logiche
Gloss Passageway (as in an air Gloss A movable barrier in a fence or | | Wikititle Logic Gate
( 2 ) terminal) where passengers can ‘Wall which is a point of entry to || Gloss A computer circuit with several

: embark [...] aspace [...] inputs but only one output [...]

P & Gate A19 A

€ S Gate A18 %

Gates A20-23 & | B j

gate[eng]7 gate[ita]7 gate[er\g], gateway[eng] R gate[eng], logic_gate[eng]’

[ | P

! . . | . . N ! .

I terminallend] | airportlens] | barrierfend], inferriatalital, | | circuitlensl
[ | P

I I P

gate_aereoportualelital cancellolital porte_logichetital

gate[eng] gatg[eng] gatg[eng]
( 3 ) atrportendl gatewayend) logic_gatelend!
terminaltend) barriertens) ctreuittend!
galelital infernatatiel porte_lo...lital
N—
gale_aer. .. [ita) cancellptita)
N— N—

bn:00037489n bn:00037486n bn:00037487n

ita

Figure 4.2: Generation of three LESSLEX vectors, starting from the seed terms gate™ and gate

similarity of two terms such as ‘glass” and ‘eye’, most probably the recalled senses
would differ from those recalled for the pairs ‘glass” and ‘window’, and ‘glass’,

‘wine’.

LEsSLEX Statistics

The LESSLEX resource” has been generated from a group of seed terms collected by

starting from 56, 322 words taken from the Corpus of Contemporary American En-

SLESSLEX can be downloaded at the URL https://1ls.di.unito.it/resources/lesslex/.


https://ls.di.unito.it/resources/lesslex/
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Table 4.2: Figures on the generation process of LESSLEX, divided by Part of Speech
LESSLEX Statistics All Nouns Verbs Adjectives
Seed terms 84,620 45,297 11,943 27,380
Terms in BabelNet 65,629 41,817 8,457 15,355
T+ avg. cardinality 6.40 6.16 9.67 6.37
Discarded Senses 16, 666 14,737 368 1,561
Unique Senses 174,300 148, 380 11,038 14,882
Avg. senses per term 4.80 6.12 3.77 1.77
Total extracted terms 227,850 206, 603 8,671 12,576
Avg. extracted terms per 1.40 1.46 1.06 1.05
call

glish (COCA) (Davies, 2009),* 19, 789 terms fetched from the relevant dictionaries
of the Internet Dictionary Project’ and the 12, 544 terms that appear in the datasets
that we used during the evaluation. All terms were POS tagged and duplicates
removed beforehand. The final figures of the resource and details concerning its
generation are reported in Table 4.2.

We started from a total of 84,620 terms, and for 65,629 of them we were able
to retrieve at least one sense in BabelNet. The 7 cardinality shows that our vec-
tors were built by averaging about 6 CNN vectors for each concept. Interestingly,
verbs seem to have much richer lexical sets. The final number of senses in LESSLEX
amounts to 174, 300, with a vast majority of nouns. We can also see an interest-
ing overlap between the group of senses associated to each term. If we take nouns
as example, we have around 42K terms providing 148K unique senses (3.5 per
term), while the average polysemy per term counting repetitions amounts to 6.12.
So, we can observe that approximately three senses per term are shared with some
other term. A huge amount of concepts are discarded since they only have one
term inside 7 *: these are named entities or concepts with poor lexicalization sets.
The extraction process provided a gran total of about 228 K terms, and on average
each 7 contains 1.40 additional terms extracted from Wikipedia Page Titles and
glosses.

Out of the 117K senses in WordNet (version 3.0), roughly 61K of them are cov-

*COCA is a corpus covering different genres, such as spoken, fiction, magazines, newspaper and
academic (http://corpus.byu.edu/full-text/).
Shttp://www.june29.com/idp/IDPfiles.html.


http://corpus.byu.edu/full-text/
http://www.june29.com/idp/IDPfiles.html
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ered in LESSLEX. It is however important to note that additional LESSLEX vectors
can be built upon any set of concepts, provided that they are represented in Babel-
Net (which contains around 15M senses) and that some of their lexicalizations are

covered in CNN (1.5M terms for the considered languages).

Computing word similarity: maximization and ranked-similarity

The word similarity task consists in computing a numerical score that expresses
how similar two given terms are. Vectorial resources such as CNN can be eas-
ily employed to solve this task: in fact, since terms are represented as vectors, the
distance (usually computed through cosine similarity, or some other variant of an-
gular distance) between the two vectors associated to the input terms can be lever-
aged to obtain a similarity score. While terminological resources can be directly
employed to compute a similarity score between words, conceptually grounded
resources (e.g., NASARI, LESSLEX) do not allow directly computing word similar-
ity, but rather conceptual similarity. In fact, such resources are required to determine
which senses must be selected while computing the score for the terms. In most
cases this issue is solved by computing the similarity between all the combinations
of senses for the two input terms, and then by selecting the maximum similarity
as the result score (Pedersen, Banerjee, & Patwardhan, 2005). In formulae, given a
term pair (t1, t2) and their corresponding list of senses s(¢;) and s(t2), the similarity

can be computed as

sim(ty,ty) = €i€s(tlf)l%'j(€s(t2) [sim(G;, ¢;)] 4.1)

where sim(c;, ¢j) is the computation of conceptual similarity employing the vector
representation for the concepts at hand.

To compute the conceptual similarity between LESSLEX vectors we have de-
vised a different approach, which we call ranked similarity. Since we are able to
determine not only the distance between each two senses of the input terms, but
also the distance between each input term and all of its senses, we use this infor-
mation to fine tune the computed similarity scores and use ranking as a criterion to
grade senses relevance. In particular, we hypothesise that the relevance of senses

for a given term can be helpful for the computation of similarity scores, so we de-
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Max similarity

Compute the Slmllal‘lty s; |t sim(student;, teachery) = 0.81
between student and teacher i
P sy : 5o | Lo sim(studenty, teachers) = 0.61
i Senses for student Senses for teacher : ARZ sim(student, teachers) = 0.46
: i 5o | ¢y sim(studenty, teacher) = 0.38
‘ student; teacher; i
gold(student, teacher) = 0.50
bn:02935389n bn:00008977n | i
Student (film) The Teacher (film)
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a learner enrolled in a person whose : :
i |an educational institution occupation is leaching | i gold(student, teacher) = 0.50
s7 | &7 || rok-sim(rank(student;), rank(teacher;), cos-sim(student;, teacher;) = 0.44
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Figure 4.3: A comparison between the max-similarity (Equation 4.1) and the ranked-similarity (Equa-
tion 4.2) approaches for the computation of the conceptual similarity.

vised a measure that also accounts for the ranking of distances between senses and
seed term. It implements a heuristics aimed at considering two main elements: the
relevance of senses (senses closer to the seed term are preferred), and similarity be-
tween sense pairs. Namely, the similarity between two terms ¢, t2 can be computed

as:

rnk-sim(ty,ta) =

_‘Iéla(i() [((1 — a) - (rank(&) + rank(Ej))_l) + (oz - cos-sim(¢;, E}))] ,
c;ies(ty
EjGS(tg)

(4.2)

where « is used to tune the balance between ranking factor and raw cosine sim-
ilarity.® We illustrate the advantages of the ranked similarity with the following
example (Figure 4.3). Let us consider the two terms teacher and student, whose gold-
standard similarity score is 0.50.” One of the senses of teacher is bn:02193088n

(The Teacher (1977 film) - a 1977 Cuban drama film) while one of the senses of stu-

®Presently a = 0.5.
"We borrow this word pair from the SemEval 17 Task 2 dataset (Camacho-Collados, Pilehvar, Collier,
& Navigli, 2017).
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dentisbn:02935389n (Student (film) - a 2012 Kazakhstani drama film). These two
senses have a cosine similarity in LESSLEX of 0.81: such a high score is reasonable,
since they are both drama movies. However, it is clear that an annotator would not
refer to these two senses for the input terms, but rather to bn:00046958n (teacher
- a person whose occupation is teaching) and bn:00029806n (student - a learner
who is enrolled in an educational institution). These two senses obtain a similarity
score of 0.61, which will not be selected since it is lower than 0.81 (as computed
through the formula in Equation 4.1). However, if we take into consideration the
similarities between the terms feacher and student and their associated senses, we
see that the senses that one would select —while requested to provide a similarity
score for the pair— are much closer to the seed terms. The proposed measure in-
volves re-ranking the senses based on their proximity to the term representation,
thereby emphasising more relevant terms. We finally obtain similarity of 0.44 for
the movie-related senses, while the school-related senses pair obtains a similarity
of 0.55, which will be selected and better correlates with human rating.

Since the ranked-similarity can be applied only if both terms are available in
CNN (so that we can compute the ranks among their senses), we propose a twofold
setup for the usage of LESSLEX. In the first setup we only make use of the ranked-
similarity, so in this setting if at least one given term is not present in CNN we
discard the pair as not covered by the resource. In the second setup (LESSLEX-
OO0V, designed to deal with Out Of Vocabulary terms) we implemented a fallback
strategy to ensure higher coverage: in this case, in order to cope with missing vec-
tors in CNN, we adopt the max-similarity as similarity measure in place of the

ranked-similarity.

4.2 Evaluating LESSLEX

In order to assess the flexibility and quality of our embeddings we carried out a
set of experiments involving both intrinsic and extrinsic evaluation. Namely, we

considered three different tasks:

1 the Semantic Similarity task, where two terms or —less frequently— senses

are compared and systems are asked to provide a numerical score express-
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ing how close they are; systems’ output is compared to human ratings (Sec-

tion 4.2.1);

2 the more recent Contextual Word Similarity task, asking systems to either
assess the semantic similarity of terms taken in context (rather than as pairs
of terms taken in isolation), or to decide whether a term has same meaning in

different contexts of usage (Section 4.2.2); and

3 the Semantic Text Similarity task, where pairs of text excerpts are compared to
assess their overall similarity, or to judge whether they convey equal meaning

or not (Section 4.2.3).

4.2.1 Word Similarity Task

In the first experiment we tested LESSLEX vectors on the word similarity task: lin-
guistic items are processed in order to compute their similarity, which is then com-
pared against human similarity judgement. Word similarity is mostly thought of
as closeness over some metric space, and usually computed through cosine sim-
ilarity, although different approaches exist, e.g., based on cognitively plausible
models (Jimenez, Becerra, Gelbukh, Batiz, & Mendizabal, 2013; Lieto, Mensa, &
Radicioni, 2016a; Mensa, Radicioni, & Lieto, 2017; Tversky, 1977). We chose to
evaluate our word embeddings on this task because it is a relevant one, for which
many applications can be drawn such as Machine Translation (Lavie & Denkowski,
2009), Text Summarization (Mohammad & Hirst, 2012) and Information Retrieval
(Hliaoutakis, Varelas, Voutsakis, Petrakis, & Milios, 2006). Although this is a popu-
lar and relevant task, until recently it has been substantially limited to monolingual
data, often in English. Conversely, we collected and experimented on all major

cross-lingual datasets.

Experimental setting

In this Section we briefly introduce and discuss the selection of datasets adopted
for the evaluation.
A pioneering dataset is WordSim-353 (Finkelstein et al., 2002); it has been built
by starting from two older sets of word pairs, the RG-65 and MC-30 datasets (G. A. Miller
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Table 4.3: List of the dataset employed in the experimentation, showing the POS involved and the languages
available in both monolingual and cross-lingual versions.

Dataset | Part of Speech \ Monolingual \ Cross-lingual
RG-65! nouns eng, fas, spa eng, spa, fas, por, fra, deu
WS-Sim-3532 nouns eng, ita, deu, rus -
SimLex-999° nouns, verbs, adjectives eng, ita, deu, rus -

Sim Verbs-3500* verbs eng -

SemEval 17° nouns eng, deu, ita, spa, fas eng, deu, ita, spa, fas
Goikoetxea © nouns, verbs, adjectives eus eng, eus, spa, ita

_

http://lcl.uniromal.it/similarity-datasets/,

https://www.seas.upenn.edu/~hansens/conceptSim/.

2 http://www.leviants.com/ira.leviant/MultilingualVSMdata.html.

3 https://fh295.github.io/simlex.html,
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html.

4 http://people.ds.cam.ac.uk/dsg40/simverb.html.

5 http://alt.gcri.org/semeval2017/task2/index.php?id=data—and-tools.

6 http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html.

& Charles, 1991; Rubenstein & Goodenough, 1965). These dataset were originally
conceived for the English language and compiled by human experts. They have
then been translated to multilingual and to cross-lingual datasets: the RG-65 has
been translated into Farsi and Spanish by Camacho-Collados, Pilehvar, and Nav-
igli (2015a), while the WordSim-353 has been translated by Leviant and Reichart
(2015b) into Italian, German and Russian through crowdworkers fluent in such
languages. Additionally, WordSim-353 has been partitioned by individuating the
subset of word pairs appropriate for experimenting on similarity judgements rather
than on relatedness judgements (E. Agirre et al., 2009). The SimLex-999 dataset has
been compiled through crowdsourcing, and includes English word pairs covering
different parts of speech, namely nouns (666 pairs), verbs (222 pairs) and adjec-
tives (111 pairs) (Hill, Reichart, & Korhonen, 2015). It has been then translated into
German, Italian and Russian by Leviant and Reichart (2015a). A dataset has been
proposed entirely concerned with English verbs, the SimVerbs-3500 dataset (Gerz,
Vuli¢, Hill, Reichart, & Korhonen, 2016); similar to SimLex-999, items herein have
been obtained from the USF free-association database (Nelson, McEvoy, & Schreiber,
2004). The SemEval-17 dataset has been developed by Camacho-Collados et al.
(2017); it contains many uncommon entities, like Si-o0-seh pol or Mathematical Bridge
encompassing both multilingual and cross-lingual data. Finally, another dataset
has been recently released by Goikoetxea, Soroa, and Agirre (2018), in the follow-

ing referred to as Goikoetxea dataset, built by adding further cross-lingual versions


http://lcl.uniroma1.it/similarity-datasets/
https://www.seas.upenn.edu/~hansens/conceptSim/
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html
https://fh295.github.io/simlex.html
http://www.leviants.com/ira.leviant/MultilingualVSMdata.html
http://people.ds.cam.ac.uk/dsg40/simverb.html
http://alt.qcri.org/semeval2017/task2/index.php?id=data-and-tools
http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html

LESSLEX 55

for the RG-65, WS-WordSim-353 and SimLex-999 datasets.

In our evaluation both multilingual and cross-lingual translations have been
used. A multilingual dataset is one (like RG) where term pairs (x,y) from language
i have been translated as (x’,y) into a different language, such that both x" and
y' belong to the same language. An example is (casa, chiesa), (house,church), or
(maison, église). Conversely, in a cross-lingual setting (like SemEval 2017, Task 2
- cross-lingual subtask), x’ is a term from a language different from that of v/, like
in the pair (casa, church).

Many issues can afflict any dataset, as it is largely acknowledged in litera-
ture (Camacho-Collados et al., 2017, 2015a; Hill et al., 2015; E. H. Huang et al., 2012).
The oldest datasets are too small (in the order of few tens of word pairs) to attain
full statistic significance; until recent years, typically similarity and relatedness (as-
sociation) judgements have been conflated, thereby penalising models concerned
with similarity. Additionally, for such datasets the correlation between systems’ re-
sults and human rating is higher than human inter-rater agreement. Since human
ratings are largely acknowledged as the upper bound to artificial performance in
this kind of task, it has been raised that such datasets are not fully reliable bench-
marks to investigate the correlation between human judgement and systems’ out-
put. Furthermore, a tradeoff exists between the size of the dataset and the quality
of the annotation: resources acquired through human experts annotation typically
are more limited in size, but featured by higher inter-rater agreement (in the order
of .80), while larger datasets suffer from a lower (often with < .7) agreement among
annotators, thus implying overall reduced reliability. We thus decided to test on all
main datasets adopted in literature, to provide the most comprehensive evaluation,
widening the experimental base as much as possible. The most recent datasets are
in principle more controlled and reliable —SimLex-999, SimVerbs, SemEval-2017,
Goikoetxea—, but still we decided to experiment on all of them, since even RG-65
and WS-Sim 353 have been widely used until recently. All benchmarks employed
in the experiments are illustrated in Table 4.3.

We have then selected a set of recent and influential sense and word embed-
dings from the literature, and used them for experimentation. In the following we

provide a brief description for each such resource. ConceptNet Numberbatch is
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Table 4.4: List of the resources considered in the experimentation and the algorithm we employed for the
resolution of the word similarity task.

| Description | Algorithm
LL-M | LESSLEX mf-sense similarity
LL-O | LESSLEX (strategy for handling OOV terms) ranked-similarity
LLX LESSLEX ranked-similarity
CNN !| ConceptNet Numberbatch word embeddings cosine similarity
NAS 2 [ NASARI sense embeddings max similarity
JCH? | JOINTCHYB bilingual word embeddings cosine similarity
SSE* | SENSEEMBED sense embeddings max similarity
N2V > [ NASARI sense embeddings + Word2Vec word embeddings | ranked-similarity

1 Speer et al. (2017) (http://github.com/commonsense/conceptnet-numberbatch v. 16.09)
2 Camacho-Collados, Pilehvar, and Navigli (2016) (http://1lcl.uniromal.it/nasari/ v. 3.0)

3 Goikoetxea et al. (2018) (http://ixa2.si.ehu.es/ukb/bilingual_embeddings.html)

4 Tacobacci et al. (2015) (http://1lcl.uniromal.it/sensembed/)

5 Word2Vec embeddings trained on UMBC (http://lcl.uniromal.it/nasari/)

a set of pre-trained word embeddings built by integrating vector representations
from Word2Vec, GloVe and fastText with the commonsense knowledge from Con-
ceptNet (Speer & Chin, 2016). More precisely, the retrofitting technique has been
applied to each such word vector resource so as to obtain knwoledge-oriented word
representations. Subsequently, the word vectors have been concatenated and com-
pressed through dimensionality reduction, thus obtaining a single 300-dimensional
representation for each word in the vocabulary. Additionally, by exploiting multi-
lingual distributional embeddings from fastText the authors built vector represen-
tations for words in many different languages. The latest version of ConceptNet
Numberbatch covers 78 different languages.

JOINTCHYB stems form a novel bilingual word embedding method based on
the representation of words in a joint space, as well as the use of bilingual con-
straints and bilingual synthetic corpora, both derived from bilingual wordnets, in
the learning process (Goikoetxea et al., 2018). More precisely, the proposed ap-
proach is based on a random walk algorithm over bilingual wordnets which pro-
duces lexicalizations in two languages as it traverses the wordnets. The obtained
bilingual corpus is combined with monolingual corpora and is then fed into the
Skip-Gram model, yielding bilingual embeddings. Further improvements were
obtained by incorporating bilingual constraints extracted from the wordnets into

the Skip-Gram loss function. In order to learn textual embeddings for the target
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languages the authors used Wikipedia corpora® except for Basque: in fact, the em-
beddings for Basque language are based on the Wikipedia dump (2016,/04/07) com-
bined to the Elhuyar Web Corpus (Leturia, 2012). Regarding wordnets, the authors
employed the Multilingual Central Repository (A. G. Agirre, Laparra, Rigau, &
Donostia, 2012) and the ItalWordNet (Roventini et al., 1998) for Italian language.

In the same spirit of BabelNet, NASARI puts together two sorts of knowl-
edge: one coming from WordNet (originally handcrafted by a team of lexicog-
raphers), based on synsets and on the intervening semantic relations, and one
available in Wikipedia, which is conversely the outcome of a large collaborative
effort (Camacho-Collados et al., 2016). Pages in Wikipedia are considered as con-
cepts. In NASARI embeddings each item (concept or named entity) is defined
through a dense vector over a 300-dimensions space. NASARI vectors have been
acquired by starting from the vectors trained on the Google News dataset, pro-
vided along with the Word2vec toolkit. All NASARI2VEC vectors share the same
semantic space also with Word2vec, so that their representations can be used to
compute semantic distances between any two such vectors. Thanks to the struc-
ture provided by the BabelNet resource, the resulting 2.9)/ embeddings are part of
a huge semantic network.

The approach proposed by SENSEEMBED is aimed at obtaining continuous rep-
resentations of individual senses (Iacobacci et al., 2015). In order to build sense
representations, the authors exploited Babelfy (Moro et al., 2014) to disambiguate
the September-2014 dump of the English Wikipedia.” Subsequently, the Word2vec
toolkit has been employed to build vectors for 2.5 millions of unique word senses.
The obtained resource contains the representation for both terms —e.g., the em-
bedding for the term Bank— and word senses —e.g., the embedding representing
the meaning of bank intended as financial institution, endowed with the identifier
Bank-bn:00008364n—.

The results obtained by employing LESSLEX and LESSLEX-OOV are compared
to those obtained by employing NASARI and CNN, to elaborate on similarities
and differences with such resources. Additionally, we report the correlation indices

obtained by experimenting with other word and sense embeddings that either are

8http://linguatools.org/tools/corpora/wikipedia—monolingual—corpora/
‘http://dumps.wikimedia.org/enwiki/.
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trained to perform on specific datasets (JOINTCHYB by Goikoetxea et al. (2018)), or
that directly compare to our resource, as containing both term-level and sense-level
vector descriptions (SENSEEMBED and NASARI2VEC). Table 4.4 summarizes the
considered resources and the algorithm used to compute the semantic similarity.
In these respects, we adopted the following rationale. When testing with resources
that allow for a combined use of word and sense embeddings we use the ranked-
similarity'” (as described in Equation 4.2); when testing with sense embeddings we
adopt the max similarity/closest senses strategy (Budanitsky & Hirst, 2006; Pile-
hvar & Navigli, 2015; Resnik, 1995) to select senses; while handling word embed-
dings we make use of the cosine similarity, by borrowing the same approach as
illustrated in (Camacho-Collados et al., 2017).!! In order to provide some insights
on the quality of the ranked-similarity, we also experiment on an algorithmic base-
line referred to as LL-M (LESSLEX Most Frequent Sense), where we selected the
most frequent sense of the input terms based on the connectivity of the considered
sense in BabelNet. The underlying rationale is, in this case, to study how this strat-
egy to pick up senses compares with LESSLEX vectors, that are built from word
embeddings that usually tend to encode the most frequent sense of each word. Fi-
nally, in the case of RG-65 dataset concerned with sense labeled pairs (Schwartz

& Gomez, 2011)!'? we only experimented on sense embeddings, and the similarity

scores have been computed through the cosine similarity metrics.

Results

All tables report Pearson and Spearman correlations (denoted by r and p, respec-

tively); dashes indicate that a given resource does not deal with the considered

!%In the experimentation « was set to 0.5.

A clarification must be done about SENSEEMBED. Since in this resource both terminological and
sense vectors co-exist in the same space, the application of the ranked-similarity would be fitting.
However, in SENSEEMBED every sense representation is actually indexed on a pair (term, sense),
so that different vectors may correspond to a given sense. In the ranked-similarity, when comput-
ing the distance between a term ¢ and its senses, we retrieve the sense identifiers from BabelNet, so
to obtain from SENSEEMBED the corresponding vector representations. Unfortunately, however,
most senses s; returned by BabelNet have no corresponding vector in SENSEEMBED associated to
the term ¢ (i.e., indexed as (¢, s;)). This fact directly implies a reduced coverage, undermining the
performances of SENSEEMBED. We then realized that the ranked-similarity is an unfair and not
convenient strategy to test on SENSEEMBED (in that it forces to use it to some extent improperly),
so we resorted to using the max similarity instead.

2This version of the RG-65 dataset has been sense-annotated by two humans with WordNet 3.0
senses.
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Table 4.5: Results on the multilingual and cross-lingual RG-65 dataset, consisting of 65 word pairs.
As regards as monolingual correlation scores for the English language, we report results
for similarity computed by starting from terms (at words level), as well as results with sense
identifiers (marked as senses). The rest of the results were obtained by using word pairs as
input. Reported figures express Pearson (r) and Spearman (p) correlations.

RG-65 LL-M | LLX | LL-O | CNN | NAS | JCH SSE N2V
r‘p r‘p r‘p r‘p r‘p r‘p r‘p r‘p

[Word] eng 64| 59 | 91| 86| 91| 86| 91| 90| 67| 67| 84| 86| 75| 81| 80| .75

[Sense] eng - | - |94 91| 94| 91| - | - | 81|76 -]|-|.72|.76] .78|.73
fas (N) 750 72| 75| 75| 73| 70| 76| 76| 58| 50| - | - | 66| 66| - | -
spa (N) 82| 82| 93| 93| 93| 93| 92| 93| 88| 87| 80| 84| 82| 85| - | -
por-fas (N) 71| 69| 85| 85| 81| .79| 87| 86| 52| 62| - | - [ 70| 66| - | -
fra-por (N) 82 8| 92| .89| 92| 89| 93| 88| 69| 67| - | - | 81| 74| - | -
fra-fas (N) 73| 72| 84| 84| 86| 84| 86| 85| 47| 58| - | - | 72| 71| - | -
fra-spa (N) 81| 80| 93| 91| 93| 91| 93| 89| 79| 82| - | - | 88| 86| - | -
fra-deu (N) 81| 84| 90| 89| 90| 89| 88| 87| 77| 77| - | - | 77| 75| - | -
spa-por (N) | 83| 83| 93| 91| 93| .91 93| 91| 75| 79| - | - | 79| 79| - | -
spa-fas (N) 71| 70| 86| 87| 82| 80| 86| 86| 50| 64| - | - | 72| 79| - | -
eng-por(N) | 74| 71| 94| 90 94| 90| 92| 90| 78| 77 - | - | 80| 76| - | -
eng-fas (N) 67| 62| 86| 85| 84| 81| 86| 87| 47| 56| - | - | 73| 71| - | -
eng-fra (N) JU 70| 94| 92| 94| 92| 92| 91| 76| 73| - | - | 81| 75| - | -
eng-spa(N) | 72| 71| 93| 93| 93| 93| 93| 92| 85| 85| 83| 86| 80| 85| - | -
eng-deu(N) [ 74| 72| 91| 89 91| 89| 89| 89| 70| 74| - | - | 76| 80| - | -
deu-por (N) | 87| 84| 91| 87| 91| 87| 91| 87| 73| 76| - | - | 76| 72| - | -
deu-fas (N) 77| 74| 85| 85| 87| 84| 85| 84| 58| 65| - | - | 78| 80| - | -
deu-spa(N) | 84| 85| 91| 90| 91| .90 90| 89| 71| 79| - | - | 79| 80| - | -

input, either because lacking of sense representation, or because lacking of cross-
lingual vectors. Similarity values for uncovered pairs were set to the middle point
of the similarity scale. Additionally, in Appendix A.1 we report the results obtained
by considering only the word pairs covered by all the resources: such figures are of
interest, since they allow examining the results obtained from each resource ‘in pu-
rity’, by focusing only on their representational precision. All top scores are marked

with bold fonts.

Multilingual/Cross-lingual RG-65 dataset The results obtained over the mul-
tilingual and cross-lingual RG-65 dataset are illustrated in Table 4.5. RG-65 in-
cludes a multilingual dataset and a cross-lingual one. As regards as the former
one, both LESSLEX and LESSLEX-OOV obtain analogous correlation with respect
to CNN when considering term pairs; LESSLEX and LESSLEX-OOV substantially

outperform NASARI, SENSEEMBED and NASARI2VEC while considering sense
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Table 4.6: Results on the WS-5im-353 dataset, where we experimented on the 201 word pairs (out of
the overall 353 elements) that are acknowledged as appropriated for computing similarity.
Reported figures express Pearson (r) and Spearman (p) correlations.

WS-Sim-353 LL-M | LLX | LL-O | CNN | NAS | JCH SSE N2V
T“p T‘p r‘p T‘p r‘p T“p r‘p T“p
eng (N) 67| 65| .78 78| .78 | 78| 78| .79 | .60 | 61| 72| 72| 69| 73| 71| .70
ita (N) 67| 68| 70| 73| 74| .78 69| 73| 66| 65| 60| 62| 66| 73| - | -
deu (N) 73| 71| 63| 68| 76| 77| 82| 81| 64| 63| - | - | 62| 60| - | -
rus (N) 72| 70| 64| 62| 73| 75| 65| 63| 63| 61| - | - | 60| 60| - | -

pairs (Schwartz & Gomez, 2011). Of course CNN is not evaluated in this setting,
since it only includes representations for terms. As regards as the latter subset,
containing cross-lingual files, figures show that both CNN and LESSLEX obtained
high correlations, higher than the competing resources providing meaning repre-

sentations for the considered language pairs.

Multilingual WS-Sim-353 dataset The results on the multilingual WS-5im-353
dataset are presented in Table 4.6. Results on this data differ according to the
considered language: interestingly enough, for the English language, the results
computed via LESSLEX are substantially on par with those obtained by employing
CNN vectors. As regards as the remaining translations of the dataset, CNN and
LESSLEX achieve the highest correlations also on the Italian, German and Russian
languages. Different from other experimental settings (see, e.g., the RG-65 dataset),
the differences in correlation are more consistent, with LESSLEX obtaining top cor-

relation scores for Italian and Russian, and CNN for German.

Multilingual SimLex-999 dataset The results obtained on the SimLex-999 dataset
are reported in Table 4.7. We face here twofold results: as regards as the English
and the Italian translation, we recorded better results when using the LESSLEX vec-
tors, with consistent advantage over competitors on English verbs. As regards
as English adjectives, the highest correlation was recorded when employing the
LESSLEX Most Frequent Sense vectors (LL-M column). As regards as Italian, as
in the WordSim-353 dataset, the LESSLEX-OOV strategy obtains correlations with
human ratings that are higher or on par with respect to those obtained by using

LESSLEX vectors. In the second half of the dataset CNN performed better on Ger-
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Table 4.7: Results on the multilingual SimLex-999, including overall 999 word pairs, with 666 nouns,
222 verbs and 111 adjectives for the English, Italian, German and Russian languages. Re-
ported figures express Pearson (r) and Spearman (p) correlations.

. LL-M | LLX | LL-O | CNN | NAS | JCH SSE N2V
SimLex-999
r‘p T“p r‘p T“p r‘p r‘p r‘p r‘p
eng (N) 51| 50| 69| 67| 69| 67| 66| 63| 40| 38| 55| 53| 52| 49| 46| 43
eng (V) 62| 56| 67| 65| 67| 65| 61| 58| - | - | 51| 50| 54| 49| - | -
eng (A) 84| 83 82| 79| 82| 79| 80| 78| - | - | 63| 62| 55| 51| - | -
eng (*) 57| 55 70| 69| 70| 69| 67| 65| - | - | 55| 54| 53| 49 - | -
ita (N) 50| 49 | 66| .63 | 64| 63| 64| 61| 45| 46| 47| 47| 56| 49| - | -
ita (V) 58| 52| 69| 63| 69| 63| 67| 58| - | - | 54| 47| 54| 44| - | -
ita (A) 65| 58| 74| 69| 74| 69| 74| 66| - | - | 39| 30| 57| 47| - | -
ita (¥) 51| 47| 66| 62| 65| 62| 65| 61| - | - | 46| 44| 54| 47| - | -
deu (N) 58| 56| 65| 63| 65| 64| 66| 65| 41| 42| - | - | 47| 43| - | -
deu (V) 48| 42| 54| 45| 54| 46| 63| 57| - | - | - | - | 43| 37| - | -
deu (A) 66| 63| 66| 65| 69| 68| 77| .75 - | - | - | - | 48| 26| - | -
deu (*) 55| 52| 62| 59| 63| 61| 67 65| - | - | - | - | 45| 38| - | -
rus (N) 43| 42| 52| 48| 51| 50| 53| 48] 20| 22| - | - | 26| 21| - | -
rus (V) 31|19 25| 18| 27| 20| 60| 55| - | - | - | - | 23] 20 - | -
rus (A) 25| 26| 25| 25| 27| 28| 69| 69| - | - | - | - | 04| 04| - | -
rus (¥) 36| 32| 43| 37| 42| 39| 56| 51| - | - | - | - | 23] a3 - | -

Table 4.8: Results on the SimVerbs-3500 dataset, containing 3,500 verb pairs. Reported figures ex-
press Pearson (1) and Spearman (p) correlations.

SimVerbs | Le-M | LLX | LL-O | CNN | NAS | JCH | SSE | N2V
| rlplrfelrfelrleolrleolrieolrielrle

eng (V) | 58| 56 | 67 66| .67 | 66| 62| 60| -

- | 56| 56| 45| 42| 31| 30

man and Russian.

SimVerbs-3500 dataset Results obtained while testing on the SimVerbs-3500 dataset
are reported in Table 4.8. In this case it is straightforward to notice that the results
obtained by LESSLEX outperform those by all competitors, with a gain of .05 in
Pearson r, and .06 in Spearman correlation over CNN, on this large set of 3500
verb pairs. It was not possible to use NASARI vectors, that only exist for noun
senses; also notably, the results obtained by employing the baseline (LL-M) strat-
egy outperformed those obtained through SENSEEMBED and NASARI2VEC.

Sem Eval 17 Task 2 dataset The figures obtained by experimenting on the “Se-

mEval 17 Task 2: Multilingual and Cross-lingual Semantic Word Similarity” dataset
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Table 4.9: Results on the SemEval 17 Task 2 dataset, containing 500 noun pairs. Reported figures
express Pearson (1) and Spearman (p) correlations.

LL-M | LLX | LL-O | CNN | NAS | JCH SSE N2V
SemEval 17

r‘p r‘p r‘p r‘p r‘p r‘p r‘p r‘p
eng (N) 717279 80| .77 | 81| 79| 79| 64| 65| 50| 45| 69 | .73 | 64| .64
deu (N) 73| 72| 69| 68| 71| 75| 70| 68| 62| 62| - | - | 60| 61| - | -
ita (N) 74| 75| 66| 65| .76 | 79| 63| 61| 72| 73| 54| 50| 70| 73| - | -
spa (N) 77| .79 67| 66| 74| 80| 63| 62| 72| 73] 50| 48| 68| 71| - | -
fas (N) 67| 67| 43| 47| 72| 75| 39| 35| 54| 53| - | - | 60| 63| - | -
deu-spa(N) | .76 | 77 | 69| 68| 74| 79| 66| 64| 54| 55| - | - | 65| 68| - | -
deu-ita (N) 75| 76 | 68| 67| 75| 79| 65| 63| 53| 65| - | - | 62| 62| - | -
eng-deu(N) | .75| 75| 75| 75| 75| 79| 74| 73| 51| 62| - | - | 63| 63| - | -
eng-spa(N) | 75| 76 | 73| 73| .76 | 82| 70| 70| 66 | 70| 46| 44| 59| 61| - | -
eng-ita (N) 741 76 | 72| 72| 76| 82| 69| 69| 63| 71| 38| 36| 69| 73| - | -
spa-ita (N) 76| 77| 67| 66| 76 | 81| 63| 61| 65| 72| 41| 39| 59| 61| - | -
deu-fas (N) 720 73| 55| 52| 73| 76| 51| 47| 39| 52| - | - | 63| 65| - | -
spa-fas (N) 72| 73| 55| 52| 75| 79| 50| 47| 47| 61| - | - | 66| 70| - | -
fas-ita (N) 72| 73| 53| 50| .75 | 78| 49| 45| 43| 58| - | - | 66| 69| - | -
eng-fas (N) J1| 72| 58| 55| 74| 79| 54| 51| 42| 59| - | - | 67| 70| - | -

are provided in Table 4.9. This benchmark is a multilingual dataset including 500
word pairs (nouns only) for monolingual versions, and 888 to 978 word pairs for
the cross-lingual ones.

These results are overall favourable to LESSLEX in the comparison with CNN
and with all other competing resources. Interestingly enough, while running the
experiments with CNN vectors we observed even higher correlation scores than
those obtained in the SemEval 2017 evaluation campaign (Camacho-Collados et al.,
2017; Speer et al., 2017). At that time, such figures scored highest on all multilingual
tasks (with the exception of the Farsi language) and on all cross-lingual settings
(with no exception). To date, as regards as the cross-lingual setting, LESSLEX cor-
relations indices are constantly higher than those by competitors, including CNN.
We observe that the scores obtained by employing the baseline with most frequent
senses (LL-M) are always ameliorative with respects to all results obtained by ex-
perimenting with NASARI, JOINTCHYB, SENSEEMBED and NASARI2VEC (with
the only exception of the p score obtained by SSE on the English monolingual

dataset).
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Table 4.10: Results on the Goikoetxea dataset. The dataset includes variants of the RG-65 (first block),
WS-Sim-353 (second block) and SimLex-999 (third block) datasets. The ‘eus’ abbreviation
indicates the Basque language. Reported figures express Pearson (r) and Spearman (p)
correlations.

. LL-M | LLX | LL-O [ CNN | NAS | JCH SSE N2V
Goikoetxea

’I”‘,O T‘p T‘p T"p T‘p T"p T‘p ’I”‘,O

spa-eus (N) 74| 72| 42| 67| 76| 77| 66| 61| 71| 74| 73| 72| 61| 71| - | -
eng-eus (N) 740 74| 41| 77| 89| 91| 77| 73| 89| 88| 88| 87| 81| 83 - | -
eng-spa(N) | 72| 71| 93| 93| 93| 93| 93| 93| 77| 82| 83| 86| 64| 85| - | -

eus-ita (N) 27| 68| 42| 74| 24| 71| 51| 53| 49| 56| 52| 58| 20| 58| - | -
spa-ita (N) 29 66| 29| .76 29| 74| 63| 70| 53| 57| 54| 60| 21| 59| - | -
spa-eus (N) 31| 74| 40| 78| 29| .78 | 55| 56| 59| 66| 69| 73| 23| 64| - | -
eng-ita (N) 30| .64 | 27| 77| 32| 76| 67| 74| 47| 52| 59| 64| 21| 59| - | -

eng-eus (N) 30| .70 | 39| 79| 29| 78| 56| 57| 52| 60| 71| 75| 23| 64| - | -
eng-spa(N) | 34| 66| 27| .79| 40| 77| 70| 76| 52| 56| 68| .73| 29| 64| - | -

eng-spa(N) | 49| 48 | 66| 64| 65| 64| 64| 62| 36| 46| 54| 51| 53| 50| - | -

eng-spa (V) 54| 50 | 61| 59| 62| 60| 58| 56| - | - | 43| 43| 52| 49| - | -
eng-spa (A) 72| 73| 73| 74| 72| 75| 74| 74| - | - | 56| 55| 53| 47| - | -
eng-spa (*) 53| 51| 66| 64| 65| 65| 64| 63| - | - | 50| 52| 53| 49| - | -
eng-ita (N) 52| 52| .70| 68| .70 | .68 | 68| 66| 36| 45| 51| 50| 54| 51 - | -
eng-ita (V) 49| 40 | 57| 51| 57| 51| 67| 62| - | - | 47| 51| 44| 33| - | -
eng-ita (A) 75| 74| 79| 78| 79| 78| 77| 72| - | - | 42| 43| 57| 45| - | -
eng-ita (*) 50| 46 | 65| 62| 65| 63| 68| 66| - | - | 48| 50| 51| 43| - | -
spa-ita (N) 53| 53| 67| 65| 67| 66| 66| 64| 34| 45| 45| 45) 54| 52| - | -
spa-ita (V) 44| 39| 51| 46| 51| 46| 63| 60| - | - | 42| 44 43| 34| - | -
spa-ita (A) 68| 66 | 73| 71| 72| 73| 73| 69| - | - | 41| 45| 57| 48| - | -
spa-ita (*) 49| 46| 61| 58| 61| 59| 66| 64| - | - | 44| 45| 50| 45| - | -

Multilingual/Crosslingual Goikoetxea dataset The results obtained by testing
on the Goikoetxea dataset are reported in Table 4.10. The dataset includes new vari-
ants for three popular dataset: three cross-lingual versions for the RG-65 dataset
(including the Basque language, marked as ‘eus’ in the Table); the six cross-lingual
combinations of the Basque, Italian and Spanish translations of the WS-Sim-353
dataset; and three cross-lingual translations of the SimLex-999 dataset, including
its English, Italian and Spanish translations.

Results are thus threefold. As regards as the first block on the RG-65 dataset,
LESSLEX results outperform all competitors (to a smaller extent on versions involv-
ing the Basque language), including JOINTCHYB, the best model by Goikoetxea et
al. (2018). In the comparison with CNN, LESSLEX vectors achieve better results,
with higher correlation for cases involving Basque, on par on the English-Spanish

dataset. As regards as the second block (composed of cross-lingual translations
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of the WS-Sim-353 dataset), we record that the LESSLEX-OOV strategy obtained
the top Spearman correlation scores, coupled to poor Pearson correlation scores;
while CNN and JCH obtain the best results as regards as the latter coefficients.
As regards as the last block of results in Table 4.10 (containing translations for the
SimLex-999 dataset), we first observe that comparing the obtained figures is not
simple: we report the figures obtained by Goikoetxea et al. (2018) with no distinc-
tion in POS. However, if we focus on results on nouns (two thirds of the SimLex-999
dataset), LESSLEX vectors obtain the best results, while it is not easy to determine
whether LESSLEX or CNN vectors provided the overall best results on the other

parts of speech.

Discussion

We overall experimented on nine different languages (deu, eng, eus, fas, fra, ita,
por, rus, spa) and various cross-lingual combinations. Collectively, such tests con-
stitute a widely varied experimental setting, to the best of our knowledge the largest
on the semantic similarity task. The obtained results authorise to state that LESSLEX
is at least on par with competing state-of-the-art resources, although we also no-
ticed that some room still exists for further improvements, such as the coverage on
individual languages (e.g., Russian and German).

Let us start by considering the results on the multilingual WS-Sim-353 and on
the SimLex datasets (Tables 4.6 and 4.7, respectively). The results obtained through
LESSLEX always improve on those obtained by employing the sense embeddings
by SENSEEMBED and NASARI2VEC, that provide term and sense descriptions
embedded in the same semantic space, and are thus closer to our resource. Also
the comparison with NASARI is favourable to LESSLEX. In the comparison with
CNN, we note that while in the English language LESSLEX and LESSLEX-OOV
scores either outperform or closely approach those obtained through CNN, in other
languages our vectors suffer from the reduced and less rich sense inventory of Ba-
belNet, that in turn determines a lower quality for our vectors. This can be easily
tigured if one considers that a less rich synset contains less terms to be plugged into
our vectors, thereby determining an overall poorer semantic coverage. The poor re-

sults obtained by employing LESSLEX on the German and Russian subsets of the
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WS-5im-353 and SimLex-999 datasets probably stem from this sort of limitation.

A consistent difference between LESSLEX ranked-similarity and the LESSLEX-
OOV strategy can be observed when a sense is available in BabelNet, but not the
corresponding vector in CNN: the LESSLEX-OOV strategy basically consists in re-
sorting to the maximization approach when —due to the lack of a terminologi-
cal description associated to the sense at hand— it is not possible to compute the
ranked-similarity. This strategy was executed in around 9% of cases (o = 12%) over
all datasets, ranging from 0% on verbs in the SimVerbs-3500 dataset, up to around
50% for the Farsi nouns in the SemEval-2017 monolingual dataset. Although not
employed often, this strategy contributed in many cases to obtain top scoring re-
sults, improving on those computed with plain ranked-similarity with LESSLEX,
and also in some cases on CNN and NASARI, as illustrated in both the monolin-
gual and cross-lingual portions of the SemEval-2017 dataset (Table 4.9).

Cases where results obtained through LESSLEX improve over those obtained
with CNN are important to assess LESSLEX, in that they confirm that the control
strategy for building our vectors is effective, and that our vectors contain precise
and high quality semantic descriptions. In this sense, obtaining higher or compa-
rable results by using sense embeddings with respect to using word embeddings
(with sense embeddings featuring an increased problem space with respect to the
latter ones) is per se an achievement. Additionally, our vectors are grounded on Ba-
belNet synset identifiers, which allows addressing each sense as part of a large
semantic network, providing further information on senses with respect to the
meaning descriptions conveyed through the 300-dimensional vectors. While the
LESSLEX-OOV is a run-time strategy concerned with the usage of LESSLEX to com-
pare sense pairs, the quality of our vectors is determined by the enrichment step.
More specifically, the coverage of our vectors depends on the strategy devised to
build 7 because the coverage is determined both by the number of term-level
vectors, and by the number of sense vectors associated to each term, so that in a
sense the coverage of LessLex is determined by the size of 7. Additionally, we
register that the elements added to the extended set 7 are often of high quality, as
proven, for example, by the sense-oriented task of the RG-65 dataset, where senses

were assessed (Table 4.5, line 2): in this setting, the correlation indices for LESSLEX
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and LESSLEX-OOV vectors score highest over all semantic resources, including
NASARI, SENSEEMBED and NASARI2VEC.

Also results achieved while testing on the Goikoetxea dataset seem to confirm
that our LL-O strategy allows dealing with languages with reduced (with respect
to English) coverage and/or sense inventory in either BabelNet or ConceptNet: in
12 out of the overall 18 tests on this dataset, the LESSLEX-OOV strategy earned at
least one top scoring correlation index (either r or p, as shown in Table 4.10). The
comparison with the recent JOINTCHYB embeddings shows that the adoption of a
shared conceptual —multilingual— level can be beneficial and advantageous with
respect to building specialised pairs of embeddings.

Less relevant under a cross-lingual perspective, but perhaps relevant in order to
fully assess the strengths of our resource, LESSLEX vectors achieved by far highest
correlation scores on English verbs (please refer to Table 4.7, line 2 and Table 4.8).
The comparison with previous literature seems to corroborate this fact (Gerz et
al., 2016): in fact, to the best of our knowledge previous state-of-the-art systems
achieved around .624 Spearman correlation (Faruqui & Dyer, 2015; Mrksic et al.,
2016).

In order to further deepen the analysis of results, it is instructive to compare
the results reported in Tables 4.5-4.10 with those obtained on the fraction of dataset
covered by all considered resources, and provided in Appendix A (Tables A.1-A.6).
That is, for each dataset we re-run the experiments for all considered resources by
restricting to compare only term pairs actually covered by all resources. We will
call this evaluation metrics CbA condition hereafter (from ‘Covered by All’); as op-
posed to the case in which a mid-scale similarity value was assigned to uncovered
terms, referred to as MSV condition in the following (from ‘Mid Scale Value’). As
mentioned, the CbA condition allows evaluating the representational precision of
the resources at stake independent of their coverage, whilst a mixture of both as-
pects is grasped in the the MSV condition. In the leftmost column of Tables in Ap-
pendix A we report the coverage for each test. As we can see, coverage is diverse
across datasets, ranging from .61 (averaged on all variants, with a minimum on the
Farsi language, in the order of .34 and all translations involving the Farsi) in the

SemEval-2017 dataset (Table A.5) to 1.0 in the SimVerbs-3500 dataset (Table A.3).
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Table 4.11: The top half Table shows a synthesis of the results obtained in the Mid-Scale similarity
Value (MSV) experimental condition, whose details have been illustrated in Tables 4.5-
4.10; at the bottom we provide a synthesis of the results obtained in the Covered by All
(CbA) experimental condition, illustrated in detail in Tables A.1-A.6.

Mid-Scale similarity Value (MSV) Experimental Condition

LL-M | LLX | LL-O | CNN | NAS | JCH | SSE | N2V
Spearman p 7 32 41 33
Pearson r 1 32 50 24 0
Total 8 64 91 57 1 3 0 0

Covered by All (CbA) Experimental Condition

LL-M | LLX | LL-O | CNN | NAS | JCH | SSE | N2V
Spearman p 1 61 - 30
Pearson r 2 63 - 22
Total 3 124 - 52 0 0 0 0

Other notable cases in which relevant variations in coverage were observed are
Russian verbs and adjectives in the SimLex-999 dataset, with .20 and .06 coverage,
respectively (Table A.4). In general, as expected, the recorded correlations are im-
proved with respect to results registered for the corresponding (same dataset and
resource) test in the MSV setup, although spot pejorative cases were observed, as
well (see, e.g., CNN results for Italian adjectives, in the SimLex-999 dataset, re-
ported in Table A.4). For example, if we consider the poorly covered SemEval-2017
dataset, we observe the following rough improvements (average over all transla-
tions, and both r and p metrics) in the correlation indices: .20 for LESSLEX, .22
for CNN, .09 for NASARI, .30 for JOINTCHYB (that does not cover all transla-
tions, anyway), .07 for SENSEEMBED, and .09 for NASARI2VEC (only dealing with
nouns).

In order to synthetically examine how the CbA experimental condition affected
results with respect to the MSV condition, we adopt a rough index, simply count-
ing the number of test results (we consider as a separate test result each Pearson
and each Spearman score in Tables A.1-A.6) where each resource obtained highest
scores.'> We thus count overall 152 tests (15 in the SemEval-2017 dataset, 4 in the
WS-Sim-353, 1 in the SimVerbs-3500, 16 in the SimLex-999, 19 in the RG-65, and

BBOf course we are aware that this is only a rough index, that e.g., does not account for the datasets
size (varying from 65 to 3,500 word pairs) or the involved POS, and mixing Pearson and Spear-
man correlation scores.
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21 in the Goikoetxea; for each one we consider as separated r and p scores). Pro-
vided that in several cases we recorded more than one single resource attaining top
scores, the impact of the reduced coverage (CbA condition) vs. MSV condition is
presented in Table 4.11. In the MSV condition we have LESSLEX-OOV achieving 91
top scoring results, followed by LESSLEX with 64 and CNN with 57. In the CbA ex-
perimental condition, the LESSLEX-OOV strategy was never executed (since only
the actual coverage of all resources was considered, and no strategy for handling
out-of-vocabulary terms was thus necessary), and LESSLEX obtained 124 top scor-
ing results, against 52 for CNN. In the latter condition there were less cases with a
tie. Allin all, we interpret the different correlation scores obtained in the two exper-
imental conditions as an evidence that LESSLEX embeddings are featured by good
coverage (as suggested by the results obtained in the MSV condition) and lexical
precision (as suggested by the results obtained in the CbA condition), improving
on those provided by all other resources at stake.

Our approach showed to scale well to all considered languages, under the mild
assumption that these are covered by BabelNet, and available in the adopted vec-
torial resource; when such conditions are met, LESSLEX vectors can be in principle

built on a streamlined, on-demand, basis, for any language and any POS.

4.2.2 Contextual Word Similarity Task

As the second test bed we experimented on the contextual word similarity task,
which is a variant of the word similarity. In this scenario the target words are taken
in context, meaning that the input word is given as input together with the piece of
text in which they occur. In this setting, systems are required to account for mean-
ing variations in the considered context, so that typical static word embeddings
such as Word2Vec, ConceptNet Numberbatch, efc. are not able to grasp their muta-
ble, dynamic semantics. We tested on both Stanford’s Contextual Word Similarities
Datastet (SCWS) (E. H. Huang et al., 2012), and on the more recent Word-in-Context
Dataset (WiC) (Pilehvar & Camacho-Collados, 2019).

The SCWS dataset defines the problem as a similarity task, where each input
record contains two sentences in which two distinct target words ¢; and ¢, are used.

The task requires to provide the pair (t1,t2) with a similarity score by taking into
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Table 4.12: Some descriptive statistics of the WiC dataset. In particular, the distribution of nouns and
verbs, number of instances and unique words across training, development and test-set of
the WiC dataset are reported.

Split Instances Nouns Verbs Unique Words
Training 5,428 49% 51% 1,256

Dev 638 62% 38% 599

Test 1,400 59% 41% 1,184

account the context where the given terms occur. The dataset consists of 2,003 in-
stances, divided into 1, 328 instances whose targets are a noun pair, 399 a verb pair,
97 adjectival pair, 140 contain a verb-noun pair, 30 contain a noun-adjective pair,
and 9 a verb-adjective pair. On the other hand, in the WiC dataset the contextual
word similarity problem is cast to a binary classification task: each instance is com-
posed of two sentences in which a specific target word ¢ is used. The employed
algorithm has to make a decision on whether ¢ assumes the same meaning or not in
the two given sentences. The distribution of nouns and verbs across training, de-
velopment and test-set is reported in Table 4.12, together with figures on number
of instances and unique words.

In the following we report the results obtained on the two datasets by exper-
imenting with LESSLEX and the ranked-similarity metrics. Our results are com-
pared to those reported in literature, and to those obtained by experimenting with
NASARI2VEC, which is the only competing resource suitable to implement the

ranked similarity along with its contextual variant.

Testing on the SCWS dataset

To test on the SCWS dataset we employed both the ranked-similarity (rnk-sim)
and the contextual ranked-similarity (c-rnk-sim), a variant devised to account for
contextual information. As regards as the latter one, given two sentences (S, S2),
we first computed the context vectors <ct_:>vl, ct_:>c2> with a bag-of-words approach,
that is by averaging all the terminological vectors of the lexical items contained
therein:

- — ZtESj t

i 4.
ctr N (4.3)

where N is the number of words in the sentence S;.
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Table 4.13: Results obtained by experimenting on the SCWS dataset. Figures report the Spearman
correlations with the gold standard divided by part of speech. In the top of table we report
our own experimental results, while in the bottom results from literature are provided.

System | ALL | NN | NV | N-A | V-V | V-A | AA
LESSLEX (rnk-sim) 0.695 | 0.692 | 0.696 | 0.820 | 0.641 | 0.736 | 0.638
LESSLEX (c-rnk-sim) 0.667 | 0.665 | 0.684 | 0.744 | 0.643 | 0.725 | 0.524
NASARI2VEC (rnk-sim) - | ossa| - - : - -
NASARI2VEC (c-rnk-sim) - 0.471 - - - - -
SENSEEMBED! 0.624 - - - - - -
Huang et al. 50d? 0.657 - - - - - -
Arora at al.? 0.652 - - - - - -
MSSG.300D.6K* 0.679 - - - - - -
MSSG.300D.30K* 0.678 - - - - - -

! Tacobacci et al. (2015)

2 E. H. Huang et al. (2012)

3 Arora, Li, Liang, Ma, and Risteski (2018)

4 Neelakantan, Shankar, Passos, and McCallum (2014b), figures reported from Mu, Bhat, and Viswanath (2017)

The two context vectors are then used to perform the sense rankings for the

target words, in the same fashion as in the original ranked-similarity:
: — —
c-rnk-sim(ty, tg,ctzy, ctzg) =

max (1 —a) - (rank(&) +rank(c;) )~ ' | + <a - cos-sim(¢;, c}))

@es(tl) H,:)/ N—_——
cj€s(t2) w.rt. ctzy w.rt. 1%)2

(4.4)

Results The results obtained by experimenting on the SCWS dataset are reported
in Table 4.13.* In spite of the simplicity of the system employing LESSLEX embed-
dings, our results overcome those reported in literature, where by far more complex
architectures were used.

However, such scores are higher than the agreement among human raters,
which can be thought of as an upper bound to systems’ performance. The Spear-
man correlation among human ratings (computed on leave-one-out basis, that is by
averaging the correlations between each rater and the average of all other ones) is
reportedly of 0.52 for the SCWS dataset (Chi & Chen, 2018; Chi, Shih, & Chen, 2018),

which can be considered as a poor inter-rater agreement. Also to some extent sur-

Parameters setting: in rnk-sim and in the c-rnk-sim o was set to 0.5 for both LESSLEX and NASA-
RI2VEC.
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Table 4.14: Correlation scores obtained with LESSLEX on different subsets of data obtained by varying
standard deviation in human ratings. The reported figures show higher correlation when
testing on the most reliable (with smaller standard deviation) portions of the dataset. To
interpret the standard deviation values, we recall that the original ratings collected in the
SCWS dataset were expressed in the range [0.0, 10.0].

o c-rank-sim (r) ‘ rank-sim (r) nof-items
<0.5 0.83 0.82 39
<1.0 0.85 0.86 82
<15 0.85 0.85 165
<20 0.82 0.84 285
<25 0.68 0.83 518
<3.0 0.68 0.79 903
<3.5 0.67 0.75 1,429
<4.0 0.64 0.71 1,822
< 5.0 0.63 0.69 2,003

prising is the fact that the simple ranked-similarity (rnk-sim), which was intended
as a plain baseline, surpassed the contextual ranked-similarity (c-rnk-sim), more
suited for this task.

To further elaborate on our results we then re-run the experiment by investigat-
ing how the obtained correlations are affected by different degrees of consistency
in the annotation. We partitioned the dataset items based on the standard devia-
tion recorded in human ratings, obtaining 9 bins, and re-run our system on these,
utilizing both metrics, with same parameter settings as in the previous run. In this
case the Pearson correlation indices were recorded, in order to investigate the lin-
ear relationship between our output and human ratings. As expected, we obtained
higher correlations on the most reliable portions of the dataset, those with smallest
standard deviation (Table 4.14).

However, we still found surprising the obtained results, since the rnk-sim met-
rics seems to be more robust than its contextual counterpart. This is in contrast
with literature, where the top scoring metrics, originally defined by Reisinger and
Mooney (2010), also leverage contextual information (T. Chen, Xu, He, & Wang,
2015; X. Chen, Liu, & Sun, 2014; E. H. Huang et al., 2012). In particular, the AvgSim
metrics (which is computed as a function of the average similarity of all prototype
pairs, without taking into account the context) is reportedly outperformed by the

AvgSimC metrics, in which terms are weighted by the likelihood of the word con-
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texts appearing in the respective clusters). The AvgSim and the AvgSimC directly
compare to our rnk-sim and c-rnk-sim metrics, respectively. In our results, for the
lowest levels of standard deviation (that is, for o < 2), the two metrics perform
in similar way; for growing values of o we observe a substantial drop of the c-
rank-sim, while the correlation of the rnk-sim decreases more smoothly. In these
cases (for o > 2.5) contextual information seems to be less relevant than pair-wise

similarity of term pairs taken in isolation.

Testing on the WiC dataset

Different from the SCWS dataset, in experimenting on WiC we are required to de-
cide whether a given term conveys same or different meaning in their context, as
in a binary classification task. Context-insensitive word embedding models are ex-
pected here to approach a random baseline, while the upper bound, provided by
human-level performance, is 80% accuracy.

We run two experiments, one where the contextual ranked-similarity was em-
ployed, the other with the Rank-Biased Overlap (Webber, Moffat, & Zobel, 2010). In
the former case, we used the contextual ranked-similarity (Equation 4.4) as the met-
rics to compute the similarity score, and we added a similarity threshold to provide
a binary answer. In the latter case, we designed another simple schema to assess
the semantic similarity between term senses and context. At first we built a con-
text vector (Equation 4.3) to acquire a compact vectorial description of both texts
at hand, obtaining two context vectors ct_>x1 and ct_:>ng. We then ranked all senses
of the term of interest (based on the cosine similarity metrics) with respect to both
context vectors, obtaining s! and s}, as the similarity ranking of ¢ senses from cz‘,—arrl>
and ctz), respectively. The Rank-Biased Overlap (RBO) metrics was then used to
compare the similarity between such rankings. Given two rankings s! and s}, RBO
is defined as follows:

0]
toty (1 _ d71’0d|
RBO(s}, s3) = (1 —p) ;P 0 (4.5)

where O is the set of overlapping elements, |O,4| counts the number of overlaps out

of the first d elements, and p is a parameter governing how steep the decline in
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Table 4.15: Results obtained by experimenting on the WiC dataset. Figures report the accuracy ob-
tained for the three portions of the dataset and divided by POS.

Training Development
System Test

All ‘ Nouns ‘ Verbs All ‘ Nouns ‘ Verbs
Contextualised word embeddings
BERT-large! 68.4 - - - - - -
WSD? 67.7 - - - - - -
Ensemble® 66.7 - - - - -
BERT-large* 65.5 - - - - - -
ELMo-weighted® 61.2 - - - - - -
Context2vec* 59.3 - - - - - -
Elmo* 57.7 - - - - - -
Sense representations
DeConf* 58.7 - - - - - -
SW2v4 58.1 - - - - - -
JBT* 53.6 - - - - -
LESSLEX 58.9 59.4 58.8 60.1 60.5 58.0 64.6
(c-rnk-sim)
LESSLEX (RBO) 59.2 61.1 59.4 62.9 63.0 62.0 64.6
N2V (c-rnk-sim) - - 54.1 - - 53.2 -
N2V (RBO) - - 60.7 - - 63.4 -

1 Wang et al. (2019)

2 Loureiro and Jorge (2019b)

3 Soler, Apidianaki, and Allauzen (2019)

4 Mancini et al. (2017)

5 Ansell, Bravo-Marquez, and Pfahringer (2019)

weights is: setting p to 0 would imply considering only the top element of the rank.

In this setting, a low RBO score can be interpreted as indicating that senses that are

closest to the contexts are different (thus suggesting that the sense intended by the

polysemous term is different across texts), whilst the opposite case indicates that

the senses more fitting to both contexts are same or similar, thereby authorizing to

judge them as similar. For the task at hand, we simply assigned same sense when

the RBO score exceeded a threshold set to 0.8.°

Results The results obtained experimenting on the WiC dataset are reported in

Table 4.15.

Previous results show that this dataset is very challenging for embeddings that

5The RBO parameter p has been optimized and set to .9, which is a setting also in accord with

literature (Webber et al., 2010).
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do not directly grasp contextual information. The results of systems participating
to this task can then been arranged into three main classes: those adopting embed-
dings featured by contextualised word embeddings, those experimenting with em-
beddings endowed with sense representations, and those implementing sentence
level baselines (Pilehvar & Camacho-Collados, 2019). Given that the dataset is bal-
anced (that is, it comprises an equal number of cases where the meaning of the pol-
ysemous term is preserved /different across sentences), and the fact that the task is a
binary classification one, the random baseline is 50% accuracy. Systems employing
sense representations (directly comparing to ours) obtained up to 58.7% accuracy
score (Pilehvar & Collier, 2016). On the other side, those employing contextualized
word embeddings achieved accuracy ranging from 57.7% accuracy (ELMo 1024-d,
from the first LSTM hidden state) to 68.4% accuracy (BERT 1024-d, 24 layers, 340M
parameters) (Pilehvar & Camacho-Collados, 2019).

Our resource directly compares with multi-prototype, sense-oriented, embed-
dings, namely JBT (Pelevina, Arefiev, Biemann, & Panchenko, 2016), DeConf (Pile-
hvar & Collier, 2016), and SW2V (Mancini et al., 2017). In spite of the simplicity of
both adopted approaches (c-rnk-sim and RBO), by employing LESSLEX vectors we
obtained higher accuracy values than those reported for such comparable resources
(listed as ‘Sense representations’ in Figure 4.15).

We also experimented with N2V (with both c-rank-sim and RBO metrics), whose
results are reported for nouns on the training and development subsets.'® For such
partial results we found slightly higher accuracy than obtained with LESSLEX with
the RBO metrics. Unfortunately, however, N2V results can be hardly compared
to ours, since the experiments on the test-set were executed through the CodaLab
Competitions framework.!” In fact the design of the competition does not permit to
separate the results for nouns and verbs, as the gold standard for the test set is not
publicly available,'® so that we were not able to directly experiment on the test-set

to deepen comparisons.

Parameters setting for NASARI2VEC: in the c-rnk-sim, « was set to 0.7, and the threshold to 0.8;
in the RBO run, p was set to 0.9 and the threshold to 0.9.

l7https ://competitions.codalab.org/competitions/20010.

8 As of mid August 2019.
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4.2.3 Semantic Text Similarity Task

As our third and final evaluation we consider the Semantic Text Similarity (STS) task,
an extrinsic task that consists in computing a similarity score between two given
portions of text. STS plays an important role in a plethora of applications such as
information retrieval, text classification, question answering, topic detection, and
as such it is helpful to evaluate to what extent LESSLEX vectors are suited to a

downstream application.

Experimental setup We provide our results on two datasets popular for this task:
the STS benchmark, and the SemEval-2017 Task 1 dataset, both by Cer, Diab, Agirre,
Lopez-Gazpio, and Specia (2017). The former dataset has been built by starting
from the corpus of English SemEval STS shared task data (2012-2017). Sentence
pairs in the SemEval-2017 dataset feature a varied cross-lingual and multilingual
setting, deriving from the Stanford Natural Language for Inference (SNLI) (Bow-
man, Angeli, Potts, & Manning, 2015) except for one track (one of two Spanish-
English cross-lingual tasks, referred to as Track 4b. spa-spa), whose linguistic ma-
terial has been taken from the WMT 2014 quality estimation task by Bojar et al.
(2014). The translations in this dataset are the following: Arabic (ara-ara), Arabic-
English (ara-eng), Spanish (spa-spa), Spanish-English (spa-eng), Spanish-English
(spa-eng), English (eng-eng), Turkish-English (tur-eng).

To assess our embeddings in this task, we used the implementation of the HCTI
system, participating in the SemEval-2017 Task 1 (Shao, 2017), kindly made avail-
able by the author.!” HCTI obtained the overall third place in that SemEval compe-
tition. The HCTI system —implemented by using Keras (Chollet et al., 2015) and
Tensorflow (Abadi et al., 2016)—generates sentence embeddings with twin con-
volutional neural networks (CNNs); these are then compared through the cosine
similarity metrics, and element-wise difference with the resulting values is fed to
additional layers to predict similarity labels. Namely, a Fully Connected Neural
Network (FCNN) is used to transfer the semantic difference vector to a probabil-
ity distribution over similarity scores. Two layers are employed herein, the first

one using 300 units with tanh activation function; the second layer is charged to

“http://tiny.cc/dstsaz.
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compute the (similarity label) probability distribution with 6 units combined with
softmax activation function. While the original HCTI system employs GloVe vec-
tors (Pennington et al., 2014), we used LESSLEX vectors in our experimentation.

In order to actually compare only the employed vectors by leaving unaltered
the rest of the HCTI system, we adopted the same parameter setting as available
in the software bundle implementing the approach proposed in (Shao, 2017). We
were basically able to reproduce the results of the paper, except for the hand-crafted
features; however, based on experimental evidence, these did not seem to produce
significant improvements in the system’s accuracy.

We devised two simple strategies to choose the word-senses to be actually fed
to the HCTI system. In the first case we built the context vector (as illustrated in
Equation 4.3), and selected for each input term the sense closest to such vector. The
same procedure has been run on both texts being compared for similarity. In the
following we refer to this strategy as to c-rank. In the second case we selected for
each input term the sense closest to the terminological vector, in the same spirit
as in the first component of the ranked similarity (rnk-sim, Equation 4.2). In the
following this strategy is referred to as t-rank.

As mentioned, in the original experimentation two runs of the HCTI system
were performed: one exploiting MT to translate all sentences into English, and an-
other one with no MT, but performing a specific training on each track, depending
on the involved languages (Shao, 2017, p.132). Since we are primarily interested
in comparing LESSLEX and GloVe vectors, rather than the quality of services for
MT, we experimented in the condition with no MT. However, in this setting the
GloVe vectors could not be directly used to deal with the cross-lingual tracks of the
SemEval-2017 dataset. Specific retraining (although with no handcrafted features)
was performed by the HCTI system using the GloVe vectors on the multilingual
tracks. In experimenting with LESSLEX vectors, the HCTI system was trained only
on the English STS benchmark dataset also to deal with the SemEval-2017 dataset:
that is, no Machine Translation step nor any specific re-training was performed in

experiments with LESSLEX vectors to deal with cross-lingual tracks.

Results Results are reported in Table 4.16, where the correlation scores obtained

by experimenting with LESSLEX and GloVe vectors are compared.
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Table 4.16: Results on the STS task. Top: results on the STS benchmark. Bottom: results on the
SemEval-2017 dataset. Reported results are Pearson correlation indices, measuring the
agreement with human annotated data. In particular, we compare the Pearson scores ob-
tained by the HCTI system using LESSLEX and GloVe vectors. As regards as the runs
with GloVe vectors, we report results with no hand-crafted features (no HF), and without
machine translation (no MT)

STS Benchmark (English)

Track | HCTI + LESSLEX | HCTI + GloVe
| (t-rank) ‘ (c-rank) ‘ (no HF)
dev .819 .823 824
test 772 786 783
SemEval 2017
Track HCTI + LESSLEX HCTI + GloVe
(t-rank) ‘ (c-rank) (no MT)
1. ara-ara .534 .618 437
. ara-eng 310 476 -
3. spa-spa .800 730 671
4a. spa-eng .576 .558 -
4b. spa-eng 143 .009 -
5. eng-eng 811 708 .816
6. tur-eng 400 433 -

Let us start by considering the results obtained by experimenting on the STS
benchmark. Here, when using LESSLEX embeddings we obtained figures similar
to those obtained by the HCTI system using GLoVe vectors; namely, we observe
that the choice of senses based on the overall context (c-rank) provides little im-
provements with respect to both GloVe vectors and to the t-rank strategy.

As regards as the seven tracks in the SemEval-2017 dataset, we can distin-
guish between results on multilingual and cross-lingual subsets of data. As regards
as the former ones (that is, the ara-ara, spa-spa and eng-eng tracks), HCTI with
LESSLEX obtained higher correlation scores than when using GloVe embeddings in
two cases: +0.181 on the Arabic task, +0.129 on the Spanish task, and comparable
results (—0.005) on the English track. We stress that no re-training was performed
on LESSLEX vectors on languages different from English, so that the improvement
obtained in the tracks 1 and 3 (ara-ara and spa-spa, respectively) is even more rel-

evant. We interpret this achievement as stemming from the fact that LESSLEX vec-
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tors contain both conceptual and terminological descriptions: this seems also to
explain the fact that the advantage obtained by employing LESSLEX vectors w.r.t.
GloVe is more sensible for languages where the translation and/or re-training are
less effective, such as pairs involving either the Arabic or Turkish language. Also,
we note that using contextual information (c-rank strategy) to govern the selection
of senses ensures comparable results to the t-rank strategy across settings (with the
exception of track 4b, where the drop in the correlation is very prominent, in one
order of magnitude). Finally, it is interesting to observe that in dealing with cross-
lingual texts that involve arguably less-covered languages (i.e., in the tracks 2 and
6, ara-eng and tur-eng), the c-rank strategy produced better results than the t-rank

strategy.

To summarize the results on the STS task, by plugging LESSLEX embeddings
into a state-of-the-art system such as HCTI we obtained results that either improve
or are comparable to more computationally intensive approaches involving either
MT or re-training, necessary to use GLoVe vectors in a multilingual and cross-
lingual setting. One distinguishing feature of our approach is that of hosting ter-
minological and conceptual information in the same semantic space: experimental
evidence seems to confirm it as helpful in reducing the need for further processing,

and beneficial to map different languages onto such unified semantic space.

4.2.4 General Discussion

Our experimentation has taken into account overall eleven languages, from differ-
ent linguistic lineages, such as Arabic, coming from the Semitic phylum; Basque,

a language isolate (reminiscent of the languages spoken in southwestern Europe
before Latin); English and German, two West Germanic languages; Farsi, that as
an Indo-Iranian language can be ascribed to the set of Indo-European languages;
Spanish and Portuguese, that are Western Romance languages in the Iberian-Romance
branch; French, from the Gallo-Romance branch of Western Romance languages;
Italian, also from the Romance lineage; Russian, from the eastern branch of the
Slavic family of languages; Turkish, in the group of Altaic languages, featured by
phenomena such as vowel harmony and agglutination.

We employed LESSLEX embeddings in order to cope with three tasks: i) the tra-
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ditional semantic similarity task, where we experimented on six different datasets
(RG-65, WS-5im-353, SimLex-999, Sim Verbs-3500, SemEval-2017 (Task 2) and Goikoetxea-
2018); ii) the contextual semantic similarity task, where we experimented on two
datasets, SCWS and WiC; iii) the STS task, where the STS Benchmark and the
SemEval-2017 (Task 1) dataset were used for the experimentation.

In the first mentioned task (Section 4.2.1) our experiments show that in most
cases LESSLEX results improve on those by all other competitors. As competitors all
the principal embeddings were selected that allow coping with multilingual tasks:
ConceptNet Numberbatch, NASARI, JOINTCHYB, SenseEmbed, and Nasari2Vec.
Two different experimental conditions were considered (MSV and CbA, Table 4.11).
Both views on results indicate that our approach outperforms the existing ones.
To the best of our knowledge this is the most extensive experimentation ever per-
formed on as many benchmarks, and including results for as many resources.

In dealing with the Contextual Similarity task (Section 4.2.2) we compared our
results with those obtained by using NASARI2VEC, which also contains descrip-
tions for both terms and nominal concepts in the same semantic space, and with re-
sults available in literature. The obtained figures show that despite not being tuned
for this task, our approach improves on previous results on the SCWS dataset. On
the WiC dataset, results obtained by experimenting with LESSLEX vectors over-
come all those provided by directly comparable resources. Results obtained by
state-of-the-art approaches (employing contextualized sense embeddings) in this
task are about 9% above those currently achieved through sense embeddings.

As regards as the third task on Semantic Text Similarity (Section 4.2.3), we used
our embeddings by feeding them to a Convolutional Neural Network in place of
GloVe embeddings. The main outcome of this experiment is that while our results
are comparable to those obtained by using GloVe for English tracks, they improve
on the results obtained with GloVe in the cross-lingual setting, even though these
are specifically retrained on the considered tracks.

In general, handling sense-embeddings involves some further processing to se-
lect senses for input terms, while with word-embeddings one can typically benefit
from the direct mapping term-vector. Hence, the strategy employed to select senses

is relevant when using LESSLEX embeddings. Also — though indirectly — sub-
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ject to evaluation was the proposed similarity metrics of ranked-similarity; it basi-
cally relies on ranking sense vectors based on their distance from the terminological
one. Ranked-similarity clearly outperforms the maximization of cosine similarity
on LESSLEX embeddings. Besides, the contextual ranked-similarity (which was de-
vised to deal with the contextual similarity task) showed to perform well, by taking
into account information from the context vector rather than from the terminolog-
ical one. We defer to further work an exhaustive exploration of their underlying
assumptions and the analytical description of differences in computing conceptual
similarity between such variants of ranked similarity and existing metrics such as,

e.g., the Rank-Biased Overlap.



5 Sense Identification

In this chapter we introduce a line of research closely related to semantic similarity,
concerned with sense identification (Colla, Mensa, & Radicioni, 2020b). More specifi-
cally, we argue that semantic similarity needs to be complemented by another task,
involving the identification of the senses at the base of the similarity rating. Dealing
with such novel task involves refining the standard cosine-maximization approach
that has traditionally featured the semantic similarity task.

The Chapter is organized as follows: we start by reporting on the role of se-
mantic similarity in knowledge representation and NLP fields (Section 5.1). In Sec-
tion 5.2 we introduce two novel semantic similarity metrics that have been devised
to deal with both semantic similarity and sense identification, namely the ranked
similarity (Section 5.2.1) and the semantic neighborhood similarity (Section 5.2.2).
Afterwards, in Section 5.3 we report on the evaluation of such metrics. More pre-
cisely, we first illustrate the SemEval-2017 dataset (Section 5.3.1), then we report
on the annotation procedure so as to build the dataset for the sense identification
task (Section 5.3.2) together with the employed resources (Section 5.3.3) and the
sense retrieval strategy (Section 5.3.4). Finally, we present and discuss the results
of the assessed resources on the sense identification task (Sections 5.3.5 and 5.3.6,

respectively).

5.1 Introduction

Similarity plays a fundamental role in theories of knowledge and behavior. It
serves as an organizing principle by which individuals “classify objects, form con-
cepts, and make generalizations” (Tversky, 1977). It is central in models investi-
gating many sorts of cognitive processes, such as categorization (Goldstone, 1994),

problem solving (Novick, 1988), analogical reasoning (Gentner & Smith, 2012), and
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it underlies many forms of automatic reasoning, such as case-based and similarity-
based reasoning (Lamperti & Zanella, 2006; Sun, 1995). In the field of Computa-
tional Linguistics, similarity is relevant to various tasks, in particular in the com-
putation of semantic similarity.

Semantic similarity is a long-standing topic of investigation (see, e.g., (Badde-
ley, 1966a, 1966b; Schaeffer & Wallace, 1969)), but it is in the last few years that it
has emerged as a central one: historically, this phenomenon is related to various
aspects, such as the growing needs for elaborating natural language at large, and
the wide availability of high quality word embeddings. Semantic similarity can be
addressed at different linguistic levels, such as the sense level (or word meaning),
and the term level (or word form) (Pilehvar & Navigli, 2015). In the former case
the input is composed of a sense pair, identified based on some sense inventory,
such as WordNet (G. A. Miller, 1995) or BabelNet (Navigli & Ponzetto, 2010). How-
ever, although many approaches have been proposed to cope with various sorts
of information at the term level, sense level and mixed (term, sense) level, exist-
ing methods to compute semantic similarity mostly rely on maximizing the cosine
similarity between vector pairs. This chapter addresses two distinct though related
research questions. We start from sense embeddings that map sense and term de-
scriptions onto a shared semantic space. Our first research question is whether and
to what extent such representations can be exploited in building novel and most
accurate metrics to compute semantic similarity. The second research question is
whether the semantic similarity task can be paired to another task aimed at identi-
tying which senses are actually involved in the semantic similarity rating. In other
words, we posit that sense identification is a natural and crucial complement to
the semantic similarity. In the attempt at answering both research questions, we
elaborate on principles that are largely acknowledged to contribute to human lex-
ical competence, and propose two novel similarity metrics that allow addressing
both questions in a unified fashion. To test our hypothesis on the sense identifica-
tion task, we annotated with senses the English version of the SemEval-2017 Task 2
dataset (Camacho-Collados et al., 2017), composed by 500 word pairs and their sim-
ilarity scores. As far as we know this is the first dataset for semantic similarity that

has been also annotated with sense identifiers. The resulting dataset is featured by
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high inter-rater agreement score, thereby providing a reliable experimental base. To
evaluate the novel similarity metrics we selected six recently proposed sense em-
beddings, and used them i) to compute the semantic similarity featuring pairs in
the mentioned dataset, and ii) to identify the involved senses. The obtained results
show that the proposed metrics favorably compare to the familiar cosine similarity
maximization, both in the semantic similarity task, and in the sense individuation
task: our novel metrics can be simply plugged into existing systems to replace the
maximization strategy. Finally, we analytically discuss the details of the consid-
ered resources and how these affect the novel metrics to provide valuable insights

for applications and systems using sense embeddings.

5.2 Novel Semantic Similarity Metrics

Our proposal for novel similarity metrics is connected to the availability of different
sense representations for each term, possibly (though not necessarily) linked to a
sense inventory. Additionally, the semantic similarity task should involve also the
sense identification, such that the similarity score is linked to a sense pair. As illus-
trated in what follows, this step may be not only relevant to fully assess similarity
scores computed by computer systems, but also beneficial to improve the correla-
tion with human rating. Let us start by recalling the aforementioned formula to
compute the semantic similarity for a term pair (¢, u) as the maximal cosine simi-

larity (M-sim) featuring all sense combinations (s’, s*),

M-sim(t, u) = max (cos-sim(st,s“)>. (5.1)
stesS’,
stest

In this setting, retrieving the sense pair (s?, s*) that underlie the maximal similarity
score amounts to finding the sense pair that maximizes the above expression, that
is

(s’ ") < arg max (cos—sim(st, 5“)). (5.2)

stest,
stesv
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Table 5.1: List of senses associated to the terms Weather and Wave in BabelNet.

Synset ID & Title (Weather) | Description

bn:00080759n; weather forecast; ... A forecast of the weather

bn:14903090n; Weather (album) Weather is the 9th studio album by ...

bn:00006808n; atmospheric condition; | The atmospheric conditions. ..

Synset ID & Title (Wave) Description

bn:17074220n; Wave (CNBLUE album) | Wave is the third studio album by ...

bn:00080690n; wave A persistent and unusual weather condition. ..

bn:00056171n; moving ridge; ... Ridges that move across the surface of a lig-
uid...

bn:00079034n; undulation; wave An undulating curve

bn:00079036n; wave; undulation (physics) a movement up and down. ..

bn:00080687n; wave A movement like that of a sudden occur-
rence. ..

bn:00080688n; wave Something that rises rapidly

bn:00080689n; wave Undulations in the hair

bn:00041739n; greeting; Wave (Social) Usually plural expression of good will. ..

bn:02765490n; WAV; WAVE; .wav Waveform Audio File Format. ..

bn:13892600n; wave (gesture) Nonverbal communication gesture. ..

bn:14555074n; Wave (A. C. Jobim song) | Bossa nova song...

EXAMPLE As our working example, let us consider the word pair (Weather,-
Wave)—picked from the SemEval2017 Task 2 dataset (Camacho-Collados et al.,
2017)—; also, we will use LESSLEX sense embeddings (Colla, Mensa, & Radicioni,
2020a). We target the BabelNet sense inventory, where 3 senses can be found
for Weather, and 38 for Wave, some of which are presented in Table 51.1 All
114 resulting combinations will thus be inspected in order to compute the maxi-
mization involved in the computation of the semantic similarity. In Table 5.2 we
present the scores obtained for four sense pairs; in particular, the table shows
the maximal score, and the associated pair (s’, s*): such top scoring sense pair
is (bn:14903090n, bn:17074220n), where the former sense refers to an album by an
American singer for Weather, and the latter refers to an album by a South Korean
rock band for Wave. Other combinations containing the same musical album for
Weather involve a song by the Brazilian composer Jobim; the wave movement;”
and the .wav file format. Putting together two musical albums, an album and a

song, or a musical entity and an audio file format is intuitively reasonable, since

'Full sense lists can be retrieved at the URLs https://babelnet .org/search ?word=
weather&lang=EN and https://babelnet .org/search?word=wave&lang=EN, respec-
tively.

2Like in ‘Troops advancing in waves’, WordNet usage example.


https://babelnet.org/search?word=weather&lang=EN
https://babelnet.org/search?word=weather&lang=EN
https://babelnet.org/search?word=wave&lang=EN
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Table 5.2: Cosine similarity scores computed by employing LESSLEX vectors employing the sense
associated to the “Weather (album)’ (bn:14903090n) and different senses for the term Wave.
The top similarity score is marked by bold font.

Sense ID (Weather) [ Sense ID and description (Wave) [ cos-sim score
bn:14903090n bn:17074220n (Wave (CNBLUE album)) 0.6062
bn:14903090n bn:14555074n (Wave, A. C. Jobim song) 0.3713
bn:14903090n bn:00080687n (Wave movement) 0.2470
bn:14903090n bn:02765490n (WAV; WAVE; .wav) 0.2070

these senses are to some extent connected. However, humans requested to rate the
similarity and to indicate the senses underlying the similarity score would rather
indicate senses dealing with atmospheric conditions or forecasts, and senses deal-
ing with some kind of physical waves.” Such senses are more central, while the
entities associated to music are less relevant in a general setting. Conversely, the
rationale implemented by the maximization considers only the closeness of senses:
based on these accounts, the mentioned music albums obtain maximal score (due to
the fact that their vectorial representations are closer than weather forecasts/condi-

tions and whatever physical wave). This fact is graphically illustrated in Figure 5.1.

This example shows that the closest senses exhibit some commonalities, but
they do not necessarily agree with human judgment. If we admit that the top scor-
ing pair may not not be associated with the senses that are intended by human
annotators, then the similarity score is immediately undermined, as a property
featuring the possibly wrong (better, differing from human response) sense pair.
Hence the question is: Which similarity score should be returned instead? Differ-
ent strategies and metrics can be envisaged, to identify the senses underlying the
similarity score, along with the score itself: in the rest of the Section we introduce

our proposal to overcome such limitations.

5.2.1 Ranked Similarity

In order to identify the senses activated by the similarity judgments, we devised
a mechanism aimed at ranking senses inspired by a popular notion in Cognitive

Science, availability. Availability is in a pool of heuristics that bias human judg-

*The annotated dataset devised for the present work and the adopted annotation methodology are
illustrated in Section 5.3.2.
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Figure 5.1: Plot of some of the senses associated to Wave (in red) and to Weather (in green). For the
sake of readability, we did not print all labels for Wave senses. Senses marked with bold
fonts indicate the top scoring senses associated to the CNBLUE album for Wave, and to the
Weather album for Weather. The 300-dimensional LESSLEX embeddings (Colla, Mensa,
& Radicioni, 2020a) were mapped onto two dimensions through the implementation of
multidimensional scaling provided by scikit-learn (Pedregosa et al., 2011).

ment and action under uncertainty (Tversky & Kahneman, 1973). Availability has
primarily to do with frequency, but it is affected by other factors, as well; in an oper-
ational definition, availability is a principle whereby “instances of large classes are
recalled better and faster than instances of less frequent classes; [...] likely occur-
rences are easier to imagine than unlikely ones; [...] the associative connections be-
tween events are strengthened when events frequently co-occur” (Tversky & Kah-
neman, 1974, p.1128). We thus hypothesize that similar mechanisms govern lexical
access and semantic choice in the setting of semantic similarity: the relevance of
a given sense (with respect to the central meaning associated to the term) should
be used to refine the closest-senses heuristics implemented by the max-similarity
approach.

In order to individuate the senses from the term pair, we have devised the
ranked-similarity metrics, R-sim. Ranked similarity refines the aforementioned max-
similarity approach by also taking into account how central a sense is to the con-

sidered term. Given a term ¢, we impose a total ordering on its senses based on the
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distance intervening between each sense vector and the term vector. In formulae,
0= {(s, s’;) | if cos-sim (s, ) > cos—sim(sg,t)} (5.3)

a generic sense s, is more relevant than s/, with respect to the term representation
of t if Si P SZ' On this base we compute the ranking for all senses associated to
t, from the most relevant to the less relevant, in such a way that for any i-th sense
of t we are able to retrieve the rank(s!) as its index in the J; ordering. Such rank-
ing can be computed in all sense embeddings that map both terminological and
conceptual representations onto a shared semantic space, which is rather common
in recent sense embeddings such as, e.g., (Camacho-Collados et al., 2015b; Colla,
Mensa, & Radicioni, 2020a; Iacobacci & Navigli, 2019; Iacobacci et al., 2015; Mancini
et al., 2017; Pilehvar & Collier, 2016). Earlier in this section we introduced an exam-
ple in which sense identification was misled by closest senses, that may override
the senses actually considered by humans. In order to overcome this issue, R-sim
combines the relevance of each sense and the classical maximization approach.
Given two terms ¢ and u and their respective sets of senses S' = {sf,... s},

S* = {s{,...,s}}, we define the ranked-similarity score as

-1
R-sim(s, i) = [(1 —a)- (rank(sf) +rank(s§*)) + (a - cos-sim(st, s;‘))] , (5.4)

where rank(s{) and rank(s}) are the rank of the sense vector with respect to the
term vectors associated to ¢ and u, respectively. The « factor is used to tune the
balance between ranking factor and raw cosine similarity, and it varies in the in-
terval (0, 1).* Rank is thus used to emphasize the relevance of senses whose vector
representation is closer to that of the term vector conflating all senses for the given
term: in this way, the contribution of each sense to the overall score decreases as its
vector is less related to the terminological one. The functioning of the R-sim met-
rics is graphically illustrated in Figure 5.2, where also the term vectors representing
Weather and Wave are plotted. This metrics can be plugged into the general for-
mula reported in Equation 5.1 in place of cosine similarity.

Likewise, R-sim is used to replace cosine similarity to perform sense identifica-

* Actual values assigned to a while experimenting with different resources are reported in Table 5.4.
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Figure 5.2: Graphical illustration of the working rationale of the R-sim metrics, combining both dis-
tance between sense and term vector, and distance between sense pair. Red and green
dots represent sense representations, while blue dots correspond to term representations,
conflating all senses for each term. The pivot senses individuated through the R-sim met-
rics are marked with bold fonts.

tion (please refer to Equation 5.2). In fact, the ranked-similarity also implements a
criterion to choose two senses from S* and S*. In this setting, the sense identifica-
tion basically involves the choice of the arguments maximizing the R-sim score by

replacing the cosine-similarity in Equation 5.2, in such a way that

(5!,8Y) « argmax R-sim(s’,s%). (5.5)

17979 1997
s’iESt,s’j‘ES“
The senses §! and 33‘, individuated through the R-sim metrics, are referred to as

pivot senses.

EXAMPLE We carry on with the previous example, and compute the R-sim score
for all sense pairs associated to the term pair Weather and Wave; a set of the highest
scoring sense pairs is provided in Table 5.3. While we formerly (based on cosine-
similarity) picked the sense pair composed of two music albums, we now indi-
viduate a different sense pair, that is (bn:00006808n,bn:00056171n). The former
sense refers herein to Weather intended as atmospheric condition, and the latter to

Wave as ridge moving on the surface of a liquid. Interestingly, such sense pair is
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Table 5.3: R-sim scores computed by employing LESSLEX vectors for the pair (Weather,Wave).
We present pairs including the sense associated to ‘Weather (atmospheric condition)’
(bn:00006808n), which is combined with varying senses for the term Wave; such senses
can be grouped into the clusters of meaning illustrated in the column C. The top similarity
score is marked by bold font.

Sense ID (Weather) ‘ Sense ID and description (Wave) ‘ C ‘ R-sim score
bn:00006808n bn:00056171n (Moving ridge) 0.398
bn:00006808n bn:00079036n (Wave, undulation (physics)) 0.284
bn:00006808n bn:00079034n (Undulation, wave) E 0.242
bn:00006808n bn:00080689n (Hair undulation) B 0.200
bn:00006808n bn:00080690n (Wave (unusual weather)) = 0.200
bn:00006808n bn:00080687n (Wave movement) 0.177
bn:00006808n bn:00080688n (Wave rising) 0.168
bn:00006808n bn:02765490n (WAV; WAVE; .wav) 9 0.105
bn:00006808n bn:14555074n (Wave, A. C. Jobim song) 3 0.101
bn:00006808n bn:17074220n (Wave (CNBLUE album)) = 0.074
bn:00006808n bn:13892600n (Wave (gesture)) & 0.047
bn:00006808n bn:00041739n (Greeting; Wave (Social)) g 0.029
O

the same as annotated by humans, and the similarity score computed through the
R-sim (0.398 vs. a 0.207 ground truth score) is significantly closer to human rating,
as well. The vector representations associated to the competing senses and to the
term level description are portrayed in Figure 5.2. Furthermore, by observing both
Figure 5.2 and Table 5.3 we find that senses listed for Wave can be grouped into few
broader meaning classes, such as i) physical senses, ii) music-related senses (music
albums, songs, compressed file format), and iii) greetings (‘hand gesture’” and “ex-
pression of good will, especially on meeting’). In the next Section we introduce the
approach devised to automatically detect and cluster senses that fall into a small

semantic neighborhood, and the associated similarity metrics.

5.2.2 Semantic Neighborhood Similarity

Experimental evidence and theories from Cognitive Science exist suggesting that
some senses from fine-grained sense inventories can be be grouped. Word senses
are typically thought of as mutually disjoint: e.g., in the task of Word Sense Dis-
ambiguation it is common to assume that a single correct label exists for every
markable. However, these assumptions have been challenged from many diverse
perspectives, as reported by (Erk, McCarthy, & Gaylord, 2013): word meaning can
be described as having fuzzy boundaries, and semantic annotation and judgment

admit graded membership. Moreover, at least in some cases, it is known that word
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meaning is not separable into senses distinct enough to guarantee consistent an-
notation (J. Chen & Palmer, 2009). Another observation supports the plausibility
of sense groupings: even senses that appear clearly separated are actually hard to
distinguish in certain contexts, as illustrated by Erk et al. (2013). In another view,
theories have been proposed that suggest to interpret polysemy as sense modula-
tion, through either specialization or broadening of meaning in context (Copestake
& Briscoe, 1995). In this view, two forms of sense modulation have been explored,
named constructional polysemy (dealing with sense modulation) and sense exten-
sions (dealing with sense change). In either case, reconstructing the main unities
of sense by possibly merging close senses seems to be compatible with such mean-
ing modulation devices. Different arguments have been proposed to support the
hypothesis that different levels of granularity in the sense inventory might be ap-
propriate for different tasks, and in general it is largely acknowledged that the
fine-grained sense distinctions may be detrimental to various NLP tasks (Mihal-
cea & Moldovan, 2001; Resnik & Yarowsky, 1999; Tomuro, 2001). While different
sources of evidence exist in favor of separating senses, no general consensus has
been reached on which criteria should be actually followed (E. Agirre & De La-
calle, 2003). For example, a form of underspecification has been proposed to deal
with the word sense disambiguation (WSD) task (Buitelaar, 2000). In this view, for
some sorts of applications, such as text categorization and information extraction,
more coarse-grained sense inventories are preferable, while fine-grained sense dis-
tinctions are necessary for precise tasks such as machine translation (Ng, Wang, &
Chan, 2003). Moreover, different levels of sense granularity have been explored,
such as PropBank Framesets, WordNet sense groupings, and an additional inter-
mediate level of granularity (Palmer, Babko-Malaya, & Dang, 2004). Further work
concentrated on the topic of clustering senses (Lieto, Mensa, & Radicioni, 2016b;
Navigli, 2006), to tame the sense sparsity menacing the WSD task. Finally, re-
search explicitly targeting annotation procedures, and specifically concerned with
the preparation of sense-tagged corpora for SemEval tasks reports that most anno-
tators disagreements were detected between “closely related WordNet senses with
only subtle (and often inexplicit) distinctions”, thus demanding for more coarse-

grained sense distinctions (Snyder & Palmer, 2004, p.42).
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A different notion of similarity is rooted in the tradition of spatial cognition,
and has to do with the idea of neighborhood, which is central for our present con-
cerns. In this approach conceptual neighborhood is used as a tool for conceptual
categorization (Bouraoui, Camacho-Collados, Espinosa-Anke, & Schockaert, 2019),
and an analogous categorization principle, based on a hybrid representational ap-
proach bringing together conceptual spaces and formal ontologies has been de-
signed in (Lieto, Radicioni, & Rho, 2017).

To sum up, cited literature seems to suggest that senses should not be con-
ceived as fully separate, static and pointwise entities, but rather as units of mean-
ing partially and dynamically overlapping, also based on their contextual nature.
Accordingly, we propose that in cases where slightly different, close —and less
separated— senses can be individuated, a ‘sense span’ can be built as a conflation
of nearby senses. Such features are hypothesized to work both for the semantic
similarity and the sense individuation tasks, thereby allowing postulating a uni-
fied treatment to deal with the two connected tasks.

Based on such underpinnings, we devised a strategy to build vectors embody-
ing the semantic neighborhood surrounding specific senses. However, different
from the mentioned approaches aimed at clustering senses, we devised a strategy
for the on-line grouping of senses, still preserving the fine-grained sense inventory
provided by BabelNet: the underlying assumption is that senses are grouped dy-
namically, in a context-dependent fashion, which is compatible with the sense mod-
ulation proposed by (Copestake & Briscoe, 1995) and with the Generative Lexicon
hypothesis (Pustejovsky, 1991).

We first give an intuition about the semantic neighborhood similarity, and then
we illustrate it with full detail. We define the neighborhood-proximity metrics
(N-prox) as an instrument to evaluate the semantic closeness of lexical items by
leveraging two main insights: i) to decide whether a given sense s is close enough
to the pivot sense (as returned by the R-sim metrics; please refer to Equation 5.5) to
be admitted to the neighborhood, we compare it also to the term representation; in
so doing, ii) the neighborhood-proximity is built in a dynamic fashion, by starting
from the pivot sense §!. In order to build the semantic neighborhood, we start from

the pivot sense pair (§',5%), 8¢ € S* and §* € S* (Equation 5.5). Pivot senses are
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then used to build the sets St C St and Su C S*, containing all neighbor senses,
that are then averaged into synthetic vector descriptions. The two vectors built by
starting from pivot senses are finally compared in order to obtain the similarity
score, and the senses hosted in the semantic neighborhood are selected as those at
the base of the similarity rating.

Given the vectorial representations for the term ¢, for the pivot sense §' and for a

specific sense s!, the neighborhood-proximity metrics A'-prox is defined as follows:

N-prox(t, &, st) =
(5.6)

[B - cos-sim (&', s%) | +

(1 - ﬂ) : (1— | cos-sim(t, st) — cos-sim(t, §') | )] .

The N-prox metrics takes into account the raw cosine similarity between the two
sense vectors §' and s! combined with the absolute difference between their dis-
tance from the term vector t. In particular, the second term in Equation 5.6 is
designed so to reward senses whose similarity with the term vector closely ap-
proaches the similarity featuring term and pivot sense vectors. Since the pivot
sense has been individuated by maximizing its closeness to the term vector (and
meantime to a sense for the other term), it follows that the heuristics overall im-
plemented through the A/-prox metrics is aimed at over-weighting a sense s if it
is similar to both ¢ and §', thus implementing a preference for more salient senses
among those that are also close to the pivot. The parameter 3 varies in the interval
(0,1), and is designed to govern the relative strength of the two components: tradi-
tional cosine similarity score, and preference for ‘central” and salient senses. Setting
B to 1 would thus amount to reverting to cosine similarity; at the opposite end, a 3
set to 0 would involve disregarding the cosine similarity component in favor of the
heuristics defined by the second term of Equation 5.6.

The N-prox is computed for each s! and, if N-prox yields a value that reaches

the threshold ~, the sense is included in St

St « for-each <se1ect-if(N -prox(t, &', st) > 7)) (5.7)

stest

The parameter gamma vy was devised to tune the width of the resulting sense neigh-

borhood. It varies in the interval (0, 1): a v approaching 1 implies a more restrictive
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criterion to admit senses to the neighborhood of the pivot sense 5¢. Conversely, a v
set to 0 would imply a single wider neighborhood including all senses for t.”
We then build N-vec!, the centroid of all items in the semantic neighborhood

by averaging all elements in S*:
N-vec' + avg(s)|s € S°. (5.8)

The same procedure is applied to compute S*, the neighborhood of 5%, finally at-
taining the centroid A-vec". The semantic similarity between the two resulting

vectors is then computed as
N-sim(N-vec, N'-vec") = cos-sim (/\/' -vec', N -Vec“> . (5.9)

Similar to the R-sim metrics, also the A/-sim metrics provides a criterion to select
senses for the sense individuation task. In this case, we identify a pool of close (-
proximal) senses that are included in S* and S*. At evaluation time, we compute

precision and recall of such sets.

EXAMPLE Let us consider how the NV-sim metrics applies to the term pair (Weather,-
Wave). We start by individuating the pivot sense pair through the R-sim, that is
the pair (bn:00006808n, bn:00056171n). As we already know, the first sense refers
to the atmospheric Weather condition, while the latter one denotes Wave as ‘ridge
moving across the surface of a liquid’. The sets S* and S* containing all neighbor
senses are then computed through the N-prox metrics, and the centroid for each
neighborhood of senses is built based on Equation 5.8. The final step produces a
synthetic representation of the whole semantic neighborhood that can be directly
compared with other vectorial representations. The senses involved in the seman-
tic neighborhood are graphically illustrated in Figure 5.3. By adjusting v, it is pos-
sible to characterize the final neighborhoods with different degrees of specificity,
according to the possibly varied needs for more or less coarsened representations.
While targeting the conceptual similarity task, we explored a set of parameters so

to ensure that only very close (y-proximal) senses are added to the neighbors” set

>The actual values assigned to 3 and v while experimenting with the different resources are reported
in Table 5.4.
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Figure 5.3: Graphical illustration of the working rationale of the A/-sim metrics, using the senses pair
retrieved by employing the R-sim and extending them with their neighbors. Red and
green dots represent sense representations, blue dots correspond to term representations,
conflating all senses for each term, while black dots represent the centroids of each se-
mantic neighborhood. The oval shape shows the senses included in the neighborhood
built around the pivot sense for Wave (that is, wave as ‘moving ridge’).

St. For example, on the other side the senses for Weather are not close enough to
be merged, thereby resulting in three singleton neighborhoods. Conversely, if we
focus on the neighborhood built around the pivot sense of Wave intended as the
‘moving ridge’ sense (marked with the circle in Figure 5.3), we obtain the senses
presented in the plot of Figure 5.4. Also, neighborhoods depend on the pivot sense:
this fact determines that senses admitted to S* —the neighborhood of the pivot
sense— change in accordance to the second term (u) in the term pair (¢, u). We
have seen that the senses of the neighborhood of ‘moving ridge” (in the context of
the pair (Weather,Wave)) are mostly concerned with physical movements. If we
move to the term pair (Wave, Song), R-sim returns the pivot senses bn:17141665n,
associated to the song “Wave (Beck song)’, and bn:00072794n, referred to ‘song, vo-
cal, Voice type’. In this case, the senses collected for the neighborhood of Wave
include other songs, such as a song by Jobim, and a song by Patti Smith. Inter-
estingly, the A/-sim measure shows to be suited also to entities, and not only to

conceptual representations.
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Figure 5.4: Graphical illustration of the semantic neighborhood for the Wave word senses by starting
from bn:00056171n (Moving ridge). Green dots represent sense representations, while the
black dot represents the centroid of the semantic neighborhood.

5.3 Evaluation

To evaluate the proposed similarity metrics we devised a twofold experimentation.
We tested on the semantic similarity task and on the sense individuation task: in
both experimental settings we compared the results obtained through the R-sim
and N-sim metrics against those obtained by employing the M-sim (maximization
of cosine similarity) metrics.

This Section is structured as follows: we first introduce the dataset employed
in the experimentation and illustrate the annotation process devised to extend this
data also for the sake of the identification task. We then describe the lexical re-
sources employed in the experimentation; we discuss in detail how these were
used in accord with their constructive rationale (that is, providing vectors for ei-
ther senses or terms and senses). We then provide the obtained results, as regards
as both the semantic similarity task and the sense identification task. We then dis-
cuss our results, and introduce further experiments to elaborate on technical details
and features characterizing the employed embeddings. All experiments were run
twice: by disregarding coverage issues (in this case each resource has been tested

on the fraction of covered data), and by selecting the intersection of data covered
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by all resources. We report and discuss all results, that allow for a more complete

assessment of the results on such a wide and varied experimental base.

5.3.1 SemEval 2017 dataset

For the experimentation we chose the SemEval 2017 Task 2 — Subtask 1 English
dataset (Camacho-Collados et al., 2017). The dataset is made of 500 word pairs (all
of them nouns, that include named entities), originally annotated with a similarity
score. In order to collect the 500 English pairs the authors chose 34 domains from
the BabelNet semantic network: from each domain 12 words were sampled, requir-
ing at least one multi-word expression and two named entities to be included. In
order to pick up words possibly out of any pre-defined domain, the authors added
92 extra words, whose domain was not decided beforehand. Given the set of the
initial 500 seed words, the pairs were generated so to ensure a uniform distribution
of pairs across the similarity scale. The similarity scores are based on a five-point
Likert scale —ranging from 0 which means “totally dissimilar and unrelated” to 4,
which stands for “very similar”—, and each such score expresses the ground truth

rating provided by human annotators.

5.3.2 Data Annotation with Sense Identifiers

In order to experiment on the sense identification task we annotated the terms in
the SemEval-2017 Task 2 English dataset (Camacho-Collados et al., 2017) with sense
identifiers from the BabelNet sense inventory. Three annotators fluent in English
annotated the 500 word pairs; each record was originally composed by a triple
(t,u,y), containing the term pair and a numeric score expressing the similarity be-
tween the considered terms. Each such tuple was extended with two sets, S; and
S., containing the BabelNet synsets for ¢ and u that were found as the appropriate
senses for the terms at stake, and compatible with the similarity score y.> However,

in cases where multiple senses were reputed appropriate for either term, only the

%S is a set rather than a single sense, since multiple instances of overlapping senses can be detected
in the BabelNet sense inventory, but each S only contains equivalent senses. On average over
the 500 term pairs, each term was annotated with 1.087 senses. For example, the term radiator
was annotated with two senses, bn:00065884n ("A mechanism consisting of a metal honeycomb
through which hot fluids circulate”) and bn:00065883n ("Heater consisting of a series of pipes for
circulating steam or hot water to heat rooms or buildings’).
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Table 5.4: List of the sense-embeddings considered in the experimentation, along with ab-
breviation and the type of indexing adopted by each resource. The three right-
most columns report the parameters set that was employed in the experimenta-
tion.

Abbreviation | FullName | Indexing Principle | o | B | 7
LLX! LESSLEX synset | term 0408109
N2V 2 NASARI synset | term 0508109
DCE3 DECONF synset | term 05106 |09
SSE * SENSEEMBED | (term_synset) | term 05103108
SW2v > SW2v {term_synset) | term 06]02]08
LSTMBD® LSTMEMBED | (term_synset) | synset | term | 0.5 | 0.2 | 0.8

1 (Colla, Mensa, & Radicioni, 2020a) (http://ls.di.unito.it v. 1.0)

2 (Camacho-Collados et al., 2016) (http://lcl.uniromal.it/nasari/)

3 (Pilehvar & Collier, 2016) (nttps://pilehvar.github.io/deconf/)

4 (Tacobacci et al., 2015) (http: //lcl.uniromal.it/sensembed/)

5 (Mancini et al., 2017) (http://lcl.uniromal.it/sw2v)

6 (Iacobacci & Navigli, 2019) (https://github.com/iiacobac/LSTMEmbed)

most prominent sense was recorded by the annotator.

The three annotations were then merged through a simple voting strategy: we
chose the senses selected by at least two annotators (minimal consensus). Alterna-
tively, if no sense was found in BabelNet for either term, or no minimal consensus
was reached on either term, the pair was dropped. Out of the 500 starting pairs
we dropped 8 pairs, thereby resulting in a grand total of 492 annotated pairs. For
the 984 terms therein, overall 15, 558 Babel synsets were found, corresponding to
144, 262 possible sense combinations, on average over 288 per each term pair. Such
annotation obtained an averaged pairwise .89 Cohen’s k inter annotator agreement
on the individual terms, and .79 on term pairs. The dataset is described in (Colla,

Mensa, & Radicioni, 2020c).”

5.3.3 Resources

We have then selected a set of recent and influential sense embeddings from liter-
ature, and used them for experimentation. They are listed in Table 5.4, along with
the parameters employed in the experimentation. Parameters were optimized as
follows. For each set of embeddings we recorded the accuracy obtained both in the
semantic similarity task and in the sense individuation task. The experiments were

run by varying the three considered parameters in the range {0,0.1,0.2,...,1},

’The dataset is available on the Mendeley repository, https ://data .mendeley .com/
datasets/r5fbdpvnkk/1.
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thereby resulting in 11 runs for each parameter, overall 1,331 runs. Parameters
were chosen so to ensure the best trade-off between word similarity and sense iden-
tification results. Such trade-off was computed as the balanced (F7) harmonic mean
of the Fi(p,r) recorded in the word similarity task and the F;(P,R) obtained in the

sense identification task (please refer to the results reported in Table 5.5).

The resources used in the experimentation implement different sorts of index-
ing, either based on sense, or on (term, sense) pair, as it is shown in the third col-
umn (‘Indexing Principle’) of Table 5.4. In the following we briefly illustrate our
strategy to handle all mentioned resources to compute the R-sim and N -sim met-

rics.

5.3.4 Sense Retrieval

Using the mentioned resources involves accessing embeddings therein in different
ways. Specifically, given a term ¢t we perform two steps: we first access BabelNet
to retrieve all senses associated to ¢, thereby obtaining S, and we then retrieve
the vector corresponding to each sense st € S'. While the first step is the same
for all resources, in the second one different strategies were devised in order to
cope with the type of indexing characterizing each resource. For those indexed
on senses only, we directly retrieve the embedding corresponding to the sense s;
alternatively, in resources providing an index for the pair (term, sense), we retrieve
the embedding indexed through the pair (¢, s). For example, given the term Wave
and the word sense bn:00041739n which refers to “greeting”, we retrieve the vector
for bn:00041739n in resources indexed on senses only. On the other hand, for those
indexed on (term, sense) pair, we retrieve the vector for Wave-bn:00041739n.
Based on the adopted type of indexing, the considered resources can be par-
titioned into two broad classes: NASARI2VEC, DECONF and LESSLEX provide
sense descriptions, and they can be thus accessed by searching the input term in
BabelNet, and through the retrieved sense identifier. Conversely, in SENSEEMBED,
SW2V, and LSTMEMBED every sense representation is actually indexed on a pair
(term, sense), so that different vectors correspond to a given sense identifier, one
for each term. For example, the vector representing the term Wave-bn:00041739n

differs from the vector representing Greeting-bn:00041739n. As regards as term-
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sense indexed resources, when computing the ranked-similarity, and namely its
sub-component dealing with the distance between a term ¢ and its senses (Equa-
tion 5.4), we retrieve the sense identifiers from BabelNet, so to obtain the corre-

sponding vector representations. However, in some cases the senses s! returned by

BabelNet have no corresponding vector associated to the term ¢ in SENSEEMBED,
SW2V, and LSTMEMBED. This fact may be detrimental to the coverage of such re-
sources in this experiment. The main purpose of the experimentation is investigat-
ing how the proposed metrics compare to the max-similarity approach, rather than
assessing the employed embeddings. This different setting would have implied pe-
nalizing uncovering models, e.g., by assigning mid-scale similarity values to pairs
involving OOV terms, by basically injecting some noise for uncovered terms. We
thus decided not to adopt this procedure, but rather to specify the coverage for each
resource. Additionally, to the ends of comparing the proposed similarity metrics on
exactly same input, we re-ran the experiments by only considering the fraction of
data covered by all resources; of course this approach has the virtue of allowing
a more precise comparison on same input, but it also suffers from a more limited

experimental base. Such results are provided in Appendix A.2.

5.3.5 Results

We investigated how the proposed metrics compare with the maximization of the
cosine similarity. The maximization approach is referred to as M-sim in the fol-
lowing, and implements the standard maximization as described in Equation 4.1.
Such results are compared against those obtained by employing R-sim and A/ -sim;
the comparison drawn involves both tasks, semantic similarity and sense identifi-

cation. The results on the SemEval-2017 English dataset are presented in Table 5.5.

R-sim As regards as the correlation with human similarity ratings, we observe
that in four out of six cases R-sim obtained improved results with respect to the
M-sim metrics. The magnitude of such improvement is diverse, ranging from 1%
(LSTMEMBED) to 14% (NASARI2VEC) in the (balanced, or F1) harmonic mean of
Spearman’s p and Pearson’s r. In one case we recorded same correlation (DECONE),

and in one case a slightly reduced (-2%, for SW2V vectors) correlation. As regards
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Table 5.5: Results on the SemEval 17 English dataset. Reported figures express Pearson (r), Spearman
(p) correlations and their F1 score, and Precision (P) and Recall (R) along with their F1 score
for the proposed R-sim and N -sim metrics, that are compared to M-sim. Numbers in
brackets specify the coverage for each resource.

Semantic Similarity | Sense Identification
P ‘ r ‘ Fl(prT) P ‘ R ‘ Fl(P/R)

M-sim || 073 ] 0.73 | 0.73 | 0.33 | 0.31 0.32
LLX [0.92] R-sim 083|081 | 082 |05 047 | 049
N-sim | 0.83]080| 081 | 047|084 | 0.60
M-sim || 0.62 | 0.60 | 0.61 | 0.44 | 041 0.42
N2V [0.70] R-sim 0751075 | 075 |0.60 056 | 0.58
N-sim | 063|062 | 062 | 0.60 | 0.65 0.62
M-sim || 0.80 | 079 | 079 | 0.64 | 0.60 | 0.62
DCF [0.63] R-sim 079 1079 | 079 |0.71|0.67 | 0.69
N-sim | 0.81 [0.80| 0.80 | 069 |0.84| 0.76

M-sim || 0.70 | 0.68 | 0.69 | 0.72 | 0.68 | 0.70
SSE [0.61] R-sim 0741071 072 083|078 | 0.80
N-sim | 075|073 | 074 |0.82|0.79 0.81
M-sim || 0.77 | 0.76 | 0.76 | 0.69 | 0.65 0.67
SW2V [0.86] R-sim 075074 | 074 |0.76 | 0.71 0.73
N-sim | 077 | 077 | 0.77 |0.77 | 0.77 | 0.77
M-sim || 0.67 | 0.66 | 0.66 | 0.84 | 0.79 0.81
LSTMBD [0.69] | R-sim 0.68 | 0.67 | 0.67 | 0.88 | 0.83 0.85
N-sim | 071|070 | 070 |0.87 | 0.86 | 0.87

Resource [% cov] | Metrics

as sense identification, in all cases R-sim allowed us to obtain improved precision
and recall with respect to M-sim; the magnitude ranges from 4% (LSTMEMBED)
to 16.5% (LESSLEX).

Such figures suggest that not only R-sim favorably compares to M-sim in the
semantic similarity task, but it produces a consistent improvement in the sense
identification task. This has an important consequence since, as previously illus-
trated, the higher the performance in the sense individuation, the more reliable the

results in the semantic similarity task.

N-sim As regards as the semantic similarity task, the A/-sim metrics ensures a
further gain over scores obtained through R-sim in four out of six cases. The only
relevant exception to this trend is the result of the experiment involving NASA-
RI2VEC embeddings, in which we recorded a consistent drop, in the order of 13%.
In the sense identification task, all resources obtained improved scores when em-
ploying the N-sim metrics, from 1% in the case of SENSEEMBED, up to the 11.8%

observed when experimenting with LESSLEX.
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On average over all resources, the results obtained in experiments where R-sim
was employed show a 4.00% improvement over M-sim in the semantic similarity
task; likewise, results obtained by employing N -sim show an average 3.43% im-
provement with respect to M-sim. Also in this setting, both figures are supported
by a more consistent advantage (10.29% and 14.57% for R-sim and N -sim, respec-
tively over the M-sim metrics) in the sense identification task, which guarantees
more reliable correlations in the former task.

By and large, the proposed metrics improve on the maximization of cosine sim-
ilarity; this holds for both considered tasks, although to a different extent across
resources. Additionally, we can leverage different types of information available in

the mentioned resources as detailed and discussed in the next Section.

5.3.6 Discussion

The figures obtained by experimenting on semantic similarity with R-sim and
N-sim cannot be directly compared to state-of-the-art results on this dataset (0.79
F1 score) (Camacho-Collados et al., 2017; Speer & Lowry-Duda, 2017). To compare
with SemEval results, we should have penalized uncovering models, e.g., by as-
signing mid-scale similarity values to pairs involving OOV terms. However, as
mentioned, this would have determined injecting some noise for uncovered terms.
Since our experimentation is aimed at investigating how the R-sim and N/-sim met-
rics compare to M-sim (rather than to assessing the sets of embeddings), we chose
not to adopt this evaluation scheme: each result reported in Table 5.5 reflects the
coverage of the considered dataset featuring a given set of embedding.

At a closer look, the constructive rationale underlying SENSEEMBED, SW2V
and LSTMEMBED seems to be more precise: such resources obtained consistently
higher scores in the sense identification task, showing that in this task the resources
providing a representation for a pair (term, sense) overcome those relying on stan-
dard sense representation (that is, LESSLEX, NASARI2VEC, and DECONE).

This can stem from the fact that fewer senses are available —on average— in re-
sources representing the pair (term, sense), which entails a reduced problem space.
Some statistics describing the average number of senses per term, and the average

size of neighborhoods featuring all employed resources are reported in Table 5.6.
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Table 5.6: Statistics describing the number of senses available for each resource, along with the size
of the neighborhood employed in the A/-sim metrics. The last two columns report the
results in the semantic similarity and the sense identification tasks through the F score
of Spearman and Pearson correlation coefficients, and the F score between precision and
recall, respectively.

& | Semantic Similarity | Sense Identification
Resource | Measure || AVG term senses | AVG |S] Fion) (PR

M-sim 0.73 0.42
LLX R-sim 15.68 3.68 0.82 0.58
N-sim 0.81 0.62
M-sim 0.61 0.42
N2V R-sim 13.70 1.32 0.75 0.58
N-sim 0.62 0.62
M-sim 0.79 0.62
DCF R-sim 3.89 1.63 0.79 0.69
N-sim 0.80 0.76
M-sim 0.69 0.70
SSE R-sim 5.34 1.06 0.72 0.80
N-sim 0.74 0.81
M-sim 0.76 0.67
SW2V R-sim 5.02 1.13 0.74 0.73
N-sim 0.77 0.77
M-sim 0.66 0.81
LSTMBD | R-sim 2.22 1.12 0.67 0.85
N-sim 0.70 0.87

Conversely, the improvement obtained by employing R-sim and A/-sim in the se-
mantic similarity task is less consistent.

If we focus on results on the semantic similarity, we observe that the R-sim pro-
vides the highest improvements —w.r.t. the M-sim metrics— in resources adopt-
ing sense representation, while resources adopting the (term, sense) indexing ob-
tain less consistent improvement. This fact may be due to the reduced number of
senses per term, that is affected by the corpus employed to train such models: if the
corpus only contains the most frequent senses for each term, then the model learns
only the same most frequent (term, sense) pairs. Even though this phenomenon
should be asymptotically absent as the size of training corpora will grow in future,
to date this sort of reduced semantic coverage seems a plausible explanation for
the limited impact of proposed metrics when using this class of resources in the
semantic similarity task.

In order to further elaborate on the kind of effect and impact of the indexing
principle, we re-ran the experiment involving the LSTMEMBED resource. In the

first execution we employed the (term, sense) indexing, while in the second run the
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Table 5.7: Comparison of the results obtained with the two different experimental settings adopted
for LSTMBD: with the sense indexing only (LSTMBDs) and with the previously adopted
(term, sense) indexing (LSTMBDs 1). Reported figures express Pearson (r), Spearman (p)
correlations and their F1 score for the semantic similarity task, and Precision (P) and Recall
(R) along with their F1 score for the sense individuation task. Statistics describing the num-
ber of senses available along with the size of the neighborhood employed by the A-sim

metrics.
& | Semantic Similarity | Sense Identification
Resource [% cov Measure || AVG term senses | AVG |S
[% cov] 151 Fi(pr) F(PR)
M-sim 0.66 0.81
LSTMBD;¢ [0.69] | R-sim 2.22 1.12 0.67 0.85
N-sim 0.70 0.87
M-sim 0.70 0.67
LSTMBDs [0.82] | R-sim 4.85 1.20 0.73 0.79
N-sim 0.74 0.80

sense-level characterization alone was adopted. Results are reported in Table 5.7.
Our findings show that employing the sense indexing only (bottom of Table) in-
volves dealing with a higher number of senses per term: as expected, in such an
experimental condition we obtained a relevant gain in the semantic similarity, at the
expense of a less consistent improvement in the sense identification task. Also im-
portantly, by adopting sense indexing, we obtained a considerable growth in terms
of coverage (from 69% with (term, sense) indexing, to 82% when employing only
senses), which may be a relevant datum for practical uses. Finally, a quick look at the
results of the experiments performed by considering the fraction of data covered by
all resources, reported in A.2 in Table A.7. These results are also complemented by
the statistics on the average number of term senses and on the neighborhood size
(Table A.8). The obtained results basically show similar trends, thus corroborating
the previous findings. We summarize our results according to the task. As regards
as the semantic similarity task, on average over all employed resources, R-sim ob-
tained a 2.57% improvement over M-sim; the improvement of A/-sim over M-sim
is in the order of 1.29%. Interestingly, both figures are supported by a more con-
sistent advancement (8.86% and 12.57% for R-sim and N -sim, respectively) in the
sense identification task.

The ultimate synthesis of our experimentation is as follows. On average both
R-sim and N -sim outperform M-sim by a small margin in the semantic similar-
ity task, while obtaining consistently more reliable scores in the sense identifica-

tion task. Additionally, a supplemental experiment on LSTMEMBED has clearly
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shown that a trade-off exists between results in the two tasks: resources indexed
on (term, sense) basis ensure higher correlation with human judgment when iden-
tifying the senses, while resources indexed through senses only better correlate on
semantic similarity. This trade-off also shows that obtaining even a small improve-
ment in the semantic similarity while also always (in resource-independent fash-
ion) identifying senses more reliably can be considered as a merit for R-sim and

N-sim.
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SE-MACAROON (Sense Embeddings from MAny ContextuAl RepresentatiONs) is
the second lexical resource that we developed. It consists of a set of distributional
vectors that have been built by merging WordNet and BERT contextual word em-
beddings. Once again, we show how injecting a semantic layer on top of a language
model can be beneficial in addressing tasks such as Word Sense Disambiguation.

The main contributions of this work are: (i) we devise a novel approach for
constructing contextual sense embeddings, which characterizes each word sense
through multiple vector descriptions; (ii) we build SE-MACAROON sense embed-
dings as an integration between WordNet and the BERT language model; (iii) we
develop a novel Word Sense Disambiguation strategy.Moreover, we experimentally
prove that representing word senses through multiple vectorial descriptions im-
proves the accuracy in the Word Sense Disambiguation task over most competing
approaches.

The chapter is organized as follows. In Section 6.1 we introduce the overall
approach to build SE-MACAROON: we start by illustrating the procedure to re-
trieve the initial contexts (Section 6.1.1), then we detail the steps to build context
sensitive word representations (Section 6.1.2). Finally, we introduce the contex-
tualized sense embeddings generation (Section 6.1.3). Afterwards, we illustrate
the experimental evaluation of SE-MACAROON vectors (Section 6.2): herein, we
tirst present the statistics describing the resource (Section 6.2.1), and we then intro-
duce the Word Sense Disambiguation task together with the evaluation benchmark
employed (Section 6.2.2). We finally describe the whole WSD procedure devised
(Section 6.2.3) along with the employed evaluation metrics (Section 6.2.4). In the
last part of the chapter, we present the results on the WSD evaluation framework
(Section 6.2.5), and we discuss the obtained results on the whole experimentation

together with an in-depth analysis of the approach parameters (Section 6.2.6).
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6.1 Building SE-MACAROON

The algorithm for the generation of SE-MACAROON is based on an intuitive idea:
collecting the contextual representation of word senses in a sense tagged corpus, to
build context sensitive conceptual representations. The idea underlying the build-
ing rationale is that we can better account for the precision of contextual representa-
tion computed by language models by maintaining their independence (their con-
textual profile, and thus their representational precision) rather than mixing them
into a single fixed representation. Our intuition is that the embedding of a word
sense s expressed with the word w it may be closer to the vector for the same word
sense s lexicalized with w in a similar context rather than the average of all the lex-
icalization of s. In this respect, we started from BERT contextual embeddings and
we built new sense embeddings relying and indexed on the WordNet sense inven-
tory. We choose BERT as our starting point for several reasons: it is to date the most
popular contextual language model; it poses limited requirements, with respect to
newer language models, and allows dealing with higher amount of training in-
stances in reasonable time without any loss of information (Sanh, Debut, Chau-

mond, & Wolf, 2019). Our approach can be divided into the following three steps:

¢ Context retrieval, to collect all the relevant sentences from a sense tagged

corpus.

* Word embedding, to compute the vectorial representation for each term in

the sentences, given the context retrieved in the previous step.
* Sense embedding, to collect all the vector representation for relevant words.

In Figure 6.1 we provide an example of the whole process starting from the term
affect as expression of the word sense wn:00137313v — defined as have an effect upon;

in WordNet—.

6.1.1 Context Retrieval

Each concept in SE-MACAROON is represented by a collection of vectors gener-
ated by processing sentences with the BERT language model. We start from a sense

tagged corpus SC, where each instance is represented as a pair (W;, S;), where W;
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Figure 6.1: Graphical illustration of the working rationale of our approach. Let us consider the word
affect as expression of the word sense wn:00137313v. We first retrieve all the sentences in
which affect occurs as wn:00137313v, then process them with BERT and collect the contex-
tual representation for affect in our SE-MACAROON.

is the sentence and S; are the related senses. In particular, the words in the sentence

W; = wjw ... wj, are associated with senses S; = s{s5... s}, where each s} repre-

sents the sense with which the word w;'- occurs in the sentence W;. It is worth noting

that, given the adopted sense inventory, not all words are actually equipped with

a sense, that is, s§- may also be set to the null element. We adopted the WordNet3.0
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sense inventory. For example, given the sentence:
The crisis affected also the major US banks.
its related senses in the WordNet sense inventory are:
@ wn:13933560n wn:00137313v @ & wn:01472628a wn:09044862n wn:08420278n

where each sense correspond to each word of the sentence, respectively. !

Given the word sense s and one of its lexicalizations w, we collect all the sen-
tences, from a sense tagged corpus SC, in which w appears intended as s: in other
words, we retrieve all the sentences where the sense s is lexicalized through the
term w. More formally, given the pair (w, s), we define the set C’ containing all the

pairs (IW;, S;) from SC so that:

Cy = U {<w§,sz>} withw§EWi|w§-:w/\s§ESi|5§:5.
(w,s)

In particular, considering the example reported in Figure 6.1, we define Caffest . .
as the set of all sentences from SC' in which the term affect occurs with the sense

wn:00137313v.

6.1.2 Word Embedding

The aim of the second step is to compute, by means of BERT, the representation of
words in sentences of C’. First, we pre-process sentences from C’ with the BERT
tokenizer. Since BERT relies on the WordPiece tokenizer (Wu et al., 2016), sentence
words might have been divided into sub-words, such as, for example, the word
unequally is decomposed to the following tokens: ( une ), ( ##qual ), ( ##ly ), this
means that both tokens ##qual and ##ly are a sub-words following their preceding
token. Additionally, the BERT model is able to deal with sentences at most 128
tokens long. Given that, after tokenization, we filter C'y’ retaining only sentences
with more than 10 words for which the last token corresponds to the end of the

sentence.” Filtering sentences with less than 10 words allows us to remove short

!Senses are represented as WordNet synset offsets, while the null element is represented with the
symbol @.

That is, sentences are retained whose length is less than or equal to 128 tokens, which is actually
the maximum size allowed by BERT tokenizer.
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sentences for which contextual representations might be less precise than those for
longer sentences. Additionally, since words might be divided in sub-tokens by the
tokenizer, together with the maximum length for sentences, it may happen that
some sentences exceed the tokens number limit, thus resulting in an inconsistent
contextual representation. In this respect, it is necessary to check that the last to-
ken is consistent with the last word of the original sentence to ensure full detailed

contextual representation for each such word. For example, given the sentence:
Does not the Court’s order unequally affect the southern region?
the BERT tokenizer produces the following tokenization:

[(Does), (not), (they), (Court), ("), (s), (une), (##qual), (##ly), (affect), (the),

(southern), (region), (?)]

Once sentences have been tokenized we then process the new representations with
the BERT model, thus obtaining a contextual vectorial representation for each such
token. The contextual embedding of an input word was computed as the average of
its sub-token embeddings, that is, we define the vector for unequally as the average
of the vector for une, ##qual and of the vector for ##ly. Since the BERT model
is made of stacked layers, the typical word representation for semantic tasks is
computed by summing the last four hidden layer embeddings (Jawahar, Sagot, &
Seddah, 2019; Tenney, Das, & Pavlick, 2019; Tenney, Xia, etal., 2019). Given that, our
word embeddings are computed as the sum of the last four hidden layer vectors.
Finally, given the sentences in C’, we define E’ as the contextual embedding for

each word of each sentence in C’, that is, £’ is defined as follows:
EY = BERT(W;) VW; € CY (6.1)

where BERT(W;) is the embedding function that produces contextual representa-
tion eg for each word in the sentence. Therefore, for the sentence W, = wﬁ, .. .wz,
the function BERT(W;) is defined as BERT(W;) = €i¢} ... el where € is the con-

textual representation for the j-th token in the i-th sentence W;.
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6.1.3 Sense Embedding

In this final step, we build a representation for each target sense in the sense tagged
corpus; starting from the set of embeddings E’ we retrieve all the representations
for the sense s lexicalized with the word w and collect them as our representation
for the word sense. In particular, we define ¢ as the collection of all the embed-
dings eé- from EY’ that encode («-- in the Equation 6.2) the word w conveying the

sense s:

cd = U {eé- - <w§,s§>} with wj- =wA sé» =s; w§ e Wi, 3? €5S;. (6.2)
W;,S;

Here w;- and sé- are the word and its related sense in the i-th dataset instance (W}, .S;).
Let us consider the example in Figure 6.1, the representation for cafect .. is de-
fined as the collection of the three word embeddings for affect resulting from the
application of the BERT model on the three sentences in which affect is intended
as expression for the word sense wn:00137313v. At the end of the three steps each
sense in the sense tagged corpus SC is provided with a set of associated vectorial
representations, made of the collection of lexicalizations of the given sense.

It is worth noting that the sense embeddings ¢’ included in SE-MACAROON
are indexed on both sense s and lexicalization w. That is, the sense embeddings c¥
representing the exact expression of the word sense s lexicalized with the word w,
are actually the collection of all the occurrences of s expressed by means of w, in

contrast to the indexing principle adopted in the LESSLEX dictionary.

6.2 Evaluation

In this section we report the experimental settings in which we conducted the eval-
uation of SE-MACAROON when testing on English Word Sense Disambiguation
task. In what follows we introduce the train set along with some resource’s figures;
then we introduce the test sets and the system setup. We then present the results

along with the discussion.
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Table 6.1: Figures on the generation process of SE-MACAROON, divided by Part of Speech. The
average occurrences per sense are reported together with their standard deviation (o).

SE-MACAROON Statistics All Nouns Verbs Adjs ‘ Advs
Sense (term, synset) Vectors 31,352 14,893 8787 5939 1733
Senses Occurrences 199, 363 76,062 78,820 27,787 16,694
AVG Occurrences per Sense 6.36 5.11 8.97 4.68 9.63
(£66.72) | (£50.48) | (£105.00)| (£14.79) | (£43.83)
Occurrences per Sense [1,9013] | [1,5846] | [1,9013] [1,413] [1,1475]
Range
Sense (synset) Vectors | 24,528 | 12,418 ‘ 5794 ‘ 5016 ‘ 1320

6.2.1 SE-MACAROON Statistics

We trained SE-MACAROON sense embeddings on SemCor (G. A. Miller et al.,
1994). SemCor is a manually sense-tagged corpus, divided in 352 documents for a
total of 226, 040 sense annotations and is, to our knowledge, the largest corpus man-
ually annotated with WordNet senses. In this setting we adopted the BERT Large
model since it is more accurate on modeling the English language with respect to
BERT Base or their multilingual porting. We started from a total of 37,176 sen-
tences contained in SemCor; we then retained 33, 399 after the filtering step, thus
resulting in 199, 363 sense annotations. The final figures of the resource and details
concerning its generation are reported in Table 6.1. The final number of sense em-
beddings in SE-MACAROON amounts to 31, 352, corresponding to 24, 548 unique
synsets, covering only about the 21% of the total 117,659 WordNet synsets. The

number of occurrences per sense ranges from 1 to 9013 for the verb to be.

6.2.2 Evaluation Benchmarks

We assessed SE-MACAROON vectors on the Word Sense Disambiguation task
as it constitutes the most popular and obvious task for evaluating sense embed-
dings (Loureiro et al., 2022). WSD is a long-standing challange in the Natural Lan-
guage Processing, as it lies at the core of language understanding (Navigli, 2009).
WSD is defined as the task of associating words in context with its most suitable
meaning from a pre-defined sense inventory. More formally, given the target word
w; and the sentence W = w; ... w; ... w; the task consists in associating the sense

underlying w; in W. For example, given the word bark and the sentence The tree’s
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bark was dark. Let us consider WordNet as our reference sense inventory, in such
example the task is to provide the correct entry form the WordNet's senses for bark,
that is wn:13162297n defined as tough protective covering of the woody stems and roots
of trees and other woody plants.

We carried out the evaluation on the test sets in the English WSD framework (Ra-
ganato, Camacho-Collados, & Navigli, 2017). The benchmark includes five stan-
dardized evaluation datasets from the past Senseval-SemEval competitions, that
are: Senseval-2 (SE02) (Edmonds & Cotton, 2001), consisting of 2283 sense annota-
tions, Senseval-3 (SE03) (Snyder & Palmer, 2004), consisting of 1850 sense annota-
tions, SemEval-2007 (SE07) (Pradhan, Loper, Dligach, & Palmer, 2007), consisting
of 455 sense annotations, SemEval-2013 (SE13) (Navigli, Jurgens, & Vannella, 2013),
consisting of 1644 sense annotations, and SemEval-2015 (SE15) (Moro & Navigli,
2015), consisting of 1022 sense annotations. The benchmark also include the con-

catenation of the five test sets called ALL dataset.

6.2.3 System Setup

The SE-MACAROON word sense disambiguation strategy can be divided in the
following three steps: (i) sentence embedding, aimed at computing contextual rep-
resentations for the input sentence, (ii) sense occurrences scoring, aimed at comput-
ing a score for each sense’s occurrence, and (iii) word sense ranking, where sense
occurrences are ranked based on their score and the word sense is selected through
a majority voting among the top N entries. The working rationale of the WSD

strategy is presented in Figure 6.2.

Sentence Embedding The aim of the first step is to compute contextual repre-
sentation for the input sentence. Therefore, given the sentence W = wow; ... w; ... wy,
containing the target word w;, we process the tokenized sentence with BERT thus
obtaining contextual embeddings £ = e;...¢e;...e; for each token in W. Once
again, we average the sub-token vectors so to compute a token-level representa-
tion. Additionally, as for the building approach, we define the embedding e; for a
word w; as the sum of the last four layers of the BERT model. Since we are inter-

ested in assessing the contribution of the other words in the sentence, particularly
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those surrounding the target word w;, we retain the contextual representation for
those words occurring within a given span d from w; only. That is, we define a con-
text window surrounding the target word w;, CT X, = €t—d,...€1—1,€t+1, .- . €t4d
as the d word representations preceding and following w;. Let us consider the
Figure 6.2, the input sentence is We must believe we have the ability to affect our own
destinies: otherwise why try anything? where affect is the target term. In the example
our context window size is set to 3, which means that we retain the contextual em-
beddings for the three words preceding w; and for the three words following wy,
we say that the left context is the ability to and our right context is our own destiny,

and the CT X,fect = [e6, €7, €8, €10, €11, €12]-

Senses occurrences scoring After having built the contextual representation

for the target word, along with its context, we compute a score for each occurrence

i

€s

€ cy* of word senses for our target word w; to retrieve the most likely sense.
In order to disambiguate w;, we start by retrieving all the senses for the target
word in the WordNet sense inventory, thus obtaining the set of candidate senses

St = s1, syt ... s¥ as all the word senses for w; for which a correspondence

can be found in SE-MACAROON. Since we refer to senses for w;, in what follows
the superscript w; is dropped to simplify the notation: s; will thus be intended

as s;*. For the sake of the readability, we recall here that each SE-MACAROON

entry ¢t is defined as ¢t = [e} €2 ,...¢el], that is, the set of occurrences of the

837 7857
word senses s; expressed by the word w,, thus we retain only WordNet’s senses

wt
55

with a corresponding SE-MACAROON entry cg*. The scoring step is aimed

at computing a score for each such sense occurrence e, expressing the semantic

similarity between e, and wy along with its related context CT'X,,,. Therefore,

given a candidate word sense s; and its occurrence e, for the target word wy, we

define the scoring function as follows:

(1-«

, 1 : :
score(el, ) = [ksim(eq, €2 )+ Z )*sim(ek, el )], (6.3)

2d+1 keft—d,..t—1,t+1,...t4+d]
where ¢; and e, indicate the BERT representation for the target word and the words
in the context CT X,,, respectively, while sim is the cosine similarity function. The

« parameter is used to tune up the balance between the relevance of the similar-
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ity among the word sense and the target word representation, and the similarity
between the word sense and the context’s words representations. We therefore
compute a score for each occurrence s2, of the candidate word sense s; from S¥*.
Let us consider the Figure 6.2, showing that SE-MACAROON contains three
different sense representations for affect: caffect . . caffect o 1o, and cAffect -
Since each SE-MACAROON entry is provided with multiple occurrences, we com-
pute the similarity between the contextual representation from eg to e12 3 and each
word sense occurrence ¢},. We therefore compute a score for €, according to Equa-

tion 6.3: the similarity between eg and ¢, is weighted by «, while each similarity

(1-a)

score defined between the context’s words and ¢, is equally weighted by 5

where d = 3, thus obtaining 2d = 6.

Word senses ranking Once we have computed a score for each occurrence for
senses in S** (employing the formula presented in Equation 6.3) we can proceed

with the ranking step. We therefore define the ranking R as the list of occurrences

of senses e, sorted in descending order, based on their associated score. In order

to retrieve the most likely word sense for w; we adopt a majority voting strategy
on the top N items of the ranking R. More precisely, we define a window RW
containing the top N ranked items as RW = el .. ¢ .J, we then count the number

of times in which a sense occurs in RW and select the top scoring sense. More

formally, for each word sense s; in S**, we define the following voting function:

vote(s;, R) = Z count(si,egk), (6.4)
el €ERW

where the count function returns 1 if s; = s, that is:

. 1 if S; = Sk
count(s;, el ) = . (6.5)

0 otherwise

Once all the senses from S** have been provided with a score through the vot-

ing function, we select the most voted word sense for our target word w;. More

3¢g is the contextualized embedding for the target word affect, while [es, e, es, €10, €11, €12] represent

the context CT X fect-
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formally, to retrieve the most voted word sense, we select s, as:

s« = arg max vote(s;, R), (6.6)
s; €SVt

that is, s, is the most voted word sense in the top IV elements of the ranking R. Let
us consider again the example reported in Figure 6.2: here the ranking R is built
by sorting the occurrences for the three senses wn:00137313v, wn:00838043v and
wn:00019448v for affect. In the example, the size N of window RW is set to 3, thus
obtaining two votes for the sense wn:00137313v and one vote for wn:00838043v.
Therefore, we select the sense wn:00137313v for the target word affect in our input

sentence.

6.2.4 Evaluation Metrics

Precision (P), Recall (R) and their harmonic mean (F1) metrics have been largely ac-
cepted from the literature to assess the performances of systems on the Word Sense
Disambiguation task. The mentioned metrics have been adopted to overcome the
Accuracy drawback: the accuracy focuses on the positive class, giving no intuition
on the system’s performances on the negative class (Cohn, 2003; Edmonds & Cot-
ton, 2001). Following the literature, we redefine the precision as the fraction of cor-
rectly predicted senses within the set of instances for which the algorithm provided
an answer, while the recall is defined as the the proportion of correctly predicted
senses within the set of benchmark instances. More formally, the employed metrics

are defined as follows:

p_ TP p_ TP PxR
TP+ FP D] " P+R

6.7)

where TP (True Positives) are the correctly predicted instances; F'P (False Posi-
tives) denote the instances for which the system provided a wrong prediction out
of the |D| tagged instances in the evaluation benchmark. It is worth noting that
TP + FP corresponds to the number of instances for which the assessed resource
could actually provide a prediction, therefore we define the sum of true positives
and false positives as Coverage. We report this figure, as well, to complement the

results recorded through the recall metrics: in fact, the recall scores as an error both
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Figure 6.2: Graphical illustration of the working rationale of the WSD strategy. Let us consider the

word affect, as our target word, occurring in the sentence We must believe we have the ability
to affect our own destinies: otherwise why try anything?. At first we build contextual embed-
dings for each word in the sentence through BERT; then we retain only the representations
for W(W = 3) words from the left (left context, orange in the figure) and W words from
the right (right context, pink in the figure) of the target word, along with the embedding
for affect. We then compute the similarity between the context, including the target word,
and every occurrence egi of each sense for affect in SE-MACAROON; we then define the
score for e’ as the weighted average of the similarities. Eventually, we rank all the oc-
currences e of each word sense for affect and extract, through majority voting, the sense
wn:00137313v as the most likely sense considering the top N (N = 3) occurrences of the
ranking.

actual errors and uncovered senses for which the system was unable to provide a

prediction.
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6.2.5 Results

We compared SE-MACAROON with the most recent lexical resources representing
word senses as contextualized embeddings. All the assessed resources built sense
embeddings with the same language model, BERT Large.4 Given the definition
for the evaluation metrics provided in Equation 6.7 and according to the building
principles underlying each resource, we adopted different disambiguation strate-
gies. Since LMMS, SENSEMBERT, SENSEMBERTj,,,, and ARES representations
are twice as large as the BERT representations,” we repeated the BERT embed-
ding (this step was implemented based on the literature presenting each and every
employed resource) of the target word to match the number of dimensions. Con-
versely, LMMS-R embeddings match the number of dimensions of the representa-
tions produced through BERT.

For all the assessed resources, the adopted disambiguation strategy is the 1-
nearest neighbor: for each target word w in the test set we computed its contex-
tual embedding by means of BERT and compared it against the embeddings of
the assessed resource associated with the senses of w. The Most Frequent Sense
heuristics is customarily adopted in literature as the backoff strategy for non cov-
ered instances —i.e., predicting the most frequent sense of a lemma in WordNet for
instances unseen at training time—, however, to assess the precision of each such
resource we decided not to make use of the backoff strategy. On Table 6.3 we report
the coverage for each resource and each benchmark in the evaluation framework.

Together with the state of the art resources, we also compared SE-MACAROON
to SE-MACAROON 4y ¢ that has been devised by following the constructive ra-
tionale of our resource and by also averaging all sense occurrences into a single

vectorial representation for each pair (w;, ;).

Parameters optimization Parameters employed by the SE-MACAROON and
SE-MACAROON 4y systems are o (Equation 6.3); the size d of the context win-
dow for the target word C'T'X,,,; and the size N of the ranking window RW, while

the number of occurrences for each word sense was not limited. a was set to 0.5, d

*Available on the TensorFlow Hub repository at https://tfhub.dev/tensorflow/bert_en
_cased_L-24 _H-1024_A-16/4.

*BERT Large embeddings have 1024 dimensions while the resource’s representations are provided
with 2048 dimensions.


https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/4
https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/4
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Table 6.2: Results on the SemEval 17 English dataset. Reported figures express Precision (P), Recall
(R) metrics along with their harmonic mean F1 computed according Equation 6.7.

SE02 SE03 SE07 SE13 SE15 ALL

Regource n=2282 n=1850 n=45 n=1644 n=1022 n=7253
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

LMMS 073 073 073070 070 070 | 0.61 0.61 0.61 | 073 073 073 | 0.69 0.69 0.69 | 0.71 0.71 0.71
SENSEMBERT 0.80 044 057|076 043 055|075 030 043|073 073 073|075 046 057|076 0.50 0.60
SENSEMBERT ,,;, 0.83 046 059|083 047 060|075 030 043|077 077 077|076 047 058|080 0.52 0.63
LMMS-R 071 071 0.71 | 068 0.68 0.68|0.57 057 057|070 070 070 |0.67 0.67 0.67 | 0.68 0.68 0.68
ARES 074 074 074073 073 073 |0.67 0.67 0.67|075 075 075|072 072 072|073 073 0.73

SE-MACAROON
SE-MACAROON 4y ¢

076 068 072|074 069 072|0.67 059 063|077 067 071|071 0.61 0.66|075 0.67 0.70
0.74 067 070|074 069 071 |0.63 056 059|075 065 069 |0.69 059 0.64|0.73 0.65 0.69

was set to 3 while N was set to 5.

The results obtained in the standard test sets of the WSD Evaluation Framework
by Raganato et al. (2017) are reported in Table 6.2. We can see that the precision of
SE-MACAROON is comparable with state of the art resources, such as, for exam-
ple the precision of SE-MACAROON for SE02 is 0.76, SENSEMBERT,,, obtained
0.83 at the cost of a lower recall 0.44, while ARES, which appears to be the top
performing resource, obtained 0.74 as F1 score.

By examining the coverage reported in Table 6.3, we note that the coverage
for both SENSEMBERT and SENSEMBERTj,, is always close to the half of each
benchmark, this is due to the fact that these resources have been built on nouns
only. SE-MACAROON covers around 90% of each dataset, while both LMMS and
LMMS-R together with ARES are able to deal with all instances in the evaluation
framework. The low coverage of SENSEMBERT and partially for SE-MACAROON
are reflected in lower recall scores: all the instances not covered are considered as
same as errors when computing the recall. In fact, the recall for SE-MACAROON
and SE-MACAROON 4y ¢ is lower when the coverage is under 90%, for example
the recall for SE03 is 0.69 with a coverage of 93% while the recall for SE15 is 0.59
with a coverage of 0.86%. The F1 scores for SE-MACAROON are systematically
higher than the F1 scores for SE-MACAROON 4y in a range from 1% to 4%.

6.2.6 Discussion

We overall experimented on five different datasets, included in the WSD Frame-
work by Raganato et al. (2017). The obtained results authorise to state that SE-
MACAROON is comparable with the state of the art, despite a slightly lower cov-
erage. The improved performance of SE-MACAROON compared to SE-MACA-
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Table 6.3: Coverage for each resource on the SemEval 17 English dataset. Reported figures express
the absolute number of instances covered by the resource together with the percentage in
square brackets [%].

Resource | SE@ | SED3 | SEY | SEL | SEIS | ALL

LMMS ! 2282[1.0] | 1850[1.0] | 455[1.0] | 1644 [1.0] | 1022[1.0] | 7253 [1.0]
SENSEMBERT 2 1262 [0.55] | 1036 [0.56] | 183[0.4] | 1644 [1.0] | 633 [0.62] | 4758 [0.66]
SENSEMBERT,,, 2 1262 [0.55] | 1036 [0.56] | 183[0.4] | 1644 [1.0] | 633 [0.62] | 4758 [0.66]
ARES 3 2282[1.0] | 1850[1.0] | 455[1.0] | 1644 [1.0] | 1022[1.0] | 7253 [1.0]
LMMS-R 4 2282[1.0] | 1850[1.0] | 455[1.0] | 1644 [1.0] | 1022[1.0] | 7253 [1.0]
SE-MACAROON 2052 [0.9] | 1717[0.93] | 401 [0.88] | 1432 [0.87] | 874 [0.86] | 6476 [0.89]
SE-MACAROON 4v¢ || 2052[0.9] | 1717 [0.93] | 401 [0.88] | 1432[0.87] | 874 [0.86] | 6476 [0.89]

1 Loureiro and Jorge (2019a) (https://github.com/danlou/ILMMS/tree/LMMS_ACL19)
2 Scarlini et al. (2020a) (http://sensembert .org)

3 Scarlini et al. (2020b) (http: //sensembert .org)

4 Loureiro etal. (2022) (attps://github.com/danlou/LMMS)

ROON gy ¢ seems to support the intuition that maintaining the independence of
word senses occurrences may be beneficial in addressing the WSD task. The lower
recall of SE-MACAROON with respect to full coverage resources such as LMMS,
LMMS-R and ARES may be due to the number of unseen instances at training
time. Despite that, we decided to test our hypothesis just relying on SemCor to
exploit manual annotations, this allows us to analyze our results without dealing
with silver or bronze data. In what follows we investigated the resource parameters
together with the variables in our WSD approach. Namely, we assessed the impact
of limiting the number of occurrences for each word sense, the effect of increasing
the context window size d, the a balancing factor from Equation 6.3 and the impact
of the size of the ranking window RW.

In the following experiments we adopted the precision as our evaluation met-
rics to get rid of instances for which SE-MACAROON is not able to provide a pre-

diction, implicitly included in the F1 score through the recall metrics.

Number of senses occurrences In this respect, we first investigated the impact
of the number of occurrences stored for each word sense, in particular we limited
the number of vectors for each word sense in a range starting from 5 to 100.

The maximum number of occurrences per sense corresponds to 9,013 vectors
for the verb to be (please refer to Table 6.1), but on average the standard deviation
is at most 105 for verbs: we thus decided to set the upper limit of our assessment to
100. The trend of the SE-MACAROON precision is depicted in Figure 6.3. In this

setting, for those senses with less available occurrences than allowed by the limit,


https://github.com/danlou/LMMS/tree/LMMS_ACL19
http://sensembert.org
http://sensembert.org
https://github.com/danlou/LMMS
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Figure 6.3: Precision of SE-MACAROON on the ALL concatenation when limiting the number of
occurrences for each word sense. The precision starts from 0.64 when the limit is set to
5, and yields 0.74 when the limit is set to 100. The 0.75 presented in Table 6.2 is obtained
by fixing no constraint to the number of occurrences for each word sense: this result is
marked with the orange point. In this setting, we maintained fixed the dimension of the
context window d to 3, the size of the ranking window RW to 5 and setting o = 0.5.

we adopted the following aggregation strategy: given the word sense s lexicalized
with w, and by fixing the limit to K occurrences for each word sense, we collected
the first K representations form SemCor for the pair (w, s) in c; we then iteratively
averaged the next occurrence of s with its nearestt vector in ¢f. According to this
aggregation principle, the precision of SE-MACAROON systematically improves
as the limit of occurrences increases: it starts from 0.64 when the limit is set to 5
to reach 0.74 when the limit is fixed to 100, while we obtain 0.75 when the number
of occurrences is unbounded. This result, together with the improved F1 scores of
SE-MACAROON with respect to SE-MACAROON 4y ¢, seems to support the intu-
ition that storing different occurrences of the same word sense expressed with the
same word may improve the precision of the resource, and bounding the number
of vectors for each word sense to the standard deviation allows closely approach-
ing the performance attained when setting no constraint. This bound enables a

considerable reduction in the size of the resource.
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Context Window Size Our assumption is that the context representation in which
the target word w; is placed may be helpful to disambiguate w;. For the sake of
readability, we recall here that we defined the context window CTX,,, = {e;—q, ... -
€t—1,€t+1, - - - €144} as the list of contextual embeddings for those words surround-
ing the target word w;. In particular, saying that the context window size is d means
to collect the representation for the d words preceding and following w;. In Fig-
ure 6.4 we report the precision of SE-MACAROON when changing the size d of
the context window, in a range from 0 to 10. It is worth noting that, when d = 0
we rely on the target word representation only, while when d = 10 we consider up
to 10 words on both sides, hence at most 20 words in the context window. If the
sentence contains less than d words preceding or following w;, we still collect up to
d available words on either side. We decided to adopt the range [0, 10] for the con-
text window size because of the average sentence length in SemCor: on average,
the sentences in the sense tagged corpus contain 22(£14) words, we therefore fixed
the upper limit for d to 10 in order to fully account for the entire sentence represen-
tation on average. From Figure 6.4 we can see how the precision of the approach
improves as we add words in context up to a maximum of 3, then starts a slow
degrowth. Additionally, if we try to exploit the entire sentence representation —
represented by the orange point— we obtain the same precision as using no context
(d = 0). These results seem to support the intuition that although the representation
of w; provided by BERT is inherently contextual, we still enjoy a benefit consider-
ing also the local context, that is, taking into account the information provided by
a few words surrounding the target w;. It seems that by considering more than 3
neighbours preceding and following w; may be detrimental in WSD: in most cases
the word sense may be identified by taking into account few words rather than

longer contexts that may be misleading.

a balancing factor The presented WSD approach strongly relies on the scoring
function in Equation 6.3 which computes a score for each occurrence of word senses
for the target word wy. In particular, as the scoring function is computed balancing
the similarity between the target word and the word sense occurrence ¢}, and the
similarity between the context and el, through the o parameter, we also investi-

gated the effect of varying the balancing factor.



122 SE-MACAROON

0.7455

0.745

0.7445

0.744

Precision

0.7435
0.743

0.7425
0 2 4 6 8 10 ALL
Context Window Size d

Figure 6.4: Precision of SE-MACAROON on the ALL concatenation when changing the size d of the
context window. The orange point represents the precision of SE-MACAROON when
considering the entire sentence as part of the context window. These results have been
obtained by setting no limit to the number of occurrences for each sense, fixing the size of
the ranking window RW to 5, « = 0.5 and d = 3.

In Figure 6.5 we show the precision of SE-MACAROON when varying « in a
range from 0 to 1 with 0.1 step. We note that & = 0 means nullifying the left factor
of the sum, systematically setting the similarity between the target word and the
sense to 0 and accounting for the context similarity factor only. Conversely, when
a = 1 we are taking into account only the similarity between the target word w;
and the word sense occurrence. From the figure we can see how the precision of
the approach improves as we increase «, obtaining the maximum with oo = 0.5 and
starting to decrease with a = 0.6. From this analysis it seems that the contribution
of both similarity factors is relevant. Since the precision obtained when o ranges
from 0 to 0.4 is lower than the precision when « is in the interval [0.6, 1] we may
assume that the contribution of the two factors is not equally distributed: the simi-
larity between the target word and the word sense occurrence seems to be the most
relevant, nevertheless the highest precision is obtained with o = 0.5, this means

that the contribution of the context similarity factor is not negligible.

Ranking Window size A relevant factor when disambiguating the target word

with the proposed approach is the size of the ranking window RW in Equation 6.4.
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Figure 6.5: Precision of SE-MACAROON on the ALL concatenation when changing the o balanc-
ing factor from Equation 6.3. These results have been obtained by setting no limit to the
number of occurrences for each sense, fixing the size of the ranking window RW to 5 and
d=3.

We recall here that in order to retrieve the most likely word sense for the target
word w; we compute the ranking R of all the word senses occurrences based on
their score then we define a ranking window RW on the top N elements of R
to restrict the candidates, and eventually we select the most likely word sense
through majority voting. The size of the ranking window may affect the WSD per-
formances, we then investigated the impact of varying the number of considered
ranking items. In Figure 6.6 we report the precision of the WSD approach when
varying the size of the ranking window, ranging from 1 to 10. We thus investigated
the effect of limiting the assessment of the ranking window size to 10. From the
figure we can see that when we consider the nearest neighbor (|R1W| = 1) obtain a
precision higher than 0.74, but considering two ranking’s items the precision drops
below 0.73, this may be due to the fact that, in case of tie on scores we chose the
most frequent sense among the two most voted. When we consider more than two
items the precision of the approach grows up to 5 occurrences obtaining a score
close to 0.75, then starts to decrease until 10. These results seem to suggest that, on
average, the occurrences of the correct word sense appears in the first five items of

the ranking, thus supporting the hypothesis that the contribution of the different
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Figure 6.6: Precision of SE-MACAROON on the ALL concatenation when varying the size of the
ranking window RW from Equation 6.4. These results have been obtained by setting no
limit to the number of occurrences for each sense, fixing the size of the context window
d=3and o =0.5.

word senses occurrences is not negligible.



7 Use Case: Using Language Models
Perplexity as a Tool for Linguistic

Analysis

After having illustrated the static embeddings of LESSLEX, the sense identifica-
tion task, and the contextual —and still sense-oriented— SE-MACAROON em-
beddings, we now introduce an investigation in which language models have been
employed to analyze language. This line of research relies on the perplexity metrics.
Perplexity has been originally conceived as a tool for the intrinsic assessment of lan-
guage models with respect to a sample of language. We now show how it can be
employed for linguistic analysis purposes, such as to grasp differences stemming
from linguistic registers and to categorize language from healthy vs. cognitively
impaired subjects.

This chapter is structured as follows: in Section 7.2 we introduce related work
and review the main approaches to automatically recognize subjects affected by dif-
ferent forms of psychotic disorders based on linguistic analysis. In Section 7.3 we
provide the essential background to the perplexity metrics. We then describe the
experiments devised to explore whether perplexity is a stable metrics, and whether
it can be reliably used to detect mental disturbances (Section 7.4). To these ends,
we first examine whether perplexity can be deemed as reliable to analyze speech
transcripts under an intra-subject and discourse-level coherence perspective (Sec-
tion 7.4.2); we then assess it by examining different subjects, and compare per-
plexity scores as computed through LMs built by employing different architectures
(Section 7.4.3). Finally, we test perplexity to discriminate healthy subjects from sub-
jects affected from Alzheimer Disease (Section 7.4.4). In the final section, we elab-

orate on the obtained results and illustrate future work to improve the perplexity-
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based approach and make it a tool practically useful for diagnostic purposes.

7.1 Introduction

In economically developed societies the burden of mental disturbances is becoming
more evident, with negative impact on people’s daily life and huge cost for health
systems. Whereas for many psychotic disorders no cures have been found yet, the
treatment of people at high risk for developing schizophrenia or related psychotic
disorders is acknowledged to benefit from early detection and intervention (Mar-
shall et al., 2005). To this end, a central role might be played by approaches aimed
at analyzing thought and communication patterns in order to identify early symp-
toms of mental disorder (Larson, Walker, & Compton, 2010).

The analysis of human language has recently emerged as a research field that
may be helpful to analyze for diagnosing and treating mental illnesses. In fact,
in the last decade Natural Language Processing (NLP) techniques have become a
common tool to support research on psychotic disorders. Namely, if language and
its associated cognitive functions are first impaired before the full signs of mental
disorders become apparent, linguistic analysis assisted by computing systems may
be helpful for early detection.

Recent advances in NLP technologies allow accurate language models (LMs)
to be developed. In order to measure the distance between an actual sequence of
tokens and the probability distribution we propose using perplexity, a metrics that
is well-known in literature for the intrinsic evaluation of LMs. In this chapter we
run experiments targeted at investigating how reliable perplexity is as a tool for
investigating individuals” language, and we test whether the perplexity computed
employing a language model acquired based on speeches from healthy subjects
can be useful in discriminating healthy subjects from people suffering from mental
disorders.

Although in literature perplexity is not new as a tool to compare the language
of healthy and diagnosed subjects, this work is, to the best of our knowledge, the
first attempt at analyzing how suited perplexity is to analyze individuals” spoken
language. While the reliability of perplexity has been simply taken for granted

in previous reports, we investigate whether and to what extent perplexity scores
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are reliable before trying to use them to categorize stimuli. Moreover, as far as
we know, no previous work has provided a comparison between perplexity scores
computed through LMs as diverse as GPT-2 and Bigrams. This difference has prac-
tical consequences for applications, mostly due to the different computational effort
required both to train and employ such models, and to the expressivity (and thus

the descriptive power) of the learned models.

7.2 Related Work

Patients with psychiatric disorders such as schizophrenia show various semantic
disturbances, and may suffer from difficulties in handling linguistic meanings at
different processing levels such as morphology, syntax, semantics, and pragmat-
ics (de Boer, Brederoo, Voppel, & Sommer, 2020). The work in (Covington et al.,
2005) provides a rich overview on disturbances at the different levels. As far as
we are concerned, disturbances related to schizophrenia typically produce abnor-
mal usage of neologisms and word approximations, disruptions in language co-
hesion (Docherty, DeRosa, & Andreasen, 1996), syntactically simpler constructions
tfeatured by reduced use of embedded clauses and grammatical dependents (Cokal
et al., 2018), inflectional morphology variants and errors (Walenski, Weickert, Mal-
oof, & Ullman, 2010).

In the last decade, advances in NLP techniques have allowed the construction
of automated approaches to computationally characterizing and predicting human
behavior, including also many of the aforementioned linguistic levels. These ap-
proaches have identified markers that can help differentiate patients with psychi-
atric disorders from healthy controls, and predict the onset of psychiatric distur-
bances in high risk groups at the level of the individual patient.

Early work in this area started with generating vectors from co-occurrence ma-
trices (Harman, 1993; Schiitze & Pedersen, 1997), treated with latent semantic in-
dexing (Landauer et al., 1998), or point-wise mutual information (Hindle, 1990).
Such early distributional representations provided explicit (that is, directly mean-
ingful and human-interpretable) information. The number of dimensions of such
vectors was determined by the size of the vocabulary. On the other side, in im-

plicit or latent representations, features were used resulting from Latent Semantic
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Analysis (LSA). LSA is a multidimensional associative model based on the distri-
butional hypothesis: word meaning is encoded as a multi-dimensional (usually
300 or 400 dimensions) vector obtained by elaborating large corpora to estimate the
co-occurrence frequencies for each word. A basic approach based on LSA, such
as that described in the seminal work by (Elvevag, Foltz, Weinberger, & Goldberg,
2007), is as follows. Each input token is represented through a corresponding LSA
vector, W; = {I;1, Ij2, ... Ijn}. In turn, the vector representation for a phrase P is
then built as the mean of the vectors representing all words in P: P; = % Zévzl L.
The coherence between any two phrases is then computed through the cosine sim-
ilarity of their corresponding vectors. The assumption underlying this approach is
that meaningful texts will be featured by high coherence scores (in that words in
the text being considered are semantically related on a distributional perspective),
whilst text with some sort of disorder (or ‘loose associations” among words) will be
featured by reduced coherence scores. In (Bedi et al., 2015) an artificial dataset built
by intentionally manipulating existing texts was used to test the described notion
of coherence: the minimum semantic distance and the mean semantic distance of
adjacent sentences were found to be negatively correlated with the disorder level
introduced in the original. In this work LSA (in conjunction with information on
grammatical Part-of-Speech function, referred to as POS tags) has been used to pre-
dict the transition to psychosis in a clinical high-risk cohort.

More recently, LSA techniques have been superseded by neural approaches
aimed at learning latent representations of words called word embeddings (Nav-
igli & Martelli, 2019). The overall design aimed at characterizing coherence (or,
equivalently, the disorder associated with sentences and documents), by compar-
ing vector representations of text excerpts, has remained unchanged.

A different approach to provide quantitative measures to language coherence
and complexity is graph-based: in this setting, nodes represent words, and the
word sequence is induced by directed edges. One main assumption underlying
these approaches is that in coherent discourse neighboring words refer to con-
nected topics, whilst incoherent discourse is associated with difficulties in mak-
ing an ordered trajectory or path between topics. By employing tools from graph

theory and information science it is possible to extract information on graph prop-
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erties, such as connectedness, subgraphs or graph components. More specifically,
measures such as entropy can be employed to probabilistically define topics and
topic transitions (Cabana, Valle-Lisboa, Elvevag, & Mizraji, 2011). Such graph rep-
resentations also allowed grasping specific features of the normal and dysfunc-
tional flow of thought (such as divergence and recurrence), and to produce accu-
rate sorting of individuals affected by schizophrenia or mania (Mota et al., 2012). In
another study, techniques for speech graph analysis were employed to describe for-
mal thought disorder, which has been mathematically defined by the linear combi-
nation of connectedness graph attributes and their degree of similarity to randomly
generated graphs. Such connectedness attributes were mapped onto a Disorgani-
zation Index, and used to classify negative symptom severity (Mota, Copelli, &
Ribeiro, 2017).

In what follows we survey a set of works employing ‘perplexity’ that are specif-
ically relevant to introduce our own proposal. Although originally conceived to
assess how language models are able to model previously unseen data, perplexity
can be used to compare (and discriminate) text sequences produced by healthy sub-
jects or by people suffering from language-related disturbances. To provide a hint
of this approach, perplexity is a positive number that —given a language model
and a word sequence— expresses how unlikely it is for the model to generate that
given sequence. A richer description of the perplexity is provided in Section 2.1.

In (Stolcke & Shriberg, 1996) N-grams of part of speech (POS) tags were em-
ployed to identify patterns at the syntactic level. Then, two LMs were acquired
(one from patients” data and the other from data from healthy controls): the cat-
egorization of a new, unseen (that is, not belonging to either set of training data)
sample was then performed through the perplexity computed with the two LMs
over the sample. The considered sample was then categorized as produced by a
healthy subject (patient) if the LM acquired from healthy subjects (patients) data
attained smaller perplexity than the other language model. Perplexity has been re-
cently proposed as an indicator of cognitive deterioration (Frankenberg et al., 2019);
more specifically, the content complexity in spoken language has been recorded in
physiological aging and at the onset of Alzheimer’s disease (AD) and mild cog-

nitive impairment (MCI) on the basis of interview transcripts. LMs used in this
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research were built by exploiting 1-grams and 2-grams information; as illustrated
in next section (please refer to Equation 2.2), such models differ in the amount of
surrounding information employed. Perplexity scores were computed on ten-fold-
cross-validation basis, whereby participants’ transcripts were partitioned into ten
parts; a model was then built by using nine parts and was tested on the tenth. This
procedure was repeated ten times so that each portion of text was used exactly
once as the test set. Four examination waves with an observation interval of more
than 20 years were performed, and correlations of the perplexity score of transcrip-
tions dating to the beginning of the experiment were found with the score from the
dementia screening instrument in participants that lately developed MCI/AD.

In (Fritsch et al., 2019), perplexity has been employed as a predictor for Alzheimer
Disease (AD) on the analysis of transcriptions from DementiaBank’s Pitt Corpus (Becker,
Boiler, Lopez, Saxton, & McGonigle, 1994), that contains data from both healthy
controls and AD patients. More precisely, two neural language models, based
on LSTM models, were acquired, one built on the healthy controls and the other
trained on patients belonging to the dementia group. A leave-one-speaker-out
cross-validation was devised and, according to this setting, a language model M_,
was created for each speaker s by using all transcripts from the speaker’s group but
those of s. Data from speaker s was then tested on both M_, thus providing a per-
plexity score pyyn, and on the language model built upon the transcripts from the
whole group to which the speaker did not belong to, thus obtaining the perplexity
score pother- The difference between the perplexity scores Ag = pown — Pother Was
computed as a description for the speaker s. The classification of each speaker was
then performed by setting a threshold ensuring that both groups obtained equal
error rate. The authors achieved 85.6% accuracy on 499 transcriptions, and showed
that perplexity can also be exploited to predict a patient’s Mini-Mental State Ex-
amination (MMSE) scores. The approach adopted in this work is the closest to our
own work we could find in literature; however it also differs from ours in some as-
pects. First, we investigated how reliable perplexity is in assessing the language of
healthy subjects. That is, we analyzed how perplexity scores vary within the same
individual, as an initial step toward assessing if perplexity is suitable for examin-

ing text excerpts/transcripts that (like in the case of Pitt Corpus) were collected
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through multiple interviews and tests, spanning over years. Additionally, we were
concerned with evaluating all excerpts from a single individual to predict the AD
diagnosis at the subject level, rather than in predicting the class for each and every
transcript. In order to assess the perplexity as a tool to support the diagnosis, we

analyzed only data from subjects for which at least two transcripts were available.

7.3 Perplexity

As mentioned, LMs are basically probability distributions of word sequences: per-
plexity was originally conceived as an intrinsic evaluation tool for LMs, in that it
measures how far a model predicts a given word sequence (Goldberg, 2017). This
measure is defined as follows. Let us consider a word sequence of k elements,
W = {wi,...,wy}; since we are interested in evaluating the model on unseen data,
the test sequence W must be new, and not be part of the training set. Given the
language model LM, we can compute the probability of the sentence W, that is
LM(W). Such a probability would be a natural measure of the quality of the lan-
guage model itself: the higher the probability, the better the model. The average

log probability computed based on the model is defined as

k k

1 1

7 logy [Tomw) = - » "logy LM(W),
i=1 =1

which amounts to the log probability of the whole test sequence W, divided by the

number of tokens in sequence. The perplexity is defined as

k
1
1 .
27", where | = Z ZE 1 logy, LM(W);

that is, the perplexity of sequence W given the language model LM is 2 raised to
the negative of the average log probability:

PPL(LM,W) = 2 & Zi=1 o2 IM(wilwiima) (7.1)

It is now clear why low PPL values (corresponding to high probability values) in-

dicate that the word sequence fits well to the model, or equivalently, that the model
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is able to predict that sequence.

7.4 Experiments

After having introduced the notion of perplexity and a brief description on mod-
ern neural architectures, we explore whether —and to what extent— the perplexity
of LMs attained through such architectures can be used as a biomarker to detect
language anomalies. Language anomalies detection may be helpful in recogniz-
ing mental disturbances and other disorders. To these ends we need to investigate
whether perplexity provides reliable (or stable) scores. Informally stated, by reli-
able we intend that similar text documents —such as repeated interviews to the
same subject over a limited time span, or descriptions by different subjects about
the same scene— should be featured by analogous perplexity scores (by employing
the same language model). Reliability is defined based on two measurements: the
absolute magnitude of perplexity scores, and the dispersion of such scores, mea-
sured through their standard deviation.

We are interested in exploring two focal questions: 1) whether perplexity scores
are reliable and stable within the same subject, but still sensitive enough to account
for different sorts of speech forms produced by a given speaker. Additionally, we
test the discriminative power of perplexity, that is 2) whether the language of a spe-
cific class of subjects, diagnosed as suffering from disorders impacting on common
linguistic abilities, can be automatically distinguished from that of healthy controls
solely based on perplexity accounts.

In the first experiment, we analyzed whether the LMs acquired by re-training
both Bigrams and GPT-2 on transcriptions of two different kinds of speech (two
classes: political rallies vs. interviews) from a single subject produce different per-
plexity scores when the LM is used for analyzing similar (taken from same class)
and different (from the other class) documents. In the second experiment we have
measured the perplexity scores featuring discourses by 8 well-known political fig-
ures: in this case our aim was to assess whether such perplexity scores (computed
either based on a general English LM or on a LM trained/fine-tuned on speeches
from that subject) are stable within subject and across subjects. Finally, for the third

experiment we have used the Pitt Corpus, from which we selected the transcripts
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of responses to the Cookie Theft stimulus picture (Goodglass & Kaplan, 1983), and
investigated whether the perplexity score allows discriminating patients with de-

mentia diagnosis (n = 194) from healthy controls (n = 99).

7.4.1 Compared LMs

Three different experimental setups have been designed in order to compare per-
plexity as computed by language models acquired by training with two different

architectures: Bigrams, and GPT-2.

Bigrams

Since Bigrams implement the simplest language model with context, where each
word is conditioned on the preceding token only, we adopted the Bigrams model
for the first experimental setup. The motivations underlying the decision to con-
sider a single word only as context are both computational (i.e., by increasing the
context size implies an increase in the training time too), and theoretical (that is,
considering longer history involves dealing with higher data sparsity). In this
setting, by following well-established approaches in literature (Jurafsky & Mar-
tin, 2014, Chap. 3), we define the probability of a sequence of words W7, =
W1, W, . .., Wy aS:

n

P(Wl,n> = H P(wi\wi_l)
i=1

where the probability of each Bigram is estimated by exploiting the Maximum Like-
lihood Estimation (MLE). According to the MLE, we can estimate probability of the

Bigram (w;_1,w;) as:
C(wi |wi_1)

P(wilwi—1) = C(wi-1)

(7.2)

where C(w;|w;_1) is the number of occurrences of the Bigram (w;_1, w;) in the train-
ing set, while C'(w;—1) counts the occurrences of the word w;_; only. It is worth
mentioning that training Bigrams on a limited vocabulary may lead to cases of
out-of-vocabulary words, i.e., unseen words during the training process. Out-of-
vocabulary words pose a problem in calculating the probability of the sentence in
which they are involved: in such cases we are not able to compute the probability of

the Bigram involving the unknown word, thus undermining the probability of the
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whole sequence. In order to deal with out-of-vocabulary words, we replace each
token occurring only once in the training set with the ‘unknown’ tag, UNK. In so do-
ing, during the test phase we are allowed mapping each out-of-vocabulary word
to the unknown word tag. Despite the strategy for handling out-of-vocabulary
words, we may still end up with unseen Bigrams, formally occurring zero times
in the training set, thus resulting in a null probability. We addressed the unseen
Bigrams issue through the Laplace Smoothing technique (Jurafsky & Martin, 2014,
Sec. 3.5.1), that is, adding one to all counts. According to the Laplace smoothing
technique, we updated the Equation 7.2 as follows:

(j(u%\uu_l)-+»1

P(w;lw;_1) = Clwi ) +V

where V is the size of the vocabulary. In this setting, Bigrams have been computed
through the Natural Language ToolKit (NLTK) package,’ while the perplexity of a

text has been computed according to Equation 7.1.

GPT-2

The second experimental setup that we designed exploits the GPT-2 neural model,
in particular we used the GPT-2 pre-trained model available via the Hugging Face
Transformers library.” In this setting, the input text has been preprocessed by the
pre-trained tokenizer and grouped into blocks of 1024 tokens. The pre-trained
model is specialized as Causal Language Model (CLM) on the input texts, that
is, predicting a word given its left context. Since the average log-likelihood for
each token is returned as the loss of the model, the perplexity of a text is computed

according to Equation 7.1.

7.4.2 Experiment 1: Intra-subject and discourse-level coherence

The first experiment is aimed at investigating whether perplexity scores computed
based on a given LM are stable, and whether perplexity scores are able to grasp

factors specific to a given sort of speech. We have then targeted transcripts of two

'To compute Bigrams we exploited the util python package from NLTK http: //www.nltk.org/
api/nltk.html?highlight=ngrams#nltk.util.ngrams
’https://huggingface.co/gpt?2


http://www.nltk.org/api/nltk.html?highlight=ngrams#nltk.util.ngrams
http://www.nltk.org/api/nltk.html?highlight=ngrams#nltk.util.ngrams
https://huggingface.co/gpt2
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different kinds of discourse: the interview and the political rally. While in the for-
mer case both the questions put to the interviewee and his answers should convey
a sense of poise, balance, and posture, political rallies are events where people
sharing similar political beliefs gather to support their candidate. The language
adopted in interviews is thus supposed to be more regular and consistent, whilst
it should be more emphatic, direct and vehement in rallies. Our second research
question was then whether the employed language models were able to recognize

the two different linguistic registers.

Materials

We selected 10 transcripts by the former US President Donald Trump (this choice
is mostly due to the large availability of his transcripts): 5 interviews and 5 cam-
paign rallies were downloaded from the Rev platform.” Interviews were recorded
between June 2019 and November 2020, while campaign rallies date to September
and October 2020. The duration of both interviews and rallies varies between 45
minutes and one hour and 43 minutes. The statistics describing all transcripts em-
ployed in the first experimental setting are reported in Table A.9. While the initial
choice of the transcripts was random within each category, we tried to select text
excerpts of similar duration. The complete list and URLs of the employed material

are provided in A.3.

Procedure

Two types of model were acquired, one for Political Rallies and one for Interviews,
and this schema was replicated for both Bigrams and GPT-2.

Each LM was then tested on leave-one-out basis on transcripts in the same cate-
gory as the training/fine-tuning, and in direct fashion on transcripts from the other
category. In the following we will simply refer to training, even though in a strict
sense training procedures were employed to acquire Bigram models, while fine-

tuning4 is associated to the refinement step of the base GPT-2 model. For example,

*https://www.rev.com.

*Our distinction seems compatible with a definition provided in literature: “In fine-tuning, we be-
gin with off-the-shelf embeddings like word2vec, and continue training them on the small target
corpus” (Jurafsky & Martin, 2014, p.399).


https://www.rev.com
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Table 7.1: Perplexity (PPL) scores along with standard deviations obtained with fine-tuning on the
transcripts from the Rally and Interview categories, and averaged values for PPL scores
and standard deviations.

Fine-tuning | Test Bigrams GPT-2
avg-PPL avg-stdev || avg-PPL avg-stdev
Rally Interview 593.33 28.31 22.78 2.28
Rally 582.02 24.70 19.44 0.69
Interview Interview 430.88 27.39 22.20 1.30
Rally 512.77 15.12 24.43 1.59

in order to compute the perplexity score for excerpts from the Rally category with
a language model obtained by training/fine-tuning on the same category, 5 mod-
els were built by using 4 of the 5 available transcripts (the fifth one was used for
testing); results were then averaged over these 5 runs. Conversely, to compute
the perplexity score on excerpts from the Interview category one LM was acquired
from the Rally class, and used to test on all 5 transcripts. The same procedure
was followed for the training/fine-tuning on the Interview category: leave-one-
out schema for testing on transcripts from the same class, and only one model to
compute the perplexity of transcripts in the other class. Regarding the LMs ac-
quired through GPT-2, fine-tuning was performed on the selected transcripts (dif-
ferent settings were tested, and finally 30 epochs and windows of 50 tokens were
employed).

We then expected to observe analogous perplexity scores on all transcripts (as
capturing common features underlying the language of the same speaker); and to
observe slightly higher perplexity scores with models trained/fine-tuned on Inter-

views (Rallies) and used to test on Rallies (Interviews).

Results

The results are presented in Table 7.1, where we recorded the average perplexity
scores and their standard deviation. We can see that perplexity scores range over a
small interval on all considered sorts of LMs, thus confirming the main prediction
that the training/fine-tuning on transcriptions from the same subject produces a
language model that substantially grasps the main traits of that subject’s language.
The standard deviation-to-perplexity ratio is always lower than 10% (5.53% on av-
erage, through all conditions), thereby showing the reduced dispersion in these

considered perplexity scores.
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Additionally, the same scores seem to corroborate the second hypothesis, that
the perplexity metrics is subtle enough to reflect the different contributions of the
two sorts of language, employed in Interview vs. Rally. In fact, we can verify
that by training on Interviews we obtain higher perplexity scores when testing on
transcripts from the Rally category, and the same holds conversely by training on

documents from the Rally category and testing on Interviews.

7.4.3 Experiment 2: Intra-subject coherence on different speakers

Also, the second experiment is aimed at assessing whether perplexity scores are
stable within subject.

Five transcripts with no specific topic for eight well-known past and present
political figures were selected and the associated perplexity scores and standard
deviations were analyzed to confirm the results obtained in the previous experi-

ment on a larger set of speakers.

Materials

In this case the context was less uniform than in the previous experiment, in that we
collected political rallies, speeches on spot topics, such as economy, health systems,
general challenges for the Western economy, a talk given in Davos, civil rights,
and so forth. The complete list and URLs of the employed material is provided
in A.3.4. Time duration, number of tokens and number of unique tokens describing
the transcripts employed in this experiment are also presented in the Appendix, in

Table A.11.

Procedure

A leave-one-out setup has been implemented, that is for each subject we employed
4 of the 5 transcripts for fine-tuning the GPT-2 base model and to acquire Bigrams,
while the fifth transcript was used to compute the perplexity score. Regarding the
experiment involving GPT-2, we devised a second trial in which a general LM
with no specific fine-tuning has been employed to compute the perplexity for all
considered transcripts. In both trials involving language models based on GPT-2

the training has been performed on 30 epochs, with window sized to 50 tokens.
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Table 7.2: Perplexity scores along with their standard deviations of the experiment testing intra-
subject coherence for the eight considered speakers. More specifically, we report the scores
obtained by employing the Bigram model and the two versions of GPT-2, comparing the
perplexity scores obtained through fine-tuned language models vs. the base GPT-2 model.

Bigrams GPT-2 Trial 1 || GPT-2 Trial 2
Subject PPL  stdev || PPL stdev || PPL stdev
J. Biden 695.73  59.55 || 28.06 0.83 || 44.37 1.62

D. Trump 582.02 24.70 || 19.48 0.61 4241  1.87
B. Obama 538.91  32.79 || 20.09 7.81 39.20 2.29
B. Sanders 605.71  38.59 || 22.34 5.67 | 29.91 3.99
B. Gates 462.64 38.59 | 34.83 6.08 43.31  6.01
N. Mandela || 823.85 170.09 || 37.68  5.63 39.99 4.04
M. L. King 707.65 97.31 || 26.08  8.32 43.14  4.87
B. Johnson 442.03  44.45 || 50.59 10.78 || 63.90 12.12

The first part of the experiment (which we call First Trial) has been designed so to
assess the perplexity scores featuring the language of each subject. In the Second
Trial the GPT-2 base model with no fine-tuning was employed. The Second Trial is
intended to measure the reliability of perplexity scores with respect to a language
model reflecting a general language, not specifically tuned on the transcripts at
hand.

In the first trial we expected to obtain scores varying in a small interval, under
the assumption that if perplexity is appropriate to grasp the main linguistic traits
of different speakers, different speeches from the same speaker may be featured
by different scores, but with reduced standard deviation. Regarding the inves-
tigation of GPT-2 LMs, we expected to record higher perplexity scores —paired
to higher standard deviation— in the second trial with respect to the first one, in
which the LM has been fine-tuned in order to grasp the peculiar linguistic traits of

each speaker.

Results

The results of the second experiment are reported in Table 7.2, which provides fig-
ures averaged over the 5 transcripts available for each subject (detailed results have
been postponed to the Appendix, Table A.12).

Let us start by presenting the results obtained in the GPT-2 trials. The per-

plexity scores are in the same order of magnitude, with standard deviations indi-
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cating a variable but mostly reduced dispersion. The LMs built through Bigrams
are featured by an average 9.76 standard deviation-to-perplexity ratio across sub-
jects, while those employing GPT-2 LMs range from 10.18 (Trial 2) to 19.49 (Trial 1).
Comparing the perplexity scores obtained through LMs based on GPT-2 in Trials 1
and 2, we observe a clear increase in the average perplexity scores obtained in the
second trial: the average across all subjects of perplexity scores grows from 30.33
up to 43.30. Such figures confirm that the GPT-2 with fine-tuning on the language
from a given subject is able to specialize the LM thereby resulting more predictive
for that subject’s language. Furthermore, and perhaps more importantly in order to
assess perplexity as a reliable metrics to analyze individuals’language, perplexity
scores seem to capture intra-subject coherence. This datum holds for all (Bigrams
and GPT-2) language models at stake.

Regarding the scores computed through Bigram-based LMs, we observe a clear
increase in the absolute perplexity values, paired to a proportionally reduced stan-
dard deviation.

By looking at the data in Table 7.2 we cannot individuate a clear trend in the
scores computed through LMs based on Bigrams and GPT-2: for example, PPL
scores for Boris Johnson transcripts are the lowest ones when computed with mod-
els based on Bigrams, and highest ones when employing GPT-2 models. We thus
decided to deepen the analysis by focusing on a subset of results, and analyzed the
scores recorded for two subjects, J. Biden (JB) and B. Johnson (B]). Transcripts for JB
have been selected as exhibiting intermediate PPL and smallest standard deviation
in the GPT-2 Trial 1, whilst the samples from BJ have been selected as showing the

maximal difference between the two underlying LMs, Bigrams and GPT-2.

Biden vs. Johnson The scores recorded for the mentioned speakers are pro-
vided in full detail in Table 7.3.

Let us start by commenting perplexity scores computed through GPT-2 LMs:
in the first case (JB) we obtained rather homogeneous perplexity scores (ranging
between 27.43 and 29.42 in the first trial, and between 42.29 and 46.28 in the second
trial), while in the second case (BJ) scores vary between 37.87 and 62.44 in the first
trial, and between 53.89 and 83.04 in the second trial. By comparing JB and BJ

scores, we observe that the linguistic features of JB are closer to the LMs acquired
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Table 7.3: Perplexity scores (paired to standard deviation) associated to each transcript (column T) by
Joe Biden (JB) and Boris Johnson (BJ: scores obtained through Bigrams, LSTM and GPT-2
are reported. In the second trial the GPT-2 base model (with no fine-tuning) was employed.

Subject | Test || Bigrams | GPT-2 Trial 1 | GPT-2 Trial 2
I 727.74 27.40 42.29
I 653.82 27.31 43.59

J.B. II 612.58 29.33 45.70
IV 733.25 28.40 44.01
\Y 751.25 27.87 46.28
I 391.33 40.76 54.69
II 418.57 37.87 53.89

BJ. II1 435.47 62.44 83.04
vV 455.18 53.81 59.71
A% 509.61 58.05 68.19

by GPT-2: based on Trial 1 evidences one would argue that the considered speeches
are more consistent and uniform in an intra-subject perspective, and based on Trial
2 one would argue that the language of JB is more consistent also with the general
language model (as approximated by the base model). Many aspects may have
contributed to this datum, such as the origin of texts employed to build the GPT-
2 model, its bias in favor of American English, the fact that some topics (along
with domain specific dictionary and idiomatic expressions) may be over- or under-
represented, usage of coordination vs. subordination, lexical choice, and so forth. If
we inspect the speeches by JB we realize that these are rather homogeneous, since
their focus is largely on economic matters, plus a political rally and a discourse to

Air Force Personnel:

— Biden I: drive-in campaign rally event in Cleveland, Ohio on November 2,

2020;

- Biden II: speech on 2020 job numbers and the state of the economy on Decem-

ber 4, 2020;

— Biden III: remarks to U.S. Air Force Personnel and Families Stationed at Royal

Air Force Mildenhall, June 09, 2021;

— Biden IV: remarks on the economy, at the Coyahoga Community College in

Cleveland, Ohio, May 27, 2021;

— Biden V: speech introducing his $2 trillion infrastructure plan on March 31,
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2021.

On the other hand, the matters addressed by Boris Johnson are as varied as eco-
nomics, public education program, anti-COVID plan, discourse to the UN general
assembly, and the so-called ‘levelling up’, consisting of many initiatives, such as
high street regeneration, local transport projects and cultural assets. This is the list

of considered speeches.
— Johnson I: speech on the economy in Dudley on June 30, 2020;

— Johnson II: speech at Exeter College, England, on September 29, 2020; (topic:
Lifetime Skills Guarantee to help people train and retrain at any stage in their

lives)
— Johnson III: statement on the COVID-19 Winter Plan, on November 23, 2020;
— Johnson IV: remarks at the UN General Assembly, on September 24, 2019;
— Johnson V: speech on levelling up the UK, on July 15, 2021.

Such topics are not only diverse and different from each other, which explains the
higher perplexity scores obtained in both GPT-2 trials, but also rather different
from the topics on which the GPT-2 model has been trained (in particular COVID
issues and levelling up activities, which were absent from the set of texts used
to train GPT-2). This seems to be an argument in favor of the reliability of the
perplexity metrics, which overall grows as the language being considered is less
consistent with that used to train the models.

Based on the aforementioned arguments, we conclude that PPL as computed
through GPT-2 is a reliable metrics. We still have to elaborate on why PPL val-
ues computed through Bigram models differ to such an extent from these. In fact,
provided that we are mostly concerned with demonstrating the reliability of the
perplexity in an intra-individual setting, nonetheless it may be useful to investi-
gate the reasons why models based on Bigrams —differently from those based on
GPT-2— produce higher perplexity values for JB transcripts than for those by BJ.

In order to elaborate on this question, it may be helpful to take into account
some further statistics that may affect the behavior of Bigrams, that is: i) the ratio

between unknown words (UNK) and all tokens in the training set; ii) the inverse of
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Table 7.4: For each transcript from JB and BJ the ratio between unknown words (UNK) and overall
number of tokens, the inverse of perplexity and standard deviation scores are reported.

Subject UNK/tokens PPL~! stdev™!
1 0.05 0.00137 0.00190
II 0.05 0.00153  0.00220
J.B. II1 0.06 0.00163 0.00234
IV 0.06 0.00136  0.00199
\Y4 0.05 0.00133 0.00185
I 0.13 0.00256 0.00353
II 0.12 0.00239 0.00362
B.J. II1 0.11 0.00230 0.00299
I\ 0.10 0.00220 0.00342
A\ 0.12 0.00196 0.00278

PPL; and iii) the inverse of standard deviation. We recall that while building Bi-
gram models tokens occurring only once in the training set were replaced with the
tag UNK. Also, at testing time, OOV (out-of-vocabulary words) were mapped onto
the unknown word tag (please refer to Section 7.4.1). This strategy was developed
to allow training Bigrams even with a small training set; however, it has the ob-
vious drawback of substantially altering the probabilities associated to sequences
involving tokens occurring only once in data. With this rewriting, tokens that are
seldom seen in the training data become part of a class which instead is frequent
at training time: in accord with intuition, N-grams involving tokens in this class
are typically associated to low perplexity scores. To verify such intuition we re-
ported in Table 7.4 the ratio between UNK and all tokens in the training set, along
with the inverse of perplexity and standard deviations obtained through Bigram
based models. We computed the Pearson correlation r between the ratio and the
inverse of PPL scores, and obtained that »(UNK/tokens, PPL_l) = 0.59. This mech-
anism may be helpful in explaining why transcripts by BJ, featured by a higher
UNK/tokens ratio, obtained lower perplexity scores than JB (whose transcripts ex-
hibit a smaller UNK/tokens ratio). A similar argument may explain the relation
intervening between UNK/tokens ratio and inverse standard deviation, for which
we recorded a Pearson correlation r(UNK/tokens, stdev_l) = 0.63.

Also, if the growth of the UNK/tokens ratio is detrimental to the perplexity be-
cause it hinders the appropriate estimation of Bigrams involving UNK tokens, one
can argue that conversely, Bigrams may be appropriate to cope with data sets fea-
tured by few UNK tokens. This hypothesis is also tested in the experiment described

in the following Section.
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7.4.4 Experiment 3: Predictive and discriminative features of PPL

For this experiment we used publicly available data from the Pitt Corpus.” These
data were gathered as part of a larger protocol administered by the Alzheimer and
Related Dementias Study at the University of Pittsburgh School of Medicine (Becker
etal., 1994). In particular, we selected the descriptions provided to the Cookie Theft
picture, which is a popular test used by speech-language pathologists to assess ex-
pository discourse in subjects with disorders such as dementia. This dataset was
employed to test whether perplexity scores on the collected descriptions allow dis-

criminating patients from healthy controls.

Materials

The dataset is composed of 552 files arranged into Control (243 items) and Demen-
tia (309 items) directories. These correspond to multiple interviews to 99 control
subjects, and to 219 subjects with dementia diagnosis. Text documents herein were
transcribed according to the CHAT format,® so we pre-processed such documents
to extract text. In so doing, the original text was to some extent simplified: e.g.,
pauses were disregarded, like hesitation phenomena, that were not consistently an-
notated (MacWhinney, 2014, 2017). In particular lengthened syllables, long pauses
and interruption symbols were eliminated, alongside a wide variety of sounds such
as cries, sneezes, and coughs. Other meaningful aspects were preserved in the fi-
nal file, such as repetitions, interjections and retracings, considering these events
as important features for the model to capture. No information on intonational
contours and other markers of the utterance planning process was available in the
input files.

To the ends of collecting enough text to be analyzed, we dropped the interviews
of subjects that participated in only one interview. We ended up with material
relative to 74 control subjects (for which overall 218 transcripts were collected),

and to 77 subjects with dementia diagnosis (overall 192 transcripts).

5https ://dementia.talkbank.org/access/English/Pitt.html.
®https://talkbank.org/manuals/CHAT.pdf.


https://dementia.talkbank.org/access/English/Pitt.html
https://talkbank.org/manuals/CHAT.pdf
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Procedure

This experiment is aimed at discriminating subjects tagged as belonging to the
Alzheimer’s disease (AD) class from healthy controls. Intuitively, such categoriza-
tion has been performed as follows. The LMs employed to compute perplexity for
each transcript were trained on healthy subjects. Since it is largely acknowledged
in literature that the language of patients affected by dementia significantly differs
from that of healthy subjects, we formulated the hypothesis that models acquired
on healthy subjects” language will better predict the language of healthy subjects
than the language of subjects affected by dementia. Put in other words, we ex-
pected lower perplexity scores to be associated to transcripts from healthy subjects,
whilst transcripts from dementia patients to result in higher perplexity scores.

Since, as mentioned, the models were trained on healthy controls to recognize
non-healthy patients, we devised a twofold procedure to compute the average per-
plexity on control subjects. (i) In order to classify subjects in the class of healthy
controls, the training of the LM was performed in a leave-one-subject-out setting.
Namely, language models have been refined with files from all other control sub-
jects except for one, which has been used for testing. Conversely, only one model
acquired on healthy control was necessary to compute the perplexity associated to
all subjects in the AD class. To compute the classification, we exploited the average
perplexity scores characterizing all control transcripts as threshold for the decision
rule. (ii) In order to classify subjects in the AD class, a single model was acquired
on all control transcripts so as to compute the average perplexity score used as
threshold.

As decision rule to discriminate AD patients from healthy subjects we used the
average perplexity scores characterizing all control transcripts employed in the
training process as our threshold. In case the perplexity score averaged on all avail-
able transcripts for a given subject was higher than the average of healthy controls,
we marked the subject as suffering from AD; as healthy otherwise.

A twofold experimental setting has been devised, including experiments with
Bigrams and GPT-2, adopting a window size set to 20 in order to handle shorter

text samples. In the case of GPT-2, the model has been trained for 30 epochs.
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Table 7.5: Results of the experiments in the third experiment: more specifically, we compare the cat-
egorization results obtained with LMs acquired through Bigrams and GPT-2 by reporting
Accuracy, Precision (P), Recall (R) and F1 scores.

cl Bigrams GPT-2

ass Acc. P R Fl || A P R H
Dementia 056 0.94 0.70 0.61 092 073
Control || 209% 078 024 037 || 9% 082 030 053

Evaluation Metrics

To evaluate the results in the third experiment we adopted the Precision and Recall
metrics (specificity and sensitivity) along with their harmonic mean, F1 score, and

accuracy. Precision (specificity) is defined as P = %, while Recall (sensitiv-

TP
TP+FN-

ity) is defined as R = Informally stated, Precision computes the fraction
of results that are actually correct: it is computed as the number of correct results
(true positives, TP) divided by the sum of correct results (TP) and items mistak-
enly returned as results (false positives, FP). Recall computes how many correct
results were individuated. In Recall, we have the number of correct results divided
by the sum of correct results (TP) and items mistakenly not recognized as results
(false negative, FN). While precision provides an estimation of how precise a cat-
egorization system is, recall indicates how many results were identified out of all

the possible ones. F; measure is then used to provide a synthetic value of Precision

and Recall, whereby the two measures are evenly weighted through their harmonic

mean: F} =2 - %
Accuracy is computed as ACC = TﬁigN , that is as the fraction of correct pre-

dictions (the sum of TP and TN) over the total number of records examined (the

sum of positives and negatives, P and N).

Results

The results obtained on discriminating AD patients from controls are provided in
Table 7.5: the categorization employing GPT-2 obtained .73 and .53 F1 score on the
Dementia and Control class, respectively. Recorded accuracy was in the order of
66.23%. Slightly lower figures were obtained with LMs acquired through Bigrams,
ranging from .70 and .37 F1 score on the Dementia and Control class, respectively;

accuracy was 59.60%.
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Such figures also show that, independent from the complexity of the adopted
model, simple categorization algorithms based on perplexity scores can achieve
valuable results, provided that the employed LMs are trained on a consistent tran-
script category. This datum shows that systems implementing different sorts of
LMs can be helpful for practical uses, as a tool for assisting specialists in the diag-

nostic process.



8 Conclusions

In this work we discussed the relevance of a semantic layer on top of language
models: tying language models to a symbolic knowledge representation allows
modeling semantic characterizations sharing the space defined by such models. We
therefore illustrated the motivations that have brought to the development of two
novel lexical resources: LESSLEX and SE-MACAROON. Evaluating such resources
allowed us to investigate the role played by semantic information when dealing
with the semantic similarity task, by also making explicit a new latent task, the
sense identification task. On a different perspective, we subsequently evaluated
language models in an application setting: we tested whether and to what extent
language models can be exploited as linguistic analysis devices.

In Chapter 4 we have proposed LESSLEX vectors. The research question an-
swered herein is focused on how to integrate symbolic knowledge with distribu-
tional resources to build sense embeddings. Such vectors are built by re-arranging
distributional descriptions around senses, rather than terms. These have been
tested on the word similarity task, on the contextual similarity task, and on the
semantic text similarity task, providing good to outstanding results, on all datasets
employed. We have discussed the obtained results. Also importantly, we have out-
lined the relevance of LESSLEX vectors in the broader context of research in natural
language with focus on senses and conceptual representation, mentioning that hav-
ing co-located sense and term representations may be helpful to investigate some
issues in an area at the intersection of general Al, Cognitive Science, Cognitive
Psychology, Knowledge Representation and, of course, Computational Linguistics.
In these settings distributed representation of senses may be employed, either to
enable further research or to solve specific tasks. The conceptual grounding on Ba-
belNet enables LESSLEX dealing with the 284 different languages (provided by Ba-

belNet version 4.0). It also enables LESSLEX vectors to be plugged into applications
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that already adopt such sense inventory. Differently from most sense embedding
approaches, LESSLEX exploits the feature of adopting a unique semantic space for
concepts and terms from different languages. Far from being an implementation
feature, the adopted semantic space describes a cognitively plausible space, com-
patible with the cognitive mechanisms governing lexical access, which is in general
featured by conceptual mediation (Marconi, 1997). Such feature allowed us to com-
pare and unveil meaning connections between terms across different languages.
Such capabilities can be useful in characterising subtle and elusive meaning shift
phenomena, such as diachronic sense modeling (Hu, Li, & Liang, 2019) and con-
ceptual misalignment, which is a well-known issue, e.g., in the context of automatic
translation. This issue has been approached, for the translation of European laws,
through the design of formal ontologies (Ajani et al., 2010).

We also proposed a novel semantic similarity measure, the ranked-similarity.
Such novel measure originates from a simple intuition: in computing conceptual
similarity, scanning and comparing each and every sense available in some fine-
grained sense inventory may be unnecessary and confusing. Instead, we rank
senses using their distance from the term; top ranked senses are more relevant, so
that the formula to compute ranked-similarity refines cosine similarity by adding
a mechanism for filtering and clustering senses based on their salience. Acquir-
ing vector descriptions for concepts enables to investigate the conceptual abstract-
ness/concreteness that has recently emerged as central in the multidisciplinary de-
bate between grounded views of cognition versus modal (or symbolic) views of
cognition (Colla, Mensa, Porporato, & Radicioni, 2018; Hill, Korhonen, & Bentz,
2014; Mensa, Porporato, & Radicioni, 2018). Also accounting for conceptual ab-
stractness may be beneficial in diverse NLP tasks, like WSD (Kwong, 2008), the
semantic processing of figurative uses of language (Neuman et al., 2013; Turney,
Neuman, Assaf, & Cohen, 2011), automatic translation and simplification (Zhu,
Bernhard, & Gurevych, 2010), the processing of social tagging information (Benz,
Korner, Hotho, Stumme, & Strohmaier, 2011), and many others, as well.

In Chapter 5 we addressed two main research questions: first, we have pro-
posed two metrics to compute semantic similarity involving sense embeddings,

leveraging the different vectorial representation of senses and terms that most sense
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embedding provide to date; additionally, we posited the sense identification task as
a relevant complement to the semantic similarity task. The proposed metrics build
on the intuition that the maximization ordinarily adopted as distance metrics can
be refined by accounting for the centrality of the term representation with respect
to the sense representations (in the case of the R-sim metrics), and even more by
gathering close senses (in the case of the N-sim metrics). Different from the se-
mantic similarity task, the sense identification requires to make explicit the senses
underlying the similarity ratings.

We have sense-annotated a popular dataset for semantic similarity, and used it
for experimentation, to assess the proposed metrics. Our experiments investigated
how the novel metrics fit to the specific features of an array of six recent vectorial
resources in both the considered tasks, semantic similarity and sense identification.
The experimentation revealed that ranked similarity (R-sim) and neighbourhood
similarity (N/-sim) mostly allow obtaining more accurate results also in the seman-
tic similarity task; and they are never worse than the familiar maximization of co-
sine similarity (M-sim). Systems employing sense embeddings can thus simply
replace M-sim with NV-sim. As illustrated in the discussion, in the worst scenario
this would lead to minimal improvement in the semantic similarity correlation, but
also to a consistent gain in the sense identification. Our experimental evidences
seem to suggest that the resources featured by sense level indexing will be useful
mostly for tasks dealing with semantic similarity, where more specific and covering
vector representations are needed, while the less covering but more precise term-
sense indexing seems more appropriate to target tasks where sense individuation
is the primary concern.

In Chapter 6 we have proposed SE-MACAROON vectors. Such vectors are
built by collecting contextualized descriptions of words as expression of a given
word sense. The third research question underlying this study was concerned with
the role played by contextual vector descriptions in representing word senses. The
effectiveness of such representations was successfully tested on the Word Sense
Disambiguation task. SE-MACAROON vectors have been tested on the Word
Sense Disambiguation task, providing results comparable to the state-of-the-art

contextualized sense embeddings. We have discussed the obtained results, also
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presenting a novel WSD approach enjoying both the shared space between senses
and terms as well as for the peculiar sense representations. Different from the pro-
posed contextualized sense embedding techniques, SE-MACAROON represents
word senses as collections of word embeddings rather than conflating all of its oc-
currences into a unique representation. Such feature provides the resource with a
sort of lexical memory, storing the ideal representations of a word sense taken in
context, thus providing sense representation close to several context of usage. This
allowed us to devise a novel approach to WSD, exploiting multiple occurrences for
each word sense. The building rationale behind SE-MACAROON vectors stems
from the hypothesis that aggregating multiple representations of the same word
sense into a single one might end up with misleading or imprecise information.
We therefore investigated the impact of limiting the number of occurrences stored
for each word sense. The results of such experiments seem to support our hypothe-
sis: limiting the memory size to few occurrences seems to be detrimental to perfor-
mances; conversely, fixing the limit to 100 seems to lead to performances compa-
rable to the unbounded setting. In addition to the peculiarity of SE-MACAROON
representations, the proposed WSD approach relies on the meaning localization
principle: in order to determine the sense underlying a word we may account for
the local context rather than considering the entire sentence. We then investigated
the impact of parameters of the WSD approach. The results corroborate the hypoth-
esis that a small context window surrounding the target word provides helpful in-
formation while solving the WSD task. In particular, as the window size increases,
performance drops systematically.

In Chapter 7 we investigated whether the perplexity metrics can be interpreted
as a semantic coherence marker, thereby allowing employing language models in
the early detection of psychotic disorders. After having presented two resources,
in this chapter we show how to employ an intrinsic metrics (originally concerned
with evaluating the ‘fit” of a language model to actual language) to predict the in-
surgence of a broad class of cognitive impairments affecting linguistic production.
The diagnosis of dementia is a complex process that is long and labor intensive, in-
volving a neuropsychiatric evaluation that includes medical and neurologic history

and examination, semistructured psychiatric interview, and neuropsychological as-



CONCLUSIONS 151

sessments (Huff et al., 1987; Lopez et al., 1990). To this extent, we have been explor-
ing whether perplexity can be considered as a reliable metrics to analyze spoken
language at large. To answer this question we designed an experiment to compare
perplexity scores for different speeches from the same speaker (transcripts from an
healthy subject were considered in this phase): two sorts of language —political
rallies and interviews— were analyzed. In the second experiment we compared
perplexity scores associated to the language of eight past and present popular po-
litical figures. The results of these studies seem to corroborate the hypothesis that
perplexity can be measured in a reliable manner for the individual subject, while
at the same time accounting for different linguistic registers. Differences in scores
obtained through the application of different language models were detected and
discussed. We observed that the perplexity computed through simpler LMs may be
a good option when either language variability is reduced or training data ensure
good coverage for the considered language. Conversely, simpler models may be
misled by out-of-vocabulary terms: interestingly enough, however, even in these
cases perplexity scores were consistent with the individual subject language char-
acteristics.

Both LESSLEX and SE-MACAROON constitute an effort to build a semantic
layer on top of language modes. The usability of distributional representations
paired with more precise symbolic knowledge of semantic networks represents
a complementary and yet interoperable combination of information, thus result-
ing in such sense embeddings. Under a different perspective, LESSLEX and SE-
MACAROON are fully-fledged language models. This feature allows both LESSLEX
and SE-MACAROON to host conceptual descriptions along with word representa-
tions, thus enabling to investigate new approaches combining both representations.

In the last few years distributional representations and neural networks have
shaken up the NLP landscape (C. D. Manning, 2015). The introduction of trans-
formers architecture started a whole host of experiments as well as for a new be-
ginning for language models. In such a framework predicting directions for the
future is not simple nor clear; we can foresee, however, some major aspects. First,
contextualized language models have been assumed as standard de facto, proving

their generalization capabilities across many different tasks as well as for different
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domains. Such direction will be investigated in depth, to the ends of both build-
ing larger pre-trained models and building models capable of addressing many
different domains and tasks avoiding pre-training process. Du et al. (2021) is one
example in the latter direction, larger models may be provided with dedicated com-
ponents for each different task or domain. The shift to the multi-task setting and
towards transfer learning frameworks has already been started by impressive mod-
els, such as (Aribandi et al., 2021). In such a frame, the ability to deal with many
languages at a time will be crucial: encoding information in many diverse lan-
guages allows accounting for the representation of the same item across languages
and addressing different tasks in any language with the same model. In these re-
spects, despite such models proved outstanding abilities in few shot learning, the
lack of data in the lexical semantics area is still a serious concern. We may expect
to assist a new wave of datasets for many different NLP tasks. However, manually
annotating data is still difficult and time-consuming, especially when dealing with
word senses, this represents one of the chief limitations in such a rapidly changing
landscape. This datum is becomes apparent if we consider that the main project on
manually sense-annotated data is SemCor, developed decades ago, in 1994.

A second relevant line of research will be, in our view, the attention to the evalu-
ation frameworks of such models: the rapid improvements of neural models have
overcome the ability of many benchmarks to assess them. We may expect to see
even larger benchmark development. In this respect, recent questions on the best
practices to assess such models have emerged. In our view, the community will face
the issue of assessing whether models are learning to address benchmarks instead
of tasks. Interpretability and explainability of these models deserve to be men-
tioned, and will likely play an increasingly relevant role. Dealing with dense rep-
resentations, together with large models, makes systems decisions rather opaque.
In this setting, representing word senses may provide beneficial effects in making
interpretable such decisions, by making explicit the semantic grounding around
which information can be contextualized.

Finally, next steps will involve combining word senses: compositions based on
syntactic information, or based on different principles. For example, such syntactically-

enriched representations will be employed in representing and recognizing events,
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and in modeling the relationships that tie them together. For example, given news
articles, we may want to recognize the sequence of events, along with their partici-
pants, of an earthquake.

The work done all throughout my PhD course, summarized in this thesis, is to
a good extent linked to all these directions. LESSLEX and SE-MACAROON adopt
sense-oriented representations, that hopefully will allow coping with all mentioned

challenges.



A Appendix

A.1 Results on the word similarity task, CbA condition

In this Section we illustrate the results obtained by testing on the semantic similar-
ity task. However, different from the results reported in Section 4.2.1, in this case
only the fraction of each dataset covered by all considered resources was used for

testing.

Table A.1: Results on the subset of the multilingual and cross-lingual RG-65 dataset containing only
word pairs covered by all considered resources. Reported figures express Pearson (r) and
Spearman (p) correlations. In the first column we report the coverage for each translation
of the dataset actually used in the experimentation.

RG-65 LL-M LLX CNN NAS JCH SSE N2V
r ‘ P r ‘ P T ‘ P T ‘ P T ‘ P T ‘ 1% r ‘ 1%
[Word] eng [1.0] | 64 | 59 | 91 | 86 [ 91 | .90 | 67 | 67 | 84 | 86 [ .75 | .81 | .80 | .75
[Sense] eng [1.0] - - | 94| 91| - - | 81|76 - - |72 7| 78] 73
fas (N) [.69] 78 | 73| 86 | 87 | 88 | 89 | 71 | 69 | - - | 721 60| - -
spa (N) [.98] 82| 8| .92].93|.92].93|91|91]|8 |88 .84/ - -
por-fas(N)[81] | .73 | 72| 91 |90 | 93 | 8 | 79| 76| - | - | 76|70 - | -
fra-por (N)[.97] | 83 | 84 | .93 | .89 | .93 | .89 | .76 | 69 | - - | 81|73 - -
fra-fas (N) [.87] 72 72|90 | 88| .93 | .89 | . 73| .69 | - - | 74| 68| - -
fra-spa (N) [.99] 81| 80 | .93 91| 93| 8 | 8 | 8 | - - | 88| 8 | - -
fra-deu (N)[.99] | 82 | 86 | 91 | 90 | 89 | 88 | 81 | 78| - | - | 78| 76| - | -
spa-por (N) [98] | 83 | 83 | 93 | 92 | 93 | 92 | 83 | 81 | - - 18179 - -
spa-fas(N) [.82] | 71 | 69 | 92 | .92 | .93 | 91 | 83 | 82 | - - | 78] 8| - -
eng-por (N)[.99] | .74 | 72 | .94 | 90 | 92 | 90 | .79 | 76 | - - | 8 | 77| - -
eng-fas (N) [.83] | 68 | 61 | 92 | 89 | .93 | 92 | 79 | 74 | - - |78 74| - -
eng-fra(N)[1.0] [ .71 | .70 | .94 | 92 | 92 | 91 | 76 | .73 | - - | 81|75 - -
eng-spa(N)[99] | 73 | .71 | .93 | 93 | 93 | 92 | 8 | 85 | 84 | 85| 80 | 85 | - -
eng-deu (N) | .74 | 72| .92 |90 |9 |9 |8 |81 - |- |77]8]|-]-
98
E:lelll—por (N) | 89| 86| 93 | 89 | 92 | 88 | 82 | 78 | - - |77 74| - -
96
Eilegl-fas (N)[s1] | 76 | 74 | 92 | 91| 92 | 90 | 88 | 81 | - - | 8| 8| - -
Eiel]l—spa (N) | 8 |8 .92|91]|91|9]|8]|8]|-|-|[s8]s8]|-]-
97
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Table A.2: Results on the subset of the WS-Sim-353 dataset containing only word pairs covered by all
considered resources. Reported figures express Pearson () and Spearman (p) correlations.
In the first column we report the coverage for each translation of the dataset actually used
in the experimentation.

WS-Sim-353 LL-M LLX CNN NAS JCH SSE N2V
T ‘ P T ‘ P T ‘ 1% r ‘ 1% r ‘ 1% r ‘ P r ‘ P
eng (N) [.97] 67| 65| .78 | 79| 78| .79 60| 61| 75| 76| 69| 73| .71 | .70
ita (N) [.92] 68 | 69| 74 | 77| 75 | 77| 66 | 65| 69 | 70 | 65 | 71 | - -
deu (N) [.88] 77 | 74| 83| 81| 84| 83| 70| 69| - - | 65| 64| - -
rus (N) [.83] 75|76 | 77| 78 | 79| 79 | 66 | 66 | - - | 63| 64| - -

Table A.3: Results on the subset of the SimVerbs-3500 dataset containing only word pairs covered by
all considered resources. Reported figures express Pearson (1) and Spearman (p) correla-
tions. In the first column we report the coverage for each translation of the dataset actually
used in the experimentation.

SimVerbS_3500| LL-M | LLX | CNN | NAS | JCH | SSE | N2V
|rlelrfelrflplrlolrlelrle]lr]p
eng (V) [1.0] | 58 | 56 | 67 | 66 | 62| 60| - | - | 56| 56| 45| 42| 31] 30

A.2 Results on the Sense Identification Dataset

A.3 Sources of experimental material and detailed results

A.3.1 Material used in Experiment 1

URLs of transcripts in the class Interview:

https://www.rev.com/blog/transcripts/full-transcript-of-donald-trump

—interview-with-meet-the-press

- https://www.rev.com/blog/transcripts/donald-trump-unedited-60-minutes

—interview-transcript

- https://www.rev.com/blog/transcripts/donald-trump-rush-limbaugh-interview

—-radio-rally-transcript-october-9

- https://www.rev.com/blog/transcripts/donald-trump-interview-transcript

-with—-axios—-on-hbo

- https://www.rev.com/blog/transcripts/donald-trump-election-day—-interview

—transcript-fox-friends

URLs of transcripts in the class Rally:

- https://www.rev.com/blog/transcripts/donald-trump-gastonia-nc-rally

—-speech-transcript-october-21


https://www.rev.com/blog/transcripts/full-transcript-of-donald-trump-interview-with-meet-the-press
https://www.rev.com/blog/transcripts/full-transcript-of-donald-trump-interview-with-meet-the-press
https://www.rev.com/blog/transcripts/donald-trump-unedited-60-minutes-interview-transcript
https://www.rev.com/blog/transcripts/donald-trump-unedited-60-minutes-interview-transcript
https://www.rev.com/blog/transcripts/donald-trump-rush-limbaugh-interview-radio-rally-transcript-october-9
https://www.rev.com/blog/transcripts/donald-trump-rush-limbaugh-interview-radio-rally-transcript-october-9
https://www.rev.com/blog/transcripts/donald-trump-interview-transcript-with-axios-on-hbo
https://www.rev.com/blog/transcripts/donald-trump-interview-transcript-with-axios-on-hbo
https://www.rev.com/blog/transcripts/donald-trump-election-day-interview-transcript-fox-friends
https://www.rev.com/blog/transcripts/donald-trump-election-day-interview-transcript-fox-friends
https://www.rev.com/blog/transcripts/donald-trump-gastonia-nc-rally-speech-transcript-october-21
https://www.rev.com/blog/transcripts/donald-trump-gastonia-nc-rally-speech-transcript-october-21
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Table A.4: Results on the subset of the multilingual SimLex-999 containing only word pairs covered
by all considered resources. Reported figures express Pearson (r) and Spearman (p) cor-
relations. In the first column we report the coverage for each translation of the dataset
actually used in the experimentation.

. LL-M LLX CNN NAS JCH SSE N2V
SimLex-999

r ‘ p r ‘ P r ‘ P r ‘ P r ‘ P T ‘ P T ‘ P
eng (N) [1.0] 51| 52| .69 | .67 | .66 | .63 | .41 | 39| 55| 53| 52| .49 | 46 | 44
eng (V) [1.0] 62| 56| 67| 65| 61| 58| - - | 51| 50 | 54| 49 | - -
eng (A) [1.0] 84| 83| 82|79 8 | 78] - - | 63| 62| 55| 51| - -
eng (*) [1.0] 571 53|70 .69 | 67| 65| - - | 55| 54| 53| 49| - -
ita (N) [.96] 50 | 49 | 66 | 64 | 64 | 62 | 48 | 49 | 48 | 49 | 56| 50| - | -
ita (V) [.96] 58 | 53| .70 | 63| 69 | 59 | - - | 57| 50| 56 | 45 | - -
ita (A) [.95] 68| 57|77 | 70|73 64| - | - |40 | 306149 -| -
ita (*) [.96] 49 | 43 | 67 | 63 | 65 | 62 | - - | 48 | 46 | 55 | 48 | - -
deu (N) [.94] 58 | 57 | 66 | 65 | 68 | 66 | 46 | 47 | - - | 48| 44| - -
deu (V) [.73] 56 | 53| 63| .60 | 64 | 58| - - - - | 51| 46| - -
deu (A) [.67] 74| 70 | 76 | 73| .80 | .75 | - - - - 151 3] - -
deu (*) [.86] 59 | 57| 66| 65| .69 | 67 | - - - - | 47| 42| - -
rus (N) [.86] 45 | 43 | 54 | 51 | 54 | 49 | 23 | 23| - - | 26 21| - -
rus (V) [.20] 60 | 54 | 58| 59 | .66 | .60 | - - - - | 42| 28| - -
rus (A) [.06] 92| 87| 94| 91| 94| 87| - - - - | 62| 24| - -
rus (*) [.63] 46 | 44 | 55 | 51| 55 | 50 | - - - - |l27 ] 21| - -

- https://www.rev.com/blog/transcripts/donald-trump-rally-transcript-tucson

—arizona-october-19

- https://www.rev.com/blog/transcripts/donald-trump-macon-georgia-rally

—-speech-transcript-october-16

- https://www.rev.com/blog/transcripts/donald-trump-middletown-pa-rally

—-speech-transcript-sept-26-first-rally-after-scotus—-nomination

- https://www.rev.com/blog/transcripts/donald-trump-newport-news-virginia

—campaign-rally-transcript-september-25


https://www.rev.com/blog/transcripts/donald-trump-rally-transcript-tucson-arizona-october-19
https://www.rev.com/blog/transcripts/donald-trump-rally-transcript-tucson-arizona-october-19
https://www.rev.com/blog/transcripts/donald-trump-macon-georgia-rally-speech-transcript-october-16
https://www.rev.com/blog/transcripts/donald-trump-macon-georgia-rally-speech-transcript-october-16
https://www.rev.com/blog/transcripts/donald-trump-middletown-pa-rally-speech-transcript-sept-26-first-rally-after-scotus-nomination
https://www.rev.com/blog/transcripts/donald-trump-middletown-pa-rally-speech-transcript-sept-26-first-rally-after-scotus-nomination
https://www.rev.com/blog/transcripts/donald-trump-newport-news-virginia-campaign-rally-transcript-september-25
https://www.rev.com/blog/transcripts/donald-trump-newport-news-virginia-campaign-rally-transcript-september-25

APPENDIX 157

Table A.5: Results on the subset of the SemEval 17 Task 2 dataset containing only word pairs cov-
ered by all considered resources. Reported figures express Pearson (1) and Spearman (p)
correlations. In the first column we report the coverage for each translation of the dataset
actually used in the experimentation.

SemEval2017 |L.LE-M | LLX | CNN | NAS | JCH SSE N2V
rlplrlolrlelrlelrlelrle]r]e

eng (N) [.66] 70|70 | 84 | 86| 83 | 85| 57 | 59| 75| 77| 71| 75| 73| 73
deu (N) [.73] 78| 79 | 84| 85 | 84 | 86 | 68 | 68| - - | 67| 69| - -
ita (N) [.61] 73| 73| 82| 84| 80| 82| 5776|7871 77| - -
spa (N) [.62] 77 | 79| 84| 86| 81 | 84| 70| 71| 78| 80 | .73 | .78 | - -
fas (N) [.34] 69| 72|79 82| . 75] 8| 58| 5| - - |16 | 70| - -
deu-spa (N) 78| 8 | .84 | 86| 82 | 84| .71 | 72| - - |70 | 74| - -
[.73]

deu-ita(N)[74] | .77 | 78 | 83 | .85 | 82 | 84 | .72 | .73 | - -1 69| 73| - -
eng-deu (N) [ .78 | .79 | 85| 86 | 83 | 85 | 67 | .68 | - - |70 72| - -
[.82]

eng-spa(N)[63] | 74 | .75 | 85 | 87 | 83 | 85| 65 | 66 | .75 | 78 | 72 | 77 | - | -
eng-ita (N) [.62] 73| 74| 85| 87| 83 | 85| 69 | 70| 73| 75| 72| 77| - -
spa-ita (N) [.61] 75| 76 | 84| 86 | 81 | 84 | 74| 74| 70| 71| 72| 78| - -

deu-fas(N)[49] | 75 | 78 | .84 | 86 | 81 | 85 | 71 | 72 | - - | 69| 74| - -
spa-fas(N) [49] | 72 | 74 | 84 | 86 | 80 | 84 | 70 | 72 | - - |70 | 77| - -
fas-ita (N) [.49] 71| 72| 81| 8| 2| 87072 - -1 69| 75| - -
eng-fas(N) [54] [ 70 | .71 | 82| 85 .79 | 82 | 65 | .68 | - - |70 | 75| - -

A.3.2 Statistics of the data employed in Experiment 1
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Table A.6: Results on the subset of the Goikoetxea dataset containing only word pairs covered by all
considered resources. Reported figures express Pearson (1) and Spearman (p) correlations.
In the first column we report the coverage for each translation of the dataset actually used
in the experimentation.

LL-M LLX CNN NAS JCH SSE N2V
r ‘ P r ‘ P T ‘ P T ‘ P T ‘ P T ‘ 1% T ‘ 1%
spa-eus (N)[.75] | 75 | .71 | 80 | .74 | 81 | .73 | 74 | 73 | 69 | 66 | 74 | .70 | - -

eng-eus(N)[771 | 75 | 72| .93 | 91 | .93 | 90 | 91 | 90 | 87 | 84 | 84 | 86 | - -
eng-spa(N)[99] | 73 | 71 | 93 | 93 | 93 | 92 | 85 | 85 | 84 | 85 | 80 | 85 | - -

Goikoetxea

eus-ita (N) [.72] 62| 66 | .69 | .73 | 67 | 63 | 57 | 59 | 58 | 63 | 53 | 56 | - -
spa-ita (N) [93] | .60 | .65 | .67 | .75 | 66 | .74 | 58 | 59 | 56 | 61 | 53 | 59 | - -
spa-eus (N)[.73] | 67 | 70 | 74 | .79 | 71 | 78 | 66 | 67 | 70 | .74 | 60 | 64 | - -
eng-ita(N)[96] | 59 | 64 | .70 | 76 | .70 | 77 | 51 | 52 | 61 | 66 | 51 | 58 | - | -
eng-eus (N)[.75] | 64 | 67 | 75 | 80 | 74 | 80 | 58 | 60 | 72 | .76 | 58 | 63 | - -
eng-spa (N)[97] | 62 | 66 | .72 | .78 | 71 | 78 | 55 | 56 | 68 | 74 | 57 | 64 | - | -

eng-spa(N)[.97] | 50 | 49 | .67 | 65 | 64 | 62 | 52 | 51 | 56 | 52| 55 | 52 | - | -

eng-spa (V) [9] | 53 | 49 | 62 | 60 | 59 | 57 | - - | 48| 46 | 53| 49 | - -
eng-spa (A)[80] | 76 | .77 | 77 | 77 |77 | 77| - | - | 59| 60| 56 | 50 | - | -
eng-spa (*) [.95] 54 | 52| .67 | 66 | 65 | 64 | - - | 54| 52| 55| 51| - -
eng-ita (N)[97] | 53 | 53 | .71 | 69 | 68 | 66 | 46 | 47 | 53 | 51 | 55 | 52 | - -
eng-ita (V) [.58] 62| 55| .71 | 67| 67 | 60 | - - | 51| 45| 56 | 46 | - -
eng-ita (A) [.80] 79| 73| .84 | 78 | 78 | 70 | - - | 41| 36| 61| 48| - -
eng-ita (*) [.82] 56 | 53| .72 | .70 | 69 | 67 | - - | 50| 48| 56 | 50 | - -
spa-ita (N) [.96] 53| 53 | .68 | 67 | 66 | 65 | 47 | 49 | 48 | 47 | 56 | 54 | - -
spa-ita (V) [.56] 56 | 52| 65| .60 | 64 | 58| - - | 47| 42| 56| 49| - -
spa-ita (A) [.78] 73| 66 | .79 | 73| 76 | 69 | - - | 43| 38| 63| .51 | - -
spa-ita (*) [.80] 55 | 53| .68 | .66 | .67 | 65| - - | 47| 45| 56 | 51| - -

A.3.3 Detailed perplexity scores obtained in Experiment 1
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Table A.7: Results on the subset of SemEval 17 English dataset containing only the 213 term pairs
covered by all the employed resources. Reported figures express Pearson (r), Spearman (p)
correlations and their F1 score, and Precision (P) and Recall (R) along with their F1 score.

Semantic Similarity | Sense Identification
p | r |Fpr)| P | R |F(ER)

M-sim 0791079 | 079 |031|028| 0.29
LLX R-sim 087086 | 086 | 050|046 | 048
N-sim 087 ]085| 086 | 048|086 | 0.62
M-sim 0.68 | 0.66 | 0.67 | 0.62 | 0.66 | 0.64
N2V R-sim 076 | 0.76 | 0.76 | 0.63 | 0.58 | 0.60
N-sim 0.66 | 0.65| 0.65 | 0.60 | 0.65| 0.62
M-sim 0.81 080 | 0.80 | 0.65]0.61 0.63
DCF R-sim 081080 | 080 |073]|068]| 070
N-sim 0771076 | 076 | 087|084 | 0.86

M-sim 0751072 073 077 |072| 0.74
SSE R-sim 076 | 074 | 075 | 088|083 | 0.85
N-sim 0771076 | 076 | 088|084 | 0.86
M-sim 078 {077 | 077 1073|068 | 0.70
SW2v R-sim 0751075| 075 |085|078 | 0.81
N-sim 0771077 | 0.77 | 0.85 ]| 0.81 0.83
M-sim 069 | 068 | 0.68 | 081|076 | 0.78
LSTMBD;s | R-sim 070 | 0.69 | 0.69 | 0.89 | 083 | 0.86
N-sim 0711070 | 070 | 088|084 | 0.86

M-sim 0771074 | 075 |0.68|063| 0.65
LSTMBDs | R-sim 077 1075| 076 | 086|080 | 0.83
N-sim 079 {077 | 078 |082|0.82]| 0.82

Resource Measure

A.3.4 Material used in Experiment 2

URLSs of transcripts for Joe Biden:

https://www.rev.com/blog/transcripts/joe-biden-drive-in-rally-speech

—transcript-cleveland-november-2

- https://www.rev.com/blog/transcripts/joe-biden-speech-on-2020-job—numbers

—economy-transcript—-december—4

- https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/06/09/
remarks -by -president -biden-to-u-s-air-force-personnel —and-families

-stationed-at-royal-air-force-mildenhall/

- https://www.c—-span.org/video/?512149-1/president-biden-delivers—-remarks

—economy

- https://www.rev.com/blog/transcripts/joe-biden—-speech-on-2-trillion

—infrastructure-plan-transcript-march-31


https://www.rev.com/blog/transcripts/joe-biden-drive-in-rally-speech-transcript-cleveland-november-2
https://www.rev.com/blog/transcripts/joe-biden-drive-in-rally-speech-transcript-cleveland-november-2
https://www.rev.com/blog/transcripts/joe-biden-speech-on-2020-job-numbers-economy-transcript-december-4
https://www.rev.com/blog/transcripts/joe-biden-speech-on-2020-job-numbers-economy-transcript-december-4
https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/06/09/remarks-by-president-biden-to-u-s-air-force-personnel-and-families-stationed-at-royal-air-force-mildenhall/
https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/06/09/remarks-by-president-biden-to-u-s-air-force-personnel-and-families-stationed-at-royal-air-force-mildenhall/
https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/06/09/remarks-by-president-biden-to-u-s-air-force-personnel-and-families-stationed-at-royal-air-force-mildenhall/
https://www.c-span.org/video/?512149-1/president-biden-delivers-remarks-economy
https://www.c-span.org/video/?512149-1/president-biden-delivers-remarks-economy
https://www.rev.com/blog/transcripts/joe-biden-speech-on-2-trillion-infrastructure-plan-transcript-march-31
https://www.rev.com/blog/transcripts/joe-biden-speech-on-2-trillion-infrastructure-plan-transcript-march-31
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Table A.8: Experiment considering only the 213 pairs of the SemEval 17 English dataset covered by
all resources. Stats describing the number of senses available for each resource, along with
the size of the neighborhood employed in the A-sim metrics.

Resource ‘ Measure H AVG term senses ‘ AVG |S| ‘ Fi(p,r) ‘ F1(PR)
M-sim 0.79 0.29
LLX R-sim 16.40 3.65 0.86 0.48
N-sim 0.86 0.62
M-sim 0.67 0.64
N2V R-sim 13.47 1.30 0.76 0.60
N-sim 0.65 0.62
M-sim 0.80 0.63
DCF R-sim 3.75 1.09 0.80 0.70
N-sim 0.76 0.86
M-sim 0.73 0.74
SSE R-sim 5.11 1.07 0.75 0.85
N-sim 0.76 0.86
M-sim 0.77 0.70
SW2V R-sim 471 1.05 0.75 0.81
N-sim 0.77 0.83
M-sim 0.68 0.78
LSTMBDys | R-sim 2.39 1.05 0.69 0.86
N-sim 0.70 0.86
M-sim 0.75 0.65
LSTMBDg | R-sim 5.02 1.20 0.76 0.83
N-sim 0.78 0.82
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Table A.9: Statistics describing the transcripts employed in Experiment 1: for all considered samples
we report time duration, the number of tokens, and the number of unique tokens.

Category | Transcript || Duration | # Tokens | # Unique Tokens
I 1:28:52 7,278 1,098
II 1:28:23 6,471 922

Rally 111 1:31:34 | 18,514 1,926
1A/ 0:45:40 6,702 1,032
A\ 1:01:51 5,933 946
I 1:17:37 | 15,200 1,967
II 0:56:17 | 10,501 1,614

Interview | III 1:43:43 | 20,865 2,300
1A 1:13:01 | 14,056 1,945
A% 1:18:19 | 14,806 1,896

URLs of transcripts for Bill Gates:

- https://news.harvard.edu/gazette/story/2007/06/remarks-of-bill-gates

-harvard-commencement-2007/

- https://www.gatesfoundation.org/ideas/speeches/2018/11/remarks-to-the

—Jjapanese-parliament
- https://prorhetoric.com/on-the-cusp-of-a-sanitation-revolution/

- https://www.gatesfoundation.org/ideas/speeches/2018/10/grand-challenges

—annual-meeting

- https://www.gatesfoundation.org/ideas/speeches/2020/02/bill-gates—american

—association-for-the-advancement-of-science

URLs of transcripts for Boris Johnson:
- https://www.gov.uk/government /speeches/pm-economy-speech-30-june-2020

- https://www.rev.com/blog/transcripts/boris—johnson-adult-education-training

—-speech-transcript-september-29

- https://www.gov.uk/government/speeches/pm-statement-on-covid-19-winter

-plan-23-november-2020

- https://www.wired.com/beyond-the-beyond/2019/09/transcript-boris-johnsons

—-remarks-un—-general-assembly/

- https://www.conservatives.com/news/levelling-up-speech-july-15

URLs of transcripts for Martin Luther King;:


https://news.harvard.edu/gazette/story/2007/06/remarks-of-bill-gates-harvard-commencement-2007/
https://news.harvard.edu/gazette/story/2007/06/remarks-of-bill-gates-harvard-commencement-2007/
https://www.gatesfoundation.org/ideas/speeches/2018/11/remarks-to-the-japanese-parliament
https://www.gatesfoundation.org/ideas/speeches/2018/11/remarks-to-the-japanese-parliament
https://prorhetoric.com/on-the-cusp-of-a-sanitation-revolution/
https://www.gatesfoundation.org/ideas/speeches/2018/10/grand-challenges-annual-meeting
https://www.gatesfoundation.org/ideas/speeches/2018/10/grand-challenges-annual-meeting
https://www.gatesfoundation.org/ideas/speeches/2020/02/bill-gates-american-association-for-the-advancement-of-science
https://www.gatesfoundation.org/ideas/speeches/2020/02/bill-gates-american-association-for-the-advancement-of-science
https://www.gov.uk/government/speeches/pm-economy-speech-30-june-2020
https://www.rev.com/blog/transcripts/boris-johnson-adult-education-training-speech-transcript-september-29
https://www.rev.com/blog/transcripts/boris-johnson-adult-education-training-speech-transcript-september-29
https://www.gov.uk/government/speeches/pm-statement-on-covid-19-winter-plan-23-november-2020
https://www.gov.uk/government/speeches/pm-statement-on-covid-19-winter-plan-23-november-2020
https://www.wired.com/beyond-the-beyond/2019/09/transcript-boris-johnsons-remarks-un-general-assembly/
https://www.wired.com/beyond-the-beyond/2019/09/transcript-boris-johnsons-remarks-un-general-assembly/
https://www.conservatives.com/news/levelling-up-speech-july-15
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Table A.10: Perplexity scores obtained with fine-tuning on the transcripts from the Rally and Inter-
view employed in Experiment 1 (Section 7.4.2).

Fine-tuning | Test Bigrams | GPT2
Interview-1I 596.03 | 25.00
Interview-II 590.67 20.45
Interview-III 601.66 21.52
Interview-1V 628.43 25.45
Rally Interview-V 549.86 | 21.48
Rally-I 575.04 19.82
Rally-II 612.24 19.78
Rally-III 561.30 19.53
Rally-IV 603.62 19.82
Rally-V 557.89 18.23
Interview-I 433.75 22.67
Interview-II 450.34 20.14
Interview-III 400.06 22.95
Interview-1V 463.66 23.44
Interview Interview-V 406.60 21.78
Rally-I 523.08 | 24.41
Rally-II 523.53 | 26.59
Rally-1II 498.21 23.26
Rally-IV 524.65 | 25.27
Rally-V 494.36 | 22.60

- https://www.rev.com/blog/transcripts/i-have-been-to-the-mountaintop

—-speech-transcript-martin-luther-king-Jjr

- https://www.rev.com/blog/transcripts/the-other—-america-speech-transcript

-martin-luther-king-jr

- https://www.rev.com/blog/transcripts/the-american-dream-july-4th-speech

—-transcript-martin-luther-king—-jr
- https://www.smu.edu/News/2014/mlk-at-smu-transcript—-17marchl966

- https://www.crmvet.org/docs/otheram.htm

URLs of transcripts for Nelson Mandela:

- https://blogs.lse.ac.uk/africaatlse/2013/12/06/full -text -of —nelson

-mandela-speech-at-lse-on-6-april-2000/

- https://www.news24.com/news24/Columnists/GuestColumn/nelson-mandelas
—-speech-on-11-february-1990-i-stand-here-before-you-as-a-humble-servant

-20200210

- https://www.sbs.com.au/news/transcript-nelson-mandela-speech-i-am-prepared

-to-die


https://www.rev.com/blog/transcripts/i-have-been-to-the-mountaintop-speech-transcript-martin-luther-king-jr
https://www.rev.com/blog/transcripts/i-have-been-to-the-mountaintop-speech-transcript-martin-luther-king-jr
https://www.rev.com/blog/transcripts/the-other-america-speech-transcript-martin-luther-king-jr
https://www.rev.com/blog/transcripts/the-other-america-speech-transcript-martin-luther-king-jr
https://www.rev.com/blog/transcripts/the-american-dream-july-4th-speech-transcript-martin-luther-king-jr
https://www.rev.com/blog/transcripts/the-american-dream-july-4th-speech-transcript-martin-luther-king-jr
https://www.smu.edu/News/2014/mlk-at-smu-transcript-17march1966
https://www.crmvet.org/docs/otheram.htm
https://blogs.lse.ac.uk/africaatlse/2013/12/06/full-text-of-nelson-mandela-speech-at-lse-on-6-april-2000/
https://blogs.lse.ac.uk/africaatlse/2013/12/06/full-text-of-nelson-mandela-speech-at-lse-on-6-april-2000/
https://www.news24.com/news24/Columnists/GuestColumn/nelson-mandelas-speech-on-11-february-1990-i-stand-here-before-you-as-a-humble-servant-20200210
https://www.news24.com/news24/Columnists/GuestColumn/nelson-mandelas-speech-on-11-february-1990-i-stand-here-before-you-as-a-humble-servant-20200210
https://www.news24.com/news24/Columnists/GuestColumn/nelson-mandelas-speech-on-11-february-1990-i-stand-here-before-you-as-a-humble-servant-20200210
https://www.sbs.com.au/news/transcript-nelson-mandela-speech-i-am-prepared-to-die
https://www.sbs.com.au/news/transcript-nelson-mandela-speech-i-am-prepared-to-die
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- http://db.nelsonmandela.org/speeches/pub_view.asp?pg=item&ItemID=NMS1522

- https://www.weforum.org/agenda/2013/12/nelson-mandelas—address-to-davos

-1992/

URLs of transcripts for Barack Obama:

- https://www.rev.com/blog/transcripts/barack-obama-farewell-address-transcript

—classic-speech-transcripts

- https://www.rev.com/blog/transcripts/barack-obama-campaign-speech-for

—-joe-biden-transcript-orlando-october-27

- https://www.rev.com/blog/transcripts/barack—-obama-campaign-speech-for

—joe-biden-transcript-miami-fl-november-2

- https://www.rev.com/blog/transcripts/barack-obama-florida-rally-speech

—transcript-for-joe-biden-october-24

- https://www.rev.com/blog/transcripts/barack-obama-campaign-rally-for

—-joe-biden-kamala-harris-speech-transcript-october-21

URLSs of transcripts for Bernie Sanders:

- https://www.rev.com/blog/transcripts/bernie-sanders—ann-arbor—-campaign

—-speech-for-joe-biden-kamala-harris-october-5

- https://www.rev.com/blog/transcripts/bernie-sanders-nh-rally-speech

—for-joe-biden-kamala-harris—-october-3

- https://www.rev.com/blog/transcripts/bernie-sanders—-speech-transcript

—trumps-threat-to-our—-democracy

- https://www.rev.com/blog/transcripts/bernie-sanders—-st-louis-rally-speech

—transcript-march-9-2020

- https://www.vox.com/2019/6/12/18663217/bernie-sanders—democratic—socialism

—-speech-transcript

URLs of transcripts for Donald Trump:

- https://www.rev.com/blog/transcripts/donald-trump—-gastonia-nc-rally

—-speech-transcript-october-21

- https://www.rev.com/blog/transcripts/donald-trump-rally-transcript-tucson

—arizona-october-19


http://db.nelsonmandela.org/speeches/pub_view.asp?pg=item&ItemID=NMS1522
https://www.weforum.org/agenda/2013/12/nelson-mandelas-address-to-davos-1992/
https://www.weforum.org/agenda/2013/12/nelson-mandelas-address-to-davos-1992/
https://www.rev.com/blog/transcripts/barack-obama-farewell-address-transcript-classic-speech-transcripts
https://www.rev.com/blog/transcripts/barack-obama-farewell-address-transcript-classic-speech-transcripts
https://www.rev.com/blog/transcripts/barack-obama-campaign-speech-for-joe-biden-transcript-orlando-october-27
https://www.rev.com/blog/transcripts/barack-obama-campaign-speech-for-joe-biden-transcript-orlando-october-27
https://www.rev.com/blog/transcripts/barack-obama-campaign-speech-for-joe-biden-transcript-miami-fl-november-2
https://www.rev.com/blog/transcripts/barack-obama-campaign-speech-for-joe-biden-transcript-miami-fl-november-2
https://www.rev.com/blog/transcripts/barack-obama-florida-rally-speech-transcript-for-joe-biden-october-24
https://www.rev.com/blog/transcripts/barack-obama-florida-rally-speech-transcript-for-joe-biden-october-24
https://www.rev.com/blog/transcripts/barack-obama-campaign-rally-for-joe-biden-kamala-harris-speech-transcript-october-21
https://www.rev.com/blog/transcripts/barack-obama-campaign-rally-for-joe-biden-kamala-harris-speech-transcript-october-21
https://www.rev.com/blog/transcripts/bernie-sanders-ann-arbor-campaign-speech-for-joe-biden-kamala-harris-october-5
https://www.rev.com/blog/transcripts/bernie-sanders-ann-arbor-campaign-speech-for-joe-biden-kamala-harris-october-5
https://www.rev.com/blog/transcripts/bernie-sanders-nh-rally-speech-for-joe-biden-kamala-harris-october-3
https://www.rev.com/blog/transcripts/bernie-sanders-nh-rally-speech-for-joe-biden-kamala-harris-october-3
https://www.rev.com/blog/transcripts/bernie-sanders-speech-transcript-trumps-threat-to-our-democracy
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A.3.5 Statistics describing data and detailed results for Experiment 2

Table A.11: Figures describing the transcripts employed in Experiment 2: time duration, number of
tokens and number of unique tokens are reported for each such speech transcript.

Subject Transcript || Duration | # Tokens | # Unique Tokens
I 0:32:23 4,647 1,074
11 0:41:39 5,446 1,140
Joe Biden i 0:25:00 | 9,490 1,895
v 0:43:36 6,801 1,381
\Y% 0:34:05 5,211 1,226
1 1:17:37 | 15,200 1,967
I 0:56:17 10,501 1,614
Donald Trump 1 1:43:43 | 20,865 2,300
v 1:13:01 14,056 1,945
\% 1:18:19 | 14,806 1,896
I 0:56:39 5,594 1,479
I 0:38:15 6,298 1,252
Barack Obama 11 0:38:45 5,526 1,153
v 0:45:55 | 6,981 1,312
\Y% 0:36:07 | 5,390 1,159
I 0:35:33 | 4,164 969
I 0:29:51 3,785 849
Bernie Sanders 11 0:34:54 4,451 1,088
v 0:43:27| 5,387 1,039
\% 0:44:46 4,501 1,286
I 0:35:53 | 3,503 944
I 0:17:20 1,679 577
Bill Gates i 0:24:07 | 2,350 779
v 0:22:04 2,152 744
\% 0:30:07 | 2,896 1,018
I 0:40:17 3,844 1,113
I 0:29:45 1,740 617
Nelson Mandela 11T 3:00:00 | 15,682 2,702
v 1:43:21 7,741 1,654
A% 0:40:16 | 3,020 963
I 0:42:51 5,197 1,102
I 0:46: 56 6,471 1,315
Martin Luther King | III 0:43:48 6,287 1,456
v 0:40:38 | 8,256 1,697
\% 0:47:54 6,332 1,324
I 0:51:42 4,397 1,123
I 0:20:35 2,758 764
Boris Johnson III 0:17:47 1,960 659
v 0:17:00 2,375 896
A% 0:38:22 | 4,530 1,273
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Table A.12: Detailed perplexity scores for transcripts employed in Experiment 2.

Subject Transcript || Bigrams | GPT2 Trial 1 | GPT2 Trial 2
I 727.74 27.40 42.29
II 653.82 27.31 43.59
J. Biden 1 612.58 29.33 45.70
v 733.25 28.40 44.01
A% 751.25 27.87 46.28
I 575.04 19.82 42.58
1I 612.24 19.78 44.86
D. Trump 1 561.30 19.64 41.37
v 603.62 19.78 43.29
A% 557.89 18.40 39.94
I 583.17 33.76 40.35
1I 496.75 15.11 36.10
B. Obama 111 543.15 19.30 42.23
I\% 551.97 16.50 38.99
\% 519.50 15.77 38.33
I 580.64 17.17 25.97
1I 628.01 16.40 26.47
B. Sanders | II 616.07 29.61 35.69
v 650.36 22.51 31.64
\% 553.45 26.02 29.76
I 497.05 37.20 43.04
1I 553.34 27.35 38.74
B. Gates 1 425.17 38.75 47.74
v 452.09 41.35 50.71
\4 385.54 29.50 36.32
I 1048.74 44.77 44.40
1I 845.18 29.50 35.69
N. Mandela | III 570.43 40.28 44.18
v 812.68 36.05 38.45
\Y% 842.22 37.78 37.26
1 850.19 31.00 42.84
1I 595.78 16.71 39.54
M. L.King | III 711.06 35.52 49.84
v 737.79 29.24 45.82
\Y 643.43 17.95 37.67
I 391.33 40.76 54.69
1I 418.57 37.87 53.89
B.Johnson | III 435.47 62.44 83.04
v 455.18 53.81 59.71
\% 509.61 58.05 68.19
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