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ABSTRACT
We study the spherical collapse model in the presence of external gravitational tidal shear
fields for different dark energy scenarios and investigate the impact on the mass function and
cluster number counts. While previous studies of the influence of shear and rotation on δc have
been performed with heuristically motivated models, we try to avoid this model dependence
and sample the external tidal shear values directly from the statistics of the underlying linearly
evolved density field based on first order Lagrangian perturbation theory. Within this self-
consistent approach, in the sense that we restrict our treatment to scales where linear theory is
still applicable, only fluctuations larger than the scale of the considered objects are included
into the sampling process which naturally introduces a mass dependence of δc. We find that
shear effects are predominant for smaller objects and at lower redshifts, i. e. the effect on
δc is at or below the percent level for the ΛCDM model. For dark energy models we also
find small but noticeable differences, similar to ΛCDM. The virial overdensity ∆V is nearly
unaffected by the external shear. The now mass dependent δc is used to evaluate the mass
function for different dark energy scenarios and afterwards to predict cluster number counts,
which indicate that ignoring the shear contribution can lead to biases of the order of 1σ in the
estimation of cosmological parameters like Ωm, σ8 or w.

Key words: cosmology: theory - dark energy; methods: analytical

1 INTRODUCTION

Since a decade cosmological observations provide very tight con-
straints on the parameters allowed within a certain class of models.
With this ever increasing precision it is necessary to provide robust
and accurate model predictions for future experiments. Combined
observations of type-Ia supernovae (e.g. Riess et al. 1998; Perlmut-
ter et al. 1999), the cosmic microwave background (e.g. Komatsu
et al. 2011; Planck Collaboration XIII 2015), the Hubble constant
and large-scale structure (e.g. Cole et al. 2005) show that the uni-
verse is spatially flat and expanding in an accelerated fashion. As-
suming the symmetries of standard cosmology and General Rel-
ativity to be true, the accelerated expansion can be described by
the cosmological constant Λ or by introducing a fluid component,
dubbed dark energy (see e.g. Copeland et al. 2006, for a review),
with an equation of state w < −1/3, which in principle can vary
with time. The cosmological constant corresponds to a constant
equation of state w = −1. So far there is no significant evidence
for any departure from Λ.

However, even though the constraints on w are quite tight to-
day, its time evolution is constrained rather poorly. Therefore it is
possible to allow for temporal variations in the equation of state.
Models described by a generic time-varying equation of state are

? e-mail: reischke@stud.uni-heidelberg.de

referred to as dynamical dark energy models. Despite the intense
theoretical effort in revealing the nature of dark energy, the funda-
mental origin of dark energy is still unknown, therefore the majority
of the studies are based on phenomenological assumptions on the
time evolution of the dark energy equation of state. Once this quan-
tity is specified, all the properties of dark energy at the background
level are known. From a theoretical point of view, time-varying
equations of state can naturally be achieved within the framework
of scalar fields. In these models, once their self-interaction poten-
tial is specified, the time evolution of the scalar field is obtained by
solving a Klein-Gordon equation and as consequence also the cor-
responding equation of state can be evaluated. Under the generic
term of scalar field models, we have many sub-classes, such as
quintessence models, phantom models, k-essence, tachyon models
and so forth. Quintessence and phantom models can be accommo-
dated within the minimally-coupled model class and the equation of
state can be either strictly greater than -1 (quintessence) or smaller
(phantom). Dark energy models do not affect only the background
evolution by changing the Hubble factor, but also the evolution of
structures. In addition, even if sub-dominant, dark energy can pos-
sess perturbations for w , −1.

A promising tool to reveal the time evolution of dark energy
observationally is the halo mass function, which enters for exam-
ple in cluster counts (Sunyaev & Zeldovich 1980; Majumdar 2004;
Diego & Majumdar 2004; Fang & Haiman 2007; Abramo et al.
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2 Reischke et al.

2009; Angrick & Bartelmann 2009) or weak lensing peak counts
(Maturi et al. 2010; Maturi et al. 2011; Lin & Kilbinger 2014; Reis-
chke et al. 2016). The halo mass function deals with objects in the
highly non-linear regime and therefore a method is needed to ex-
trapolate the linearly evolved density to the non-linear one. This
is usually done by using the spherical collapse model introduced
by Gunn & Gott (1972) and later extended in several works (Fill-
more & Goldreich 1984; Bertschinger 1985; Ryden & Gunn 1987;
Avila-Reese et al. 1998; Mota & van de Bruck 2004; Abramo et al.
2007; Pace et al. 2010, 2014a). The model assumes perturbations
to be spherically symmetric non-rotating objects which decouple
from the background expansion and thus reach a maximum point
of expansion after which they collapse. In principle they would col-
lapse to a single point. However, in reality the kinetic energy due
to the collapse is converted into random motions of the particles
in the over-dense regions, such that an equilibrium situation (in the
sense of virialized structure, Schäfer & Koyama 2008) is created.
This model is, despite its simplicity, rather successful.

It is therefore important to get some insight into the theoretical
assumptions of this model and to extend it towards more realistic
situations. Especially rotation and shear effects are important ex-
tensions to the collapse model. Mainly rotational effects have been
described in Pace et al. (2014b) which delay the collapse due to
centrifugal forces, thus delaying the collapse of structures lead-
ing to a larger over-density needed for virialized structures. As the
collapse model assumes a homogeneous sphere, shear effects are
usually neglected, however, there can also be shear effects in ho-
mogeneous spheres and as real structures form in over-dense re-
gions, there there will be shear effects due to external tidal fields.
Those, if small enough, would not violate the symmetry assump-
tions of the model. External shear automatically leads to a mass de-
pendence of the fundamental parameter of the spherical collapse,
the critical over-density δc, as light and therefore smaller objects
will feel higher fluctuations in the density field than heavy objects.
In this paper we will investigate the influence of external shear ef-
fects and how it depends on the underlying cosmological model. To
this end we calculate the shear directly from the underlying density
field by using first order Lagrangian perturbation theory, i.e. the
Zel’dovich approximation (Zel’Dovich 1970). We set up a random
process to sample shear values from the statistics of the underlying
density field and investigate how this affects the collapse on differ-
ent scales. This procedure has the advantage that we do not need
to rely on phenomenological models, as we can instead calculate
the tidal shear from first principles as it is for example also done in
angular momentum correlations of large scale structure due to tidal
torquing (Schäfer 2009).

The structure of the paper is as follows. In section 2 we review
the spherical collapse model and show the equations to be solved.
In section 3 we introduce a statistical procedure to obtain tidal shear
values for the collapse. This method is then used in section 4 to cal-
culate the influence of the tidal shear on δc for the standard ΛCDM
model which is later generalized to more complicated dark energy
models in section 5. In section 6 and 7 we investigate the influ-
ence of shear effects on the mass function and on cluster counts
due to the Sunyaev-Zel’dovich effect and how a negligence of tidal
shear effects can bias measurements of cosmological parameters.
We summarize our findings in section 8.
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Figure 1. Normalized distribution of the density contrast δ = ψii for differ-
ent length scales. Note that we show the distribution of σ2

s with an offset
of unity on the right. Clearly the values for δ below R ≈ 10 Mpch−1 would
become too large in order to satisfy the assumption δ � 1.
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Figure 2. Normalized distribution of the tidal shear invariant σ2
s given in

Eq. (12) for different length scales. Note that we show the distribution of
σ2

s with an offset of unity on the right.

2 THE SPHERICAL COLLAPSE MODEL

The spherical collapse model has been discussed by various au-
thors, e.g Bernardeau (1994); Padmanabhan (1996); Ohta et al.
(2003, 2004); Abramo et al. (2007) and Pace et al. (2010, 2014a).
Here we start with the hydrodynamical equations

δ̇ + (1 + δ)∇xu = 0 ,

u̇ + 2Hu + (u · ∇x)u = −
1
a2∇xφ ,

∇2
xφ = 4πGa2ρ0δ ,

(1)

with comoving coordinate x, comoving peculiar velocity u, New-
tonian potential φ, overdensity δ and background density ρ0. The
dot represents a derivative with respect to cosmic time t. Taking the
divergence of the Euler equation and inserting the Poisson equation
yields

δ̇ = − (1 + δ)θ ,

θ̇ = − 2Hθ − 4πGρ0δ −
1
3
θ2 − (σ2 − ω2) ,

(2)
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Figure 3. Distribution of δc in over-dense regions at different redshifts for a radius R = 10 Mpch−1. Left: Contracting regions, i.e. regions with only positive
eigenvalues of the velocity divergence tensor. Right: Regions which are partially expanding and partially contracting.

where we used the decomposition

∇x · [(u∇x)u)] =
1
3
θ2 + σ2 − ω2 , (3)

with the expansion θ = ∇x · u, the shear σ2 ≡ σi jσ
i j and the rota-

tion ω2 ≡ ωi jω
i j. The rotation and the shear tensors are themselves

the antisymmetric and the symmetric traceless part of the velocity
divergence tensor, respectively. They are defined as

σi j =
1
2

(
∂iu j + ∂ jui

)
−
θ

3
δi j

ωi j =
1
2

(
∂iu j − ∂ jui

)
,

(4)

where ∂i ≡ ∂/∂xi. We now use the relation ∂t = aH(a)∂a and f ≡
1/δ which leads to

f ′ =
θ

aH
f (1 + f ) ,

θ′ = −
2θ
a
−

3HΩm

2a f
−

(
1
3
θ2 + σ2 − ω2

)
1

aH
.

(5)

The system in Eq. (5) is solved numerically until f ∼ 10−14 and
then it is extrapolated to zero. This yields the appropriate initial
conditions for the linear evolution of the density contrast which
gives δc. In the classical spherical collapse model, σ2 and ω2 are
neglected. However, their influence has been investigated by Del
Popolo et al. (2013a,b) in the ΛCDM and dark energy cosmologies
and by Pace et al. (2014b) in clustering dark energy models. The
authors employ a heuristic model for the term σ2−ω2 which allows
to study an isolated collapse including a (mass dependent) quantity
α, defined as the ratio between the rotational and the gravitational
term. Quantitatively, the term is

α =
L2

M3RG
, (6)

where L denotes the angular momentum of the spherical overden-
sity considered and M and R its mass and radius, respectively. The
angular term is important for galaxies and negligible for massive
clusters; in particular α ≈ 0.05 for M ≈ 1011 M� h−1 and of the
order of 10−6 for M ≈ 1015 M� h−1. By defining the twiddled quan-
tities θ̃ = θ/H, σ̃ = σ/H and ω̃ = ω/H, the combined contribution
of the shear and rotation term can effectively be modeled by

σ̃2 − ω̃2 = −
3
2
αΩmδ , (7)

leading to the modified Euler equation

θ̃′ +

(
2
a

+
H′

H

)
θ̃ +

θ̃2

3a
+

3
2a

(1 − α)Ωmδ = 0 . (8)

In the notation of this work, Eq. (8) reads

θ̃′ +

(
2
a

+
H′

H

)
θ̃ +

θ̃2

3a
+

3
2a

(1 − α)Ωm

f
= 0 . (9)

As shown by the authors, the effect of the term σ̃2 − ω̃2 is to slow
down the collapse and to decrease the number of objects. This ef-
fect is differential and depends on mass and on redshift. At high
redshifts, modifications are small, while at low redshifts they are
more substantial. In addition, we can appreciate the slowing of the
collapse (now mass dependent) for low mass objects.

In this work we follow a complementary approach. Instead
of trying to model the additional non-linear term, we will derive
only the shear contribution from the statistics of the density field
in linear perturbation theory, since at early times velocities decay
rapidly and vorticity is not sourced in the linear regime. Hence a
direct comparison with the work by Del Popolo et al. (2013a,b);
Pace et al. (2014b) cannot be performed. Note, however that we
can expect an opposite behaviour of the collapse, since it is well
known (Angrick & Bartelmann 2010) that the ellipsoidal collapse
proceeds faster than the spherical collapse.

3 SAMPLING TIDAL SHEAR VALUES

For the tidal shear we assume Zel’dovich velocities (Zel’Dovich
1970), thus approximating the velocity field as a potential flow. For
the trajectories one assumes

xi = qi − D+(t)∂iψ ≡ qi − D+(t)ψ,i , (10)

with the displacement field ψwhich is related to the density contrast
δ via a Poisson relation, ∆ψ = δ, the initial position q and the linear
growth factor D+(t). The velocity is then given by

ẋi(t) = −Ḋ+(t)ψ,i = −H
d ln D+

d ln a
D+ψ,i . (11)

Clearly there is no vorticity in this configuration, due to the per-
mutability of the second derivatives. Thus the only remaining con-

MNRAS 000, 1–12 (2016)
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Figure 4. Distribution of the shear invariant σ2
s for different environments.

We found that the mixed environment, i.e. where σi j has positive and nega-
tive eigenvalues, is much more likely than the contracting or expanding en-
vironment making up for approximately 95% of the sampled values. Note
that we again show the normalized distribution with an offset of unity.

tribution to the spherical collapse is the traceless shear tensor

σ2 ≡ σi jσ
i j = Ḋ2

+(t)
(
ψ,i jψ

,i j −
1
3

(∆ψ)2
)
≡ Ḋ2

+(t)σ2
s , (12)

with ψ,i j ≡ ∂i∂ jψ. In the last step the time evolution was separated
from the constant shear σ2

s . We now sample values for the shear,
ψ,i j directly from the statistics of the underlying density field. To
this end we transform to Fourier space and use Poisson’s equation
leading to

ψ,i j =

∫
d3k

(2π)3

kik j

k2 δ(k) exp(ikx) . (13)

However, the correlation between the density field and the tidal
shear is complicated in these coordinates. Following Regős & Sza-
lay (1995) and Heavens & Sheth (1999) we consider the density
peaks symmetric about the origin on the z-axis and introduce di-
mensionless complex variables

yn
lm =

√
4π

il+2n

σl+2n

∫
d3k

(2π)3 kl+2nδ(k)Ylm(k̂) exp(ikx) , (14)

with the direction vector k̂ = k/k andσi being the spectral moments
of the matter power spectrum

σ2
i =

1
2π2

∫
dk k2i+2P(k), (15)

while Ylm are spherical harmonics. We obtain a linear relation
(Schäfer & Merkel 2012) between yn

lm and the tidal shear values
ψ,i j

σ0y−1
20 = −

√
5
4

(
ψ,xx + ψ,yy − 2ψ,zz

)
,

σ0y−1
2±1 = −

√
15
2

(
ψ,xz ± iψ,yz

)
,

σ0y−1
2±2 =

√
15
8

(
ψ,xx − ψ,yy ± 2iψ,xy

)
,

σ0y0
00 =

(
ψ,xx + ψ,yy + ψ,zz

)
.

(16)

In particular, the covariance in this basis is trivial, since the auto-
correlation matrix is diagonal in l and m:〈
yn

lm(x)yn′
l′m′ (x)∗

〉
= (−1)n−n′ σ2

l+n+n′

σl+2nσl+2n′
δll′δmm′ . (17)

Thus, in the yn
lm basis the tidal shear values are uncorrelated Gaus-

sian random variables with unit variance. We obtain the tidal shear
values in physical coordinates by inverting the mapping

σ0α = Mψ , (18)

where the six dimensional vectors α and ψ bundle the variables in
spherical and physical coordinates from Eq. (16) respectively

αT =
(
y0

00, y
−1
20 , y

−1
21 , y

−1
2−1, y

−1
22 , y

−1
2−2

)
,

ψT =
(
ψ,xx, ψ,yy, ψ,zz, ψ,xy, ψ,xz, ψ,yz

)
.

(19)

The inverse mapping M−1 is then given by

M−1 =



1/3 −
√

5
15 0 0

√
30

30

√
30

30

1/3 −
√

5
15 0 0 −

√
30

30 −
√

30
30

1/3 2
√

5
15 0 0 0 0

0 0 0 0 −
√

30
30 i

√
30

30 i
0 0 −

√
30

30 −
√

30
30 0 0

0 0
√

30
30 i −

√
30

30 i 0 0


(20)

Note that the components yi
l±m are Hermitian conjugate variables,

thus preserving the real nature of the shear field. The amount of
tidal shear acting on a halo depends on the length scale R(M) of
the halo and thus on its mass. In our model a halo will only be
affected by the shear caused by structures with length scale L &
R(M). Therefore we introduce a cut-off for the power spectrum,
suppressing high frequencies

P(k)→ P(k)W2
R(k), (21)

with WR(k) = exp(−k2R2/2). The mass scale is obtained via M =
4π
3 ρcritΩmR3, where ρcrit = 3H2/(8πG) is the critical density. Here

all quantities are evaluated today, as the time dependence is taken
into account via the time derivative of the growth factor in Eq. (10).
From the sampled shear values ψ,i j the shear invariant σ2 can be
calculated using Eq. (12).

Clearly for low mass haloes shear becomes more important as
the fluctuations in the surrounding density field are larger. Since our
model works with a potential flow for the velocities, the variance
σ0 must remain small compared to |δ| = 1, showing the validity of
the treatment presented here above a certain scale only on which
the evolution of the density contrast can safely be considered as
linear. In Figure 1 we show the distribution of the sampled den-
sity contrast δ = ψii for different mass scales. It is easy to see that
smoothing of the density field on smaller scales leads to a broader
distribution of delta. Especially this shows that R ≈ 10 Mpch−1 is
the smallest scale at which the approximation used here is applica-
ble as higher order terms will dominate the perturbative expansion.
Consequently the velocity field will no longer be a potential flow.
Conversely larger scales R(M) will lower the values of σ2

s , thus
high mass halos will be less affected compared to low mass ones.
The distribution of the remaining tidal shear invariant σ2

s (cf. Eq.
(12) for details), again for different scales, can be seen in Figure 2.

In Figure 4 we show how the invariant σ2
s distinguishes be-

tween different environments. These are classified by the charac-
teristic of the shear tensor σi j. Due to ∆ψ = δ, positive eigenvalues
correspond to a collapsing region, while negative eigenvalues cor-
respond to an expanding region. The other two possibilities, i.e.

MNRAS 000, 1–12 (2016)
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including the shear as a function of redshift and object scale which is related to the mass of an object via M = 4π
3 R3ρ0, with ρ0 = ρcritΩm. Clearly the effect

of external shear is most pronounced at low redshifts and low masses, while it converges to the standard ΛCDM value for the other cases.

one or two positive eigenvalues, correspond to a mix of both ef-
fects. Clearly the tidal shear invariant does not distinguish between
contracting and expanding regions, as only the square of the trace-
less shear tensor enters into the collapse equation. The same is true
for the mixed environments. Thus, a fully contracting environment
has the same effect on the collapse as a fully expanding one. As ha-
los form in over-dense regions, we are rather interested in a shear
value provided the density contrast in this region satisfies δ > 0.
It is important to note that no correlations enter into the model by
conditionalizing the random process in such a way. The latter effect
is shown in the right panel of Figure 4 where the joint distribution
of σ2

s can be seen to be symmetric around δ = 0 for different values
of σ2

s as expected from the Gaussian assumption and from Figure 1.
It is therefore not harmful to neglect all values of the shear matrix
which describe an under-dense region. Note that a halo can also
form in a large under-dense region. Our results would, however,
not be influenced by this effect as we work in the linear regime.

4 EFFECT OF MASS AND ENVIRONMENT

The critical linear over-density δc in a homogeneous sphere de-
pends on the initial conditions for the linear equation. Those are
derived from the fully non-linear equation which in principle in-
cludes shear and rotation effects. Within our model δc will be influ-
enced by the surrounding shear which is encapsulated in the invari-
ant σ2

s . As we have seen in Sect. 3 the shear values are distributed
randomly due to the underlying density field with amplitudes given
by the considered scale. Consequently δc will also exhibit a distri-
bution rather than a distinct value.

The distribution of δc for different collapse redshifts can be
seen in Figure 3. Contracting environments get less support by tidal
shear than mixed environments which is due to the fact that the
shear is larger if not all directions are contracting. The high end of
both distributions falls off very rapidly which is due to the distribu-
tion σ2

s growing steeply towards σ2
s = 0. The zero point marks the

value for δc obtained without tidal shear because σ2 only enters as a
positive contribution in Eq. (5) and thus a non-vanishing shear will
move the initial conditions for the linear equation to lower values
of δ resulting in a smaller value for δc. Furthermore the distribution
of δc becomes narrower if the collapse redshift increases. This is

due to the evolution of σ2 with redshift: physically shear becomes
more important with time due to the growth of the cosmic density
field. Note that this effect occurs only for z larger than 0.3 since the
time evolution of σ2 in Eq. (11) has a maximum at this redshift. It
coincides with the time when the cosmological constant starts dom-
inating the expansion of the universe, slowing down the growth of
structures again.

Having evaluated the distribution of δc we can define an effec-
tive δ̄c which is taken to be the mean:

δ̄c(M) =

∫
dδc δc p(δc,M). (22)

This mean value is now a function of the mass of the considered
halo, which is carried by the amplitude of the density fluctuations
on scales larger than the corresponding scale R(M) of the halo and
of the redshift via the collapse equation. Figure 5 shows δ̄c as a
function of the halo mass in units of M�h−1 and of the redshift. As
expected from the previous discussion, δc is mostly influenced at
small radii and small redshifts as shear effects are most important
in this regime.

5 EFFECT OF COSMOLOGY

Previous works on the effects of shear and rotation on the param-
eters of the spherical collapse model showed that the behaviour of
these additional non-linear terms is mildly affected by the change
of the background cosmological model. While overall their mutual
combination had the same qualitative effect (increase in δc and neg-
ligible effect at high masses), differences of the order of several per-
cent appeared across different cosmological models considered. In
this section we analyse the effects of dark energy on the linear ex-
trapolated density parameter δc and on the virial overdensity when
we add the contribution of the shear field as outlined in the previous
sections. The models here investigated have been explored before
with the same purpose, albeit, as said before, a direct comparison is
not possible at this stage. For more details on the models we refer
the reader to Pace et al. (2010) for homogeneous dark energy and
to Pace et al. (2014b) for clustering dark energy models. We will
explore the effect of dark energy inhomogeneities in a following
work.

MNRAS 000, 1–12 (2016)
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Table 1. Parameter values for the dark energy models with dynamical
equation-of-state parameter.

Model w0 wm am ∆m

2EXP -0.99 0.01 0.19 0.043
INV1 -0.99 -0.27 0.18 0.5
INV2 -0.99 -0.67 0.29 0.4
CNR -1.0 0.1 0.15 0.016

SUGRA -0.99 -0.18 0.1 0.7

In particular we will explore the effect of the tidal shear in
models described by the following equation-of-state parametriza-
tion: three models with constant equation of state (wDE = −1 for
the cosmological constant Λ, wDE = −0.9 for quintessence mod-
els and wDE = −1.1 for phantom models), and six models with a
dynamical equation of state:

• the 2EXP model (Barreiro et al. 2000),
• the CNR and the SUGRA model (Copeland et al. 2000),
• the CPL model (Chevallier & Polarski 2001; Linder 2003),
• the INV1 and INV2 models (Corasaniti & Copeland 2003;

Corasaniti 2004; Sánchez et al. 2009).

In Figure 6 we show for clarity the dynamical dark energy models
used in this work. The CPL and the INV2 models show a very
gentle increase of the equation-of-state parameter while the models
SUGRA and INV1 present a more rapid change of the equation
of state. The CNR model is approximately constant at low redshifts
and is characterized by a sudden change for a ≈ 0.1. All the models
are approximately constant at small scale factors and wDE ≈ −1 for
a ' 1, as inferred from observational data.

The functional form for the CPL model is

wDE(a) = w0 + wa(1 − a) , (23)

and we used w0 = −1 and wa = 0.15.
The other models can be well described by the following four-

parameter formula:

wDE = w0 + (wm − w0)
1 + e

am
∆m

1 + e−
a−am
∆m

1 − e−
a−1
∆m

1 − e
1

∆m

. (24)

In Table 1 we summarize the values of the parameters used.
Except for the EdS model where we assumed Ωm = 1, we will

use for all the dark energy models the following set of parameters
(assuming a flat spatial geometry): Ωm = 0.32, Ωde = 0.68, h =

0.67 and ns = 0.966.

5.1 Spherical collapse parameters

In this section we will describe the effects of the introduction of
the tidal shear on the two main parameters of the spherical collapse
model: the linearly extrapolated overdensity δc and the virial over-
density ∆V. The first one is a very important theoretical quantity
usually used in the determination of the mass function according to
the prescription of Press & Schechter (1974) and Sheth & Tormen
(1999). The second one instead is used both in observations and
in simulations to determine the mass and the size of the object. For
details on how to evaluate them, we refer to Pace et al. (2010, 2012,
2014a,b).

In Figure 7 we show our findings for the parameter δc in sev-
eral dark energy models, with respect to the ΛCDM model and to
the respective values in absence of tidal shear. We refer the reader

10−510−410−310−210−1100

a

-1.5

-1.0

-0.5

0.0

w
D

E
(a

)

2EXP
CNR
CPL
INV1
INV2
SUGRA

Figure 6. Time-dependent equations of state for the models used in this
work as a function of the scale factor a. The light-green dashed-dot black
and the magenta short-dashed lines represent the model INV1 and INV2,
respectively. The blue curve the 2EXP model. The CPL and the CNR mod-
els are shown with the red dashed and the orange dashed curve, respectively.
Finally the SUGRA model is shown with the cyan dotted curve.

to the caption for the different colours and line-styles adopted for
each model. In the left panels we show models with constant equa-
tion of state and in the right panels some dynamical models (i.e.
with a time-varying equation-of-state parameter.)

From a first qualitative analysis, results are as expected. Tidal
shear favours the collapse and the linearly extrapolated overden-
sity parameter δc is smaller than in the spherically symmetric case
with no external tidal shear (compare the upper panels with values
at z = 0 in the bottom panels). The linear overdensity obviously
depends on the halo mass now; stronger effects take place at low
masses, at high masses the effect is negligible and the result con-
verges to the standard spherically symmetric solution. This is par-
ticularly evident for the EdS model (blue dotted curve). Note how-
ever that differences from the standard case are quite small, below
the 1% level. In the middle panel we fix the mass of the collaps-
ing object at M = 1014 M�/h, so to amplify the effect of the tidal
shear, and we study the time evolution of the parameter δc. It is il-
luminating to compare it with the time evolution of the spherically
symmetric case (bottom panel) and despite the results are not new
since already derived and discussed previously in Pace et al. (2010),
we report them once again for clarity. First of all notice that due to
the tidal shear, for the EdS model δc becomes time-dependent. Ef-
fects of the introduction of the ellipticity are more pronounced at
low redshifts and they become negligible at high redshift, where
the new solution converges to the standard value. Similar results,
both qualitatively and quantitatively are obtained for generic dark
energy models. All the models analysed show lower values for δc,
especially at the lower end of the mass interval considered. At high
masses values converge to the spherical case. Effects of the tidal
shear are most evident at low redshifts and negligible at high red-
shifts. For z & 3, the tidal shear contribution is totally negligible.
Also for dynamical dark energy models, deviations from the stan-
dard case are below 1%.

In Figure 8 we present results for the virial overdensity param-
eter ∆V. Interestingly, this quantity is insensitive to the introduction
of the tidal shear and its time evolution is practically identical to
what observed for the standard spherically symmetric case. This
implies that for the virial overdensity, the solution of the standard
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Figure 7. Upper panels: effects of the tidal shear on δc at z = 0 for different values of the mass of the collapsing sphere. Middle panels: time evolution of δc for
a mass of M = 1014 M�/h. Bottom panels: time evolution of the linear extrapolated overdensity parameter for the standard spherical collapse model (without
the inclusion of the tidal shear). Left (right) panels refer to constant (dynamical) equations of state. The red solid line refers to the reference ΛCDM model.
For models with constant equation of state, the blue dotted curve shows an EdS model, while the black dashed-dot (cyan solid) curve shows a quintessence
(phantom) model with wDE = −0.9 (wDE = −1.1). For dynamical dark energy models, the black dotted (magenta dashed-dot) curve represents the INV1
(INV2) model; the blue dashed curve the 2EXP model; the CPL (CNR) model with the red dashed-dot (magenta solid) curve and finally the SUGRA model
with the cyan dashed-dot-dotted curve.

theoretical model is an excellent approximation also for the case
including the tidal shear. The reason why the results of the two
approaches are identical, is due to the fact that the non-linear over-
density at turn-around, ζ, is insensitive to the tidal shear. Also note
that in general, differences between the dark energy models and the
ΛCDM model are very limited.

Our results for δc are qualitatively similar to the works of Del
Popolo et al. (2013a) and Del Popolo et al. (2013b), albeit with
some important differences and, as discussed before, with our for-
malism we can not do a quantitative comparison. First of all, δc

shows a mass dependence similar to the works mentioned. Effects
of the modified collapse increase with decreasing mass and at the
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Figure 8. Upper panels: time evolution of ∆V for a mass of M = 1014 M�/h. Bottom panels: time evolution of the virial overdensity for the standard spherical
collapse model. Left (right) panels refer to constant (dynamical) equations of state. Line-styles and colours are as in Figure 7.

very high mass tail these modifications become negligible. Regard-
ing the time dependence, also in our case larger modifications take
place at low redshifts and at high enough z, the spherical case is
an excellent approximation. In Del Popolo et al. (2013a) and Del
Popolo et al. (2013b), the authors showed an increase in δc rather
than a decrease. However, in their heuristic model the dominant
term was given by the rotation tensor, hence we would expect a
slow-down of the collapse. It would be therefore interesting to find
an approach, similar to what we did here, to take into account also
the rotation term and then compare the two different approaches.
The situation is completely different for the virial overdensity ∆V:
in our case it is totally independent of the tidal shear, hinting to-
wards the hypothesis that probably the rotation is more important
or that it is sensitive to the particular prescription adopted. Since
the virial overdensity ∆V is largely independent of the tidal shear,
it is interesting to examine why this happens. First of all it is useful
to notice that our values for the tidal shear are much smaller than
the ones used by Del Popolo and collaborators. To show this, it is
sufficient to evaluate the relative strength of the shear term with re-
spect to the Poisson term. In other words we are giving an estimate
of the parameter α used in Del Popolo et al. (2013a,b). We find that
in this work, α ' 10−8, while in previous works it was of the order
of few per mill for an object of 1014 M�/h.

To have a physical insight of this, we recall the definition of
the virial overdensity. Note that we assume it with respect to the
critical density, but the same result would apply if we would define

it with respect to the background density. The virial overdensity is
defined as

∆V = ζ

(
x
y

)3

, (25)

where ζ = δ(ata) + 1 is the overdensity at turn-around, x = a/ata

is the scale factor normalised at the turn-around and finally y =

Rvir/Rta is the virial radius normalized to the turn-around radius.
As σ2 enhances the collapse, ζ is smaller than the perfectly spheri-
cally symmetric case, as we need a smaller initial overdensity δi to
reach the collapse at zc. But ζ is evaluated only in the mildly non-
linear regime, therefore it is only slightly smaller and the relative
contribution of the σ2 term compared to the Poisson term (the α
coefficient) is to be about a few per mill at turn-around, in perfect
quantitative agreement with our findings about the change of ∆V.

On the other hand zta is slightly larger, but the effect is really
small. The virialisation condition leading to y = Rvir/Rta does not
directly depend onσ2, but only indirectly via zta. By Taylor expand-
ing ∆V around the spherically symmetric case (σ2 = 0), we have
the following relations (the index 0 refers to the absence of shear):

∆V = ∆V,0

(
1 +

δζ

ζ0
+ 3

δzta

1 + zta,0
− 3

δy
y0

)
, (26)

where, for a ΛCDM model at zc = 0, we have:

δζ

ζ0
' −0.015 ,

δzta

1 + zta,0
' 0.0014

δy
y0
' −0.0047 .
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It is therefore clear that albeit extremely small, the dominant con-
tribution is due to the change in ζ, making as expected the virial
overdensity only slightly smaller than in the spherical case.

It is also interesting to make a more direct comparison with
the ellipsoidal collapse. One of the goals of this work is to establish
whether a Press-Schechter formulation of the mass function with
the corrections induced on δc by the tidal shear tensor could give
predictions closer to a Sheth-Tormen formulation with the standard
δc values. According to Bond & Myers (1996), the collapse time
depends on the ellipticity e and prolaticity p and the dependence of
the collapse threshold of an ellipsoidal region can be well approxi-
mated by the solution of (Sheth et al. 2001)

δec

δsc
= 1 + β

[
5(e2 ± p2)

δ2
ec

δ2
sc

]γ
, (27)

where δec and δsc are the values of the critical overdensity for the
ellipsoidal and spherical case, respectively and β and γ are parame-
ters to be fitted to the results. Doroshkevich (1970) and Sheth et al.
(2001) found that

δec = δsc

[
1 + β

(
σ(M)2

δsc

)γ]
, (28)

with β = 0.47 and γ = 0.615. With σ(M) of the order unity, δec

is about 25% - 30% bigger than δsc. We can therefore conclude
that the tidal shear will have small effects on the mass function, as
shown later in Figure 9.

6 MASS FUNCTION

The halo mass function describes the differential abundance of ob-
jects with mass M at redshift z. Working within the theory of Gaus-
sian random fields, the main ingredient is the comparison of fluctu-
ations of the linearly evolved density field with δc. Objects exceed-
ing δc on a certain scale R(M) are then counted as clusters. The
fluctuations of the density field are described by the variance σR of
the underlying random field filtered with a top-hat having a certain
scale. Press & Schechter (1974) showed that the mass function (PS)
has the form

n(M, z) =
2ρ0

πM
δc(z)
D+σR

∣∣∣∣∣∂ lnσR

∂M

∣∣∣∣∣ exp
(
−

δ2
c(z)

2D2
+(z)σ2

R

)
, (29)

where the growth factor D+ accounts for the linear evolution. More
elaborate forms of the mass function, fitting numerical N-body sim-
ulations better, are given in Sheth & Tormen (1999) or Jenkins et al.
(2001). The important functional form for our purpose is however
given by the term

δc(z)
D+σR

exp
(
−

δ2
c(z)

2D2
+(z)σ2

R

)
, (30)

where we replace

δc(z)→ δ̄c(M, z) , (31)

i.e. we insert the effective δc. This has important consequences:
Firstly, δc changes with the mass which will lead to a different form
of the mass function. Furthermore, the shear causes δc to be smaller
than without shear as it only supports the collapse. Due to the func-
tional form of the mass function we therefore expect more mas-
sive haloes in the mass regime where the exponential factor domi-
nates the linear one. On smaller scales, however, the linear term will
dominate, thus causing the mass function to tend to smaller values.
The reason for this behaviour is that small haloes can form more

massive haloes more easily, thus yielding fewer smaller objects.
Finally the time dependence of the shear is different from the lin-
ear growth of σR, we thus expect different impacts of the shear on
different redshifts which in principle can make ΛCDM and wCDM
models degenerate.

We now want to infer the influence of the tidal shear on the
mass function for the several dark energy models analysed in this
work. To do so, we evaluate the cumulative comoving number den-
sity of objects above a given mass at z = 0. For all the models
we assume σ8 = 0.776. This is done not to introduce volume and
normalization effects that would mask the contribution of the tidal
shear, that, as we will see, amounts to few percent in a ΛCDM
model.

We present our results in Figure 9, where we show the ratio
between the dark energy and the reference ΛCDM model. In the
left panels we show the ratio between the models with and without
tidal shear field while in the right panels we show the ratio between
the dark energy and the ΛCDM model with tidal shear field.

By inspecting the left panels, we realize that, as expected, tidal
shear has a modest contribution, usually growing with increasing
mass. The effect is of the order of few percent at the lower limit of
applicability of our formalism (M ≈ 1014 M�/h) and it increases up
to 10% for a model with constant wDE = −0.9 at very high masses
(M ≈ 1016 M�/h). The model being least affected is the EdS, some-
how in agreement with what found for the spherical collapse pa-
rameter δc. Interestingly, the SUGRA model shows an increase with
mass up to M ' 1015 M�/h and a slow decrease to bring the model
with tidal shear close to the standard one. Note that however dif-
ferences are never bigger than about 3% for this model. Also note
that, except for the model with constant wDE = −0.9, all the other
models show an effect less pronounced in the high mass tail than
the ΛCDM model and all the models, except for the EdS one, are
identical to the ΛCDM model up to masses of ' 1015 M�/h.

In the right panels we show the ratio between the dark en-
ergy models and the ΛCDM one, both with the effects of the tidal
shear field included. Results are both qualitatively and quantita-
tively as expected. For models with constant equation of state, the
quintessence (phantom) model predicts more (less) objects with re-
spect to the ΛCDM model and differences grow increasing the halo
mass. All the dynamical dark energy models are in the quintessence
regime and we see, as expected, more objects than the ΛCDM one.
The CNR model behaves essentially as the ΛCDM model and the
models CPL and 2EXP are practically indistinguishable and pre-
dict about 5% more objects than the ΛCDM one. Major differences
arise for the SUGRA and the INV1 model.

The mass function described in Sheth & Tormen (1999) was
introduced, as said above, to have a better match with N-body simu-
lations. To do so, the authors incorporated the effect of shear in their
calculations within the formalism of the ellipsoidal collapse model.
The main quantity characterising the mass function is still the ratio
δc/D+ and effects due to the ellipsoidal collapse are incorporated
directly in functional form of the mass function. We can therefore
try to answer the following question: Will the Press-Schechter mass
function approximate better the Sheth-Tormen mass function by
using relation (31)? The idea behind that is in principle incorpo-
rating the tidal shear effects into the linear overdensity parameter
and making it mass-dependent could compensate the necessity of
modifying the functional form of the mass function. However, as
one can see already in Figure 7, the influence on the mass function
will only be a few percent. Accordingly it will of course improve
the agreement between the Sheth Tormen mass function and the
PS mass function, nonetheless this improvement is rather marginal
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Figure 9. Ratio of the cumulative comoving number density of objects above mass M evaluated at z = 0. Left column: ratio between the expected number
counts of the models with and without tidal shear contribution. Right column: ration between the dark energy and the ΛCDM model taking into account the
effects of the tidal shear. Upper panels show results for the EdS model and dark energy models with constant equation of state (wDE = −0.9 and wDE = −1.1).
Lower panels show results for dynamical dark energy models. Line-styles and colours are as in Figure 7.

with respect to the differences of the two mass functions at the high
mass end. This can also be seen from the elliptical collapse model
where the effective influence on δc is much larger than in our case
leading to a big change in the number counts due to the exponen-
tial tail for massive objects including the collapse threshold (see
subsection 5.1 for a more detailed discussion).

7 CLUSTER COUNTS

From the mass function, cluster counts can be calculated, which can
then be compared to observational data. Using Sunyaev-Zel’dovich
cluster surveys (Sunyaev & Zeldovich 1980), the number of objects
exceeding a mass Mmin in a redshift bin zi is given by (Majumdar
2004)

N(zi) ≡ Ni = 4π fsky

∫ zi+∆zi/2

zi−∆zi/2
dz

dV
dz

∫ ∞

Mmin(z)
dM n(M, z) , (32)

where fsky is the fraction of the sky. Mmin has a redshift dependence
included. Assuming a Gaussian likelihood, the log-likelihood is
given by χ2:

2χ2 ≡ L =
∑

i

(Ni − 〈Ni〉)2

Ni
, (33)

where we sum over all redshift bins and Poisson errors are assumed.
〈Ni〉 is the model dependent expected number of objects in the i-
th bin, while Ni describes the data. We chose redshift bins with
∆z = 0.02 ranging from zmin = 0.01 to zmax = 2. For simplicity we
assume Mmin = 1014h−1 M� to be redshift independent. The mock
data is sampled from a Poisson distribution with mean Ni evaluated
at the fiducial cosmology with Ωm0 = 0.3, ΩΛ = 0.7, σ8 = 0.8,
w0 = −1 and wa = 1 and including shear effects in the mass func-
tion, cf. Eq. (31). A cosmological model without shear effects is
fitted to this data, leading to biases in the cosmological parameters.

In Figure 10 we show the resulting biases in parameter space.
The red dot marks the fiducial cosmology at which the data was
sampled from a mass function including tidal shear via δc. In con-
trast the black dot marks the best fit value of cosmological models
without shear effects acting on δc. Ignoring shear effects accord-
ingly leads to wrong cosmological parameters, which are shifted by
∼ 1σ with respect to the true values for both (Ωm, σ8) and (w0,wa).

8 CONCLUSION

In this work we investigated the influence of external tidal shear
effects on the spherical collapse model using first order Lagrangian
perturbation theory. The shear is evaluated directly from the statis-
tics of the underlying density field in which the halo forms and
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Figure 10. Bias on cosmological parameters for redshift cluster counts. Parameters not shown in the respective plot are fixed to their fiducial values. The red
dot marks the fiducial cosmology with shear.

therefore it does not need any further assumptions. Clearly, we can-
not include rotational effects with our formalism, as the rotation
vanishes identically for a potential flow, however for the scales in-
vestigated the assumption of linear growth is still valid, implying
that, even if initial rotation was present (which would require third
order Lagrangian perturbation theory) it would decay as the halo
forms. In this sense our Ansatz for the shear is self-consistent.

In contrast, shear effects become more important for lower
redshifts, as also the structures in the vicinity of the collapsing ob-
jects grow, thus increasing the curvature of the potential. We sum-
marize our findings as follows:

(i) External tidal shear supports the spherical collapse, which
can be understood by noticing that virialized objects form in over-
dense regions in the first place. The effect is largest at small masses
and low redshifts.

(ii) The effect on the important collapse parameter δc is of the
percent level for both ΛCDM and more general dark energy mod-
els. Furthermore the influence on the virial overdensity ∆V is very
small and it is nearly indistinguishable from a collapse without ex-
ternal shear. The reason for this is mainly that the virial overdensity
is basically evaluated using the time at turn-around. At this time the
evolution is only in the mildly non-linear regime, therefore shear
effects are not important.

(iii) Gaining a mass dependence due to our formalism, the in-
fluence on the mass function is two-fold. At lower masses the lin-
ear term dominates the exponential, suppressing the occurrence of
lighter objects. Furthermore the influence of δc is largest at high
masses, as the exponential tail dominates there. However, the effect
of shear on δc becomes smaller for higher masses. The mentioned
effects leads to a change of the mass function of roughly 2%.

(iv) The mass dependence translates into differences also in the
cumulative number counts. Tidal shear affects number counts of
massive halos of only few percent when compared to the corre-
sponding model without it. When compared to the ΛCDM model
with tidal shear, results are qualitatively and quantitatively the same
as without tidal shear.

(v) Neglecting the shear in the estimation of cosmological pa-
rameters using number counts, e.g. in redshift space, can lead to
1σ biases on cosmological parameters such as Ωm, σ8, w0 and wa.

(vi) The bias in the cosmological parameters is such that the in-
ferred σ8 (Ωm) is higher (lower) than without and a ΛCDM model

results into a dynamical phantom model for a ≈ 1. The increase
in σ8 is in the right direction to at least alleviate the tension be-
tween the power spectrum normalization at late and early times,
even if the amount is not sufficient. Remember however, that we
neglected the rotation contribution and this could either balance
or strengthen the shear contribution. Also the resulting phantom
model is in agreement with SNIa observations, but at this stage we
cannot draw any firm conclusion.

(vii) Previous works on the extended spherical collapse model
introduced the effect of shear and rotation with heuristically moti-
vated models (Del Popolo et al. 2013a). In this model, both shear
and rotation are combined into a single term that depends on mass
and result into a modification of the Poisson term, but the rotation
term has a predominant role with respect to the shear. While a di-
rect comparison cannot be made, our approach has some points in
common and some major differences. While both approaches lead
to a mass dependent spherical collapse, we find that effects of the
shear are at percent level, contrary to what found in previous works.
This leads to the question of the importance of the rotation and of
its effective modelization.
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