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Abstract. We investigate in this article regular Heyting algebras by means
of Esakia duality. In particular, we give a characterisation of Esakia spaces
dual to regular Heyting algebras and we show that there are continuum-
many varieties of Heyting algebras generated by regular Heyting algebras.
We also study several logical applications of these classes of objects and
we use them to provide novel topological completeness theorems for in-
quisitive logic, DNA-logics and dependence logic.
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1. Introduction

A Heyting algebra is said to be regular if it is generated by its subset of
regular elements, i.e. elements = which are identical to their double negation
——z. In this article we investigate regular Heyting algebras from the viewpoint
of Esakia duality and we establish several connections to intermediate logics,
inquisitive logic, dependence logic and DNA-logic [8,16,35].

Regular Heyting algebras have recently come to attention for their role
in the algebraic semantics of inquisitive logic [7] and more generally of so-
called DNA-logics [8,30]. DNA-logics, for double negation on atoms, make for
an interesting generalisation of inquisitive logic which arises when consider-
ing translations of intermediate logics under the double negation map. More
precisely, DNA-logics are those set of formulas L™ which contain a formula ¢
whenever the intermediate logic L contains ¢[=p/p], namely the formula ob-
tained by replacing simultaneously p by —p for any variable p. Such logics were
originally introduced in [27] and it was shown already in [11] that inquisitive
logic is a paradigmatic example of them.
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Regular Heyting algebras also play a role in dependence logic. The con-
nection between the team semantics of dependence logic and Heyting algebras
was originally pointed out in [1, Section 3] and it was later proved in [31] that
suitable expansions of regular Heyting algebras provide an algebraic semantics
to propositional dependence logic. It was shown in [28] that such algebraic
semantics, both for inquisitive, dependence and DNA-logics, are unique in the
sense provided by a suitable notion of algebraizability for non-standard logics.

In this article we supplement the previous work on the subject by investi-
gating regular Heyting algebras from the perspective of duality theory. Firstly,
in Section 2, we review Esakia duality and the previous results on inquisitive
and DNA-logics. In Section 3 we provide detailed proofs for several folklore re-
sults on the relation between regular clopen upsets and the Stone subspace of
maximal elements of an Esakia space.

In Section 4 we consider at length the main question of this article and we
provide two characterisations of (finite) Esakia spaces dual to (finite) regular
Heyting algebras. In Section4.1 we give a first characterisation of finite regu-
lar Esakia spaces in terms of p-morphisms, while in Section 4.2 we provide a
necessary condition for an arbitrary Esakia space to be regular based on suit-
able equivalence relations, and we also give an alternative description of finite
regular Esakia spaces. These characterisations allow us to consider a problem
originally posed to us by Nick Bezhanishvili in a personal communication: how
many varieties of Heyting algebras are generated by regular Heyting algebras?
In Section5 we answer this question by showing that there are continuum-
many of such varieties, complementing the result from [8] showing that the
sublattice of regularly generated varieties extending ML is dually isomorphic to
w+ 1.

Finally, in Section 6, we apply the previous results to the context of DNA-
logics, inquisitive and dependence logic and we provide a topological semantics
to these logical systems. We conclude the paper in Section 7 by highlighting
some possible ideas of further research.

2. Preliminaries

We recall in this section the preliminary notions needed later in the paper.
We review the algebraic semantics of intermediate and DNA-logics, the Esakia
duality between Heyting algebras and Esakia spaces, and fix some notational
conventions used throughout the paper. We refer the reader to [9,10,19,25] for
a detailed presentation of these notions and results.

2.1. Orders, lattices, Heyting algebras

For (P, <) a partial order and Q C P we indicate with QT and Q' the upset

and downset generated by @ respectively, that is
Q'={peP|3geQq<p} Q' ={peP|3qeQq>p}

For p € P, we write p! and p' for the sets {p}' and {p}! respectively. We
call a set @ such that Q = Q' an upset, and similarly we call a set R such
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that R = R! a downset. Given a finite poset P, we define the depth depth(p)
of an element p € P as the size of a maximal chain in p' \ {p}. We define
depth(P):=sup{depth(p) + 1 | p € P} and width(P) as the size of the greatest
antichain in P.

A Heyting algebra is a structure (H, A,V,—,1,0) where (H,A,V,1,0) is
a bounded distributive lattice and — is a binary operation on H such that
for every a,b,c € H we have a < b — ¢ if and only if a A b < ¢. Henceforth,
we will write H to indicate a Heyting algebra (i.e., omitting the signature) for
brevity. We use the symbol HA to indicate the class of all Heyting algebras.
The class HA of Heyting algebras is equationally defined, that is, a variety.
With a slight abuse of notation, we also use the notation HA to indicate the
category of Heyting algebras, whose objects are Heyting algebras and whose
arrows are algebra homomorphisms.

A Boolean algebra B is a Heyting algebra satisfying the equation x = ——x
for all z € B. We write BA for both the class and the category of Boolean
algebras. For any Heyting algebra H, we say that x € H is regular if x = —-—x
and we let H :={x € H | v = =—a}. One can verify that H- is a subalgebra of
H with respect to its {A, —,0, 1}-reduct and that it forms a Boolean algebra
with join zVy:=-(-z A —y). We say that a Heyting algebra is regular, or
reqularly generated, if H = (H.), where (H_) refers to the subalgebra of H
generated by H-.

We also recall that varieties are exactly those classes of algebras which
are closed under subalgebras S, products P and homomorphic images H. We
write V(C) for the smallest variety containing a class of algebras C.

2.2. Esakia duality

We recall the Esakia duality between Heyting algebras and Esakia spaces. We
refer the reader to [19] for more details on Esakia spaces and Esakia duality.

Given a topological space (X, 7) we write C(X) for its collection of clopen
subsets, i.e. subsets U C X which are both open and closed in the 7-topology.
For ease of read, in the remainder of the paper we will omit the reference to
the topology 7 and simply write X to indicate a topological space. If such
notation is needed for a given space X, we then write 7x for the collection of
its open sets.

Recall that a topological space is totally disconnected if its only connected
components are singletons. A Stone space is a compact, Hausdorff and totally
disconnected space. Stone duality states that the category of Stone spaces with
continuous maps is dually equivalent to the category of Boolean algebras with
homomorphisms.

Esakia duality provides an analogue of this result for Heyting algebras.
We define Esakia spaces as follows.

Definition 2.1 (Esakia Space). Let € = (X, <) consist of a topological space
X and a partial order < over X. We say that € is an Esakia Space if:
(i) X is a compact space;
(ii) For all z,y € € such that £ y, there is a clopen upset U such that
zx €U and y ¢ Us;
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(iii) If U is a clopen set, then also U' is clopen.

Condition (ii) in the definition above is called Priestley Separation Aziom.
Spaces satisfying conditions (i) and (ii) are called Priestley Spaces [29, Section
11], hence every Esakia Space is also a Priestley space. Moreover, it can be
also verified that every Esakia space is a Stone space. We write CU(€) for the
set of clopen upsets over €.

We write Esa to indicate the class of Esakia spaces. In analogy with HA,
we can see Esa as a category whose objects are Esakia spaces. A morphism
between Esakia spaces is a map that preserves the topological structure, the
order-theoretical structure and the relation between the two.

Definition 2.2 (p-morphism). Given Esakia spaces € = (X, <) and &' = (X', <),
a p-morphism f: & — ¢ is a continuous map such that:
(i) For all z,y € €, if x <y then f(z) < f(y);
(ii) For all z € € and ¢y € ¢ such that f(z) < ¥/, there exists y € € such
that ¢ <y and f(y) =v'.

The continuity of the map ensures that the preimage of a clopen in C(¢&’)
is contained in C(€). Additionally, condition (i) ensures that the preimage of
upsets (downsets) of &' are again upsets (downsets) of €. We write f : & — &
when f is a surjective p-morphism from € to &'.

Esakia spaces allow us to provide a duality for Heyting algebras, in the
same spirit of the Stone duality for Boolean algebras or the Priestley duality
for bounded distributive lattices. Since they will play a major role in the rest
of the paper, we recall what are the underlying functors of this duality.

Given a Heyting algebra H, a proper subset F' C H is a prime filter if it
is a filter and, whenever x Vy € F, then x € Fory € F. Let Xy = PF(H)
be the set of all prime filters over H, we can endow Xy with a topology 74,
having as subbasis the following family of sets:

{¢(a)|a e H} U{p(a)®|a € H}
where ¢(a) = {F € Xy |a € F} and where ¢(a)° denotes the complement of
¢(a) in Xpg. Moreover, if we consider the standard inclusion order C between
prime filters, the ordered space €y = (Xg,7H,C) so obtained is an Esakia
space: we call this the Esakia dual of H.

On the other hand, if ¢ is an Esakia Space we can define the Heyting
algebra He over the set CU(€) of clopen upsets of €:

UNV=UNVUVV=UUVU=V=(U\V)e

where U¢ denotes the complement of U in &. We shall also write U for
(U1)¢, namely for the pseudocomplement of U in CU(&). The algebra He is a
Heyting algebra, which we call the Fsakia dual of €. Esakia proved that these
two maps are functorial and describe a dual equivalence between HA and Esa,
in particular the following holds with respect to objects.

Theorem 2.3 (Esakia). For every Heyting algebra H, we have H = Hg,,. For
every Esakia Space €, we have € = €, .
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At the level of arrows, we have the following correspondence:

e Given a homomorphlbm f : H — H' between two Heyting algebras, we
define the p-morphism f : € — €y by f(z) = f~ [z];

e Given a p-morphism g : € — & between two Esakia spaces, we define
the homomorphism § : Her — He by g(U) = g~ [U].

These mappings, together with the ones presented above, provide a full
duality between the categories HA and Esa. We indicate with CU/ : HA — Esa
and PF : Esa — HA the corresponding functors.

When restricted to the finite setting, Esakia duality delivers a dual equiv-
alence between finite Heyting algebras and finite Esakia spaces. Since an Esakia
space € is a Stone space, in the finite case its topology is discrete. This allows
to study finite Esakia spaces only in terms of their order-theoretic structure
and to treat them simply as finite partial orders.

2.3. Semantics for intermediate logics

Heyting algebras and Esakia Spaces are closely connected to intermediate log-
ics, namely those logics which lie between intuitionistic and classical proposi-
tional logic. Let AT be a set of atomic variables and consider the set of formulas
L1pc generated by the following grammar:

pu=p|L|T[oNP[OVP[d—¢

where p € AT. We write IPC for intuitionistic logic and CPC for classical propo-
sitional logic. There is a standard way to interpret these formulas on Heyting
algebras — see e.g. [10, Section 7.3]. Given a Heyting algebra H and a map
w: AT — H (also called a valuation), we can interpret formulas of Lipc on H
inductively as follows:

[p] ™+ = u(p) [L]E= =0
[T = 1am [ w1 = [ A [0]™
[¢ — w]r = [o] 7+ — [P]+ [¢ v ] Tr = [@] v [ 1.

Given a Heyting algebra H, we say that a formula ¢ is valid on H (in
symbols H F ¢) if for every valuation p we have [¢]*# = 1. Given a class of
Heyting algebras C, we say that ¢ is valid on C (in symbols C F ¢) if ¢ is valid
on every member of C. We call the set of formulas valid on the class C the logic
of C and we write Log(C). It is well known that the logic of HA is IPC.

We say that a set of formulas L in the signature Lipc is an intermediate
logic if IPC C L C CPC and, additionally, L is closed under modus ponens and
uniform substitution. We shall write L - ¢ when ¢ € L. A possibly surprising
result is that not only IPC, but every intermediate logic is sound and complete
with respect to a variety of Heyting algebras [10].

This result can be combined with Theorem 2.3 to obtain a semantics
based on Esakia spaces. Let € be an Esakia space and consider a map p : AT —
CU(€), which we call a topological valuation. We can define an interpretation
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of formulas of Lipc based on clopen upsets of &:

[p] &+ = u(p) [L]® =0
[Tpe~ =¢ [¢Av]e# =[g] " Nl
[6 — )&+ =[]\ []®* [o v ¢]&* = [o] " U] .

Notice that these are exactly the Heyting algebra operations of the dual
algebra He. We say that a formula ¢ is valid on a space € (in symbols € E ¢) if
for every valuation p : AT — CU(€&) we have [¢]*#* = €. For a class £ of Esakia
spaces, we say that ¢ is valid on & (in symbols € F ¢) if ¢ is valid on every
member of the class. We call the set of formulas valid on the class £ the logic
of € and we write Log(E). We stress that, in the literature on intuitionistic
logic, the term topological semantics refers to a different semantics from the
one presented here, one in which atomic formulas are assigned to opens of an
arbitrary topological space (see [5]).

As a consequence of the results for classes of Heyting algebras, we have
that the logic of the class Esa of all Esakia spaces is intuitionistic logic and
that every intermediate logic is the logic of some class of Esakia spaces. Firstly,
let us recall the correspondence between varieties of Heyting algebras and
intermediate logics. Let L be an intermediate logic and Var(L) = {H € HA |
H E L} the corresponding variety. The algebraic completeness theorem for
intermediate logics states that for any intermediate logic L, L F ¢ if and only
if Var(L) £ ¢. Conversely, if V is a variety of Heyting algebras, then the
definability theorem of varieties of Heyting algebra tells us that H € V if and
only if H E Log(V), where Log(V) = {¢ € L1pc |V E ¢} is the logic of V.

Using the Esakia duality and the semantics presented above, it follows
that H F ¢ if and only if €y F ¢. We can then translate the definability
theorem and the algebraic completeness to the setting of Esakia spaces. To
this end, we firstly define the concept corresponding to a variety of Heyting
algebras: we say that a class of Esakia spaces £ is a variety of Esakia spaces if
£ is closed under p-morphic images, closed upsets and coproducts. These op-
erations correspond through Esakia duality to the operations of subalgebras,
homomorphic images and products respectively. (Finite coproducts of Esakia
spaces are simply disjoint unions thereof, while infinite coproducts require ad-
ditionally that one takes a suitable compactification of infinite disjoint unions,
see e.g. [22, Example 5.3.11].)

Let A(HA) and A(IPC) be the complete lattice of varieties of Heyting
algebras and the complete lattice of intermediate logics respectively (see [10,
Section 7.6]). It is straightforward to show that the arbitrary intersection of
varieties of Esakia spaces is again a variety, thus we have that the family of
varieties of Esakia spaces A(Esa) forms a complete lattice too. In analogy with
the algebraic case, we define the two functions Space : A(IPC) — A(Esa) and
Log : A(Esa) — A(IPC) as follows:

Space(L) = {€ € Esa| € L};
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By looking at these maps in light of the duality between Heyting algebras
and Esakia spaces, we readily obtain the following result, which establishes a
version of completeness and definability for varieties of Esakia spaces.

Theorem 2.4. Let L be an intermediate logic, £ a variety of FEsakia Spaces, ¢
a formula and € an FEsakia Space. Then we have the following:

¢ € L < Space(L) E ¢;
Ec &<« EF Log(€).

Finally, Esakia duality can be lifted to the level of the lattices of varieties
of Heyting algebras and of Esakia spaces. In particular, the maps
PF : A(HA) — A(Esa) CU : A(Esa) — A(HA)
PFV)={¢|e¢x2¢yfor HEV}CU(E)={H | H=Hg¢ for € € £}

are inverse to each other. The

names PF and CU indicate that PF
these maps can be seen as lift- /—\
ings (,)f the maps PF and Cu.re— A(HA) _ A(Esa)
spectively to varieties. The lattices cu
A(HA) and A(Esa) are then iso-

. . Var Space
morphic, whence we also obtain
that A(IPC) =P A(HA) = A(Esa). Log Log
The relations between the lattices A(TPC)%P

A(HA), A(Esa) and A(IPC) are de-
picted in the diagram to the right,
where arrows indicate lattice isomorphisms.

2.4. DNA-logics

In this paper, we are especially interested in regular Heyting algebras and their
connection to Esakia spaces. This class of structures has important connections
to a family of (non-standard) logics closely related to intermediate logics, i.e.
DNA-logics, from double negation on atoms. These logics were originally intro-
duced in [27] and later studied in [11,8]. Notice that, for any formula ¢, we
write ¢[=p/p] for the formula obtained by replacing simultaneously p by —p
for any atom p occurring in ¢.

Definition 2.5. For every intermediate logic L, its negative variant L™ is
L™ = {¢ € Liwc|¢[7p/P| €L}

We call the negative variant of some intermediate logic a DNA-logic.

Every DNA-logic contains the formula ——p — p for every atomic propo-
sition p € AT—but in general this is not true if we replace p by an arbitrary
formula ¢. So we can think of DNA-logics as intermediate logics where atoms
do not play the role of arbitrary formulas, since the principle of uniform sub-
stitution does not hold, but rather the role of arbitrary negated formulas. We
notice that DNA-logics are an example of weak logics in the sense of [28, Defini-
tion 2], i.e. they are consequence relations closed under permutations of atomic
variables.
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Given a DNA-logic L there is a standard way to find an intermediate logic
L such that L™ =L, as the following lemma shows.

Lemma 2.6. Given a DNA-logic L, define the set
S(L) :={¢|o(¢) €L for every substitution o }.
Then S(L) is an intermediate logic and (S(L))™ = L.

We refer the reader to [8, Theorem 4.6] for the proof of the previous
lemma. S(L) is usually referred to as the schematic fragment of the logic L—
see for example [11].

There is also another way to characterize DNA-logics, that is, through their
algebraic semantics based on Heyting algebras. Let H be a Heyting algebra,
then we call a valuation p : AT — H negative if every atom is mapped to a
regular element of H, or equivalently if =—u(p) = u(p) for every p. If we restrict
the algebraic semantics presented in Subsection 2.3 to negative valuations we
obtain a correct semantics for DNA-logics, in the following sense: If H is a
Heyting algebra, the set of formulas ¢ such that [¢]#* = 1 for every negative
valuation p is a DNA-logic—we call this set the DNA-logic of H. We write H ™ ¢
if [¢p]H# = 1 for every negative valuation p1, and we extend this notion to
classes of algebras in the usual way.

In [8] this semantics was employed in order to adapt results from the
field of intermediate logic to study DNA-logics. In particular, we can show that
DNA-logics form a lattice A(IPC™), dual to a particular sublattice of A(HA). We
write K < H whenever K is a subalgebra of H.

Definition 2.7 (DNA-variety). A variety of Heyting algebras V is called a DNA-
variety if it is additionally closed under the operation:

VI = {H|3KeV.K.=H_and K < H}.

We write D(C) for the smallest DNA-variety of algebras containing C. We
let A(HAT) be the sublattice of A(HA) comprised of all and only the DNA-
varieties. We remark here that, since DNA-varieties are uniquely determined
by their regular elements, there is a one-to-one correspondence between DNA-
varieties and varieties generated by regular Heyting algebras.

It can be shown [8, Section 3.4] that for any DNA-logic L the set Var™(L)
={H | V¢ € (L). HE" ¢} is a DNA-variety and that given V a DNA-variety, the
set Log”(V):={¢ | V E™ ¢} is a DNA-logic. With these preliminary results in
place, we can state the correspondence between DNA-logics and DNA-varieties,
analogous to the one for intermediate logics and varieties. See [8, Theorem
3.35] for the proof of the following theorem.

Theorem 2.8. The lattices A(IPC™) and A(HA") are dually isomorphic. In par-
ticular, the maps Var™ and Log™ are inverse to each other.

The (propositional) inquisitive logic IngB [13,15] is usually introduced,
analogously to dependence logic, in terms of team semantics (see Section 6.3).
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However, it can also be viewed as a DNA-logic. We start by recalling the defi-
nitions of the following intermediate logics:

KP =IPC+ (-p—qVr)— (-p—q)V(-p—r)
ND = IPC + {(=p — Vi), @) = Vi< (7P — —a;) | k > 2}
Moreover, we define the intermediate logic ML as the set of all formu-
las which are valid in posets of the form (p(n)\@, D) for 0 < n < w, under
the usual Kripke semantics. It is a well-known fact that ND C KP C ML (see

e.g. [10]). The following theorem establishes an important connection between
these intermediate logics and inquisitive logic.

Theorem 2.9 (Ciardelli [11]). Inquisitive logic is the negative variant of any
intermediate logic L such that ND C L C ML.

In the light of the previous theorem, the algebraic approach that we
introduced to study DNA-logics can be employed to study inquisitive logic as
well, as it was done in [8]. In fact, such algebraic approach extends the original
work from [7] on the algebraic semantics of inquisitive logic. It was later shown
in [28] that this algebraic semantics for IngB is unique, making IngB (as well
as every DNA-logic) algebraizable in a suitable sense.

3. The stone space of maximal elements

We start by introducing and recalling some basic properties of regular clopens
of Esakia spaces. These properties belong to the folklore, but we shall provide
details of the proofs in these sections as it does not seem to us that they are
explicitly presented in the past literature. We stress however that Theorem 3.4
is already stated in [19, A.2.1] and [2, Section 3].

First, notice that given an Esakia space € we can consider two topolo-
gies on it: the equipped Esakia topology 7¢ and the Alexandrov topology 7<
induced by the partial order on €, i.e., the topology having upsets as open
sets. To distinguish the interior and closure operators in the two topologies
we use the notations Int, Cl and Int<, Cl< respectively. As the next definition
makes explicit, in the rest of this article when we speak of regular subsets of
an Esakia space we always mean reqular sets under the order topology.

Definition 3.1. An upset U of an Esakia space € is regular if
Intg (CIS(U)) =U.

We denote by UR(€) the regular upsets of €, and we denote by RCU(€&)
the set of upsets of & that are (i) regular according to the Alexandrov topol-
ogy and (ii) clopen according to the equipped Esakia topology. We start by
providing several equivalent characterisations of such subsets. Recall that we
let U = ((U)')¢ and that if U € CU(€) then U is its pseudocomplement in the
Heyting algebra CU(E).

Proposition 3.2. Let € be an Esakia space and let U € CU(€E). Then the fol-
lowing are equivalent:
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(i) U is regular;

(i) U =U;

(i) UNU € T"\T.
Proof. Firstly, we notice that just by the definition of closure and interior we
immediately obtain the following:

r€Int<(Clc(U)) <= 2! CUl =2 ¢ (UH)) =z €

U,
showing the equivalence of (i) and (ii). The equivalence between (ii) and (iii)
is then proved as follows. -
(i) = (iii) Suppose U = U and let = € UL\ U. Since = ¢ U = (U)°, it

follows that = € U". Moreover, since z € U, we have that z ¢ (U')¢ = U.
That is, z € Ul\U.

(iii) = (ii) Suppose that UN\U C UL\U, we want to show that U =
@y,

(C) Take x € U and consider any y > x, which lies again in U since it is
an upset. Since UNU = it follows that y ¢ U; and since y is an arbitrary

element above z, it follows that = ¢ Ul, that is, x € (Ul)c.

(D) Now suppose x € (U l)‘:, which entails = ¢ UL\U. Thus by assump-
tion we have that = ¢ Ui\U. Then, either x € U, which proves our claim,
or z ¢ U'. However the latter gives a contradiction, since x € (U})¢ = U
contradicts our assumption that xz € (Ul)c C U°. Hence we have that z € U,
which proves our claim. O

Now, given an upset @ we indicate with M (Q) the set of mazimal ele-
ments of @, that is:

M@Q)={qeQ|V¥ €Q.(d 29 = d =g}

We often write simply M (p) in place of M(p'). We especially remark
that, by compactness, it follows that for every Esakia space € and for every
element x € € the set M(z) is nonempty—see e.g. [19, Theorem 3.2.1]. An
important characterisation of elements in RCU(E) is then in terms of the
maximal elements of the Esakia space &, as the following proposition makes
precise.

Proposition 3.3. Let € be an Esakia space and U € CU(E). Then the following
are equivalent:

(i) U is regular;

(ii) For every x € & we have that x € U if and only if M(x) CU.

Proof. Firstly notice that, if © € U then M(x) C U since U is an upset. So
in particular (ii) boils down to the right to left direction. We prove the two
implications (i) = (ii) and (ii) = (i) separately.

(i) = (ii). Given z € €, suppose that M(z) C U; we want to show that
z € U. Towards a contradiction, assume that « ¢ U, which together with the
previous assumption entails x € U' \ U. Since U is regular by assumption,
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by Proposition 3.2 it follows that x € ﬁl \ U. Since U is an upset itself and,
by the remark above, there are maximal elements above every point of an
Esakia space, it follows that M(x) N U # 0. But this is in contradiction with
M(z) C U since UNU = .

(ii) = (i). By Proposition 3.2, it suffices to show that if z € UL\ U
then x € Ul\U. So consider z € UN\U. Since x ¢ U, by assumption M (z) ¢
U. By maximality of the elements in M(z), we have that M(z) ¢ U, thus

M(z)NU # 0. This implies that = € U Moreover, since € U' we have that
x ¢ U, thus concluding that = € Ul\U. O

By Proposition 3.2 the elements of RCU(E) correspond one-to-one to
the regular elements of Hg. In the light of this fact, it immediately follows
that RCU(€) is a Boolean algebra, where negation is defined as =U:=U and
disjunction as UVV:==(U N V). Proposition 3.3 suggests then a connection
between the Boolean algebras of regular elements and the Stone space of the
maximal elements of €. Consider the set M¢ of maximal elements of €. It is
well-known [19, Theorem 3.2.3] that this set forms a Stone space under the
relative topology Tas, inherited from &:

Uecty, < IV € 7¢ such that U =V N M.

The following result provides a correspondence between RCU(E) and
C(Me¢). We attribute this result to Esakia, as it is mentioned in [19, A.2.1],
but we develop the proof idea from [2, Section 3].

Theorem 3.4 (Esakia). Let € be an Esakia space and C(Meg) the clopen sets
of the Stone space Mg. Then the map:

M :RCU(E) — C(Meg)
M:U—UnNMeg

s an isomorphism of Boolean algebras.

Proof. First, we show that M is well-defined: let U € RCU(E). Since U is a
clopen of &, then M(U) = U N Mg is a clopen of Mg by definition of the
relative topology.

Secondly, we check that M is a homomorphism. The only non-trivial case
to check is the condition for negation. Let U € RCU(E), then we have:

M(-U) = M(T) = MenN(UY = Me\ M(U) = -M(U);
where the latter negation is computed in the Boolean algebra C(Me).
Thirdly, we show that M is injective. Suppose M(U) = M (V) for U,V €
RCU(€), then for any x € € we have that M (z) C U if and only if M(z) C V.
So by Proposition 3.3 it follows that « € U if and only if x € V, whence
u=V.
Finally, we show that M is surjective. Let U € C(M¢), since U is a
clopen of Mg under the relative topology and Mg is closed in &, we have by
compactness that U = V N Mg for some V clopen in the Esakia topology of €.
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By the display above, we have that for all W € CU(€), M(W) = Me\M (W),
from which it follows that

MWV)=Me\ (M \M(V))=MsNnV =U.
Since V € RCU(€E) this shows that M is also surjective. O

The following corollary follows immediately using Stone duality. Notice
that if B is a Boolean algebra we write Gp for its dual Stone space.

Corollary 3.5. Let H be a Heyting algebra, then the Stone dual Sg_ of the
Boolean algebra H-, is isomorphic to the Stone space Mg, , i.e. S = Mg, .

Proof. By Theorem 3.4 we have that RCU(E ) = C(Mg,, ), and consequently
H_ = C(Meg,,). By Stone duality it follows that Gy = Me,,. O

4. Regular Esakia spaces

A main goal of this work is to study Esakia spaces dual to regular Heyting
algebras. We start by giving them a name.

Definition 4.1. An Esakia space € is regular if He = ((He)-).

Given an Esakia space €, we also write &, for the Esakia space dual
to ((He)-). The notion of regular Esakia spaces is thus defined in external
terms, by means of Esakia duality. In this section we consider the problem of
providing an internal characterisation of regular Esakia spaces.

We give two partial answers to this question. Firstly, in Section4.1,
we give a characterisation of regular Esakia spaces in terms of special p-
morphisms, and we apply it to the finite case to obtain a more fine-grained
description. Secondly, in Section 4.2, we follow an alternative approach in terms
of suitable equivalence relations. This allows us to obtain a necessary condition
for an Esakia space to be regular and also a description of finite regular posets.
Finally, in Section 4.3, we use duality methods to prove some additional results
on varieties generated by regular Heyting algebras.

4.1. A characterisation by regular-preserving morphisms

One way to characterise regular Heyting algebras is to look at homomorphisms
fixing their Boolean algebra of regular elements. This motivates the following
definition.

Definition 4.2. Let h : € — @ be a p-morphism, then h preserves requlars if
h=1 : RCU(E") — RCU(E) is an isomorphism of Boolean algebras.

As regular clopen upsets of Esakia spaces correspond to clopens of max-
imal elements, it follows that regular preserving p-morphisms can be charac-
terised in terms of their action on maximal points.

Proposition 4.3. Let h: € — & be a p-morphism, then h preserves requlars if
and only if h| Mg is a homeomorphism.
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Proof. We provide full details for the left to right direction and simply resort
to Stone duality for the converse.

(=) Since h is continuous, it suffices to check that it is a bijection. We first
show that h[M¢ is an injection. Consider two distinct z,y € Mg, since Mg is
a Stone space there are two disjoint clopen neighbourhoods Uy, U, of x and y
respectively. From Theorem 3.4 it follows that M~ (U,)N M~ (U,) = 0. Now,
since h preserves regulars, it follows that h=1[RCU(€') is an isomorphism,
whence M~Y(U,) = h=1(V,) and M~1(U,) = h™'(V,) for some V,,V, €
RCU(€') such that VNV, = (). Then, it follows that h(z) € V, and h(y) € V,,
whence h(z) # h(y).

Now let z € Mg and consider the family {U: | i € I} of all clopen
neighbourhoods of x in M¢g/. We notice that, since any two points in Mg/ are
separated by a clopen, (,c; Ui = {z}. Since h™! : RCU(E") — RCU(E) is an
isomorphism of Boolean algebras, it follows by Theorem 3.4 that g:=Moh o
M~ is an isomorphism between C(Me) and C(Me). Now, if (,c; g(UL) = 0,
then by compactness there is some finite Iy C I such that (,c; g(UZ) =
0, contradicting (V;¢;, Ui # 0. Let y € N;e;9(UL), then y is maximal and
additionally h(y) € M~'(N,c; UL). Since h(y) must also be maximal and
M(M~Y(;e; UL)) = {a}, this shows that h is also surjective.

(<) Since h[Mg is a bijection, it follows by Stone duality that the map
M oh='o M~!is an isomorphism between C(M¢/) and C(Mg). By Theorem
3.4 we then have that h=1 : RCU(¢E") — RCU(E) is an isomorphism of Boolean
algebras, which proves our claim. O

It is then immediate to conclude that the embedding of a Heyting algebra
into one with the same regular elements induces a surjective p-morphism of
the dual spaces which is injective on the maximal elements.

Corollary 4.4. Let A, B € HA, A < B and A_ = B-, then there is a surjective
p-morphism h : €g — €4 which is also injective on mazimal elements.

Proof. By Esakia duality, the inclusion A < B induces a p-morphism h : &g —
¢4 defined by h : F'— FNA, where F' C B is any prime filter over B. The fact
that h is continuous and surjective already follows from the duality between
subalgebras and quotient spaces. By Proposition 4.3 above we also have that
h is injective on maximal elements. O

The following theorem provides a characterisation of regular Esakia spaces.

Theorem 4.5. The following are equivalent, for any Esakia Space &:
(i) He is regular;
(ii) For any Heyting algebra K, K < H¢ and (He¢)- = K-, entail K = Hg;
(iii) For any Esakia space € and any surjective p-morphism f : € — & if
fIMg is a homeomorphism, then f is a homeomorphism.

Proof. Claims (i) and (ii) are equivalent by the definition of being regular. We
show the equivalence of (ii) and (iii).
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(ii) = (iii). Let f : € — €& be a surjective p-morphism, then by Esakia
duality we have that f~![He| < He. By Stone duality, if f]|Me is a home-
omorphism, then M o f~! o M~ is an isomorphism of Boolean algebras and
so by Theorem 3.4 f~! : RCU(€') — RCU(E) is an isomorphism. Since
RCU(E) = (Hg)- and RCU(E') = (Hgr)-, it follows that (f~[He])- =
fY(He)-] = (Hg)-, which by (ii) entails f~![He/] = He. By Esakia duality
it follows that f is injective, and so is a homeomorphism.

(iii) = (ii). Let K = He be such that K, = (H¢)-. By Corollary 4.4,
there is a surjective p-morphism h : € — &y which is also injective on maximal
elements. Hence, h[Mg is a continuous bijection of Stone spaces and thus a
homeomorphism. By (iii) it follows that h : € — €k is a homeomorphism of
Esakia spaces and, by Esakia duality, we obtain that K = Hg. O

In the finite context the characterisation of the previous theorem can be
further strengthened. We recall the following definitions of a-reductions and
B-reductions [17,6].

Definition 4.6. Let § be a partial order and z,y € § be distinct elements.
e Suppose z! = y' U {z}. An a-reduction is a surjection h : §F — F\{y}

such that h(y) = x and h(z) = z whenever z # y.

e Suppose z'\{z} = y"\{y}. A B-reduction is a surjection h : § — F\{y}

such that h(y) = z and h(z) = z whenever z # y.

Notice that, since a-reductions and (-reductions are not necessarily con-
tinuous with respect to the Stone topology of an Esakia space, we have in-
troduced them only with respect to partial orders and not for Esakia spaces.
This explains why we will use them to characterize only finite regular Esakia
spaces, whose underlying topology is discrete. In particular, in the finite case
we can always look at immediate successors of points of a poset: given any
zeF, welet S(x):={yeF|x<yand x <z <y= 2=y} Werecall that a
Heyting algebra is subdirectly irreducible if it has a second greatest element.

Theorem 4.7. H is a finite, reqular (subdirectly irreducible) Heyting algebra if
and only if €y is a finite, (rooted) poset such that:

(i) For all non-mazimal x € €y, |S(z)| > 2.
(ii) For all non-mazimal z,y € €y, if v # y, then S(x) # S(y).

Proof. Tt suffices to consider conditions (i) and (ii) since it is already well-
known that finite (subdirectly irreducible) Heyting algebras correspond to fi-
nite (rooted) posets under Esakia duality.

(=) (i) If this is not the case, then there is a point € €y such that
S(z) = {y}. Then, we can apply the a-reduction h such that h(z) = h(y) and
h(z) = z for all z # x. Then h is a p-morphism which is injective on maximal
elements, hence, by Theorem 4.5, h is an isomorphism, contradicting = # v,
h(z) = h(y). (ii) If this is not the case, then there are two distinct z,y € &
such that S(x) = S(y). We then apply the 8-reduction h such that h(z) = h(y)
and h(z) = z for all z # y. But then h is a p-morphism which is injective on
maximal elements hence, by Theorem 4.5, h must also be an isomorphism,
which gives us a contradiction.
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(<) If H is not regular, then (H-.) < H and (H-) # H. By Corollary 4.4
there exists a p-morphism h : €g — € g_y which is also injective on maximal
elements. Moreover, since (H-) # H, we also have that € # € _), meaning
that h is not injective. Since €y is finite, it follows that h = fyo---o f,,, where
each f; is either an a- or a -reduction — see [6, Prop. 3.1.7]. In particular, f,
is an a- or a f-reduction over €y, meaning that either (i) or (ii) holds. O

4.2. A characterisation by equivalence relations

Although Theorems 4.5 and 4.7 already give us suitable characterisations of
(finite) regular Esakia spaces, we provide an alternative description of them in
terms of suitable equivalence relations. This will make more explicit how finite
regular posets are controlled by their maximal elements and will also allow for
a finer analysis of polynomials of regular elements.

To this end we introduce a way to identify points over an Esakia space.
If X C § and 6 is an equivalence relation, we let X/0:={[z]g | * € X}. We
define the following equivalence relations, which can also be seen as a kind of
bounded bisimulations (see in particular [33]).

Definition 4.8. Let & be an Esakia space, we define:
Ty = M(x) = M(y)

For any = € & we simply write [z],, and [z] for its equivalence class over
~y, and ~q, respectively.

Lemma 4.9. Let € be an Esakia space and x,y € &, then z~,y entails x~y
foralll <n < w.

Proof. By induction on n > 1.

Let x~71y and suppose x~gy. Then there is, without loss of generality,
some z € Mg such that < z but y £ 2. Thus for all w >y, M(z) # M(w)
and so z~gw, which contradicts x~7y.

Let &~ 1y and suppose z~;y for some | < n. Then there is, without
loss of generality, some z > z such that for all w > y, z;_jw. By induction
hypothesis it follows that ze«,w, contradicting x~,11y. d

The intuitive idea behind the relation ~,, is that it captures the equiv-
alence of two points up to a certain complexity of polynomials (terms) over
regular elements. To make this idea precise we recall the following notion of
implication rank. The key idea is that the rank of an element of (RCU(E))
should indicate “how hard” it is to obtain this elements from regular ones.

Definition 4.10 (Implication rank).
(a) Let ¢ be a polynomial, we define its implication rank rank(¢) recursively
as follows:
(i) If ¢ is a constant or variable, then rank(¢) = 0;
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(if) rank(¢ A x) = max{rank(¢), rank(x)};
(iii) rank(®) V x) = max{rank(%)), rank(x)};
(iv) rank(y) — x) = max{rank(¢), rank(x)} + 1.
(b) Let & be an Esakia space, then for every U € (RCU(€&)) we let

rank(U) = min{rank(¢) | ¢(Vo,...,V,) =U for Vp,...,V,, € RCU(E)}.

The following lemma characterises the relation ~,, over (finite) Esakia
spaces and it relates it to the implication rank of polynomials over regular
elements. This result mirrors Visser’s classical result on bounded bisimulation
[33, Thms. 4.7—4.8] and Esakia and Grigolia’s characterisation of finitely gen-
erated Heyting algebras [20,6], but with the key difference that we restrict
attention to polynomials over (possibly infinitely many) regular elements.

Proposition 4.11. (i) Let € be an Esakia space and let H = He be its dual
Heyting algebra. For oll x,y € € such that x~,y, v € U if and only if
y €U, for allU € (H-) with rank(U) < n.
(ii) Let § be a finite poset and let H = Hg be its dual Heyting algebra. If for
all U € (H-) with rank(U) < n we have that x € U if and only if y € U,
then x~ypy for all z,y € §.

Proof. We prove the claim (i) by induction on n.

Let n = 0 and suppose x~gy. Let U € (H-) be such that rank(U) = 0,
it follows U € H-. By x~gy we have M (z) = M(y) and so M(z) C U if and
only if M(y) C U. Since U € RCU(€), it follows by Proposition 3.2 that x € U
if and only if y € U.

Let n = m+ 1 and suppose z~,+1y. If rank(U) = k < m then the claim
follows by the induction hypothesis together with Lemma 4.9. If rank(U) =
m~+ 1 we proceed by induction on the complexity of the polynomial 1) of least
implication rank for which U = ¢(Vj, ..., V) where V; € RCU(F) for all i < k.

e If ¢ is atomic, ¥» = aAf or ¢ = aV 3, then the claim follows immediately
by the induction hypothesis.
elfpy = a — B, let V=cqoW,...,Vi), W = 8(V,..., V), clearly

rank(V) < m, rank(W) <m and U = ((V \ W)})e.

We show only one direction as the converse is analogous. Suppose y ¢ ((V'\
W)H)e, then there is some z > y such that z € V\W. Since z~,, 1y, we have
2"/~ =y /~, and thus there is some k > z such that k~,,z. By induction
hypothesis k € V' \ W, showing x ¢ (V\W)!)e.

We next prove item (ii). We let § be a finite poset and we reason by
induction.

Let n = 0 and suppose z=gy. Without loss of generality we have that
M(y) € M(z), hence by Theorem 3.4 there is a regular upset U such that
M(z) C U and M(y) € U, whence by Proposition 3.2 we have z € U and
y¢U.

Let n = m+ 1. If 20¢,,, 11y then o1 /~,, # y! /~,,, hence (without loss of
generality) there is z > z such that for all k£ > y we have z~,, k. By induction
hypothesis, for every k, there is either an upset V;, € (H-) such that z € Vj
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and k ¢ Vi, or an upset U, € (H-) such that z ¢ U and k € Uy, with
rank(Vy), rank(Uy) < m for all k > y. We let

Iy={k>y|z€Vik¢Vi}
L={k>y|z¢UgkeU}.

And we define Z:=((Nycz, Ve\Uper, Up)h)e, ie. Z:=Mrer, Vi = Uper, Uk
and thus rank(Z) < m+1. Clearly Z is an upset and by definition Z € (UR(F)).
Now, since for every k € Iy we have z € Vi, and for every k € I; we have
z & Uy, it follows that z € (,c;, Vi\Uper, Uk, whence z ¢ Z.
Then, if & € Iy then k ¢ Vi, whence k & (cz, Vi\Ugrer, Uk Oth-
erwise, if k € I then k € Uy, whence k & oy, Vi\Uges, Uk- Since Io U
I, = y', this shows that k ¢ Mier, Vi\Uper, Uk for all k& > y and so

v € ((Mkery Vi\Uker, Ux)')¢ = Z, finishing our proof. O

We remark in passing that the second claim of the previous proposition
can be extended to some specific classes of infinite Esakia spaces. For exam-
ple, it can be generalized to Esakia spaces dual to finitely generated Heyting
algebras, or to Esakia spaces whose order reducts are image finite posets, i.e.
posets € where |z'| < w for every z € €.

The next proposition follows immediately. Notice that by Esakia duality
we treat elements of a finite poset as filters over the dual Heyting algebra and
elements of a finite Heyting algebra as upsets of the dual poset.

Proposition 4.12. Let § be a finite poset and let H = Hg be its dual Heyting
algebra, the following are equivalent for any x,y € §:

(ii) N (H-) =y N (H-);

(iii) VU € (H-.).[x e U <= y e U].

Proof. Claims (ii) and (iii) are rephrasing of the same condition under Esakia
duality. The equivalence of (i) and (iii) follows from Proposition 4.11. O

We can use the relation ~, to supplement Proposition 4.3 and charac-
terise p-morphisms preserving polynomials of regulars between finite posets.

Definition 4.13. Let h : € — &' be a p-morphism, then we say that h preserves
polynomials of regulars if h=1 : (RCU(€')) — (RCU(E)) is an isomorphism of
Heyting algebras.

Proposition 4.14. Let h : § — § be a p-morphism between finite posets, then
h preserves polynomials of regulars if and only if Ty entails h(x)=ooh(y).

Proof. (=) Suppose h : § — § is a p-morphism preserving polynomials of
regular elements, and let z,y € § be such that x~y. Since h preserves
polynomials of regulars, the induced map h=! : (UR(F)) — (UR(F)) is an
isomorphism of Heyting algebras. It follows that x € h=1(U) and y ¢ h=1(U)
for some h=1(U) € UR(F). Hence, we obtain that h(x) € U and h(y) ¢ U for
some U € UR(F), which by Proposition 4.12 proves our claim. (<=) Analogous
to the previous direction. ([l
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Finally, the next theorem shows that regular Esakia spaces are stable
under ~.,. Moreover, in the finite setting, it provides us with a second char-
acterisation of finite regular posets.

Theorem 4.15. (i) Let € be a regular Esakia space and x,y € &; if ooy
then x = y.
(ii) Let § be a finite poset such that x~y entails x =y, then § is regular.
In particular, a finite Heyting algebra is reqular if and only if its dual
poset is stable under ~.

Proof. For claim (i) consider distinct x,y € &, then there is a clopen upset
U € CU(€) such that (without loss of generality) € U and y ¢ U. By
regularity, it follows that U = ¢(Vj, ..., V}) for some regular clopen upsets V;,
i < k. By Proposition 4.11 it follows immediately that z-s.y.

For claim (ii), consider an arbitrary surjective p-morphism p : § — §
such that p[ Mz is a bijection. We first prove by induction on n < w that z~,y
entails p(x),p(y).

If xoegy, then M(z) # M(y). Since p[ Mz is a bijection, we have by the
definition of p-morphism that M (p(x)) # M (p(y)) and so = # y.

If xoep, 11y, there is without loss of generality some z > x such that zev,w
for all w > y. By induction hypothesis we obtain that p(z) # p(w) for all
w >y, and by the definition of p-morphism it follows p(x) # p(y).

Thus we obtain that p preserves polynomials of regulars. Finally, since
for x,y € § we have that z # y entails x~y, this shows that p is itself an
injection, and thus by Theorem 4.5 we have that § is regular. O

We conclude by noticing that, by our previous observations, an equivalent
sufficient and necessary characterisation of regular Esakia spaces works in the
restricted cases of image-finite Esakia spaces or of Esakia spaces dual to finitely
generated Heyting algebras.

4.3. Varieties of (strongly) regular Heyting algebras

We conclude this section by providing some side results on varieties generated
by regular Heyting algebras. It is in fact natural to consider what is the inter-
mediate logic of all regular Heyting algebras. As a matter of fact, it was proven
already in [11, Cor. 5.2.3] that S(IPC™) = IPC, which by [8, Prop. 4.17] means
that the variety generated by regular Heyting algebras is the whole variety of
Heyting algebras.

One could then wonder if, by looking at suitable subclasses of regular
Heyting algebras, one can obtain proper subvarieties of Heyting algebras. For
example one could consider, for all n < w, the varieties generated by those
Heyting algebras which are stable under ~,, for m > n but not under ~,,
for m < n. In fact, by the next proposition, we have that the sequence of
equivalence relations ~,, does not in general converge to any finite value.

Proposition 4.16. There is an Esakia space € such that each €/~ is distinct,
for each n < w.
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FIGURE 1. The Esakia spaces fRg, &1 and Rs.

Proof. Consider the poset R, in Fig. 1 (which adapts [30, Fig. 4.1]) and provide
it with the topology induced by the following subbasis

{7 |z e R U{(z") |z e R}

It can be verified that the resulting space is an Esakia space and, moreover,
that for every n < w, an»na,41. Therefore, for every n < m < w we have that
R1/~n and Ry /~,, are distinct. O

We then introduce the following definition.

Definition 4.17. (i) Let € be an Esakia space, we say that it is strongly reg-
ular if for all z,y € € we have that x~gy, i.e. M(z) # M(y).
(ii) We say that a Heyting algebra H is strongly regular if its dual Esakia
space &g is strongly regular.

For example, if we provide the poset PR, with a topology analogous to the
one we assigned to fR; in Proposition 4.16, we see that SRy makes for a strongly
regular Esakia space. Moreover, the map p : Rs — MRy defined by letting, for
each i < w, p(a;) = a;, p(bi) = bi, p(ci) = ao, p(d;) = bo and p(r) =7 is a
p-morphism from a strongly regular Esakia space onto the dual of the Rieger-
Nishimura lattice. Working on this idea we can strengthen the aforementioned
result and establish that the variety generated by strongly regular Heyting
algebras is the variety of all Heyting algebras. We start by defining the strong
regularisation of a finite poset.

Definition 4.18. Let § be a finite poset, the strong regularisation of § is the
poset §* obtained by adding, for each element = € §, a new maximal element
x* such that (z*)} =zt U {z*}.

It is then possible to prove that every finite poset is a p-morphic image of
its strong regularisation, hence showing that strongly regular Heyting algebras
generate the whole variety of Heyting algebras.
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Theorem 4.19. The variety generated by strongly regular Heyting algebras is
HA.

Proof. Since HA has the finite model property, it follows that if HA ¥ ¢ there
is a finite Heyting algebra H such that H ¥ ¢. Now, if § — &, it follows by
duality that H < Hg. So, since the validity of formulas is preserved by the
variety operations, we obtain that Hg ¥ ¢. It is thus sufficient to show that
every finite poset is a p-morphic image of a finite strongly regular poset.

To this end, let § be an arbitrary finite poset and §* be its strong reg-
ularisation. Clearly §* is also finite. Let p : § — § be defined by letting
p(z) =z for all z € §, and p(z*) € M(x) for all z* € F*\F, i.e. p assigns each
x* to some maximal elements that it “chooses” from M (x). We check that p
is a p-morphism.

(i) Forth Condition: If x < y for z,y € § then obviously p(z) < p(y). If

x < y* then z <y and thus p(z) < p(y) < p(y*).

(ii) Back Condition: If p(z*) < y then since p(z*) is maximal we immediately

have y = p(z*), satisfying the condition. Otherwise, if p(z) < y and z € §F,

then we have that p(xz) <y = p(y) and by definition of p also that z < y.

This shows that p : § — § is a p-morphism, which completes our
proof. O

5. Cardinality of A(HAT)

In this section we apply the characterisation of regular posets of Section 4
to show that the lattice of DNA-varieties A(HAT) and the lattice of DNA-logics
A(IPC™) have power continuum. This solves a question raised in [30,8] and
complements the previous result that the sublattice of DNA-logics extending
IngB is dually isomorphic to w+ 1. Inquisitive logic has thus a special location
in the lattice of negative variants, having only countably many extensions.

5.1. Jankov’s formulae

To prove the uncountability of A(HAT) we adapt to our setting the notion and
the method of Jankov’s formulae. Jankov’s formulae were introduced in [23,24]
in order to show that the lattice of intermediate logic has the cardinality of
the continuum. We recall how to adapt Jankov’s formulae to the setting of
DNA-logics and DNA-varieties [8]. We write HAgps) for the class of all regular,
finite, subdirectly irreducible Heyting algebras.

Definition 5.1. Let H € HARgfs), let 0 be the least element of H and s its
second greatest element.
e The Jankov representative of x € H is a formula 1, defined as follows:
(i) If € H-, then ¢, = p,, where p, € AT;
(ii) If z = dm(ao, ..., an) with ag, ..., an € H-,, then by = §(pay, ---s Pay, )-
e The Jankov DNA-formula x™(H) is defined as follows:

X (H )= — 1,
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where a is the following formula:
a= o= L) A N{(WaAty) = tany | a,b € H}
N /\{(% Vahy) < ovp | a,b € H}

A N(Wa = o) © Yy | a,b € H}.

As it is generally clear from the context that we are dealing with the DNA-
version of Jankov’s formulae, we write just x(H) for the Jankov DNA-formula of
H. We recall the following result from [8, Theorem 4.31]. For any A, B € HA,
we write A < B if A € HS(B).

Theorem 5.2. Let A € HAggs) and B € HA then B ¥~ x(A) iff A < B.

The next proposition adapts to the context of DNA-logics Jankov’s classical
result on intermediate logics and Heyting algebras.

Proposition 5.3. Let C be an <-antichain of finite, reqular, subdirectly irre-
ducible Heyting algebras, then for oll T,J C C such that T # J we have that
Log™(T) # Log™ ().

Proof. Since T # J there is without loss of generality some H € 7\ J. By
Theorem 5.2 it follows that H ¥~ x(H), thus x(H) ¢ Log™(Z). Since C is an
antichain, H ¢ K for all K € J, which by Theorem 5.2 gives K F~ x(H),
whence x(H) € Log™(J). O

To prove that the lattice of DNA-logics has power continuum it is thus
sufficient to exhibit an infinite antichain of finite, regular, subdirectly irre-
ducible Heyting algebras. Perhaps surprisingly, we can use examples of an-
tichains which are standard in the literature, as they turn out to consist of
regularly generated algebras.

5.2. Antichain A

We start by introducing the antichain Ag—for this example see e.g. [6, p. 71].
This is an antichain of posets which are all regular, but which, as we shall see,
contains for all n < w infinitely many elements which are not stable under ~,,.
For every n < w we define the poset §,,, with domain

dom(Fn) = {r}U{am | m <n}U{b, |m <n}U{cn |m<n};
and such that
o r <ab;,c for all i < n;
e a; <aj,a; <bjand ¢; < cj,¢; < by whenever j < i;
e b; <a; and b; < ¢; whenever j <.
We let Ag:={F, | n < w} be the set of all such posets. The following
result follows by noticing that we cannot perform neither o nor g-reductions

on any §, without collapsing the maximal elements—we refer the reader to
[6, Lem. 3.4.19] for a proof of this fact.

Proposition 5.4. The set of Heyting algebras dual to Ag is a <-antichain.
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Since every poset in Ag is finite and rooted, it follows immediately by
Esakia duality that its algebraic duals are finite, subdirectly irreducible, Heyt-
ing algebras. In order to establish our result we also need to make sure that
every Heyting algebra which we are dealing with is regularly generated. This
follows from the characterisation of finite regular posets which we provided in
Section4. We recall that, if § is a finite poset, then the depth of an element
x € §, written depth(z), is defined as the size of the maximal chain in 2"\ {z}.
Clearly the depth of a maximal elements is 0 and, in each §,, the depth of the
root is n + 1.

Proposition 5.5. For every n < w, the poset §, is reqular. In particular,
Sn/r~n = Fn for every n < w.

Proof. Consider §,, for some n < w, we prove by induction on depth(z) that
[x]r = {z} whenever k > depth(z) — 1, for depth(z) > 0, and k& > 0 otherwise.

Let depth(z) < 1. Without loss of generality we let = a;. Then, given
any y € §, such that y # a1, we clearly have M (a;) # M(y), showing [a1]p =
{al}.

Let depth(z) = m + 1 < n + 1. Without loss of generality we let & =
am+1 and by induction hypothesis [a;]r = {ai}, [0i]x = {bi} and [¢/]x = {a1}
whenever [ < m, k > [—1. Now, for all y € §,, such that x # y, if depth(y) < m
then [y]lm = {y}, thus [y]r = {y} for all & > m. Otherwise, if depth(y) > m
then since y # am41, it follows y < ¢,. Since [¢p)m—1 = {cm}, this proves
ooy and thus by Lemma 4.9 xz-yy for all k > m. It follows [z]; = {«} for
all k > m = depth(z) — 1.

Let depth(x) = n + 1. The only point with depth n + 1 in §, is the root
r and clearly it is the only point in [r],.

It follows that [z], = {«} for all x € §,, and thus §,/~, = Fn- O

Once we know that every poset from the antichain Ag above is regular, it
is then straightforward to reason as in Jankov’s original proof and show that
the cardinality of the lattices of DNA-logics and DNA-varieties is exactly 280, We
say that a finite Heyting algebra has width (or depth) n if its dual poset has
width (or depth) n,

Theorem 5.6. There are continuum-many DNA-logics and DNA-varieties. In par-
ticular, there are continuum-many DNA-varieties generated by Heyting algebras
of width 3.
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Proof. Let Ag be the set of Heyting algebras dual to the posets in Ag. Since
every poset in Ag has width 3, the same holds for the dual Heyting algebras. By
Proposition 5.4, Ag is an infinite <-antichain of finite, subdirectly irreducible
Heyting algebras. Moreover, by Theorem 4.15 and Proposition 5.5 we also
have that each Heyting algebra in A is regularly generated. By Theorem 5.3
we have Log™(Z) # Log™(J) whenever Z,J C Ay and Z # J. By duality,
we also have D(Z) # D(J) whenever 7,7 C Ay and Z # J, where D(C)
denotes the DNA-variety generated by C. Since |Ap| = w, our result follows
immediately. O

We also remark that, given the fact that DNA-varieties are in one-to-
one correspondence with varieties of Heyting algebras generated by regular
algebras, this also shows the existence of continuum-many varieties of Heyting
algebras generated by regular elements.

5.3. Antichain A

Interestingly, we can also apply another standard example of infinite
<-antichain to our context, originally due to Kuznetsov [26], and show that
there are continuum-many subvarieties of Heyting algebras which are gener-
ated by strongly regular elements.

We recall the following construction and redirect the reader to [4, Section
3] for more details. For every 1 < n < w, we let &,, be the poset with domain

dom(&,,) = {r} U{am | m <n}U{b, | m <n}

and such that

e r < a;b;, forall i <mn;
ap < by, forall 0 < j <m
an < by, forall 0 < j<mn
a; < bj, forall 0 <i <nandi#j.
We let A;:={&,, | 1 < n < w} be the set of all such posets. One can
check that, whenever we collapse two maximal points in a frame &,,1, the
result is that every point of depth 1 is related to every point of depth 0, which

is not the case in &,,. We thus obtain the following proposition, whose detailed
proof is left to the reader.

Proposition 5.7. The set of Heyting algebras dual to A1 is a <-antichain.

As the posets in A; grow in width rather than depth, we have that every
&,, is stable already under the quotient ~g, i.e. &,,/~y = &, forall 1 < n < w.
So every poset in A; is actually strongly regular.
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Proposition 5.8. Every poset &,, is strongly regular.

Proof. By construction, it is straightforward to check that any two different
x,y € &, see different maximal elements, i.e. M (z) # M (y). O

By the same reasoning as above, we immediately obtain a second un-
countable family of DNA-varieties and DNA-logics.

Theorem 5.9. There are continuum many DNA-varieties generated by strongly
reqular Heyting algebras of depth 3.

Proof. Analogously to Theorem 5.6, together with the fact that posets from
A are strongly regular and have depth 3. 0

Also, this means that there are continuum-many varieties of Heyting
algebras generated by strongly regular elements of width 3.

6. Applications to logic

In this section we consider some applications to logic of regular Heyting alge-
bras. As we saw in Section 2.4, regular Heyting algebras play an important role
in the algebraic semantics of DNA-logics. We employ Esakia duality to adapt
these results to the topological setting, thereby obtaining a topological seman-
tics for DNA-logics. Secondly, we consider the case of dependence logic and we
extend this topological semantics to this setting as well. We start by adapting
the notion of DNA-variety to the context of Esakia spaces.

6.1. DNA-varieties of Esakia spaces
In analogy with the algebraic case, we define a special family of varieties of

Esakia spaces, closed under an additional operation which preserves the struc-
ture of the regular clopen upsets.

Definition 6.1 (DNA-variety of Esakia spaces). A DNA-variety of Fsakia spaces €
is a variety of Esakia spaces additionally closed under the following operation:

EM —{¢|3F c£.3f: € - F. fI Mg is a homeomorphism of Stone spaces}.

Given a class £ of Esakia spaces, we write S(£) for the smallest DNA-
variety of Esakia spaces containing & and we denote by A(Esa®™) the sub-
lattice of A(Esa) consisting of DNA-varieties. When we restrict Esakia duality
to DNA-varieties of Heyting algebras and DNA-varieties of Esakia spaces, we
immediately obtain the following theorem.

Theorem 6.2. The maps PF and CU restricted to the sublattices A(HAT) and
A(Esa™) induce an isomorphism of the two lattices.

Proof. Notice that, given H and K Heyting algebras, the two conditions
(i) Ko =H_. and K < H;
(i) 3f : €y — €Ex. f71: RCU(EK) — RCU(Ey) is a Boolean algebras

isomorphism;
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are dual to each other. By Proposition 4.3 we have that (ii) is equivalent to
the following claim

(iii) 3f : €y —» Ek. fI Mg is a homeomorphism of Stone spaces.
Given this, we have that DNA-varieties of Heyting algebras are in one-to-one

correspondence to DNA-varieties of Esakia spaces, from which it is immediate
to verify the main statement. O

Finally, we notice that in [8] we proved several results concerning DNA-
varieties of Heyting algebras, which are straightforward to adapt to DNA-
varieties of Esakia spaces. In particular, we recall the following Birkhoff’s style
theorem. We say that a class of Heyting algebras C has the DNA-finite model
property if whenever C ™ ¢ there is some finite H € C such that H ™ ¢.

Theorem 6.3. (i) Fvery DNA-variety of Heyting algebras X is generated by its

collection of regular, subdirectly irreducible elements, i.e. X = D(Xgsy).

(ii) If a DNA-variety X has the DNA-finite model property, it is generated by
its finite, reqular, subdirectly irreducible elements, i.e. X = D(Xrpsy)-

Using Esakia duality it is immediate to translate this result to DNA-
varieties of Esakia spaces. We recall that a Heyting algebra is subdirectly
irreducible if and only its dual Esakia space is strongly rooted, i.e. if it has a
least element r such that {r} is open (see [18, p. 152] and [3, Theorem 2.9]).
A DNA-variety of Esakia spaces has the DNA-finite model property if its dual
DNA-variety of Heyting algebras has this property.

Corollary 6.4. (i) Fvery DNA-variety of Esakia spaces £ is generated by its
collection of reqular, strongly rooted elements, i.e. € = S(Ersy).
(ii) If a DNA-variety £ has the DNA-finite model property, then it is generated
by its rooted, finite, reqular elements, i.e. € = S(Errr).

6.2. DNA-logics and inquisitive logic
We introduce a topological semantics for DNA-logics that mirrors their algebraic
semantics. The results of Section 3 suggest to define a semantics for DNA-logics
in terms of Esakia spaces and regular clopen upsets.

Given an Esakia space € we call a function p : AT — RCU(€E) a DNA-
valuation over €. For u a DNA-valuation, define the interpretation of formulas
over € as follows:

[p] -+ = u(p) [L]®+ =0
[rjer e [0 n w1 = [o)* 0 [u]o
[6 — w]®# = [e] &+ \ [¥]&# [o v o]+ =[]+ U [$] S+
The only difference with the definition of Section 2.3 being that in the
atomic case the interpretation is restricted to RCU(€). Notice however that
not all formulas have to range over the set RCU(€). For example, it is not true
in general that the union of two regular sets is regular, and in fact [p V ¢] ©*
may be a non-regular element of CU/(&). We then say that a formula ¢ is DNA-
valid on a space € (€ ™ ¢) if [¢p]®* = € for every DNA-valuation u. We say
that a formula ¢ is DNA-valid on a class of spaces £ (€ E™ ¢) if it is DNA-valid
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on every element of the class. We write Log™(€) for the set of the DNA-valid
formulas of £ and we write Space™ (L) for the DNA-variety of Esakia spaces
which validate all formulas in L.

Since DNA-valuations over Esakia spaces correspond through Esakia du-
ality exactly to negative valuations over their dual Heyting algebras, the alge-
braic completeness of DNA-logics immediately establishes the completeness of
this topological semantics.

Theorem 6.5. Let L be a DNA-logic, £ a DNA-variety of Fsakia Spaces, ¢ a
formula and & an Esakia Space. Then we have the following:

¢ € L <= Space” (L) E” ¢;
Eec < EFE" Log™(&).

We remark that this also delivers a topological semantics for inquisitive
logic which differs from the one previously studied in [7], rather based on
UV-spaces. Since inquisitive logic IngB is the negative variant of any interme-
diate logic between ND and ML, the former result shows that inquisitive logic
also admits a topological semantics based on Esakia spaces, which mirrors its
algebraic semantics based on regular Heyting algebras.

Corollary 6.6. Let L be any intermediate logic between ND and ML, then ¢ €
IngB if and only if Space™ (L) E™ ¢.

6.3. Dependence logic

We conclude by showing how the previous topological semantics can be ex-
tended to dependence logic, which, in its propositional version, can be seen as
an extension of inquisitive logic in a larger signature.

Originally, dependence logic was introduced by Vainanen [32] as an ex-
tension of first-order logic with dependence atoms. A key aspect of dependence
logic is that it is formulated in so-called team-semantics, which was introduced
by Hodges in [21]. In its propositional version, which was developed by Yang
and Védnénen in [35,36], teams are simply sets of propositional assignments.
It was soon observed in Yang’s thesis [34]—see also [12,35]—that the team
semantics of propositional dependence logic actually coincides with the state-
based semantics of inquisitive logic, thus establishing an important connection
between dependence and inquisitive logic.

We explore here a further aspect of this connection and we illustrate the
relation between propositional dependence logic and regular Esakia spaces. In
particular, we will adapt the completeness proof of Theorem 6.5 so as to obtain
a sound and complete topological semantics for dependence logic.

6.3.1. Syntax and semantics. Propositional dependence logic can be seen as
an extension of inquisitive logic in a larger vocabulary L., which adds the
so-called tensor operator to the signature of intuitionistic logic. Formulas of
dependence logic are thus defined recursively as follows:

pu=p|LI¢ANG|oRP[OVI|d— 9,
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where p € AT. We define —a:=a — | and we say that a formula is standard
if it does not contain any instance of V. We provide this syntax with the
usual team semantics. We recall that a propositional assignment is a map
w : AT — 2 and that a team is a set of assignments ¢t € p(24T). The team
semantics of dependence logic is then defined as follows.

Definition 6.7 (Team Semantics). The notion of a formula ¢ € LS. being true
in a team t € p(2'7) is defined as follows:

tEp Yw €t (w(p) =1)

tE L t=10

tEyYVy tEYortEy

tEYAx tEYandtEy

tEY®yx ds,r Ctsuchthat sUr=tand sF¢,rF x
tEY — x Vs (if s Ctand sFE then sE x).

We define propositional dependence logic as the set IngB® = Log(p(24T))
of all formulas of £$,; valid under team semantics. We notice that inquisitive
logic has exactly the same semantics but it is formulated in the restricted
language L1pc, which lacks the tensor disjunction ®, thus in particular IngB® D
IngB. The following normal form was proven in [11] for inquisitive logic and
extended in [35] to dependence logic.

Theorem 6.8 (Disjunctive Normal Form). Let ¢ € LS, then there are stan-
dard formulas ao, . .., o, € LS such that ¢ =1nqe® Vi<p -

We finally remark that the propositional dependence atom can be defined
in this system as follows:

=Pos- - Pms )= N\ (0 V-pi) = (qV ).
i<n
We thus notice that, despite the name, it is not the dependence atom which
distinguishes the propositional version of inquisitive and dependence logics,
but rather the presence of the tensor. This observation is also justified by the
work of Barbero and Ciardelli in [14], as they showed that the tensor cannot
be uniformly defined by the other operators.

6.3.2. Algebraic semantics of dependence logic. As we have recalled above,
inquisitive logic admits a (non-standard) algebraic semantics, which was in-
troduced in [7] and further investigated in [8]. As dependence logic extends
inquisitive logic by the tensor operator, it is natural to provide it with an
algebraic semantics by augmenting inquisitive algebras with an interpreta-
tion for it. Such a semantics was first introduced in [31] and was later shown
in [28] to be unique up to a suitable notion of algebraizability. We can use
such algebraic semantics to build a bridge with Esakia spaces and provide a
topological semantics for dependence logic. Firstly, we introduce the notion of
IngB®-algebras as in [28].

Definition 6.9 An IngB®-algebra A is a structure in the signature L3, such
that:
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A{V,A,—, L} € Var(ML);
A_{®,N,—, L} € BA;
AFz®@(yVz2) ~(z@y)V (z® 2);

Hence, an InqB®-algebra is the expansion of a Heyting algebra satisfying
the validities of ML, and the additional conditions above. By expanding the
previous definition, one can see that it amounts to the equational definition
of a class of algebras, thus giving rise to a variety of structures. Notice that,
as the regular elements of a Heyting algebra always form a Boolean algebra,
what the condition A [{®, A, —, L} € BA really entails is that, for all regular
elements z,y € A, x ® y:=—(—x A —y), i.e. the tensor is the “real” Boolean
disjunction over regular elements.

We let IngBAlg® be the variety of all IngB®-algebras and we write
IanAIg;,‘:X’RSI for its subclass of finite, regular and subdirectly irreducible el-
ements. We say that A is a dependence algebra if it belongs to the subvari-
ety generated by all finite, regular, subdirectly irreducible IngB-algebras, i.e.
if A€ V(IanAIg,@RSl). We write DA::V(IanAIg,@?RS,) for the variety of de-
pendence algebras. It was proven in [28] that DA is the equivalent algebraic
semantics of IngB®. In particular, we have the following completeness result:

Theorem 6.10 (Algebraic Completeness). For any formula ¢ € LS we have
that ¢ € IngB® if and only if DAE™ ¢.

Where on the right hand side we are using the same notion of truth
of Section 2.4, i.e. formulas of dependence logic are evaluated under negative
valuations, which map atomic formulas to regular elements of the underlying
dependence algebra.

6.3.3. Topological semantics of dependence logic. The algebraic semantics of
propositional dependence logic makes for an important bridge with the topo-
logical approach that we developed in this article. In fact, dependence algebra
are expansions of Heyting algebras (more specifically of ML-algebras), whence
we can dualize them according to HEsakia duality. The only problem when
proceeding in this way is that, as the Esakia duality accounts only for the
Heyting algebra structure of a dependence algebra, the correct interpretation
of the tensor operator is “lost in translation”. To avoid this problem we shall
consider only regular dependence algebras.

Let € be a regular Esakia space satisfying ML, it is easy to provide an
interpretation for the tensor over clopen upsets €. In fact, as we remarked
previously, the tensor of two regular elements is simply their classical Boolean
disjunction. Moreover, it follows immediately from the disjunctive normal form
of IngB (Theorem 6.8) and the fact that ML-spaces are complete with respect
to IngB (Corollary 6.6) that any clopen upset of a regular ML-Esakia space is a
union of regular ones. This allows us to define the tensor operator over CU(€)
as follows:

(i) For U,V € RCU(E) we let U @ V:=(U UV);
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(ii) For U,V € CU(E)\RCU(E) we let
UaV:=| {Uo@Vy | Uy CU,Vy CV,Up, Vo € RCU(E)}.

We leave it to the reader to verify that CU/(€) forms a dependence algebra,
where the tensor operator is interpreted as we remarked. However, although
this definition suffices in explaining how the tensor can be interpreted over
algebras of clopen upsets, it still does not provide us with a topological intuition
of its behaviour. To this end, we prove the following proposition.

Proposition 6.11 Let € be a reqular Esakia space satisfying ML, and let ® be
defined by the clauses above, then we have, for any U,V € CU(€E):

2 elURV << M(z) CUUV,
for some Uy CU and Vo CV such that Uy, Vy € C(Me).

Proof Firstly, if U,V € RCU(E) we have U ® V = (U U V). We obtain:

re(UUV)e=Vy>z, ygUNV
= Vy>axdz>y, 2€UUV
— M) CUUV
< M(z) CM{U)UM(V).

Then, for arbitrary U,V € CU(€E), the claim follows immediately from the
definition of the tensor and the display above. O

The previous proposition thus provides us with a topological interpreta-
tion for the tensor operator and shows that the tensor disjunction between two
clopen upsets of an Esakia space is uniquely determined by the Stone subspace
of its maximal elements.

Now, let Esafizg be the class of rooted, finite and regular posets which
satisfy ML and augment them by a tensor operator defined as in Proposition
6.11. By the definition of the variety of dependence algebras it follows that the
validity of IngB®-formulas is always witnessed by finite, regular, subdirectly
irreducible algebras (see also [31]). The following theorem thus follows exactly
as Theorem 6.5, by applying Esakia duality and interpreting the tensor as we
illustrated above.

Theorem 6.12 (Topological Completeness). For any formula ¢ € Ly we have
that ¢ € InqB® if and only if Esapeg E™ 6.

As the validity of formulas is preserved by the variety operations, we can
extend the previous result and infer the completeness of IngB® with respect to
the closure of the class Esaffrg under subspaces, p-morphisms and coproducts.
Notice, however, that our topological characterisation of the tensor operator
is limited to regular Esakia spaces. The questions whether the tensor admits
an interesting topological interpretation also in non-regular spaces should be
subject of further investigations.
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7. Conclusion

In this article we considered regular Heyting algebras from the point of view
of Esakia duality and we provided several results about their dual topological
spaces. In particular, in Section 4 we described two different characterisations
of (finite) regular Esakia spaces and in Section5 we applied them to show
that there are continuum many varieties of Heyting algebras generated by
(strongly) regular elements. This also shows that there are continuum many
DNA-varieties and DNA-logics, in contrast to the fact that there are only count-
ably many extensions of inquisitive logic. Finally, in Section 6, we considered
several logical applications of our work and we introduced novel topological
semantics for DNA-logics, inquisitive logic and dependence logic, which crucially
rely on regular Esakia spaces.

We believe that the present work hints at some possible directions of
further research. Besides the questions already raised in the article, we wish
here to bring three points to attention.

Firstly, in [31] we have considered the algebraic semantics of a wide range
of intermediate versions of inquisitive and dependence logics. As this semantics
relies on Heyting algebras with a core of join-irreducible elements, it is then
natural to ask to what extent one could extend the duality results of this article
to this context.

Secondly, is it possible to extend our characterisation of finite regular
posets from Section 4.2 to account also for infinite Esakia spaces? As we have
briefly remarked, the cases of image-finite Esakia spaces, or of Esakia spaces
dual to finitely generated Heyting algebras do not pose serious problems, but
in general this seems a non-trivial problem.

Finally, the class of finite regular posets has a quite combinatorial nature
and makes for an interesting class of structures. Is it possible to provide a
classification of these structures up to some suitable notion of dimension, e.g.
their depth or their number of maximal elements? We leave these and other
problems to future research.
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