Search for new decay modes of the $\psi(3823)$ and the process $e^+e^- \rightarrow \pi^0\pi^0\psi(3823)$

(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raivind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
24 INFN Sezione di Perugia, I-06100, Perugia, Italy
25 INFN Sezione di Padova, I-35131, Padova, Italy
26 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
27 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110023, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 North China Electric Power University, Beijing 102206, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

L091102-2
The decays $\psi_2(3823) \rightarrow \gamma \chi_{c0,1,2}, \pi^+\pi^- J/\psi, \pi^0 \eta J/\psi, \pi^0 J/\psi$ are searched for using the reaction $e^+e^- \rightarrow \pi^+\pi^- \psi_2(3823)$ in a 9 fb$^{-1}$ data sample collected at center-of-mass energies between 4.1 and 4.7 GeV with the BESIII detector. The process $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ is observed in a 9 fb$^{-1}$ data sample in a reaction $e^+e^- \rightarrow \pi^+\pi^- \psi_2(3823)$.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
Charmonium, the bound state of a charm quark and anticharm quark (c\bar{c}), plays an important role in our understanding of quantum chromodynamics (QCD), which is the fundamental theory of the strong interaction. Low-energy QCD remains a field of high interest both experimentally and theoretically. All charmonium states below the open-charm (D\bar{D}) threshold have been observed experimentally and can be well described by potential models [1]. However, the understanding of the spectrum that is above the D\bar{D} threshold remains unsettled. During the past decade, many new charmoniumlike states have been discovered, such as the X(3872), Y(4260), Z_c(3900), and Z_{c'}(3985) [2–5]. These are good candidates for exotic states that lie outside the conventional quark model as discussed in Refs. [6–9]. On the other hand, there are still excited charmonium states above the D\bar{D} threshold predicted by potential models, which have not yet been observed. Thus, a more complete understanding of the charmonium(like) spectrum is necessary to identify conventional and exotic states.

The lightest charmonium resonance above the D\bar{D} threshold is the \psi(3770), which is identified as the \psi(1^3D_1) state, the J = 1 member of the D-wave spin triplet [10]. Recently, two more states have been observed, which are considered to be good candidates for members of this spin triplet. The \psi_2(3823), for which first evidence was found by the Belle Collaboration and which was later observed by the BESIII Collaboration in \psi_2(3823) \rightarrow \gamma\chi_{c1}, is considered to be the \psi(1^3D_2) state [11,12]. The LHCb Collaboration also observed the \psi_2(3823) in its decay to \pi^+\pi^-J/\psi [13]. The other newly observed resonance is the \psi_3(3842) seen by the LHCb Collaboration in \psi_3(3842) \rightarrow D\bar{D} [14]. It is suggested to be the \psi(1^3D_3) state.

The motivation of this paper is to provide additional experimental evidence for the correct assignment of the \psi_2(3823) to be the J = 2 spin-triplet partner, by comparing its decay channels to the theory predictions of Refs. [15–24]. Experimental information on the \psi_2(3823) is still sparse. The partial widths for decays of the \psi(1^3D_2) state to several channels have been predicted by various different models. These models agree that the dominant decay of the \psi(1^3D_2) is to \gamma\chi_{c1}, with the next most probable decays being to \gamma\chi_{c2} and to \pi^+\pi^-J/\psi.

The branching-fraction ratios $\frac{B(\psi(1^3D_2) \rightarrow \gamma\chi_{c2})}{B(\psi(1^3D_2) \rightarrow \gamma\chi_{c1})}$ and $\frac{B(\psi(1^3D_2) \rightarrow \pi^+\pi^-J/\psi)}{B(\psi(1^3D_2) \rightarrow \gamma\chi_{c1})}$ are predicted to be 0.19–0.32 and 0.12–0.39, respectively [15–24].

In this Letter, a search for \psi_2(3823) \rightarrow \gamma\chi_{c0,1,2}, \pi^+\pi^-J/\psi, \pi^0\pi^0J/\psi, \eta J/\psi, and \eta' J/\psi is reported, using $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$ events from a 19 fb$^{-1}$ data sample collected at center-of-mass energy in the range 4.1 < \sqrt{s} < 4.7 GeV with the BESIII detector [25]. Additionally, a search is performed for the process $e^+e^- \rightarrow \pi^0\pi^0\psi_2(3823)$ with \psi_2(3823) \rightarrow \gamma\chi_{c1}.

The BESIII detector is a magnetic spectrometer located at the Beijing Electron Positron Collider (BEPCII). For more details on the detector or the accelerator, we refer to Refs. [25–27]. Simulated samples produced with the GEANT4-based [28] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate background contributions. The simulation includes the beam energy spread and initial-state radiation (ISR) in e^+e^- annihilations modeled with the generator KKMC [29]. Signal MC samples for $e^+e^- \rightarrow \pi\pi\psi_2(3823)$ are generated using isotropic phase-space populations, assuming that the cross section follows a coherent sum of \psi(4360) and the \psi(4660) Breit-Wigner (BW) distributions, whose magnitude and phase parameters we obtain from a fit to the observed cross section, with the \psi_2(3823) mass fixed to the Particle Data Group (PDG) value [10] and width fixed to zero. The subsequent \psi_2(3823) decays are generated uniformly in the phase space, and the effects from the angular distributions of \psi_2(3823) decays are studied and found to be small. Inclusive MC samples consist of the production of open-charm processes, the ISR production of vector charmonium (like) states, and the continuum processes incorporated in KKMC [29]. Known decay modes are modeled with EvtGen [30] using branching fractions summarized and averaged by the PDG [10]. The remaining unknown decays from the charmonium states are generated with LUNDCHARM [31]. Final-state radiation from charged final-state particles is incorporated with the PHOTOS package [32].

The $\chi_{c1,2}$ are reconstructed via $\chi_{c1,2} \rightarrow J/\psi$ decays, the J/ψ is reconstructed in its decay to an e^+e^- or $\mu^+\mu^-$ pair,
the π^0 and η are reconstructed via $\pi^0/\eta \rightarrow \gamma\gamma$ decays, and the χ_{c0} is reconstructed in its decay to a $\pi^+\pi^-$ or K^+K^- pair. For each charged track, the distance of closest approach to the interaction point is required to be within ±10 cm in the beam direction and within 1 cm in the plane perpendicular to the beam direction. The polar angle (θ) of the tracks must be within the fiducial volume of the multilayer drift chamber ($|\cos\theta| < 0.93$). Photons are reconstructed from isolated showers in the electromagnetic calorimeter (EMC), which are at least 104 away from the nearest charged track. The photon energy is required to be at least 25 MeV in the barrel region ($|\cos\theta| < 0.8$) or 50 MeV in the end-cap region ($0.86 < |\cos\theta| < 0.92$). To suppress electronic noise and energy depositions unrelated to the event, the time at which the photon is recorded in the EMC is required to be within 700 ns of the event start time. Candidate events must have the exact same number of charged tracks with zero net charge and at least the same number of photons as required for the respective final state. Tracks with momenta larger than 1 GeV/c are assigned to be leptons from the decay of a J/ψ or to be πK from the decay of a χ_{c0}. Otherwise, tracks are considered pions. Leptons from the J/ψ decay with an energy deposit in the EMC larger than 1.0 GeV are identified as electrons, and those with less than 0.4 GeV as muons. To reduce background contributions and to improve the mass resolution, a four-constraint kinematic fit is performed to constrain the total four-momentum of the final-state particles to the four-momentum of the colliding beams. Additionally, for the $\psi(2S) \rightarrow \pi^0\pi^0 J/\psi$ and $e^+e^- \rightarrow \pi^0\pi^0\psi(2S)$ channels the invariant masses of the two pairs of photons are constrained to the nominal mass of the π^0 meson [10]. The two track candidates from the decay of χ_{c0} mesons are considered to be either a $\pi^+\pi^-$ or a K^+K^- pair depending on the χ^2 of the four-constraint kinematic fit. If $\chi^2(\pi^+\pi^-) < \chi^2(K^+K^-)$, the two tracks are identified as a $\pi^+\pi^-$ pair, otherwise, as a K^+K^- pair. For all these channels, if there is more than one combination of photons in an event, the one with the smallest χ^2 of the kinematic fit is selected. The χ^2 of the candidate process is required to be less than 60 in all cases.

Besides the requirements described above, further selection criteria are applied. To suppress the background from $\pi^0/\eta \rightarrow \gamma\gamma$ in the $\psi(2S) \rightarrow \chi_{c1,2}$ decays, regions around the π^0 and η masses, namely [0.11, 0.16] and [0.51, 0.58] GeV/c2, in the invariant mass $M(\gamma\gamma)$ are excluded. In order to remove background from the $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ in the $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$, $\pi^0\pi^0 J/\psi$, $\eta J/\psi$, $\pi^0 J/\psi$ decays, all possible invariant mass $M(\pi^+\pi^- J/\psi)$ combinations are required to be outside the region [3.675, 3.696] GeV/c2. To eliminate background from $\eta' \rightarrow \pi^+\pi^- \chi_{c1} \rightarrow \gamma J/\psi$ in the $\psi(2S) \rightarrow \eta J/\psi$ decays, the invariant masses $M(\gamma\gamma\pi^+\pi^-)$ and $M(\gamma J/\psi)$ are required to be outside the regions [0.94, 0.97] and [3.49, 3.53] GeV/c2, respectively, where γ_{hl} is the highest-energy photon. This condition removes almost all of the η'/χ_{c1} background. To remove background from the $\eta \rightarrow \pi^0\pi^+\pi^-$ in the $\psi(2S) \rightarrow J/\psi$ decays, candidates are excluded that have an invariant mass $M(\gamma\pi^+\pi^-)$ around the nominal η mass in the region [0.51, 0.58] GeV/c2. Finally, to reject background from photon conversion in the $\psi(2S) \rightarrow \gamma\chi_{c0}$ decays, the cosine of the angle between any two charged tracks is required to be less than 0.9.

The J/ψ signal region is defined by the mass range [3.075, 3.125] GeV/c2 in $M(e^+e^-/\mu^+\mu^-)$, apart from in the decay channel $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$, where the J/ψ signal region is narrowed to the range [3.09, 3.11] GeV/c2 due to the better resolution for the four-charged-track final states. The χ_{c1} and χ_{c2} signal regions are chosen as the ranges [3.49, 3.53] and [3.54, 3.57] GeV/c2 in $M(\gamma\eta J/\psi)$, respectively, and sideband regions, defined as the ranges [3.43, 3.48] and [3.58, 3.63] GeV/c2, are used to study the nonresonant background. The η, π^0 and χ_{c0} signal regions are chosen to be [0.52, 0.57] and [0.12, 0.15] GeV/c2 in $M(\gamma\gamma)$ and [3.39, 3.44] GeV/c2 in $M(\pi^+\pi^- K^+K^-)$, respectively.

Figure 1 shows the $\pi^+\pi^-$ recoil-mass distribution $RM(\pi^+\pi^-)$ for the $\gamma\chi_{c1}$ channel. A clear $\psi(2S)$ signal is observed for 9 fb$^{-1}$ of data at $4.3 < \sqrt{s} < 4.7$ GeV, while no significant $\psi(2S)$ signal is seen for the 10 fb$^{-1}$ sample at $4.1 < \sqrt{s} < 4.3$ GeV. The green shaded histograms correspond to the normalized events from the χ_{c1} sideband region. Thus, only data at $4.3 < \sqrt{s} < 4.7$ GeV are used to search for new $\psi(2S)$ decay channels.

Figure 2 shows the distributions of $RM(\pi^+\pi^-)$ for the decays $\psi(2S) \rightarrow \gamma\chi_{c1,2}$, $\pi^+\pi^- J/\psi$, $\pi^0\pi^0 J/\psi$, $\eta J/\psi$, and $\pi^0 J/\psi$, χ_{c0} and a scatter plot of $M(\gamma\eta J/\psi)$ versus $RM(\pi^+\pi^-)$ for the decays $\psi(2S) \rightarrow \chi_{c1,2}$ for data at $4.3 < \sqrt{s} < 4.7$ GeV. Here, all valid $RM(\pi^+\pi^-)$ combinations of the $\pi^+\pi^- J/\psi$ decay are retained. In addition to the $\psi(2S)$ signal observed in the $\psi(2S) \rightarrow \gamma\chi_{c1}$ channel, there are also events clustered in the signal region for the mode $\psi(2S) \rightarrow \gamma\chi_{c2}$. No significant $\psi(2S)$ signals are observed for the other channels. The distribution of $M(\pi^+\pi^- J/\psi)$ after a four-constraint kinematic fit for the
For the other decays, where there are no significant signals, upper limits of the relative branching ratio compared to the decay $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ at the 90% confidence level (C.L.) are determined. These upper limits are calculated from the likelihood curve of the fits as a function of signal yield after being convolved with a Gaussian distribution, where the width of Gaussian distribution is the quadratic sum of the systematic uncertainty and statistical uncertainty of the $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ signal yield. Those limits together with the corresponding limits on the number of signal events are summarized in Table I.

The values of the branching-fraction ratios $B(\psi_2(3823) \rightarrow \gamma \chi_{c1})$ and the upper limits of the branching-fraction ratios for $\psi_2(3823) \rightarrow \pi^+\pi^-J/\psi, \pi^0\pi^0J/\psi, J/\psi, \eta J/\psi, \eta J/\psi$, and χ_{c0} relative to the decay $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ shown in Table I are calculated using the definition in Table II, where N is the yield of signal events, \mathcal{L} is the integrated luminosity [34], σ is the cross section, $1 + \delta$ is the radiative correction factor [29,35], ϵ is the efficiency, B is the branching fraction [10], and i denotes each energy point.

Figure 3 shows the $\pi^0\pi^0$ recoil-mass distribution $RM(\pi^0\pi^0)$ for the decay $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ for data at $4.3 < \sqrt{s} < 4.7$ GeV. A signal peak corresponding to the process $e^+e^- \rightarrow \pi^0\pi^0\psi_2(3823)$ can be seen. In order to determine the signal yield, an unbinned maximum-likelihood fit is performed. The $\psi_2(3823)$ signal is modeled by the MC-determined shape convolved with a Gaussian function, whose mean value and width are fixed to be the values obtained from the same final-state process $e^+e^- \rightarrow \pi^0\pi^0\psi(3686)$. The background is described with a constant. The solid curve in Fig. 3 shows the fit results. The number of signal events is determined to be $15.9^{+5.1}_{-4.4}$, and the significance for the process $e^+e^- \rightarrow \pi^0\pi^0\psi_2(3823)$ with systematic uncertainties included is found to be 4.3σ.

<table>
<thead>
<tr>
<th>Channel</th>
<th>$N_{\psi_2(3823)}$</th>
<th>$B(\psi_2(3823) \rightarrow \gamma \chi_{c1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma \chi_{c1}$</td>
<td>63.1 ± 8.5</td>
<td>...</td>
</tr>
<tr>
<td>$\gamma \chi_{c2}$</td>
<td>8.8^{+3.3}_{-1.5}</td>
<td>0.28^{+0.14}_{-0.11} ± 0.02</td>
</tr>
<tr>
<td>$\pi^+\pi^-J/\psi$</td>
<td><21.0</td>
<td><0.06</td>
</tr>
<tr>
<td>$\eta J/\psi$</td>
<td><9.8</td>
<td><0.11</td>
</tr>
<tr>
<td>$\eta J/\psi$</td>
<td><9.8</td>
<td><0.14</td>
</tr>
<tr>
<td>$\eta J/\psi$</td>
<td><5.6</td>
<td><0.24</td>
</tr>
<tr>
<td>$\eta J/\psi$</td>
<td><6.3</td>
<td><0.3</td>
</tr>
</tbody>
</table>

* * *

The number of $\psi_2(3823)$ signal events $N_{\psi_2(3823)}$ and branching-fraction ratios $B(\psi_2(3823) \rightarrow \gamma \chi_{c1})$ for different $\psi_2(3823)$ decay channels. For $N_{\psi_2(3823)}$ only the statistical uncertainty is shown. For the ratios the first uncertainty is statistical and the second uncertainty is systematic. The upper limits at the 90% C.L. are calculated taking into account both contributions. ... means that the result is not applicable.
Data and phase parameters are obtained from a fit to the invariant-mass distribution of \(\psi(3823) \) decays into a certain channel and \(B(\ldots) \) represents the branching fraction of subsequent decays.

Table II. Definitions of the ratios \(\frac{B(\psi(3823)\rightarrow J=1)}{B(\psi(3823)\rightarrow \chi_{c1})} \) and \(\frac{\sigma(e^+e^+\rightarrow \pi^+\pi^0\psi(3823))}{\sigma(e^+e^+\rightarrow e^+e^-\psi(3823))} \), where \(B(\psi(3823)\rightarrow \ldots) \) represents the branching fraction of \(\psi(3823) \) decays into a certain channel and \(B(\ldots) \) represents the branching fraction of subsequent decays.

<table>
<thead>
<tr>
<th>Table II</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{B(\psi(3823)\rightarrow J=1)}{B(\psi(3823)\rightarrow \chi_{c1})})</td>
<td>(\frac{\sigma(e^+e^+\rightarrow \pi^+\pi^0\psi(3823))}{\sigma(e^+e^+\rightarrow e^+e^-\psi(3823))})</td>
</tr>
</tbody>
</table>

The average cross-section ratio \(\frac{\sigma(e^+e^+\rightarrow \pi^+\pi^0\psi(3823))}{\sigma(e^+e^+\rightarrow e^+e^-\psi(3823))} \) for the \(\chi_{c1} \) channel for data at 4.3 < \(\sqrt{s} < 4.7 \) GeV is determined to be \(0.64\pm0.22 \pm 0.05 \), which is calculated using the definition in Table II, and is consistent with the expectation of isospin symmetry.

The considered sources of systematic uncertainties related to the branching-fraction ratios and average cross-section ratio are summarized in Table III, where those that are common to the numerator and denominator cancel. The uncertainty in the tracking efficiency and photon efficiency is 1% per track or per photon [36]. The uncertainty from the branching fractions is taken from the PDG [10]. The uncertainty due to the kinematic fit is estimated by correcting the helix parameters of charged tracks, and the difference between the results with and without this correction is taken as the uncertainty [37]. To estimate the uncertainty related to the input line shape of the process \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \), we change the input line shape to a coherent sum of BW functions of \(\psi(4415) \) and \(\psi(4660) \) with the parameters fixed to PDG values, where magnitude and phase parameters are obtained from a fit to the cross section of \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \). The process \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \) is generated by the three-body phase-space model, and the uncertainty of the MC decay model is obtained by changing the phase-space model to the model \(e^+e^+ \rightarrow f_0(500)\psi(3823) \) with a \(D \) wave in the MC simulation. The angular distribution of the angle between the two low-momentum pions in the lab frame is sensitive to the MC model for the \(\psi(3823) \) decay. The influence from the possible presence of a \(\psi(3842) \) state is accounted for by including this component in the fit. In each case, the difference to the nominal result is taken as the systematic uncertainty. The uncertainties from the \(J/\psi, \pi^0/\eta, \chi_{c1} \), and \(\chi_{c0} \) mass-window requirements are 1.6%, 1.0%, 1.0%, and 1.7%, respectively [38,39]. The overall systematic uncertainties are obtained by adding all the sources of systematic uncertainties in quadrature, assuming they are uncorrelated. The effect of the systematic uncertainties on the upper limit or significance is accounted for by changing the fit range and the background shape and then choosing the largest value of the upper limit or the lowest value of the significance.

Table III. Relative systematic uncertainties (in percent) from the different sources for average cross-section ratio \(\frac{\sigma(e^+e^+\rightarrow \pi^+\pi^0\psi(3823))}{\sigma(e^+e^+\rightarrow e^+e^-\psi(3823))} \) (first column) and branching-fraction ratios \(\frac{B(\psi(3823)\rightarrow J=1)}{B(\psi(3823)\rightarrow \chi_{c1})} \) (second to sixth columns) for each decay channel.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\chi_{c1})</th>
<th>(\chi_{c0})</th>
<th>(\pi^+\pi^-J/\psi)</th>
<th>(\pi^0\pi^0J/\psi)</th>
<th>(\eta J/\psi)</th>
<th>(\pi^0J/\psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Photon efficiency</td>
<td>4.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Branching fraction</td>
<td>0.1</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Kinematic fit</td>
<td>0.9</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Input line shape</td>
<td>0.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.8</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>MC decay model</td>
<td>5.8</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Fit method</td>
<td>4.2</td>
<td>4.5</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
</tr>
<tr>
<td>Mass window</td>
<td>. .</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
<td>1.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Sum</td>
<td>8.5</td>
<td>6.0</td>
<td>4.5</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

The average cross-section ratio \(\frac{\sigma(e^+e^+\rightarrow \pi^+\pi^0\psi(3823))}{\sigma(e^+e^+\rightarrow e^+e^-\psi(3823))} \) for the \(\chi_{c1} \) channel for data at 4.3 < \(\sqrt{s} < 4.7 \) GeV is determined to be \(0.64\pm0.22 \pm 0.05 \), which is calculated using the definition in Table II, and is consistent with the expectation of isospin symmetry. The uncertainty from the branching fractions is taken from the PDG [10]. The uncertainty due to the kinematic fit is estimated by correcting the helix parameters of charged tracks, and the difference between the results with and without this correction is taken as the uncertainty [37]. To estimate the uncertainty related to the input line shape of the process \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \), we change the input line shape to a coherent sum of BW functions of \(\psi(4415) \) and \(\psi(4660) \) with the parameters fixed to PDG values, where magnitude and phase parameters are obtained from a fit to the cross section of \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \). The process \(e^+e^+ \rightarrow \pi^+\pi^0\psi(3823) \) is generated by the three-body phase-space model, and the uncertainty of the MC decay model is obtained by changing the phase-space model to the model \(e^+e^+ \rightarrow f_0(500)\psi(3823) \) with a \(D \) wave in the MC simulation. The angular distribution of the angle between the two low-momentum pions in the lab frame is sensitive to the MC model for the \(\psi(3823) \) decay. The influence from the possible presence of a \(\psi(3842) \) state is accounted for by including this component in the fit. In each case, the difference to the nominal result is taken as the systematic uncertainty. The uncertainties from the \(J/\psi, \pi^0/\eta, \chi_{c1} \), and \(\chi_{c0} \) mass-window requirements are 1.6%, 1.0%, 1.0%, and 1.7%, respectively [38,39]. The overall systematic uncertainties are obtained by adding all the sources of systematic uncertainties in quadrature, assuming they are uncorrelated. The effect of the systematic uncertainties on the upper limit or significance is accounted for by changing the fit range and the background shape and then choosing the largest value of the upper limit or the lowest value of the significance.
In summary, the decays $\psi_2(3823) \rightarrow \gamma\chi_{c1}, \pi^+\pi^0J/\psi, \rho^0\rho^0J/\psi, \eta J/\psi$, and ρ^0J/ψ are searched for using the process $e^+e^- \rightarrow \pi^+\pi^-\psi_3(3823)$ in a 19 fb$^{-1}$ data sample collected at center-of-mass energy between 4.1 and 4.7 GeV with the BESIII detector. The process $\psi_2(3823) \rightarrow \gamma\chi_{c1}$ is observed in a 9 fb$^{-1}$ data sample in the center-of-mass energy range 4.3–4.7 GeV, which confirms the previous observation but with the higher significance of 11.8σ, and evidence for the process $\psi_3(3823) \rightarrow \gamma\chi_{c2}$ is found for the first time with a significance of 3.2σ. The branching-fraction ratio $\frac{B(\psi_2(3823) \rightarrow \gamma\chi_{c1})}{B(\psi_3(3823) \rightarrow \gamma\chi_{c1})}$ is measured to be $0.28^{+0.14}_{-0.11} \pm 0.02$, which is consistent with the theoretical predictions for $\frac{B(\psi_2(1D_2) \rightarrow \gamma\chi_{c1})}{B(\psi_3(1D_2) \rightarrow \gamma\chi_{c1})}$ [15–24]. No significant $\psi_2(3823)$ signals are observed for other channels. The upper limits of branching-fraction ratios for $\psi_2(3823) \rightarrow \pi^+\pi^-J/\psi, \rho^0\rho^0J/\psi, \eta J/\psi$, and $\gamma\chi_{c0}$ relative to $\psi_2(3823) \rightarrow \gamma\chi_{c1}$ are reported, and the results can be found in Table I. The upper limit at the 90% C.L. of the branching-fraction ratio $\frac{B(\psi_2(3823) \rightarrow \varepsilon\pi^+\pi^-J/\psi)}{B(\psi_2(3823) \rightarrow \gamma\chi_{c1})}$ is determined to be 0.06, which is lower than the theoretical predictions given in Refs. [15–24]. No significant $e^+e^- \rightarrow \pi^+\pi^-\psi_3(3842)$ signals are seen in any of the channels we studied. The process $e^+e^- \rightarrow \pi^0\rho^0\psi_2(3823)$ with $\psi_2(3823) \rightarrow \gamma\chi_{c1}$ is also searched for, and evidence for the process is found with a significance of 4.3σ. The average cross-section ratio $\frac{\sigma(e^+e^- \rightarrow \pi^0\rho^0\psi_2(3823))}{\sigma(e^+e^- \rightarrow \varepsilon\pi^+\pi^-\psi_3(3823))}$ is determined to be $0.64^{+0.22}_{-0.20} \pm 0.05$, which is consistent with the expectation of isospin symmetry.

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts No. 2020YFA0406300 and No. 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts No. 11905179, No. 11625523, No. 11635010, No. 11735014, No. 11822506, No. 11835012, No. 11935015, No. 11935016, No. 11935018, and No. 1196141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. U1732263 and No. U1832207; CAS Key Research Program of Frontier Sciences under Contracts No. QYZDJ-SSW-SLH003 and No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 894790; Nanhu Scholars Program for Young Scholars of Xinyang Normal University; German Research Foundation DFG under Contracts No. 443159800, Collaborative Research Center No. CRC 1044, No. FOR 2359, No. FOR 2359, and No. GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, United Kingdom under Contracts No. DH140054 and No. DH160214; The Swedish Research Council; and U.S. Department of Energy under Contracts No. DE-FG02-05ER41374 and No. DE-SC-0012069.