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Abstract: Besov priors are nonparametric priors that can model spa-
tially inhomogeneous functions. They are routinely used in inverse problems
and imaging, where they exhibit attractive sparsity-promoting and edge-
preserving features. A recent line of work has initiated the study of their
asymptotic frequentist convergence properties. In the present paper, we
consider the theoretical recovery performance of the posterior distributions
associated to Besov-Laplace priors in the density estimation model, under
the assumption that the observations are generated by a possibly spatially
inhomogeneous true density belonging to a Besov space. We improve on
existing results and show that carefully tuned Besov-Laplace priors attain
optimal posterior contraction rates. Furthermore, we show that hierarchi-
cal procedures involving a hyper-prior on the regularity parameter lead to
adaptation to any smoothness level.
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1. Introduction

Besov priors are a class of probability measures on function spaces constructed
via random wavelet expansions, with independently drawn random wavelet coef-
ficients following a distribution with tails between the Gaussian and the Laplace
distribution. They were first systematically studied by Lassas et al. [37] and,
over the last two decades, have enjoyed enormous popularity within the in-
verse problems [40, 15, 35, 36, 46, 9, 28, 30, 16, 2, 32, 51] and medical imaging
[7, 45, 44, 57, 49] communities. In the present paper, we focus on ‘Besov-Laplace’
priors (shortly, Laplace priors), corresponding to the case of Laplace-distributed
random wavelet coefficients (cf. Sect. 2.2 below for a definition). Among the
main advantages, Laplace priors are known to provide an infinite-dimensional,
‘discretisation-invariant’, alternative [38, 37] to the popular (finite-dimensional)
total-variation prior of Rudin et al. [48], and to give rise to sparse and edge-
preserving reconstruction at the level of the maximum-a-posteriori estimator
[35, 49, 2], observed to perform well in practice in the recovery of inhomoge-
neous objects with localised sharp irregularities such as images. See [45, 37, 15]
and references therein. Alongside these qualities, Besov priors also generally
posses a logarithmically concave structure, which facilitates posterior computa-
tion [9, 13] and theoretical analysis.

For Laplace priors, the aforementioned features stem from the �1-type penalty
induced on the wavelet coefficients. This furnishes a Bayesian model for func-
tions in the Besov scale Bs

11, s ≥ 0, in which the local variability is measured
in an L1-sense and the smoothness can be described by the �1-decay of the
wavelet coefficients (cf. Sect. 2.1 for details). These spaces are known to provide
a mathematical characterisation of spatially inhomogeneous functions, namely
ones that are flat or smooth in some parts of their domain while exhibiting
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high variation (or even jumps) in other areas. See, e.g., [23], p. 348f, for the
relationship with the space of bounded variation functions. Laplace priors are
thus naturally suited to a number of applications dealing with spatially inho-
mogeneous objects including, as mentioned above, imaging, but also geophysics,
where parameters can exhibit jumps corresponding to changes in layered me-
dia, and signal processing, where signals can have extremely localised spikes.
In contrast, the widely used Gaussian priors, which induce �2-type penalties,
model Sobolev-regular functions with less sharp variation, and are known to be
unsuited to more structured recovery problems [3, 5, 26].

Despite the popularity in applications, a comprehensive study of the theoreti-
cal properties of Besov priors has been initiated only very recently. In particular,
we are here interested in the asymptotic recovery performance of the associated
posterior distributions in the large sample size setting, under the assumption
that the available data is generated by a fixed true function (the ‘ground truth’).
Such frequentist analysis of Bayesian nonparametric procedures, and the related
theory of posterior contraction rates, have seen extremely vast developments
since seminal work in the 2000s [18, 52, 20, 22, 55], leading to an extensive
literature that encompasses a large number of prior distributions and statisti-
cal models; see the monograph [21]. For Besov priors, the first general results
were derived in a recent paper by Agapiou et al. [3], based on a study of the
concentration properties of product measures with heavier-than-Gaussian tails
(extending the results for Gaussian priors of [55]). They showed that, in the
Gaussian white noise model, suitably ‘rescaled’ and ‘under-smoothing’ Besov
prior contracts at optimal rates towards spatially inhomogeneous ground truths
in the Besov scale. In [5], this result is extended to nonlinear inverse prob-
lems. A further related reference is [25], where optimal rates for Sobolev-regular
ground truths are obtained in a reversibile multi-dimensional diffusion model.
We also refer to [11, 6, 46] for some earlier results, and to the preprint [47] for
results on spike-and-slab and tree-type priors in nonparametric regression under
a spatially varying Hölder smoothness assumption. Notably, alongside the white
noise setting, [3] also considered density estimation. In this case, however, the
more involved concentration properties of Besov priors compared to Gaussian
priors leads to some intricate complexity bounds, ultimately resulting in their
Theorem 6.7 in sub-optimal posterior contraction rates. More discussion can be
found in Sect. 3.1.1.

The aim of the present paper is to contribute to this recent line of work. We
focus on the density estimation setting, motivated by the investigation of [3].
Our first main result (Theorem 1) shows that, for spatially inhomogeneous true
densities belonging to the Bs

11-Besov scale, carefully tuned Laplace priors do
attain optimal rates. We prove this via the general contraction rate theory for
independent and identically distributed (i.i.d.) observations of Ghosal et al. [18],
employing rescaled and under-smoothing Laplace priors similar to those used in
[3, Sect. 5] and in [5, 25], which we show in the proof to yield tighter complexity
bounds. Theorem 1 thus extends the white noise result of [3] to the density
estimation setting, reconciling the theory for Besov priors in the two statistical
models.
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An interesting aspect of the above result is the combination in the design of
the prior of rescaling and under-smoothing, whose interplay allows to balance
in the proofs the variance component to the bias relative to spatially inhomoge-
neous ground truths; see the discussion after Theorem 1. As observed in [3], this
separates the existing theory for Besov priors and ground truths in Besov scales
to the one for Gaussian priors, where under traditional regularity assumptions
optimal rates are typically obtained with priors of matching smoothness, e.g.,
[55, 23, 21]. While the necessity of such prior construction remains unclear due
to the absence of contraction rates lower bounds for Besov priors (cf. Remark
2), we further investigate these issues exploring the role of rescaling and under-
smoothing in Sects. 3.1.2 and 3.1.3. In the former, we show that, for true den-
sities in the Bs

11-Besov scale, the same optimal rates of Theorem 1 are attained
(up to a logarithmic factor), by partially rescaled under-smoothing Laplace pri-
ors. These are obtained by rescaling only the wavelets at resolutions larger than
a prescribed threshold, providing an (arguably more natural) alternative prior
construction that is not constrained to asymptotically shrink uniformly towards
zero. In Sect. 3.1.3, we instead consider the recovery of spatially homogeneous
ground truths, and show that in this case rescaling and under-smoothing are
unnecessary, as (non-rescaled) Laplace priors with matching regularity attain
optimal posterior contraction rates.

For all the results described above, the specification of the prior requires
knowledge of the smoothness of the unknown true density, which is often an un-
realistic assumption. To overcome such limitation, we investigate adaptation to
the unknown smoothness in Sect. 3.2. Following the well-established hierarchical
Bayesian approach (e.g., [21, Chap. 10]), we consider hierarchical, conditionally
Laplace priors, obtained by randomising the prior regularity parameter via a
further (hyper-)prior. Theorem 7 shows that, for a carefully constructed hyper-
prior (of the form considered in, e.g., [39, 19, 56]), optimal posterior contraction
rates are obtained for true densities in the Bs

11-Besov scale, simultaneously for
any smoothness level. To the best of our knowledge, this represents the first
study of adaptation for Besov priors, and also the first instance in the literature
of a prior achieving adaptive rates over the Bs

11-Besov scale. Finally, the adap-
tive result in Theorem 7 is complemented in Theorem 8, where a hierarchical
non-rescaled Laplace prior is shown to achieve adaptive posterior contraction
rates for spatially homogeneous ground truths. After the completion of this
manuscript, we learned about the independent work by Agapiou and Savva [4],
exploring adaptation for Besov priors in the white noise model.

We conclude the main body of the paper in Sect. 4, where a summary and
further discussion of the presented results can be found, alongside an outline
of potential directions for future research. In Sect. 4.2, we discuss implementa-
tion of posterior inference with Laplace priors in the present density estimation
setting. All the proofs of the main results are developed in Sect. 5. Finally, Ap-
pendix A contains some background material on Besov priors, as well as two
auxiliary results used in the proofs.
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2. Bayesian density estimation with Laplace priors

2.1. Function spaces and other preliminaries

Throughout, the domain of interest is the d-dimensional unit cube [0, 1]d, d ∈ N.
We denote the usual Lebesgue spaces on [0, 1]d by Lp([0, 1]d), p ≥ 1, equipped
with norm ‖ · ‖p, and denote by 〈·, ·〉2 the inner product on L2([0, 1]d). We write
C([0, 1]d) for the space of continuous functions on [0, 1]d, equipped with the
supremum-norm ‖ · ‖∞.

Let {ψlr, l ∈ N, r = 1, . . . , 2ld} be an orthonormal tensor product wavelet
basis of L2([0, 1]d), constructed from S-regular, S ∈ N, compactly supported and
boundary-corrected Daubechies wavelets in L2([0, 1]); see, e.g., [23, Chap. 4.3]
for details. In what follows, we tacitly assume S to be sufficiently large, in
particular, greater than the smoothness parameter s ≥ 0 appearing below. For
a resolution level L ∈ N, define the finite-dimensional approximation space

VL := span{ψlr, l = 1, . . . , L, r = 1, . . . , 2ld}
and let PL : L2([0, 1]d) → VL be the associated projection operator. Note that
VL has dimension dim(VL) = O(2Ld) as L → ∞. For a smoothness parameter
s ≥ 0 and integrability indices p, q ∈ [1,∞], define the Besov space Bs

pq([0, 1]d)
via its wavelet characterisation (cf. [23], p. 370f):

Bs
pq([0, 1]d)

:=

⎧⎨⎩w ∈ Lp([0, 1]d) : ‖w‖qBs
pq

:=
∞∑
l=1

2ql
(
s− d

p+ d
2

)( 2ld∑
r=1

|〈w,ψlr〉2|p
) q

p

< ∞

⎫⎬⎭ ,

where the above �p- and �q-sequence space norms are replaced by the �∞-norm
if p = ∞ or q = ∞ respectively. Recall that the Besov scale contains the tra-
ditional Sobolev spaces Hs([0, 1]d) and Hölder spaces Cs([0, 1]d): Bs

22([0, 1]d) =
Hs([0, 1]d) and Cs([0, 1]d) ⊆ Bs

∞∞([0, 1]d) for all s > 0 (with equality holding
when s /∈ N). As mentioned in the introduction, for p = q = 1, the spaces
Bs

11([0, 1]d) instead provide a mathematical model for spatially inhomogeneous
functions. See [17, Sect. 1], or also [23, 32], for the relationship between the
spaces B1

1q([0, 1]d) and the space of bounded variation functions.
When no confusion may arise, we suppress the dependence of the function

spaces on the underlying domain, writing for example Bs
pq instead of Bs

pq([0, 1]d).
We denote by �, �, and 
, respectively one- or two-sided inequalities holding
up to multiplicative constants. We write N(ξ;P, d), ξ > 0, for the ξ-covering
number of a set P with respect to a semi-metric d on P, defined as the minimal
number of balls of radius ξ in the metric d needed to cover P. Positive numerical
constants in the proofs are denoted by c1, c2, · · · > 0.

2.2. Observation model, prior and posterior

Consider a sample X(n) := (X1, . . . , Xn) of i.i.d. random variables with values
in [0, 1]d, d ∈ N, from an unknown probability distribution P0 with density
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function p0 relative to the d-dimensional Lebesgue measure dx. This paper is
concerned with the problem of estimating p0 from the random sample X(n).
The main focus is on the case where p0 is (possibly) spatially inhomogeneous,
e.g., possibly flat in some parts of the domain and spiky in others. A natural
mathematical model for such setting is then to assume a (Borel measurable)
parameter space p0 ∈ P ⊆ Bs

11([0, 1]d) for some s ≥ 0; see Sect. 2.1 for definitions
and details.

We adopt a Bayesian approach, regarding the data as conditionally inde-
pendent given a density p, X1, . . . , Xn|p iid∼ p, and assigning to p a (possibly
n-dependent) prior distribution Πn supported on the parameter space P. This
induces the posterior distribution p|X(n) ∼ Πn(·|X(n)), which by Bayes’ formula
(e.g., [21], p. 7) equals

Πn(A|X(n)) =
∫
A

∏n
i=1 p(Xi)dΠn(p)∫

P
∏n

i=1 p
′(Xi)dΠn(p′)

, A ⊆ P measurable.

In the following, we study the (frequentist) consistency of Πn(·|X(n)), assuming
that the observations X1 . . . , Xn are drawn from some fixed ‘true’ unknown
density p0 ∈ P to be estimated, and investigating the asymptotic concentration
of the posterior distribution around p0 when n → ∞.

The recovery performance of the posterior distribution is known to depend
on the choice of the prior, which is a key modelling step in the Bayesian ap-
proach. To reflect the potential spatial inhomogeneity of p0 ∈ Bs

11([0, 1]d), we
employ (Besov-)Laplace priors. These represent a particular instance in the class
of Besov priors introduced by Lassas et al. [37], defined in general as random
wavelet expansions with i.i.d. random coefficients following the probability den-
sity function λp(z) ∝ e−|z|p/p, z ∈ R, p ∈ [1, 2]. Laplace priors arise in the case
of Laplace-distributed coefficients (p = 1), and were recently shown by Agapiou
et al. [3] to yield, in the white noise model, optimal estimation of spatially inho-
mogeneous functions in Besov scales. In accordance with the latter references,
we define Laplace priors for densities starting from a random function

Wn(x) =
∞∑
l=1

2ld∑
r=1

σn,lrWlrψlr(x), x ∈ [0, 1]d, (1)

where {ψlr, l ∈ N, r = 1, . . . , 2ld} is an orthonormal tensor product wavelet
basis of L2([0, 1]d) as described in Sect. 2.1, σn,lr > 0 are deterministic (possibly
n-dependent) scaling factors satisfying

σn,lr = O(2−l(t+d/2)), as l → ∞, some t > 0, (2)

and Wlr are i.i.d. random coefficients following the Laplace distribution, whose
density equals

λ1(z) = 1
2e

−|z|, z ∈ R.

The decay of the scaling factors determines the regularity properties of reali-
sations of the random function Wn: in particular, a simple computation shows
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that condition (2) implies that Wn ∈ C([0, 1]d)∩Bt′
rr([0, 1]d) almost surely for all

t′ < t and r ∈ [1,∞] (cf. Lemma 5.2 and Proposition 6.1 in [3], or also Lemma
7.1 in [5]). Under this condition, we may regard Wn as a Borel measurable ran-
dom element in the separable Banach space C([0, 1]d), whose law we denote
by ΠWn . Following the terminology of [3, 4], we call ΠWn a t-regular Laplace
prior on C([0, 1]d). Note the slightly different parametrisation compared to [37],
where the law of Wn in (1) is referred to as a Bt+d

11 -Besov prior.
Given Wn as in (1), we then construct a prior on the set of densities functions

on [0, 1]d by taking the law Πn of the random function

φWn(x) := φ(Wn(x))∫
[0,1]d φ(Wn(x′))dx′ , x ∈ [0, 1]d, (3)

where φ : R → [0,∞) is a positive, strictly increasing and smooth link function.
A common choice is the exponential link function φ(z) = ez, z ∈ R, but for some
of the results to follow it will prove useful to employ link functions affording
better control over the tails. In a slight abuse of terminology, we call Πn a t-
regular Laplace prior on densities. Posterior computation with such priors in
the density estimation model is discussed in Sect. 4.2.

3. Main results

In this section we present our main results concerning the asymptotic behaviour
of posterior distributions Πn(·|X(n)) arising from the Laplace priors on densities
Πn introduced in Sect. 2.2. We quantify the speed at which Πn(·|X(n)) concen-
trates around the true density p0 generating the data according to the usual
notion of posterior contraction rates, that is sequences ξn → 0 such that, for
large enough M > 0,

Πn

(
p : d(p, p0) > Mξn

∣∣∣X(n)
)
→ 0

in P0-probability as n → ∞. Above, d is a distance between probability densities.
In the present paper, we will mostly deal with the total variation distance

dTV (p, p′) = 1
2‖p− p′‖1,

which, due to its characterisation as (half) L1-norm, is naturally aligned with
the L1-structure underlying the Besov spaces Bs

11([0, 1]d).

3.1. Posterior contraction rates for Laplace priors with fixed
regularity

3.1.1. Rescaled under-smoothing Laplace priors

We first consider the case where the scaling factors σn,lr in (1) are chosen as
deterministic sequences. Specifically, for fixed s > d, we take σn,lr = 2−l(s−d/2)
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n−d/(2s+d), resulting in a rescaled (s− d)-regular Laplace prior ΠWn arising as
the law of

Wn = 1
n

d
2s+d

∞∑
l=1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr, Wlr

iid∼ Laplace. (4)

We then construct a prior Πn on densities as in (3). We here allow for any
log-Lipschitz link function (e.g., the commonly used exponential link function,
but also any of the more restrictive ones appearing in the results below). The
next theorem shows that the posterior distribution resulting from Πn contracts
around the true density p0 ∈ Bs

11([0, 1]d) in total variation distance at optimal
rate.

Theorem 1. For fixed s > d, let the prior Πn be constructed as in (3) for Wn

as in (4) and φ : R → (0,∞) a strictly increasing, bijective and smooth function
with uniformly Lipschitz logarithm. Let X1, . . . , Xn be a random sample from
a probability density p0 ∈ Bs

11([0, 1]d) satisfying p0(x) > 0 for all x ∈ [0, 1]d.
Then, for M > 0 large enough,

Πn

(
p : dTV (p, p0) > Mn− s

2s+d

∣∣∣X(n)
)
→ 0

in P0-probability as n → ∞.

The obtained posterior contraction rate n−s/(2s+d) is known to be the mini-
max optimal rate for estimating p0 ∈ Bs

11([0, 1]d) from the random sample X(n)

in Lp-loss for any p < 2s + d; see [27, Theorem 10.3] (whose proof techniques
naturally extend to the multi-dimensional case d ≥ 2). Due to the identity
dTV (p, p′) = 1

2‖p−p′‖1, the rate is optimal for the total variation distance. Fur-
thermore, an inspection of the proof shows that the claim of Theorem 1 remains
valid also if the total variation distance is replaced by either the Hellinger dis-
tance (cf. (16)) or the L2-distance; see the discussion preceding Lemma 9 below
for details.

Theorem 1 improves upon the density estimation results in [3, Sect. 6], which
only considers the case of spatially homogeneous densities p0 ∈ Bs

∞∞ ([0, 1]) and
where only polynomially suboptimal posterior contraction rates are obtained.
Here we show that, even for (possibly) spatially inhomogeneous p0 ∈ Bs

11([0, 1]d),
suitably tuned Besov priors achieve optimal rates. The proof follows a similar
strategy to the results in [3], based on the general posterior contraction rate
theory of Ghosal et al. [18], but crucially uses a different tuning of the prior which
combines an under-smoothing effect with rescaling by the factor n−d/(2s+d). In
particular, the rescaling implies that the prior Πn asymptotically concentrates
over sieve sets of densities that are uniformly bounded and bounded away from
zero (cf. Lemma 9), for which, compared to [3], tighter complexity bounds with
respect to the relevant distances (respectively, the total variation or Hellinger
distances) can be obtained.

Expanding on the tuning of the prior in (4), draws from Πn almost surely
lie in Bt

11([0, 1]d) only for t < s − d; see Sect. A.1. Since in Theorem 1 the
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true density p0 is assumed to be in Bs
11([0, 1]d), the prior is seen to be under-

smoothing. This contrasts with a number of results in the literature on Gaus-
sian priors, where, under Sobolev- or Hölder-type regularity assumptions on
the ground truth, optimal contraction rates are obtained with priors match-
ing the true smoothness. See Sect. 3.1 in van der Vaart and van Zanten [55]
for results in density estimation, and [23, Chap. 7.3] or [21, Chap. 11] for a
general overview on the theory. In the case of (possibly) spatially inhomoge-
neous p0 ∈ Bs

11([0, 1]d) and Laplace priors, the effect of the interplay between
under-smoothing and rescaling can be explained in terms of the bias-variance
tradeoff : as shown in the calculations of [3], it turns out that for Laplace priors
with matching regularity the bias term appearing in the proof is too large due
to the misalignment between the L1-structure underlying the spaces Bs

11([0, 1]d)
and the Kullback-Leibler divergence and variation in the prior mass condition
(10) below. Under-smoothing allows to reduce the bias (in particular, sidestep-
ping the necessity of approximating p0), while the corresponding variance in-
crease is balanced via the rescaling by the decaying factor n−d/(2s+d). This joint
effect was already observed in [3, Sect. 5.2], where in the white noise model
optimal contraction rates towards spatially inhomogeneous signals are obtained
using rescaled under-smoothing Besov priors with a similar tuning to (4). See
the recent work by Agapiou and Wang [5] for an extension to nonlinear inverse
problems. In fact, under traditional regularity assumptions on the ground truth,
under-smoothing rescaled Gaussian priors have been successfully employed in
the context of nonlinear inverse problems, e.g., [41, 1, 24, 43, 31], and reversible
diffusion models [25].

Remark 2 (On the necessity of under-smoothing and rescaling). While the
combination of under-smoothing and rescaling plays a crucial role in our proof,
its necessity in the presence of spatially inhomogeneous ground truths is an
interesting open question in the theory of Besov priors. In particular, as the
lower bounds techniques for the contraction rates of Gaussian priors developed
by Castillo [10] do not extend to Besov priors (cf. Remark 3.3 in [3]), it re-
mains unclear wether the observed sub-optimality of non-rescaled Besov priors
with matching regularity is a fundamental phenomenon or an artefact of the
existing proofs. In Sects. 3.1.2 and 3.1.3, we further consider this matter inves-
tigating respectively the performance of partially rescaled Laplace priors under
true densities in the Bs

11-Besov scale, as well as non-rescaled Laplace priors in
the spatially homogeneous setting.

Remark 3 (Extensions to general Besov priors). The results of [3] in the white
noise model suggest that the investigation carried out in the present paper could
be extended to general Besov priors and to true densities p0 in general Besov
scales Bs

qq([0, 1]d), s ≥ 0, q ≥ 1, at the expense of slightly more technical proofs.
We refrained to pursue such extensions here, focusing our results on the primar-
ily relevant case of Laplace priors and p0 ∈ Bs

11([0, 1]d).
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3.1.2. Partially-rescaled Laplace priors

As observed in the discussion following Theorem 1, the rescaling factor n− d
2s+d

in (4) balances the increased variance resulting from under-smoothing. Further-
more, it also asymptotically implies a bound on the norm of prior draws, which
yields in the proof tight complexity bounds for the associated sieve sets. On the
other hand, from a Bayesian perspective, the rescaling is arguably not satisfac-
tory as it causes the prior to shrink towards zero: in particular, ‖Wn‖∞ → 0
almost surely as n → ∞. A more refined investigation of the prior geometry
(cf. the proof of Theorem 4 in Sect. 5.2 below) however reveals that the afore-
mentioned variance increase is – in some sense – only effective at resolution
levels l such that 2ld is larger than the usual optimal dimension nd/(2s+d) for es-
timating an s-regular function. This motivates the construction of the following
partially rescaled (s− d)-regular Laplace prior:

Wn =
Ln∑
l=1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr + 1

n
d

2s+d logn

∞∑
l=Ln+1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr (5)

with Wlr
iid∼ Laplace, where Ln ∈ N is chosen so that 2Ln 
 n1/(2s+d). A

prior Πn on densities is then constructed as previously following (3). Here, to
deal with the weaker control over the norm of φWn resulting from the partial
rescaling, we employ uniformly Lipschitz link functions that are bounded away
from zero. This allows in the proof to construct sieve sets with sufficiently small
complexity. The next theorem shows that the resulting posterior distribution
attains (up to a log-factor) the same optimal rate of Theorem 1.

Theorem 4. For fixed B > 0 and s > d, let the prior Πn be constructed as in
(3) for Wn as in (5) and φ : R → (B,∞) a strictly increasing, bijective, smooth
and uniformly Lipschitz function. Let X1, . . . , Xn be a random sample from a
probability density p0 = f0/

∫
[0,1]d f0(x)dx for some f0 ∈ Bs

11([0, 1]d) satisfying
f0(x) > B for all x ∈ [0, 1]d. Then, for M > 0 large enough,

Πn

(
p : dTV (p, p0) > Mn− s

2s+d

√
logn
∣∣∣X(n)

)
→ 0

in P0-probability as n → ∞.

Instances of link functions satisfying the assumptions of Theorem 4 are cer-
tain regular link functions appearing in the Bayesian inverse problems literature
[1, 42, 24, 31]. As a concrete example, take

φ(z) = B + 1 −B

g ∗ η(0)g ∗ η(z), η(z) = ez1{z<0} + (1 + z)1{z≥0},

where g : R → [0,∞) is a smooth and compactly supported function with∫
R
g(z)dz = 1 (cf. Example 8 in [42]).
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Remark 5 (Link function lower bound). The conclusion of Theorem 4 is re-
stricted to densities that are bounded away from zero, with ‘core’ f0 point-wise
greater than the constant B lower bounding the range of the link function φ. The
latter is a relatively mild assumption as any arbitrary small but fixed B > 0 is al-
lowed, and choosing smaller values of B only affects the constant premultiplying
the obtained contraction rate. In fact, a direct adaptation of the proof of Theorem
4 implies that taking an n-dependent lower bound B = Bn 
 1/ logn leads to
posterior contraction towards any density p0 ∈ Bs

11([0, 1]d) bounded away from
zero at a rate that deteriorates only by an additional log-factor (logn)c for some
c > 0.

3.1.3. Posterior contraction rates for spatially homogeneous densities

We conclude the investigation on Laplace priors with fixed regularity consider-
ing the case of spatially homogeneous densities p0 ∈ Bs

∞∞([0, 1]d), which is the
setting studied in Sect. 6 of [3]. Under this assumption, the Kullback-Leibler di-
vergence and variation are well-aligned to the regularity structure of the ground
truth, so that, as opposed to the inhomogeneous case considered previously
(cf. the discussion after Theorem 1), non-rescaled Laplace priors with matching
regularity attain the necessary balance of bias and variance. This paves the way
to obtaining optimal posterior contraction rates, as we illustrate in the next
theorem considering the following (truncated) s-regular Laplace prior

Wn =
Ln∑
l=1

2ld∑
r=1

2−l
(
s+ d

2
)
Wlrψlr, Wlr

iid∼ Laplace, (6)

where Ln ∈ N is such that 2Ln 
 n1/(2s+d).

Theorem 6. For fixed s > d, let the prior Πn be constructed as in (3) for Wn

as in (6) and φ : R → (0,∞) a strictly increasing, bijective and smooth function
with uniformly Lipschitz logarithm. Let X1, . . . , Xn be a random sample from
a probability density p0 ∈ Bs

∞∞([0, 1]d) satisfying p0(x) > 0 for all x ∈ [0, 1]d.
Then, for M > 0 large enough,

Πn

(
p : dTV (p, p0) > Mn− s

2s+d

∣∣∣X(n)
)
→ 0

in P0-probability as n → ∞.

Truncating the prior at level Ln is here natural since, as remarked before
Theorem 4, 2Lnd 
 nd/(2s+d) is the optimal dimension for estimating a (spa-
tially homogeneous) s-regular function. In the proof, the truncation reduces the
complexity of the sieve sets associated to Wn, allowing the derivation of suit-
able bounds on their metric entropy. For ground truths with Sobolev regularity,
similar truncated Besov priors were recently shown to yield optimal contraction
rates in a reversible diffusion model [25].
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3.2. Adaptive posterior contraction rates

3.2.1. Hierarchical rescaled Laplace priors

The optimal contraction rates obtained in Theorems 1, 4 (up to a log-factor) and
6 depend in an essential way on the appropriate specification of the prior regu-
larity relative to the smoothness of the ground truth: for p0 ∈ Bs

11([0, 1]d), Theo-
rems 1 and 4 employ (s−d)-regular Laplace priors, while for p0 ∈ Bs

∞∞([0, 1]d),
Theorem 6 assumes prior regularity s. In each case, choosing different smooth-
ness parameters (and/or different rescalings in Theorems 1 and 4) would yield
through our proofs sub-optimal rates, in accordance to the results of Agapiou
et al. [3], where rates for various prior regularities are obtained, and to related
literature on Gaussian priors, e.g., [55, 12, 34]. The results presented in the
previous sections are thus non-adaptive, in that the construction of the prior
requires knowledge of the smoothness of the true density. As this is often an
unrealistic assumption, it is of interest to construct a Bayesian procedure based
on Laplace priors that, not requiring knowledge of the regularity of p0, auto-
matically adapts to it attaining optimal contraction rates.

An established method to achieve adaptation in Bayesian procedures is by
randomising the prior regularity parameter, assigning to it a further (hyper-
)prior; see, e.g., [21, Chap. 10]. Here, we pursue this approach. In particular, we
employ a hierarchical, conditionally Laplace prior ΠWn arising as the law of

Wn = 1
n

d
2S+d

∞∑
l=1

2ld∑
r=1

2−l
(
S− d

2
)
Wlrψlr, Wlr

iid∼ Laplace, S ∼ Σn, (7)

where Σn is an absolutely continuous (n-dependent) distribution on (0,∞) with
density σn. We take a specific choice for Σn, assuming it to be supported on the
increasing interval (d, logn], with density

σn(s) = e−nd/(2s+d)

ζn
, s ∈ (d, logn], (8)

where ζn 
 logn is the normalising constant. Conditionally given S, Wn|S
thus corresponds to the rescaled under-smoothing Laplace prior considered in
Sect. 3.1.1. For any S > d, Wn ∈ C([0, 1]d) with conditional probability given
S equal to one (cf. Sect. A.1), implying that the hierarchical prior ΠWn is sup-
ported on C([0, 1]d).

Given Wn as in (7), a hierarchical Laplace prior on densities Πn is constructed
as in (3), via a link function φ that, as in Sect. 3.1.2, we require to be uniformly
Lipschitz and bounded away from zero. The next theorem shows that the asso-
ciated posterior distribution attains optimal posterior contraction rates towards
densities p0 ∈ Bs

11([0, 1]d) of any smoothness s0 ∈ (d,∞).

Theorem 7. For fixed B > 0, let the prior Πn be constructed as in (3) for
Wn as in (7) and φ : R → (B,∞) a strictly increasing, bijective, smooth and
uniformly Lipschitz function. Let X1, . . . , Xn be a random sample from a prob-
ability density p0 = f0/

∫
[0,1]d f0(x)dx for some f0 ∈ Bs0

11([0, 1]d), any s0 > d,
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satisfying f0(x) > B for all x ∈ [0, 1]d. Then, for M > 0 large enough,

Πn

(
p : dTV (p, p0) > Mn− s0

2s0+d

∣∣∣X(n)
)
→ 0

in P0-probability as n → ∞.

Similar to Theorem 4, the stronger requirements on the link function φ play a
crucial role in the proof to handle the weaker control, resulting from the hierar-
chical construction, over the norm of Wn in (7) compared to the rescaled Laplace
priors of fixed regularity of Theorem 1. We remark that the above lower bound
B can be chosen arbitrarily small, and in fact that taking B = Bn 
 1/ logn
would allow to extend Theorem 7 to any density p0 ∈ Bs

11([0, 1]d) bounded away
from zero, with the rate n−s0/(2s0+d) replaced by n−s0/(2s0+d)(logn)c for some
c > 0.

Regarding the specific choice of the hyper-prior, note that σn(s) is propor-
tional to e−nε2s,n , where εs,n := n−s/(2s+d) is the optimal rate for estimating
p0 ∈ Bs

11([0, 1]d) obtained in Theorem 1 using a rescaled (s−d)-regular Laplace
prior. This choice is motivated by previous findings in the literature that showed
that, under some generality, hyper-priors of this kind can lead to adaptation
in various statistical models, including in density estimation [39, 19] and drift
estimation for diffusion processes [56]. In accordance to the latter references,
Theorem 7 shows that this is indeed the case in the setting of Laplace priors
and spatially inhomogeneous densities p0 ∈ Bs

11([0, 1]d).

3.2.2. Adaptive rates for spatially homogeneous densities

We complement the adaptive result in Theorem 7 by showing that Besov priors
can achieve adaptation also over the Bs

∞∞-Besov scale of spatially homogeneous
functions. Motivated by the findings of Sects. 3.1.3 and 3.2.1, we consider hi-
erarchical non-rescaled (truncated) Laplace priors ΠWn arising as the law of

Wn =
LS,n∑
l=1

2ld∑
r=1

2−l
(
S+ d

2
)
Wlrψlr, 2LS,n 
 n1/(2S+d), S ∼ Σn, (9)

with Wlr
iid∼ Laplace, where Σn is the hyper-prior supported on (d, logn] with

density σn defined in (8). Note that, conditionally given S, Wn|S here corre-
sponds to the non-rescaled truncated Laplace prior employed in Sect. 3.1.3.

Theorem 8. Let the prior Πn be constructed as in (3) for Wn as in (9) and
φ : R → (0,∞) a strictly increasing, bijective and smooth function with uni-
formly Lipschitz logarithm. Let X1, . . . , Xn be a random sample from a prob-
ability density p0 ∈ Bs0∞∞([0, 1]d), any s0 > d, satisfying p0(x) > 0 for all
x ∈ [0, 1]d. Then, for M > 0 large enough,

Πn

(
p : dTV (p, p0) > Mn− s0

2s0+d

∣∣∣X(n)
)
→ 0

in P0-probability as n → ∞.
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4. Summary and discussion

4.1. Outlook

In this paper, we have studied the recovery performance of Besov-Laplace priors
in density estimation. Our main results show that, for (possibly) spatially inho-
mogeneous densities p0 ∈ Bs

11([0, 1]d), suitably calibrated, rescaled and under-
smoothing Laplace priors attain optimal posterior contraction rates, and that
randomising the smoothness parameter in the prior construction leads to adap-
tation. While we focused on density estimation, we expect our techniques to be
applicable to other nonparametric statistical models such as classification and
nonparametric regression. In particular, the hierarchical prior construction in
Sect. 3.2.1 should yield adaptive rates in the latter models under Besov regu-
larity assumptions on the ground truth.

The role of under-smoothing and rescaling has been discussed after Theo-
rem 1, and subsequently explored in Sects. 3.1.2 and 3.1.3. It is an interesting
open question, not limited to the density estimation setting, wether non-rescaled
Besov priors with matching regularity can achieve optimal rates for spatially in-
homogeneous ground truths, as the observed sub-optimality [3] might be an
artefact of the existing proofs (cf. Remark 2).

Regarding Theorems 7 and 8, it is conceivable that other hyper-priors on
the smoothness could lead to adaptation, including potentially hyper-priors not
depending on the sample size n, such as the ones employed in Knapik et al. [33].
Our proof strategy, based on the general contraction rate theory of [18], heavily
relies on the specific choice (8), and extensions to other hyper-priors appear to
require substantial modifications or different mathematical techniques. These
issues represent interesting directions for future research.

4.2. Posterior computation

The Laplace prior ΠWn introduced in Sect. 2.2 naturally lends itself to dis-
cretisation by truncating the series in (1) at some fixed resolution level L ∈ N.
Identifying a function w =

∑L
l=1
∑2ld

r=1 wlrψlr with the vector w = (wlr, l =
1, . . . , L, r = 1, . . . , 2ld) ∈ R

dim(VL), this yields a prior distribution ΠL
Wn

on w
given by a product of Laplace distributions, with density

πL
Wn

(w) =
L∏

l=1

2ld∏
r=1

1
2σn,lr

e
− |wlr|

σn,lr = e
−
∑L

l=1
∑2ld

r=1
|wlr |
σn,lr

2dim(VL)∏L
l=1
∏2ld

r=1 σn,lr

.

Then, given observations X(n) = (X1, . . . , Xn), and a fixed link function φ :
R → [0,∞), the corresponding posterior distribution ΠL

Wn
(·|X(n)) of w|X(n)

has density

πL
Wn

(w|X(n)) ∝
n∏

i=1
φ∑L

l=1
∑2ld

r=1 wlrψlr
(Xi)πL

Wn
(w)
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∝
∏n

i=1 φ
(∑L

l=1
∑2ld

r=1 wlrψlr(Xi)
)

∏n
i=1
∫
[0,1]d φ

(∑L
l=1
∑2ld

r=1 wlrψlr(x′)
)
dx′

e
−
∑L

l=1
∑2ld

r=1
|wlr|
σn,lr .

For concrete choices of σlr, the right hand side can be computed from the data,
numerically approximating the integrals in the denominator. While potentially
computationally intensive for large dimensions d, this provides a starting point
for implementing a Markov chain Monte Carlo (MCMC) algorithm (e.g., of
Metropolis-Hastings type) to sample from ΠL

Wn
(·|X(n)). Recent advances in the

development of MCMC algorithms suited to the infinite-dimensional setting
based on Besov (or Besov-like) priors are in [58, 14, 29], where further references
can be found. Developing efficient algorithms for posterior sampling in density
estimation with Besov priors represents another interesting avenue for future
study.

In order to sample from the posterior distribution resulting from the hierar-
chical priors of Sect. 3.2, MCMC methods for Laplace priors of fixed regularity
(such as the one outlined above) can be employed within a Gibbs-type sampling
scheme that exploits the conditionally Laplace structure of the prior. The algo-
rithm would then alternate, for a given regularity S, an MCMC step targeting
the marginal posterior distribution of w|(X(n), S), followed by, given the actual
sample of w, a second MCMC run targeting the marginal posterior distribution
of S|(X(n),w).

5. Proofs

The proofs of Theorems 1, 4, 6 and 7 are based on the general theory for posterior
contraction rates in the i.i.d. sampling model of Ghosal et al. [18], asserting that
if for some sequence ξn → 0 such that nξ2

n → ∞, some constant C > 0, and all
n ∈ N large enough,

Πn

(
p : −Ep0

(
log p

p0
(X)
)

≤ ξ2
n, Ep0

(
log p

p0
(X)
)2

≤ ξ2
n

)
≥ e−Cnξ2

n , (10)

and there exists sets of densities Pn such that

Πn(Pc
n) ≤ e−(C+4)nξ2

n , (11)

and
logN(ξn;Pn, dTV ) � nξ2

n, (12)

then, for sufficiently large M > 0, Πn

(
p : dTV (p, p0) > Mξn

∣∣X(n)) → 0 in P0-
probability as n → ∞.
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5.1. Proof of Theorem 1

Set ξn := n−s/(2s+d), and write Wn in (4) as Wn = (nξ2
n)−1W , where W is the

non-rescaled (s− d)-regular Laplace random element

W :=
∞∑
l=1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr, Wlr

iid∼ Laplace. (13)

Let ΠW denote the law of W . We verify conditions (10)–(12) employing tools
for Besov priors largely due to Agapiou et al. [3]. Starting with (10), write p0 =
f0/
∫
[0,1]d f0(x′)dx′ for some strictly positive f0 ∈ Bs

11. Since φ : R → (0,∞)
is strictly increasing, bijective and smooth, it possesses a strictly increasing,
bijective and smooth inverse φ−1 : (0,∞) → R, so that f0 = φ ◦ w0 for w0 =
φ−1 ◦ f0 ∈ Bs

11. This follows from Theorem 10 in [8], upon writing w0(x) =
φ−1((f0(x)−φ(0))+φ(0)) and noting that f0−φ(0) ∈ Bs

11 and that φ−1(·+φ(0)) :
(−φ(0),∞) → R is smooth and vanishes at zero. Thus,

p0(x) = φ(w0(x))∫
[0,1]d φ(w0(x′))dx′ = φw0(x), x ∈ [0, 1]d.

By construction (cf. (3)), each density p in the support of Πn takes the form
p = φw for some w ∈ C([0, 1]d). For all such densities, since φ is uniformly
log-Lipschitz, a standard computation (e.g., Problem 2.4 in [21]) shows that for
some c1 > 0,

max
{
−Ep0

(
log p

p0
(X)
)
, Ep0

(
log p

p0
(X)
)2
}

� ‖w − w0‖2
∞ec1‖w−w0‖2

∞ .

Therefore, the prior probability in (10) is lower bounded by

ΠWn(w : ‖w − w0‖∞ ≤ c2ξn) = ΠW

(
w : ‖w − nξ2

nw0‖∞ ≤ c2nξ
3
n

)
for some c2 > 0. By construction, W in (13) has associated ‘decentering’ space
Z = Bs

11 with norm ‖·‖Z = ‖·‖Bs
11 (cf. Sect. A.1). By the decentering inequality

(32), it follows that the latter probability is greater than

e−‖nξ2
nw0‖ZΠW

(
w : ‖w‖∞ ≤ c2nξ

3
n

)
= e−‖w0‖Bs

11
nξ2

nΠW

(
w : ‖w‖∞ ≤ c2nξ

3
n

)
.

Finally, by the sup-norm small ball lower bound (34), applied with t = s−d > 0,
noting nξ3

n = n−(s−d)/(2s+d) → 0 as n → ∞,

ΠW

(
w : ‖w‖∞ ≤ c2nξ

3
n

)
≥ e−c3(c2nξ3

n)−d/(s−d)
= e−c4n

d/(2s+d)
= e−c4nξ

2
n , (14)

for some c3, c4 > 0. Combining the last two displays yields (10) with C =
‖w0‖Bs

11 + c4. Turning to conditions (11) and (12), define the sieves Pn :=
{φw, w ∈ Wn}, where

Wn :=
{
w = w(1) + w(2) : ‖w(1)‖2 ≤ Rξn, ‖w(2)‖Bs

11 ≤ R
}
∩ {w : ‖w‖∞ ≤ R}.

(15)
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Then

Πn(Pc
n) ≤ ΠWn(Wc

n)

≤ 1 − ΠWn

(
w = w(1) + w(2) : ‖w(1)‖2 ≤ Rξn, ‖w(2)‖Bs

11 ≤ R
)

+ 1 − ΠWn(w : ‖w‖∞ ≤ R),

which, by Lemma 9, fixing K > C + 4 and choosing sufficiently large R > 0, is
smaller than

2e−Knξ2
n ≤ e−(C+4)nξ2

n .

Finally, since dTV (p, p′) = 1
2‖p−p′‖1, logN(ξn;Pn, dTV ) = logN(2ξn;Pn, ‖·‖1).

Also, by Lemma 16, we have for all w,w′ ∈ Wn, for constants c5, c6 > 0,

‖φw − φw′‖1 ≤ c5e
c6‖w−w′‖∞

φ(−‖w′‖∞) ‖w − w′‖′1 � ‖w − w′‖1,

since ‖w‖∞, ‖w′‖∞ ≤ R. Thus, for some c7 > 0,

logN(2ξn;Pn, ‖ · ‖1) ≤ logN(c7ξn;Wn, ‖ · ‖1)

and since Wn ⊂
{
w = w(1) + w(2) : ‖w(1)‖2 ≤ Rξn, ‖w(2)‖Bs

11 ≤ R
}
, using the

Theorem 3.3.1 in [54] embedding of Bs
11 into Bs

1∞ (e.g., Theorem 3.3.1 in
[54]), the complexity bound stated in Theorem 4.3.36 in [23], and the fact that
‖w(1)‖1 ≤ ‖w(1)‖2, the latter metric entropy is bounded by a multiple of

logN(ξn; {w : ‖w‖Bs
11 ≤ R}, ‖ · ‖1) � ξ

− d
s

n = n
d

2s+d = nξ2
n,

concluding the verification of (12) and the proof of Theorem 1.

An inspection of the above proof reveals that Theorem 1 remains valid also
if the total variation distance is replaced by either the Hellinger distance

dH(p, p′) :=
√∫

[0,1]d

(√
p(x) −

√
p′(x)

)2
dx (16)

or the L2-distance. Indeed, for the Hellinger distance, the complexity bound
(12) can be verified with dTV replaced by dH noting that for Wn as in (15), the
sieves Pn = {φw, w ∈ Wn} contain densities that are uniformly bounded and
bounded away from zero, whence the equivalence dH(φw, φw′) 
 ‖φw−φw′‖2 for
all w,w′ ∈ Wn (following, e.g., from Lemma B.1 in [21]). Similar computations
as in the proof of Lemma 16 further show that ‖φw − φw′‖2 � ‖w−w′‖2 for all
w,w′ ∈ Wn, so that

logN(ξn;Pn, dH) � logN(ξn; {w : ‖w‖Bs
11 ≤ R}, ‖ · ‖2) � ξ

− d
s

n = nξ2
n.

Via Theorem 2.1 in [18], this yields

Πn

(
p : dH(p, p0) ≤ Mn− s

2s+d

∣∣∣X(n)
)
→ 1
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in P0-probability as n → ∞. For the L2-distance, note that via Theorem 8.20
in [21], using the conditions (10) and (11) verified above, the last display can
be strengthened to

Πn

(
φw ∈ Pn : dH(φw, p0) ≤ Mn− s

2s+d

∣∣∣X(n)
)
→ 1

in P0-probability as n → ∞, implying posterior contraction in L2-distance since
‖φw − p0‖2 � dH(p, p0) for all w ∈ Wn.

Lemma 9. For s > d, let ΠWn be the rescaled Laplace prior arising as the law
of Wn in (4). Then, for all K > 0 there exist sufficiently large R > 0 such that,
for n ∈ N large enough,

1.

ΠWn

(
w = w(1) + w(2) : ‖w(1)‖2 ≤ Rn− s

2s+d , ‖w(2)‖Bs
11 ≤ R

)
≥ 1 − e−Knd/(2s+d)

;

2.

ΠWn(w : ‖w‖∞ ≤ R) ≥ 1 − e−Knd/(2s+d)
.

Proof. To prove point 1., letting ξn, W and ΠW be defined as at the beginning
of the proof of Theorem 1, the probability of interest equals

ΠW

(
w = w(1) + w(2) : ‖w(1)‖2 ≤ Rnξ3

n, ‖w(2)‖Bs
11 ≤ Rnξ2

n

)
. (17)

By construction, the spaces associated to W in (13) are respectively Z = Bs
11,

with norm ‖ · ‖Z = ‖ · ‖Bs
11 , and Q = Hs−d/2, ‖ · ‖Q = ‖ · ‖Hs−d/2 ; see Sect. A.1.

By the two-level concentration inequality (33) it follows that for some c1 > 0,
for all R > 0,

ΠW

(
w = w(1)+w(2) + w(3) : ‖w(1)‖2 ≤ nξ3

n, ‖w(2)‖Hs−d/2 ≤
√

Rnξ2
n,

‖w(3)‖Bs
11 ≤ Rnξ2

n

)
≥ 1 − 1

ΠW (w : ‖w‖2 ≤ nξ3
n)e

−c1Rnξ2
n .

Since ‖w‖2 ≤ ‖w‖∞, using (14), we have that ΠW

(
w : ‖w‖2 ≤ nξ3

n

)
≥ e−c2nξ

2
n

for some c2 > 0 as n → ∞, so that the right hand side of the last display is
lower bounded by

1 − e−(c1R−c2)nξ2
n ≥ 1 − e−Knξ2

n (18)
upon choosing sufficiently large R > 0. Now for w(2) as in the second to last
display, let PLnw

(2) be its wavelet approximation at resolution Ln ∈ N satisfying
2Ln 
 n1/(2s+d); see Sect. 2.1 for definitions. Then, by the properties of wavelet
projections,

‖w(2) − PLnw
(2)‖2 ≤ 2−Ln

(
s− d

2
)
‖w(2)‖Hs−d/2 � n− s−d/2

2s+d n
d/2

2s+d = nξ3
n,
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and moreover, by the wavelet characterisation of ‖ · ‖Bs
11 (cf. Sect. 2.1) and

Hölder’s inequality,

‖PLnw
(2)‖Bs

11 =
Ln∑
l=1

2l
(
s− d

2
) 2ld∑
r=1

|〈w(2), ψlr〉2|

≤
√

dim(VLn)

√√√√ Ln∑
l=1

22l
(
s− d

2
) 2ld∑
r=1

|〈w(2), ψlr〉2|2

�
√

2Lnd‖w(2)‖Hs−d/2 � n
d/2

2s+dn
d/2

2s+d = nξ2
n.

Taking w(1) := w(1) +(w(2) −PLnw
(2)) and w(2) := PLnw

(2) +w(3) thus implies
‖w(1)‖2 � nξ3

n and ‖w(2)‖Bs
11 � nξ2

n, so that taking R > 0 large enough the
probability of interest (17) is lower bounded by the right hand side of (18),
concluding the proof of the first claim.

To prove point 2., the probability of interest equals ΠW

(
w : ‖w‖∞ ≤ Rnξ2

n

)
,

to which we directly apply the concentration inequality (31) to deduce the lower
bound, holding for R > 0 large enough,

1 − c3e
−c4Rnξ2

n ≥ 1 − e−Knξ2
n .

5.2. Proof of Theorem 4

We verify conditions (10)–(12) with ξn := n−s/(2s+d)√logn. Since φ : R →
(B,∞) is strictly increasing, bijective and smooth, it posses a strictly increasing,
bijective and smooth inverse φ−1 : (B,∞) → R. Hence, for p0 ∝ f0 with f0 ∈
Bs

11 satisfying f0(x) > B for all x ∈ [0, 1]d, we have p0 = φw0 with w0 =
φ−1 ◦ f0 ∈ Bs

11 (following again by Theorem 10 in [8] applied to the smooth
function φ−1(· + φ(0)) vanishing at zero). Since φ is uniformly Lipschitz, by
point 1. in Lemma 17, for each w ∈ C([0, 1]d) such that ‖w−w0‖∞ ≤ ξn, since
then ‖w‖∞ ≤ ‖w0‖∞ + 1, we have

max
{

−Ep0

(
log φw

p0
(X)
)
, Ep0

(
log φw

p0
(X)
)2
}

� 1
B2

∥∥∥∥ p0

φw

∥∥∥∥
∞

‖w − w0‖2
2 ≤ ‖p0‖∞

B3/φ(‖w0‖∞ + 1)‖w − w0‖2
2 � ‖w − w0‖2

∞.

Thus, for some c1 > 0,

Πn

(
p : −Ep0

(
log p

p0
(X)
)

≤ ξ2
n, Ep0

(
log p

p0
(X)
)2

≤ ξ2
n

)
≥ ΠWn(w : ‖w − w0‖∞ ≤ c1ξn).
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By construction, the decentering space Zn associated to Wn in (5) satisfies
Zn = Bs

11, with norm

‖w‖Zn =
Ln∑
l=1

2ld∑
r=1

2l
(
s− d

2
)
|〈w,ψlr〉2| + nξ2

n

∞∑
l=1

2ld∑
r=1

2l
(
s− d

2
)
|〈w,ψlr〉2|

≤ nξ2
n‖w‖Bs

11 .

Thus by the decentering inequality (32), the right hand side of the second to last
display is lower bounded by e−‖w0‖Bs

11
nξ2

nΠWn(w : ‖w‖∞ ≤ c1ξn). Decompose
Wn in (5) as Wn = W

(1)
n + (nξ2

n)−1W
(2)
n , where

W (1)
n :=

Ln∑
l=1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr; W (2)

n :=
∞∑

l=Ln+1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr, (19)

with Wlr
iid∼ Laplace and note that by construction W

(1)
n and W

(2)
n are indepen-

dent. Then,

ΠWn(w : ‖w‖∞ ≤ c1ξn) ≥ Pr
(
‖W (1)

n ‖∞ ≤ c1
2 ξn, ‖(nξ2

n)−1W (2)
n ‖∞ ≤ c1

2 ξn

)
= Pr

(
‖W (1)

n ‖∞ ≤ c1
2 ξn

)
Pr
(
‖W (2)

n ‖∞ ≤ c1
2 nξ3

n

)
.

By the continuous embedding Bs
11 ⊂ C([0, 1]d), holding since s > d (e.g., [23],

p. 370), the first probability is lower bounded, for some c2 > 0, by

Pr
(
‖W (1)

n ‖Bs
11 ≤ c2ξn

)
= Pr

⎛⎝ Ln∑
l=1

2ld∑
r=1

|Wlr| ≤ c2ξn

⎞⎠
≥ Pr

(
dim(VLn) max

1≤l≤Ln

max
r=1,...,2ld

|Wlr| ≤ c2ξn

)

=
Ln∏
l=1

2ld∏
r=1

Pr
(
|Wlr| ≤ c2

ξn
dim(VLn)

)
.

Since for all z ∈ (0, 1), Pr(|Wlr| ≤ z) = 1 − e−z ≥ z/2, recalling dim(VLn) =
O(2Lnd) = O(nd/(2s+d)), the last line is greater than(

c3n
− s+d

2s+d

√
logn
)c4nd/(2s+d)

≥ ec4n
d

2s+d log(n−c5 ) = e−c6n
d

2s+d logn = e−c6nξ
2
n ,

for c3, . . . , c6 > 0. On the other hand, by the small ball lower bound (34),
which also applies with the first Ln terms in the series removed, with the choice
t = s− d,

Pr
(
‖W (2)

n ‖∞ ≤ c1
2 nξ3

n

)
≥ Pr

(
‖W (2)

n ‖∞ ≤ c1
2 n− s−d

2s+d

)
≥ e−c7n

d
2s+d ≥ e−c7nξ

2
n
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as n → ∞ for some c7 > 0. Combining the last two displays yields condition
(10) with C = ‖w0‖Bs

11 + c6 + c7. Next, define the sieves Pn := {φw, w ∈ Wn},
where

Wn =
{
w = w(1) + w(2) : w(1) ∈ W(1)

n , w(2) ∈ W(2)
n

}
with

W(1)
n = {w(1) ∈ VLn : ‖w(1)‖2 ≤ Rnξ2

n}
and

W(2)
n =

{
w(2) = w(2,1) + w(2,2) : ‖w(2,1)‖2 ≤ Rn− s

2s+d , ‖w(2,2)‖Bs
11 ≤ R

}
∩
{
w(2) : ‖w(2)‖∞ ≤ R

}
.

Condition (11) then follows since

Πn(Pc
n) ≤ ΠWn(Wc

n)

≤ Pr
(
W (1)

n /∈ W(1)
n

)
+ Pr

(
(nξ2

n)−1W (2)
n /∈ W(2)

n

)
≤ 3 − Pr

(
W (1)

n ∈ VLn , ‖W (1)
n ‖2 ≤ Rnξ2

n

)
− Pr

(
W (2)

n = W (2,1)
n + W (2,2)

n : ‖W (2,1)
n ‖2 ≤ Rn− s−d

2s+d logn,

‖W (2)
n ‖Bs

11 ≤ Rnξ2
n

)
− Pr

(
‖W (2)

n ‖∞ ≤ Rnξ2
n

)
which, by Lemma 10, for n ∈ N large enough, fixing K > C + 4 and choosing
sufficiently large R > 0, is smaller than

3e−Knξ2
n ≤ e−(C+4)nξ2

n .

Finally, let {γj , j = 1, . . . , Jn}, with Jn = N(ξn;W(1)
n , ‖ · ‖2), be a minimal

ξn-covering of W(1)
n in L2-distance, and let {χk, k = 1, . . . ,Kn}, with Kn =

N(ξn;W(2)
n , ‖ · ‖1), be a minimal ξn-covering of W(2)

n in L1-distance. Then for
each w = w(1) + w(2) ∈ Wn there exist j ∈ {1, . . . , Jn} and k ∈ {1, . . . ,Kn}
such that

‖w(1) − γj‖2 ≤ ξn; ‖w(2) − χk‖1 ≤ ξn,

which by point 2. in Lemma 17 implies that

dTV (φw, φγj+χk
) � ‖w − (γj + χk)‖1 ≤ ‖w(1) − γj‖2 + ‖w(2) − χk‖1 � ξn.

It follows that for some c8 > 0 the set {γj + χk, j = 1, . . . , Jn, k = 1, . . . ,Kn} is
a c8ξn-covering of Wn in total variation distance, whence

logN(ξn;Wn, dTV ) � log(JnKn) = logN(ξn;W(1)
n , ‖·‖2)+logN(ξn;W(2)

n , ‖·‖1).
(20)

Recalling W(1)
n ⊂ VLn , with dim(VLn) = O(n

d
2s+d ), the first metric entropy

equals

logN(ξn; {y ∈ R
dim(VLn ), |y|2 ≤ Rnξ2

n}, | · |2) ≤ dim(VLn) log
(

3Rnξ2
n

ξn

)
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� n
d

2s+d log(nc9) 
 nξ2
n,

having used the usual metric entropy bound for balls in Euclidean spaces (e.g.,
[23, Theorem 4.3.34]). Arguing as in the conclusion of the proof of Theorem 1,
the second metric entropy in (20), is bounded by a multiple of

logN(ξn; {w : ‖w‖Bs
11 ≤ R}, ‖ · ‖1) � ξ

− d
s

n = n
d

2s+d (logn)− d
2s ≤ nξ2

n.

The last two displays and (20) conclude the verification of (12) and the proof
of Theorem 4.

Lemma 10. For s > d, let W (1)
n ,W

(2)
n be the random functions in (19). Then,

for all n ∈ N large enough, all K > 0, there exist sufficiently large R > 0 such
that

1.

Pr
(
W (1)

n ∈ VLn , ‖W (1)
n ‖∞ ≤ Rn

d
2s+d logn

)
≥ 1 − e−Kns/(2s+d) logn;

2.

Pr
(
W (2)

n = W (2,1)
n + W (2,2)

n : ‖W (2,1)
n ‖2 ≤ Rn− s−d

2s+d

√
logn,

‖W (2)
n ‖Bs

11 ≤ Rn
d

2s+d logn
)
≥ 1 − e−Knd/(2s+d) logn;

3.
Pr
(
‖W (2)

n ‖∞ ≤ Rn
d

2s+d logn
)
≥ 1 − e−Knd/(2s+d) logn.

Proof. For point 1., setting ξn := n−s/(2s+d)√logn, recalling W
(1)
n ∈ VLn by

construction, the probability of interest equals

Pr
(
‖W (1)

n ‖∞ ≤ Rnξ2
n

)
≥ 1 − e−Knξ2

n

having used the sup-norm concentration inequality (31) and chosen R > 0 large
enough. Points 2. and 3. follow from exactly the same argument as in the proof
of Lemma 9, upon noting that W

(2)
n is also a (s − d)-regular Besov random

element with associated spaces

Qn :=

⎧⎨⎩w =
∞∑

l=Ln+1

2ld∑
r=1

wlrψlr : ‖w‖Qn = ‖w‖Hs−d/2 < ∞

⎫⎬⎭ ,

and

Zn :=

⎧⎨⎩w =
∞∑

l=Ln+1

2ld∑
r=1

wlrψlr : ‖w‖Zn = ‖w‖Bs
11 < ∞

⎫⎬⎭ ,

and that for each w ∈ Qn,

‖w‖2
L2 =

∞∑
l=Ln+1

2ld∑
r=1

2−2l
(
s− d

2
)
22l
(
s− d

2
)
|wlr|2
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≤ 2−2Ln

(
s− d

2
)
‖w‖2

Hs−d/2 � n− 2s−d
2s+d ‖w‖2

Hs−d/2 .

The details are omitted for brevity.

5.3. Proof of Theorem 6

We verify conditions (10)–(12) with ξn := c1n
−s/(2s+d), for sufficiently large

c1 > 0 to be chosen below. Arguing as in the proof of Theorem 1,

Πn

(
p : −Ep0

(
log p

p0
(X)
)

≤ ξ2
n, Ep0

(
log p

p0
(X)
)2

≤ ξ2
n

)
≥ ΠWn(w : ‖w − w0‖∞ ≤ c2ξn)

for some c2 > 0 and w0 = φ−1◦f0 ∈ Bs
∞∞. The decentering space Zn associated

to Wn in (6) equals the approximation space VLn , with norm ‖ · ‖Zn = ‖ · ‖Bs+d
11

.
Since w0 ∈ Bs

∞∞, its wavelet projection PLnw0 ∈ VLn satisfies

‖w0 − PLnw0‖∞ ≤ 2−Lns‖w0‖Bs
∞∞ 
 ‖w0‖Bs

∞∞n− s
2s+d

as well as

‖PLnw0‖Bs+d
11

=
Ln∑
l=1

2l
(
s+ d

2
) 2ld∑
r=1

|〈w0, ψlr〉2|

≤ ‖w0‖Bs
∞∞

Ln∑
l=1

2ld 
 ‖w0‖Bs
∞∞2Lnd 
 ‖w0‖Bs

∞∞nξ2
n.

By the triangle and the decentering inequality (32), taking c1 > 0 large enough
in the definition of ξn, for some c3, c4 > 0,

ΠWn(w : ‖w − w0‖∞ ≤ c2ξn) ≥ ΠWn(w : ‖w − PLnw0‖∞ ≤ c3ξn)

≥ e−c4‖w0‖Bs∞∞nξ2
nΠWn(w : ‖w‖∞ ≤ c3ξn).

By another application of the small ball estimate (34), now with t = s, we have

ΠWn(w : ‖w‖∞ ≤ c3ξn) ≥ e−c5(c3ξn)−d/s

= e−c6nξ
2
n , (21)

for c5, c6 > 0 as n → ∞, whence condition (10) follows for C = c4‖w0‖Bs
∞∞ +c6.

Next, take the sieves Pn := {φw, w ∈ Wn}, where

Wn :=
{
w = w(1) + w(2) : ‖w(1)‖∞ ≤ Rξn, ‖w(2)‖Bs+d

11
≤ Rnξ2

n

}
.

Using Lemma 11, choosing R > 0 large enough,

Πn(Pc
n) ≤ 1 − ΠWn(w = w(1) + w(2) : ‖w(1)‖∞ ≤ Rξn, ‖w(2)‖Bs+d

11
≤ Rnξ2

n

)
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≤ e−(C+4)nξ2
n

verifying condition (11). Finally, since the link function φ is uniformly log-
Lipschitz, by Problem 2.4 in [21], for all w,w′ ∈ Wn,

dTV (φw, φw′) ≤ 2dH(φw, φw′) � ‖w − w′‖∞ec7‖w−w′‖∞ ,

for some c7 > 0. As ξn → 0, for sufficiently large n, the ξn-entropy of Pn in
total variation distance is then bounded by the c8ξn-entropy of Wn in sup-norm
distance for some c8 > 0,

logN(ξn;Pn, dTV ) ≤ logN(c8ξn;Wn, ‖ · ‖∞).

Using the continuous embedding Bs+d
11 ⊂ Bs+d

1∞ (e.g., Theorem 3.3.1 in [54]) and
Theorem 4.3.36 in [23], the latter metric entropy is bounded by a multiple of

logN
(
ξn; {w : ‖w‖Bs+d

11
≤ Rnξ2

n}, ‖ · ‖∞
)
� (nξn)

d
s+d 
 nξ2

n,

concluding the verification of (12) and the proof of Theorem 6.

Lemma 11. For s > d, let ΠWn be the non-rescaled truncated Laplace prior
arising as the law of Wn in (6). Then, for all n ∈ N large enough, all K > 0,
there exist sufficiently large R > 0 such that

ΠWn

(
w = w(1) + w(2) : ‖w(1)‖∞ ≤ Rn− s

2s+d , ‖w(2)‖Bs+d
11

≤ Rn
d

2s+d

)
≥ 1 − e−Knd/(2s+d)

.

Proof. The claim follows similarly to the proof of point 1. in Lemma 9 and point
2. in Lemma 10, using the two-level concentration inequality (33), the centred
small ball estimate (34) and noting that the spaces associated to Wn satisfy
Zn = Qn = VLn with norms ‖ · ‖Zn = ‖ · ‖Bs+d

11
and ‖ · ‖Qn = ‖ · ‖Hs+d/2 , and

further that for each w ∈ VLn satisfying ‖w‖Hs+d/2 � nd/(4s+2d),

‖w‖Bs+d
11

=
Ln∑
l=1

2l
(
s+ d

2
) 2ld∑
r=1

|wlr|

≤
√

dim(VLn)

√√√√ Ln∑
l=1

22l
(
s+ d

2
) 2ld∑
r=1

|wlr|2 
 n
d/2

2s+d ‖w‖Hs+d/2 = n
d

2s+d .

5.4. Proof of Theorem 7

We verify conditions (10)–(12) with ξn := c1n
−s0/(2s0+d) for sufficiently large

c1 > 0 to be chosen below. Arguing as in the proof of Theorem 4,

Πn

(
p : −Ep0

(
log p

p0
(X)
)

≤ ξ2
n, Ep0

(
log p

p0
(X)
)2

≤ ξ2
n

)
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≥ ΠWn(w : ‖w − w0‖∞ ≤ c2ξn)

for some c2 > 0 and w0 = φ−1 ◦ f0 ∈ Bs0
11. Condition (10) then follows from

Lemma 12 for a large enough constant C > 0, upon taking sufficiently large c1
in the definition of ξn.

Next, define the sieves Pn = {φw, w ∈ Wn}, where

Wn :=
{
w = w(1) + w(2) : ‖w(1)‖1 ≤ Rn− s∗

2s∗+d , ‖w(2)‖
Bs∗+d

11
≤ Rn

d
2s∗+d

}
,

with s∗ := s0/(1 + M/ logn) and R,M > 0. By Lemma 13, taking sufficiently
large M and R, for all n large enough,

Πn(Pc
n) ≤ ΠWn(Wc

n) ≤ e−(C+4)nξ2
n ,

which verifies Condition (11). Finally, recalling that φ is assumed to be uni-
formly Lipschitz and bounded away from zero, by point 2. in Lemma 17 we have
dTV (φw, φw′) � ‖w−w′‖1, implying that logN(ξn;Pn, dTV ) ≤ logN(c3ξn;Wn,
‖ · ‖1) for some c3 > 0. By construction of Wn, using (25) below and Theorem
4.3.36 in [23], the latter metric entropy is bounded by a multiple of

logN
(
ξn;
{
w : ‖w‖

Bs∗+d
11

≤ Rn
d

2s∗+d

}
, ‖ · ‖1

)
�
(
Rn

d
2s∗+d

ξn

) d
s∗+d

�
(
n

d
2s∗+dn

s∗
2s∗+d

) d
s∗+d = n

d
2s∗+d � nξ2

n.

This concludes the verification of Condition (12), and via an application of
Theorem 2.1 in [18], the proof of Theorem 7.

Lemma 12. Let ΠWn be the hierarchical rescaled Laplace prior arising as the
law of Wn in (7). Let w0 ∈ Bs0

11([0, 1]d), any s0 > d. Then, for sufficiently large
D1, D2 > 0,

ΠWn

(
w : ‖w − w0‖∞ ≤ D1n

− s0
2s0+d

)
≥ e−D2n

d/(2s0+d)
.

Proof. For each fixed s > d, let εs,n := n−s/(2s+d) and let ΠWs,n be the rescaled
(s− d)-regular Laplace prior arising as the law of

Ws,n := Ws

nε2
s,n

, Ws :=
∞∑
l=1

2ld∑
r=1

2−l
(
s− d

2
)
Wlrψlr, Wlr

iid∼ Laplace. (22)

Denote by ΠWs the law of Ws. The probability of interest equals∫ logn

d

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n)σn(s)ds

≥
∫ s0+ 1

log n

s0

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n)σn(s)ds.

(23)
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For Λn ∈ N to be chosen below, let PΛn
w0 be the wavelet projection of w0 ∈ Bs0

11
onto the approximation space VΛn

. Then, by standard wavelet properties,

‖w0 − PΛn
w0‖∞ ≤

∑
l>Λn

∥∥∥∥∥∥
2ld∑
r=1

〈w0, ψlr〉2ψlr

∥∥∥∥∥∥
∞

�
∑
l>Λn

2l d2 sup
r=1,...,2ld

|〈w0, ψlr〉2| ≤ 2−Λn(s0−d)‖w0‖Bs0
11
.

Thus, taking Λn ∈ N such that 2Λn 
 ns0/[(2s0+d)(s0−d)] (note that this is higher
than the usual order n1/(2s0+d)) we have

‖w0 − PΛn
w0‖∞ � 2−Λn(s0−d)‖w0‖Bs0

11
� n− s0

2s0+d = εs0,n.

On the other hand, for all s ∈ [s0, s0 + 1/ logn],

‖PΛn
w0‖Bs

11 =
∑
l≤Λn

2l(s−s0)2l
(
s0− d

2
) 2ld∑
r=1

|〈w0, ψlr〉2|

≤ 2Λn(s−s0)‖w0‖Bs0
11

� n
s0

(2s0+d)(s0−d) (logn)−1
� 1.

It follows that for all s ∈ [s0, s0 + 1/ logn], by the triangle inequality (choosing
D1 > 0 above large enough), for some c1 > 0,

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n) ≥ ΠWs,n(w : ‖w − PΛn
w0‖∞ ≤ c1εs0,n),

and since Ws,n in (22) is a fixed Laplace random element with associated decen-
tering space equal to Zn = Bs

11 and norm ‖ · ‖Zn = nε2
s,n‖ · ‖Bs

11 (cf. Sect. A.1),
by the decentering inequality (32) the latter probability is lower bounded by

e−‖PΛnw0‖Bs
11

nε2s,nΠWs,n (w : ‖w‖∞ ≤ c1εs0,n)

≥ e−c2nε
2
s0,nΠWs

(
w : ‖w‖∞ ≤ c1nεs0,nε

2
s,n

)
.

By the centred small ball inequality (34) (noting that Ws coincides with W
there with the choice t = s− d > 0),

ΠWs

(
w : ‖w‖∞ ≤ c1nεs0,nε

2
s,n

)
≥ e

−(c3s−c3d+c4)
(
c1nεs0,nε

2
s,n

)− d
s−d

≥ e−c5nε
2
s0,n ,

for c3, c4, c5 > 0, since s ≤ s0 + 1/ logn ≤ s0 + 1 for n large enough and

(
nεs0,nε

2
s,n

)− d
s−d =

(
n

4ss0+2ds0+2ds+d2−2ss0−ds0−4ss0−2ds
(2s+d)(2s0+d)

)− d
s−d

=
(
n

s0d+d2−2ss0
(2s+d)(2s0+d)

)− d
s−d

=
(
n

d
2s0+d

) 2ss0−ds0−d2
(s−d)(2s+d) ≤ nε2

s0,n
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as for all s ≥ s0 > d

(s− d)(2s + d) − (2ss0 − ds0 − d2) = 2s(s− s0) − d(s− s0)
= (s− s0)(2s− d) ≥ 0.

Combining the previous bounds, we find that for all s ∈ [s0, s0 + 1/ logn], for
sufficiently large D1 > 0,

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n) ≥ e−c6nε
2
s0,n .

The lower bound (23) then implies that the probability of interest is greater
than ∫ s0+ 1

log n

s0

e−c6nε
2
s0,nσn(s)ds = e−c6nε

2
s0,n

∫ s0+ 1
log n

s0

e−nε2s,n

ζn
ds.

Using that σn(s) is increasing in s and that the normalisation constant satisfies
ζn 
 logn, the integral on the right hand side is bounded below by

1/ logn
ζn

e−nε2s0,n � (logn)−2e−nε2s0,n ≥ e−c7nε
2
s0,n ,

for some c7 > 0. The claim then follows taking D2 = c6 + c7 > 0.

Lemma 13. Let ΠWn be the hierarchical rescaled Laplace prior arising as the
law of Wn in (7). For fixed s0 > d, and M,R > 0, let s∗ = s0/(1 + M/ logn)
and define the set

Wn =
{
w = w(1) + w(2), ‖w(1)‖1 ≤ Rn− s∗

2s∗+d , ‖w(2)‖
Bs∗+d

11
≤ Rn

d
2s∗+d

}
.

(24)
Then, for all K > 0, there exist sufficiently large M,R, such that for n ∈ N

large enough,
ΠWn(Wc

n) ≤ e−Knd/(2s0+d)
.

Proof. For any s > d, let εs,n, ΠWs,n , ΠWs , Ws,n and Ws be defined as at the
beginning of the proof of Lemma 12. For s∗ = s0/(1 + M/ logn), some algebra
shows

nε2
s∗,n

nε2
s0,n

= n
dM+d log n

dM+(2s0+d) log n− d
2s0+d

= n
2dMs0

(2s0+d)2 log n+dM(2s0+d) = e
2dMs0 log n

(2s0+d)2 log n+dM(2s0+d) ,

which implies, bounding the exponential above and below, that
√
c1nε

2
s0,n ≤ nε2

s∗,n ≤ c1nε
2
s0,n; (c1)

1
4 εs0,n ≤ εs∗,n ≤ √

c1εs0,n, (25)

where c1 := e
2dMs0

(2s0+d)2 > 1, the lower bounds holding, for any fixed M > 0, for
all n ∈ N large enough. The probability of interest is equal to∫ s∗

d

ΠWs,n(Wc
n)σn(s)ds +

∫ logn

s∗
ΠWs,n(Wc

n)σn(s)ds
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≤ e−(K+1)nε2s0,n +
∫ logn

s∗
ΠWs,n(Wc

n)σn(s)ds, (26)

having chosen M large enough and used that σn(s) is increasing in s, that
ζn 
 logn, and (25) to bound the first integral by∫ s∗

d

σn(s)ds ≤ s∗
e−nε2s∗,n

ζn
≤ e−c2nε

2
s∗,n ≤ e−c2

√
c1nε

2
s0,n ≤ e−(K+1)nε2s0,n .

We proceed bounding the second integral in (26). To do so, note

ΠWs,n(Wn) = ΠWs

(
w = w(1) + w(2) : ‖w(1)‖1 ≤ Rnεs∗,nε

2
s,n,

‖w(2)‖
Bs∗+d

11
≤ Rn2ε2

s∗,nε
2
s,n

)
.

The spaces associated to Ws are respectively Z = Bs
11, with norm ‖ · ‖Z =

‖ · ‖Bs
11 , and Q = Hs−d/2, with ‖ · ‖Q = ‖ · ‖Hs−d/2 (cf. Sect. A.1). Letting

Wn =
{
w = w(1) + w(2) + w(3) : ‖w(1)‖1 ≤ nεs∗,nε

2
s,n,

‖w(2)‖Hs−d/2 ≤
√
Rnε2

s∗,n, ‖w(3)‖Bs
11 ≤ Rnε2

s∗,n

}
,

the two-level concentration inequality (33) implies, using again (25), for c3, c4 >
0,

ΠWs(Wn) ≥ 1 − 1
ΠWs

(
w : ‖w‖1 ≤ nεs∗,nε2

s,n

)e−c3Rnε2s∗,n

≥ 1 − 1
ΠWs

(
w : ‖w‖1 ≤ nεs∗,nε2

s,n

)e−c4Rnε2s0,n .

As ‖w‖1 ≤ ‖w‖∞, noting that s ≥ s∗ = s0 logn/(M + logn) > d for all n large
enough since s0 > d, by the centred small ball inequality in (34), we have for
all s∗ < s ≤ logn,

ΠWs

(
w : ‖w‖1 ≤ nεs∗,nε

2
s,n

)
≥ e

−(c5s−c5d+c6)
(
nεs∗,nε

2
s,n

)−d/(s−d)

≥ e
−c7 logn

(
nεs∗,nε

2
s,n

)−d/(s−d)

Using (25) and the fact that

logn
(
nεs∗,nε

2
s,n

)− d
s−d = logn

(
n

−2ss∗−ds∗+2ds∗+d2
(2s∗+d)(2s+d)

)− d
s−d

= logn
(
nε2

s∗,n

) 2ss∗−ds∗−d2
(2s+d)(s−d) ≤ nε2

s∗,n

as the last exponent is strictly smaller than one, we obtain

ΠWs

(
w : ‖w‖1 ≤ nεs∗,nε

2
s,n

)
≥ e−c7nε

2
s∗,n ≥ e−c8nε

2
s0,n .
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For sufficiently large R > 0, it follows that for all s ∈ [s∗, logn]

ΠWs(Wn) ≥ 1 − e−(c4R−c8)nε2s0,n ≥ 1 − e−(K+1)nε2s0,n . (27)

Next, approximate w(2) in the definition of Wn by its wavelet projection
PLnw

(2) at resolution Ln ∈ N with 2Ln 
 n
1

2s+d . Then,

‖w(2) − PLnw
(2)‖1 ≤ 2−Ln

(
s− d

2
)
‖w(2)‖Hs−d/2

� n− s−d/2
2s+d

√
nεs∗,n = n

d
2s+d εs∗,n = nε2

s,nεs∗,n.

Also, as shown in the conclusion of the proof of Lemma 9,

‖PLnw
(2)‖Bs

11 �
√

2Lnd‖w(2)‖Hs−d/2

� n
d/2

2s+dn
d/2

2s∗+d = n
ds∗+d2/2+ds+d2/2

(2s+d)(2s∗+d) ≤ nε2
s∗,n

since the exponent is smaller than d/(2s∗ + d) when s ≥ s∗. For w(1), w(3)

in the definition of Wn, setting w̃(1) := w(1) + (w(2) − PLnw
(2)) and w̃(2) :=

w(3) + PLnw
(2) then shows that for all s ∈ [s∗, logn] and all n and R̃ large

enough,

Wn ⊆ W̃n := {w̃ = w̃(1) + w̃(2) : ‖w̃(1)‖1 ≤ R̃nε2
s,nεs∗,n, ‖w̃(2)‖Bs

11 ≤ R̃nε2
s∗,n}.

In view of (27),

ΠWs(W̃n) ≥ 1 − e−(K+1)nε2s0,n . (28)

We conclude showing that, choosing sufficiently large R > 0,

W̃n ⊆ {w = w(1) + w(2) : ‖w(1)‖1 ≤ Rnε2
s,nεs∗,n, ‖w(2)‖

Bs∗+d
11

≤ Rn2ε2
s,nε

2
s∗,n}
(29)

for all s ∈ [s∗, logn] and all n ∈ N large enough. First consider the case s ∈
[s∗ + d, logn]. Then

‖w̃(2)‖
Bs∗+d

11
≤ ‖w̃(2)‖Bs

11 ≤ R̃nε2
s∗,n ≤ R̃n2ε2

s,nε
2
s∗,n

since nε2
s,n → ∞. The inclusion (29) thus follows with w(1) = w̃(1), w(2) = w̃(2),

and R = R̃. Next consider the range s ∈ [s∗, s∗ + d). Approximate w̃(2) in
the definition of W̃n, by its wavelet projection PΛn

w̃(2) with Λn ∈ N satisfying
2Λn 
 n

d
(2s+d)(s∗+d−s) . Then,

‖PΛn
w̃(2)‖

Bs∗+d
11

≤ 2Λn(s∗+d−s)‖w̃(2)‖Bs
11 � n

d
(2s+d)nε2

s∗,n = n2ε2
s,nε

2
s∗,n,

and, using the continuous embedding of B0
11 into L1 (e.g., Eq. (21), p. 169 in

[50]),

‖w̃(2) − PΛn
w̃(2)‖1 � ‖w̃(2) − PΛn

w̃(2)‖B0
11



Laplace priors in density estimation 2239

≤ 2−Λns‖w̃(2)‖Bs
11

� n− ds
(2s+d)(s∗+d−s)n

d
2s∗+d = n

−2ds2+ds∗+d3
(2s+d)(2s∗+d)(s∗+d−s) .

The inclusion (29) thus follows showing that the right hand side is smaller than

nε2
s,nεs∗,n = n

d
2s+dn− s∗

2s∗+d

= n
−2ss∗+ds∗+d2
(2s∗+d)(2s+d) = n

2s∗s2+s[−2(s∗)2−3ds∗−d2]+d(s∗)2+2d2s∗+d3
(2s+d)(2s∗+d)(s∗+d−s) .

Indeed, the difference between the numerators of the exponents equals

Δ(s)
= −2ds2 + ds∗ + d3 − 2s∗s2 − s[−2(s∗)2 − 3ds∗ − d2] − d(s∗)2 − 2d2s∗ − d3

= −2(s∗ + d)s2 + s[2(s∗)2 + 3ds∗ + d2] − d(s∗)2 − 2d2s∗ + ds∗,

which, as a function of s, is a downward-pointing parabola with maximum at-
tained at

sv := 2(s∗)2 + 3ds∗ + d2

4(s∗ + d) < s∗

since, recalling s∗ = s0 logn/(M + logn) > d for all n large enough as s0 > d,

2(s∗)2 + 3ds∗ + d2 − 4(s∗ + d)s∗ = −2(s∗)2 − ds∗ + d2 ≤ −2(s∗)2 < 0.

Hence, since Δ(s) is decreasing for s > sv, for all s ∈ [s∗, s∗ + d],

Δ(s) ≤ Δ(s∗)
= −2(s∗ + d)(s∗)2 + s∗[2(s∗)2 + 3ds∗ + d2] − d(s∗)2 − 2d2s∗ + ds∗

= −d(d− 1)s∗ ≤ 0.

This shows as required that ‖w̃(2) − PΛn
w̃(2)‖1 � nε2

s,nεs∗,n, so that taking
w(1) := w̃(1) + (w̃(2) −PΛn

w̃(2)) and w(2) := PΛn
w̃(2), the desired inclusion (29)

follows for large enough R > 0. By (28), we then conclude

ΠWs,n(Wn) ≥ ΠWs(W̃n) ≥ 1 − e−(K+1)nε2s0,n .

Combined with (26) this yield

ΠWn(Wc
n) ≤ e−(K+1)nε2s0,n +

∫ logn

s∗
e−(K+1)nε2s0,nσn(s)ds

≤ 2e−(K+1)nε2s0,n ≤ e−Knε2s0,n .

5.5. Proof of Theorem 8

We verify conditions (10)–(12) with ξn := c1n
−s0/(2s0+d) for sufficiently large

c1 > 0. The first condition follows for a large enough constant C > 0 arguing
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as in the Proof of Theorem 6 and using Lemma 14 below. Conditions (11) and
(12) follow exactly as in the proof of Theorem 7, taking the same sequence of
sieves Pn = {φw, w ∈ Wn} with

Wn :=
{
w = w(1) + w(2) : ‖w(1)‖1 ≤ Rn− s∗

2s∗+d , ‖w(2)‖
Bs∗+d

11
≤ Rn

d
2s∗+d

}
,

where s∗ := s0/(1 +M/ logn) and R,M > 0 are large enough, using Lemma 15
instead of Lemma 13.

Lemma 14. Let ΠWn be the hierarchical non-rescaled truncated Laplace prior
arising as the law of Wn in (9). Let w0 ∈ Bs0∞∞([0, 1]d), any s0 > d. Then, for
sufficiently large D1, D2 > 0,

ΠWn

(
w : ‖w − w0‖∞ ≤ D1n

− s0
2s0+d

)
≥ e−D2n

d/(2s0+d)
.

Proof. For each fixed s > d, let εs,n := n−s/(2s+d) and let ΠWs,n be the truncated
s-regular Laplace prior arising as the law of

Ws,n =
Ls,n∑
l=1

2ld∑
r=1

2−l
(
s+ d

2
)
Wlrψlr, Wlr

iid∼ Laplace, 2Ls,n 
 n1/(2s+d).

(30)
Then,

ΠWn

(
w : ‖w − w0‖∞ ≤ D1n

− s0
2s0+d

)

≥
∫ s0+ 1

log n

s0

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n)σn(s)ds.

For all s ∈ [s0, s0 + 1/ logn], the wavelet projection PLs,nw0 of w0 ∈ Bs0∞∞
satisfies

‖w0 − PLs,nw0‖∞ ≤ 2−Ls,ns0‖w0‖Bs0∞∞ � εs0,n,

having used that

2−Ls,ns0

εs0,n
≤ n− s0

2s0+2/ log n+d+ s0
2s0+d = n

2s0/ log n
(2s0+2/ log n+d)(2s0+d) = n

2s0
(2s0+d)2 log n+2 � 1.

Proceeding similarly, we also have

‖PLs,nw0‖Bs+d
11

≤ 2Ls,n(s−s0)2Ls,nd‖w0‖Bs0∞∞ � n
d

2s0+d = nε2
s0,n.

It follows that for some c1 > 0

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n) ≥ ΠWs,n(w : ‖w − PLs,nw0‖∞ ≤ c1εs0,n),
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and since Ws,n in (30) is a fixed truncated Laplace random element with associ-
ated decentering space Zn = VLs,n with norm ‖ · ‖Zn = ‖ · ‖Bs+d

11
(cf. Sect. A.1),

by the decentering inequality (32) the latter probability is lower bounded by

e−c2nε
2
s0,nΠWs,n (w : ‖w‖∞ ≤ c1εs0,n) .

By the centred small ball inequality (34) applied with t = s,

ΠWs,n (w : ‖w‖∞ ≤ c1εs0,n) ≥ e−(c3s+c4)
(
c1εs0,n

)−d/s

≥ e−c5nε
2
s0,n ,

for c3, c4, c5 > 0 since s ≤ s0 + 1/ logn ≤ s0 + 1 for n large enough and

(εs0,n)−
d
s = (n

d
2s0+d )

s0
s ≤ nε2

s0,n,

for all s ≥ s0. Combining the previous bounds, we find that for all s ∈ [s0, s0 +
1/ logn], for sufficiently large D1 > 0,

ΠWs,n(w : ‖w − w0‖∞ ≤ D1εs0,n) ≥ e−c6nε
2
s0,n .

The claim then follows arguing as in the conclusion of the proof of Lemma
12.

Lemma 15. Let ΠWn be the hierarchical non-rescaled truncated Laplace prior
arising as the law of Wn in (9). For fixed s0 > d, and M,R > 0, let s∗ =
s0/(1 + M/ logn) and let Wn be the sets defined in (24). Then, for all K > 0,
there exist sufficiently large M,R, such that for all n ∈ N large enough,

ΠWn(Wc
n) ≤ e−Knd/(2s0+d)

.

Proof. For any s > d, let εs,n, Ls,n, ΠWs,n and Ws,n be defined as at the
beginning of the proof of Lemma 14. Proceeding as in the proof of Lemma 13,
we obtain

ΠWn(Wc
n) ≤ e−(K+1)nε2s0,n +

∫ logn

s∗
ΠWs,n(Wc

n)σn(s)ds.

To bound the integral on the right hand side, note that the spaces associated to
the truncated Laplace random element Ws,n are Zn = Qn = VLs,n , with norms
respectively ‖ · ‖Zn = ‖ · ‖Bs+d

11
and ‖ · ‖Qn = ‖ · ‖Hs+d/2 . Letting

Wn =
{
w = w(1) + w(2) + w(3) : w(1), w(2), w(3) ∈ VLs,n , ‖w(1)‖1 ≤ εs∗,n,

‖w(2)‖Hs+d/2 ≤
√
Rnε2

s∗,n, ‖w(3)‖Bs+d
11

≤ Rnε2
s∗,n

}
,

the two-level concentration inequality (33) implies, using (25), for c3, c4 > 0,

ΠWs,n(Wn) ≥ 1 − 1
ΠWs,n (w : ‖w‖1 ≤ εs∗,n)e

−c4Rnε2s0,n .
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As ‖w‖1 ≤ ‖w‖∞ and ‖Ws,n‖∞ ≤ ‖Ws∗,n‖∞ for all s ≥ s∗, we have using again
(25) and the centred small ball inequality (34) with t = s∗,

ΠWs,n (w : ‖w‖1 ≤ εs∗,n) ≥ ΠWs∗,n
(w : ‖w‖∞ ≤ εs∗,n)

≥ e−c5
(
εs∗,n

)−d/s∗

≥ e−c6nε
2
s0,n .

For sufficiently large R > 0, it follows that

ΠWs,n(Wn) ≥ 1 − e−(c4R−c6)nε2s0,n ≥ 1 − e−(K+1)nε2s0,n .

Next, note that for w(2) ∈ VLs,n with ‖w(2)‖Hs+d/2 � √
nεs∗,n, by the same

computations as in the conclusion of the proof of Lemma 11,

‖w(2)‖Bs+d
11

≤
√

dim(VLs,n)‖w(2)‖Hs+d/2 � n
d/2

2s+d
√
nεs∗,n ≤ nε2

s∗,n

since s ≥ s∗. Taking w(1) = w(1), w(2) = w(2) + w(3) and using the embedding
Bs+d

11 ⊂ Bs∗+d
11 then shows that Wn ⊆ Wn for sufficiently large R, whence

ΠWs,n(Wn) ≥ ΠWs,n(Wn) ≥ 1 − e−(K+1)nε2s0,n ,

for all s ≥ s∗. The proof then carries over as in the conclusion of the proof of
Lemma 13.

Appendix A: Additional material

A.1. General properties of Laplace priors

In this section we record, for ease of exposition, a number of properties of Laplace
priors employed throughout the paper, largely based on the results of Agapiou
et al. [3]. For t > 0, consider a (possibly n-independent) t-regular Laplace prior
ΠWn on C([0, 1]d), arising as the law of

Wn =
∞∑
l=1

2ld∑
r=1

σn,lrWlrψlr, Wlr
iid∼ Laplace,

with σn,lr > 0 satisfying (2). An analogous argument as in Lemma 5.2 and
Proposition 6.1 in [3] (see also Lemma 7.1 in [5]) shows that Wn ∈ C([0, 1]d)∩Bt′

rr

almost surely for all t′ < t and r ∈ [1,∞]. On the contrary, Pr(Wn ∈ Bt
rr) = 0.

As ΠWn is supported on C([0, 1]d), its log-concavity (cf. Lemma 3.4 in [2])
implies (via a Fernique-like theorem [15, Sect. 2] and the exponential Markov
inequality) the following sup-norm concentration inequality: for some constants
a1, a2 > 0,

Pr (‖Wn‖∞ > R) ≤ a1e
−a2R, all R > 0. (31)
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The finer information geometry properties of ΠWn are characterised by two
associated function spaces,

Qn :=

⎧⎨⎩w =
∞∑
l=1

2ld∑
r=1

wlrψlr : ‖w‖2
Qn

:=
∞∑
l=1

2ld∑
r=1

σ−2
n,lr|wlr|2 < ∞

⎫⎬⎭ ,

and

Zn :=

⎧⎨⎩w =
∞∑
l=1

2ld∑
r=1

wlrψlr : ‖w‖Zn :=
∞∑
l=1

2ld∑
r=1

σ−1
n,lr|wlr| < ∞

⎫⎬⎭ .

Note that Zn ⊂ Qn with continuous embedding. The weighted �2-space Qn

contains the admissible shifts w for which the law of the random function Wn+w
is absolutely continuous with respect to ΠWn (cf. [3, Proposition 2.7]). On the
other hand, the weighted �1-norm ‖ · ‖Zn quantifies the loss in prior probability
of non-centred balls compared to centred ones: by Proposition 2.11 in [3], for all
w ∈ Zn, all ξ > 0,

Pr (‖Wn − w‖∞ ≤ ξ) ≥ e−‖w‖Zn Pr (‖Wn‖∞ ≤ ξ) . (32)

In the proofs we often refer to Zn as the ‘decentering’ space. Via the two-level
concentration inequality in Proposition 2.15 in [3], the bulk of the prior proba-
bility mass is seen to be contained in an enlargement of the sum of sufficiently
large balls in Qn and Zn: for some constant a3 > 0, for all Borel measurable
A ⊆ C([0, 1]d) and all R > 0,

Pr
(
Wn = W (1)

n + W (2)
n + W (3)

n : W (1)
n ∈ A, ‖W (2)

n ‖Qn ≤
√
R, ‖W (3)

n ‖Zn ≤ R
)

≥ 1 − 1
Pr(Wn ∈ A)e

−R/a3 .

(33)

Finally, Proposition 6.3 in [3] provides a lower bound for the decay of the
‘centred small ball probability’ appearing in the right hand side of (32) as the
radius ξ → 0. Below, we slightly reformulate such estimate, extending it to the
multi-dimensional case and keeping track of how the multiplicative constant ap-
pearing in the statement of Proposition 6.3 in [3] depends on the prior regularity
parameter. Inspection of the proof of that result (and of the proof of Lemma
2.1 in [53]) shows that for σn,lr = 2−l(t+d/2), any t > 0, the (n-independent)
t-regular Laplace random element

W =
∞∑
l=1

2ld∑
r=1

2−l(t+d/2)Wlrψlr, Wlr
iid∼ Laplace,

satisfies as ξ → 0,
Pr (‖W‖∞ ≤ ξ) ≥ e−(a4t+a5)ξ−d/t

(34)
for some constants a4, a5 > 0.
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A.2. Auxiliary results

In this section we collect two auxiliary results used in the proofs of the main
theorems.

Lemma 16. Let φ : R → (0,∞) be a strictly increasing and continuous func-
tion with uniformly Lipschitz logarithm with Lipschitz constant L > 0. For
w,w′ ∈ C([0, 1]d), let φw, φw′ be the associated probability density functions
defined according to (3). Then,

‖φw − φw′‖1 ≤ 2LeL‖w−w′‖∞

φ(−‖w′‖∞) ‖w − w′‖1.

Proof. Some algebra yields

‖φw − φw′‖1 =
∥∥∥∥ φ ◦ w
‖φ ◦ w‖1

− φ ◦ w′

‖φ ◦ w′‖1

∥∥∥∥
1

≤ 2
‖φ ◦ w′‖1

‖φ ◦ w − φ ◦ w′‖1 ≤ 2
φ(−‖w′‖∞)‖φ ◦ w − φ ◦ w′‖1.

The latter norm equals∫
[0,1]d

|φ(w(x)) − φ(w′(x))|dx

=
∫

[0,1]d

∣∣∣elog φ(w(x))
φ(w′(x)) − 1

∣∣∣ dx
≤
∫

[0,1]d
|logφ(w(x)) − log φ(w′(x))| e| logφ(w(x))−logφ(w′(x))|dx

having used that for all z ∈ R, |ez−1| ≤ |z|e|z|. Recalling that logφ is uniformly
Lipschitz with Lipschitz constant L > 0, the claim follows upper bounding the
integral in the last line by

L
∫

[0,1]d
|w(x) − w′(x)|eL|w(x)−w′(x)|dx ≤ LeL‖w−w′‖∞‖w − w′‖1.

Lemma 17. For fixed B > 0, Let φ : R → (B,∞) be a strictly increasing
and uniformly Lipschitz function with Lipschitz constant L > 0. For w,w′ ∈
C([0, 1]d), let φw, φw′ be the associated probability density functions defined ac-
cording to (3). Then,

1.

max
{

− Eφw′

(
log φw

φw′
(X)
)
, Eφw′

(
log φw

φw′
(X)
)2
}

� L2

B2

∥∥∥∥φw′

φw

∥∥∥∥
∞

‖w − w′‖2
2 ;
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2.
‖φw − φw′‖1 ≤ 2L

B
‖w − w′‖1.

Proof. For point 1., by Lemma B.2 in [21],

max
{
−Eφw′

(
log φw

φw′
(X)
)
, Eφw′

(
log φw

φw′
(X)
)2
}

�
∥∥∥∥φw′

φw

∥∥∥∥
∞

d2
H(φ′

w, φw),

where dH is the Hellinger distance (cf. (16)). Using that

dH(φw′ , φw) =
∥∥∥∥ √

φ ◦ w′

‖
√
φ ◦ w′‖2

−
√
φ ◦ w

‖
√
φ ◦ w‖2

∥∥∥∥
2

≤ 2
‖
√
φ ◦ w′‖2

∥∥∥√φ ◦ w′ −
√

φ ◦ w
∥∥∥

2
,

and that∥∥∥√φ ◦ w′ −
√
φ ◦ w

∥∥∥
2

=
∥∥∥∥ φ ◦ w′ − φ ◦ w√

φ ◦ w′ +
√
φ ◦ w

∥∥∥∥
2

≤
∥∥∥∥ 1√

φ ◦ w′ +
√
φ ◦ w

∥∥∥∥
∞

‖φ ◦ w − φ ◦ w′‖2

≤ 1√
φ(−‖w′‖∞) +

√
φ(−‖w‖∞)

‖φ ◦ w − φ ◦ w′‖2

the claim follows since φ(z) > B for all z ∈ R and ‖φ◦w−φ◦w′‖2 ≤ L‖w−w′‖2.
For point 2., arguing as in the proof of Lemma 16,

‖φw − φw′‖1 ≤ 2
φ(−‖w′‖∞)‖φ ◦ w − φ ◦ w′‖1,

whence the claim follows since φ is bounded below by B and uniformly Lips-
chitz.
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