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Abstract. We consider the polynomial approximation on (0, 400), with the
—a _IB

weight u(z) = z7e™" ,a>0,8>1and vy = 0. We introduce new moduli of
smoothness and related K-functionals for functions defined on the real semiaxis,
which can grow exponentially both at 0 and at +0o. Then we prove the Jackson
theorem, also in its weaker form, and the Stechkin inequality. Moreover, we study
the behavior of the derivatives of polynomials of best approximation.

1. Introduction

In this paper we introduce classes of functions related to the weight

u(z) = Ve @ "7 a>0,8>1 v=20, z € (0,+00),
i.e. we consider functions defined on the real semiaxis which can grow expo-
nentially both at 0 and at +00. We define new moduli of smoothness and
related K-functionals.

We study the behavior of the best approximation in these function
spaces. By means of the moduli of smoothness, we prove the Jackson the-
orem, also in its weaker form, and the Stechkin inequality. Moreover, we
investigate the behavior of the derivatives of polynomials of best approxi-
mation.
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168 G. MASTROIANNI and I. NOTARANGELO

Except for the recent paper [12], concerning the polynomial inequalities
with the weight u, the topic of this paper has not been considered in the
literature, as far as we know.

We observe that the weight u can be seen as a combination of a Pollaczek-
type weight e~ " and a Laguerre-type weight 27e~*". Of course, there is
a wide literature dealing with function spaces related to Pollaczek and La-
guerre weights separately (see, e.g., [2,3,6-11,17] for the Pollaczek case, and
[1,13-15] for the Laguerre case). But the polynomial approximation with
the weight u cannot be deduced from previous results concerning Pollaczek-
type weight and a Laguerre-type weight and, therefore, the results of this
paper are new.

The paper is structured as follows. In Section 2 we introduce the func-
tion spaces, moduli of smoothness and K-functionals. In Section 3 we state
the main results concerning polynomial approximation, which will be proved
in Section 4. Finally, in the Appendix we will give some technical proof.

2. Function spaces and moduli of smoothness

In the sequel ¢, C will stand for positive constants which can assume dif-
ferent values in each formula and we shall write C # C(a,b,...) when C is
independent of a,b,.... Furthermore A ~ B will mean that if A and B
are positive quantities depending on some parameters, then there exists a
positive constant C independent of these parameters such that (A/ B)il <C.

Finally, we will denote by P, the set of all algebraic polynomials of de-
gree at most m. As usual N, Z, R, will stand for the sets of all natural,
integer, real numbers, while Z™ and RT denote the sets of positive integer
and positive real numbers, respectively.

The weight w. Let us consider the weight function
(2.1) w(z) = e~ " a>0, [>1, x € (0,400).

Setting A = (%) a+f using the linear transformation = \ + y and mul-

tiplying by ¢* “**”, from w we obtain the weight

(2.2) W(y) = e W), y € (A, +00),
where

1 —a
(2.3) Q(y):er()ﬂLy)ﬂ—)\ — AP,

with «, 8 as above. The weight w in (2.2) belongs to the Levin—Lubinsky
class F(C?+) defined in [5, p. 7] (see [12] for further details). Hence the
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 169

properties of the orthogonal polynomials related to w can be deduced from
the results in [5].

In particular, the Mhaskar-Rakhmanov—Saff numbers e, = ¢, (w) and
ar = ar(w), are defined by

L Qe
(2.4) T= /€T N IR d

and

_ L Q' (x) i
(2.5) 0= / oo d

where Q'(z) = —az~*"1 + B2P~L. From the definition it follows that e, is
a decreasing function and a, is an increasing function of 7, and

lim e, =0, lim a, = +oo,
T—+00 T—+00

with

G-\ =i
(2.6) er = er(w) ~ < ar > :

-
and
(2.7) ar = ar(w) ~ 7778,

Moreover, letting

a_ B

w(z) = 2Vw(z) =2Ve ™ : a>0, 8>1, ~=0,

in [12] we showed that for any P, € P,,, 0 < p < 0o, the restricted range
inequality

(2.8) [Pl = Cll Pl 1o

[en,an]?
holds with C # C(m, Pp,), where €, = e,,(w) and a,, = ap(w), n =m + [v].

Function spaces. Now, we define some function spaces related to the
weight

(2.9) w(z) =2 w(z) =a7e® " a>0, B>1, 720,
x € (0,+00), where w is given by (2.1).
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170 G. MASTROIANNI and I. NOTARANGELO

By L%, 1 < p < oo, we denote the set of all measurable functions f such

that
+oo 1/p
=( / \fup(:r)dw> < oo,
0

while, for p = oo, by a slight abuse of notation, we set

L =Cy={f €C(0,+00) : lim f(a)u(x) =0= lim f(z)u(x)}

z—0+ T——+00

with the norm

1Al = Ifuloe = sup [f(z)u(z)].

z€(0,400)

For smoother functions we introduce the Sobolev-type spaces
Wru) = {f € Li: [0 € AC(0, +0), [[fP¢"u]| < oo},

where 1 S p< oo, 1 <reZt, o(x) :=+/r and AC(0,+00) denotes the set
of all absolutely continuous functions on (0,+00). We equip these spaces
with the norm

1 lwe @y = 1full, + ‘|f(r)‘PT“Hp~

Let us now consider the intervals

Vietl/2) ___~
(2.10) In(c) = {h » BB 1/2)]

with o and 8 as in (2.9), h > 0 sufficiently small, and ¢ > 1 an arbitrary but
fixed constant. Thus the following proposition holds.

PROPOSITION 2.1. Letu be as in (2.9) and z,y € Ip(c), ¢ > 1. If |z —y|
< Chy/z, with C a positive constant, then u(x) ~ u(y).

K-functionals and moduli of smoothness. For 1 <p<o0, r=>1
and t > 0 sufficiently small (say ¢ < tp), we define the K-functional

K(f¢0),, = dnf LI =gl + ¢l ¢ ]}

and its main part

T r o . o r (r), r
e 1)y = oil}lét geil/f/lff(u) {H (f g)uHL”(Zh(C)) 17l

L2 (Zu(c)) }’

where Zp,(c) is given by (2.10), ¢ > 1 is a fixed constant. Then, by definition,
K depends on the constant ¢, and the following proposition holds.
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 171

PROPOSITION 2.2. Let 1 Sp<oo,r =21 and b,c > 1 fized. Then

Kb, f,t7),, ~ K(c, f.t")

u?p’

where the constants in “~7 are independent of f and t.

Accordingly, in the sequel we will use the notation K (f,t") omitting
the dependence on the constant c.
Now, let us introduce the moduli of smoothness. For f € LL, 1 < p < o0,

r=1and 0<t <ty we set

(e frt),, = sup || AL (fuf
0<h<t

’U’?p’

Lr(Zu(c))’

where ¢ > 1 is a fixed constant, and

r

ol @) =3 1 () £+ = (o).

i=0
This modulus of smoothness is equivalent to the main part of the K-

functional, as the following lemma shows.

LEMMA 2.3. Let r 21 and 0 <t <ty for some tg < 1. Then, for any
felt, 1<p=< oo, and for all ¢ > 1, we have

Q;(C’ f t)u,p ~ K(c, f, tr)u,p

¢

where the constants in “~” are independent of f and t.
From Lemma 2.3, for any f € W/ (u), 1 Sp<oo,r =1 and t < tg, we
deduce

(2.11) (e, fit)y, = Coirilét hT”f(r)sDTu‘

Lr(Zn(c))’

where C is independent of f and ¢t. Moreover, from Proposition 2.2 and
Lemma 2.3 it follows that

Q;(bv f7 t)u,p ~ QZ‘D(C7 f7 t)u,p

for all b,c > 1. Hence, we will denote this modulus briefly by QU,(f,t)
Then we define the complete rth modulus of smoothness by

(212) WLy = DL 0, + il (|7 -

u?p'

Le(0,4+/(+3)]

+ qeilgrffl H (f B q)u‘

Lr [ct_l/(ﬁ_ %) 7—&-oo)
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172 G. MASTROIANNI and I. NOTARANGELO

with ¢ > 1 a fixed constant. We emphasize that the behaviour of wi,(f,?),,
is independent of the constant ¢. Moreover, the following lemma shows that
this modulus of smoothness is equivalent to the K-functional.

LEMMA 2.4. Let r 21 and 0 <t <ty for some tg < 1. Then, for any
felLlb, 1< p< oo, we have

wz;(f’ t)u7p ~ K(f? tr)u7p7
where the constants in “~” are independent of f and t.

By means of the main part of the modulus of smoothness, for 1 < p < oo,
we can define the Zygmund-type spaces

O (ft
ZP(u) == 2% (u) = {fELﬁ: supM < 00, r>s},
’ >0 t*
s € RT, with the norm
Q (f’t)u,p

/]

©
P = » + Su

Z2 . (u) 11l e t>g e
In the sequel we will denote these subspaces briefly by Z%(u), without the
second index r and with the assumption » > s. Moreover, we remark that,
in the definition of Z%,(u), the main part of the rth modulus of smoothness
Q;(f,lt)u’p can be replaeed by the complete modulus wg(f,t),, . as we will
show in the next section.

3. Polynomial approximation

Let us denote by Ep,(f),, = infpep,, || (f — P)ul| , the error of best poly-

nomial approximation of a function f € L%, 1 < p < oo, where u(z) is the
weight in (2.9).

In order to estimate E,,(f), , we first prove the Favard inequality.

u?p’

LEMMA 3.1. For every f € WF(u), 1 £ p < oo, we have

u?p -

(31) En(fluy €Y | g,

where C is independent of m and f. Here and in the sequel ay, ~ m'/5.

By using Lemmas 3.1 and 2.4, we can prove the following Jackson theo-
rem.
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 173

THEOREM 3.2. For any f € L, 1 < p < oo, and m >r = 1, we have

(32) Enlf)uy S (£Y20)
u,p

where C is independent of m and f.

In order to obtain the Salem—Stechkin inequality, we recall the Bernstein
inequality, proved in [12]. For any P, € P,,, with 1 < p < oo, we have

m
”Pr/n@UHp = C\/?HPmUHp, C # C(m, Py,).

Iterating this inequality for » = 1, we obtain

(3.3) Pl <c<\/_> | Py,

Then, using Lemma 2.4, and inequality (3.3), by standard arguments we
obtain the following Salem—Stechkin inequality.

THEOREM 3.3. For any f € L}, 1 <p < oo, and m >r = 1, we have

(3.4) o, <f¢§>fc<@)i<¢%)m{)p

=0

where C depends only on r.
In the next theorem we state a weak Jackson-type inequality.

THEOREM 3.4. Assume f €Lk, 1<p<oo, with Qo (f, t)u’p t~le
LY[0,1]. Then

Vaw/m Q1 (f,
(3.5) Em(fup_c/ %dt’ .

with C independent of m and f.

For instance, by the previous theorems, for any f € W’ (u), 1 < p < oo,
we obtain

(36)  En(f) ,pfc(“_ )\

Whereas, for any f € Z¥(u), 1 < p < oo, we get

C £ C(m, f).

m ts

(3.7)  En(f), ,pfc<m>ssugm, r>s, C#C(m,f).
t>
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174 G. MASTROIANNI and I. NOTARANGELO

Moreover, as already announced in the previous section, for any f € Z%(u),
1 < p < o, by Theorems 3.2, 3.3 and 3.4, we deduce

Qu(f )y ~wio(fit)yy 7>,

(AR

where the constants in “~” are independent of f and ¢.

The next theorem deals with the behavior of the derivatives of polyno-
mials of quasi best approximation. We say that P, € P, is of quasi best
approximation for f € L% if

with some C independent of m and f.

THEOREM 3.5. Let f € I, 1 < p < 0o. Then for any P,, € P, of quasi
best approximation and for r = 1, we have

(ry, r l ' r \/@
(3.8) |‘Pm90u|‘pgc<\/@> “e <f7 m >u71’7

where C is independent of f and m.

As a consequence of the last theorem, the equivalence

(3.9)
o (50m) e {0 R+ (V) 1Pl )

holds true for any f € L, 1 < p < oo.
4. Proofs

PROOF OF PROPOSITION 2.1. Let x,y € Zy(c), with |z —y| < Chy/z,
0 < h < 1. We can assume y > x. Then we have

y:y—a:—i-xga:—i-Ch\/ng(l—i-Chl_%lT) < Cux,

whence z7 ~ y” for any v € R.
Moreover, by using the mean value theorem, with £ € (x,y), we have

27—y =al e —y| S CE e
§ Chx—a—l/z é Chh—(a+é)_a+ll/2 _ C7
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 175

and
|27 —yf| = B¢P o —y| S CEP

< chaf V2 < el < ¢
whence w(x) ~ w(y), which completes the proof. [

PROOF OF PROPOSITION 2.2. Let us assume b < ¢. Then we have Zp,(b)
C In(c) and K(b, f,1"),, = K(c, f,t"), ,- To prove the converse inequality,

for any h € (0,t], we set h = (b/c)ﬁ_l/Qh, whence 7y (c) C Z7(b). Hence we
get

K(e, ),
< sup inf H f— gu‘ +<g>r(ﬁ—%)hr”g ), 7 ‘ }
- 0<h<t 9EWF (u) Lr(Zy(b)) b Lv(Z (b))
r(B-1/2)
< (¢ inf -
< (b) 0<E§(Sbl/lgﬂil/2t ggﬂf}f(u){u(f g)ul L7 (T3 (b))
+H [lg7 e L (; (b))}
A1) p\ P e\r(B-1/2) ~ .
- (4) ( f,( ) t) <&y kg0, O
u,p

PROOF OF LEMMA 2.3. Let us first prove that

Q;(C7 f? t)u’p é CK(C7 f7 tr)u7p7 1 é p é OO7

for any ¢ > 1. For every z € Zj(c) and for any g € WF(u), we can write
(1) |AL[F(@)] [u@) € [Ah, [ F@) — glo)] [ul@) + |Af, [9(0)] [ulz)
=: Ai(z) + Az(x).

By Proposition 2.1, we have

D2 (I -] (4 (= (o) |
=1
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176 G. MASTROIANNI and I. NOTARANGELO

since for z € Z(c) and h sufficiently small, we have |w — [z + (r—i)he(z)] ‘
< rhe(z). Hence, we get

(4'2) HAlHLP(I;L(c)) = CH (f - Q)UH L?(Zn (b))’ 1< p= oo,

for some b > 1.
In order to estimate the term Ag(z), we recall the Hermite—Genocchi
formula

(4.3) rE(z) = AT / FO(z 4+ th) dS,,
S,

T

where t =t1+-- -+, Sp = [0, 1] X [O,tl] X e X [O,tr_l], dS, = dty - - - dt,
0=t;<1for i=1,...,r. Using (4.3) with h replaced by hp(x), we can
write

| Ao(2)| = 1IN (z)u(z)

/S g (z + the(z)) dS,

r

Hence, for 1 < p < oo, using the generalized Minkowski inequality and
Proposition 2.1, we get
» 1/p
dx

A2l 7, (e :r!hr</
Lr(Zn(c)) (o)

1/p
< r!hr/ </ ‘@T(x)u(a:)g(r)(x + the(x |p d:v) das,
Sr Ih,(c)

1/p
§Cr!h””/ </ 19" ul” (2 + the(x)) dx) ds,
ST I}L(C)

<chflgMe"ull

@r(x)u(:n)/ g(r)(x + the(z)) dS,

S,

Zn(b))’

for some b > ¢, taking also into account that [, g dS, = % For p =1 we can
use the Fubini theorem, while the case p = oo is simpler. In any case we
obtain

(44) HA2HLP(I;L(C)) g Chng(T)gpr c<b 1 g p § 0.

uHLP(Ih(b))’

Combining (4.2), (4.4) and (4.1), taking the supremum over all 0 < h < ¢
and using Proposition 2.2, we get

(e, fot)yy S CR (b f17),y, < CR (e, 1),
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 177

for any ¢ > 1, with t <ty and 1 < p < oo.
Let us now prove that K(c, f, tr)u,p = CQ(b, £, t)%p, with ¢>1 a

fixed constant and 1 <b <c¢. To this aim, with 0 < h ¢, we set N =
min { keN: k= t_l} and choose the nodes

hﬁuzgt1<t2< S <ty S hBl/z
which satisfy the property
ho(ty) = Aty = tgy1 — tp < Che(ty)
for 1 £k < N — 1. Then, letting ) € C*°(R) be a non-decreasing function
with
vy = {0 TN
€Tr) =
0, =0,

we define Yy (x) = w(z_—f:), where 7, = (tx +tg41)/2, 1SkES N -1,
Yo(x) =0 =1y (x). Letting

(4.5
1/r 1/r r
y=r / / < l+1<l>f(w+l7(y1,...,yT)> dyy ... dy,

where —1 < 7 < 1, be the Steklov function (see for instance [4, p. 13]), we
introduce the functions

Fhk / fT(,Dtk

and

(4.6) ZFhk Yr—1(x) (1 — ¥i(z)),

with ¥g(z) =1 and ¢y (z) = 0.
With this function G}, proceeding as in [4, pp. 14-16] (see also [1]), we
can prove that the inequalities

(4.7) [(f = Gl oz, ) = CU(b: £ 7)oy
(4.8) 1G]], (o) S CHT QL0 f D),
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178 G. MASTROIANNI and I. NOTARANGELO

hold for 1 £ p < oo and b < ¢. Taking supremum over all 0 < h <t and
using Proposition 2.2, we get our claim. [J

Now, let Ge Lk, 1<p<oco. Setting t*=t/(t1/2) and t** =
ct—1/(B=1/2) ¢ > 1, consider the functions

I (x) = ﬁ / Gly)(y — 2)" " dy

and
(o) = = [ G =),

with 7 2 1 an integer. In order to prove Lemma 2.4, we will need the fol-
lowing proposition.

PROPOSITION 4.1. Let G € L, 1 < p < co. Then the inequalities

(4.9) 1Tl ooy = CENGE 1o o 40
and
(4.10) HFTU’HLP(t**,Jroo) S CtrHGgoTuHL,,(t**#oo),

hold with C # C(G,t) and p(z) = \/z.

PROOF. We first prove inequality (4.9). Since, by definition,
"
L) = [ Gy

and

-
Iy (z) = / L) dy, 22
X
for our aim it suffices to show that
1Tl ooy < CHIGPU] 1o -

In fact from the last inequality we get

HFQUHLP(O,t*) = CtHFl‘PUHLP(o,t*) = CtQHGszu‘ Lr(0,t%)
and the rest of the proof follows by induction.
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 179

Let us first prove (4.9) for r =1 and p = co. Since u is an increasing
function on (0,t*), we have

‘Fl dy‘
g u-1/2<y>
< V(@) / G) ﬂu(y)T dy

—1/2

< C|Gpull o o o) VT / Wy,

whence, taking supremum over all x € (0,t*), we get our claim, since

—1/2

" mw
(4.11) Vu / dy < Cemmw
@ f

2 1 ¢ o 1
< (Cleme atl/2 (2 55 ) g
="af /x Y 2yt Y

-
_ 1 «Q
< Cte~m+ [—/ 2ya+162y dy] <ct.

Now, consider the case r =1 and 1 < p < co. Using Holder inequality
with ¢ = p%l, by (4.11) we obtain

.
Tl 00y = |
0

p—1

< [ ) [ G o () [ o ) da

and then, using the Fubini theorem,

p

u(z) / (Gou)(w) (pw)+ 3 () dy| de

t* t*
10l e < 8 / u(x) / GoulP () ¢ (y) u™ (y) dy du

zeot [Miaaro))e ) [t i) dy

Taking into account that, for y € (0,t*),

Y

(4.12) e M y)u(y) /

y
w(x)de < Cy /ey / e " dx
0 0
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180 G. MASTROIANNI and I. NOTARANGELO

y
§Cya+1/26ya/ d(e™™ ") <¢t,
0

we get,

Iyl Zogo ey < CEIGRUINLL g 10y
In a simpler way we can show that

”PluHLl(O,t*) é CtHG(puHLl(O,t*)’

and then (4.9) holds for r =1 and 1 < p < 0.
Concerning inequality (4.10), as in the first part of this proof, we note
that, by definition,

T

Li(z) = | Gly)dy

t**
and

ok

~ z ~
L= [ Ty rz2
t
So, for our aim it suffices to show that

HFIUHLP(t**,oo) = CtHG(PuHLP(t**,—i-oo)'

But this last inequality with minor changes is proved in [4, Lemma 11.4.1,
pp. 186-187]. O

PrOOF OF LEMMA 2.4. We first prove that wi(f,?),, < CK(f,t"), .
Taking into account Lemma 2.3, it suffices to show that, for any g € W¥(u),
the second and the third term in (2.12) are dominated by CtT”g(T)go’”qu.
We estimate only the second term, because the other one can be handled in
an analogous way.

Let T be the Taylor polynomial of g € W¥(u) of degree r — 1 about
t1/(a+1/2) - We have

7=

Lr(0,¢1/(a+1/2)) = H (g - T)u‘ Lr(0,t1/(at1/2) + H (f - g)qu

and
11/(a+1/2)

u(x 1 (r
o=@ =0 [ - )
Then, using Proposition 4.1, we get

inf H (f — q)u’

qeP,

Lr(0,¢1/(e41/2)) = CtTHQ(T)SOTUHp + H (f — g)qu
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POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 181

and the first part of our claim follows taking the infimum over all g € W (u).

Now, let us prove the converse inequality, i.e. K(f,t"), , < Cwi(f,1), -
To this aim we are going to construct a function I'y € W/ (u), combining
the function G; defined in the proof of Lemma 2.3, and the following two

polynomials. By definition, there exist Py, P, € P._1, such that

1 = Po)ull oo 0sceearmy + 8 NP0 oo sy S ClFs )
and
H (f - P2)”‘ Lp(ct=1/(B=1/2) o0) + trHP2(T)90T”||Lp(ct71/<zs71/2>7+oo)
< Cu(f. 1)y
Now set

r1 =x2/2, x9= t/t1/2) g = VB2 ) = 20,

Given a non-decreasing function ¢ € C*°, with ¢(z) = 1 forx 2 1, ¢(z) =0
for z < 0, we define 9;(x) = w(M), 1 =1,2,3 and the function

Tit1—T4

Li(z) = (1 —41(2)) Pr(z) +¥1(2) (1 = ¥3(2)) Gil) + v3(2) Pa(2),
where G is given by (4.6), with h replaced by ¢. Hence

(P (z) if <1
(1—v1(2) Pr(z) + 1(2)Ge(z) if o1 S xSy
L'y(z) = { Ge(2) if 72 <2 = w3
(1 —v3(2)) Ge(x) + h3(x) Pa(x) if z3 S xSy

Py(x) if £2xy

and I'y € WP (u).
Then it is not difficult to show that

K(ft"), S | (f = Doull, + #7067 < Cal(f8),,,

so we omit the details. [

In order to prove the Favard inequality in Lemma 3.1 we use arguments
analogous to those in [13,14,16]. So, in this section we will describe the main
steps of the procedure and, in the Appendix, we will give some technical
proofs.
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First of all, we recall some results about orthogonal polynomials associ-
ated with the weight w(z) and their zeros. Letting A € Z* to be fixed in
the sequel, consider the sequence {pm(wl/ A) }m of orthonormal polynomials
with positive leading coefficient. Let

(4.13) Em <21 < T2 <+ < Ty < Gy

be the zeros of pm(wl/A) (see [5, pp. 380-381]), where the M—R-S numbers
Epp = Em(wl/(QA)) = e94m(w)

and
= am(wl/(QA)) = agam(w)

satisfy (2.6) and (2.7), i.e.

(4.14) E <V O > T G~ mYe,

m

The distance between two consecutive zeros of pm(wl/ A) is given by (see [5,
p. 315])

(.Tk - éd2m)(62m - Ik)
m\/(xk —Em + 0m)(Am — xp + Eme_Q/?’)7

(4.15)  Azxp = Tp41 — T ~

k=1,...,m, with

§
3

2/3
(4.16) A(IJl ~ T1 — ém ~ 5m ~ <f§m )
m

and

ATt ~ G — Ty ~ Gmm /3.
Now, let 6 € (0,1) be fixed and consider the interval [£g,,, Ggys]. Then, from
(4.15), we obtain

(4.17) Agy ~ YIm

o(xy), Tk € [Eom, Aom),

where the constants in “~” depend only on 6.
In the sequel we will need the following propositions, proved in the Ap-

pendix.
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PROPOSITION 4.2. Let z;, 1<i<m—1, be an arbitrary zero of
pm(wl/A), o = Em, Tmt1 = Qm, and T € [Egm, Gom], 0 € (0,1). Then we
have

(4.18) 2l <C(1+1]i— k) z)
and

Lit1 Th+1
(4.19) / xvdxgc(1+|¢—k|)2”’“/ 2 dx

where C is independent of m and k in both cases.

Let us denote by ﬁk(wl/A) the kth fundamental Lagrange polynomial
based on the zeros of pm(wl/A) and the two extra points &,, and a,,. For

1 <k < m we have
pm (w4, z) (G — 7)(@m — )
Pl (w4, k) (2 — p) (Em = @) (Gm — 2)

PROPOSITION 4.3. Let x € [Eop,, Gom] and k be an index such that xj €
[Eom, Gom], 0 € (0,1). Then we have

(4.20) O (w'z) =

()
(4.21) O (w4 2Aw(w <cC d ,
|4 ( )| (1—|—|k_d‘)A/2

where xq, 1 < d < m, is a zero closest to x and C is independent of m and k.

We are now able to prove Lemma 3.1. We divide the proof into four
steps.

First step. For any f € W (u), 1 < p < oo, introduce the function fy,
0 € (0,1), defined as

f(é:Qm)a 0<z< C:Hma
(4.22) fo(@) = f(@),  Eom =@ = agm,

f(dem), T > &0m~
Obviously fp € WP (u) and
(4.23) Byatmt1)(Hup = 1 (F = fo)ull, + Bragms1)(fo)y ps

where 2A(m + 1) is the degree of a suitable polynomial which we will use in
the proof of Lemma 3.1.
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LEMMA 4.4. For any f € W!(u), 1 £ p < oo, we have
Vam
(4.24) H(f—fe)UHp §C7||f/90qu

with C independent of m and f, am ~ m*/P.

Second step. Now, we approximate the function fy by means of step
functions. For xy, € [Eopm, Gom], 0 € (0,1), we set

(4.25) M= max fp(z), mp= min _fy(x),
TE[Th_1,Tk] TE[Tp—1,Tk)
and
o JL = >0,
T, =
0, z<0.

Hence we introduce the functions

(4.26) (STfo)(@) = fEom) + D (v —2)% [Mis1 — My

TKE[Eom,aom]

and

(4.27) (S™fo)(@) = fEom)+ Y (z—ap)"[miga —mal.

Tk E[Eom,Aom)]
By definition, we have
(428) (S fo)(x) = fo(x) = (ST fo)(x), 2 € (0,+00)\ [Eom, Gom),

and

(4.29) (S~ fo)(x) < fo(z) S (ST fo)(x), 2 € [Egm, om]-
Moreover, if x € [xg_1, x|, With zx € [Egm, Ggm], We get
(4.30) (ST fo)(x) — (S™ fo)(x) = My, — my,.

LEMMA 4.5. For any f € WF(u), 1 £ p £ oo, we have

(431) (5% o — 5~ fapul, < X2 pul,

[Eom,dom]
with C independent of m and f, ay ~ m*/P.
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Third step. Now we introduce some polynomials of one-sided approxi-
mation for ST fy and S~ fy. To this aim recall that ﬁk(wl/A) denotes the

kth fundamental Lagrange polynomial based on the zeros of p,, (wl/ A) and
the two extra points &, and a,.

Let k be an index satisfying zx € [Egm, Ggm), € € (0,1). Proceeding
in analogy with [13,18], we are going to construct the polynomials p,f €
Py A(m+1) such that

pr (2) < (z — 1) < pf (@),

and
(4.32) pi(x) = py () = G4 (w4, 2)

for x € [Eam, Gom].
So, with z;, 2 =1, ...m, the zeros ofpm(wl/A) , Lo = Em and Tp41 = Gm,
define the polynomial p;: by

N 0, 0Sisk-—1
pk(xi): .
1, k<i<m+1,

dV
d:[:l,pg(u’%):o7 1#£k, v=1...,24—-1,

whereas the polynomial p, is given by
-~ (2) 0, 05isk
Py (i) =
B 1, k+1<i<m+1,

a )
@pk(%)z(h 1#k, v=1...,24—1.

By means of pf and choosing A = [4v + 8], introduce the polynomials

(4.33) Q*(x) = f(Gom)+ Y Pi(@AMz+ > pf(x)AMy € Poapmyn)

AM,>0 AM,<0
and
(4.34) ¢ (x) = fEom) + Y pi(@)Amg+ Y pf(x)Amg € Poagmin),

where AMjy = Myy1 — My and Amy = mypy1 — myg, k is such that xj €
[égm,&em], 6 € (0, 1).
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By definition, in [a,, 2], we have
¢ =S foSqt, QT SSTfrQT,
and then
(4.35) =S foSfoSSTfH QT

Then the following lemma, proved in the Appendix, holds.
LEMMA 4.6. For any f € W!(u), 1 £ p < oo, we have

(4.36) 1@ =@ ull, <Y | Poul g, )
and
(4.37) I =0l < Y ol

where in both cases C is independent of m and f.

Fourth step. Now we are able to prove the Favard inequality.

PrROOF OF LEMMA 3.1. By Lemma 4.4 we have

Eaa(ma1)(Pup = Baagmi1)(fo)uy + || (F = fo)ul],

Vv am
S Epa(my1)(fo)yp + CT 1 f'pull,

For the first summand on the right-hand side, by (4.35) and using Lem-
mas 4.5 and 4.6, we obtain

Esa(m+1)(fo)upy S [(QF — fe)UHP
< 1@+ — @l + 1165 o — 5~ foyull, + || @* — e

<cYimyf
m

eull,,

and the Favard inequality (3.1) follows. [
PROOF OF THEOREM 3.4. First of all we observe that
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for some ¢ >1 and with A = sflnﬂﬂ

1 < p < oo and m > r, the inequality

~ \/Gm/m. Let us prove that, for

~ : (¢ Vam
(438)  Em(f)upi= pinl = Pl g, ) = €% <f’ “m >up

)

holds with C # C(f,m).
Proceeding as in the proof of Lemma 2.3, for any function f € L%, we
can construct a function g, such that

(4.39) [ (f = gm)u|

T Vv &m
LPlem,am] = CQ@ <f’ m
u,p

)

and

(), r _m_ ' " V/am
) el 5 () o (1Y)

where C # C(f,m). Namely, g,, is the function G}, in (4.6), with h = sﬁlﬂm

~ U /M.

Then we define the function g, as

TT*l(gmv‘rL‘)a 0<z § Em,
gm(z) = § gm(2), Em ST =S Ay,
Tr—l(gmvx)a x Z Am .-

where T, _1(gm), Tr—1(gm) € Pr_1 are the Taylor polynomials of g, about
€m and a,, respectively. Hence, by (4.39), we get

(4'41) Em(f)u,p § H (f - gm)u‘

LP[e,,,am] + P,,{%Fl;m H (?jm B Pm)u‘ LP[e,,,am]

O T P [ ST

P, €P,,

<cqy, <f‘/:?> + inf | (Gm — Poo)ul],

)

For the second summand on the right-hand side, since g,, € WZ(u), by (3.6)
and (4.40), we obtain

: ~ m ' ~(r), r
@i i |G- P, S (Y2 ) e,
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Vam —or [ Vm
_c< - Hgm | e 0y = CU 7

Combining (4.41) and (4.42), inequality (4.38) follows.
Therefore, for any f € L, 1 < p < oo, there exist polynomials P, ok, €
Pok, k =1, 2 , such that

u?p

<oy (152 )

Lr[e,,an]

9
u,p

using the restricted range inequality (2.8) with n = 2¥Im + [y] ~ 281m

Then the series
o0
D (v = Py ],
k=0

converges, since it is dominated by

Sz vam/m QU (f,t
ZQT ( , a2 > N/ 7@({5 Jup dt < co.
u,p

0

So the equality

o0

(f_P:;L)u:Z(Pg’““m_P;km)u

k=0
holds a.e. in (0, +00). It follows that

Vam/m QF (f ¢
(5= pauf, s [ B D gy
0

and then we get (3.5). O

PROOF OF THEOREM 3.5. The proof is based on the same argument as
in [4, pp. 84-86], so we will give only the main steps.

Let h = \/a;,,/m. Using the restricted range inequality (2.8), with n =
m—r+ [v+1r/2], we get
(4.43) |25 (o) | < C[| P (hp) |,

[en,an]

< C||[PR(he)" = Ah(Pr)]ul| e o 1 +Cl| Af (Pl

[En’a‘n] Lp 5n an]

=: A1 + As.

Acta Mathematica Hungarica 142, 2014



POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 189

Observe that x € [ey,a,] implies @ + rho(z) € [e2m, agm] for m suffi-
ciently large.
Let us consider the term As. By Theorem 3.2 we get

(4.44) Ay C||Aj (P — f)ul

+Cl| A ()l

LP[eom,a2m] L7 (g2 ,a2m]

§CEm(f)u,p+CWZ;<fa%> fc‘”s?(f’fn) |
u,p wp

)

While, concerning the term Aj, by using the Hermite—Genocchi formula
(4.3), with h replaced by hy(z), we have

F(z) := [(he(2)) Py (2) = Af, (P(2)) Ju(z)

M (hip(a ))Tu(x)/s [PO(x) — P ( + thy(x)) ] dS,

x+the(z)
= —rl(ho(z / / P (2) dzdS,,

whence, by Proposition 2.1, we get

z+thep(z
‘ x) <Cr'hr// |p(r+1 |<p 2)dz dS,

z+rhp(z)
<ew | P (2) | (2)ulz) d=

r+1 1 wtrhe(e) (r+1) r+1
—enr [P (uz)

since fs dty---dt, = 7}, Then, using the boundedness of the Hardy-—

Littlewood maximal function for 1 < p < oo and Fubini’s theorem for p = 1,
we obtain

Al = HFHLP[SQM,@M} § ChrJrlHP’r(r:+1) (hso)r—’_lu'

Lr [52771 7a27n} ’

with h = \/a,,/m. By (4.43) and (4.44), it follows that

L?[e2m ,a2m] ’

‘|P7$1 h‘P UH <Cw (f’\/_) +Chr+1HP»,(nT+1)(hQO)T+1u|

u7p
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Proceeding as in [4, p. 84], one can show that the second term on the right-
hand side of the last inequality is bounded by Cw;( I @ )up, whence we
get (3.8). O

Appendix

PROOF OF PROPOSITION 4.2. For 6 € (0,1) and m sufficiently large, let
us define the indices j; = j1(6,m) and ja2 = j2(0,m) as follows

xj, = m]?x{xk S Epm} and zj, = 1r1[1kin{:n;C = Agm }-
We first prove inequality (4.18). Let us consider the case x;,xj €
xi, ] If x; < x5 we have ) < 2, while, if x; > x3, by (4.17), we get
J1s ¥ )2 % k

Z; T, — X
P B R |
g3 Tk

§C(1+]z‘—k¢|)A;ﬂk+1§C(1+|z—k|)1/;ﬁ—k

and then
Zq . 2
— <C(1 —kl)".
o = (14 i — k)

Let us now consider the case x; > xj, = 3. Recalling the previous case
we have
Lo T

Tin < fm (14 gy — k) S C(14|i— k).
Tk Tj, Tk aom

Finally, in case z; < xj, < %, we get

1< b = ZRDh <o%0m g4 g — k)2 <C(1+ i —K])

T T, T4 Em

In any case we obtain

whence
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In order to prove inequality (4.19), we first show that

Al‘i
Axy,

(4.45) SC(1+i—k|).

In case x;, x) € [zj,,;,], by (4.17) and (4.18), we easily get

Ax; x;
PR Sl i —
N ,/xk:C(lﬂz kl).

In case x; > x;, 2 x, recalling the previous case, by (4.15), we have

Ari Az Az , Az; ,
2 < _ < _
Az, Ay, Aoy C(1+ 12— k) Az, = C(1+i—H)

since, by (4.15),

Az (zi — Eom)(G2m — i) (2j, —Em + Om)(@m — zj, + Amm—2/3)
Axj, (), = Eom)(Gom — x3) \| (25— &+ 0n) (am — 23 + G ~2/3)

< < T; — Eoam > —Zj, + amm—2/3
~ \zj, —ém — T + Qym—2/3
T — Tj,
Q6m — Eom am — T + Amm—2/3

§C\/1—|— (1+|]2—Z|)Axi

(14 |m —i|) Az;

II/\

C.

A

Finally, in case z; < zj, < xj, proceeding in analogy with the previous case,
we get

1<

Ax; Azx; Ax;j Azx; _ .
= 1 K < _
Ave ~ Awy, Doy = CAxy, (1411 — k) SC(1+ i — k),

since

Ari (i = Eom)(lzm = 1) [ () = Em + Om) (@m — 24, + Gm /%)
Azj, (w5, — Eom)(azm — 25,) | (20 — Em + 0m) (@m — i + amm—2/3)

G2m — Tj xj1_§m+5m<c 1+|]1_Z|)A‘T <c
A2m — Tj, Ti — Em + Om 1+i)Az;  ~
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whence (4.45) follows.
Finally, from (4.18) and (4.45), we deduce

Tit1 .7y ¥
fx xY dx N <Iz) Ax;

fx:“ xYdx Azy,

T

Li < . 2v+1
o SC(1+i—kl) ,

which completes the proof. [

Proor or LEMMA 4.4. Since

u(z) /0 ” fy)dy, x € (0,m),
(f = fo)(x)u(z) = 0,

T e [59m,6~10m]7

(@) [ F)dy, € (gm, +oo),

\ Agm

inequality (4.24) follows from Proposition 4.1. [

PROOF OF LEMMA 4.5. Set yi = (k1 + xx)/2, with k such that z €
[E0m, Ggm). Then, for = € [yr—1,yr], by (4.30), Proposition 2.1 and (4.17),
we have

(8" fa = S fo)(o)|u(e) < u(a) | " R dy

v
<
<cC e | ' (y)u(y)| dy,

for some ¢ > 0. Hence, for p = oo, we get

| (ST fo — Sffg)uHoo = max [(STfo— S fo)(x)u(z)|

TE[Egm ,dom]

T [

< Cmax max "(yY)u d
SCmpx  max v g | /' W)uly)] dy

< o Vim

m

HfISOUHLOO[égm,dgm}

For 1 < p < o0, using the boundedness of the Hardy—Littlewood maximal
function, we obtain

Ve

Aom :c—&-c‘/;?
f(y)uly)| dy| dz
Eom /a:—c@ T | ‘

| (8% fo — S~ fo)ul|} < C/
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C S
m Eom |V am\/-E x—c@ﬁ

\/@ P / p
<C (T £ pull PEom,dom)"

We omit the proof for p = 1, which follows by Fubini theorem. [

x+c\/a7n \/_

m

A

| ' (W)e(y)uly)| dy| da

PROOF OF PROPOSITION 4.3. First of all we observe that, letting x4 ~ x
be a zero closest to x, by an extension of an inequality of Erdés and Turan
(see [5, p. 361]), we have

|€k(w1/A, :1:) |w1/(2A) (z)
wl/ @A) (z.)

~1, ke{d—-1,d,d+1}.

For k #d —1,d,d + 1 such that zy € [Egm, Ggm|, using the relations (see
[5, p. 325])

(4.46) sup  (pm w/ A ( (x—E&n)| ~1
z€(0,400) ‘ ( ’ \/l |
and
(4.47) ~ Az (m — ) (2 — Em)
|p;n(w1/A7$k) |w1/(2A)(xk)
we get
|Ek(w1/‘4,aj) ’wl/(QA)(:p) < c Axk ‘ ( x)(ac - é:m)‘ 8/
wl/(QA) (xk) = |(L‘ — (L’k| (C~L - :Ck)(:vk - &:m)
<c Axy, |z — & 3/4
oz —axg| \zp —En ’

since for |G, — x| < Cay, and (@, — k) = G — Agm = Cay, for & € [Eop,, Gom)]
and zj, € [59m, &gm].
Moreover observe that, from (4.15) we can deduce

(4.48) Az ~ V::Lm VT —my Tk € [Eom, om]

and

(4.49) Az =YY S E i < g
m
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Now, we distinguish two cases: © > xp and z < xp. In the first case we

have
Al A )G A (o )
wl/24) () T — T \ Tk —Em +

1/4 3/4 1/4
T — Tk T — Em Tr — Tk r — Xk
since Az S x —xp, k#d,d+ 1, and Az < C(xk — &), using (4.48) and
(4.16). Moreover, using

174N

T — T 2 EA:@ = (d—k) kirgléig_l Az; 2 C(d — k)Axy,
we get
(150) ‘Ek(wl/A,a:) ‘wl/@A)(x) < C
w/CA) () (1+ ]d—k:|)1/4’
for = > xj.

Now, consider the case z < xp. If £, < x < x3, we can proceed analo-
gously to the previous case, taking into account that

k—1 k—1
|z — x| 2 Z Az; 2C m Z Ti — Em
i=d+1 mo i
>C(ld— k) Y /5 —

m

by (4.49) and since xq — €, ~ = — &y,. Hence, by (4.48), we get

|0 (0!, ) w2 () o Dre (x—En 3/4
wl/(QA) ({Ek) ’{E — .I‘k’ T — é:m

(4.51)

A

- C <a:—ém)1/4< C
~(1+|d—k]) \zp —én ~(1+1]d—k])’

since £ — €, < Tk — €.
Finally, if &, < o < &,,, with < x, we can write

(0 00) [V O) sy (o)
wl/(QA)(xk) Tp— T \ Tk — Em

A
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Az Az

C —
(zp — )Y ap — 6n)¥* T (21— Em)

A

I

since &, —x < xp —x and T —x = X — &y, Since Ty — Epy = T — T 2
C|k — d|Azq, by (4.48) and (4.16), we get
() ) L An
wl/(2A)(xk) ([Ek - 5m) m
C Vam C
(14 |d— &) ">mvVABzL = (14 |d— k)

C

(4.52)

A
A

& ﬁ
=l
HE

My
3

N

/2"

Combining (4.50), (4.51) and (4.52), we obtain (4.21). O

PROOF OF LEMMA 4.6. Since inequalities (4.36) and (4.37) can be
proved using similar arguments, we are going to show the proof only for
(4.36).

We first observe that, by (2.8), with Q* € P3 A(m+1), we have

Q" =@ ul, =l (@7 - Q7)ul

Lp [gsnl 7asm]

for some s > 1 and for 1 < p < co. Then we assume = € [Egpm, Asm)-
Letting x;, i =1,...,m, be the zeros of pm(wl/A), we set xg = Egm,
Tm+1 = Ggm and

Ti—1 + X

yi:Ta Z:L"'amv y(]:gsm> ym+1:dsm.

Let us first prove (4.36) for p = co. By (4.33) and (4.32), we have
H(QJF—Q_)uHOO <C max max ‘(Q+—Q_)(a;)u(x)}

i=1,...,m+1 z€ly;_1,y:]

<C max max Z sz(wl/A, z) u(z)|AMy|.
=heomtl a€lynul L e Gom]

Hence, by using Proposition 4.3 and Propositions 4.2 and 2.1, we get
1@T = @7)ull

< u(xk) /szrl /
- Cizlr,r-%%iﬂ Z (1 + |z' _ k|)A/2—27 _— ‘f (y)\ dy

k: 2k €[Eom a0m]

1 Th+1
<C omax Y R / | £ (y)uy)| dy

=hemt k: 21 €[Eom ,dom] (1+ i — k) -
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3

[IA

C

1
TR RN SR TR e

k: 2k €[Egm,aom)]

1 [ e
<(gam [ 1ol dn) YR pul,

2Axy, T

since Tp41 — Tp—1 ~ (v/@m/m)\/y, by (4.17), and A > 4y + 2.
Now, let us consider the case 1 < p < co. In analogy with the previous
case we have

m—+1
l@r =z = Q" =@ ulhy

Yi Th+1 p
i=1 JYi-1 E: 21 €[Egm,dom] (1 + i — k|) Tr-1
_ Cm+1 /‘yi o Z 1 /mk+1 ‘f,( ) ( )‘ J Pd
= x y)w(y Y x.
i=1 Y Yi-1 k: Tk €[Eom a0m] (1 =+ ’Z - k|) A Tr—1

By Holder inequality, Proposition 4.2 and (4.17), we get

m+1

l@ —a@yuzzey [*am
i=1 VY-t

> ;D AT [ / e dy]pdgc

k: k€ [Eom,aom] (1 + |Z - k-1

m+1

1
<
=y, .z (14 [i = ) A2 b

=1 k: TRE [59771 76‘9771

where

Tht1 Th+1 p
Ay, :=/ xw[/ !f’(y)w(y)!dy] da.

k—1

By Proposition 2.1 and (4.17), we have

A scC / [ / P dyrdx

Tk—1

Acta Mathematica Hungarica 142, 2014



POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT 197

/ Tr41 x C@ x p
S I R Uy e Y
m Tr_1 \/E am x—c@ﬁ

=:C (@)10/:+ | M(F,z)|" da

k—1

where ¢ >0 and M(F) is the Hardy-Littlewood maximal function of
F := f'ou. So, reversing the sums and using the boundedness of the maxi-
mal function, for 1 < p < oo, we obtain

1@" =@ )ull?

=¢ (\@)p X M)

k:xke[§97n7a‘07n] Th—1

m+41 1

(14 |i — k) AR

<o (Y [ e se (Y o

m Eom

since A >4~y +4+4/p.
For p = 1 we can use the Fubini theorem. We omit the details. [
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